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ABSTRACT 

Maize, being an important agricultural crop and among the three most widely grown 

in the world, plays an important role in the livelihood of smallholder farmers contributing 34-

36% daily calorific intake in East Africa and 10% in West Africa. In developing countries, 

population growth is expected to occur with increasing food demand. Conversely, maize 

experiences post-harvest losses (PHLS)  especially from the maize weevil (Sitophilus 

zeamais), which if minimized, could help to reduce the number of hungry people in the world 

that is about 870 million people and majority (850 million people) being in developing 

countries. For the economies of smallholder farmers, better storage leads to fewer losses, 

more income, more grain available to seed, greater family stability, lower risks of 

family/country conflicts, improvement in political stability and quality of life. The different 

approaches which were studied to control the maize weevils included: evaluation of hermetic 

maize storage for smallholder farmers, effect of blending maize kernels with amaranth during 

storage on maize weevil mortality, and effect of storage containers physical disturbance on 

maize weevil mortality. 

The first study found 100% maize weevil mortality for hermetically sealed containers 

and the oxygen levels inside them declined from 21% to between 3 and 10%. From the 

maize, maize-amaranth experiment, it was concluded that blending maize with amaranth 

during storage reduced maize weevil population growth by 46% compared to storing maize 

alone. From the last experiment, we found out that physical disturbance resulted in 81% 

weevil mortality. The overall conclusion is that there are effective low-cost ways to control 

maize weevils by hermetic storage, physical disturbance and blending maize with amaranth 

during storage. Hermetic storage is the best among the researched methods to effectively 
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control the maize weevils, followed by physical disturbance and then maize-amaranth 

mixture. 

Possible future research can be to:  

 Investigate the possible causes and how to eliminate and/or minimize maize spoilage 

on barrel walls.  This experiment will seek to minimize and/or eliminate molds that 

were observed and the aflatoxin detected from samples picked from barrel walls. 

 Hermetic storage should be investigated without letting the weevils to first go first 

through lifecycles to increase in population. This experiment will investigate if kernel 

spoilage occurs on barrel walls if hermetic sealing in done from the first day of 

storage. 

 Investigate how long it takes for a female maize weevil to bore through a kernel. This 

test will establish how frequently it is necessary to disturb the weevils. 

 Setting up the same maize-amaranth experiment (50:50 by volume) but having an 

extra layer of amaranth on top to investigate if this can help completely control the 

maize weevil. This extra layer will reduce and/or eliminate the maize kernels that 

were available during our experiment. 

 Due to observation of no spoilt kernels for maize blended with grain amaranth on 

barrel walls, more research should be done to quantify the observations. This 

experiment may lead to hermetic and maize-amaranth mixture methods being used 

together by smallholder farmers to eliminate and/or mimimize weevils while 

experiencing no mold maize in metallic storage containers.  
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 Investigate the effect of physical disturbance using larger storage containers. Since 

farmers use larger storage containers compared to what we investigated in laboratory 

setting, it is necessary to find out what will happen in real life. 

 Implement and test the researched methods in a developing country. These tests will 

help determine if the proposed methods are feasible. 
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CHAPTER 1:  INTRODUCTION 

Thesis Organization 

The information presented in this thesis is organized into five chapters. The first 

chapter is introduction, with sections on the thesis organization, objectives, and literature 

review. The second chapter contains a paper entitled “Evaluation of hermetic maize storage 

steel barrels for smallholder farmers,” the third chapter contains a paper entitled “Effect of 

blending maize kernels with amaranth on maize weevil mortality,” the fourth chapter 

contains a paper entitled “Effect of storage container physical disturbance on maize weevil 

mortality”. The fifth is the “General conclusions” chapter, based on the information 

contained in previous chapters, and answering objectives from chapter 1. Chapters two, three, 

and four, were prepared for publication in journals and are formatted in accordance with the 

guidelines of papers submitted to those journals.  

Literature Review 

Maize is a major staple crop for many smallholder farmers over the world. However 

it experiences post-harvest losses due to the maize weevil (Sitophilus zeamais). This section 

covers literature review about maize, maize weevil, factors affecting maize storage, storage 

methods, hermetic storage, amaranth as a grain that is postulated to reduce maize weevil 

movement if blended with maize kernels during storage and physical disturbance of storage 

containers as method to control maize weevils. 

Maize  

The words maize and corn are used interchangeably to refer to Zea mays that belong 

to the grass family (Gramineae) which is a tall plant with an extensive fibrous root system 
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and it’s a cross pollinated species, with the ear (female) and tassel (male) flowers in separate 

positions along the plant (Encyclopedia, 2014; FAO, 1992). Corn meaning depends on the 

country where you are: for example, in U.S. corn means maize or Indian corn, in England 

corn means wheat and in Scotland and Ireland it means oats (Lance and Garren, 2002). 

According to Lance and Garren (2002), corn mentioned in the Bible is assumed to mean 

wheat or barley.  United States of America continues to be the largest producer of maize with 

a projected production of 355.6 million Mg (14.5 billion bushels) for 2014 (USDA, 2014, 

2013a). In 2013, USA produced 353.06 million Mg (13.9 billion bushels) of maize 

(FAOSTAT, 2014). Other large scale producer countries include: China, Brazil, Mexico, 

Indonesia, India, France, Argentina, South Africa and Ukraine. By 2025, maize will be 

become the mostly highly produced crop in developing countries (CIMMYT and IITA, 

2011). In Eastern Africa, Ethiopia and the United Republic of Tanzania are the largest 

producers of maize (Table 1.1). 

Table 1.1.  Maize production, yield and area harvest of 2013 for East African countries 

(FAOSTAT, 2014) 

Country Element name Unit Value Remarks 

Burundi Area harvested Ha 122,871 Official data 

 

Yield Hg/Ha 13,219 Calculated data 

 

Production tonnes 162,417 Official data 

Comoros Area harvested Ha 3,000 FAO estimate 

 

Yield Hg/Ha 26,000 Calculated data 

 

Production tonnes 7,800 FAO estimate 

Djibouti Area harvested Ha 8 FAO estimate 

 

Yield Hg/Ha 20,000 Calculated data 

 

Production tonnes 16 FAO estimate 

Kenya Area harvested Ha 2,100,000 FAO estimate 

 

Yield Hg/Ha 16,147 Calculated data 

 

Production tonnes 3,390,941 Official data 

Madagascar Area harvested Ha 300,000 FAO estimate 



3 

 

 

Table 1.1 (Continued) 

 Yield Hg/Ha 15,167 Calculated data 

 

Production tonnes 455,000 Unofficial figure 

Malawi Area harvested Ha 1,676,758 Official data 

 

Yield Hg/Ha 21,708 Calculated data 

 

Production tonnes 3,639,866 Official data 

Mauritius Area harvested Ha 93 Official data 

 

Yield Hg/Ha 68,172 Calculated data 

 

Production tonnes 634 Official data 

Mozambique Area harvested Ha 1,700,000 FAO estimate 

 

Yield Hg/Ha 9,594 Calculated data 

 

Production tonnes 1,631,000 Unofficial figure 

Eritrea Area harvested Ha 20,000 Unofficial figure 

 

Yield Hg/Ha 10,000 Calculated data 

 

Production tonnes 20,000 Unofficial figure 

Zimbabwe Area harvested Ha 900,000 FAO estimate 

 

Yield Hg/Ha 8,878 Calculated data 

 

Production tonnes 799,000 Unofficial figure 

Réunion Area harvested Ha 1,700 FAO estimate 

 

Yield Hg/Ha 95,294 Calculated data 

 

Production tonnes 16,200 FAO estimate 

Rwanda Area harvested Ha 292,326 Official data 

 

Yield Hg/Ha 22,846 Calculated data 

 

Production tonnes 667,833 Official data 

Somalia Area harvested Ha 123,556 Unofficial figure 

 

Yield Hg/Ha 12,100 Calculated data 

 

Production tonnes 149,497 Unofficial figure 

Tanzania Area harvested Ha 4,120,269 Official data 

 

Yield Hg/Ha 13,000 Calculated data 

 

Production tonnes 5,356,350 Official data 

Uganda Area harvested Ha 1,000,000 FAO estimate 

 

Yield Hg/Ha 27,480 Calculated data 

 

Production tonnes 2,748,000 Official data 

Ethiopia Area harvested Ha 2,069,267 Official data 

 

Yield Hg/Ha 32,253 Calculated data 

 

Production tonnes 6,674,048 Official data 

Zambia Area harvested Ha 997,880 Official data 

 

Yield Hg/Ha 25,382 Calculated data 

  Production tonnes 2,532,800 Official data 
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Human maize consumption has an increasing trend due to global population growth 

and its alternative uses that include; animal feed, fiber, and ethanol production. In the U.S. 

alone, during the “green revolution” (1961-1990), there were enough food yields in relation 

to the population (Rattray, 2012) due to new and improved farming techniques that were 

introduced by that time which allowed seeds to utilize more water and fertilizers than before 

and the massive land that was available for new crop farming with cheap water. 

Unfortunately, during 1990-2007 the population growth surpassed agricultural production 

reducing land available for farming because more people settled on land that would have 

been available for agricultural production. Also this was due to scarcity of water in 

developed countries and some fertilizers plus pesticides were banned for use (Rattray, 2012) 

leading to decline in agricultural production. Maize consumption is expected to increase by 

2.3% p.a in the 2014/15-2017/18 period compared to 1.5% for wheat and 1.7% for barley 

(IGC, 2013) thus making maize very important to humans. According to Kearney (2010), 

maize consumption has been increasing and it will reach its peak by 2050 due to industrial 

countries particularly in North America that use maize as a sweetener: and as feedstock for 

biofuels. Maize, being cheaper than other cereals such as rice and wheat, is used as a 

commodity for food aid in developing countries. 

Maize is considered a staple food source particularly in Latin America and Africa 

(UNDP, 2010). In Africa, it’s among the most crucial and strategic crops being grown in 

different parts under different climatic and ecological conditions (FARA, 2009). In 

developed countries, because of being cheap to produce, it’s used for animal feed and as a 

raw material for other industrial processes. Maize was identified along with other 

commodities such as cotton, oil palm, beef, diary, poultry and fish by the African heads of 
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state and government as a strategic commodity for achieving food security and poverty 

reduction during the 2006 Abuja summit on food security in Africa. Maize production is to 

be promoted by African countries to achieve self-sufficiency by 2015 (AUC, 2006). The 

major components of maize are: bran (seed coat), endosperm, and germ (Fig 1.1).   

 

Figure 1.1.  Maize kernel parts 

(Center for Crops Utilization Research, 2013) 

Maize weevil 

The maize weevil, Sitophilus zeamais, is the most destructive pest of stored maize.  It 

belongs to Coleoptera order and family Curculionidae. It has 2-to 4-mm body length with its 
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head protruded into a snout. At the end of the snout, there is a pair of mandibles. It is 

generally reddish brown in color. It has a long snout with clubbed segmented elbowed 

antennae and four  light reddish brown oval spots on the elytra (Khare, 1994). The lifecycle 

is on average 36 days at 27±1
0
C, and 69±3% relative humidity (RH) (Sharifi and Mills, 

1971). Maize weevils can be extremely economically destructive to maize under good 

conditions of tropic and sub-tropic temperatures and maize moisture content ranges of 10 to 

14%. Adult weevils damage grain by feeding on the endosperm of the grain kernel. The 

female deposits an egg a kernel, eggs hatch into larva (tiny grubs) which feed on the 

endosperm inside the kernel (Hill, 1983). This impacts the quality of the grain in terms of 

bulk density, moisture content and endosperm value while also producing significant grain 

dust (maize components in powder form). When not controlled, weevils will completely 

consume all components inside the maize kernel during storage. Exposure due to damage 

inflicted on the kernels also facilitates disease and fungal growth in the grain (CGC, 2013a). 

Factor variety difference within grains have been reported to affect the development time and 

reproductive capacity of maize weevils (Adams, 1976; Dobie and Kilminster, 1978; Gomez 

et al., 1983).  

Maize storage   

Storage is a post-harvest stage in which the products/harvests are kept in such a way 

as to guarantee food security and/or seeds for the following growing season.  For storage to 

be effective, measures to preserve the quality and quantity have to be adopted. Bern et al. 

(2013) states that “preservation cannot improve upon the grain as it was at harvest and it 

cannot even stop deterioration completely but it slows deterioration to an acceptable rate.” 
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Different methods of preservation that include drying, refrigeration, ionizing radiation, 

mechanical isolation and chemical treatment are explained in detail by Bern et al. (2013). 

Degradation of products during storage is influenced by a combination of moisture, 

temperature and oxygen factors. Moisture and temperature are determining factors in 

accelerating or delaying the biochemical oxidation of grain and other living organism. Also, 

they influence the rate at which insects and microorganisms such as molds, fungi, yeasts and 

bacteria grow, and the premature germination of maize. 

Storage methods for smallholder farmers have been well documented and categorized 

by FAO (2009, 1994) into: a) traditional farm/village storage methods which include: 

temporary storage methods (aerial storage, ground or drying floor storage, open timber 

platforms), long-term storage (basket storage, calabashes, gourds, earthenware pots, jars, 

solid wall bins, underground storage), b) ‘improved’ farm/village storage methods: these are 

meant to address weaknesses of  traditional farm/village storage methods and c) alternative 

storage technology (other than traditional and improved traditional systems) at farm/village 

level such as: metal or plastic drums, alternative solid wall bins e.g. “USAID” bin, concrete 

silo, “Pusa” bin, metal silos and synthetic silos. Moussa et al. (2011) reports that storage 

level technology acceptance is highly significant in countries that receive specific training 

compared to those that do not though in non-trained countries, other approaches such as 

general extension services can be used. 

In developed countries and in particular the U.S., most cereals are stored in 

commercial grain elevators. Monitoring of grain temperature and calendar-based fumigations 

using phosphine are among the control measures taken for insects in grain elevators 

(Hagstrum et al., 1999). Bins can be built from steel or concrete. In comparison, steel bins 
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are built with aeration fans whereas large upright concrete bins are frequently not built with 

them (Flinn et al., 2007). Insects in upright concrete bins are controlled through fumigation 

and turning of grain to add aluminum phosphide pellets. U.S. cereals like wheat are not 

infested in the field (Cotton and Winburn, 1941). 

Hermetic storage 

Hermetic storage is a storage system that aims at depleting oxygen and enriching 

carbon-dioxide inside a storage system due to respiration of stored products and living 

organisms through sealing which prevents interaction of stored products and organisms with 

the outside environment. Hermetic storage works to reduce oxygen levels in the storage 

structure to less than 10%, at which insect activity ceases (IRRI, 2013). 

Different forms of hermetic storage are used depending on the financial status of the 

user. They include: a) organic-hermetic storage which relies on the metabolic activity and 

respiration of insects, micro-flora and the commodity itself to generate a modified depleted 

oxygen and enriched carbon-dioxide atmosphere which is non-life sustaining (GrainPro, 

2014); b) Vacuum-Hermetic Fumigation (V-HF) which uses the principle of lowering 

pressure inside the storage structure using a vacuum pump for accelerated disinfestation of 

non-crushable commodities through asphyxiation (GrainPro, 2014); and c) Gas-Hermetic 

Fumigation (G-HF) which uses an external gas source e.g. CO2 to enrich the environment for 

crushable commodities such as fruits prior to shipment (GrainPro, 2014). 

Hermetic storage types include: hermetic plastic and bag storage systems (e.g. triple 

and double bagging, plastic bags), hermetic bulk storage systems, and locally available 

hermetic storage system such steel barrels. These are described in detail by Yakubu, 2012, 

2009. 
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 Yakubu et al., 2011 studied the effects of temperature, time, maize moisture, and 

oxygen volume on maize weevil mortality. Weevil infested commercial hybrid maize grain 

samples in 476-mL (1-pint) jars were held under hermetic conditions at maize moisture 

levels of 6.3% and 16% w.b., and at two levels of temperature, 10
0
C and 27

0
C.  The hermetic 

conditions were effective in killing weevils.  There were significant effects due to 

temperature and moisture content.  Equations were developed to predict the time to 100% 

adult weevil mortality as a function of temperature, maize moisture content and initial 

oxygen volume. The equation used to predict 100% maize weevil mortality is in appendix A. 

Yakubu’s experiment was the baseline to investigate hermetic storage in 208-L (55-gal) steel 

barrels. 

The Sukup food storage assembly has been suggested for use to hermetically control 

the maize weevil thus there is need to investigate its effectiveness. It consists of a 208-L (55-

gal) steel drum, a lid that provides a hermetic seal, and a cradle to support the drum (Fig 1.2). 

Amaranth 

Amaranth belongs to the order Caryophyllales, family Amaranthaceae, sub family 

Amaranthoideae, genus Amaranthus (J. D. Sauer, 1967). Genus amaranthus is estimated to 

be made up of 60 species most of which are cosmopolitan weeds (A. retroflexus L., A. 

hybridus., A. powelli S. Watt., A. spinosus L.). Amaranth is used as a vegetable, food, forage 

and some as ornamental (Brenner et al., 2000a) while others are weeds (Kauffman and 

Weber, 1990a). Amaranth can grow in diverse conditions and it’s pollinated by wind and/or 

insects. 
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Figure 1.2.  Sukup food storage assembly 

For our interest, amaranth is postulated to fill kernel inter-granular spaces which by 

doing so restrict maize weevil movement to access kernels thus contributing to weevil 

mortality and quality control.  Laswai et al. (2013), studied the effectiveness of finger millet, 

sorghum, rice husk, and sunn-hemp in Tanzania as a control measure for post-harvest maize 

losses to larger grain borer  (Prostephanus truncates) and maize weevils (Sitophilus zeamais) 

and concluded that maize weevils were less destructive in terms of damage compared to P. 

truncates. The effectiveness was as: actellic super dust (synthetic insecticide) > sunnhemp 

seeds > rice husks > finger millet > sorghum. Other natural control measures involve use of 
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plant products (Asawalam, 2012; Nukenine et al., 2013; Ogendo et al., 2004; Rajendran and 

Sriranjini, 2008). 

Amaranth has higher protein content compared to other cereals thus making it a good 

grain for human consumption and to help remedy world hunger and malnutrition (Tagwira et 

al., 2006a). Furthermore, Kauffman and Weber (1990), reported that amaranth produces large 

amounts of biomass in a short period of time. Amaranth for human consumption is classified 

into vegetable amaranth that have edible leaves and grain amaranth. Grain amaranth belongs 

to a group of cereal-like crop or pseudocereals and it’s an annual herbaceous plant. Amaranth 

is nutritious with high amounts of vitamin C, iron, beta carotene, folic acid and protein 

(Table 1.2). The amaranth protein is high in the amino acid lysine that is a limiting factor in 

cereals like maize, rice and wheat. 

Table 1.2.  Estimated composition of grain and uncooked leaves of amaranth (100 g portions) 

Component Vegetable Grain 

Protein 3.5 g 15.0 g 

Fat 0.5 g 7.0 g 

Total carbohydrates 6.5 g 63.0 g 

Fiber 1.3 g 2.9 g 

Calories 36 391 

Phosphorus 67 mg 477 mg 

Iron 3.9 mg 

 Potassium 411 mg 

 Vitamin A (beta carotene) 6100 IU 0 

Riboflavin 0.16 mg 0.32 mg 

Niacin 1.4 mg 1.0 mg 

Ascorbic acid © 80 mg 3.0 mg 

Thiamin (B1) 0.08 mg 0.14 mg 

Ash 2.6 g 2.6 g 

Calcium 267 mg 490 mg 

Source: (Cole, 1979). 
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Amaranth leaves and stems may be eaten in either raw or in cooked form as any 

vegetables whereas its seed can be milled into flour or popped. Amaranth helps in the general 

improvement of human health plus prevention and improvement of specific ailments and 

symptoms. It’s reported to be of benefit for people suffering from HIV/AIDS (Larry, 2008; 

Muyonga et al., 2008) and for those using anti-retroviral drugs. Amaranth oil effects of 

lowering total serum triglycerides and density lipoproteins (LDL) have been reported by 

Escudero et al. (2006) in animal studies and Martirosyan et al. (2007) in human studies.  

High levels of serum LDL are associated with coronary heart disease. Unsaturated forms of 

vitamin E and squalene in amaranth oil are the ones considered responsible for the serum 

LDL lowering effect. Cooked or autoclaved amaranth grain has been recently researched as a 

good feed for chickens giving comparably good results to a corn-soybean ration (Acar et al., 

1987). Ravindran et al. (1996), reported that A. hypochondriacus processed grain is a 

potential source of energy supplement for broiler diet. 

Physical disturbance as a control measure to insects 

The simple physical disturbance interferes with insect damage to stored products 

since the female insect needs time to bore and/or lay eggs inside maize kernels. By subjecting 

them to disturbance, the maize weevils die before laying eggs. Quentin et al. (1991), 

investigated the effect of bean tumbling to control the bean bruchids during storage. It was 

assumed that when beans are physically disturbed numerous times, the larva not damaged by 

disturbance would capitulate due to exhaustion of energy reserves before gaining access to 

the cotyledon. The experiment consisted of: tumbling and stationary treatments: 0.8-L glass 

jars, 16-L plastic buckets, and 45-kg sacks. Each of the storage container types was either 

loaded half-way with 100% intact or 50% damaged beans. Glass jars, plastic buckets, and 
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sacks were also loaded with 30, 480, and 1000 bean weevils respectively.  For jars, and 

plastic buckets: two plastic tubes were fixed into the inside walls to act as baffles so as to 

avoid just sliding of beans during tumbling and physical disturbance was done after every 

eight hours by rotating them through 360
0
C back to their original positions. Sacks were 

turned end-over-end two to three times a day. There was reduction in the number of bean 

bruchids in physically disturbed compared to stationary treatment as follows: 98% ( for 

100% intact beans) in glass jars, 95% (for 50% intact beans) in glass jars, 98% (for >98% 

intact beans) in plastic buckets, 97% (for >98% intact beans) in sacks. A 97% overall mean 

reduction in bean bruchid population was noticed due to storage container physical 

disturbance. Quentin et al. (1991), got good results for the bean weevils, and this prompted 

us to investigate the same treatment effects on the maize weevil.  

Synopsis  

This research addresses the need of investigating pesticide-free and economically 

feasible solutions to post-harvest losses of maize due to maize weevils.  Smallholder farmers 

need pesticide-free, cheap, affordable, and easy to use technologies that minimize and/or 

eliminate post-harvest losses of maize during storage. Research targeting pesticide 

approaches to control stored products insects in developing countries will have limited 

applications. Minimizing post-harvest losses will reduce the number of hungry people in the 

world that is approximated to be 870 million people and majority (850 million) are in 

developing countries thus by controlling PHLs, we can make more food available to people 

without increase in field production. For the economies of smallholder farmers, better storage 

leads to fewer losses, more income, and more grain available to seed, greater family stability, 

lower risks of family/country conflicts, improvement in political stability and quality of life.  
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General Objectives 

The research objectives were to: 

 Determine the effectiveness of the Sukup Food Storage Assembly as hermetic storage 

for maize weevil control. 

 Determine the effectiveness of amaranth-maize blending during storage for maize 

weevil control. 

 Determine the effectiveness of physical disturbance during storage on maize weevil 

control. 
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Abstract 

Maize is an important crop for many smallholder farmers in the world.  Maize 

weevils (Sitophilus zeamais) cause a significant loss in quality and quantity during maize 

storage especially in tropical regions. Hermetic storage of maize has been shown to be 

effective in controlling maize weevils in laboratory settings. The objective of this research 

was to test the effectiveness of hermetic storage containers that could be used by smallholder 

farmers. Six 208-L (55-gallon) steel barrels were each loaded with 170 kg (375 lb) of maize 

with initial weevil populations of 25 live weevils/kg of maize (11 live weevils/lb). The 

barrels were placed in a room at 27
0
C (81

0
F) under non-hermetic conditions for about three 

weevil lifecycles.  After 120 days, the weevil population increased to an average of 99 live 

weevils/kg (45 live weevils/lb). Three of the six barrels were then hermetically sealed.  After 

21 days, the weevil population was zero live weevils/kg in the hermetically sealed barrels 

(100% mortality) and an average of 214 live weevils/kg (98 live weevils/lb) in the non-

hermetic barrels. Means of barrel oxygen content, ending number of live weevils per kg of 

maize, test weight (TW), moisture content (MC), temperature and humidity were 
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significantly different between the hermetic and non-hermetic storage treatments.  Broken 

corn and foreign material (BCFM) and mechanical damage (MD) were not significantly 

different. Hermetically sealed steel barrels for maize storage control maize weevils and they 

may be an effective storage option for smallholder farmers. 

Keywords: Maize weevil, tropical regions, maize storage, test weight, BCFM, mechanical 

damage, moisture content, hermetic storage 

Introduction 

Maize (Zea mays) is a major staple crop for smallholder farmers with over 300 

million consumers in Africa (Daily Guide, 2010). In 2011, maize was harvested on 170 

million ha worldwide resulting in 883 million Mg of production (FAOSTAT, 2014). By 

2025, maize will be the most highly produced crop globally (CIMMYT and IITA, 2011; 

Rosegrant et al., 2008).  

The maize weevil (Sitophilus zeamais) can be extremely destructive to stored maize. 

The female weevil bores through the pericarp of undamaged kernels and deposits eggs into 

the intact inner portion of the kernel which is then sealed off by mucus like substance. The 

pupa consumes the inner portion of the kernel. After emergence, adult weevils damage grain 

by feeding on the endosperm of the kernel plus chewing a 1.5-mm hole in the pericarp 

(Kranz et al., 1997). Up to 50% or more  loss of maize can occur due to weevils during 

storage (Boxall, 2001).  Damage inflicted on the kernels also provides potential openings for 

disease and fungal growth in the grain (CGC, 2013b). 

Hermetic storage (HS) of maize depletes oxygen and increases carbon dioxide inside 

a storage system due to respiration of stored products and other living organisms (i.e., maize 
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weevils) through sealing which prevents interaction with the outside environment. When 

oxygen levels fall below about 5%, insect activity ceases and insects die (Gummert et al., 

2004). 

Previous research studied the effects of temperature, time, maize moisture and 

oxygen levels on maize weevil mortality (Yakubu et al., 2011). Weevil infested commercial 

hybrid maize samples in 476-mL (1-pint) jars were held under hermetic conditions at maize 

moisture levels of 6.3% and 16% w.b., and at 10 and 27
0
C.  The hermetic conditions were 

effective in killing weevils.  There were significant effects due to temperature and moisture 

content.  Equations were developed to predict the time to 100% adult weevil mortality as a 

function of temperature, maize moisture content and initial oxygen volume. 

Double and triple plastic bags are being used by smallholder farmers to store cowpeas 

in West Africa (Baoua et al., 2013; Murdock and Baoua, 2014; Murdock et al., 2012). 

Experience may be necessary to achieve good results and hermetic conditions may be 

interfered with by rodents. It is difficult to maintain a sealed system for a long period of time, 

and molding of grain can occur where moisture has accumulated in the storage bags 

(Caddick, 2007).  While bagging has proven effective in killing insects, it doesn’t provide 

mechanical protection against rodents and the bag usually has no more than two years of 

useful life (Brooks and Lavoie, 1990; Jayas et al., 1994). Steel containers provide mechanical 

protection and are of a size useful to many smallholder farmers. They can be fabricated from 

locally available materials like galvanized steel sheets and their construction by local artisans 

creates jobs for example, the postcosecha steel silo is built from 26-gauge (0.7-mm) 

galvanized steel sheet and lead based solder. A 5-mm fold is formed to make the joints, and 
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seams are crimpled and soldered (Tefera et al., 2011). It is very difficult to achieve hermetic 

seal for postcosecha steel silos.  

Drums or barrels can also be used for hermetic maize storage.  However, we have not 

found reports of studies which tested the hermetic efficacies of drums or barrels.  Metal drum 

technology can be well adopted by use of general extension services (Moussa et al., 2011). 

The objective of this research was to evaluate the effectiveness of 208-L (55-gallon) steel 

barrels for hermetic maize storage. The specific objectives were to: determine weevil 

mortality for hermetically sealed grain, determine quality of hermetically sealed grain, and 

determine whether hermetically sealed grain becomes re-infested when unsealed. 

Material and Methods 

Containers 

Six 208-L (55-gallon) open head, unlined, steel barrels (Sioux Chief Mfg Co. Model 

882-35, 24110 S Peculiar Dr, Peculiar, MO 64078) were used as storage containers.  The 

barrels could be covered either with: (1) screens to retain weevils but yet allow for air 

passage (long ultra-sun block solar screens, New York Wire, Mt. Wolf, PA); (2) or 

hermetically sealable lids from the Sukup Food Storage System (Sukup Manufacturing Co. 

Sheffield, IA).  Before cleansing, all barrels with lids installed were filled with warm water 

and turned upside down to check for water leaks. They were then cleansed with Ajax triple 

action liquid soap, a large cotton mop and a medium handle brush with warm water. After 

thorough rinsing, the barrels were left to dry.   

Weevils 

Weevil-infested commercially comingled maize was used as the source of maize 

weevils.  Weevils were separated from the maize by passing the infested maize through a 
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Carter Day Dockage tester (CEA, Minneapolis, MN 55432) with 4.76-mm (12/64-in) screen 

to retain the maize and a 0.99-mm (2.5/64-in) screen to retain the weevils plus some small 

broken maize kernels. Three representative samples of weevils were used to determine an 

average weight of 36.72 g per 1,000 weevils.  Weevil quantities for seeding the barrels were 

determined by weight rather than counting.   

Experimental procedure 

The six barrels were each loaded with 170 kg (375 lb) of weevil-free commercial 

comingled bulk maize from the 2012 harvest in central Iowa.  The maize had an average a 

moisture content of 13.4%.  Each barrel was seeded with 25 live weevils/kg of maize (time T 

= 0 days) and covered with a screen to prevent weevil escape.  The loaded barrels were held 

in a room maintained at 27±2
0
C and with fluorescent lights on.   

Measurements 

 Representative samples of the maize were drawn at different times using a Seedburo 

brass sampling probe (2293 S. Mt Prospect Road Des Plaines, IL 60018) inserted three times 

into each barrel at a diagonal angle.  Weevil mortality in the samples was determined (Gullan 

and Cranston, 2010; Yakubu et al., 2010).  Samples were analyzed for broken corn and 

foreign material (BCFM) (USDA, 2013b), moisture content (ASABE, 2006), test weight 

(TW) (USDA, 1996)  and mechanical damage (MD) (Steele, 1967). Oxygen level inside the 

hermetically sealed barrels was measured using oxygen sensors (Model 65, AMI, Huntington 

Beach, CA) mounted in the center of the sealable lids and connected to a computer via a 

PMD 1408FS DAC system. Aflatoxin analysis was performed at the end of the experiment 

using a Charm ROSA-M reader (Charm Science, Inc 659 Andover Street Lawrence, MA 

01843-1032 USA).  It detects the sum of aflatoxins B1, B2, G1, and G2 (Appendix A).  
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Temperature and relative humidity inside barrels was measured using haxo-8 temperature 

and humidity loggers (879 Maple Street Contoocook, NH 03229). Data were analyzed using 

JMP Pro 10 and Microsoft Excel. 

Results and Discussion 

Weevil mortality 

From time, T = 0 to T= 120 days, the weevils were left to go through several 

lifecycles so as to increase in population density. The target was to have 100 weevils/kg of 

maize. The initial population density was 25 weevils/kg of maize; at 120 days, it was 99 

weevils/kg on average and three randomly selected barrels (HS1, HS2, and HS3) were sealed 

(Table 2.1). These three hermetic barrels were then unsealed due to suspected malfunctioning 

of the oxygen sensors. Upon unsealing, apparently dead weevils were seen to have 

accumulated mostly on top of the maize, below the oxygen sensors and on the sides under the 

lids. After 24 h (T=122 days) of exposure to oxygen with screens on top, all barrels were 

sampled. Live weevils dropped from 99 weevils/kg to 17 weevils/kg on average (Fig 2.1). 

This meant that though weevils seemed to be dead by visual observation, some were just 

dormant and, after exposure to oxygen became active again. This could have been a narcotic 

effect of carbon dioxide leading to immobilization and/or knock-down of weevils (Aliniazee, 

1971; Edwards and Rollas, 1973; Navarro, 2006). The calculated expected mortality days for 

99 weevils/kg was 8 days (Yakubu et al., 2011) (Appendix A). The three hermetic barrels 

(HS1, HS2 and HS3) were left unsealed for 7 days (from T =122 to T= 129) but with a 

screen on top to prevent escape of live weevils. At T= 129 days, barrels HS1, HS2 and HS3 

were sealed again. The calculated time to mortality for 17 weevils/kg was 20 days. After 20 
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days (T=149 days), the same observations were seen as those observed after one day of 

sealing. Weevils were exposed to oxygen for 24 h (T = 150 days). After 24 hours, all barrels 

were sampled and the population density was 0 (zero) live weevils/kg in HS1, HS2, and HS3.  

From T= 150 to T= 190 days, all six barrels were left with screens on top to prevent escape 

of weevils. The purpose for this time period was to determine if the hermetic storage had an 

effect on other life stages of maize weevils, that is to say eggs, larva and pupa.  

Fig 2.1 shows the average number of weevils (live weevils/kg maize) as a function of 

time for the hermetically and non-hermetic barrels.  At the time of hermetic sealing (T=120 

days), the six barrels averaged 99 live weevils/kg. The number of live weevils was not 

significantly different among barrels for the first 120 days. There was an increase of weevils 

in the non-hermetic barrels up to an average of 214 weevils/kg while the hermetically sealed 

weevil population declined to 0 (zero) weevils/kg at T=190 days (Fig 2.1). The number of 

weevils in hermetically sealed barrels was significantly lower than in the non-hermetic 

barrels after one day of sealing (p = 0.0060, R
2
=87.61%), after complete sealing, T =150 

days (p = 0.0011, R
2
=94.68%) and at T= 190 days (p = 0.0002, R

2
=97.60%) (Table 2.1). 

Analysis within each treatment was also done for the different time periods (Table 2.1). A 

95% confidence interval was considered. Some of the data analyzed is shown in Appendix A.  

The decline (T =40 days) was attributed to the weevils not yet being adapted to the new 

environment and probably some were ending their lifecycle. The population increase in the 

non-hermetic barrels was because of the favorable maize moisture and temperature (Sone, 

2000) and the complete mortality in hermetically sealed barrels was because of oxygen 

depletion and CO2 enrichment (Anankware et al., 2013; Anankware and Bonu-Ire, 2013; 

Fleurat, 1990; Foster et al., 1955; Navarro, 2006; Navarro et al., 1990; Oxley and 
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Wickenden, 1963; Villers et al., 2010; Yakubu et al., 2011, 2010). At the end of the 

experiment (T=190 days), zero live weevils in all hermetic barrels was due to the hermetic 

storage effect on other life stages of maize weevils (egg, larva and pupa) and the 214 

weevils/kg on average in non-hermetic barrels was due to favorable temperature, maize 

moisture content and availability of kernels. 

 

Figure 2.1.  Mean live weevils/kg of maize at different time periods for HS vs. NH 

treatments 

25 25 9 8 44 

70 
84 

114 

17 

114 

0 

141 

0 

214 

0

50

100

150

200

250

HS NH

A
v
er

ag
e 

li
v
e 

w
ee

v
il

s/
k
g
 m

ai
ze

 

Treatment (HS=Hermetically sealed, NH=Non-Hermetic) 

T= 0 days (Start of experiment) T= 40 days (one weevil lifecycle)

T= 80 days (two weevil lifecycle) T= 120 days (three barrels HS)

T= 122 days (three HS barrels opened) T= 150 days (three HS barrels opened)

T= 190 days (end of experiment)



 

 

2
7
 

Table 2.1.  Tukey’s means comparison of live weevils and maize quality values for hermetic versus non-hermetic storage 

experiment  

Item  Treatment T=0 T=40 T=80 T=120 T=122 T=150 T=190 

Number 

of live 

weevils/kg 

HS 25±0
Abc

 9±2
Acd

 44±12
Ab

 84±13
Aa

 17±11
Acd

 0±0
Ad

 0±0
Ad

 

NH 
25±0

Ad
 8±5

Ad
 70±17

Acd
 114±30

Abc
 114±30

Bbc
 141±29

Bb
 214±29

Ba
 

Temp (
0
F) 

HS N/A 87.0±6.0
Uc

 88.4±1.5
Ua

 87.6±1.9
Ub

 87.2±1.4
Uabc

 82.5±1.4
Ud

 86.9±2.3
Uc

 

NH N/A 87.0±6.3
Uc

 88.9±1.6
Ta

 88.2±1.5
Tb

 86.9±1.2
Ubc

 88.4±1.3
Tab

 88.8±1.7
Ta

 

RH (%) 
HS N/A 65.2±1.3

Mf
 66.9±1.0

Me
 69.9±0.7

Md
 71.5±0.4

Mb
 70.4±0.7

Mc
 74.5±1.1

Ma
 

NH N/A 64.8±1.2
Nf

 66.6±1.0
Ne

 69.4±1.4
Nd

 70.9±1.8
Mc

 72.6±2.0
Nb

 74.7±2.7
Ma

 

MC (%) 
HS 13.0±0.6

Dab
 13.3±0.0

Da
 13.2±0.1

Dab
 12.8±0.1

Dab
 12.8±0.1

Dab
 13.3±0.1

Dab
 12.8±0.2

Db
 

NH 13.2±0.1
Dab

 13.4±0.2
Da

 13.3±0.1
Dab

 12.8±0.1
Dc

 12.8±0.1
Dc

 13.1±0.1
Ebc

 12.6±0.1
Dc

 

MD (%) 
HS 4.6±1.8

Xbc
 3.8±0.5

Xc
 4.5±0.4

Xbc
 6.4±1.0

Xab
 6.9±0.9

Xab
 6.0±0.4

Xabc
 7.4±0.4

Xa
 

NH 4.1±0.9
Xd

 3.9±0.3
Xd

 4.4±0.5
Xcd

 6.1±0.6
Xbc

 6.1±0.6
Xbc

 7.4±0.9
Xb

 9.4±1.1
Za

 

BCFM 

(%) 

HS 1.5±0.1
Kc

 1.9±0.1
Kbc

 2.3±0.1
Kabc

 3.2±0.5
Kab

 3.2±0.5
Ka

 3.3±0.5
Ka

 2.3±0.5
Kabc

 

NH 1.7±0.5
Kc

 1.9±0.1
Kbc

 2.3±0.3
Kbc

 2.8±0.3
Kab

 2.8±0.3
Kab

 3.3±0.4
Ka

 2.3±0.3
Kbc

 

TW 

(Ib/bu) 

HS 57.4±0.2
Ra

 57.1±0.1
Rab

 56.7±0.2
Rbc

 56.2±0.1
Rcd

 56.1±0.2
Rde

 55.5±0.1
Re

 55.2±0.2
Rf

 

NH 57.4±0.2
Ra

 57.1±0.1
Rab

 56.7±0.2
Rbc

 56.0±0.1
Rc

 56.0±0.1
Rc

 55.2±0.1
Sd

 54.4±0.2
Sd

 

Values not followed  by same upper case letter at each time for each item, and levels not connected by lower case letter in 

each treatment are significantly different at 0.05 level 
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Temperature   

There was a range of 21.6 to 34.7
0
C (70.9 to 94.5

0
F) in temperature inside the barrels 

with 30.7
0
C (87.2

0
F) being the average. At T=120 days, temperatures inside NH1, NH2, 

NH3, HS2, and HS3  were not significantly different from each other while that of HS1 was 

significantly higher than the rest of the barrels. After one day of sealing (T=122 days), the 

temperatures inside hermetic and non-hermetic barrels were not significantly different. At the 

end after barrels were resealed (T=150 days), temperatures inside hermetic barrels were 

significantly lower (P<0.0001) than those of non-hermetic barrels. At T=190 days, the 

previously hermetically sealed barrels’ temperature were significantly lower (p<0.0001) from 

those of non-hermetic barrels. Also analysis within each treatment was done for the different 

time periods (Table 2.1). The temperature values were attributed to respiratory and/or 

metabolic processes of maize and the weevils (Bern et al., 2013). Temperatures recorded 

inside the barrels were slightly higher than those recorded by Foster et al., 1955 (21.1 – 

26.7
0
C). This could have been because of having a controlled room temperature in 

comparison to their experiment which was exposed to winter, summer and spring weather.   

Relative humidity  

The measured relative humidity range was 59 to 83% inside the barrels with 70% 

being the average, and it showed an increasing trend with time (Table 2.1). At T=120 days, 

relative humidities inside HS1, HS2 NH1, and NH2 were not significantly different from 

each other whereas those of HS3 and NH3 were significantly higher. After one day of sealing 

(T=122 days), relative humidities inside hermetic and non-hermetic barrels were not 

significantly different. At the end, after the barrels were resealed (T=150 days), relative 

humidity inside hermetic barrels were significantly lower than those of non-hermetic barrels 
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(P<0.0001). At T=190 days, humidities in previously hermetically sealed barrels were 

significantly lower (p<0.0001) than those in non-hermetic barrels (Table 2.1). 

Maize moisture content (MC) 

Maize moisture ranged from 13.7% to 12.5% during the 190 days of the experiment 

with a general increase for the first 40 days and a decline after that. Maize moisture in all 

barrels during population increase (T = 0 to T=120) were not significantly different. Moisture 

differences between hermetically sealed and non-hermetic barrels were not significant after 

one day of sealing but MC was significantly higher for hermetically sealed after resealing, T 

=150 days (p=0.0488, R
2
=66.2%) (Table 2.1). At T=190 days, moisture was not significantly 

different between barrels. Also analysis within each treatment was done for the different time 

periods (Table 2.1). The increase in moisture during the first 40 days was probably due to the 

respiration of maize and weevils. The decline would have perhaps been due to maize 

establishing equilibrium moisture. Under this process moisture is assumed to have moved to 

the sides of the barrels to where the probe could not get samples. This assumption is 

supported with the observation of mold and/or deteriorated maize which was on barrel walls. 

Metal silos have a disadvantage of moisture migration and condensation in hot climates and 

this may limit hermetic storage (Navarro, 2006).  

Because of the slightly higher temperature in the barrels, moisture transfer and 

accumulation near the sides of barrels may have led to deterioration of and/or moldy maize 

as observed when the barrels were emptied. Foster et al. (1955), observed a similar scenario. 

Navarro (2006); and Navarro et al. (1994)  reported that both mold and insects release heat 

which can lead to temperature gradients within the stored grain thus creating convection 

currents within the stored grain product, encouraging warm moist air movement from the 
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heating section to cooler sections where moisture is dropped as air cools. The deterioration 

may have an effect on farmers’ acceptance of the technology (Navarro et al., 1994). 

Mechanical Damage (MD) 

  MD is the percentage by weight of kernels with a missing portion or any visible crack 

or rupture of the seed coat (Steele, 1967). There was a general increasing trend from 4.34% 

to 8.43% on average in all treatments. MD was not significantly different between all barrels 

during weevil population increase (T= 0 upto 120 days).  They were also not significant 

between hermetically sealed and non-hermetic barrels after one day of sealing i.e. T =122 

days and after complete resealing T=150 days. However, MD was significantly different 

between previously hermetically sealed and non-hermetic barrels at T= 190 days (p = 

0.0349) (Table 2.1). Also analysis within each treatment was done for the different time 

periods (Table 2.1). The increase in MD was attributed to the increasing number of weevils 

in the barrels. The significant difference at the end of the experiment was due perhaps to no 

weevils in the previously hermetically sealed barrels compared to non-hermetic barrels which 

had an increasing number of weevils. The results were in line as those observed by Foster et 

al. (1955) in which damaged kernel numbers varied considerably throughout the experiment. 

Broken corn and foreign material (BCFM) 

There was a general increase in the BCFM in all the six barrels from 1.6% to 3.14% 

on average from time T = 0 to 150 days and then there was a slight decline to 2.33% from T 

= 150 to T = 190 days. BCFM values were not significantly different between hermetically 

sealed and non-hermetic barrels at any time (Table 2.1). Also analysis within each treatment 

was done for the different time periods (Table 2.1). The increase in BCFM over time was 

attributed to the increased number of maize weevils while the decline between T=150 and 
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T=190 days was attributed to possible sampling error. BCFM  absorbs moisture more rapidly 

than grain (Navarro, 2006). This favors mold development, a condition which was observed 

on maize and fines close to barrel sidewalls.  

Test weight (TW) 

There was a decline in TW from 739 to 705 kg/m
3
 (57.4 to 54.8 Ib/bu) on average 

during the experiment. During the first 120 days, TW difference was not significant between 

treatments. After one day of sealing, the TW difference was not significant between hermetic 

and non-hermetic barrels. TW was significantly higher for hermetically stored maize at 

T=150 days (p=0.0194, R
2
=78.12%) and T=190 days, (p=0.0048 and R

2
=88.89%)  (Table 

2.1). Also analysis within each treatment was done for the different time periods (Table 2.1). 

As the maize was losing moisture, there was an expected increase in TW (Bern and Brumm, 

2009) but the declining TW can be attributed to immature corn and/or a change in the dry 

material quantity (Bern and Brumm, 2009) or deterioration due to infestation of the maize by 

weevils. 

Aflatoxins 

At the end of the experiment there were regions of visible fungal growth on fine 

material and kernels on barrel walls in all replications of both hermetic and non-hermetic 

treatments. The aflatoxins are produced by Aspergillus flavus. Pearson et al. (2001), reports 

that most aflatoxins appear in maize if it experiences some sort of stress and presence of 

molds in kernels allow them to increase. Aflatoxins were detected (Appendix A) and their 

concentrations were less than 20 ppb on average. The samples analyzed were not 

representative of all the maize in the barrels. We seek further investigation to understand the 

specific cause of fungal growth as it was unexpected in view of the low beginning moisture 
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content (<14%). We believe mold and aflatoxins would be unlikely if barrels are sealed as 

soon as weevil-infested maize is loaded. 

Oxygen sensor readings for HS1, HS2 and HS3 (T=120-122 days) 

There was a general decline in oxygen from 23 to 3% in the three sealed barrels on 

average by 120.2 days. Then the oxygen values increased to 6.7% from the 120.2-120.4 days 

and finally there was a decline to a constant value of 5.5% on average up to 120.8 days (Fig 

2.2). Oxygen levels inside the sealed barrels were significantly lower than the atmospheric 

oxygen level (p = 0.0027). 

 

Figure 2.2.  Oxygen content inside hermetically sealed barrels (T=120-122 days) 

Oxygen sensor readings for HS1, HS2 and HS3 (T=129-150 days) 

After resealing the barrels at T=129 days, the curve followed almost the same trend as 

the curve obtained after T=120-122 days of sealing (Fig 2.2) with a decline of below 5% at 

T=129.2 days. There was a rise of between 5% and 10% followed by a decline to a constant 

value (Fig 2.3).  Oxygen readings remained constant in all three hermetic barrels HS1, HS2 
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and HS3 from T=130.4 days upto the end of the experiment (T=149 days).  This whole 

portion is not shown on Fig 2.3. Oxygen level inside the sealed barrels were significantly 

lower than atmospheric oxygen level (p <0.0001). The decline in oxygen with time was 

expected; however the slight increase between 129.25 and 129.5 days and a quick decline in 

oxygen before the expected calculated oxygen consumption days were unexpected. The trend 

was similar to that observed by Villers et al. (2010),  while studying hermetic storage of 

cocoa beans. Generally, to some extent the results do not agree with the oxygen levels of 

<3% recommended for complete mortality by Banks and Annis (1990); Fleurat (1990); and 

Navarro (1978) for effective control. However 100% mortality was achieved. Bailey (1955, 

1956, 1957, 1965), suppressed storage insects at about 5% oxygen with longer exposure 

time, which is almost the same concentration observed for our results but at a lower exposure 

time. Navarro (2006), stated that pure CO2 environments in laboratory settings can kill 

product-stored insects within 10 and 48 h, which could have been created by weevils and 

maize. Mortality can be attributed to its correlation with a hypoxia condition that causes body 

water loss (Navarro, 1978) thus leading to death. Also temperature within the barrels might 

have favored intensive oxygen intake by the weevils  thus leading to increased mortality 

(Navarro, 2006; Navarro et al., 1994). The fluctuations seen in Figs 2.2 and 2.3 were 

similarly observed by Hyde et al. (1973); Navarro et al. (1994, 1990); and Oxley and 

Wickenden (1963) for both laboratory and field experiments, and it was attributed to a 

residual insect population that may remain behind after an extended period of time before a 

steady-state is attained. The steady-state conditions for our experiment were not only 

supported by the constant oxygen reading after some time but also by the zero number of 
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weevils counted after unsealing of barrels, as opposed to Navarro et al. (1994), who reported 

that a residue population may  be observed after the grain is re-exposed to oxygen.  

 

Figure 2.3.  Oxygen content inside hermetically sealed barrels (T=129-150 days) 

Conclusions  

 Hermetic sealing barrels resulted in 100% adult weevil mortality. 

 Eggs, larvae, and pupa were killed by hermetic sealing. 

 Oxygen levels in hermetically sealed barrels declined from 21% to between 3 and 

10%. 

 HS vs. NH: BCFM was not significantly different at any time, MC was significantly 

higher only at T = 150 days, TW was significantly higher at T = 150 and 190 days, 

MD was significantly higher in NH at T = 190 days. 

 Further investigation is necessary to understand the reasons for moldy maize on the 

walls of the barrels. 
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Implications 

 Hermetic storage in a 55-gallon barrel is an effective non-pesticide approach to 

controlling weevils in maize. 

 No high level of expertise is needed to implement this technology. 

Acknowledgements 

The authors are grateful to Sukup Manufacturing Company for supporting this grain storage 

research at Iowa State University. 

References 

Aliniazee, M.T., 1971. The effect of carbon dioxide gas alone or in combinations on the 

mortality of Tribolium castaneum (Herbst) and T. confusum du Val (Coleoptera, 

Tenebrionidae). Stored Prod. Res. 7, 243–252. 

Anankware, J.P., Ofori, O.D., Nuamah, A.K., Oluwole, F.A., Bonu-Ire, M., 2013. Triple-

Layer Hermetic Storage: A Novel Approach Against Prostephanus Truncatus (Horn) 

(Coleoptera: Bostrichidae) and Sitophilus Zeamais (Mot) (Coleoptera: Curculionidae). 

Entomol. Ornithol. Herpetol. 2, 113. 

Anankware, P.J., Bonu-Ire, M., 2013. Seed Viability And Oxygen Depletion Rate Of 

Hermetically Stored Maize Infested By Major Insect Pests. Sci. Agric. 4, 13–19. 

doi:10.4172/2161-0983.1000113 

ASABE, 2006. Moisture Measurement-Unground Grain and Seeds, in: ASAE Standards. 

ASABE Standards, pp. 605–606. 

Bailey, S.W., 1955. Air-tight storage of grain; its effects on insect pests. I. Calandra 

granaria L.(Coleoptera, Curculionidae). Aust. J. Agric. Res. 6, 33–51. 

doi:10.1071/AR9550033 

Bailey, S.W., 1956. Air-tight storage of grain; its effects on insect pests. II. Calandra oryzae 

(small strain). Aust. J. Agric. Res. 7, 7–19. doi:10.1071/AR9560007 

Bailey, S.W., 1957. Air-tight storage of grain: its effects on insect pests. III. Calandra 

oryzae, (Large strain). Aust. J. Agric. Res. 8, 595–603. doi:10.1071/AR9570595 

Bailey, S.W., 1965. Air-tight storage of grain; its effect on insect pests-IV Rhyzopertha 

dominica (F.) and some other Coleoptera that infest stored grain. J. Stored Prod. Res. 1, 

25–33. doi:10.1016/0022-474X(65)90005-6 



36 

 

 

Banks, H.J., Annis, P.C., 1990. Comparative advantages of high carbon dioxide and low 

oxygen types of controlled atmospheres for grain storage, in: Calderon, M., 

BarkaiGolan, R. (Eds.), Food Preservation by Modified Atmospheres. CRC Press, Boca 

Raton, FL, pp. 93–122. 

Baoua, I.B., Amadou, L., Lowenberg-DeBoer, J.D., Murdock, L.L., 2013. Side by side 

comparison of GrainPro and PICS bags for postharvest preservation of cowpea grain in 

Niger. J. Stored Prod. Res. 54, 13–16. doi:10.1016/j.jspr.2013.03.003 

Bern, C.J., Brumm, T.J., 2009. Grain Test Weight Deception [WWW Document]. PMR 

1005, Iowa State University Extension online store. URL 

www.extension.iastate.edu/.../pmr1005.pdf  (accessed 1.10.14). 

Bern, C.J., Brumm, T.J., Hurburgh, C.R., 2013. Preservation of Grain, in: Managing Grain 

After Harvest. Iowa State University Book Store, Ames, Iowa. 

Boxall, R.A., 2001. Post-harvest losses to insects—a world overview. Int. Biodeterior. 

Biodegradation 48, 137–152. doi:10.1016/S0964-8305(01)00076-2 

Brooks, J.E., Lavoie, G.K., 1990. Rodent control will reduce post-harvest food losses. 

Agribus. Worldw. 12, 13. 

Caddick, L., 2007. The Use of Harvest Bags on Australian Farms. Outlooks Pest Manag. 18, 

148–150. doi:10.1564/18aug02 

CGC, 2013. Maize weevil Sitophilus zeamais Motschulsky [WWW Document]. URL 

https://www.grainscanada.gc.ca/storage-entrepose/pip-irp/mw-cr-eng.htm (accessed 

1.26.14). 

CIMMYT, IITA, 2011. Maize: Global Alliance for Improving Food Security and the 

Livelihoods of the Resource-Poor in the Developing World | CGIAR Fund [WWW 

Document]. URL http://www.cgiarfund.org/node/266 (accessed 1.26.14). 

Daily Guide, 2010. Maize, Staple Food For 300M Africans [WWW Document]. URL 

http://www.modernghana.com/news2/277276/1/maize-staple-food-for-300m-

africans.html (accessed 1.26.14). 

Edwards, J.L., Rollas, B.W., 1973. Oxygen consumption in carbon dioxide anesthetized 

house flies, Musca domestica linn. (Diptera: Muscidae). Comp. Biochem. Physiol. Part 

A Physiol. 44, 1163–1167. 

FAOSTAT, 2014. Maize Crop [WWW Document]. Food Agric. Organ. United Nations. 

URL http://faostat3.fao.org/faostat-gateway/go/to/home/E (accessed 10.20.14). 



37 

 

 

Fleurat, L.F., 1990. Effect of modified atmospheres on insects and mites infesting stored 

products, in: Calderon, M., BarkaiGolan, R. (Eds.), Food Preservation by Modified 

Atmospheres. CRC Press Inc., Boca Raton, FL, pp. 21–38. 

Foster, G.H., Kaler, H.A., Whistler, R.L., 1955. Grain Storage, Effects on Corn of Storage in 

Airtight Bins. Agric. Food Chem. 3, 682–686. 

Gullan, P.J., Cranston, P.S., 2010. The Insects: An Outline of Entomology, 4th ed. Wiley-

Blackwell, Chichester, West Sussex, P019 UK. 

Gummert, M., Rickman, J., Bell, M.., 2004. Grain Storage Hermetically Sealed Systems 

[WWW Document]. Int. Rice Res. Inst., International Rice Research Institute. URL 

http://www.knowledgebank.irri.org/factsheetsPDFs/Post-

Harvest_Mangement/fs_grainStorageHermetic.pdf (accessed 2.2.14). 

Hyde, M.B., Baker, A.A., Ross, A.C., Lopez, C.., 1973. Airtight grain storage. FAO Agric. 

Serv. Bull. 17 71. 

Jayas, D.S., White, N.D.G., Muir, W.E., 1994. Rodents and birds as invaders of stored grain 

ecosystems, in: Smith, R.H. (Ed.), Stored-Grain Ecosystems. CRC Press Inc., Boca 

Raton, FL, pp. 289–293. 

Kranz, J.K., Schmutterer, H., Koch, W., 1997. Diseases, pests and weeds in tropical crops. 

Wesley, New York. 

Moussa, B., Lowenberg-DeBoer, J., Fulton, J., Boys, K., 2011. The economic impact of 

cowpea research in West and Central Africa: A regional impact assessment of improved 

cowpea storage technologies. J. Stored Prod. Res. 47, 147–156. 

doi:10.1016/j.jspr.2011.02.001 

Murdock, L.L., Baoua, I.B., 2014. On Purdue Improved Cowpea Storage (PICS) technology: 

Background, mode of action, future prospects. J. Stored Prod. Res. 

doi:10.1016/j.jspr.2014.02.006 

Murdock, L.L., Margam, V., Baoua, I., Balfe, S., Shade, R.E., 2012. Death by desiccation: 

Effects of hermetic storage on cowpea bruchids. J. Stored Prod. Res. 49, 166–170. 

doi:10.1016/j.jspr.2012.01.002 

Navarro, S., 1978. The effects of low oxygen tensions on three stored-product insect pests. 

Phytoparasitica 6, 51–58. 

Navarro, S., 2006. Modified Atmospheres for the Control of Stored-Product Insects and 

Mites, in: Insect Management for Food Storage and Processing. Heaps, J. W. Ed., 

AACC International, St. Paul, MN, pp. 105–146. 



38 

 

 

Navarro, S., Donahaye, J.E., Fishman, S., 1994. The future of hermetic storage of dry grains 

in tropical and subtropical climates, in: Proc. 6th International Working Conference on 

Stored-Product Protection. pp. 130–138. 

Navarro, S., Donahaye, J.E., Rindneer, M., Azrieli, A., 1990. Airtight storage of grain in 

plastic structures. Hassadeh Q. 1, 85–88. 

Oxley, T.A., Wickenden, G., 1963. The effect of restricted air supply on some insects which 

infest grain. Ann. Appl. Biol. 51, 313–324. 

Pearson, T.C., Wicklow, D.T., Maghirang, E.B., Xie, F., Dowell, F.E., 2001. Detecting 

aflatoxin in single corn kernels by transmittance and reflectance spectroscopy. ASAE 

44, 1247–1254. 

Rosegrant, M.W., Ringler, C., Msangi, S., Sulser, T.B., Zhu, T., Cline, S.A., 2008. 

International Model for Policy Analysis of Agricultural Commodities and Trade 

(IMPACT): Model Description., International Food Policy Research Institute. 

Washington, D.C. 

Sone, J., 2000. Heat Changes in Maize Storage Influenced by Compound Factors; Different 

Levels of Maize Weevils, Broken Corn and Foreign Materials, and Moisture Contents. 

J. Asia. Pac. Entomol. 3, 113–119. doi:10.1016/S1226-8615(08)60064-3 

Steele, J.L., 1967. Deterioration of damaged shelled corn as measured by carbon dioxide 

production. Ph.D. Thesis. Iowa State University, Ames, Iowa. 

Tefera, T., Kanampiu, F., De Groote, H., Hellin, J., Mugo, S., Kimenju, S., Beyene, Y., 

Boddupalli, P.M., Shiferaw, B., Banziger, M., 2011. The metal silo: An effective grain 

storage technology for reducing post-harvest insect and pathogen losses in maize while 

improving smallholder farmers’ food security in developing countries. Crop Prot. 30, 

240–245. doi:10.1016/j.cropro.2010.11.015 

USDA, 1996. Test Weight per bushel apparatuses, in: Equipment Handbook. Grain 

Inspection, Packers and Stockyards Administration, 1400 Independence Ave., SW. 

Washington, D.C. 20250-3600, pp. 5.1 – 5.11. 

USDA, 2013. Corn, in: Grain Inspection Handbook - Book II Grain Grading Procedures. 

United States Department of agriculture, Grain Inspection, Packers and Stockyards 

Administration, Federal Grain Inspection Service, pp. 4–12. 

Villers, P., Navarro, S., DeBruin, T., 2010. New Applications of Hermetic Storage for Grain 

Storage and Transport, in: Proc. 10th International Working Conference on Stored 

Product Protection. pp. 446–452. doi:10.5073/jka.2010.425.086 

Yakubu, A., Bern, C.J., Coats, J.R., Bailey, T.., 2011. Hermetic on-farm storage for maize 

weevil control in East Africa. African J. Agric. Res. 6, 3311–3319. 



39 

 

 

Yakubu, A., Bern, C.J., Coats, J.R., Bailey, T.B., 2010. Non-chemical on-farm hermetic 

maize storage in East Africa, in: Proc. 10th International Working Conference on Stored 

Product Protection. pp. 338–345. doi:10.5073/jka.2010.425.440 

 

 

 

 

 

  



40 

 

 

CHAPTER 3:  EFFECT OF BLENDING MAIZE KERNELS WITH AMARANTH 

DURING STORAGE ON MAIZE WEEVIL MORTALITY  

Denis Bbosa
1
; Thomas J. Brumm

1
; Carl J. Bern

1
; Kurt A. Rosentrater

1
; D R. Raman

1
 

1
Department of Agricultural and Biosystems Engineering  

Iowa State University 

Formatted for submission to the Journal of Stored Products Research 

Abstract 

Amaranth (Amaranthus spp.) is used as a vegetable, food, forage and sometimes an 

ornamental. Grain amaranth has higher protein content compared to other cereals thus 

making it a good choice for human consumption. Due to the small size of amaranth seeds, it 

has been postulated that amaranth can be blended with maize during storage to fill the inter-

granular spaces between kernels thus minimizing maize weevil movements to access kernels 

and thus controlling maize weevil population. Maize is among the three most widely grown 

grains in the world, but it can experience large post-harvest losses during storage. The 

objective of this research was to investigate the effects of blending maize with grain 

amaranth during storage on maize weevil mortality versus maize stored alone. Three 208-L 

(55-gallon) steel barrels were loaded with 160 kg (353 lb) of maize and three were loaded 

with maize-amaranth (50:50 volume) all with initial weevil populations of 25 live weevils/kg 

of maize (11 live weevils/lb). Blending maize with amaranth during storage reduced maize 

weevil population growth after 160 days by 46% compared to storing maize alone. 

Keywords: Amaranth, maize weevil, cereals, maize, post-harvest losses, test weight  
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Introduction 

Amaranth belongs to the order Caryophyllales, family Amaranthaceae, sub-family 

Amaranthoideae, genus Amaranthus (Jonathan D Sauer, 1967). Genus amaranthus is 

estimated to be made up of 60 species most of which are cosmopolitan weeds (A. retroflexus 

L., A. hybridus., A. powelli S. Watt., A. spinosus L.). Amaranth is used as a vegetable, food, 

forage and sometimes as ornamentals (Brenner et al., 2000b) while others are weeds 

(Kauffman and Weber, 1990b). Amaranth can grow in diverse conditions and it’s pollinated 

by wind and insects. Amaranth has higher protein content compared to several other cereals 

thus making it a good choice for human consumption and to help remedy world hunger and 

malnutrition (Tagwira et al., 2006b). Furthermore, Kauffman and Weber (1990), reported 

that amaranth produces large amounts of biomass in a short period of time. Amaranth for 

human consumption is classified into vegetable amaranth that has edible leaves and grain 

amaranth. Grain amaranth belongs to a group of cereal-like crops or pseudo-cereals and it’s 

an annual herbaceous plant. 

Maize is a very important agricultural crop and among the three most widely grown 

in the world (CIMMYT and IITA, 2011). By 2011, maize was produced on more than 170M  

ha in the world with about 35M ha in Africa (FAOSTAT, 2014). In least developed countries 

where maize plays an important role in the livelihood of smallholder farmers, production on 

about 23M ha counted for about 43M Mg of maize in 2013 (FAOSTAT, 2014). The maize 

crop contributes 34-36% of daily caloric intake in countries such as Kenya and Tanzania 

(WorldBank et al., 2011) whereas it contributes about 10% caloric intakes in West Africa 

(Byerlee and Heisey, 1996). Maize plays a significant role in the lives of smallholder 

farmers, but it experiences post-harvest losses (PHLs) which, if minimized, could help to 
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reduce the number of hungry in the world. This number is about 870M people and the 

majority (850M people) are in developing countries (FAO et al., 2012).  PHLs occur between 

harvest and consumption. In a grain chain, PHLs occur during harvesting, threshing, 

winnowing, assembling, drying, milling, storage, packaging and transportation. PHLs 

reduction is reorganized as part of the integrated approach to ensuring the full realization of 

agricultural potential to meet the world’s increasing food and energy needs. In sub-Saharan 

Africa (SSA), grain PHL reduction is a critical objective because those losses are not only a 

waste of valuable food and other resources such as labor, seeds, land but are also symptoms 

of poorly performing value chains. Most PHLs occur during storage and the maize weevil 

(Sitophillus zeamais) is the critical PHL insect of stored maize in the tropics (Jacobs and 

Calvin, 2001; Longstaff, 1986, 1981).  

Control of maize weevil by increasing its mortality rate in stored maize is desirable. 

One of the methods proposed is by storing maize mixed with amaranth which is postulated to 

reduce interstitial spaces between kernels. This leads to restricted movement of the weevils 

which in turn denies access of maize weevils to kernels thus leading to reduction in weevil 

population. In doing so, less infestation occurs, weevils are unable to reproduce, and 

eventually they die since they have limited access to maize kernels. Laswai et al. (2013), 

observed varying degrees of control of maize weevils when they blended maize with 

crotalatia seeds, finger millet, or sorghum. The effectiveness was: actellic super dust 

(synthetic insecticide) > sunnhemp seeds > rice husks > finger millet > sorghum  The 

objective of this research was to investigate the effect of blending maize with amaranth 

during storage on maize weevil mortality compared to maize stored alone. 
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Methods and Materials 

Containers 

Six 208-L (55-gallon) open head, unlined, steel barrels (Sioux Chief Mfg Co. Model 

882-35, 24110 S Peculiar Dr, Peculiar, MO 64078) were used as storage containers.  The 

barrels can be covered with sun screens (New York Wire, Mt. Wolf, PA) to retain weevils 

but yet allow for air passage.  Barrels were cleansed with Ajax triple action liquid soap, a 

large cotton mop and a medium handle brush with warm water. After thorough rinsing, the 

barrels were left to dry.   

Maize weevils 

Maize weevils from infested commercially comingled maize were used as the source 

of infestation.  Weevils were separated from the maize by passing infested maize through a 

Carter Day Dockage tester (CEA, Minneapolis, Minnesota 55432 USA) with a screen of 

4.76-mm (12/64-in) to retain the maize and a 0.99-mm (2.5/64-in) screen to retain the 

weevils. Weevil quantities for seeding the barrels used was by weight rather than counting.   

Experimental maize and amaranth 

Commercial comingled bulk maize used in this experiment was purchased from a 

local grain elevator in central Iowa with an initial average moisture content of 13%. 

Amaranth used in the experiment was organic whole grain amaranth of variety Amaranthus 

Hypochondriacus with an initial average moisture content of 11.7% grown and donated to 

Iowa State University by  Mark & Marcie Jones (4498 Rd. 167 Oshkosh, NE 69154).  

Three of the six barrels were each loaded with 160 kg (353 lb) of un-infested 

commercial comingled bulk maize whereas the other three were loaded with maize blended 

with amaranth (50:50 by volume). After each 21 kg of maize was loaded, 24 kg of amaranth 
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was added and stirred by hand to make amaranth fill the voids between maize kernels. Each 

barrel was seeded with 25 live weevils/kg of maize. The six loaded barrels were covered with 

long ultra-sun block charcoal solar screening (New York Wire, P.O. Box 866, Mt. Wolf, PA 

17347, USA) to allow air circulation while preventing weevil escape.  

Measurements and statistical analysis 

Representative samples were drawn after every 40 days up to 160 days using a 

Seedburo brass sampling probe (2293 S. Mt Prospect Road Des Plaines, IL 60018) inserted 

three times in each barrel at a diagonal angle. Weevil mortality was determined as described 

by Yakubu et al. (2010), and Gullan and Cranston (2010).  Samples were analyzed for broken 

corn and foreign material (BCFM) (USDA, 2013b), moisture content (ASABE, 2006), test 

Weight (TW) (USDA, 1996)  and mechanical damage (MD) (Steele, 1967). Temperature and 

relative humidity inside barrels was measured using haxo-8 temperature and humidity 

loggers (879 Maple Street Contoocook, NH 03229). Tukey’s means comparison was used to 

compare the differences in treatments at α=0.05 using JMP Pro 10 and MS excel for 

descriptive analysis of data. 

Results and Discussion  

Live weevils 

Fig 3.1 and Table 3.1 show the mean number of live maize weevils over time for the 

two treatments. For the first 80 d, the increase in the number of weevils in the two treatments 

was almost the same for all six barrels. This was probably due to the maize-amaranth 

treatment having some maize exposed to the weevils on top of the grain in the barrels that 

were used in population increase. The increase in the number of live weevils was higher at 

120 d and 160 d for the maize stored alone compared to maize blended with amaranth. This 
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was attributed to the availability of maize, favorable temperature and moisture content for the 

maize stored alone whereas the slight increase for the maize-amaranth mixture was probably 

because of the declining number of maize kernels available on top for weevil egg deposit. 

The number of live weevils between the two treatments was not significantly different for 40, 

80 and 120 d but it was significantly higher for maize stored alone at 160 d (p = 0.0415) 

(Table 3.1).  When the numbers of live weevils for maize-amaranth mixture results were 

tested for 0 vs. 40 vs. 80 vs. 120 vs. 160 days, the number of weevils at 80, 120, and 160 

days were significantly higher than at 0 and 40 days. Raw data is shown in Appendix B. On 

average, the maize-amaranth mixture reduced population increase by 46%. For future 

research, we recommend a layer of amaranth on top to completely cover the maize kernels. 

 

Figure 3.1.  Mean live weevils/kg at different time periods for maize-amaranth mixture and 

maize stored alone experiment 
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Table 3.1.  Tukey’s means comparison of live weevils and maize quality values for maize-

amaranth mixture versus maize stored alone 

Item  Treatment T=0 T=40 T=80 T=120 T=160 

Number 

of live 

weevils/kg 

Maize-

amaranth 25±0Ab
 39±4

Ab
 74±11

Aa
 68±10

Aa
 73±14

Aa
 

Maize 25±0
Ab

 31±6
Ab

 84±34
Aab

 136±64
Aab

 215±82
Ba

 

Temp (
0
F) 

Maize-

amaranth - 78.7±4.9
Ga

 83.2±3.4
Gc

 80.0±1.7
Gb

 82.9±1.1
Ga

 

Maize - 81.0±8.7
Hc

 86.0±5.0
Hab

 84.5±5.7
Hab

 87.0±7.0
Ha

 

RH (%) 

Maize-

amaranth - 65.6±4.5
Aa

 59.5±9.9
Abc

 57.9±11.6
Ac

 60.9±9.3
Ab

 

Maize - 67.4±5.5
Bd

 68.4±2.7
Bc

 69.6±1.4
Bb

 71.6±1.6
Ba

 

MC (%) 

Maize-

amaranth 13.0±1.9
Ma

 12.1±2.6
Mc

 12.2±1.9
Mc

 12.2±1.7
Mc

 12.6±1.6
Mb

 

Maize 13.1±1.8
Ma

 12.8±1.0
Ma

 12.6±0.6
Na

 12.7±0.8
Na

 12.7±1.7
Na

 

MD (%) 

Maize-

amaranth 16.1±
Pa

 15.7±
Pa

 16.3±
Pa

 16.7±
Pa

 16.9±
Pa

 

Maize 14.9±
Pb

 16.2±
Pb

 24.3±
Qa

 25.9±
Qa

 26.9±
Qa

 

BCFM 

(%) 

Maize-

amaranth 5.1±0.4
Ka

 5.1±0.3
Lab

 4.8±0.1
Lab

 4.7±0.1
Lab

 4.1±0.2
Lb

 

Maize 4.8±1.0
Kb

 7.1±0.6
Ka

 7.4±0.5
Ka

 7.5±0.5
Ka

 7.8±0.5
Ka

 

TW 

(Ib/bu) 

Maize-

amaranth 56.6±0.2
Ra

 56.1±0.0
Rb

 56.0±0.0
Rb

 55.5±0.3
Rc

 54.5±0.1
Rd

 

Maize 56.6±0.5
Ra

 56.0±0.2
Rab

 55.8±0.1
Sb

 54.9±0.2
Rc

 53.8±0.3
Sd

 

Values not followed  by same upper case letter at each time for each item, and levels not 

connected by same lower case letter in each treatment are significantly different at 0.05 level 

 

Temperature and relative humidity  

Relative humidity (RH) is the ratio of absolute humidity of air to the maximum 

possible absolute humidity of that air. The humidity for maize amaranth mixture ranged 

between 57.9 to 65.6 % on average whereas that of maize stored alone ranged from 67.4% to 

71.6% on average. The trend of RH for maize-amaranth mixture was decreasing from T=40 

to T= 120 d and they was a slight increase at T=160 d. This could have been due to the 

presence of amaranth. On the other hand, RH trend for maize stored alone was increasing 
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with time. Relative humidity for maize stored alone was significantly higher at all time 

(Table 3.1). RH within maize stored along was significantly different at all times whereas 

that of maize-amaranth mixture was not significantly different at T=80, 120, and 160 days 

(Table 3.1).   

Temperature had a general increasing trend in the two treatments though it was higher 

in maize stored alone at all times. The increasing trend was attributed to the respiration the 

stored products and maize weevils (Bern et al., 2013), however the low level increase for  

maize-amaranth mixture was attributed to the presence of amaranth. Temperature for maize 

stored alone was significantly higher at all times (Table 3.1). By feel of the hand when 

emptying the barrels, maize stored alone was warm and mold kernels were on the sides of the 

barrels whereas for the maize-amaranth mixture, it wasn’t that all warm and no mold kernels 

were observed. The maize-amaranth mixture storage could be the future to eliminate and/or 

minimize spoilage of maize in metallic barrels and this would address Navarro (2006), 

opinion that metallic silos have limited use  due to moisture migration that leads to mold 

maize. 

Maize moisture 

There was a decrease in moisture content of both treatments for the first 40 days  

probably due to moisture equilibrium establishment of the stored products with the 

surrounding environment (Bern et al., 2013) and moisture exchange between amaranth and 

maize (Table 3.1). The moisture changes for grain amaranth were not monitored. After 40 d, 

there was an increase in the average moisture content probably due to respiration of maize 

weevils (Bern et al., 2013) as modeled by the combustion of carbohydrate equation. Moisture 

content among the two treatments was not significantly different at 0 and 40 d, whereas it 
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was significantly higher for maize stored alone (control) at 80 (p = 0.0005), 120 (p = 0.0036), 

and 160 days (p = 0.0026) (Table 3.1). Also analysis of moisture within each treatment was 

done over time (Table 3.1). 

Visible mechanical damage 

Results of visible mechanical damage for the maize-amaranth storage were almost 

constant throughout the experimental period whereas that of maize alone (control) was 

increasing with time (Table 3.1). The almost constant results were probably due to the 

observed weevils which were mostly on top of the barrel since when weevils crawled onto 

the top, they couldn’t penetrate again through the amaranth into the lower part of the barrel 

thus damage was concentrated in a specific area. The increasing percentage of mechanical 

damage was due to weevil population increase. Mechanical damage between treatments was 

not significantly different at 0 and 40 days while it was significantly higher for the control at 

80 (p = 0.002), 120 (p = 0.001), and 160 days (p = 0.0017).  Laswai et al., 2013 observed an 

increasing trend of mechanical damage with small grains of crotalatia seeds, finger millet, 

and sorghum used as physical control measure of post-harvest. 

Broken corn and foreign material 

Results of broken corn and foreign material for the maize-amaranth storage were 

almost constant throughout the experimental period whereas that of maize stored alone were 

increasing with time (Table 3.1). The almost constant results were probably due to the 

observed weevils which were mostly in the top end of the barrel since, when weevils crawled 

to the top; they couldn’t penetrate again through the amaranth into the lower part of the 

barrel. Amaranth filled the inter-granular spaces between the kernels. The increasing BCFM 

was due to weevil population increase. The BCFM for the control was significantly higher at 
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40 (p = 0.0074), 80 (p = 0.0011), 120 (p = 0.0008), and 160 days (p = 0.0005).  Also analysis 

of BCFM within each treatment was done over time (Table 3.1). 

Test weight 

Test weight declined with time in both treatments but there was a greater decline at 

120 and 160 days for stored maize in comparison to the maize-amaranth probably because 

more dry matter and/or endosperm loss caused by the increasing number of weevils was 

more. From observation, since weevils were on top for maize-amaranth storage, top kernels 

had almost nothing left inside them. Tukey’s mean comparison of the two treatments was not 

significantly different at 0, 40, and 120 d whereas it was significantly higher for maize-

amaranth mixture at 80 (p = 0.0249), and 160 days (p = 0.0161). Also analysis within each 

treatment was done over time (Table 3.1). As the moisture content was increasing, there was 

an expected decrease in test weight  (Bern and Brumm, 2009) however damage and/or 

deterioration of kernels due to maize weevils  may have contributed to test weight decline. 

Raw data is shown in Appendix B. 

Conclusions  

Based on this research 

 Blending maize with amaranth (50/50 by volume) during 160 d of storage reduced 

maize weevil population by 46% compared to maize stored alone. 

 The number of weevils between the two treatments was significantly higher for maize 

stored alone at 160 days. 

 BCFM for maize stored alone was significantly higher at 40, 80, 120, and 160 days. 

 Moisture content was significantly higher for maize stored alone at 80, 120, and 160 

days. 
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 Test weight was significantly higher for maize-amaranth mixture at 80, and 160 days.  

 Relative humidity and temperature for maize store alone was significantly higher at-

all-times compared to maize-amaranth mixture. 

 The same experimental set-up should be done with an extra layer of amaranth on top 

to completely cover the maize kernels that were exposed to the maize weevils. 
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Abstract 

Maize is an important agricultural crop and among the most widely grown in the 

world. Maize, wheat, and rice supply at least 30% of the food calories in developing 

countries. Before the world thinks of increasing maize production due to increasing demand, 

there is also critical need to minimize post-harvest losses especially for smallholder farmers. 

Cheap, effective, affordable and easy to implement technologies will be of significant 

contribution to reduce post-harvest losses of grain during storage. Maize weevils cause post-

harvest losses of maize thus the objective of this research was to investigate the effect of 

storage container physical disturbance on maize weevil mortality. The experiment consisted 

of two treatments: control and disturbed containers, three replications, four times of data 

collection (40, 80, 120, and 160 days). Clean plastic ground coffee containers were used for 

this experiment loaded with 1 kg of maize and 25 live weevils/kg. Every twelve hours, the 

containers to be disturbed were manually rolled one circumference up-to the original 

position. Number of live weevils and mechanical damage (MD) results were significantly 

higher for control treatment at 80, 120, and 160 days. Broken maize and foreign material 

(BCFM) was significantly higher for the control at 160 days. Test weight (TW) was 
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significantly higher for the physically disturbed treatment at 160 days. Physical disturbance 

of storage containers reduced maize weevil population by 81% compared to the control. 

Keywords: Maize, post-harvest losses, maize weevil, test weight  

Introduction 

Maize is an important agricultural crop and among the most widely grown in the 

world (CIMMYT and IITA, 2011). Maize in combination with wheat and rice supply 30% of 

the food calories to more than 4.5 billion people in 94 developing countries (von Braun et al., 

2010). Maize plays a big role in the livelihoods of millions of smallholder farmers as an 

affordable food in both low and middle income countries in which it’s used for food, feed 

and income.  

Before the world can think of increasing maize production with regard to increasing 

demand,  changes in natural resource depletion, food crisis, global financial crisis, increasing 

poverty and emerging climate changes, there is a need to minimize post-harvest losses 

(PHLs) to reduce the number of hungry and chronically undernourished people in the world 

that is about 870 million people and the majority of them (850 million) are in developing 

countries (FAO et al., 2012).  PHL reduction is increasingly recognized as part of the 

integrated approach to ensuring the full realization of agricultural potential to meet the 

world’s increasing food and energy needs (FAO, 2014; WorldBank et al., 2011).  PHL 

reduction is a critical objective because those losses are not only a waste of valuable food but 

also resources such as labor, seeds, and land. Most PHLs occurs during storage and maize 

weevil (Sitophillus zeamais) is the critical PHLs insect of stored maize in the tropics (Jacobs 

and Calvin, 2001; Longstaff, 1986, 1981).  
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Quentin et al. (1991) investigated the effect of bean tumbling to control the bean 

bruchids during storage. It was assumed that when beans are physically disturbed numerous 

times, the larva not damaged by disturbance would capitulate due to exhaustion of energy 

reserves before gaining access to the cotyledon. The experiment consisted of tumbling and 

stationary treatments: 0.8-L glass jars, 16-L plastic buckets, and 45-kg sacks. Each of the 

storage container types was either loaded half-way with 100% intact or 50% damaged beans. 

Glass jars, plastic buckets, and sacks were also loaded with 30, 480, and 1000 bean bruchids 

respectively.  For jars, and plastic buckets: two plastic tubes were fixed into the inside walls 

to act as baffles so as to avoid just sliding of beans during tumbling and physical disturbance 

was done after every eight hours by rotating them through 360
0
C back to their original 

positions. Sacks were turned end-over-end two to three times a day. There was reduction in 

the number of bean bruchids in physically disturbed compared to stationary treatment as 

follows: 98% ( for 100% intact beans) in glass jars, 95% (for 50% intact beans) in glass jars, 

98% (for >98% intact beans) in plastic buckets, 97% (for >98% intact beans) in sacks. A 

97% overall mean reduction in bean bruchid population was noticed due to storage container 

physical disturbance. Quentin et al. (1991), got good results for the bean bruchids, and this 

prompted us to investigate the same treatment effects on the maize weevil. Furthermore, 

turning stored wheat effectively controlled insects and mites (Muir et al., 1977). Bailey 

(1969), observed the same situation for the immature stages of grain weevil Sitophilus 

granarius in wheat. From their research, Cotton & Gray 1948 concluded that the beneficial 

disturbance of turning stored grain is a decline in temperature and to a lower extent moisture 

content though Gay 1941b and Gay 1941a reported that there is no significant mean 

temperature difference during turning and this was confirmed by Watters 1963 who 
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concluded that there is minute heat lost to the external environment even when the ambient 

temperature is low. Heslop & Ray 1959 reported that there was increased oxygen 

consumption due to applied physical stress to cockroach Periplaneta Americana.  

Effective, affordable and easy to implement technologies will be of significant 

contribution to reducing post-harvest losses of grain during storage. The objective of this 

research was to investigate the effect of storage container physical disturbance on maize 

weevil mortality.  

Methods and Materials 

Containers 

Clean plastic ground coffee containers (net 788 g) were used for this experiment (Fig 

4.1). Since the containers had two internal baffles, a third 1.5 x 1.5 x 10 cm wooden baffle 

was fixed in by means of screws for the containers that were to be physically disturbed. 

Holes of 10 cm in diameter were cut through the lids using a hole cutter and then ultra-sun 

block solar screens (New York wire, P.O. Box 866, Mt. Wolf, PA 17347, USA) were glued 

with silicon glue. The lids with screens were held on the containers by use of two rubber 

bands per container. 
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Figure 4.1.  Plastic ground coffee container 

Maize  

Commercial comingled bulk maize used in the experiment was purchased from West 

Central Coop Elevator (1095 T Ave, Boone, IA 50036). Each plastic container was loaded 

with 1kg of maize which had on average a moisture content of 13.6%. 

Weevils 

The maize weevils for this experiment (S. zeamais) were obtained from an infested 

container of maize in the biomaterials laboratory at Iowa State University. The weevils were 

separated and retrieved from the infected maize through sieving method. Screen of 0.99-mm 

(2.5/64 in) diameter hole diameter retained the weevils. Twenty-five live maize weevils were 

loaded into each container.  

Experimental design 

The experiment consisted of two treatments: control and disturbed containers (Fig 

4.2), three replications, different storage times (40, 80, 120 and 160 days) totaling 2x3x4=24 
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containers. Twenty five weevils/kg of maize were loaded into each of the containers which 

were then laid longitudinally into a chamber maintained at 27
0
C.  Every twelve hours, the 

containers to be disturbed were manually rolled one circumference. 

 

Figure 4.2.  Experimental set-up of physically disturbed vs. control treatments 

Measurements 

After every 40 d up to 160 d, six containers (three for each treatment) were picked 

randomly from the experimental chamber for data collection.  Weevil mortality was 

determined (Gullan and Cranston, 2010; Yakubu et al., 2010).  Container contents were 

analyzed for broken maize and foreign material (BCFM) (USDA, 2013b), moisture content 

(ASABE, 2006), test weight (TW) (USDA, 1996)  and mechanical damage (MD) (Steele, 

1967).  

Statistical analysis 

Data analysis was done using JMP Pro 10 (Tukey’s mean comparison at 5% level) 

and MS Excel descriptive analysis. 
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Results and Discussion  

Live weevils 

Live maize weevils declined from 25 to a range between 13 and 3 live weevils/kg of 

maize for the first 40 d in all containers. This was probably because some weevils were 

ending their life span. For the rest of the time periods, control containers showed an increase 

in the number of live weevils because they didn’t experience any disturbance whereas 

disturbed containers continued to show a decline and at certain times there was zero number 

of live maize weevils thus physical disturbance lowered the maize weevil population relative 

to the control treatment (Table 4.1). Live weevil results were not significantly different at 0 

and 40 d between treatments but there were significantly higher for control treatment at 80 

(p=0.0016, R
2
=93.6%),), 120 (p=0.0030, R

2
=91.2%), and 160 d (p=0.0006, R

2
=96.1%). 

Analysis of the results with time was also done for each treatment (Table 4.1). Raw data is 

shown in Appendix C. On average the disturbance reduced the number of live weevils by 

81% compared to the control treatment.  
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Table 4.1.  Tukey’s mean comparison of live weevils and maize quality values for physical 

disturbance versus control experiment 

Item  Treatment T=0 d T=40 d T=80 d T=120 d T=160 d 

Number 

of live 

weevils/kg 

Control 25±0
Ab

 11±1
Ab

 15±2
Ab

 40±8
Aa

 44±5
Aa

 

Disturbed 25±0
Aa

 6±3
Ab

 1±2
Bb

 1±2
Bb

 3±2
Bb

 

MC (%) 
Control 13.7±0.2

Ma
 13.5±0.2

Ma
 13.3±0.1

Ma
 13.4±0.2

Ma
 13.2±0.2

Ma
 

Disturbed 13.7±0.1
Ma

 13.5±0.2
Mab

 13.3±0.2
Mabc

 13.2±0.1
Mbc

 13.0±0.0
Mc

 

MD (%) 
Control 14.4±0.5

Gc
 16.1±1.3

Gc
 16.8±0.7

Gbc
 20.1±1.8

Gab
 22.0±0.4

Ga
 

Disturbed 14.7±0.3
Ga

 15.3±0.5
Ga

 15.1±0.1
Ha

 15.1±0.2
Ha

 14.1±0.1
Ha

 

BCFM 

(%) 

Control 0.0±0.0
Kb

 0.57±0.1
Ka

 0.60±0.1
Ka

 0.82±0.2
Ka

 0.96±0.2
Ka

 

Disturbed 0.0±0.0
Kb

 0.59±0.1
Ka

 0.68±0.0
Ka

 0.65±0.2
Ka

 0.45±0.0
La

 

TW 

(Ib/bu) 

Control 56.7±0.0
Ra

 56.6±0.0
Rab

 56.5±0.0
Rab

 56.3±0.2
Rbc

 56.1±0.1
Rc

 

Disturbed 56.7±0.1
Ra

 56.6±0.1
Ra

 56.5±0.1
Ra

 56.5±0.1
Ra

 56.5±0.1
Sa

 

Values not followed  by same upper case letter at each time for each item, and levels not 

connected by same lower case letter in each treatment are significantly different at 0.05 level 

 

Moisture content 

Moisture content during the experiment ranged between 13.9% and 12.9% w.b (Table 

4.1). It declined with time as expected probably due to establishing an equilibrium  moisture 

(Carl. J. Bern et al., 2013b). Our results were not in line with Cotton & Gray 1948 conclusion 

that disturbance by turning of stored grain leads to a lower decline in moisture content since 

for our experiment decline was observed in both control and physically disturbed containers. 

Moisture content was not significantly different between treatments throughout the whole 

period of the experiment (Table 4.1). Raw data is shown in Appendix C. 

Mechanical damage 

At the start of the experiment (T = 0 d), approximately 14% of the maize kernels were 

mechanically damaged. The control containers showed an increasing trend with time to 
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approximately 23% mechanical damage as the highest whereas physically disturbed storage 

containers showed almost constant mechanical damage values of about 15% which is almost 

the initial recorded value. The low number of weevils in disturbed containers couldn’t 

contribute much in mechanical damage. The increasing trend for controls was attributed to 

the increasing number of maize weevils that cause more damage to kernels whereas 

physically disturbed results might have been due to the declining number of weevils as 

expected. Mechanical damage between treatments was not significantly different at 0 and 40 

d but they were significantly higher for control treatment at 80 (p=0.0297, R
2
=73.2%),), 120 

(p=0.0176, R
2
=79.1%), and 160 d (p<0.0001, R

2
=99.5%) (Table 4.1). When Cotton and 

Gray, 1948 and Joffe, 1963 periodically transferred large stores of grain from one bin to 

another, they noticed reduced pest damage which may have been due to physical disturbance. 

The major effect of grain transfer and/or disturbance is to reduce damage impacts by insects 

(Bailey, 1969; Joffe and Clarke, 1963; Loschiavo, 1978). 

Broken maize and foreign material 

Broken maize and foreign material (BCFM) results throughout the experiment period 

ranged between 0.40% and 1.11%. Physically disturbed containers showed little increase in 

BCFM and this again was attributed to maize weevil population density decline that couldn’t 

lead to increase in BCFM. On the other hand, control treatment showed an increasing trend 

as expected probably due to increasing number of live weevils. Broken maize and foreign 

material between treatments was not significantly different at 0, 40, 80, and 120 d but it was 

significantly higher for control treatment at 160 (p=0.0162, R
2
=79.9%),  (Table 4.1). 
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Test weight 

Test weight results ranged between 56.7 to 56.0 Ib/bu throughout the 160 d of the 

experiment. Physically disturbed container test weight results declined slightly almost to a 

constant value whereas the controls showed higher decline compared to physically disturbed 

containers probably because of the increasing number of live weevils. Bern and Brumm 

(2009), noted that as maize is losing moisture, there is a predictable increase in test weight 

though it wasn’t the case for our experiment probably due to changes in the dry matter or 

deterioration that could have occurred due to infestation caused by maize weevils. Test 

weight between treatments was not significantly different at 0, 40, 80, and 120 d but it was 

significantly higher for control treatment at 160 d (p=0.0257, R
2
=75.0%) (Table 4.1). 

Analysis of the results with time was also done for each treatment (Table 4.1). 

Conclusions 

The experiment was successfully carried out and we conclude that; 

 Physical disturbance of storage containers reduced maize weevil population by 81% 

after 160 d compared to the control treatment. 

 Number of live weevils and mechanical damage results were significantly higher for 

control treatment at 80, 120, and 160 days.   

 Broken maize and foreign material between treatments was significantly higher for 

control treatment at 160 days. 

 Test weight between treatments was significantly higher for control treatment at 160 

days. 
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CHAPTER 5:  GENERAL CONCLUSIONS 

Maize storage for smallholder farmers still remains a challenge to many in the world 

and that is why this research was based on finding out pesticide free methods that can be 

used by these farmers. The objectives of this research were: a) to evaluate the effectiveness 

of 208-L (55-gallon) steel barrels for hermetic maize storage and specifically to: determine 

weevil mortality for hermetically sealed grain, determine quality of hermetically sealed grain, 

and determine whether hermetically sealed grain becomes re-infested when unsealed, b) to 

investigate the effect of amaranth-maize blending during storage on maize weevils mortality 

versus maize stored alone, and c) to investigate the effect of storage container physical 

disturbance on maize weevil mortality.  

The hermetic versus non-hermetic storage experiment resulted in effective control of 

maize weevils by hermetic storage without use of insecticides. The time period to achieve 

oxygen levels at which maize weevil life ceases was reached early than calculated. This can 

be thought of as an advantage of having more maize weevil population and maize itself that 

might create an environment having more CO2 due to respiration leading to their death faster. 

The maize-amaranth blending experiment results are promising since it’s the first of 

the kind experiment to be done with quite a large storage container of 208-L (55-gal) with 

small grains such as amaranth. The amaranth seems to fill the inter-spaces between kernels 

that restrict movement of the maize weevils. When weevils crawl through the amaranth from 

the lower sections of the storage container to the top, they cannot crawl and/or penetrate 

again to infest the lower section kernels thus they end-up being destructive to the top kernels. 

Also, there was no moldy corn on maize-amaranth barrel wall observed. The maize-amaranth 

mixture reduced maize population increase by 46% after 160 days of storage. 
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Physical disturbance is a simple approach that controls maize weevil. The number of 

weevils showed a declining trend with disturbed containers whereas control containers 

showed an increasing weevil trend. As it takes time for female weevils to bore through a 

kernel and to deposit an egg, when subjected to physical disturbance, they have to try again 

boring which in end stress, dying before laying eggs. Physical disturbance reduced maize 

population increase by 81% after 160 days of storage.  

The overall conclusion is that there are effective low-cost ways to control maize 

weevils by hermetic storage, physical disturbance and blending maize with amaranth during 

storage. Hermetic storage is the best among the researched methods to effectively control the 

maize weevils, followed by physical disturbance and then maize-amaranth mixture. 

Future research recommendations 

Based on this research, possible future research can be:  

1) Investigate the possible causes and how to eliminate and/or minimize maize spoilage 

on barrel walls.  This experiment will seek to minimize and/or eliminate molds that 

were observed and the aflatoxin detected from samples picked from barrel walls. 

2) Hermetic storage should be investigated without letting the weevils first go first 

through lifecycles to increase in population. This experiment will investigate if kernel 

spoilage occurs on barrel walls if hermetic sealing in done from the first day of 

storage. 

3) Investigate how long it takes for a female maize weevil to bore through a kernel. This 

test will establish how frequently it is necessary to disturb the weevils. 

4) Setting up the same maize-amaranth experiment (50:50 by volume) but having an 

extra layer of amaranth on top to investigate if this can help completely control the 
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maize weevil. This extra layer will reduce and/or eliminate the maize kernels that 

were available during our experiment. 

5) Due to observation of no spoilt kernels for maize blended with grain amaranth on 

barrel walls, more research should be done to quantify the observations. This 

experiment may lead to hermetic and maize-amaranth mixture methods being used 

together by smallholder farmers to eliminate weevils while experiencing no moldy 

maize in metallic storage containers.  

6) Investigate the effect of physical disturbance using larger storage containers. Since 

farmers use larger storage containers compared to what we investigated in laboratory 

setting, it is necessary to find out what will happen in real life. 

7) Implement and test the researched methods in a developing country. These tests will 

help determine if the investigated methods are feasible. 
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APPENDIX A:  HERMETIC VERSES NON-HERMETIC DATA 

Estimated time to 100% mortality 

Calculations below are the estimated mortality time at different population densities. 

Interpolation and extrapolation was applied for the weevil population densities of our 

experiment.  

 

 
 

     

      

 

 

Source : 

(Yakubu, 

2009) 

     

 Barrel computations     

 Dia(in) 22.5    

 Height(in) 34.5    

 1 bu maize  1.245 ft
3
   

 56 lb 25.4 kg   

 Maize bulk density(lb/ft
3
) 45    

      

      

 Barrel vol (in
3
) 13,717.47    

 Barrel vol (cm
3
) 224,789.06    

 Barrel vol (ft
3
) 7.94    

 Maize mass (bu) 6.38    

 Maize mass (kg) 161.96    

 Total maize mass for 9 barrels (bu) 47.82    

 Total maize mass for 9 barrels  + 

8% Misc (bu) 

51.65    

 Total maize mass for 6 barrels  + 

8% Misc (bu) 

34.43    

      

 Assuming different weevils/kg of 

corn 

    

 Weevils/kg Total # 

weevils 

   

 50 8098    

 100 16196    

 150 24293    

 200 32391    

      

 Mortality calculations     

 Maize particle density (g/cm
3
) 1.2601    
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 Maize bulk density (g/cm
3
) 0.722    

 Voids (%) 42.70    

 Fill (%) (assumed) 95  

 Headspace (%) (assumed) 5  

 Oxy cm
3
 weevil

-1
day

-1 
at 27

0
C 0.18 At 27

0
C and 13%  

      

 Mortality days at @ Weevils/kg Days    

 50 15    

 100 8    

 150 5    

 200 4    

      

 

Live maize weevils’ analysis at different time periods for Hermetic-Non-hermetic 

experiment 

T= 122 days 

Oneway Analysis of Live weevils/kg By Condition 

 
Oneway Anova 

Summary of Fit 

Rsquare 0.876098 

Adj Rsquare 0.845122 

Root Mean Square Error 22.33831 

Mean of Response 65.5 

Observations (or Sum Wgts) 6 

 

Analysis of Variance 

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Condition 1 14113.500 14113.5 28.2836 0.0060* 

Error 4 1996.000 499.0   

C. Total 5 16109.500    
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Means Comparisons 

Comparisons for all pairs using Tukey-Kramer HSD 

Level             Mean 

Non-hermetic A       114.00000 

Hermetic   B     17.00000 

 

Levels not connected by same letter are significantly different. 

T=150 days 

Oneway Analysis of Live weevils/kg By Condition 

 
Oneway Anova 

Summary of Fit 

Rsquare 0.946768 

Adj Rsquare 0.933459 

Root Mean Square Error 20.52235 

Mean of Response 70.66667 

Observations (or Sum Wgts) 6 

 

Analysis of Variance 

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Condition 1 29962.667 29962.7 71.1421 0.0011* 

Error 4 1684.667 421.2   

C. Total 5 31647.333    

 

Means Comparisons 

Comparisons for all pairs using Tukey-Kramer HSD 

Level             Mean 

Non-hermetic A       141.33333 

Hermetic   B     0.00000 

 

Levels not connected by same letter are significantly different. 

 

T=190 days 



72 

 

 

Oneway Analysis of Live weevils/kg By Previous condition 

 
Oneway Anova 

Summary of Fit 

Rsquare 0.976017 

Adj Rsquare 0.970021 

Root Mean Square Error 20.54264 

Mean of Response 107 

Observations (or Sum Wgts) 6 

 

Analysis of Variance 

Source DF Sum of Squares Mean Square F Ratio Prob > F 

Previous condition 1 68694.000 68694.0 162.7820 0.0002* 

Error 4 1688.000 422.0   

C. Total 5 70382.000    

 

Means Comparisons 

Comparisons for all pairs using Tukey-Kramer HSD 

Connecting Letters Report 

Level             Mean 

Non-hermetic A       214.00000 

Hermetic   B     0.00000 

 

Levels not connected by same letter are significantly different. 
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Aflatoxins 

The samples in table below are for the observed moldy maize on the sides of steel barrels. 

Small portions were picked from the barrel wall sides for analysis. The results are not 

representative of all the maize in the barrels. Aflatoxin analysis was performed using a 

Charm ROSA-M reader (Charm Science, Inc 659 Andover Street Lawrence, MA 01843-

1032 USA).  It detects the sum of aflatoxins B1, B2, G1, and G2. 

 

Sample name Ppb total aflatoxins 

Non-Hermetic barrel 1 2 

Non-Hermetic barrel 2 1 

Non-Hermetic barrel 3 2 

Hermetic barrel 1 30 

Hermetic barrel 2 3 

Hermetic barrel 3 0 

 

 

 

Raw data for the hermetic vs. non hermetic storage experiment 
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Average broken corn and foreign material (%) at different time periods of hermetic vs. non-hermetic treatments  

Treatment 

T= 0 days 

(Start of 

experiment) 

T= 40 days 

(one weevil 

lifecycle) 

T= 80 days (two 

weevil 

lifecycle) 

T= 120 days 

(three barrels 

HS)  

T= 122 days 

(three HS 

barrels opened) 

T= 150 days 

(three HS 

barrels opened)  

T= 190 days 

(end of 

experiment) 

HS1 1.65 1.84 2.41 2.50 2.78 3.39 2.33 

HS2 1.48 1.77 2.16 3.33 3.76 3.20 2.78 

HS3 1.48 1.70 2.36 2.61 3.14 2.50 1.76 

NH1 2.12 2.01 2.36 2.56 2.56 2.75 2.00 

NH2 1.65 1.90 2.55 3.17 3.17 3.62 2.51 

NH3 1.17 1.82 1.94 2.73 2.73 3.38 2.63 

Avg_all 1.60 1.84 2.30 2.82 3.02 3.14 2.33 

Avg_Sealed  1.54 1.77 2.31 2.82 3.22 3.03 2.29 

Avg_unsealed  1.65 1.91 2.28 2.82 2.82 3.25 2.38 

        Std (HS) 0.1 0.1 0.1 0.5 0.5 0.5 0.5 

Std (NH) 0.5 0.1 0.3 0.3 0.3 0.4 0.3 
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Average test weight (Ib/bu) at different time periods of hermetic vs. non-hermetic treatments  

Treatment 

T= 0 days 

(Start of 

experiment) 

T= 40 days (one 

weevil 

lifecycle) 

T= 80 days 

(two weevil 

lifecycle) 

T= 120 days 

(three barrels 

HS)  

T= 122 days 

(three HS barrels 

opened) 

T= 150 days 

(three HS 

barrels opened)  

T= 190 days 

(end of 

experiment) 

HS1 57.3 57.1 56.7 56.3 56.0 55.6 55.4 

HS2 57.3 57.1 56.6 56.1 56.3 55.6 55.1 

HS3 57.7 57.0 56.9 56.2 55.9 55.4 55.1 

NH1 57.3 57.1 56.7 56.1 56.1 55.1 54.3 

NH2 57.7 57.1 56.5 56.1 56.1 55.3 54.6 

NH3 57.3 57.2 56.9 55.9 55.9 55.2 54.3 

Avg_all 57.4 57.1 56.7 56.1 56.0 55.4 54.8 

Avg_Sealed  57.4 57.1 56.7 56.2 56.1 55.5 55.2 

Avg_unseal

ed  57.4 57.1 56.7 56.0 56.0 55.2 54.4 

        Std (HS) 0.2 0.1 0.2 0.1 0.2 0.1 0.2 

Std (NH) 0.2 0.1 0.2 0.1 0.1 0.1 0.2 
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Average mechanical damage (%) at different time periods of hermetic vs. non-hermetic treatments  

Treatment 

T= 0 days 

(Start of 

experiment) 

T= 40 days 

(one weevil 

lifecycle) 

T= 80 days 

(two weevil 

lifecycle) 

T= 120 days 

(three barrels 

HS)  

T= 122 days 

(three HS 

barrels opened) 

T= 150 days 

(three HS 

barrels opened)  

T= 190 days 

(end of 

experiment) 

HS1 6.62 4.40 4.84 7.55 7.87 6.45 7.77 

HS2 3.75 3.48 4.06 5.94 6.04 5.63 6.91 

HS3 3.43 3.52 4.58 5.72 6.87 5.95 7.50 

NH1 3.43 4.16 4.82 6.73 6.73 6.43 8.35 

NH2 5.04 3.97 4.60 6.13 6.13 8.04 9.62 

NH3 3.75 3.58 3.89 5.54 5.54 7.73 10.46 

Avg_all 4.34 3.85 4.47 6.27 6.53 6.71 8.43 

Avg_Sealed  4.60 3.80 4.49 6.41 6.93 6.01 7.39 

Avg_unseal

ed  4.07 3.91 4.44 6.13 6.13 7.40 9.48 

        Std (HS) 1.8 0.5 0.4 1.0 0.9 0.4 0.4 

Std (NH) 0.9 0.3 0.5 0.6 0.6 0.9 1.1 
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Average moisture content (%) at different time periods of hermetic vs. non-hermetic treatments    

Treatment 

T= 0 days 

(Start of 

experiment) 

T= 40 days (one 

weevil 

lifecycle) 

T= 80 days 

(two weevil 

lifecycle) 

T= 120 days 

(three barrels 

HS)  

T= 122 days 

(three HS barrels 

opened) 

T= 150 days 

(three HS 

barrels opened)  

T= 190 days 

(end of 

experiment) 

HS1 12.65 13.34 13.08 12.89 12.80 13.41 12.87 

HS2 13.63 13.29 13.28 12.89 12.85 13.19 12.54 

HS3 12.65 13.33 13.23 12.67 12.67 13.27 12.83 

NH1 13.12 13.26 13.31 12.87 12.87 13.15 12.61 

NH2 13.30 13.32 13.12 12.83 12.83 13.05 12.68 

NH3 13.30 13.68 13.36 12.74 12.74 12.96 12.57 

Avg_all 13.11 13.37 13.23 12.81 12.80 13.17 12.68 

Avg_Sealed  12.98 13.32 13.20 12.82 12.78 13.29 12.75 

Avg_unseale

d  13.24 13.42 13.27 12.81 12.81 13.05 12.62 

        Std (HS) 0.6 0.0 0.1 0.1 0.1 0.1 0.2 

Std (NH) 0.1 0.2 0.1 0.1 0.1 0.1 0.1 
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Average number of live Weevils/kg at different time periods of hermetic vs. non-hermetic treatments    

Treatment 

T= 0 days 

(Start of 

experiment) 

T= 40 days 

(one weevil 

lifecycle) 

T= 80 days 

(two weevil 

lifecycle) 

T= 120 days 

(three barrels 

HS)  

T= 122 days 

(three HS 

barrels opened) 

T= 150 days 

(three HS barrels 

opened)  

T= 190 days 

(end of 

experiment) 

HS1 25 11 32 90 10 0 0 

HS2 25 8 56 93 12 0 0 

HS3 25 8 43 69 29 0 0 

NH1 25 13 58 146 146 108 184 

NH2 25 3 89 109 109 161 242 

NH3 25 8 62 87 87 155 216 

Avg_all 25 8 70 99 66 71 107 

Avg_Sealed  25 9 44 84 17 0 0 

Avg_unseal

ed  25 8 70 114 114 141 214 

        Std (HS) 0 2 12 13 11 0 0 

Std (NH) 0 5 17 30 30 29 29 
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APPENDIX B:  MAIZE KERNELS BLENDED WITH AMARANTH VERSUS 

MAIZE STORED ALONE EXPERIMENT RAW DATA 

Maize and amaranth required for the experiment  

Assumptions, 50% Amaranth : 50% Corn    

Barrel computations    

Dia(in) 22.5   

Height(in) 34.5   

1 bu maize  1.245 ft
3
  

56 Ib 25.4 kg  

Maize bulk density(Ib/ft
3
) 45   

 Volume (in
3
)   

 Barrel   

Barrel volume (in
3
) 13,717.47   

Corn (50% of Barrel vol) 6,858.73 in
3
  

Corn (50% of Barrel vol) 3.97 ft
3
  

Corn (50% of Barrel vol) 3.19 bu  

Corn Mass @barrel (50% of Barrel vol) 80.98 kg  

    

    

Amaranth (50% of Barrel vol) 6,858.73 in
3
  

Amaranth (50% of Barrel vol) 3.97 ft
3
  

Amaranth bulk density  843 kg/m
3
  Dokok et al., 

1994.  

1 in = 0.03 m  

Amaranth Mass required@barrel (50% of Barrel vol) 94.75 kg  

    

    

Total Amaranth needed for the 3 barrels 284.25 kg  

Total Amaranth + Miscellenous ~ 306.99 kg  

Total Amaranth + Miscellenous ~ 676.90 Ib  

    

    

Experiment set-up    

    

NOTES    

25 weevils/kg of maize    

After every 20.24~21 kg of maize + 23.69~24 kg of 

amaranth we would stir with hands to fill the 

interspaces between kernels 
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Source:  Dokok, L.   A. A. Modhir, G. Halasova, I. Polacek and B. Hozova. 

1994. Importance and utilization of amaranth in food industry Part I. John Wiley 

& Sons, Ltd. Vol. 38, Issue 4, pages 378-381 

 

 

Average BCFM (%) 

Treatment 

T= 0 

day 

T= 40 

days 

T= 80 

days 

T= 120 

days  T= 160 days  

MA1 5.03 5.31 4.71 4.62 4.26 

MA2 4.95 5.30 4.86 4.61 4.66 

MA3 5.65 4.72 4.74 4.71 4.60 

C1 5.66 7.76 7.89 8.05 8.31 

C2 3.69 7.14 7.48 7.58 7.75 

C3 5.02 6.53 6.82 6.97 7.31 

      Avg_all 5.00 6.12 6.08 6.09 6.15 

Avg_ Maize-Amaranthr 

(MA)  5.21 5.11 4.77 4.65 4.51 

Avg_Control (C)  4.79 7.14 7.40 7.53 7.79 

      STD (MA) 0.4 0.3 0.1 0.1 0.2 

STD  ( C ) 1.0 0.6 0.5 0.5 0.5 
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Average Test weght (Ib/bu) 

Treatment 

T= 0 

day 

T= 40 

days 

T= 80 

days 

T= 120 

days  T= 160 days  

MA1 56.7 56.1 56.0 55.6 54.6 

MA2 56.4 56.1 56.0 55.8 54.4 

MA3 56.6 56.1 56.1 55.2 54.4 

C1 56.2 55.8 55.8 54.9 53.9 

C2 56.6 55.9 55.7 54.7 54.0 

C3 57.1 56.3 55.9 55.2 53.5 

      Avg_all 56.6 56.1 55.9 55.2 54.1 

Avg_ Maize-

Amaranthr (MA)  56.6 56.1 56.0 55.6 54.5 

Avg_Control (C)  56.6 56.0 55.8 54.9 53.8 

      STD (MA) 0.2 0.0 0.0 0.3 0.1 

STD  ( C ) 0.5 0.2 0.1 0.2 0.3 

 

Average MD (%) 

Treatment 

T= 0 

day 

T= 40 

days 

T= 80 

days 

T= 120 

days  T= 160 days  

MA1 18.07 18.42 18.30 18.61 18.74 

MA2 15.95 15.47 15.71 15.81 16.12 

MA3 14.18 13.14 14.69 15.55 15.82 

C1 14.06 15.34 24.15 25.94 28.36 

C2 16.97 17.27 25.02 26.68 27.13 

C3 13.56 16.00 23.86 25.11 25.05 

      Avg_all 15.47 15.94 20.29 21.28 21.87 

Avg_ Maize-

Amaranthr (MA)  16.07 15.68 16.23 16.66 16.90 

Avg_Control (C)  14.86 16.20 24.34 25.91 26.85 

      

      STD (MA) 1.9 2.6 1.9 1.7 1.6 

STD  ( C ) 1.8 1.0 0.6 0.8 1.7 
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Average MC (%) 

Treatment 

T= 0 

day 

T= 40 

days 

T= 80 

days 

T= 120 

days  T= 160 days  

MA1 12.95 12.15 12.19 12.20 12.55 

MA2 13.19 12.09 12.28 12.31 12.62 

MA3 12.77 12.07 12.21 12.08 12.57 

C1 13.25 12.46 12.65 12.71 12.72 

C2 13.00 12.55 12.62 12.59 12.74 

C3 12.99 12.49 12.56 12.70 12.76 

      Avg_all 13.03 12.30 12.42 12.43 12.66 

Avg_ Maize-

Amaranth (MA)  12.97 12.10 12.23 12.20 12.58 

Avg_Control (C)  13.08 12.50 12.61 12.67 12.74 

      STD (MA) 0.2 0.0 0.0 0.1 0.0 

STD  ( C ) 0.1 0.0 0.0 0.1 0.0 

 

Number of live Weevils/kg 

Treatment 

T= 0 

day 

T= 40 

days 

T= 80 

days 

T= 120 

days  T= 160 days  

MA1 25 36 62 64 77 

MA2 25 43 82 80 84 

MA3 25 38 77 60 57 

C1 25 38 67 106 187 

C2 25 29 62 92 151 

C3 25 26 123 210 308 

      Avg_all 25 35 79 102 144 

Avg_ Maize-

Amaranthr (MA)  25 39 74 68 73 

Avg_Control (C)  25 31 84 136 215 

      STD (MA) 0 4 11 10 14 

STD  ( C ) 0 6 34 64 82 
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APPENDIX C:  PHYSICAL DISTURBANCE EXPERIMENT RAW DATA 

              

Treatment Time (days) 

BCFM 

(%) 

MC 

(%) 

TW 

(Ib/bu) 

MD 

(%) 

Live / 

kg 

Control 1 0 0.00 13.51 56.7 14.00 25 

Control 2 0 0.00 13.57 56.7 14.05 25 

Control 3 0 0.00 13.89 56.7 15.16 25 

Disturbed 1 0 0.00 13.57 56.7 14.26 25 

Disturbed 2 0 0.00 13.73 56.6 15.04 25 

Disturbed 3 0 0.00 13.65 56.7 14.92 25 

Control 1 40 0.48 13.25 56.6 14.24 11 

Control 2 40 0.49 13.55 56.6 16.73 13 

Control 3 40 0.75 13.68 56.6 17.19 9 

Disturbed 1 40 0.62 13.51 56.7 14.86 10 

Disturbed 2 40 0.47 13.68 56.5 15.09 6 

Disturbed 3 40 0.69 13.29 56.6 16.08 3 

Control 1 80 0.51 13.16 56.5 15.79 14 

Control 2 80 0.81 13.38 56.5 17.06 18 

Control 3 80 0.49 13.47 56.5 17.55 13 

Disturbed 1 80 0.66 13.19 56.6 15.02 3 

Disturbed 2 80 0.67 13.57 56.4 14.93 0 

Disturbed 3 80 0.72 13.07 56.6 15.19 0 

Control 1 120 0.63 13.23 56.5 17.51 31 

Control 2 120 0.83 13.20 56.4 21.45 38 

Control 3 120 1.01 13.64 56.1 21.21 51 

Disturbed 1 120 0.87 13.21 56.6 15.09 0 

Disturbed 2 120 0.40 13.31 56.4 14.83 4 

Disturbed 3 120 0.69 13.10 56.4 15.28 0 

Control 1 160 1.11 13.16 56.3 22.93 39 

Control 2 160 0.71 13.03 56.0 22.99 41 

Control 3 160 1.07 13.44 56.0 22.19 51 

Disturbed 1 160 0.43 12.94 56.6 14.90 0 

Disturbed 2 160 0.47 13.04 56.4 15.05 5 

Disturbed 3 160 0.46 13.03 56.5 14.79 5 
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