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ABSTRACT 

Much of the fuel ethanol industry’s current interest centers on maximizing ethanol yield 

and overall profits. This can be achieved by knowing the potential yield of input corn and 

working to identify what parameters are inhibiting reaching 100% fermentation efficiency. On 

average, ethanol plants produce 2.82 gallons of ethanol per bushel of corn, as compared to 2.51 

gallons per bushel in 1994 (Renewable Fuels Association 2015). With the focus on improved 

starch production and access, corn quality is one of the best indicators of ethanol yield, as the 

amount of starch determines the theoretical amount of ethanol. Near-infrared spectroscopy 

(NIRS) is one such method that can be used to evaluate corn composition and, with an 

appropriate model, corn composition can be used to predict ethanol yield. Many current models 

are held back by real world applicability, in that they are restricted to lab-scale validation, direct 

NIRS calibrations, or proprietary models/equipment. At the commercial level, corporately-

produced propriety models have been developed by DuPont Pioneer and Monsanto. Neither 

Monsanto nor DuPont Pioneer’s products are available outside of company databases, and both 

are only applicable to Foss Infratec units, which left a need for a more universal method. Burgers 

et al. developed a multiple-linear regression equation for predicting corn ethanol yield based on 

near-infrared spectroscopy (NIRS) measurements of protein, oil, and density on a 15% moisture 

basis (Burgers, Hurburgh, and Jane 2009). Unlike corporately-developed models, this equation 

was intended to function independently of corn hybrid, corn supplier, growing location, and 

NIRS instrument make/model used, as long as the calibration database was consistent. Iterations 

of the model were evaluated, and the most current version was chosen to use in the rest of the 

research. A comparison of the model predicted yield, based on inbound grain composition, and 

corresponding reported ethanol yield from the same grain was performed to validate the model. 
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The slopes for the plants’ predicted and reported ethanol yields did not differ significantly from 

one another. Overall, the combined model for the linear regression produced a low R2 value 

(0.23) which shows that a significant amount of variability in the data is not explained by the 

model. On average, the data validated the prediction model. Day to day or batch by batch 

variability in processing was not accounted for in the equation, but the variability of the corn 

composition was. From the linear regression analyses performed on each plant, the slopes are the 

same, but there is a plant-specific bias. This equation identified key corn quality parameters. 

Because the equation validated for all plants, the equation is validated to function independently 

of corn hybrid, corn supplier, growing location, and NIRS instrument make/model used. The 

model validated with a root mean square error of 0.13 gal/bu, and no difference (0.0008 gal/bu) 

between overall reported and predicted yield means.
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CHAPTER 1: GENERAL INTRODUCTION 

INTRODUCTION 

The corn ethanol industry in the United States has grown over the last 20 years, 

increasing from 1% to 10% of the total US fuel supply (Renewable Fuels Association 2015). The 

process has become more efficient, using fewer bushels of corn per gallon of ethanol produced 

(U.S. Energy Information Administration 2015). On average, ethanol plants produce 2.82 gallons 

of ethanol per bushel of corn, as compared to 2.51 gallons per bushel in 1994 (Renewable Fuels 

Association 2015). Much of the industry’s current interest centers on maximizing ethanol yield 

and overall profits. This can be achieved in part by knowing the potential yield of input corn and 

working to identify what parameters are inhibiting reaching 100% fermentation efficiency. For 

corn of average composition (71% starch, 9% protein, 4% oil on a dry basis), the theoretical 

maximum ethanol yield is 2.94 gallons per bushel. 

The adoption of rapid and accurate methods of measuring inbound corn quality is not yet 

widespread in the ethanol industry. Near-infrared spectroscopy (NIRS) can be used to evaluate 

corn composition and, with an appropriate model, corn composition can be used to predict 

ethanol yield. Evaluation of predicted ethanol yield versus actual production yield can be used to 

identify potential for improvement (benchmarking). 

There have been attempts to develop models that predict ethanol yield potential based on 

corn characteristics, such as protein content, starch content, oil content, and kernel density, as 

determined by NIRS (Hao, Thelen, and Gao 2012; Bryan 2003; Monsanto 2003).  Many of these 

models are held back by real world applicability, in that they were restricted to lab-scale 

validation, direct NIRS calibrations, or proprietary models/NIRS equipment. The following 

research was conducted to validate an ethanol yield prediction model equation for dry-grind 
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ethanol plants, in a commercial setting, using a generic equation intended for all corn hybrids 

and NIRS equipment.  

LITERATURE REVIEW 

Dry-Grind Ethanol Production 

Approximately 90% of the ethanol industry uses the dry-grind process (Renewable Fuels 

Association 2015). Dry-grind ethanol plants produce ethanol by breaking down corn starch into 

simple sugars, and then fermenting those sugars with yeast. The process is shown in Figure 2. 

Whole corn is ground into flour (most often by hammermills) to which water is added to create a 

mash. In most plants, the mash is heated and then cooled in the cook step, in order to gelatinize 

starch and allow enzyme access. One enzyme, alpha-amylase, is added to break up the alpha-1,4 

linkages in the starch, reducing it from amylose to maltose and glucose in the liquefaction step. 

Another enzyme, glucoamylase is then added to finish breaking the starch components into 

glucose by cleaving alpha-1,4  linkages of non-reducing ends in starch. Glucoamylase also 

hydrolyzes alpha-1,6 linkages, yielding free glucose (Pavezzi, Gomes, and da Silva 2008). Once 

starch has been broken into simple sugars, yeast is added to ferment the sugars into alcohol, with 

a release of carbon dioxide (Figure 1).  

 

Figure 1: Glucose Fermentaion (Singh et al. 2001) 
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After fermentation, the alcohol is separated from the remaining solids using distillation, 

then dehydrated, and finally denatured (with regular gasoline) before storage. The solids leave 

fermentation as whole stillage, which is centrifuged and separated into two streams: thin stillage 

(low solids) and wet distillers grains, a marketable co-product. Some of the thin stillage is routed 

through evaporation to be concentrated into a syrup. This syrup can be added back to the wet 

distillers grains. The mix can be dried to increase shelf-life, which produces the co-product Dried 

Distillers Grains with Solubles (DDGS).  Figure 3 shows the distillers grains marketing choices 

produced by typical dry-grind ethanol plants. Nearby market availability determines the relative 

Milling 

Cook 

Liquefaction 

Saccharification/ 

Fermentation 

Distillation 

Centrifugation 

Evaporation 

Receiving/ 

Storage 

Drying DDGS 

Ethanol 

Wet 

Distillers 

Grains 

Corn 

Syrup 

Whole Stillage 

Thin Stillage 

Figure 2: Dry-Grind Ethanol Process 



4 

shares sold by specific plants. Common dry-grind ethanol co-products and their uses can be seen 

in Table 1.  

 

Table 1: Dry-grind ethanol production co-products 

Dried Distillers Grains 

with Solubles (DDGS) 
Stillage with syrup added and then dried. Sold as a feed commodity. 

Distillers Grains Stillage that is sold as feed commodity wet or dried. 

Corn Oil 
Oil extracted from stillage after fermentation. Can be used as an 

ingredient in biodiesel production. 

 

In a standard dry-grind ethanol plant, one bushel (56 lbs) of corn will produce 

approximately 2.8 gallons of ethanol (18.1 lbs), 17 lbs of DDGS, and 17.3 lbs CO2 (Renewable 

Fuels Association 2015). On average, ethanol plants now produce 2.82 gallons of ethanol per bushel 

of corn, as compared to 2.51 gallons per bushel in 1994 (Renewable Fuels Association 2015). This 

increased yield can be attributed in part to better processing efficiency and high fermentable corn 

WDG 
(wet distillers grains) 

MDGS 
(modified distillers 

grains with solubles) 

DDGS 
(dried distillers grains 

with solubles) 

Can be sold ~70% H
2
0 

Can be sold ~50% H
2
0 

Can be sold & stored ~12% H
2
0 

Dryer 

Syrup 

Figure 3: Distillers Marketing Choices 
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hybrids (Cooper 2015). With the focus on improved starch production and access, corn quality is 

one of the best indicators of ethanol yield, as the amount of starch determines the theoretical 

amount of ethanol. Near-infrared spectroscopy (NIRS) can characterize corn quality.  

Near-Infrared Spectroscopy 

Near-Infrared Spectroscopy (NIRS) is a rapid, non-destructive method of using the near-

infrared spectrum to determine the organic composition of a sample (Workman, Jr. 2014). Near-

infrared (NIR) energy is a specific region of the electromagnetic spectrum which extends 

approximately from 780-2500 nanometers (Figure 4). NIRS measures the amount of near-

infrared energy absorbed by a sample, which correlates to the sample’s chemical compositions. 

 

Figure 4: Electromagnetic Spectrum (Analytical 2005) 

 

NIRS analysis is a significantly less time intensive analysis as compared to analytical 

chemistry, specifically as it requires little to no sample preparation (Davies 2015). The original 

configuration used diffuse reflectance to measure in the NIR region; now NIRS instruments use 

either transmittance or reflectance, across a wide array of applications, from agriculture to 

pharmaceuticals. 

NIRS requires the calibration to a set of reference values. Calibrations are then used in 

the future to compute the composition of samples. These multivariate calibrations quantify the 
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relationship between instrument spectra and reference data. Reference data, in regards to corn, is 

laboratory or reference chemistry performed to quantify the grain’s composition. Thus, NIRS 

data is read as the prediction of the sample characteristic in question, for example, protein 

content. In agriculture, one idea of using NIRS was to “enable detection of quality changes of 

raw materials and final product under steady process conditions” (Huang et al. 2008).  

NIRS can be used to quantify corn composition, both whole kernel and ground samples. 

Proven models consider moisture, protein, oil, and starch content (%) and kernel density (g/cc). 

Typical corn composition is made up of 71% starch, 9% protein, 4% oil on a dry basis (Watson 

2003). In regards to ethanol production, corn composition indicates ethanol yield, as corn starch 

is converted to ethanol. The use of NIRS for starch prediction is limited by imprecision in wet 

chemistry methods used for starch quantification, which provides the reference data for the NIRS 

calibrations (Hall 2009). Because of the starch measurement limitation, protein is used as the 

primary indicator of ethanol yield in NIRS. This is appropriate because protein and starch 

compete in corn kernel grain fill, in an inverse relationship. This means protein and ethanol yield 

also have an inverse relationship. Complete starch to ethanol conversion is impacted by 

processes and other production parameters. Monitoring corn quality to establish the theoretical 

ethanol yield of incoming grain could allow facilities to benchmark parameters that are reducing 

yield in production. 

Current Studies 

NIRS has been used to predict ethanol yield. At the commercial level, corporately-created 

propriety models have been developed. DuPont Pioneer developed a whole-grain Near Infrared 

Transmission (NIRT) rapid assay (currently known as Pioneer’s Ethanol Yield Potential 

program) to complement its hybrid evaluation program (Bryan 2003). Dry-grind ethanol plants 
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were able to work with DuPont Pioneer to receive recommended high total fermentable hybrids 

for given locations. Originally, this work was exclusive to Pioneer hybrids, and was only 

available for use on Foss Infratec 1241 Grain Analyzer instruments (Bryan 2003). The Illinois 

Crop Improvement Association independently validated Pioneer’s Ethanol Yield Potential 

calibration in 2008 (DuPont 2008). The propriety calibration, still only for Foss Infratec 

analyzers, is available through licensing with DuPont Pioneer. In a similar effort, Monsanto’s 

“Fuel Your Profits” program supplied participating ethanol plants with an NIRS instrument to 

measure a proprietary indicator of corn fermentability at the beginning of the dry-grind ethanol 

production process (Monsanto 2003). Neither Monsanto nor DuPont Pioneer’s products are 

available outside of company databases, and both are only applicable to Foss Infratec units, 

which left a need for a more universal method.  

Burgers et al. developed a multiple-linear regression equation for predicting corn ethanol 

yield based on near-infrared spectroscopy (NIRS) measurements of protein, oil, and density on a 

15% moisture basis (Burgers, Hurburgh, and Jane 2009). The model equation was intended to be 

widely applicable, and was validated on a lab scale by the Illinois Crop Improvement 

Association laboratory. It had the form 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3, where β’s are regression 

coefficients for each component (x) of corn composition (protein, oil, kernel density). The 

original equation was created with crop years and ethanol yields from 2005-2008. Subsequent 

data was collected from crop years through 2013. The current research updated the model and 

traced the history of the model over crop years. 

An ethanol prediction model is only as good as its real-world applicability.  The current 

study was undertaken to update the Burgers et al. model, then to validate the model in 

commercial ethanol production facilities. Unlike corporately-developed models, this equation 
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was intended to function independently of corn hybrid, corn supplier, growing location, and 

NIRS instrument make/model used, as long as the calibration database was consistent.  A 

comparison of the model predicted yield, based on inbound grain composition, and 

corresponding reported ethanol yield from the same grain was performed to validate the model. 

The ability of the model to benchmark process control and crop years was assessed. The updated 

model will reflect, either by long term average or with short term changes, the output of a typical 

corn dry grind ethanol plant. 

THESIS ORGANIZATION 

This thesis is organized into two sections. The first section is a general introduction and literature 

review covering: dry-grind ethanol production, near-infrared spectroscopy, and current studies 

about predicting ethanol yield using near-infrared spectroscopy. The second part of the thesis is 

research titled “In-Plant Validation of an Ethanol Yield Prediction Equation.” This research 

involves the commercial validation of a method developed to predict ethanol yield using near-

infrared spectroscopy predictions of corn kernel composition. The results from this research are 

prepared for publication by THE American Association of Cereal Chemists (AACC) in Cereal 

Chemistry. 
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CHAPTER 2: IN-PLANT VALIDATION OF AN ETHANOL YIELD PREDICTION 

EQUATION 

A paper to be submitted to Cereal Chemistry 

Megan Korte and Charles R. Hurburgh Jr. 

ABSTRACT 

Much of the fuel ethanol industry’s current interest centers on maximizing ethanol yield. 

This can be achieved by knowing the potential yield of input corn and working to identify what 

parameters are inhibiting reaching 100% fermentation efficiency. Near-infrared spectroscopy 

(NIRS) is one method that can be used to evaluate corn composition and, with an appropriate 

model, can be used to predict ethanol yield. Many current models are held back by real world 

applicability, in that they are restricted to lab-scale validation, direct NIRS calibrations, or 

proprietary models/equipment. Burgers et al. developed a multiple-linear regression equation for 

predicting corn ethanol yield based on near-infrared spectroscopy (NIRS) measurements of 

protein, oil, and density on a 15% moisture basis (Burgers, Hurburgh, and Jane 2009). Unlike 

corporately-developed models, this equation was intended to function independently of corn 

hybrid, corn supplier, growing location, and NIRS instrument make/model used, as long as the 

calibration database was consistent. Iterations of the model were evaluated, and the most current 

version was chosen to use in the rest of the research. A comparison of the model predicted yield, 

based on inbound grain composition, and corresponding reported ethanol yield was performed to 

validate the model. On average, the data validated the prediction model. Day to day or batch by 

batch variability in processing was not accounted for in the equation, but the variability of the 

corn composition was. From the linear regression analyses performed on each plant, the slopes 

are the same, but there is a plant-specific bias. The difference between reported and predicted 
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ethanol yields was negligible (0.0008 gal/bu). Because the equation validated for all plants 

(RMSE = 0.13 gal/bu), the equation is validated for use, functioning independently of corn 

hybrid, corn supplier, growing location, and NIRS instrument make/model used. 
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INTRODUCTION 

The adoption of rapid and accurate methods of measuring corn quality on inbound grain 

is not yet widespread in the ethanol industry. Near-infrared spectroscopy (NIRS) is a method that 

can be used to evaluate corn composition and, with an appropriate model, corn composition can 

be used to predict ethanol yield. Evaluation of predicted ethanol yield versus actual production 

yield can be used to identify potential for improvement (benchmarking). 

There have been attempts to develop models that predict ethanol yield potential based on 

corn characteristics, such as protein content, starch content, oil content, and kernel density, as 

determined by NIRS (Hao, Thelen, and Gao 2012; Bryan 2003; Monsanto 2003).  Many of these 

models are held back by real world usefulness, in that they are restricted to lab-scale validation, 

direct NIRS calibrations, or proprietary models/equipment. The following research was 

conducted to validate a universal ethanol yield prediction model equation for dry-grind ethanol 

plants, in a commercial setting.  

In a standard dry-grind ethanol plant, one bushel (56 lbs) of corn will produce 

approximately 2.8 gallons of ethanol (18.1 lbs), 17 lbs of DDGS, and 17.3 lbs CO2 (Renewable 

Fuels Association 2015). On average, ethanol plants now produce 2.82 gallons of ethanol per bushel 

of corn, as compared to 2.51 gallons per bushel in 1994 (Renewable Fuels Association 2015). This 

increased yield can be attributed in part to better processing efficiency and high fermentable corn 

hybrids (Cooper 2015). With the focus on improved starch production and access, corn quality is 

one of the best indicators of ethanol yield, as the amount of starch determines the theoretical 

amount of ethanol. Near-infrared spectroscopy (NIRS) can characterize corn quality.  

Near-Infrared Spectroscopy (NIRS) is a rapid, non-destructive method of using the near-

infrared spectrum to determine the organic composition of a sample (Workman, Jr. 2014). Near-
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infrared (NIR) energy is a specific region of the electromagnetic spectrum which extends 

approximately from 780-2500 nanometers. NIRS requires the calibration to a set of reference 

values, which are then used to compute the composition of the sample. These multivariate 

calibrations quantify the relationship between instrument spectra and reference data. NIRS data 

is read as the prediction of the sample characteristic in question, for example, protein content. 

NIRS can be used to quantify corn composition, both whole kernel and ground samples. 

Proven models can determine moisture, protein, oil, and starch content (%) and kernel density 

(g/cc). Typical corn composition is 71% starch, 9% protein, 4% oil on a dry basis (60.4%, 7.7%, 

3.4% on a 15% moisture basis) (Watson 2003). In regards to ethanol production, corn 

composition indicates ethanol yield, as corn starch is converted to ethanol. The use of NIRS for 

starch prediction is limited by imprecision in wet chemistry methods used for starch 

quantification, which provides the reference data for the NIRS calibrations (Hall 2009). Because 

of the starch measurement limitation, the other components are used as the primary indicator of 

ethanol yield in NIRS. This is appropriate because protein and oil compete with starch in corn 

kernel grain fill, in an inverse relationship. Density indicates packing, and has a positive 

relationship. Complete starch to ethanol conversion is impacted by processes and other 

production parameters. Monitoring corn quality to establish the theoretical ethanol yield of 

incoming grain could allow facilities to benchmark parameters that are reducing yield in 

production. 

NIRS has been used to predict ethanol yield. At the commercial level, corporately-

produced propriety models have been developed, most notably by DuPont Pioneer and Monsanto 

(Bryan 2003; Monsanto 2003). Neither Monsanto nor DuPont Pioneer’s products are available 
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outside of company databases, and both are only applicable to Foss Infratec units, which left a 

need for a more universal method.  

Burgers et al. developed a multiple-linear regression equation for predicting corn ethanol 

yield based on near-infrared spectroscopy (NIRS) measurements of protein, oil, and density on a 

15% moisture basis (Burgers, Hurburgh, and Jane 2009). The Burgers equation was intended to 

be widely applicable to predict ethanol yield, and was validated on a lab scale by the Illinois 

Crop Improvement Association laboratory. It had the form 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3, where 

β’s are regression coefficients for each component (x) of corn composition (protein, oil, kernel 

density). The original equation was created with crop years and ethanol yields from 2005-2008. 

Subsequent laboratory data was collected to include crop years through 2013.  

An ethanol prediction model is only as good as its real-world applicability.  The current 

study was undertaken to update the Burgers et al. model, then to validate the model in 

commercial ethanol production facilities. Unlike corporately-developed models, this equation 

was intended to function independently of corn hybrid, corn supplier, growing location, and 

NIRS instrument make/model used.  

MATERIALS AND METHODS 

Model Equation 

The previous equation for predicting corn ethanol yield, in gallons per bushel, was 

developed in 2008. Since 2008, additional data was collected to enable the update of the 

equation, which is a multiple linear combination of near infrared measurements for corn protein, 

oil, and density. Starch was not included, because the original research found that the 8 best 

combinations of protein, oil, starch, and density were not significantly different from one 
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another, and that starch had a less reliable effect than the other components, due to the 

reproducibility of the reference laboratory method (Burgers, Hurburgh, and Jane 2009).  

The next step in the confirmation of this equation was to update the equation coefficients 

from the original Burgers et al model: 

𝐸𝑡ℎ𝑎𝑛𝑜𝑙 𝑌𝑖𝑒𝑙𝑑 (
𝑔𝑎𝑙

𝑏𝑢
) = 3.23 − 0.0624 ∗ 𝑃𝑟𝑜𝑡𝑒𝑖𝑛(%) − 0.0296 ∗ 𝑂𝑖𝑙(%) + 0.1040 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦(

𝑔

𝑐𝑐
)  (1) 

The original model was developed with 246 corn samples from the Illinois Crop 

Improvement Association. Subsequent iterations using diverse sample sources included normal 

Iowa corn and inbred/specialty samples (high oil) not normally seen by the ethanol industry. The 

latest iteration included crop years through 2013. The final version chosen after testing was used 

for all subsequent yield predictions in this research. The model was developed at the lab scale, 

with the reference lab being the Illinois Crop Improvement Association.  

The most recent iteration of the model had an increased standard error from its previous 

iteration (0.057 and 0.046, respectively). It included some diverse samples and, when adjusted to 

mimic the range of protein values seen in commercial practice, was the best version to use for 

this research. This final version was then used in ethanol plant trials. 

Industrial Ethanol Plant Production Trials 

Industrial ethanol production plant trials were conducted in four dry-grind ethanol plants, 

located in Minnesota, Iowa, and Missouri. Plants were numbered 1, 2, 3, and 4 to preserve 

confidentiality. Rated production capacities ranged from 35 to 70 million gallons per year of 

ethanol production.  Trials began in December 2014 or January 2015, and continued until March 

2015. Among these sites, two brands of flow-through near-infrared spectroscopy (NIRS) 

instruments were used to analyze incoming whole kernel corn moisture, protein, oil, and kernel 

density.  All four NIRS instruments were calibrated by the Iowa State University Grain Quality 
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Lab to help control instrument variability. Those facilities not previously using NIRS 

instruments were trained by ISU GQL employees on an NIRS unit provided by Iowa State 

University. The table below shows characteristics of each plant. 

Table 2: Ethanol Plant Characteristics 

Plant Location Instrument Trial Start Corn 

Source 

Sampling 

Frequency 

1 Iowa Perten 9500* December, 2014 Truck 1x/batch 

2 Iowa Foss Infratec 1241* January, 2015 Truck 3x/day 

3 Minnesota Foss Infratec 1241** January, 2015 Truck 4x/day run 3x each 

4 Missouri Foss Infratec 1241** January, 2015 Co-op 1x/day (transfer) Run 

3x 
*owned by company but calibrated by Iowa State 

**provided by Iowa State 

Site visits 

Two site visits were made to each facility prior to beginning the trial: the first to discuss the trial 

with operators and develop individual plant protocols; the second to train operators to use the 

NIRS instruments and to deliver NIRS instruments to those that did not previously have them.  

Employees at each facility were asked to record NIRS data (sample ID, moisture, protein, oil, 

starch, and density) and corresponding sampling information, such as time, date, sampling 

location in the plant, and which fermenter or batch to which the sample corresponded. Plants 

were asked to sample whole corn on receipt, and before hammermills (if possible). Table 3 is a 

summary of the requested sampling plan. 

Table 3: Sampling Protocol 

Plant Inbound Sampling Before 

Hammermill 

Retention Samples to send to ISU 

each week 

1 NIR already taken on all inbound 1x/batch 3 inbound, 2 before hammermill 

2 1-2x daily composite sample NA 5 

3 4x/day on weekdays NA 2 

4 1x composite/day 3x/batch 1 inbound, 1-2 before hammermill 
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Fermentation data was requested, in particular, bushels of corn entering the fermenter and 

ethanol yield on a batch-by-batch basis or gallons produced per day, or a daily or batch-by-batch 

ethanol yield in gallons/bushel. It was then asked that plants retain some samples to be sent to the 

Iowa State University Grain Quality Lab. The whole samples were to be used to verify data from 

the plant NIRS instruments. 

Retention Samples Validation 

Plants sent NIRS data and retention samples (samples of whole corn corresponding as 

closely as possible to the NIRS data) to Iowa State University (ISU) over a 60 day period. At 

ISU, NIRS data submitted by the plants was standardized to 15% moisture basis. A total of 648 

NIRS analysis results for whole kernel corn moisture, protein, oil, and kernel density were 

received from participating ethanol plants.  The number of NIRS analyses received by ISU were 

not uniform across different plants, or by day in individual plants. Retention samples ranged 

from plant to plant, some daily composites, some referenced a specific batch. In total, ISU 

received 136 retention samples. Once received at ISU, samples were kept in a cooler, and then 

allowed to warm to room temperature before analysis. All retention samples received at ISU 

were run on a Foss Infratec 1229 Grain Analyzer NIRS instrument, with the same calibrations as 

the ethanol plants. Moisture, protein, oil, and kernel density on a 15% moisture basis were 

recorded. The Foss Infratec 1229 was calibrated with the same calibration data set as the 

instruments calibrated by ISU GQL at the ethanol plants. 

Retention sample NIRS data obtained at ISU was matched to NIRS data provided by 

plants with a goal of achieving as close a correspondence as possible.  For example, typically 

only 1 sample was submitted per plant, but the same plant may have submitted 3 NIRS analyses 

that day.  In this case, the NIRS data obtained at ISU GQL for the 1 retention sample was 
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matched to all 3 NIRS analyses for the same day. Protein (% at 15% MB) and oil (% at 15% 

MB) for retention samples and plant NIRS data were used to validate the NIRS instrument data 

being taken by each plant. Density NIRS data was not included in the validation, as protein and 

oil were the largest contributors of corn composition. Statistical analysis was performed using 

JMP Pro 11.0.0 (SAS Institute Inc., Cary, NC). 

Validation of Ethanol Yield Model 

 After validating the plant-supplied NIRS data with the retention samples, the plant NIRS 

data was used in the validation of the ethanol yield model. All predicted ethanol yields were 

predicted using the updated ethanol yield prediction equation: 

𝐸𝑡ℎ𝑎𝑛𝑜𝑙 𝑌𝑖𝑒𝑙𝑑 (
𝑔𝑎𝑙

𝑏𝑢
) = 2.83 − 0.0611 ∗ 𝑃𝑟𝑜𝑡𝑒𝑖𝑛(%) − 0.0701 ∗ 𝑂𝑖𝑙(%) + 0.5256 ∗ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦(

𝑔

𝑐𝑐
)  (2) 

Plant-supplied NIRS data was used in the equation to calculate a predicted ethanol yield. 

Predicted ethanol yields were compared to plant-reported ethanol yields. Reported yields from 

plants were all standardized to gallons of ethanol produced per bushel of corn (gal/bu) at 15% 

moisture, in order to compare them to predicted yields from NIRS data. When possible, 

predicted and reported yields were matched by batch (as reported), otherwise yields were 

matched as well as possible on a daily basis. All NIRS data for a day (multiple predicted yields) 

were matched to that day’s reported ethanol yield. If more than one yield was reported for a day, 

those values were averaged then related to predicted ethanol yields. Plant 4 was unable to supply 

reported ethanol yield data that could be standardized to gallons of ethanol per bushel corn 

ground, and subsequently had to be excluded from all analysis. 

 Reported and predicted ethanol yields for each plant were compared, then fit with a linear 

regression model. Averages of reported and predicted ethanol yields for each plant were 

evaluated with corresponding standard deviations. The model was evaluated against predicted 
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yields for all plants combined, and then for each plant individually. Contrast tests were 

performed to test the significance of each parameter. Corn composition as reported by plants in 

NIRS results was also evaluated between reported and predicted ethanol yields. 

RESULTS 

Updated Model Equation 

To determine the best iteration of the validation equation to use for the current research, a 

test file was developed using a set of normal corn from both a set of strip plots and a set of 

specialty corn. The progressive model history including number of samples, equation 

coefficients, and standard error of cross validation, is shown in Table 4, below. The development 

software was Unscrambler 9.8 (Camo Software AS, Oslo, Norway). 

Table 4: Model Development Progression 

Model  n B0 B1*Protein B2*Oil B3*Density SECV 

0 Original Equation 237 3.20 -0.0659 -0.0197 0.1290 0.044 

1 Burgers Final 293 3.23 -0.0624 -0.0296 0.1040 0.042 

2 2009 Model 287 3.14 -0.0624 -0.0529 0.2380 0.031 

3 March 2012 Model 396 2.89 -0.0618 -0.0403 0.3930 0.047 

4 January 2013 Model 438 2.80 -0.0629 -0.0561 0.5210 0.046 

5 February 2014 Model 464 2.83 -0.0611 -0.0701 0.5256 0.057 

 

These regression coefficients are all logical as protein and oil are inverse indicators of 

yield (due to the inverse relationship with starch). Density should have a positive coefficient, as 

it is essentially kernel packing, and with protein already accounted for, the packing is the amount 

of starch in the kernel. More starch would indicate a higher ethanol yield.  

The final iteration of the model equation including all sample data was evaluated.  A 

reduced sample set that reflected normal protein content seen at ethanol facilities was tested for 

robustness. This was done by predicting ethanol yields for the full sample set and the reduced 

sample set and comparing the standard errors. Table 5 shows the full set and reduced set data. 
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Average ethanol yields, both predicted by the equation and the corresponding reference yield 

with standard deviations are shown beside the number of samples for each set. Ranges for 

protein, oil, and kernel density are also displayed. The reduced set composition ranges more 

accurately depict what would be received at a commercial ethanol plant. 

Table 5: Final Model 

 
Ethanol 

Yield 
Average 

(gal/bu) 
SD n 

Protein  

(% on 15% MB) 

Oil 

(% on 15% MB) 

Density 

(g/cc) 

Reduced 

Sample 

Set 

Predicted 2.74 0.12 361 4.0-9.0 2.6-11.5 1.148-1.322 

Reference 2.75 0.09 361    

Full 

Sample 

Set 

Predicted 2.69 0.20 469 4.0-12.9 2.6-12.7 1.106-1.328 

Reference 2.70 0.16 469    

 

The standard error of cross-validation of the full model was 0.059 gal/bu. With the 

reduced range of samples, standard error of prediction was 0.048 gal/bu. The robustness of the 

center of the model did not change as more variable samples were added (Figure 5). The latest 

iteration (5), of the model, was used for the plant study.  
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Figure 5: Ethanol Yield as predicted by full and reduced models 

Retention Sample Validation 

Retention samples sent to ISU were run through a Foss Infratec 1229 Grain Analyzer to 

obtain NIRS data for protein, oil, and kernel density at 15% moisture basis. The protein and oil 

NIRS data from the retention samples at ISU were compared to the protein and oil NIRS data 

received from the plants. Distributions for protein and oil from the facilities and ISU were 

evaluated. Because individual samples from each source could not be directly matched, a simple 

linear regression analysis was not performed. Instead, the overall sample set from each source 

was compared to one another. Sample sets were also evaluated by plant. Protein and oil content 

of each NIRS analysis was evaluated by two factor Principal Component Analysis (PCA). 

Grouped by sample source (ISU or plant) did not show significant differences (clustering) 

between sample source (Figure 6). 
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Figure 6: Protein and Oil PCA Analysis of Sample Source 

 

Protein and oil NIRS data from retention samples and plant-reported data were not 

significantly different (P=0.82 and P=0.32, respectively) as evaluated by ANOVA. The 

interaction of plant and sample source (NIR analysis of retention sample at ISU or NIR analysis 

supplied by plant) was signficant for protein, but only for Plant 1 (P<0.0001). The difference 

between the means from each source was relatively minor at 0.24%.  The sample source was not 

significant for Plants 2 or 3 (P=0.11 and P=0.14, respectively). The table below shows the 

significance test for source of protein NIRS data by plant. 
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Table 6: Protein source significance test. Levels not connected by the same letter are statistically 

significantly different. 

LEVEL         MEAN 

PLANT 1 A    7.3 

ISU 1   C  7.1 

PLANT 2 A B   7.2 

ISU 2  B   7.2 

PLANT 3    D 6.7 

ISU 3  B C D 6.9 

 

The interaction of sample source and plant was significant for oil for Plants 1 and 2 (P 

<0.0001 and P=0.0020), but the interaction was not significant for Plant 3 (P=0.23). Although 

statistically significant, the difference in the mean oil obtained by sample source (either retention 

sample analyzed at ISU or plant-supplied data) was relatively minor, at 0.10% pts for Plant 1 and 

0.08% pts for Plant 2. The table below shows the significance test for source of oil NIRS data by 

plant. 

Table 7: Oil source significance test. Levels not connected by the same letter are statistically 

significantly different. 

LEVEL         MEAN 

PLANT 1       D 3.3 

ISU 1     C   3.4 

PLANT 2 A       3.5 

ISU 2   B     3.5 

PLANT 3     C   3.4 

ISU 3     C D 3.3 

 

Confirming that the source of the data (ISU or plant-supplied) was not significant for 

either protein or oil validated the plant-supplied NIRS analyses, and allowed it to be used in the 

validation of the ethanol yield model.  



25 

 

Validation of Ethanol Yield Model 

Ethanol yields were predicted using the validated, plant-supplied NIRS data as inputs in 

the updated equation (Model 5, Table 4).  Predicted yields were compared to reported yields 

from each plant in Table 8.  

Table 8: Plant Ethanol Yields 

  Min 

(gal/bu) 

Max 

(gal/bu) 

Ave 

(gal/bu) 

SD 

(gal/bu) 

Plant 1 Predicted 2.77 2.85 2.81 0.02 

Reported 1.98 3.09 2.77 0.15 

Plant 2 Predicted 2.77 2.85 2.81 0.02 

Reported 2.50 2.82 2.71 0.06 

Plant 3 Predicted 2.72 2.90 2.85 0.02 

Reported 2.10 3.18 2.86 0.19 

 

There were significant differences among the plants in the study between reported and 

predicted yields (P<0.0001). A linear regression analysis was performed.  

 



26 

 

 

Figure 7: Reported vs Predicted Ethanol Yield Regression Analysis by Plant 
 

The slopes for the three plants’ predicted and reported ethanol yields did not differ 

significantly from one another. Plant 1 and 2 slopes did not differ significantly from 1 (P=0.09 

and P=0.12). The slope of Plant 3, however, did differ significantly from 1 (P=0.01). The 

intercepts of Plant 2 and Plant 3 differed (P<0.0001), while the intercepts of Plants 1 and 3 did 

not differ significantly (P=0.27). Overall, the combined model for the linear regression produced 

a low R2 value (0.23) which shows that a significant amount of variability in the data is not 

explained by the model. 

Plant-supplied NIRS data were used as inputs to generate predicted ethanol yields using 

the updated equation. Predicted ethanol yields were then compared to facility-reported yields for 

Y(1)=2.83-0.522*X 
Y(2)=2.77-0.191*X 
Y(3)=2.85-0.024*X 
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each plant (Figure 8-10). Each graph shows the predicted ethanol yield in gallons per bushel, 

from the plant-supplied NIRS data, the plant-reported ethanol yield, and the averages of the two 

ethanol yields over the trial period. These figures show the magnitude of differences between 

predicted yield from corn composition and reported yield from the plants. There is a large 

variation in reported yields, with substantial maximums and minimums. These discrepancies 

could be data reporting issues or time series errors in data recording. Some of the largest reported 

yields were greater than even the theoretical maximum yield, clearly showing data reporting 

discrepancies. For two of the three plants (1 and 3), the average of the predicted and reported 

yields are nearly identical. For Plant 2, there was a 0.10 gal/bu consistent difference. 

 

Figure 8: Plant 1 Reported and Predicted Yields During Trial Period  
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Figure 9: Plant 2 Reported and Predicted Yields During Trial Period 

 

 

Figure 10: Plant 3 Reported and Predicted Yields During Trial Period 
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In order to evaluate response of the model with regards to corn composition variability, 

versus other, unknown variability, ethanol yields (predicted and reported) were compared to 

NIRS protein content values. Corn kernel protein content is one of the best indicators of ethanol 

yield, inversely when evaluating corn by NIRS. As can be seen in Figure 11, protein and 

predicted ethanol yield vary inversely, with an overall R2 value of 0.79, while the correlation 

between protein and reported ethanol yield does not have such a clear relationship, and an overall 

R2 value of 0.27. 

 

Figure 11: Predicted Ethanol Yield vs Protein Content Linear Regression 
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Figure 7 shows the ability of the model to predict ethanol yield, but also shows that there 

is variability that cannot be predicted from a model based only on corn composition. The protein 

versus the predicted ethanol yield shows a clear inverse relationship, which is the expected 

relationship between protein and ethanol production (Figure 11). 

 

Figure 12: Reported Ethanol Yield vs Protein Content Linear Regression 

The protein as compared to the reported ethanol yields does not show that clear 

relationship (Figure 12). This shows that there is something else affecting ethanol yield in the 

production facilities. Because corn composition can be ruled out from the model, it may be 
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inferred that there is processing variability, and likely data, that is altering the reported yield as 

compared to the predicted yield.  

DISCUSSION 

 The difference between NIRS data at ISU from the physical retention samples and the 

NIRS data sent from the plants was not significant, taking into consideration that data could not 

be matched perfectly to retention samples. Average protein readings were 0.2 (% protein) 

different, with standard deviations of 0.17 and 0.18 (% protein) for plant-reported NIRS data and 

NIRS data obtained at ISU, respectively. The difference between the protein data was considered 

insignificant for this research, as it results in only a 0.01-0.02 gal/bu difference when used in the 

model (Version 5), well within its standard error. There was no difference in the means of oil 

data between plant and ISU analyses. Evaluating the NIRS data supplied by the plants with 

physical retention samples analyzed by ISU GQL validated the plant-supplied analyses, allowing 

them to be used in the rest of the research more confidently. 

 On average, the data validated the prediction model. Day to day or batch by batch 

variability in processing was not accounted for in the equation, but the variability of the corn 

composition was. From the linear regression analyses performed on each plant, the slopes are the 

same, but there is a plant-specific bias. Figure 13 shows the averages of the predicted and 

reported yields by plant for the trial period. The predicted yields are close, yet the reported yields 

are noticeably different for each facility. Processing or data management differences could be the 

cause for these differences, which supports the idea of a site-specific bias for the equation. 

Management at a facility could use the bias as a benchmark parameter to meet by improving 

ethanol yields (such as Plant 2 with a 0.10 gal/bu offset). 
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Figure 13: Average Predicted and Reported Yields by Plants during Trial Period 

Benchmarking is a way to quantify success or shortfalls of production on commercial 

scale. Because the equation predicts ethanol yield well for plants on average, it can be used to 

benchmark process controls across crop years. For example, crop year changeover at ethanol 

plants can be a time of processing inconsistencies, especially if corn composition changes 

significantly. Figure 14 shows year by year data of corn protein content (15% MB) for 7 

locations in Iowa (Nelson 2015). From 2012 to 2013 there is a change in protein content from 

approximately 8.7% to 6.7% in the same county (Blackhawk). With all other components of the 

equation kept constant, the predicted ethanol yield difference would be approximately 0.10 

gal/bu. During the first few weeks of harvest season, unexpected variations in output are typical; 

origination, in part, is from uncontrolled mixtures of dissimilar crop years’ corn. 
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Figure 14: Corn Protein Composition for 7 locations in Iowa from 2000-2013 

Major changes in process control can be monitored with this equation within the same 

crop year, when corn composition is (reasonably) constant. To use the model, plants would need 

to identify key areas causing the most variability and implement mitigations for those first, and 

then move on to smaller and smaller causes of variability. For instance, plants could focus on 

fermentation times/ temperature ranges, then work down to screen size on hammermills or 

enzyme dosing. Crop year changeover can also be monitored, specifically when corn 

composition changes significantly from year to year. Monitoring these quality differences can 

allow for planning and process controls to mitigate the effects of variable corn composition. This 

would be a first step in developing inbound corn quality management protocol. Again for 

example, plants may find that corn quality is, on average, different in one part of their trade area 

versus another. 

One inhibitor of this research was a lack of tracking of grain through storage and into 

processing by plants. If sites were to encourage better tracking through storage, a more accurate 
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correlation between inbound grain and output ethanol could probably be made, rather than an 

average. The ability of a plant to manage the process this closely is unknown, however. 

CONCLUSION 

 The 2008 equation was updated over five iterations, progressively including data from 

2009-2013 crop years. This equation identified key corn quality parameters. Because the 

equation validated for all three plants, the equation is validated to function independently of corn 

hybrid, corn supplier, growing location, and NIRS instrument make/model used. Different corn 

hybrids were supplied to different plants, and with the different plant locations, corn supplier and 

growing locations were varied. Two NIRS make/models were used across the plants, and the 

data was validated by a third make/model at the Iowa Grain Quality Lab at Iowa State 

University. The model validated with a root mean square error of 0.13 gal/bu, and no difference 

(0.0008 gal/bu) between overall reported and predicted yield means. This signifies that the model 

is valid for use by commercial facilities to predict ethanol yield from corn composition. 
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CHAPTER 3: GENERAL CONCLUSIONS AND RECOMMENDATIONS 

The model can effectively show what the plant output is likely to be, based on the 

incoming parameters. Refining traceability through a facility would allow for matching inbound 

corn, to corn entering the process after storage, to what corn specifically is in a particular 

fermentation batch. Knowing average corn composition and corresponding average theoretical 

yield is a great first step in encouraging tracking. Encouraging sampling for inbound grain and 

before the hammermills would provide a means to monitor on-site storage and degradation 

concerns. Focusing on traceability would be a quality control parameter to optimize yield and 

improve processing that does not require any major equipment or process changes.  

One of the ways the model could be used would be to combine it with other models to 

evaluate co-products. The change in ethanol yield affects the amount and composition of co-

products. Facilities could charge a premium to guarantee certain compositions of co-products, 

while knowing ethanol yield production and being able to plan around that at the same time.  

The model can also be a benchmarking tool. Identifying and quantifying key performance 

indicators, starting with this equation would significantly increase quality control abilities. This 

would begin with the development of a comprehensive inbound corn quality management 

protocol. Knowing theoretical yield of a batch or even just on a daily average would begin to 

highlight processing deficiencies, especially if the deficiency was consistent over time. 

Implementing this model on-site would be a first step in maximizing yields and, in turn, plant 

profitability. Clearly, the variation in plant reported yields indicates either plant process or data 

collection issues exist. 
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