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ABSTRACT 
 
 

Since European settlement, and beginning in the 1940’s, two dramatic shifts in land 

use have occurred in Iowa – the first from prairie and forest to tile-drained farmland, and the 

second from diverse  rotations to a heavier concentration of corn-soybean rotations and 

continuous corn.  These shifts in land use and management have altered hydrological and 

biogeochemical cycles in the Upper Midwest, but perennial and cover crops have the 

potential to assist in mediating changes in these cycles. 

 The first study in this thesis examines how the perennial forage (PF) crop 

orchardgrass (Dactylis glomerata) affects subsurface drainage as compared to a corn-soybean 

rotation or continuous corn (row crops, or RC).  Over the entire drainage season (March -

November) over 22 years, PF did not reduce subsurface drainage, but during May, PF 

reduced subsurface drainage by 32% (p < 0.05).  May is a critical period for drainage in 

Iowa, as wet field conditions and a lack of vegetative cover contribute to a majority of 

drainage and leaching of NO3-N from row crop fields during this period. 

 The second study investigates how cereal rye (Secale cereale L. ssp. cereal) cover 

crop influences soil water dynamics in two fields in Iowa.  During the spring growth period 

of rye, at a site in central Iowa, rye plots to be planted to soybeans significantly increased the 

rise in magnitude of soil moisture following rainfall events in the top 0-20 cm of soil as 

compared to fallow plots.  Different types of rainfall events caused differing responses in soil 

water redistribution.  

 In the third study, the effect of a rye cover crop on soil water content and soil water 

storage during the spring and early summer in a drought year is examined.  In one field in 



vii 
 

central Iowa, rye was able to conserve water in the top soil layers (0-20 cm) and increase soil 

water storage in a corn-soybean rotation.   

 Because of public health and ecological concerns, and in light of economic and 

ecological uncertainties posed by climate change, more research should be directed toward 

perennial and cover crops because of their beneficial contributions to hydrological processes 

and biogeochemical cycling. 
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CHAPTER 1. GENERAL INTRODUCTION 
 
 

Background 

 Changes in land cover and land management throughout the Upper Midwest have 

altered hydrological processes in the region (Schilling 2005).  Before European settlement, 

prairie covered approximately 85% of Iowa, and the remaining land existed as forest, oak 

savanna, wetlands, rivers and lakes (Naturalists 2001).  Since European settlement in the 

1800’s, almost 30 million acres of prairie have been repurposed for agricultural and urban 

use, leaving less than one-tenth of a percent of the original prairie in existence (Naturalists 

2001).  At first, more diverse cropping rotations with perennial and cover crops such as 

wheat, rye and alfalfa were planted with corn.  Beginning in the 1940’s, with the advent of 

large-scale industrial production of artificially fixed nitrogen fertilizer, the import and 

growing popularity of soybeans, and better and higher-yielding corn varieties, these more 

diverse rotations were quickly replaced with corn-soybean rotations and continuous corn 

fields in which the land lay bare during the winter and spring (Schilling 2005, Zhang and 

Schilling 2006a).  Different land covers intercept, use, and distribute water in different ways 

(Asbjornsen et al. 2007, Dabney 1998, Marin et al. 2000), so land use changes in Iowa have 

altered hydrological processes such as the flow of rivers, subsurface drainage, and soil water 

dynamics (Schilling 2005).  Because much of the highly fertile land in Iowa had a very high 

water table historically, beginning in the late 1800’s, the water table was lowered with 

artificial “tile” drainage (Baker et al. 2004).  This land management practice affects 

hydrological processes, drying the soil and, in turn, increasing the baseflow of rivers 

(Schilling 2005).  Nitrogen from different sources dissolves in soil water, which is quickly 

shuttled from the soil profile to surface waters by subsurface drainage tiles.  In the spring, 



2 
 

when fields lie bare, neither precipitation nor nitrogen is used by crops; this causes a large 

influx of nitrogen into local surface waters and ultimately into the Gulf of Mexico, where a 

hypoxic “dead zone” exterminates many forms of life in the ocean (Mitsch et al. 2001).   

 Because of the ecological and health concerns associated with current land cover and 

land management, many researchers are recommending the integration of perennial and 

cover crops into crop rotations (Dabney 1998, Unger and Vigil 1998).  These crops could 

help mediate changes in hydrological processes and scavenge nitrates during the spring 

months, partially restoring hydrological balances and reducing harmful results of pollution.  

They also may be able to assist in conserving soil water; this is of concern as the threat of 

climate change may alter precipitation patterns in the Upper Midwest (Mishra et al. 2010).  

The objectives of this thesis are to: 

 

1. Explore how perennial crops could affect subsurface drainage in Iowa 

2. Investigate how cover crops influence soil water patterns 

 

Thesis Organization 

 Chapter 2 explores how perennial forage affects subsurface drainage in a tile-drained 

field in northwest Iowa.  Chapter 3 details research done at two sites, including the research 

site employed in Chapter 2 and another field in central Iowa.  This research includes an 

analysis of cereal rye cover crop’s effects on soil water dynamics.  Chapter 3 includes a more 

extensive literature review of previous research done on cover crops’ effects on hydrology 

and soil water and on the temporal and spatial variability of soil water in different 

environments and how this variability affects hydrological processes.  Chapter 4 explores 
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how a rye cover crop may affect soil water content and soil water storage during an extreme 

drought that occurred in 2012. 

 Chapter 5 summarizes conclusions drawn from this thesis and discusses links 

between soil water dynamics and subsurface tile drainage in Iowa and how perennial and 

cover crops could be used to mediate changes in hydrology and nutrient leaching in the 

Upper Midwest.  This chapter also suggests directions for further research into perennial and 

cover crops’ ability to affect hydrological processes.  References for each chapter are given 

at the end of the individual chapters.  
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CHAPTER 2. COMPARISON OF TIMING AND VOLUME OF SUBSU RFACE 
DRAINAGE UNDER PERENNIAL FORAGE AND ROW CROPS IN A TILE-

DRAINED FIELD IN IOWA 
 
 

A paper submitted to Transactions of the ASABE 
 

Ryan J. Goeken1, Xiaobo Zhou, Matthew J. Helmers23 
 
 

Abstract 

Subsurface drainage systems in Iowa increase productivity of annual row crops such 

as corn and soybeans, but also contribute to alterations in the hydrological balance of the 

region and to leaching of nutrient pollutants such as NO3-N.  This study’s objective was to 

determine whether perennial forage orchardgrass is able to reduce the volume and change the 

timing of subsurface drainage in tiled fields in Iowa, therefore contributing to reductions in 

NO3-N leaching and moderating changes in hydrology.  Research was conducted at Iowa 

State University’s Agricultural Drainage Water Research Site, located in northwest Iowa.  

Six 0.05 ha plots (three control and three treatment plots), each including subsurface drainage 

with continuous flow monitoring, were planted to row crops (RC), consisting of either a 

corn-soybean rotation or continuous corn from 1990-2004 (the pre-treatment period).  During 

the treatment period (2006-2011), control plots remained in RC while treatment plots were 

planted to perennial forage (PF), a mixture of orchardgrass, red clover, and ladino clover, 

succeeding to a monoculture of orchardgrass.  During the pre-treatment period, control and 

treatment plots showed no difference in subsurface drainage.  During the treatment period, 

over the entire drainage season (March-November), PF did not reduce subsurface drainage, 

but during the month of May, PF reduced subsurface drainage by 32% (p < 0.05).  Early 

                                                           
1 Primary researcher and author 
2 Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50010 
3 To whom correspondence should be addressed.  E-mail: mhelmers@iastate.edu 
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spring, including May, is a critical period for drainage in Iowa, as wet field conditions and a 

lack of vegetative cover contribute to a majority of drainage and leaching of NO3-N from 

row crop fields during this period.  Further research including different perennial species is 

needed, and investigations in different geographical regions are needed as differences in 

precipitation and weather will affect the timing and volume of subsurface drainage. 

 

Introduction 

 The use of subsurface drainage systems in Iowa has assisted in greatly increasing 

agricultural productivity of annual row crops such as corn and soybeans (Baker et al. 2004).  

To harness the productive potential of the land, subsurface drainage was installed extensively 

in Iowa in the late 19th and early 20th centuries to drain somewhat poorly to poorly drained 

soils.  In Iowa alone, approximately 3.6 million ha of cropland are estimated to be artificially 

drained, amounting to 25% of the state’s agricultural land (Baker et al. 2004).  The 

installation of these drainage systems aids in timely seedbed preparation, planting, and 

harvesting, and protects crops from periods of flooded soil conditions, allowing gas exchange 

between crop roots and the soil, which is crucial to plant metabolic processes.  The 

widespread use of subsurface drainage coupled with a change in land use and vegetative 

cover may be impacting the hydrological balance of the region, however (Asbjornsen et al. 

2007).  Changing the landscape from a perennial prairie to annual row crops changes water 

uptake patterns (Asbjornsen et al. 2007); because annual row crops grow for a shorter period 

of the year as compared to perennial plants, evapotranspiration and water uptake from row 

crops occur mostly during the late spring and summer, while evapotranspiration and water 

uptake occur for a larger part of the year in perennials, including the early spring (Hatfield et 
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al. 2009).  The switch from perennial to annual landscapes can increase the amount of water 

lost to subsurface drainage, contributing to an increase in the baseflow of Iowa’s rivers 

(Schilling 2005).  Most of the NO3-N that enters streams in Iowa is from subsurface drainage 

as well (Schilling 2005).  Therefore, there is a double effect increasing the amount of NO3-N 

in waterways; subsurface drainage increases the amount of water that flows into streams, and 

this greater amount of water also has a relatively high concentration of NO3-N.  Changes in 

cropping practices (changing the landscape from predominantly small grains, grass and hay 

to row crops) have a more significant effect on NO3-N concentrations in streams than 

nitrogen fertilizer use, timing, or even historical precipitation differences (Hatfield et al. 

2009).  At recommended nitrogen application rates in corn-soybean rotation and in 

continuous corn, the NO3-N concentrations in subsurface drainage water commonly surpass 

10 mg L-1, the U.S. public health drinking water standard (Helmers et al. 2012).  High 

concentrations of NO3-N in drinking water can have adverse effects on human health, and the 

large volumes of this nutrient entering streams in the Mississippi River Basin contribute to 

the hypoxic zone in the Gulf of Mexico (Mitsch et al. 2001). 

 The timing and volume of subsurface drainage are dependent on many factors, 

including precipitation timing and intensity, soil moisture conditions, and crop water demand 

(Lawlor et al. 2008).  Lawlor et al. (2008) showed that even in years when there is equal 

rainfall, drainage volumes from a single field can be significantly different.  This variation in 

drainage volume is due in large part to the timing and the intensity of specific rainfall events 

and the soil moisture conditions that result.  Crop water demand is also important in 

determining subsurface drainage volumes.  In addition to duration of growing season, the 

root depth, type and density will also affect a crop’s water use.  Perennial grass species will 
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most likely uptake a larger percentage of water from soil layers near the surface as compared 

to corn (Dong et al. 2010, Kranz et al. 2008, Nippert and Knapp 2007), and so water use 

varies greatly spatially and temporally between different cropping systems.  Many relatively 

short-term studies have shown a decrease in subsurface drainage flow with perennial crops 

and CRP grasses (Huggins et al. 2001, Oquist et al. 2007, Randall et al. 1997).  A previous 

study at the site used in this study found no change in annual or drainage season flow volume 

due to different perennial crops or cover crops (Qi et al. 2011a).  The study did not examine 

variability in drainage over shorter time periods however, and because about 70% of NO3-N 

losses through subsurface drainage in the Midwest occur before row crops are established (in 

the early spring) (Randall and Vetsch 2005), an analysis of drainage over this crucial but 

short time period is warranted.  In light of this, the objective of this study was to determine 

the timing and volume of subsurface drainage occurring in two different cropping systems: 

perennial forage (PF), which included pasture plots planted to orchardgrass (Dactylis 

glomerata), red clover (Trifolium pretense), and ladino clover (Trifolium repens), succeeding 

to a monoculture of orchardgrass, and row crop (RC) (either continuous corn or a corn-

soybean rotation). 

 

Materials and Methods 

Site description 

The field study was performed at the Agricultural Drainage Water Research Site in 

northwest Iowa near Gilmore City in Pocahontas County.  The site is located in Garfield 

Township at SW 1/4, Section 27, T92N, R31W.  The most ubiquitous soils are Nicollet (fine-

loamy, mixed, superactive, mesic Aquic Hapludoll) and Webster and Canisteo (fine-loamy, 
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mixed, superactive, mesic Typic Endoaqualls) clay loams with 3% to 5% organic matter, 

having an average slope of 0.5% to 1.5%.  They are naturally poorly to naturally somewhat 

poorly drained glacial till soils.  An automatic on-site meteorological station monitored 

weather conditions, including rainfall.  Rainfall patterns at the site were compared to long-

term averages (27 years from 1984-2010) determined from readings at the National Climate 

Data Center station at Pocahontas (COOP ID 1367) located 19 km west of the research site.   

The total research area is 4.5 ha, of which 3.8 ha are used as experimental plots; the 

remainder is border and buffer. There are seventy-eight 0.05 ha plots (15 x 38 m).  In 1989, 

subsurface drainage lines were installed parallel to the long dimension through the center of 

each plot and on the borders between plots.  Only center drainage lines are monitored for 

drainage volume.  Three center drainage lines from three adjacent plots drain into an 

aluminum culvert containing three separate sumps and sampling/monitoring systems.  Back 

pressure diverts a small fraction of all drainage to a 20 L glass sampling bottle allowing for 

continuously monitored flow volume measurement and flow-integrated sampling of 

subsurface drainage.  A detailed description of drainage monitoring design is presented in 

Lawlor et al. (2008).   

 

Study design and statistical analysis 

The analysis presented in this paper is based on a blocked plot design including six 

plots in the research area.  Monthly and drainage season (March-November) drainage 

volumes for 1990-2011 were determined for each of these plots.  The study period was split 

into two periods: the pre-treatment period (1990-2004) and the treatment period (2006-2011).  

Since it was an establishment year for PF, 2005 was left out of the analysis.  During the pre-
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treatment period, all six plots were planted in RC, and during the treatment period, three of 

the plots were left in RC while the remaining three plots were planted to PF.  The six plots 

were grouped into three pairs; these pairs were chosen because they were the plots with the 

most similar average yearly drainage volume during the pre-treatment period (Table 2.1).  

Each of these pairs belonged to one block.  In 2000, a blocking system was devised in which 

the plots at the study site were split into four blocks according to drainage volume (including 

a low flow block, a medium-low flow block, a medium-high flow block, and a high flow 

block). (Qi et al., 2011).  A more detailed description of blocking for the entire research site 

can be found in Qi et al. (2011).  The plots used in the study are included in the three blocks 

with lowest flow, and the highest flow block was excluded because during the study period, 

subsurface flow exceeded precipitation.    

 
Table 2.1. Research plot setup.  Pre-treatment period was 
1990-2004, treatment period was 2006-2011. 

 
Pair 

Plot 
ID 

Average yearly drainage 
(mm) for pre-treatment period 

Cropping system for 
treatment period 

1 20-1 174 RC 
17-2 165 PF 

2 20-2 235 RC 
19-1 234 PF 

3 16-2 296 RC 
14-2 300 PF 

 
SAS 9.1 software was used to determine the difference between drainage season 

(March-November) subsurface drainage in the control and treatment plots (SAS Institute 

2003).  To do so, a blocked t-test (α = 0.05) was used.  For the monthly data, a blocked t-test 

(α = 0.05) was used to determine the difference in subsurface drainage between the control 

and treatment plots in the months of April, May, June, and July.  These four months were 

selected for analysis because the largest amounts of subsurface drainage and NO3-N leave 

row crop fields in Iowa during this period. 
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Results and Discussion 

Research site precipitation 

The drainage season is a period in which the ground is usually not frozen and is able 

to discharge soil water as drainage; this period was considered to be March through 

November.  The long term normal drainage season precipitation for Pocahontas, Iowa was 

704 mm.  During the 22 years of the study, the average drainage season precipitation was 680 

mm, or 3% below the long-term normal for the area.  Drainage season precipitation ranged 

from 458 mm in 1997, or 35% below normal, to 908 mm in 2010, or 29% above normal 

(Table 2.2).  Eight of the 22 drainage seasons were wetter than normal, ranging from 2% to 

29% wetter.  The other 14 drainage seasons were between 1% and 35% drier than normal.  

Nine of the 22 drainage seasons had precipitation totals within 10% of the normal, all of 

which were during the pre-treatment period (1990-2004).  In table 2.2, growing season (May-

September) precipitation is also found.  The growing season average precipitation for the 

study period was 490 mm, only 2 mm wetter than the normal.  Overall precipitation averages 

for the months of May, June and October during the study period surpassed the normal for 

each month by 2%, 18%, and 3%, respectively, with all other months drier than normal, 

ranging from 2% to 28%.   

During the pre-treatment period (1990-2004), the average drainage season 

precipitation was 677 mm, or 4% below the long-term normal for the area.  During these 

years, precipitation averages for May and June surpassed the normal precipitation by 6% and 

16%, respectively, while all other months were drier than normal, ranging from 6% drier in 

July, August, and October, to 26% drier in November with a deficit of 9 mm.  During the 
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treatment period (2006-2011), the average drainage season precipitation was 705 mm, almost 

exactly the same as the normal of 704 mm.   

Table 2.2. Precipitation at the research site during the study period (mm). 
 
Year 

Month Growing 
Season[a] 

Drainage 
Season[a] March April May June July Aug. Sep. Oct. Nov. 

1990 0 38 117 290 150 80 50 24 13 686 761 
1991 108 131 168 131 76 65 44 38 50 483 811 
1992 53 61 50 90 187 80 16 77 53 423 667 
1993 51 113 125 179 143 160 28 31 12 636 843 
1994 2 52 41 179 89 51 37 48 30 396 528 
1995 54 54 91 93 54 127 99 54 7 464 633 
1996 45 24 114 116 82 199 50 60 60 562 751 
1997 35 60 55 82 86 15 78 40 6 317 458 
1998 57 56 104 171 102 53 24 76 17 454 660 
1999 37 212 115 83 70 57 24 15 21 348 633 
2000 28 34 93 113 152 92 35 67 70 485 684 
2001 22 78 171 79 117 72 42 51 54 481 686 
2002 25 61 77 51 87 279 35 77 3 529 695 
2003 28 36 109 222 126 42 46 12 0 545 621 
2004 97 72 146 121 58 48 143 15 20 517 720 
2005 21 89 129 134 63 45 39 20 43 409 582 
2006 69 93 22 61 28 135 91 19 21 337 538 
2007 46 83 90 44 41 336 97 107 1 609 845 
2008 35 88 151 152 105 80 65 100 37 553 812 
2009 36 56 66 74 128 48 37 151 23 352 619 
2010 N/A[b] 70 81 331 176 85 108 14 41 782 908 
2011 6 86 102 185 73 22 24 4 8 406 510 
Average 41 75 101 135 100 99 55 50 27 490 680 
Normal[c] 49 80 99 115 112 101 61 49 37 488 704 

[a] Growing season was May through September, and drainage season was March through November.                                                                       
[b] Climate data not available for site. 
[c] Source: Climatological Data for Iowa, National Climate Data Center for Pocahontas, IA, 1984-2010.                                         

 
 Variability among drainage seasons was great, however, as none of the years were 

within 10% of the normal, ranging from 28% drier than normal in 2011 to 29% wetter than 

normal in 2010.  Also, during the treatment period, precipitation averages for June, August, 

September, and October surpassed the normal by 23%, 17%, 15%, and 35%, respectively, 

while all other months were drier than normal, ranging from only 1% drier in April to 42% 

drier in November with a deficit of 15 mm.  During the pre-treatment period, the average 

growing season precipitation was 488 mm, the same as the normal for this period.  During 

the treatment period, the average growing season precipitation was 506 mm, or 4% wetter 

than the normal. 
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Subsurface drainage volume and timing 

In general, only a small amount of drainage occurred in March, followed by a sharp 

increase in April, and the most drainage occurred in May and June, decreasing to small 

amounts in September, October, and November, whereas precipitation increased more 

gradually throughout the year to the highest amount in June, from which it decreased (Fig. 

2.1).  During the research period, average growing season drainage was 77% and 78% of 

drainage season drainage for the control and treatment plots, respectively.  In six of the years, 

all during the pre-treatment period, growing season drainage was 100% of the drainage 

season drainage for control plots; this was repeated for the treatment plots in eight of the pre-

treatment period years.  The year with the smallest percentage of drainage season drainage 

occurring during the growing season was 2006, in which 37% and 21% of drainage occurred 

during the growing season for the control and treatment plots, respectively.  

The average drainage season subsurface drainage for the control plots over the 

research period was 226 mm (Table 2.3).  Drainage ranged from 5 mm in 2000 to 437 mm in 

2007.  For the pre-treatment period, average drainage season subsurface drainage was 199 

mm, and for the treatment period, it was 294 mm.   
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Figure 2.1. Box plot diagrams of precipitation and subsurface drainage volumes.  Fractional precipitation 
is the average from 1990-2010 based on weather data NCDC data at Pocahontas.  Fractional drainage is 
the average from 1990-2011 in the control plots.  Points on each box indicate the following: bottom point 
= 5th percentile, error bar below box = 10th percentile, lower boundary of box = 25th percentile, upper 
boundary of box = 75th percentile, error bar above box = 90th percentile, top point = 95th percentile, thin 
line within box = median value, thicker line within box = mean value. 
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During the pre-treatment period, drainage season drainage ranged from 5 to 398 mm, 

while it ranged from 114 to 437 mm in the treatment period.  During the research period, the 

largest amount of drainage occurred in the month of June, with an average of 69 mm, 

followed by May with an average of 65 mm; March and September had the least amount of 

drainage with an average of 1 mm.  During the pre-treatment period, May had the largest 

amount of drainage, while during the treatment period, June had the most drainage.  On 

average, for the control plots, 76% of drainage season drainage occurred during the months 

of April through June.  During the pre-treatment period, 78% of drainage season drainage 

occurred in the months of April, May, and June, and during the treatment period, 73% of 

drainage season drainage occurred during these three months.  Over the entire research 

period, April, May, and June were the months with the highest average amounts of drainage.  

Over the same period, these months had the highest drainage to precipitation ratio (D:P), as 

well.  During both the pre-treatment and treatment periods, May had the largest D:P while 

March had the smallest.  Drainage season D:P ranged from 0.01 in 2000 to 0.54 in 2011, with 

an overall average drainage season D:P of 0.32.  The average drainage season D:P for the 

pre-treatment period was 0.28, while it was 0.41 for the treatment period. 

Even in years with nearly identical precipitation, drainage can vary widely, as is seen 

in the years 2000 and 2001 (Table 2.3).  In 2000 there was 684 mm of precipitation, while in 

2001 there was 686 mm, but there was only 5 mm of drainage during 2000 as compared to 

189 mm in 2001.   
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Table 2.3. Subsurface drainage (mm) at research site for control plots. 
 

Year 
Month Growing Season Drainage Season 

Mar Apr May Jun Jul Aug Sep Oct Nov Drainage D:P[a] Drainage D:P 
Before PF establishment   

1990 0 16 53 141 58 0 0 0 0 253 0.37 268 0.35 
1991 0 104 138 103 0 0 0 0 53 241 0.50 398 0.49 
1992 0 55 11 38 84 0 0 7 0 133 0.31 194 0.29 
1993 0 123 53 71 49 54 0 0 0 227 0.36 350 0.42 
1994 0 0 0 8 6 0 0 0 0 14 0.03 14 0.03 
1995 0 0 159 61 0 0 0 0 0 220 0.47 220 0.35 
1996 0 0 75 94 11 161 10 0 0 352 0.63 352 0.47 
1997 0 35 35 0 1 0 0 0 0 35 0.11 70 0.15 
1998 0 0 75 47 10 0 0 0 0 132 0.29 132 0.20 
1999 0 0 122 14 2 0 0 0 0 138 0.40 138 0.22 
2000 0 0 0 0 5 0 0 0 0 5 0.01 5 0.01 
2001 0 18 136 30 0 5 0 0 0 170 0.35 189 0.27 
2002 0 8 62 20 0 62 7 2 0 151 0.29 162 0.23 
2003 0 39 77 140 63 0 0 0 0 280 0.51 318 0.51 
2004 0 15 82 74 0 1 0 0 0 157 0.30 171 0.24 
Avg. 0 28 72 56 19 19 1 1 4 167 -- 199 -- 

Avg. D:P 0.00 0.36 0.64 0.40 0.14 0.10 0.03 0.01 0.07 -- 0.33 -- 0.28 
After PF establishment  

2006 0 72 41 0 1 0 0 0 0 42 0.13 114 0.21 
2007 5 106 47 6 0 142 2 128 0 197 0.32 437 0.52 
2008 0 99 95 173 7 0 0 0 0 275 0.50 374 0.46 
2009 0 24 26 27 33 0 0 47 16 86 0.24 173 0.28 
2010 9 11 22 271 32 26 1 0 24 351 0.45 395 0.44 
2011 0 83 50 134 7 0 0 0 0 191 0.47 274 0.54 
Avg. 2 66 47 102 13 28 0 29 7 190 -- 294 -- 

Avg. D:P 0.02 0.79 0.69 0.53 0.11 0.12 0.00 0.25 0.21 -- 0.35 -- 0.41 
Total Avg. 1 39 65 69 18 21 1 9 4 174 -- 226 -- 
Total Avg. 

D:P 
0.01 0.48 0.66 0.44 0.13 0.10 0.02 0.08 0.11 -- 0.34 -- 0.32 

[a]D:P = ratio of drainage to precipitation.  Precipitation data from on-site meteorological station. 
 
During April and May in 2001, there was nearly 2X the precipitation as during the same 

period in 2000; there is generally no vegetative cover in row crop fields in Iowa during April 

and May, and so a large amount of drainage would be expected if soil moisture was adequate.  

Lawlor et al. (2008) found that years with equal precipitation are able to have statistically 

different drainage volumes in plots, as drainage volumes are directly tied to soil moisture, 

rainstorm timing and intensity, and the crop water demand during a given part of the growing 

season. 

The average drainage season subsurface drainage for the treatment plots over the 

research period was 237 mm (Table 2.4).  Drainage ranged from 15 mm in 2000 to 472 mm 

in 1993.   
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Table 2.4. Subsurface drainage (mm) at research site for treatment plots. 
 Month Growing Season Drainage Season 

Year Mar Apr May Jun Jul Aug Sep Oct Nov  Drainage D:P[a] Drainage D:P 
Before PF establishment            

1990 0 13 75 214 72 0 0 0 0 361 0.53 374 0.49 
1991 0 82 99 117 0 0 0 8 29 216 0.45 335 0.41 
1992 0 55 3 69 82 0 0 6 36 155 0.37 253 0.38 
1993 0 216 105 62 22 64 0 0 3 252 0.40 472 0.56 
1994 0 0 0 49 0 0 0 0 0 49 0.12 49 0.09 
1995 0 0 248 42 0 0 0 0 0 290 0.63 290 0.46 
1996 0 0 96 181 12 45 7 1 0 340 0.61 341 0.45 
1997 0 0 49 2 0 0 0 0 0 52 0.16 52 0.11 
1998 0 0 84 63 18 0 0 0 0 166 0.37 166 0.25 
1999 0 0 112 6 3 0 0 0 0 121 0.35 121 0.19 
2000 0 0 0 1 14 0 0 0 0 15 0.03 15 0.02 
2001 0 29 129 29 0 0 0 0 0 158 0.33 187 0.27 
2002 0 0 43 11 0 60 7 0 0 120 0.23 120 0.17 
2003 0 23 77 184 63 0 0 0 0 324 0.59 347 0.56 
2004 0 0 70 63 0 0 0 0 0 133 0.26 133 0.19 
Avg. 0 28 79 73 19 11 1 1 5 183 -- 217 -- 

Avg. D:P 0.00 0.32 0.72 0.50 0.13 0.06 0.02 0.02 0.10 -- 0.36 -- 0.31 
After PF establishment   

2006 0 64 15 0 2 0 0 0 0 17 0.05 82 0.15 
2007 5 99 20 0 0 151 0 62 0 171 0.28 337 0.40 
2008 0 88 92 184 0 0 0 9 12 276 0.50 385 0.47 
2009 0 32 18 11 39 0 0 62 29 68 0.19 192 0.31 
2010 12 7 6 309 47 34 5 0 15 401 0.51 435 0.48 
2011 0 86 40 156 16 0 0 0 0 212 0.52 298 0.58 
Avg. 3 63 32 110 17 31 1 22 9 191 -- 288 -- 

Avg. D:P 0.02 0.76 0.37 0.52 0.15 0.14 0.01 0.18 0.32 -- 0.34 -- 0.40 
Total Avg. 1 38 66 84 19 17 1 7 6 186 -- 237 -- 

Total 
Avg..D:P 

0.01 0.40 0.62 0.50 0.14 0.08 0.02 0.07 0.17 -- 0.36 -- 0.33 

[a]D:P = ratio of drainage to precipitation.  Precipitation data from on-site meteorological station. 
 
For the pre-treatment period, average drainage season subsurface drainage was 217 mm, and 

for the treatment period, it was 288 mm.  During the pre-treatment period, drainage season 

drainage ranged from 15 to 472 mm, while it ranged from 82 to 435 mm in the treatment 

period.  During the research period, the largest amount of drainage occurred during the 

month of June, with an average of 84 mm, followed by May with an average of 66 mm; 

March and September had the least drainage with an average of 1 mm each.  During the pre-

treatment period, May had the highest average amount of drainage, while during the 

treatment period, June had the highest average drainage.  For treatment plots, on average, 

79% of drainage season drainage occurred during the months of April through June.  During 

the pre-treatment period 83% of drainage season drainage occurred in the months of April, 

May, and June, and during the treatment period, 71% occurred during this time period.  For 



17 
 

treatment plots, April, June, and May had the largest D:P, respectively.  During the pre-

treatment period, May had the largest D:P while March had the smallest, and during the 

treatment period, April had the largest D:P and September had the smallest.  Drainage season 

D:P ranged from 0.02 in 2000 to 0.56 in both 1993 and 2003, with an overall average 

drainage season D:P of 0.33.  The average drainage season D:P for the pre-treatment period 

was 0.31, while it was 0.40 for the treatment period 

For the complete drainage season (March-November), the pre-treatment period 

showed no significant difference in drainage between treatments in any individual year or on 

average (Table 2.5).  On average, the treatment period had no significant difference in 

drainage between treatments, although drainage was reduced significantly in the PF plots in 

the 2006 and 2007.    

 
Table 2.5. Difference between subsurface drainage (mm) in control (Con.) and treatment  
(Treat.) plots over study period in critical months of April-July. [a] 

 
Year 

Month Drainage 
April May June July Season 

 Con. Treat. Con. Treat. Con. Treat. Con. Treat. Con. Treat. 
Before PF establishment     

1990 16a 13a 53a 75a 141a 214a 58a 72a 268a 374a 
1991 104a 82a 138a 99a 103a 117b 0a 0a 398a 335a 
1992 55a 55a 11a 3a 38a 69a 84a 82a 194a 253a 
1993 123a 216a 53a 105a 71a 62a 49a 22a 350a 472a 
1994 0a 0a 0a 0a 8a 49a 6a 0a 14a 49a 
1995 0a 0a 159a 248a 61a 42a 0a 0a 220a 290a 
1996 0a 0a 75a 96a 94a 181a 11a 12a 352a 341a 
1997 35a 0a 35a 49a 0a 2a 1a 0a 70a 52a 
1998 0a 0a 75a 84a 47a 63a 10a 18a 132a 166a 
1999 0a 0a 122a 112a 14a 6a 2a 3a 138a 121a 
2000 0a 0a 0a 0a 0a 1a 5a 14a 5a 15a 
2001 18a 29a 136a 129a 30a 29a 0a 0a 189a 187a 
2002 8a 0a 62a 43a 20a 11a 0a 0a 162a 120a 
2003 39a 23a 77a 77a 140a 184a 63a 63a 318a 347a 
2004 15a 0a 82a 70a 74a 63a 0a 0a 171a 133a 

Average 28a 28a 72a 79a 56a 73a 19a 19a 199a 217a 
After PF establishment     

2006 72a 64a 41a 15a 0a 0a 1a 2a 114a 82b 
2007 106a 99a 47a 20b 6a 0a 0a 0a 437a 337b 
2008 99a 88a 95a 92a 173a 184a 7a 0a 374a 385a 
2009 24a 32a 26a 18a 27a 11b 33a 39a 173a 192a 
2010 11a 7a 22a 6b 271a 309a 32a 47a 395a 435a 
2011 83a 86a 50a 40a 134a 156a 7a 16a 274a 298a 

Average 66a 63a 47a 32b 102a 110a 13a 17a 294a 288a 
[a] Means within years and on average (within rows) followed by the same letter are not significantly 
different at p = 0.05. 
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Table 2.5 shows the difference in monthly drainage between control and treatment 

plots in the months of April-July.  These months were chosen for analysis because a large 

majority of the drainage flow occurs during this period (85% and 87% of yearly flow for 

control and treatment plots, respectively).  Also, because of a large amount of precipitation 

and a lack of living land cover in row crops fields, most NO3-N is leached during this period.  

In all four months, during the pre-treatment period there was no significant difference on 

average, although there was a significant difference in drainage between the control and 

treatment plots in June of 1991.  In contrast, during the month of May in the treatment 

period, the treatment plots showed a significant decrease (32%) in subsurface drainage as 

compared to the control plots.  Both May 2007 and 2010 showed a significant difference in 

drainage between control and treatment plots within the year.   

 

Conclusions 

Although forage plots planted to perennial orchardgrass did not significantly reduce 

subsurface drainage over the drainage season, this perennial forage did significantly reduce 

subsurface drainage during the month of May as compared to row crops.  The spring months, 

including May, are a critical time in row crop fields in Iowa for subsurface drainage, as this 

is the period when the most drainage occurs and when most NO3-N is lost due to leaching.  

The results presented in this study suggest that perennial cropping systems could reduce 

deleterious effects of subsurface drainage in Iowa.  More research is needed, however.  There 

are many types of perennial cover that can be integrated into Iowa’s agricultural landscape, 

and each of these types of perennial cover can be used for different purposes and in different 

cropping systems.  For example, some perennial crops, such as warm and cool season grasses 
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and different legumes are utilized in long-term pastures, while some perennials, such as 

alfalfa, can be integrated into extended rotations, these perennials only being allowed to grow 

for a year or two at a time.  Differences in physiological traits and interactions among plant 

species and management strategies utilized with perennial crops will likely cause different 

responses in subsurface drainage.  In fact, orchardgrass itself comes in many different 

varieties, each yielding differently; the crop’s forage yield also varies widely among states in 

the Midwestern United States (Henning and Risner 1993).  These different patterns in growth 

will likely cause different responses in subsurface drainage.  The variance in how perennial 

crops will grow in different geographic regions, coupled with differences in soil moisture 

conditions and precipitation and weather patterns will also affect how subsurface drainage 

responds to perennial cropping systems.  Therefore, further research including the integration 

of perennial crops into agricultural systems should include diverse types and mixtures of 

species and these studies should be spread over different geographic areas.  Furthermore, in 

order to re-integrate perennial crops into our agricultural systems, there must be not only 

environmental, but economic incentives.  Current programs heavily favor row crops in the 

Midwest, and so it is difficult to integrate perennial crops into an agricultural system or 

rotation.  Therefore, in order to reap the benefits from perennial crops, research must be 

directed at not only production aspects of the agricultural system, but also towards political, 

social, and economic factors as well.   
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CHAPTER 3. EFFECT OF RYE COVER CROP ON SOIL WATER DYNAMICS 
DURING SPRING RAINFALL EVENTS FOR A CORN-SOYBEAN RO TATION IN 

IOWA 
 

 
A paper to be modified for submission to Catena 

 
 

Abstract 

 Land use and management changes have altered hydrological and biogeochemical 

cycles in the Upper Midwest.  Cover crops such as cereal rye (Secale cereale) are a 

promising way to mediate changes in these cycles through increased infiltration and 

decreased erosion, drainage, and NO3-N leaching.  The objective of this paper is to use soil 

volumetric water content data measured at short time intervals during the primary rye growth 

period in spring to determine how rainfall characteristics and land cover affect infiltration 

and redistribution of water through the soil profile after individual rainfall events in plots 

with and without a rye cover crop.  Continuous volumetric water content measurements at 

five soil depths (10, 20, 40, 60 and 100 cm) at 1-hr and 5-min intervals during the rye 

growing season (March 1 – May 9 of 2012) were used to examine soil water dynamics during 

and after rainfall events in two fields, one in northwest and another in central Iowa, using 

four treatments: corn without rye (C), corn with rye (rC), soybeans without rye (S), and 

soybeans with rye (rS).  The main crop in the treatment name denotes the crop that would be 

planted following rye growth and termination, and so plots without rye were fallow during 

the study period.  There were no significant differences in cumulative infiltration among 

treatments at either site.  At the site in central Iowa, rye (rS) significantly increased the 

magnitude of the rise in soil water content during rainfall events as compared to fallow plots 

(S and C) at a 10 cm depth.  These results indicate rye may have the greatest effect on soil 
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water dynamics in the upper soil layers.  During small and medium rainfall events, in rye 

plots, water mostly did not percolate deeper than 20 cm, most likely due to greater soil water 

storage capacity and rye transpiration.  In fallow plots, water percolated deeper.  During 

intense rainfall events, in rye plots, water percolated deeper in all treatments, most likely 

because the upper soil layers became saturated.  The presence of rye, along with different 

types of rainfall events, produced different soil water redistribution patterns.   

 

Introduction 

Because of environmental concerns such as erosion, changes in hydrological systems, 

climate change, and nutrient leaching, the use of cover crops in agriculture is of interest.  

Cover crops include a wide range of types and species of plants used as fits the particular 

functionality needed and the geographical area in which they are planted, but generally a 

cover crop is a living ground cover planted into or after a main crop, and it is usually 

terminated before the planting of the next main crop (Hartwig and Ammon 2002).  In the 

Upper Midwest of the United States, a large percentage of agricultural land is planted to corn 

and soybeans, and this land lays fallow during the late fall, winter, and early spring.  Because 

vegetation cover has a large effect on soils and hydrological processes within a landscape 

(Marin et al. 2000, Wang et al. 2013), cover crops could be part of a solution to remedy 

agroecological problems such as nutrient leaching, soil erosion, changing hydrological 

systems, and diminished soil fertility and productivity, which are caused in part by a lack of 

vegetative cover during the non-growing season (Dabney 1998, De Bruin et al. 2005, 

Hartwig and Ammon 2002, Islam et al. 2006, Unger and Vigil 1998).  Cover crops are able 

to influence the landscape through their effects on the plant-atmosphere continuum (above 
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the soil surface and at its interface with the atmosphere) and the ability to alter soil 

characteristics and soil water regimes in the subsurface zone (below the soil surface) (Islam 

et al. 2006).  Each of these effects is interrelated as climate, soil, and vegetation are linked 

through climatic and hydrological cycles. 

Cover crops are able to influence the aboveground environment by reducing light 

transmission through the production of a canopy which can moderate fluctuations in soil 

temperatures (De Bruin et al. 2005).  They can also alter the amount of precipitation 

remaining in a field by trapping snow (Dabney 1998, Unger and Vigil 1998).  Cover crops 

affect evaporation by altering net radiation, wind speed, vapor pressure deficit, and surface 

soil temperatures (Dabney 1998, Unger and Vigil 1998).  Cover crops and their residue 

mulches can greatly alter evaporation and transpiration rates between precipitation events as 

well (Unger and Vigil 1998).  They are also able to influence runoff and soil erosion by 

increasing the surface roughness of the field and holding the soil in place with their root 

systems (Dabney 1998, Unger and Vigil 1998).  The canopy created by cover crops 

intercepts precipitation, decreasing the amount of precipitation that reaches the soil and 

dissipating the energy of raindrops, therefore reducing precipitation’s ability to dislodge soil 

particles and create surface soil seals, which can impede infiltration  (Dabney 1998, Huang et 

al. 2013, Islam et al. 2006, Unger and Vigil 1998).   

Cover crops also have an influence on the subsurface zone.  Through root growth and 

associated fungal hyphae, cover crops can aid in binding the soil together, another 

mechanism that reduces erosion (Dabney 1998, Unger and Vigil 1998). Cover crops can also 

improve soil structure and thus the soil’s water-holding capacity (Hartwig and Ammon 

2002).  The growth of cover crops can alter the soil porosity matrix directly through root 
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growth and indirectly by improving habitat and encouraging the activity of soil mesofauna 

and macrofauna (Dabney 1998, Unger and Vigil 1998).  An increase in biological activity in 

the soil also results in greater soil permeability and aeration, which aids crop emergence and 

crop root growth (Hartwig and Ammon 2002). 

Also, by changing the albedo of the land surface and through shading, cover crops are 

able to influence subsurface soil temperatures; therefore, if they grow in the fall, cover crops 

may diminish the depth to which soils freeze or slow soil thawing and warming in the spring 

(Dabney 1998, Unger and Vigil 1998).  Cover crops may be able to decrease leaching losses 

of nutrients through two mechanisms: decreasing drainage in fields with subsurface drainage 

through transpiration of soil water (Qi and Helmers 2010) and scavenging nutrients during a 

time of the year when the land would be bare (Hartwig and Ammon 2002, Unger and Vigil 

1998).  Cover crops may also increase infiltration (Dabney 1998, Unger and Vigil 1998) 

through the mechanical means of reducing raindrop impact and slowing runoff through 

modification of soil porosity and structure (Huang et al. 2013) and through drying of the soil 

through evapotranspiration (ET) (Qi et al. 2011b).  In general, cover crops can directly affect 

inputs of soil water through precipitation partitioning, the means by which rainfall is divided 

into canopy interception, throughfall and stemflow (Marin et al. 2000). 

Soil water dynamics are important at multiple scales.  At a regional scale, soil water 

and the atmosphere work together to affect climate, and soil water is one factor that regulates 

the hydrological cycle (Asbjornsen et al. 2007, De Lannoy et al. 2006).  At a smaller scale, in 

a field, soil water can influence runoff and erosion (De Lannoy et al. 2006).  In the field, soil 

water also influences how precipitation is partitioned between ET and deep infiltration (Daly 

and Porporato 2005).    Because soil water is such an important factor in determining climate, 
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hydrology, and crop growth, much research has been done to understand what influences soil 

water and its spatiotemporal variability.  Soil water varies widely over time and space, even 

at small geographic scales (Gómez-Plaza et al. 2000), and this variability is caused by many 

different factors (Levia and Frost 2003, 2006) such as landscape characteristics (Bergkamp 

1998, De Lannoy et al. 2006, Fu et al. 2003, Gómez-Plaza et al. 2000, Svetlitchnyi et al. 

2003), soil properties (Fu et al. 2003, Hawley et al. 1983), rainfall characteristics (Fu et al. 

2003, Sala et al. 1992, Wang et al. 2008), vegetation and land use (De Lannoy et al. 2006, Fu 

et al. 2000, Roux et al. 1995, Wang et al. 2008), and field management (Ewing et al. 1991).  

The landscape can affect soil water through many factors, including slope (Gao et al. 2011, 

Huang et al. 2013, Tromp-van Meerveld and McDonnell 2006) and the depth of the 

groundwater table (Islam et al. 2006).  Soil properties such as texture (De Lannoy et al. 2006, 

Miller et al. 1983) can influence soil’s ability to infiltrate, retain, store, and drain water.  

Rainfall characteristics such as the amount of rainfall in a season, rainfall event size (Clark et 

al. 1997, Heisler-White et al. 2008), rainfall intensity (Levia and Frost 2003, 2006, Yaseef et 

al. 2009), and the distribution of rainfall events throughout the season (Clark et al. 1997) can 

affect how soil water is stored.  The presence of vegetation on a land surface can influence 

soil water greatly (Wang et al. 2008, Zhang and Schilling 2006b) as vegetation affects the 

amount and distribution of precipitation that becomes soil water through transpiration, 

canopy interception (Brye et al. 2000), and the ability to affect water input in the soil through 

throughfall and stemflow (Iida et al. 2005, Levia and Herwitz 2005).  Different species of 

plants have quite different effects on soil water due to differences in growth patterns in time 

and space and root and canopy structures (Asbjornsen et al. 2007, Clark et al. 1997).  The 

spatial distribution of land uses through a landscape can also affect soil water dynamics (Fu 
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et al. 2003).  Lastly, field management, such as time of planting and harvesting cover and 

main crops (Clark et al. 1997, Ewing et al. 1991, Islam et al. 2006), residue management 

(Ewing et al. 1991), tillage techniques (Ewing et al. 1991), and subsurface drainage 

management influence soil water dynamics. 

The use of cover crops in annual cropping systems is a promising way to conserve 

soil water and therefore affect variability of soil water in a positive way.  One cover crop of 

interest in the Upper Midwest is cereal rye (Secale cereale L. ssp. cereal).  It is particularly 

well suited for use in this region because it is extremely weather hardy (Bushuk 2001, De 

Bruin et al. 2005) and produces a high volume of biomass in the early spring (De Bruin et al. 

2005).  Rye is able to germinate at temperatures slightly above freezing (Bushuk 2001), and 

appreciable growth begins around 5°C (Leonard and Martin 1963).  It is able to survive 

temperatures around -25° to -35°C even with limited snow cover, which gives rye the ability 

to overwinter even in the extreme northern USA and into Canada (Stoskopf 1985).    

Because rye is able to germinate early, and a large amount of drainage and NO3-N 

leaching occurs during the early spring period in the Upper Midwest, rye is a promising way 

to reduce these deleterious effects of row cropping through early season ET and 

incorporation of N into growing tissues (Qi et al. 2011b).  There are tradeoffs when 

integrating rye into a row crop system, however, as rye has the potential to decrease main 

crop yields.  In some studies, though, after rye is terminated, its residue has contributed to 

greater corn yield (through increased infiltration) (Clark et al. 1997), and its mulch and 

allelopathic compounds are able to assist in weed suppression (De Bruin et al. 2005).  These 

same allelopathic compounds may decrease corn yields, however (Clark et al. 1997).  Rye 

may also be able to decrease runoff through physically slowing water runoof velocity, which 
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allows more time for water to infiltrate, and through decreased soil water due to plant 

transpiration, which would encourage infiltration (Dabney 1998).  Rye can also significantly 

decrease drainage during the spring and early summer where subsurface drainage tile is 

installed (Qi and Helmers 2010, Strock et al. 2004).  The ability to decrease runoff, 

subsurface drainage, and to use excess soil N allows rye to decrease NO3-N leaching, as well 

(De Bruin et al. 2005, Ditsch et al. 1993, McCracken et al. 1994).  In one study, rye before 

soybean used soil N significantly more than soybean without rye, corn without rye, and corn 

with rye (Qi et al. 2011a).  The rye treatment before soybean reduced NO3-N concentration 

in subsurface drainage significantly only when compared to the corn treatment, however (Qi 

et al. 2011a).  In that study, corn yield was not significantly affected by rye growth and soil 

N use (Qi et al. 2011a).  In another study, however, more N was needed for application to 

fields so as to avoid a significant drop in corn yield when rye was planted before (Clark et al. 

1997).  Conflicting findings in different studies show that rye does (Qi and Helmers 2010) or 

does not (Clark et al. 1997, Krueger et al. 2011) decrease growing season (for both cover 

crop and main crop seasons) soil water and soil water storage, depending on field and 

weather conditions.  Rye may reduce soil water content only during the spring, however, 

with soil water levels typically approximating levels expected in fields consisting of only row 

crops, because water use by corn is delayed and so there is lower ET during the corn growing 

season (Krueger et al. 2011) or because of other factors such as mulching from rye residue.  

In general, though, soil water depletion is expected to be highest in years when rye biomass 

is the greatest (Baker and Griffis 2009).   

Because different land covers affect how precipitation infiltrates and is redistributed 

and stored within the soil, and because these dynamics affect drainage and NO3-N leaching 
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and possibly main crop growth following rye, understanding redistribution of soil water 

under rye is important.  The effects of rye on soil water dynamics and hydrological processes 

are complex, depending on rainfall characteristics and land cover, along with other factors.  

Many studies have investigated how different cover crops and vegetative covers affect soil 

water content and soil water storage over growing seasons and at longer time scales, but the 

ability to continuously monitor soil water through new technology provides more 

opportunities to understand the mechanisms controlling soil water under different land 

covers.  In order to understand how rainfall characteristics and land cover might affect 

redistribution of precipitation through the soil profile, analysis of soil water data at very short 

time intervals is needed, as water can redistribute quite quickly through the profile during 

and after rainfall events.  As such, the objective of this paper is to determine how a rye cover 

crop and rainfall characteristics affect infiltration and soil water redistribution.   

 

Materials and Methods 

Research sites 

 
Figure 3.1. Location of ADW and ISUAG sites in Iowa. 

 

The field study was performed at two sites in Iowa: the Agricultural Drainage Water 

Research Site (ADW) and the Iowa State University Agronomy and Agricultural Engineering 
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Research Farm (ISUAG) (Fig. 3.1).  Two sites were used in order to compare results where 

climate and, therefore, rye growth would be different.  ADW is located in northwest Iowa 

near Gilmore City in Pocahontas County (42°74’77” N, 94°49’52” W).  The most ubiquitous 

soils are Nicollet (fine-loamy, mixed, superactive, mesic Aquic Hapludoll) and Webster and 

Canisteo (fine-loamy, mixed, superactive, mesic Typic Endoaqualls) clay loams with 3% to 

5% organic matter, having an average slope of 0.5% to 1.5%.  They are naturally poorly to 

naturally somewhat poorly drained glacial till soils.  The total research area is 4.5 ha, of 

which 3.8 ha are used as experimental plots.  There are seventy-eight 0.05 ha plots (15 x 38 

m), each containing subsurface tile drainage.  An automatic on-site meteorological station 

monitored weather conditions, including rainfall.  Rainfall patterns at the site were compared 

to long-term averages (30 years from 1971-2000) determined from readings at the National 

Climate Data Center station Pocahontas (IA6719) located 19 km west of the research site. 

 ISUAG is located in central Iowa near Boone in Boone County (42°00’94” N, 

93°78’06” W).  The most ubiquitous soils are Clarion loam (fine-loamy, mixed, superactive, 

mesic Typic Hapludoll) with an average slope of 2% to 5%, Nicollet loam (fine-loamy, 

mixed, superactive, mesic Aquic Hapludoll) with an average slope of 1% to 3%, and Webster 

silty clay loam (fine-loamy, mixed, superactive, mesic Typic Endoaquoll) with an average 

slope of 0% to 2%.  These soils are naturally poorly to naturally moderately well drained 

glacial till soils.  The total research area is 0.9 ha, divided into 0.009 ha plots.  The amount 

and placement of subsurface drainage at ISUAG is unknown, as the site was previously used 

as an agricultural field.  An automatic on-site meteorological station monitored weather 

conditions.  This station ([A130209] Ames) is a part of the Iowa Environmental Mesonet, 

Iowa State University Agricultural Climate series.  Rainfall patterns at the site were 
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compared to long-term averages (30 years from 1971-2000) determined from readings at the 

National Climate Data Center station AMES-8-WSW (IA0200) located approximately 5 km 

northwest of the research site. 

 

Soil characteristics 

 In 2011, in each plot, 15-20 soil samples for texture analysis were taken to a depth of 

60 cm using a 2.5 cm diameter metal push probe.  The percentages of sand, silt, and clay for 

depth increments 0-10 cm, 10-20 cm, 20-40 cm, and 40-60 cm were determined.  To 

determine the bulk density of the soils, a hand core system with soil core rings with a height 

and diameter of 7.6 cm were used.  In the spring of 2011, in each plot, three replicates of 

each of the following depths were sampled: 0-10 cm, 10-20 cm, 20-40 cm, and 40-60 cm.  

Samples were taken at the quarter row position (out of machinery wheel tracks) in corn plots 

and in the same position in soybean plots.  The bulk density of each soil core was determined 

by drying the soil at 105°C for 48 hrs in a soil oven and dividing the dry soil weight by the 

wet volume of soil. 

 Soils at the two sites are generally loamy soils (Table 3.1).  Textures found, in order 

of decreasing predominance, are clay loam, loam, sandy clay loam, and sandy clay.  The 

most ubiquitous soil texture throughout both sites is clay loam, but at ISUAG, soils tend to be 

a bit loamier, while at ADW, soils tend to be more clayey.  In general, the bulk density of 

soils increases with depth throughout soil profiles, and the bulk density of soils at ADW 

increases to a greater degree through the profile than those at ISUAG.  Texture and bulk 

density properties of soils can affect how precipitation infiltrates and how it is retained and 

moves within a soil profile.  Analysis of variance (ANOVA) (α = 0.05) was used to test 
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whether texture varied significantly among treatments in the same field within a depth.  Only 

silt content at a depth of 20 cm in corn plots at ADW varied significantly compared to other 

treatments.  Because most comparisons in this research occur between plots within the same 

site, and because soil types are more consistent within sites, comparisons of soil water can be 

made with a fair amount of confidence.  

 
Table 3.1.  Soil characteristics at ADW and ISUAG. 
Site Treatment Depth (cm) Sand (%) Silt (%) Clay (%) Bulk Density (g/cm3) 
ADW C 0 - 10 46 20 34 0.95 

  10 - 20 46 19 35 -[a] 

  20 - 40 45 23 32 1.45 
  40 - 60 44 25 31 1.59 
rC 0 - 10 39 32 29 0.91 

10 - 20 36 32 32 -[a] 

20 - 40 36 32 32 1.45 
40 - 60 36 32 32 1.56 

S 0 - 10 37 34 30 0.96 
  10 - 20 37 33 31 1.41 
  20 - 40 34 36 31 1.37 
  40 - 60 37 33 31 1.50 
rS 0 - 10 37 34 30 0.92 

10 - 20 34 35 32 1.37 
20 - 40 34 34 33 1.39 
40 - 60 33 35 33 1.49 

ISUAG C 0 - 10 45 35 20 1.24 
  10 - 20 44 30 26 1.56 
  20 - 40 47 31 23 1.56 
  40 - 60 48 29 22 1.65 
rC 0 - 10 38 40 21 1.39 

10 - 20 38 36 25 1.52 
20 - 40 37 37 26 1.48 
40 - 60 41 33 26 1.59 

S 0 - 10 34 41 25 1.23 
  10 - 20 31 41 28 1.47 
  20 - 40 30 41 29 1.45 
  40 - 60 28 42 30 1.50 
rS 0 - 10 31 41 27 1.24 

10 - 20 32 41 27 1.44 
20 - 40 28 43 29 1.43 
40 - 60 28 42 30 1.52 

[a] Data not available. 
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Soil water measurements 

 In order to obtain continuous soil water data, a Decagon Em50 Data Logger was used 

in conjunction with five soil sensors (measuring dielectric permittivity of the soil), each with 

a 0.3 L volume of influence (Decagon Devices, Inc., Pullman, WA), installed at depths of 10, 

20, 40, 60, and 100 cm below the soil surface at quarter-row position in each plot.  A 5TE 

sensor was installed at the 10 cm depth, recording soil temperature, volumetric water content, 

and electrical conductivity (EC), while 5TM sensors were used for the remaining depths, 

measuring only soil temperature and volumetric water content.  Soil sensors were capable of 

measuring volumetric saturation values between 0% and 100% with an accuracy of ± 2% and 

a resolution of 0.08%.  A trench 60 cm deep and 20 cm wide was dug, and the top 4 soil 

sensors were installed parallel to the soil surface into the side wall of the trench.  For the 

deepest soil sensor, a smaller hole (40 cm deep and roughly 5 cm wide) was dug at the 

bottom of the larger trench, and the soil sensor at 100 cm was installed at the bottom 

perpendicular to the soil surface.  At ADW, measurements at all five depths were recorded in 

hourly increments from March 1 to March 20, and then sensors were turned off for field 

management; sensors were reactivated March 27, and data was recorded in increments of 5 

minutes from then until May 9, the end of the study period.  At ISUAG, soil measurements at 

all five depths were recorded in hourly increments from March 1 to April 2, and then in 

increments of 5 minutes until May 9.  At both sites, measurements continued past May 9, but 

these were not included in this analysis as the objective of this study was to understand soil 

water dynamics only during the period when rye was growing. 
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Study design, field management, and rye sampling 

 The study period was March 1 through May 9 of 2012.  These dates were chosen as it 

was the period when rye would be actively growing before it was terminated.  For the study, 

16 plots were chosen, eight each at ADW and ISUAG.  At each site, there were two 

replicates of the following four treatments: corn without rye (C), corn with rye (rC), soybeans 

without rye (S), and soybeans with rye (rS).  In each plot, corn and soybeans were planted in 

rotation, and so the main crop in each treatment name refers to the crop that would be planted 

following rye growth and termination in the spring of 2012.  At ADW, rye seed was drilled 

into the soil following corn and soybean harvest on October 12, 2011 at a rate of 100 kg/ha.  

On the day of termination, in each plot, rye was sampled with hand grass clippers along a 30 

cm long length of three adjacent rows at three randomly selected locations, dried, and 

weighed for biomass determination.  At ISUAG, rye was drilled into the soil following corn 

and soybean harvest on October 3, 2011 at a rate of 63 kg/ha.  On the day of termination, rye 

was sampled using a square with 0.3 m long edges; rye within the square was cut with a hand 

grass clippers, dried, and weighed for biomass determination.  Rye was terminated with 

glyphosate herbicide in the spring (Table 3.2).   

Table 3.2. Timing of cover crop management at ADW and ISUAG sites. 
 Site 
Management ADW ISUAG 
Rye seeding 12 Oct 2011 3 Oct 2011 
Termination of rye followed by corn 12 Apr 2012 6 Apr 2012 
Termination of rye followed by soybean 9 May 2012 11 May 2012 

 
 
Data analysis 

 SAS 9.3 software was used to determine differences among soil texture in C, rC, S, 

and rS treatments at both ADW and ISUAG (SAS Institute 2011).  ANOVA (α = 0.05) was 

used to separate means of the percentage of sand, silt and clay among treatments.   
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 ANOVA (α = 0.05) in SAS 9.3 was also used to determine differences among the 

means of cumulative infiltration during single rainfall events among treatments.  The soil 

water storage (SWS) from 0-100 cm was calculated using data from soil sensors, and based 

on the principle of soil water balance, the cumulative infiltration for a rainfall event can 

therefore be described as: 

� � ���� � ���� 

where I is the cumulative infiltration (mm), SWSf is the final SWS or the maximum after the 

rainfall event (mm), and SWSi is the initial SWS just before the rainfall event begins (mm).   

 SAS 9.3 software was used to determine differences among increases in soil water 

during rainfall events which occurred in the top soil layers (10 and 20 cm) among treatments 

at both ADW and ISUAG (SAS Institute 2011).  Below 20 cm, there was not a discernible 

trend in soil water content change, so these layers were not included in the analysis.  To 

quantify differences, the magnitude to which the volumetric soil water content increased after 

each rainfall event throughout the study period was calculated.  This value was found for 

each soil layer (10 and 20 cm) for each treatment (C, rC, S, and rS) after every rainfall event 

at each study site.  Visual analysis and equality of variances tests revealed that data was not 

normally distributed, so a natural log transformation of volumetric water contents was 

employed.  PROC GLM tests were used to test for differences among the four treatments 

within depths at each site.  These tests separated means using a least significant difference 

test at p = 0.05 (LSD0.05) to test for significant treatment effects on soil water contents at each 

depth. 
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Results and Discussion 

Weather 

 Air temperatures at both ADW and ISUAG were much above normals observed at 

NCDC stations throughout the study period, most notably during March when maximum 

daily temperatures were 10.3° C warmer than normal at ADW and 9.2° warmer than normal 

at ISUAG (Table 3.3).  During March, daily minimum temperatures were 7.9° warmer than 

normal at ADW and 7.4° warmer than normal at ISUAG; at both sites, this shifted average 

minimum temperatures from below to above freezing (Table 3.3).  In April, the warm trend 

continued, but it was less dramatic.  In the first nine days of May, the maximum and 

minimum daily temperatures were warmer again, but the minimums were further from 

normal than the maximums; minimums were 6.6° higher at ADW and 5.7° higher at ISUAG, 

while maximums were 3.8° higher at ADW and 3.5° higher at ISUAG. 

Table 3.3.  Air temperature and precipitation normals vs. observed weather at ADW and ISUAG sites 
during the study period.  Pocahontas is 19 km west of ADW, and AMES-8-WSW is 5 km northwest of 
ISUAG. 

 

Max. 
Temp. 
(°C) 

Min. 
Temp. 
(°C) 

Daily Avg. 
Temp. (°C) 

Precip. 
(mm) 

Max. 
Temp. 
(°C) 

Min. 
Temp. 
(°C) 

Daily Avg. 
Temp. (°C) 

Precip. 
(mm) 

Pocahontas Normal[a] AMES-8-WSW Normal[b] 
March 6.2 -4.8 0.7 55.9 8.2 -2.6 2.8 52.1 
April 14.9 1.8 8.3 78.5 16.4 3.4 9.9 88.9 
May 1-9 20.0 6.1 13.0 27.2 20.6 7.7 14.1 29.7 
Total 161.5    170.7 
ADW 2012 ISUAG 2012 
March 16.5 3.1 9.4 52.8 17.4 4.8 11.0 43.4 
April 18.0 4.3 10.8 102.6 17.9 5.8 11.8 84.3 
May 1-9 23.8 12.7 17.3 46.7 24.1 13.4 18.4 27.9 
Total 202.2    155.7 

[a] Source: Climatological Data for Iowa, National Climate Data Center for Pocahontas, IA, 1971-2000. 
[b] Source: Climatological Data for Iowa, National Climate Data Center for AMES-8-WSW, 1971-2000. 
 

Precipitation was nearer normal during the research period than was temperature.  

Observed precipitation was 125% and 91% of normal at ADW and ISUAG, respectively 
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(Table 3.3).  Rainfall followed the normal trend fairly closely except for a dry period during 

the first 12 days of April when only 0.8 mm of precipitation fell at ADW, and only 1.3 mm at 

ISUAG (Fig. 3.2).  At ADW, this dry period was followed by 2 periods of moderate rainfall 

(37 mm in 4 days and 47 mm in 4 days), while at ISUAG, 1 period of moderate rainfall (46 

mm in 3 days) followed the dry period, followed by a smaller amount of rainfall (21 mm in 4 

days) (Fig. 3.2). 
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Figure 3.2.  Normal cumulative precipitation vs. observed cumulative precipitation at the research sites 
during the study period (March 1 – May 9).  Source for normals: Climatological Data for Iowa, National 
Climate Data Center for Pocahnotas and AMES-8-WSW, 1971-2000. 
 
 
Precipitation at the two research sites was characterized by a wide range of events, ranging 

from very short and light rainfall events to long-lasting, intense storms (Fig. 3.3).  ISUAG 

saw less total precipitation during the study period, and, compared to ADW, this site also saw 

more of its rainfall come in events with lower intensity and smaller total amounts; half of the 

storms at ISUAG had storm totals of less than 5 mm of precipitation (Table 3.4). 
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Table 3.4. Frequency distribution of rainfall intensity (data taken from all 
periods when rain was actively falling) and the cumulative precipitation 
of single rainfall events at both research sites during the research period 
(21 rainfall events at ADW and 20 at ISUAG). 

Rainfall intensity (mm/h) 
<1 1-2.5 2.5-5 5-10 >10 

ADW (%) 52.3 24.3 15.0 6.5 1.9 
ISUAG (%) 61.3 23.6 8.5 5.7 0.9 

Precipitation during single rainfall event (mm) 
<5 5-10 10-25 >25 

ADW (%) 38.1 28.6 28.6 4.8 
ISUAG (%) 50.0 15.0 30.0 5.0 

 
 

 
 
 
 
 

 
 
 
 
 
Figure 3.3. The rainfall intensity (grey bars) and cumulative precipitation (black lines) of individual 
rainfall events at ADW (a) and ISUAG (b).  Rainfall events with a cumulative precipitation of less than 1 
mm were not included. 
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Rye yields 

 Rye yields at both sites prior to soybeans were more than twice that obtained when 

rye was followed by corn (Table 3.5).  At ADW, rye followed by soybean was allowed to 

grow 4.5 weeks longer than rye followed by corn, and at ISUAG, it was allowed 5.5 weeks 

more.  This time period was during the warmer interval in late April and May, when rye 

growth rate was most likely higher than in March and early April.  Overall, rye yields at 

ISUAG were about 7x higher than at ADW.  ISUAG saw less precipitation than normal and 

had less precipitation than ADW in 2012, but nighttime lows during April and May were 

about 1°C higher at ISUAG than at ADW, and in general, temperatures at ISUAG were 

higher, both of which could have assisted rye growth.  

Table 3.5. Average rye yields for 
2012 at ADW and ISUAG sites. 

 

 
 
Soil water dynamics 

 In order to more closely investigate how water redistributes through the soil profile, 

two different periods of rainfall were examined, both of which occurred at ISUAG. These 

events were examined because of the much greater amount of rye growth seen at the ISUAG, 

which increases the ability to see potential treatment effects on soil water dynamics.  The 

first period chosen is a single rainfall event of a moderate length, intensity, and with 

moderate cumulative event precipitation which occurred in the middle of the night on March 

29 and 30, before rye was terminated in either corn or soybean plots.  The event lasted 6 hrs, 

total precipitation was 11.9 mm, and the average rainfall intensity was 2 mm/hr, with a 

Site and 
treatment 

Rye yield 
(kg/ha) 

ADW rC 136 
ADW rS 322 
ISUAG rC 1039 
ISUAG rS 2207 
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maximum intensity of 6.9 mm/hr and a minimum of 0 mm/hr.  A one-week period without 

rain preceded this rainfall event.  In all plots (those preceding both corn and soybean), at the 

10 cm soil depth, soil water content in plots with rye increased to a greater degree than in the 

associated plots without rye (Fig. 3.4).  In the 20 and 40 cm depths, soil water content in 

plots without rye increased more than in plots with rye.  Soil water did not redistribute past 

the soil surface layer in plots with rye, whereas water percolated deeper into the soil in plots 

without rye.  In this case, it is possible that the rainfall was light enough that rye was able to 

use the soil water before the wetting front advanced to the deeper soil layers.  During this 

period, three out of the four plots with rye had an antecedent soil water content that was 

roughly equal to or greater than that of the plots without rye, and so it seems that this rainfall 

may have been light enough for the rye to use the water in ET before the wetting front could 

advance into the 20 and 40 cm soil depths.  The increase in total profile (0-100 cm) water 

storage was roughly equal for all plots (data not presented), so it is also possible that the top 

soil layer in rye plots was more able to retain water than the top soil layer in plots without 

rye; rye had been established five years previously, so rye root and associated microfauna 

growth may have had some effect on soil porosity and water retention within the top soil 

layer (Dabney 1998, Unger and Vigil 1998).  Also, in corn plots without rye, soils were quite 

sandy throughout the profile, which may have contributed to a quickly advancing wetting 

front.  Because water did not percolate deeply in rye plots, in a slightly drier year or a year 

with a moderate total amount of rainfall and mainly moderately intense rainfall events with 

moderate rainfall totals, drainage could be decreased in rye plots, which would aid in 

decreasing NO3-N leaching.  In wetter years, as the next rainfall period example will show, 

rye could have the opposite effect, however. 



 

Figure 3.4.  Hourly rainfall intens
without and with rye for the 3/29
on the right).  Soil water content measurements were taken at 1 hr intervals.
 

The second period to 

April 13 and April 14-15; rye was still growing in 

41 

Figure 3.4.  Hourly rainfall intensity and volumetric soil water content of soils at ISUAG in plots 
without and with rye for the 3/29-30 rainfall event (preceding corn on the left, and preceding soybe

content measurements were taken at 1 hr intervals. 

 be examined was a sequence of two rainfall events occurring on 

15; rye was still growing in plots preceding soybeans, but it had been 

content of soils at ISUAG in plots 
g corn on the left, and preceding soybean 

rainfall events occurring on 

plots preceding soybeans, but it had been 



42 
 

terminated 1 week prior in plots preceding corn, although rye residue was still present.  The 

April 13 event lasted 7 hrs, total precipitation was 11.2 mm, and the average rainfall intensity 

was 1.6 mm/hr, with a maximum intensity of 3 mm/hr and a minimum of 0.5 mm/hr.  This 

event was similar to the March 29-30 event discussed above, except that the rainfall was 

more evenly distributed throughout the event.  The second event during this period, occurring 

April 14-15, lasted 14 hrs, with a total precipitation of 34.5 mm and an average rainfall 

intensity of 2.5 mm/hr with a maximum intensity of 13.7 mm/hr and a minimum of 0 mm/hr.  

Before this entire period, there had been a 6-day dry period, but the rainfall 6 days before 

was very light, so the dry period was effectively 2 weeks long.  Soil water from the April 13 

event was still redistributing through the profile when the April 14-15 event began, and this 

antecedent soil water affected soil water dynamics during and after the larger event.   

In plots preceding soybean (Fig. 3.5), for the April 13 event, soil water reacted 

similarly as during the March 29-30 event.  Plots with rye had similar or less soil water 

content as compared to the plot without rye, but at the 10 cm depth, soil water content 

increased more in plots with rye, while at the 20 cm depth, soil water content increased more 

in the plot without rye.  During and after the April 14-15 event, however, at all depths, (10-

100 cm), soil water content increased equally or to a greater degree in plots with rye as 

compared to the plot without rye.  The amount and intensity of rain during this period was 

much greater than in the last two storms described.  It is likely that this amount of 

precipitation saturated the top soil layers and came too quickly for the rye to utilize through 

ET.  Because the increase in water storage through the profile due to rainfall was greater in 

plots with rye (80.2 mm in rS versus 59.0 in S), a greater amount of precipitation entered the 

soil and redistributed throughout the whole soil profile to 100 cm, suggesting that infiltration 
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was greater in rye plots.  In wetter springs with more intense precipitation, rye may increase 

soil water content throughout the whole profile, and this wetting front would reach drainage 

tile more often; therefore in wet years with intense precipitation events, rye, through 

increased infiltration, may actually increase drainage if rye growth is not sufficient to use the 

excess water in ET.  This may be offset partially by decreased runoff, however. 

In plots preceding corn (Fig. 3.6), where rye residue was present, soil water behavior 

was similar to that in plots preceding soybean, except at the 60 cm depth, where the plot 

without rye had the largest increase in soil water content.  In all the other depths, the plot 

without rye had greater or similar antecedent soil water content as compared with plots with 

rye, but at a 60 cm depth, this plot had a lower antecedent soil water content, which may 

account for the difference in its response to the precipitation event.  The response shown in 

these plots suggests that even after rye is killed, its residue and possibly its effects on the soil 

structure may increase infiltration and therefore increase soil water storage, since at this time 

rye will not decrease soil water content after the precipitation event because it is not actively 

using the water for growth (Unger and Vigil 1998). 

 

 

 



 

Figure 3.5. Hourly rainfall intensity and volumetric soil water
water content measurements were taken at 5 min intervals.  Data is absent from last hours of 4/16 from rS plot 1 at 60 cm depth bec
sensor malfunction. 
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Figure 3.6. Hourly rainfall intensity and volumetric soil water
was terminated April 6).  Soil water content measurements were taken at 5 min intervals.
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test returned an F-Value of 0.06 with a p

with a p-value of 0.703, so the

of infiltration at either site.  There was a visua

precipitation amounts (Fig. 3.7)

infiltration among treatments, visually, there is an increasing trend in the differences in 

infiltration among treatments as event precipitation 

rainfall event (April 19) of 38.1 mm at ADW, cumulative infiltration values were 30.4, 34.0, 

21.4, and 30.5 mm for C, rC, S, and rS

14-15) of 34.5 mm at ISUAG, cumulative infiltration values were 58.0, 63.2, 59.0, and 80.2 
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more intense storms (Mishra et al. 2010
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Figure 3.7. Cumulative infiltration during
for ADW (a) and ISUAG (b).  
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indicates that a rye cover crop may be able to increase the amount of water

stored in the top layers of soil for a moderate rainfall event and in all soil from 0

so ANOVA was used to determine treatment differences in the 

magnitude of infiltration through the soil profile from 0-100 cm at both sites.  At ADW, the 

Value of 0.06 with a p-value of 0.979, and at ISUAG, an F

value of 0.703, so there were no significant treatment differences in the magnitude 

There was a visual trend of increasing infiltration with increasing 

(Fig. 3.7).  Although for all rainfall events there were no differences in 

infiltration among treatments, visually, there is an increasing trend in the differences in 

ng treatments as event precipitation increases (Fig. 3.7).  For the heaviest 

nfall event (April 19) of 38.1 mm at ADW, cumulative infiltration values were 30.4, 34.0, 

21.4, and 30.5 mm for C, rC, S, and rS, respectively.  For the heaviest rainfall event (April 

15) of 34.5 mm at ISUAG, cumulative infiltration values were 58.0, 63.2, 59.0, and 80.2 

mm for C, rC, S, and rS, respectively.  As climate change may be accompanied by larger, 

Mishra et al. 2010), use of rye may have a greater positive effect on 

Cumulative infiltration during  single rainfall events vs. precipitation of a single rainfall event

be able to increase the amount of water 

stored in the top layers of soil for a moderate rainfall event and in all soil from 0-100 cm for 

was used to determine treatment differences in the 
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value of 0.979, and at ISUAG, an F-Value of 0.47 

no significant treatment differences in the magnitude 

l trend of increasing infiltration with increasing 
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At ADW, cumulative infiltration over the entire research period was greatest in plots 

with rye, and infiltration to precipitation ratios (I:P) were 0.57, 0.69, 0.51, and 0.62 for C, rC, 

S, and rS, respectively (Fig. 3.8).  In comparison to ADW, at ISUAG, a smaller amount of 

rainfall fell, but infiltration was greater.  Infiltration was high in rC, S, and rS plots, with I:P 

ratios of 0.85, 1.22, 1.34, and 1.42 for C, rC, S, and rS, respectively.  An I:P ratio above 1 

signifies that infiltration exceeded precipitation; the ISUAG site has slopes up to 5%, higher 

than at ADW, which could result in run-on.  In plots with rye, preferential flow due to 

macropores created by increased numbers of soil fauna could also contribute to the large 

amounts of infiltration (Dabney 1998, Unger and Vigil 1998). 

 

 

Figure 3.8. Cumulative precipitation and infiltrati on over entire study period at ADW (a) and ISUAG 
(b).  I:P is infiltration to precipitation ratio.  At ADW, precipitation (totaling 10.2 mm) and infilt ration 
for rainfall events on 3/20 and 3/22 are omitted due to removal of sensors for field management. 
 

 

 

A least squares difference test was used to investigate the difference in the magnitude 

of volumetric soil water content increase due to rainfall events at both sites at the 10 and 20 

cm depths (Table 3.6). 
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Table 3.6.  Differences between mean magnitude of volumetric 
soil water content increase following 21 rainfall events at ADW 
and 20 at ISUAG for 10 and 20 cm soil depths. 

Mean magnitude of volumetric soil water 
content  increase following rainfall event 
(cm3/cm3)[a] 

ADW ISUAG 
Treatment 10 cm 20 cm 10 cm 20 cm 
C 0.029a 0.016a 0.016b 0.010b 
rC 0.026a 0.016a 0.026ab   0.018ab 
S 0.018a 0.013a 0.025b 0.015ab 
rS 0.026a 0.013a 0.052a 0.018a 

[a] Means within depths at sites (i.e., within columns) followed 
by the same letter are not significantly different at p = 0.05. 

  
At ADW, there were no differences among treatments at either the 10 or 20 cm depths.  At 

the 10 cm depth at ISUAG, rS had a significantly higher average rise in magnitude of soil 

water content as compared to S and C, but not rC.  At the 20 cm depth, rS only had a 

significantly higher average rise in soil water content as compared to C.  Although soil water 

content in the upper soil layers increased to a greater magnitude after rainfall events in plots 

with rye at ISUAG, cumulative infiltration over the research period did not increase 

significantly in rye plots.  Rye may have increased available water storage capacity in the top 

soil layers through transpiration and modification of the soil matrix (Dabney 1998, Kaspar 

and Singer 2011, Unger and Vigil 1998).  Meisinger et al. (1991) estimated that the 

production of 2200 kg/ha of winter cover crop aboveground biomass (approximately the 

same amount of rye biomass produced in rS at ISUAG) would use 50 to 60 mm of water.  

This use of water in the upper soil layers by rye would decrease the soil’s volumetric water 

content and allow for more infiltration in the upper layers of the soil.  In multiple cases (Figs. 

3.4, 3.5, 3.6), volumetric water contents in the upper soil layers in rye plots increased to a 

greater degree but also to a greater absolute amount as compared to plots without rye, 

indicating that the soil water-holding capacity is higher in upper soil layers in plots with rye, 

possibly caused by modifications to the soil structure through rye root growth and greater soil 
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fauna activity (Dabney 1998, Unger and Vigil 1998).  These modifications and greater water 

use would be expected to be the greatest in the top soil layers, as most rye root growth occurs 

within the top 25-35 cm of the soil (Nalborczyk and Sowa 2001). 

 

Conclusions 

 At ISUAG, a significant increase in the magnitude of rise of soil water content after 

rainfall events in the top soil layers was found in plots with rye that would be planted to 

soybean, although no significant change in infiltration over the soil profile (0-100 cm) was 

found.  This pattern indicates that soil water storage in the upper soil layers (to 20 cm) may 

be increased by rye through modifications to soil water holding capacity, caused by increased 

transpiration and greater soil fauna activity (Dabney 1998, Unger and Vigil 1998).  Once 

rainfall infiltrated, the behavior of its redistribution throughout the soil profile varied among 

different types of rainfall events.  Therefore, both land cover and rainfall characteristics 

affect how precipitation is redistributed through the soil profile as soil water.  Depending on 

rainfall patterns, rye may not decrease soil water for main crop use.  Because of its ability to 

increase infiltration and dry the soil through transpiration, it may only increase soil water 

variability.  In years when most rainfall events are moderate to light, it is likely that rye 

would decrease subsurface drainage and NO3-N leaching, as precipitation would likely not 

percolate deeper than the top soil layers, unless rainfall events occurred very close together.  

This decrease in drainage could mediate changes in the baseflow of rivers, as well, as long as 

sufficient amounts of cover were planted in watersheds.  If more intense rainfall events were 

to occur, as is possible with climate change, it is possible that soil water throughout the 

whole soil profile could increase greatly under rye; in order to ensure high main crop yields, 
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cover crop termination could strategically occur after periods of rainfall, as long as field 

conditions were favorable.  An increase in soil water content throughout the soil profile could 

also increase drainage, as long as rainfall events occurred often enough.  Some of this could 

be offset by decreased runoff due to increased infiltration in fields with rye.  The results of 

this study indicate that different types of rainfall events elicit different responses in soil water 

dynamics, and so, because climate change may affect precipitation patterns, more research 

should be done to understand how shifts in these patterns will change how rye affects 

infiltration and redistribution through the soil profile.  Also, because weather, soil properties, 

rye growth, and land and hydrological management will affect soil water dynamics, more 

research over a larger geographical area and with different management practices should be 

pursued. 
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 CHAPTER 4. EFFECTS OF RYE COVER CROP ON SOIL WATER CONTENT 
AND SOIL WATER STORAGE DURING THE SPRING AND EARLY SUMMER IN 

A DROUGHT YEAR 
 
 
Results from this paper to be added to results from research at Purdue University.  Combined 

results to be submitted as a paper for a special issue of the Journal of Soil and Water 
Conservation. 

 
 

Abstract 

Land use and management changes have altered hydrological and biogeochemical 

cycles in the Upper Midwest.  Cover crops such as cereal rye (Secale cereale L.) are a 

promising way to mediate these changes through increased infiltration and decreased erosion, 

drainage, and NO3-N leaching.  It is possible that use of a rye cover crop may decrease row 

crop yields, however, partially through decreased soil water.  The objective of this paper is to 

determine how a rye cover crop affects soil water content and soil water storage during the 

spring as a living land cover and during the early summer as a mulch in plots planted to a 

corn-soybean rotation during a drought year.  Continuous soil water content measurements at 

five depths (10, 20, 40, 60 and 100 cm) at 1-hr and 5-min intervals from March 1 to July 10 

of 2012 were taken in two fields, one in northwest and another in central Iowa, using four 

treatments: corn without rye (C), corn with rye (rC), soybeans without rye (S), and soybeans 

with rye (rS).  The main crop in the treatment name denotes the crop that would be planted 

following rye growth and termination.  A repeated measures ANOVA test was used to 

determine whether the presence of rye changed soil water contents at two depths (0-10 cm 

and 10-20 cm), or soil water storage from 0 to 80 cm.  This analysis was done for two 

different periods: the rye growth period (March 1 – main crop planting) and the main crop 

growth period (one week after main crop planting – July 10).  At the site in northwest Iowa, 
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rye had no effect.  At the site in central Iowa, during the rye growth period, soil water content 

at a depth of 0-10 cm and soil water storage were significantly higher in rye plots (0.029 cm3 

cm-3 and 1.9 cm, respectively).  During the main crop growth period, soil water contents at 

depths of 0-10 cm and 10-20 cm were 0.041 and 0.033 cm3 cm-3 higher, respectively, in rye 

plots.  Therefore, at both sites, rye did not have a negative effect on soil water content or soil 

water storage. 

 

Introduction 

Because of environmental concerns such as changes in hydrological systems, climate 

change, and nutrient leaching, the use of cover crops in agriculture is of interest.  Cover crops 

include a wide range of types and species of plants and are used as befits the particular 

functionality needed and the geographical area in which they are planted, but generally, a 

cover crop is a living ground cover planted into or after a main crop and is usually terminated 

before the planting of the next main crop (Hartwig and Ammon 2002).  In the Upper 

Midwest of the United States, a large percentage of agricultural land is planted to corn and 

soybeans, and this land lays fallow during the late fall, winter, and early spring.  Because 

vegetation cover has a large effect on soils and hydrological processes within a landscape 

(Marin et al. 2000, Wang et al. 2013), cover crops could be part of a solution to remedy the 

agroecological problems mentioned above, which are caused in part by a lack of vegetative 

cover during the non-growing season (Dabney 1998, De Bruin et al. 2005, Hartwig and 

Ammon 2002, Islam et al. 2006, Unger and Vigil 1998).  Cover crops are able to influence 

the landscape  above and below ground (Islam et al. 2006) through their canopy’s effects on 

microclimate and soil temperatures (Dabney 1998, Unger and Vigil 1998), ability to increase 
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infiltration (Dabney 1998, Huang et al. 2013, Islam et al. 2006, Unger and Vigil 1998), and 

root system effects on soil structure and water-holding capacity (Hartwig and Ammon 2002).  

These effects alter soil water dynamics, which are important in mediating changes in 

hydrological cycles, nutrient leaching, and possibly effects of climate change on crop 

production. 

Soil water dynamics are important at multiple scales.  At a regional scale, soil water 

and the atmosphere work together to affect climate, and soil water is one factor that regulates 

the hydrological cycle (Asbjornsen et al. 2007, De Lannoy et al. 2006).  At a smaller scale, in 

a field, soil water can influence runoff and erosion (De Lannoy et al. 2006).  In the field, soil 

water also influences how precipitation is partitioned between ET and deep infiltration (Daly 

and Porporato 2005), which will affect crop growth and subsurface drainage.  Because soil 

water is such an important factor in determining climate, hydrology, and crop growth, 

researchers seek to understand what influences soil water and its variability.  Soil water 

content varies widely over time and space, even at small geographic scales (Gómez-Plaza et 

al. 2000), and this variability is caused by many different factors (Levia and Frost 2003, 

2006) such as landscape characteristics (Bergkamp 1998, De Lannoy et al. 2006, Fu et al. 

2003, Gómez-Plaza et al. 2000, Svetlitchnyi et al. 2003), soil properties (Fu et al. 2003, 

Hawley et al. 1983), rainfall characteristics (Fu et al. 2003, Sala et al. 1992, Wang et al. 

2008), vegetation and land use (De Lannoy et al. 2006, Fu et al. 2000, Roux et al. 1995, 

Wang et al. 2008), and field management (Ewing et al. 1991).   

Because cover crops grow during periods when agricultural land would normally lay 

fallow, their use has the ability to alter the variability of soil water content.  One cover crop 

of interest in the Upper Midwest is cereal rye (Secale cereale L.).  It is particularly well 
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suited for use in this region because it is extremely weather hardy (Bushuk 2001, De Bruin et 

al. 2005) and produces a high volume of biomass in the early spring (De Bruin et al. 2005).  

Because rye is able to germinate early, and a large amount of drainage and NO3-N leaching 

occur during the early spring period in the Upper Midwest, rye is a promising way to reduce 

these deleterious effects of row cropping through early season ET (Qi et al. 2011b).  In a 

three-year study in Iowa, in May, ET averaged 2.4 and 1.5 mm d-1 in rye plots and bare plots, 

respectively, an increase of 60%  in rye plots (Qi and Helmers 2010).  The ability to decrease 

runoff, subsurface drainage, and to use excess soil N allows rye to decrease NO3-N leaching 

(De Bruin et al. 2005, Ditsch et al. 1993, McCracken et al. 1994).  There may be tradeoffs 

when integrating rye into a row crop system, however, as rye has the potential to decrease 

main crop yields through its allelopathic compounds (Clark et al. 1997) and through 

depletion of soil water and N early in the growing season (Qi and Helmers 2010).  

Conflicting findings show that rye does (Qi and Helmers 2010) or does not (Clark et al. 1997, 

Krueger et al. 2011) decrease growing season (for both cover crop and main crop seasons) 

soil water content and soil water storage; this depends on weather conditions, cover crop 

management, and the total water holding capacity of the root-accessible portion of the soil 

(Kaspar and Singer 2011).  Rye may reduce soil water content only during the spring, 

however, with soil water contents returning back to levels expected in fields consisting of 

only row crops, because water use by corn is delayed and so there is lower ET during the 

corn growing season (Krueger et al. 2011), or because rye residue is able to decrease 

evaporation (Unger and Vigil 1998).  In general, though, soil water depletion is expected to 

be highest in years when rye biomass is the greatest (Baker and Griffis 2009).   
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The production of corn and soybeans in Iowa is an incredibly important part of 

Iowa’s economy, as the total value of production for the two crops together was 

approximately $20 billion in 2011 (Iowa Ag Stats 2011).  As climate change will most likely 

affect precipitation timing and intensity and temperatures, possibly intensifying the effects of 

wet and dry periods, it is important to understand how a potentially environmentally 

beneficial rye cover crop may affect soil water, which may affect corn and soybean yields 

throughout the Midwestern United States.  In Iowa, the spring of 2012 was exceptionally 

warm, and the summer was very hot and dry.  Researching this period presents an 

opportunity to understand how cropping systems with rye may react under extreme dryness, 

which may become more and more common with climate change.  As such, the objective of 

this paper is to determine how a rye cover crop affects soil water content and soil water 

storage during the spring as a living land cover and during the early summer as a mulch in 

plots planted to corn and soybeans in a corn-soybean rotation during a drought year.  

 

Materials and Methods 

Research sites 

 
Figure 4.1. Location of ADW and ISUAG sites in Iowa. 

 



60 
 

 The field study was performed at two sites in Iowa: the Agricultural Drainage Water 

Research Site (ADW) and the Iowa State University Agronomy and Agricultural Engineering 

Research Farm (ISUAG) (Fig. 4.1).  Two sites were used in order to compare results where 

climate and, therefore, rye growth would be different.  ADW is located in northwest Iowa 

near Gilmore City in Pocahontas County (42°74’77” N, 94°49’52” W).  The most ubiquitous 

soils are Nicollet (fine-loamy, mixed, superactive, mesic Aquic Hapludoll) and Webster and 

Canisteo (fine-loamy, mixed, superactive, mesic Typic Endoaqualls) clay loams with 3% to 

5% organic matter, having an average slope of 0.5% to 1.5%.  They are naturally poorly to 

naturally somewhat poorly drained glacial till soils.  The total research area is 4.5 ha, of 

which 3.8 ha are used as experimental plots.  There are seventy-eight 0.05 ha plots (15 x 38 

m), each containing subsurface tile drainage.  An automatic on-site meteorological station 

monitored weather conditions, including rainfall.  Rainfall patterns at the site were compared 

to long-term averages (30 years from 1971-2000) determined from readings at the National 

Climate Data Center station Pocahontas (IA6719) located 19 km west of the research site. 

 ISUAG is located in central Iowa near Boone in Boone County (42°00’94” N, 

93°78’06” W).  The most ubiquitous soils are Clarion loam (fine-loamy, mixed, superactive, 

mesic Typic Hapludoll) with an average slope of 2% to 5%, Nicollet loam (fine-loamy, 

mixed, superactive, mesic Aquic Hapludoll) with an average slope of 1% to 3%, and Webster 

silty clay loam (fine-loamy, mixed, superactive, mesic Typic Endoaquoll) with an average 

slope of 0% to 2%.  These soils are naturally poorly to naturally moderately well drained 

glacial till soils.  The total research area is 0.9 ha, divided into 0.009 ha (6 x 15.2 m) plots.  

The amount and placement of subsurface drainage at ISUAG is unknown, as the site was 

previously used as an agricultural field.  An automatic on-site meteorological station 
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monitored weather conditions.  This station ([A130209] Ames) is a part of the Iowa 

Environmental Mesonet, Iowa State University Agricultural Climate series.  Rainfall patterns 

at the site were compared to long-term averages (30 years from 1971-2000) determined from 

readings at the National Climate Data Center station AMES-8-WSW (IA0200) located 

approximately 5 km northwest of the research site. 

 

Soil characteristics 

 In each plot, 15-20 soil samples for texture analysis were taken to a depth of 60 cm 

using a 2.5 cm diameter metal push probe.  The percentages of sand, silt, and clay for depth 

increments 0-10 cm, 10-20 cm, 20-40 cm, and 40-60 cm were determined.  To determine the 

bulk density of the soils, a hand core system with soil core rings with a height and diameter 

of 7.6 cm were used.  In the spring of 2011, in each plot, three replicates of each of the 

following depths were sampled: 0-10 cm, 10-20 cm, 20-40 cm, and 40-60 cm.  Samples were 

taken at the quarter row position (out of machinery wheel tracks) in corn plots and in the 

same position in soybean plots.  The bulk density of each soil core was determined by drying 

the soil at 105°C for 48 hrs in a soil oven and dividing the dry soil weight by the volume of 

field sampled soil. 

 Soils at the two sites are generally loamy soils (Table 4.1).  Textures found, in order 

of decreasing predominance, are clay loam, loam, sandy clay loam, and sandy clay.  The 

most ubiquitous soil texture throughout both sites is clay loam, but at ISUAG, soils tend to be 

a bit loamier, while at ADW, soils tend to be more clayey.  In general, the bulk density of 

soils increases with depth throughout soil profiles, and the bulk density of soils at ADW 

increases to a greater degree through the profile than those at ISUAG.  Texture and bulk 
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density properties of soils can affect how precipitation infiltrates and how it is retained and 

moves within a soil profile.  Using ANOVA (α = 0.05) to test whether texture varied 

significantly among treatments in the same field within a depth, only silt content at a depth of 

20 cm in corn plots at ADW varied significantly compared to other treatments.   

Table 4.1.  Soil characteristics at ADW and ISUAG. 
Site Treatment Depth (cm) Sand (%) Silt (%) Clay (%) Bulk Density (g/cm3) 
ADW C 0 - 10 46 20 34 0.95 

  10 - 20 46 19 35 -a 

  20 - 40 45 23 32 1.45 
  40 - 60 44 25 31 1.59 
rC 0 - 10 39 32 29 0.91 

10 - 20 36 32 32 -[a] 

20 - 40 36 32 32 1.45 
40 - 60 36 32 32 1.56 

S 0 - 10 37 34 30 0.96 
  10 - 20 37 33 31 1.41 
  20 - 40 34 36 31 1.37 
  40 - 60 37 33 31 1.50 
rS 0 - 10 37 34 30 0.92 

10 - 20 34 35 32 1.37 
20 - 40 34 34 33 1.39 
40 - 60 33 35 33 1.49 

ISUAG C 0 - 10 45 35 20 1.24 
  10 - 20 44 30 26 1.56 
  20 - 40 47 31 23 1.56 
  40 - 60 48 29 22 1.65 
rC 0 - 10 38 40 21 1.39 

10 - 20 38 36 25 1.52 
20 - 40 37 37 26 1.48 
40 - 60 41 33 26 1.59 

S 0 - 10 34 41 25 1.23 
  10 - 20 31 41 28 1.47 
  20 - 40 30 41 29 1.45 
  40 - 60 28 42 30 1.50 
rS 0 - 10 31 41 27 1.24 

10 - 20 32 41 27 1.44 
20 - 40 28 43 29 1.43 
40 - 60 28 42 30 1.52 

a Data not available. 
 

 

Study design, field management, and rye sampling 

 The study period was March 1 through July 10 of 2012.  This was split into two 

periods.  The first was the “rye growth period”, which began with the start of appreciable rye 
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growth (March 1) until planting of the main crop (corn or soybean).  The second period was 

the “main crop growth period”, which began one week after main crop planting and ended 

July 10.  A one week gap in between the two periods was allowed for germination, and 

because soil temperatures were unseasonably warm, it is likely that main crops began 

growing quickly.  For the study, 16 plots were chosen, eight each at ADW and ISUAG.  A 

randomized complete block design was used.  At each site, there were two replicates of the 

following four treatments: corn without rye (C), corn with rye (rC), soybeans without rye (S), 

and soybeans with rye (rS).  In each plot, corn and soybeans were planted in rotation, and so 

the main crop in each treatment name refers to the crop that would be planted following rye 

growth and termination in the spring of 2012.  At ADW, rye was drilled in following corn 

and soybean harvest on October 12 at a rate of 100 kg/ha.  On the day of termination, in each 

plot, rye was sampled with hand grass clippers along a 30 cm long length of three adjacent 

rows at three randomly selected locations, dried, and weighed for biomass determination.  At 

ISUAG, rye was drilled in following corn and soybean harvest on October 3 at a rate of 63 

kg/ha.  On the day of termination, rye was sampled using a square with 0.3 m long edges; rye 

within the square was cut with a hand grass clippers, dried, and weighed for biomass 

determination.  Rye was terminated with glyphosate herbicide in the spring (Table 4.2).   

Table 4.2. Timeline of research and field management at ADW and ISUAG sites. 
  Site 
Timeline  ADW  ISUAG 
  Before corn Before soybean  Before corn Before soybean 
Rye seeding  12 Oct 2011 12 Oct 2011  3 Oct 2011 6 Oct 2011 

Period 1: Rye growth 
period 

 1 Mar 2012 – 
10 May 2012 

1 Mar 2012 –         
16 May 2012 

 1 Mar 2012 –   
26 Apr 2012  

1 Mar 2012 –    
11 May 2012 

Termination of rye  12 Apr 2012 9 May 2012  6 Apr 2012 25 Apr 2012 

Planting of main crop  10 May 2012 16 May 2012  26 Apr 2012 11 May 2012 

Period 2: Main crop 
growth period 

 17 May 2012 -   
10 July 2012 

23 May 2012 -      
10 July 2012 

 3 May 2012 –   
10 July 2012 

18 May 2012 -    
10 July 2012 
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Soil water measurements 

 In order to obtain soil water content data, a Decagon Em50 Data Logger was used in 

conjunction with five soil water content sensors (Decagon Devices, Inc., Pullman, WA), 

installed at depths of 10, 20, 40, 60, and 100 cm below the soil surface at quarter-row 

position in each plot.  A 5TE sensor was installed at the 10 cm depth, recording soil 

temperature, volumetric water content, and electrical conductivity (EC), while 5TM sensors 

were used for the remaining depths, measuring only soil temperature and volumetric water 

content.  A trench 60 cm deep and 20 cm wide was dug, and the top 4 soil sensors were 

installed parallel to the soil surface into the side wall of the trench.  For the deepest soil 

sensor, a smaller hole (40 cm deep and roughly 5 cm wide) was dug at the bottom of the 

larger trench, and the soil probe at 100 cm was installed at the bottom, perpendicular to the 

soil surface.  At ADW, measurements at all five depths were recorded in hourly increments 

from March 1 to March 20, and then sensors were turned off for field management; sensors 

were reactivated March 27, and data was recorded in increments of 5 minutes from then until 

July 10, the end of the study period.  At ISUAG, soil measurements at all five depths were 

recorded in hourly increments from March 1 to April 2, and then in increments of 5 minutes 

until July 10.  At both sites and all depths, daily average soil water content was calculated for 

analysis.   

 
Data analysis 

To determine differences in soil water contents and soil water storage (SWS) among a 

corn-soybean rotation with and without a winter rye cover crop, soil water content and SWS 

were analyzed using a mixed model repeated measure analysis of variance (RPM-ANOVA) 

with day of year as the repeated factor.  Statistical analyses were performed separately 
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among the two field locations, two depths, and two time periods.  Covariate structure 

selection was based on smallest value of AICC and BIC fit statistics; an ARMA (1,1) 

covariate structure was used for all analyses.  All statistics were performed in SAS (version 

9.3, SAS Institute, Inc, Cary, NC) and means were separated at the 0.05 level. 

 

Results and Discussion 

Weather 

Air temperatures at both ADW and ISUAG were much above normal throughout the 

study period, most notably during March when maximum daily temperatures were 10.3° 

warmer than normal at ADW and 9.2° warmer than normal at ISUAG (Table 4.3).  During 

March, daily minimum temperatures were 7.9° warmer than normal at ADW and 7.4° warmer 

than normal at ISUAG; at both sites, this shifted average minimum temperatures from below 

to above freezing.  Throughout the rest of the study period, the warm trend continued, but 

temperatures were nearer to normal.  Temperatures during the month of June were closest to 

normal.  The average high temperature from July 1-10 at both sites exceeded 30° C.  Over the 

entire research period, precipitation was much below normal (Table. 4.3).  For the research 

period, observed precipitation was 80% and 54% of normal at ADW and ISUAG, 

respectively.  During the months of March and April (roughly the rye growth period), 

observed precipitation was much closer to normal, 113% and 86% of normal at ADW and 

ISUAG, respectively.  From May 1 – July 10 (roughly the main crop growing period), 

observed precipitation was only 63% and 38% of normal at ADW and ISUAG, respectively.  

Conditions were generally wetter at ADW with some periods of above average precipitation 

in late April and May, while precipitation was below normal for the entire research period at 
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ISUAG (Fig. 4.2).  At both sites, however, a very dry period began around the second week 

of May and persisted until mid-June.  After a short period of rainfall, a very dry period began 

at the end of June and persisted through the end of the study period.  By the end of the 

research period, the U.S. Drought Monitor indicated that both sites were under Moderate 

Drought (D1) conditions; drought conditions worsened throughout the summer, and by mid-

September, when main crops were harvested, both sites experienced Extreme Drought (D3) 

conditions (2012).  

 

Table 4.3. Air temperature and precipitation normals vs. observed weather at ADW and ISUAG sites 
during the study period.  Pocahontas is 19 km west of ADW, and AMES-8-WSW is 5 km northwest of 
ISUAG. 

Max. 
Temp. 
(°C) 

Min. 
Temp. 
(°C) 

Daily Avg. 
Temp. (°C) 

Precip. 
(mm) 

Max. 
Temp. 
(°C) 

Min. 
Temp. 
(°C) 

Daily Avg. 
Temp. (°C) 

Precip. 
(mm) 

Pocahontas Normala AMES-8-WSW Normalb 
March 6.2 -4.8 0.7 52.6 8.2 -2.6 2.8 53.6 
April 14.9 1.8 8.3 85.1 16.4 3.4 9.9 94.5 
May 21.8 9.2 15.5 104.1 22.8 10.1 16.5 122.2 
June 27.3 14.8 21.1 124.5 27.5 15.5 21.5 125.9 
July 1-10 29.4 16.7 23.1 39.1 29.4 17.7 23.3 41.2 
Total 405.3 437.4 
ADW 2012 ISUAG 2012 
March 16.5 3.1 9.4 52.8 17.4 4.8 11.0 43.4 
April 18.0 4.3 10.8 102.6 17.9 5.8 11.8 84.3 
May 25.3 11.2 18.3 68.1 25.3 12.6 19.1 49.8 
June 28.1 15.2 21.9 98.0 28.6 16.4 22.7 56.4 
July 1-10 31.9 19.3 25.7 1.8 33.2 20.5 26.8 2.8 
Total 323.3 236.7 

a Source: Climatological Data for Iowa, National Climate Data Center for Pocahontas, IA, 1971-2000. 
b Source: Climatological Data for Iowa, National Climate Data Center for AMES-8-WSW, 1971-2000. 
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Figure 4.2. Normal cumulative precipitation vs. observed cumulative precipitation at the research sites 
during the study period (March 1 – July 10).  Source for normals: Climatological Data for Iowa, 
National Climate Data Center for Pocahontas and AMES-8-WSW, 1971-2000. 

 
 
Rye yields 

 Rye yields at both sites were slightly over 2x higher in plots with rye followed by 

soybean as with those followed by corn (Table 4.4).  At ADW, rye followed by soybean was 

allowed to grow 4.5 weeks longer than rye followed by corn, and at ISUAG, it was allowed 

5.5 weeks more.  This time period was during the warmer interval in late April and May, 

when rye growth rate was most likely higher than in March and early April.  Overall, rye 

yields at ISUAG were about 7x higher than at ADW.  ISUAG saw less precipitation than 

normal and had less precipitation than ADW in 2012, but nighttime lows during April and 

May were about 1°C higher at ISUAG than at ADW, and in general, temperatures at ISUAG 

were higher, both of which could have assisted rye growth.   

Table 4.4. Average rye yields for 
2012 at ADW and ISUAG sites. 

 

 
 
 

Site and 
treatment 

Rye yield 
(kg/ha) 

ADW rC 136 
ADW rS 322 
ISUAG rC 1039 
ISUAG rS 2207 
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Soil water 

 At ADW, neither the main crop (corn or soybean) nor the presence of rye had any 

significant effects on soil water content or SWS during the rye growth or main crop growth 

periods (Table 4.5).  The small amount of rye growth (Table 4.4) at ADW most likely did not 

significantly affect infiltration or evaporation during the rye growth period, and during the 

main crop growth period, there was most likely not enough of a rye mulch cover to 

significantly aid in conserving soil water.  Although there were no significant differences in 

soil water content at ADW, in the 10-20 cm depth during the rye growth period, and in both 

depths during the main crop period, there was a smaller amount of water present in plots with 

rye, although SWS was greater in plots with rye during both periods.  It is possible that the 

small amount of rye growth was not able to decrease evaporation, and that this growth 

depleted water in the top soil layers through transpiration.   

 At ISUAG, during the rye growth period, the main crop (corn or soybean) and rye 

both significantly affected soil water content in the 0-10 cm depth and SWS.  During the rye 

growth period, soil water content was 2.9% higher in rye plots in the 0-10 cm depth, and 

SWS was greater by 1.9 cm.  This trend continued during the main crop growth period; in rye 

plots, soil water content was 4.1% and 3.3% higher in 0-10 cm and 10-20 cm depths, 

respectively.  SWS was not significantly different, but it was 2.7 cm greater in plots with rye.  

Even though the main crop growth period was quite dry at ISUAG (Fig. 4.2), rye was able to 

help conserve soil water.  Greater rye growth at ISUAG as compared to ADW did not 

decrease soil water during its growth period, and as a mulch, rye was able to assist soil
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Table 4.5.  Repeated measures [ARMA (1,1)] analysis of variance summary of soil water content and storage under corn-soybean rotation with and 
without winter rye cover crop. 
 ------------------------------------- ADW ------------------------------------- ------------------------------------ ISUAG ------------------------------------ 
 -------- Rye growth period -------- ---- Main crop growth period ---- -------- Rye growth period -------- ---- Main crop growth period ---- 
 0-10 cm 10-20 cm SWSa 0-10 cm 10-20 cm SWS 0-10 cm 10-20 cm SWS 0-10 cm 10-20 cm SWS 
Source -------------------------------------------------------------------------------- p-values -------------------------------------------------------------------------------- 
Block 0.03 0.76 0.07 < 0.01 0.35 0.03 0.75 0.13 0.25 0.58 0.4 0.89 
Date < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 
Main crop 0.16 0.52 0.18 0.31 0.19 0.17 0.03 0.31 0.01 0.35 0.11 0.09 
Rye 0.99 0.26 -- 0.32 0.31 -- 0.02 0.14 0.03 < 0.01 0.05 0.09 
Crop*Ryeb 0.95 0.15 -- < 0.01 0.17 -- 0.14 0.13 0.66 0.04 0.14 0.42 
  
 --------------------------------------------------------------------- Contributed variance (%) --------------------------------------------------------------------- 
Block 1.7 < 0.1 3.4 1.1 0.2 4.3 < 0.1 0.5 0.1 0.1 0.1 < 0.1 
Date 97.8 99.6 94.4 97.2 98.5 94.9 97.0 98.4 97.8 95.6 98.1 95.9 
Main  crop 0.4 < 0.1 0.1 0.1 0.5 0.9 1.2 0.2 1.3 0.2 0.5 2.1 
Rye < 0.1 0.1 -- 0.1 0.2 -- 1.4 0.5 0.8 3.1 0.9 2.1 
Crop*Rye < 0.1 0.3 -- 1.5 0.5 -- 0.5 0.5 < 0.1 1.1 0.4 0.2 
  
Main crop -------------------------------------------------------------------------------- Means --------------------------------------------------------------------------------- 
C 0.245 0.277 -- 0.252 0.279 -- 0.269 ac 0.284 17.4 b 0.252 0.266 16.8 
S 0.261 0.289 17.7 0.260 0.317 19.4 0.242 b 0.300 19.9 a 0.242 0.301 20.1 
  
Rye --------------------------------------------------------------------------------- Means --------------------------------------------------------------------------------- 
Yes 0.253 0.272 18.1 0.252 0.284 19.7 0.270 a 0.300 19.6 a 0.267 a 0.300 a 19.8 
No 0.253 0.293 17.4 0.260 0.312 19.0 0.241 b 0.280 17.7 b 0.226 b 0.267 b 17.1 

a SWS = soil water storage from 0-80 cm. 
b * indicates test of interaction. 
c Different letters indicate significant differences at the 0.05 level. 
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in retaining water.  Because rye had been established 5 years previous in 2008, it is possible 

that rye rooting had altered the soil structure in the top soil layers, compounding its effects on 

soil water conservation.   

 Extreme dryness characterized the rest of the main crop growth season after the end 

(July 10) of the study period, but soil water results are not available for this time period.  

Around mid-July, it is likely that corn was entering its silking stage; during the silking stage, 

severe water stress can lead to poor pollination because of desiccated silks and pollen grains 

(Kranz et al. 2008).  Water stress during the silking stage has the greatest potential to 

decrease corn yields (Kranz et al. 2008), and because rye at ISUAG assisted in conserving 

water in the upper soil layers during this stage, these potential corn yield decreases were most 

likely avoided.  Also, rye’s ability to conserve soil water in the upper soil layers is important, 

as corn generally extracts 40% of the water it uses in ET from the top 25% of its rooting 

depth (Kranz et al. 2008).  At ADW, the very small amount of rye biomass produced no 

significant decrease in soil water content or SWS, as was expected, so rye may not have had 

any negative effects on corn yield during the study period.   

 
Conclusions 

 At ISUAG, a rye cover crop was able to conserve soil water and increase SWS 

preceding the main crop in a corn-soybean rotation.  At ADW, rye did not have a significant 

effect on soil water content or SWS in either period included in the study.  Adequate spring 

precipitation and rye growth at ISUAG may have contributed to increased infiltration during 

the rye growth period and decreased evaporation during the main crop period, when rye was 

a mulch.  Because of increased soil water at ISUAG, and no significant change in soil water 

at ADW due to rye, it is possible that, given an adequately wet spring, rye may not deplete 
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soil water, even during a drought year.  More research on long-term rye plots should be 

undertaken; understanding rye rooting patterns and the mechanisms by which these roots 

may alter soil structure and water holding capacity is an important portion of research that 

should be pursued, as well.   
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CHAPTER 5. GENERAL CONCLUSIONS  
 
 

General Discussion 

 The first study in this thesis showed that the amount of subsurface drainage through 

tile in a field decreased under perennial forage during the month of May.  The second study 

detected an increase in top soil layer water storage during precipitation events in plots with 

rye cover crops.  This study also explored the redistribution of infiltrated precipitation 

throughout the soil profile.  Soil water redistribution behaved differently during and after a 

moderate rainfall event as compared to a heavy, intense rainfall event.  The third study found 

that a rye cover crop was able to conserve soil water and increase SWS in a corn-soybean 

rotation in the spring and early summer during a drought year.  Because different processes 

within the hydrological cycle in an area are interconnected, soil water and drainage are linked 

and affect each other.  Drainage and soil water patterns are both dependent on precipitation 

timing and intensity and crop water demand (Lawlor et al. 2008, Wang et al. 2008).  Even in 

years with the same amount of precipitation, drainage volumes from the same field can differ 

significantly (Lawlor et al. 2008), as differences in antecedent water conditions and rainfall 

event characteristics affect soil water conditions and redistribution patterns, and therefore 

drainage.  The spatio-temporal variability of soil water can strongly impact other 

hydrological processes within the system as well (Choi and Jacobs 2007, Hupet and 

Vanclooster 2002).   

 As it is possible that the use of perennial or cover crops may decrease drainage during 

May, the time of year when the most NO3-N is lost from fields due to leaching, and because 

the drainage to precipitation ratio was the highest during this time, these crops have the 

potential to reduce NO3-N leaching, as well.   
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The ability of perennial and cover crops to mediate changes in hydrological and 

biogeochemical cycling caused by changes in land cover and management, along with their 

ability to conserve soil water amidst changes in climate, offer the potential for research 

within and improvement of the agronomic system.  This research should also allow us to ask 

broader questions about the economic and environmental viability of the corn-based 

agricultural economy of the Upper Midwest.  What costs will we consider as important when 

evaluating and re-evaluating our current system?  How will this shape the policy we create?  

Will climate change necessitate a change in our current agricultural system?  The way in 

which we frame and answer these questions is of utmost importance as we seek to create 

agricultural systems that are sustainable and resilient. 

 

Recommendations for Future Research 

 In light of findings from this research and the literature cited within this thesis, it is 

recommended that research into perennial and cover crops be augmented in the following 

ways: 

 

1. Studies including more species and cultivars of perennial and cover crops should be 

integrated into research.  Different species, cultivars, and mixes of species will provide 

unique benefits and affect hydrological and biogeochemical cycles in different ways. 

2. Research should include field study sites in areas across the Upper Midwest.  

Differences in climate across the region produce vastly different rainfall patterns and 

characteristics, which in turn create differences in drainage and soil water regimes. 
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3. Long-term studies examining linkages between different variables in the hydrological 

system should be run.  A more complete picture of the system would be useful as all 

parts are interconnected. 

4. Linkages between hydrological and nutrient cycling in fields should continue to be 

explored. 

5. More research into the economic viability of integration of perennial and cover crops 

within the current system should be undertaken. 

6. Creation of policy and assistance that encourages implementation of more diverse 

rotations should be researched. 
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