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ABSTRACT 

 

Near infrared spectroscopy (NIRS) have been utilized in a wide selection of single seed 

applications because it provides fast and non-destructive measurements.  Despite the 

limitation of small seed sizes, NIRS has led to successful results. In this dissertation we 

explored the feasibility of NIRS for several discriminative applications for corn and 

soybean seeds. The first application focused on discrimination of conventional and 

genetically modified Roundup Ready® soybeans. Classification accuracies ranged from 

75 to 99% percent. The highest accuracies were obtained with a light tube instrument and  

with locally weighted principal component regression (LW-PCR) models with few 

samles represented. Artificial Neural Network (ANN) and Support Vector Machines 

models gave simmilar accuracies. The technologies performing worse were the low 

ressolution chemical imaging unit and the Fourier Transform transmittance instrument 

due to their sensitivity to seed positioning. Discrimination within a single variety was 

possible above 95% accuracies for most of the varieties. Moisture was proven to impact 

the classification due to interactions between water and carbohydrates (fiber). For this 

reason, this application would be feasible for breeders working in controlled seed 

moistures. Other applications such as discrimination of damaged corn kernels (heat and 

frost damage) and viability of corn and soybeans with NIRS were analyzed. Only 

discrimination of heat-damaged corn kernels was successful (accuracies above 95% using 

partial least squares discriminant analysis, PLS-DA); frost-damaged kernels and non-

viable seeds could not be discriminated with any of the tested algorithms. This indicates 

that NIRS only detects changes in seeds due to damage and there is no relationship with 

its viability. The final remaining question is what the extent of damage that a seed may 

suffer to be detected by NIRS would be.  
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CHAPTER 1. GENERAL INTRODUCTION 

 

RATIONALE 

 

Since near infrared light (NIR) was first utilized for analytical purposes back in the 1960s, 

this technology has experienced an impressive growth. The advantages of near infrared 

spectroscopy are well recognized; to name some, the non-destructive nature of the 

analysis, high speed, no sample preparation required, affordable and flexible 

instrumentation, and good precision when calibrations are well developed. For these 

reasons, more scientists and companies from diverse fields are becoming interested in 

learning about near infrared spectroscopy (NIRS) and calibration development. 

Maintaining congruency in terminology over such a multidisciplinary field is becoming a 

challenge. 

The agriculture sector has been benefiting from NIR analysis for a long time –the first 

published application involved moisture measurement in seeds-. The acceptance by the 

American Cereal Chemist (ACC) and American Oil Chemists (AOC) associations of NIR 

spectroscopy for routine analysis of oil, protein, moisture, starch, of bulk grain and oil 

seeds dates from the 1980s. Common NIR bulk sample analyzers provide the average of 

250g of kernels, which is good for average measurements of whole batches and often 

enough for farmers and industrial processes. However, breeders and specific applications 

may need to target individual seeds with certain characteristics or higher batch 

homogeneity. Near infrared technologies offer a valuable tool for measuring whole 

batches fast and efficiently. In this dissertation, the feasibility of several applications for 

seed discrimination involved in food safety, quality, and breeder’s purposes is analyzed. 

The discrimination of roundup ready soybean seeds from conventional, damage on single 

corn kernels, and corn and soybean seed viability is analyzed using several NIR 

technologies and algorithms.  
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DOCUMENT ORGANIZATION 
 

This dissertation is organized in an exhaustive literature review and four main sections or 

papers. The main part of the literature review introduces the basics of near infrared 

spectroscopy, instrumentation, and its calibration. Part of it has been modified and 

published in the journal of critical reviews in analytical chemistry. It also has been used 

to update the training manual of the laboratory. Both documents can be found in the 

appendices section. The second main section reviews current research on near infrared 

technologies applied to single seeds. It will be prepared as a review manuscript and 

submitted to the Cereal Science journal.  Three of the papers of the dissertation are 

intended to be submitted in four different recognized journals in either near infrared 

spectroscopy or cereal science fields.  The fourth paper, which focuses on training in 

NIRS in the Grain Quality Laboratory, has been submitted to the journal of technology 

studies and if not accepted, may be modified and submitted to the journal of near infrared 

spectroscopy as an analysis of the problems when teaching about NIRS.  

 

LITERATURE REVIEW  

 

1. Theory behind Near Infrared Spectroscopy 

 

1.1 Infrared in the Electromagnetic Spectrum  

Light radiation is electromagnetic energy which can be arranged as an electromagnetic 

spectrum (Figure 1) according to properties such as wavelength, frequency, polarity, and 

intensity. Radiation energy is indirectly proportional to its wavelength, but directly 

proportional to the frequency. According to this, gamma rays in Figure 1 are the most 

energetic, while radio waves cover the longest wavelengths, shortest frequencies, and are 

the least energetic.  
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Figure 1. Electromagnetic spectrum  
 

 

The infrared region is approximately located in the middle of the electromagnetic 

spectrum. It covers the electromagnetic wave frequencies in the range of 300 GHz to 400 

THz (or wavelengths ranging from 1 mm to 750 nm in wavelength units) There are three 

differentiated regions in the infrared range: Far infrared (300 GHz (1 mm) to 30 THz (10 

µm)), mid infrared (30 to 120 THz or 10 to 2.5 µm), and near infrared (from 120 to 400 

THz or 2,500 to 750 nm). 

The least energetic far infrared region (FIR) is utilized in the emerging technology of 

Terahertz spectroscopy. Molecules with heavy atoms, such as some inorganic and 

organometallic substances, may absorb FIR waves, which induce to intramolecular 

vibration. Intermolecular stretching and bending of molecules with lighter atoms, and 

molecules with weak bonds such as Van der Waals contribute to differences in solid 

material inner structure and christalinity (polymorphism), which is successfully analyzed 

by FIR (Chalmers and Dent, 2006). The Mid infrared region (MIR) was the most popular 

and widely used infrared region in organic chemistry for long time. At first, its primary 

area of use was qualitative analysis, such as determination and detection of organic 

constituents and functional groups of unknown mixtures (Reeves and Zapf, 1998). Recent 

papers have reported successful quantitative applications in food, textiles, pharmaceutical 

and agricultural fields, but the use of MIR for quantitative use is not as developed and 

mature as for Near Infrared (Richardson and Reeves, 2005). The overall evolution of 

quantitative MIR may have been limited by (1) the relatively lower spectral 
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reproducibility when compared to NIR, and (2) the exigencies on thin samples due to the 

extremely high absorptibities of organic materials in that region (Wilson and Tapp, 1999; 

Smith, 2002; Chung et al., 1999, Rogo et al., 2007; Prieto et al., 2009). 

The near infrared region (NIR), discovered by Herschel in 1800, is the most energetic 

infrared region and it is close to the visible region in the electromagnetic spectrum. His 

experiments in measuring the heat produced by filtering the sun light on colors with a 

thermometer, lead him to realize that temperature increased from going to blue (450 – 

475 nm) to red (620 – 750 nm). Temperature kept rising even after positioning the 

thermometer further from the visible red, which meant that more energy was present 

beyond that which was visible (Herschel, 1800). Further significant research on the NIR 

region was not done for 150 years. MIR, meanwhile, became popular in analytical 

chemistry, while the NIR region was ignored as it was considered to lack relevant 

chemical information. The NIR spectra (absorption measurements in function of 

wavelengths) showed broad and overlapped low intensity bands, between 10 and 100 

times more attenuated than sharper MIR fundamental absorptions (Dryden, 2003). NIR 

broad peaks could not be directly assigned to specific chemical compounds or interpreted 

in a straight-forward manner as MIR spectra. Later advances in computation and 

statistical methods helped overcoming those difficulties. NIR spectroscopy (NIRS) is 

currently more mature in quantitative analyses than MIR technologies and has at least 

two outstanding advantages: (1) NIRS allows measuring by reflectance (reflected light 

from a sample), so thicker samples with minimum preparation can be analyzed. (2) NIRS 

can pass through glass and optical glass fibers (Choquette et al., 2002) so measurements 

far from the spectrometer are possible.  

 

1.2 Theory behind NIR Absorption 

 
Light radiation has both wave and mass properties (wave-particle duality) because it is 

made of small particles or energy packages called photons.  Some compounds can absorb 

light at certain wavelength or frequency, leading to changes in its atom energies.  In order 

for a molecule to absorb a photon from the IR region, its molecular vibrational frequency 

must match the frequency of the IR radiation.  Furthermore, its dipole momentum must 
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change during the radiation: The radiation and the molecule must interact in the way that 

the dipole of the molecule changes in the same direction as the electric field vector 

created as result of the radiation.  Molecules that do not have dipolar moment, for 

instance homonuclear compounds oxygen or nitrogen, do not absorb IR light. The result 

of this light-molecule interaction is stretching vibrations that affect bond length in two-

atom molecules, bending vibrations that affect bond angle in molecules with three or 

more atoms, and molecular rotations (Davies, 2005). The energy required to be absorbed 

varies on the bond length and the kind of vibration; for instance, according to Davies 

(2005), stretching requires more energy than bending. 

The quantum theory states that molecules and atoms can only be found in states of certain 

energy. For being in a new state, the atom/molecule needs to absorb or emit energy equal 

to the difference between the first state and the new one. Because light energy depends on 

its wavelength and frequency, the emitted/absorbed light will have varying wavelength 

and frequency depending on the energy involved in achieving the new state. 

Figure 2 shows the states associated to the electrons from an atom or molecular bond. 

Electron motion is the main responsible of the energy states thus the energy states are 

also called electronic states. The ground electronic state has the lowest energy and it is 

called equilibrium state in which the probability to find an atom or molecule is the 

highest in regular conditions.  According to figure 2 and quantum theory, high energy 

ultraviolet waves can induce the electrons to “jump” to higher energy levels (called 

second electronic excited states), whereas absorptions in the infrared region (IR) induce 

changes in the vibrational states within the ground state (lowest energetic states).  
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Figure 2. Energy levels for absorption of radiation (source: University of California, 

Department of chemistry) 
 

 
One of the popular approaches to calculate the frequency of vibration (or energy of a 

state) of a diatomic molecule is using the harmonic oscillator theory or Hook’s law (Eq1). 

There are two constraints when applying this principle: First, the quantum mechanics 

theory (Eq2) states that only discrete energy amounts can be absorbed - also called 

“allowed vibrational energy levels” -. And second, the Selection Rule which limits the 

transitions or “electron jumps” only between two consecutive energy levels. The 

absorptions that lead to these allowed transitions are known as fundamental absorptions.  

 
  

Equation 1.       
( )

21

21

2

1

mm

mmk

c ⋅

+

⋅⋅
=

π
ν                             

                                                                                                 

Equation 2.      ν⋅⋅+= hnE )
2

1
(        

k= Force constant                                                                                         
C = Speed of light                                                                             
n = Principal quantum number 
υ = frequency of vibration 
m1, m2 = nucleous mass from atom 1 and 2 
respectively 
E = Energy 
h = Plank’s constant 
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The principal quantum number in equation 1 is related to the energy level or electronic 

state and the shape of the orbital that contains the electron.  When n= 1, the molecule is in 

its lowest energy state (ground state), the equilibrium state when there is the highest 

probability to find the molecule in regular conditions.  If light excites an electron from a 

molecular bound such as n=2, we call it a fundamental absorption.  As n increases, we 

find higher states of excitation and more energetic waves are required to achieve them. 

The left plot on figure 3 shows the resulting parabola of plotting the potential energy 

function from the harmonic diatomic molecule versus the distance between atoms. It can 

be noted that according to the selection rule, the distance between energy levels is 

constant. The Franck-Condon principle of anharmonicity and Morse’s potential function 

introduced relevant concepts to understand the existence of NIR absorption. Those 

principles account for Coulombic repulsion forces between atomic nucleuses and kinetic 

properties of atomic absorption as sources of hanarmonicity. The direct consequence of 

these phenomena are energy increments higher than the previously stated for lower 

energy levels in equation 2, and more stable levels (smaller energy increments) at atomic 

distances closer to the bound break-up point. Summarizing, the energy increments are not 

constant in reality and the updated potential energy function with Franck-Condon 

principle and Morse’s function slightly differs from the harmonic approach as  shown to 

the right on figure 3.  

 

 

Figure 3. Harmonic Potential energy function (left). Potential energy function after 

Franck-Condon principles: a) fundamental absorption, b) first overtone, c) second 

overtone, d) third overtone   

Bond Break up point 
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The explanation of overtones is another consequence of the anharmonicity conditions. 

Overtones are the result of bound absorption from ground state to higher non-consecutive 

energy levels: transitions higher than one energy state. This phenomenon was not initially 

contemplated by the selection rule, which stated it as a “forbidden transition” and it has 

small probability to happen in reality (a small fraction of the molecular bounds of a 

compound will experience overtone absorptions) and that translates in more attenuated 

signals when recording absorptions. The entire NIR spectra contains up to four overtones 

(although the fourth overtone is too weak to be measured) from the absorptions of the 

following groups: methyl C-H, aromatic C-H, methylene C-H,  methoxy C-H, carbonyl 

associated C-H, N-H from primary and secondary amides, N-H from amides (primary, 

secondary, and tertiary), N-H of amine salts,  O-H (alcohols and water), S-H and C=O 

groups (Workman, 2005). Note that all those bounds and groups are found in molecules 

that are part of organic matter and water.  Absorptions involving hydrogen dominate in 

the NIR spectra because it is a light atom, thus it easily achieve higher vibrational 

transitions (Davies, 2005). Combination bands can be found at the highest NIR 

wavelengths, from 1900 to 2500 nm, and basically involve the same chemical groups as 

the overtones. They are the result of interactions between molecular vibrational 

frequencies, overlapped information from Fermi resonances, and inactive MIR bounds 

among other phenomena (Bokobza, 1998)  

 

1.3 Using Radiation in Spectroscopy 

When a sample is irradiated with light, according to the energy conservation law part of it 

is reflected, other is transmitted and another fraction is absorbed.  The proportion of each 

depends on both the light wavelength/frequency and sample properties.  The amount of 

absorbed energy is related to the sample composition (the compounds which absorb at 

that given wavelength and their concentration in the sample) as well as its thickness, as 

the absorption law (also known as Beer’s law) states: 
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Equation 3.         Absorbance = Cx· e ·  l           Cx = Concentration of the test solute 

                                                                             e = Molar absorptivity of the test solute  

                                                                             l = Path length traveled by the light  

 

Some of the assumptions that underlay the equation make its use very restricted, and 

barely impossible of being directly used in NIR spectroscopy. Some of the most 

restrictive assumptions are the consideration of no correlation between absorbers in 

complex matrices, homogeneous media: negligible light scattering, low analyte 

concentration in sample, and constant pathlength (Ingle and Crouch, 1988). 

The light reflected fraction is favored when the sample compounds have high absorbance 

coefficients at the incident light (low compound absorbance) and the sample surface 

offers mirror-like characteristics.  Reflection has dependence on the smoothness of the 

material's surface relative to the wavelength of the radiation.  A rough surface affects 

both the direction and coherence of the reflected wave, hence it determines both the 

amount of radiation that is reflected back and the purity of the information that is 

preserved in the reflected wave.  Light irradiation which is perpendicular to a smooth 

sample surface produces specular reflectance: the light is reflected back keeping the same 

perpendicular angle.  When the sample surface has relevant impurities related to the 

incident wavelength, a high proportion of light is scattered in all directions and/or 

reflected as diffuse reflectance. There are two types of light scattering. Rayleigh 

scattering is non-directional and happens when the size of the particles is on the order of 

the radiation's wavelength.  Mie scattering is due to larger particles and it is not as 

wavelength-dependent as Rayleigh scattering (Ingle and Crouch, 1988). 

Reflected and transmitted light are the two alternative working modes in NIRS because 

as previously stated, direct absorbance measurement by Beer-Lambert law is not possible 

with NIR radiation. Variability in path lengths, non-homogeneity of samples, and scatter 

phenomena are few of the most common factors that make the law not directly applicable.   

Transmittance (T) is the ratio of the power of radiation after crossing a sample over the 

initial radiation power (P/Po), expressed as % of transmitted light.  It follows a theoretical 

straight forward relationship with absorbance (Equation 4), which interpretation is simple: 
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Sample compounds that may absorb strongly at certain wavelengths will not transmit so 

much energy through the sample, and the opposite is also true.  

 

Equation 4.             Apparent Absorbance = log(Po/P) =  log(100/T(%)) 

 

Transmittance would be relatively easy to measure if scattered and reflected light were 

negligible, which is not always the case.  Log(1/T) is also known as optical density, and 

although is not exactly the same as absorbance in usual situations due to the reflectance 

and scattered light, it still follows linear relationship with the real absorbance and it is 

successfully used in NIR spectroscopy.   

Diffuse reflectance can also be related to the sample absorption and thus lead to a 

quantification of the analyte concentration of a sample using NIRS, while specular 

reflectance does not provide much information about the sample and spectrometers try to 

minimize it with the right alignment of detectors and filters. When the incident NIR beam 

is projected to the sample, part of it is scattered and transmitted several times by the 

sample particles so that the light collected by instrument sensors try to capture the re-

emerging back-scattered radiation which has some degree of attenuation after sample 

absorption.  Only the part of the beam that is scattered within a sample (proportion that 

reaches a sample depth dependant on the wavelength of radiation according to Hruschka 

(1987) and returned to the surface is considered to be diffuse reflection useful for analysis 

in NIRS.  The best spectral region to work in diffuse reflectance mode ranges from 1200 

nm to 2500nm, because below 1200 nm wavelengths are very energetic and absorption is 

weaker.  There is high absorption above 2500 nm. 

The most common way that diffuse reflectance is relating to absorbance with the 

following relationship (equation 5). 

 

Equation 5.           ( )R
R

Abs 1010 log
1

log −=






=  
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In order to use the equation, a reflectance standard is required (a blank, such Teflon or 

spectralon with approximate reflectance equal to 100%), and the equation is applied as 

shown in equation 6. 

 

Equation 6.           log(Rstandard / Rsample)=  log(1/Rsample) + log(Rstandard)  

 

Log(Rstandard) is constant, so apparent absorbance is reduced to one single term, 

Log(1/Rrelative).  With this transformation, the lowest value of absorbance a sample will 

reach will be 0 and the highest 2. 

In many cases, an algebraic function called the Kubelka-Munk function is also used due 

to the qualitative resemblance of the output to the absorbance spectrum when the sample 

is thick, opaque and its absorption is weak (Cortat, 2003).  The equation expresses the 

reflected light in function of two variables: dispersion (scattering) and absorption.  The 

equation resulting from this theory is also ideal and it shows variability due to the 

difficulty to discriminate between absorption from the analyzed compound and the 

sample as a whole (matrix absorption) (Pou, 2002). 

 

 

 

Equation 7.     
( )

s

A

R

R

s

k
=

−
=

2

1 2

  

 
 
 
K and S absorption and scatter coefficients have the inconvenient that do not have any 

physical meaning involved, thus the physical characteristics of a sample are not taken in 

account.  

While sample pathlength is predetermined and must be kept constant for transmittance 

measurements, the minimum sample required in reflectance mode is highly dependent on 

the wavelength range used in the analysis and sample characteristics such as density or 

packing, particle size, and material absorption (Bertnsson et al., 1998). Physical 

characteristics affect reflectance measurements especially at higher wavelengths 

R= Reflectance 
k= Absorption coefficient 
s= Scattering coefficient 
c= Concentration of the absorbing species 
A = Absorbance 
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(combination bands region) hence any sample changes will create an additional source of 

variability and noise in the measurements (Norris and Williams, 1984).  

Overall, reflectance measurements show shorter dynamic range compared to 

transmittance (lower sensitivity) because information provided by diffuse reflectance 

originates from smaller sample portions and has been attenuated (Corti et al., 1999). Its 

repeatability is slightly worse which is more noticeable in heterogeneous samples. In 

specific applications, those limitations may not create significant errors, or may be 

mitigated by using wider range of wavelengths (Kays et al, 2005).  Transmittance 

measurements exceed the accuracy of reflectance measurements in most pharmaceutical 

applications, although analytical sensitivity, signal to noise ratio and limit of detection is 

highly affected by sample position and changes in geometry (Short et al., 2008).  

Comparison studies in agriculture fields do not lead to a unanimous consensus regarding 

superior performance of any of the two measurement modes (Williams and Sovering, 

1993; Borjesson et al., 2007). Although there is a general preference towards 

transmittance measurements when small concentrations need to be measured, differences 

arise from in combination of factors such as selected wavelength range, instrument and 

sample characteristics, data processing/analysis, and sampling procedure (Kays et al., 

2005; Short et al., 2005;  Delwiche, 1995; Cogdill et al., 2007).  

The signal collected from either reflectance or transmittance after irradiating a sample is 

graphically displayed by most of the instruments as a plot of wavelength (usually in 

nanometers) on the coordinates axis versus the absorbance value on the abscise axis.  The 

measurements are connected by a line, giving as a result a spectrum plot.  Figure 4 shows 

an example of NIR spectrum and the approximate location of the overtone and 

combination bands regions. 
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Figure 4. Example of NIR spectrum with the overtones and combination bands zone 

 

2. Instrumentation: Spectrometers 
 
Despite proprietary instrument conformations, any commercial NIR spectrophotometer 

has five basic sections further detailed: (1) Sample compartment, (2) Light source, (3) 

Light wave selection system, (4) detector/s, and (5) signal processor or computer.  

 

2.1. Sample Compartment 

Instruments working by reflectance do not need sample confinement for in-line 

measurements, but it is common to use open sample cups or sample cells confined by 

silica or quartz (materials transparent to NIR light) in laboratory instrumentation (Figure 

5). Transmission instruments may work with confined sample cells as well, but with 

specific pre-set pathlenghts ranging from 0.1 to 10 cm, depending on the product to be 

analyzed. An integrated adjustable sample compartment with automatic flushing is used 

for whole grain analyzers. One of the advantages of NIR light is its ability to pass 

through optical glass fibers preserving most of the signal integrity (losses lower than 5% 

per km of cable), even if the resulting output intensity is low. This is especially useful for 

measurements to be made far from the physical instrument and for multiple sampling/ 

sequential analyses in multiplexer systems. The use of optic fibers with probes for either 

transmission or diffuse reflectance measurements allows sampling by immersion in 

Absorbance Units 

Wavelengths (nm) 

Combination band 

First Overtone 

Second Overtone 

Third overtone 
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liquids for controlling fermentation or other liquid reaction processes (Buchanan et al., 

1988; Tamburini et al., 2003; Sarraguca et al., 2009), contact on small sample areas such 

as works of art (Bacci et al., 2005), in-vivo medical analysis (Yu et al., 2007), and 

development of smaller spectrophotometers (Smith, 2000). 

 

 

Figure 5. Sample cells and compartments of NIR of NIRS instruments 

 

2.2. Light Source 

The most popular NIR light source is the tungsten halogen lamp, which has wavelength 

emission ranges from 320 to 2500nm. The halogen gas allows recycling of the evaporated 

tungsten (Stark and Luchter, 2005), and brings the advantage of longer lifetime compared 

to traditional tungsten lamps without halogen.  

Light emitting diodes (LED) were used as light source in the first commercial instrument 

for whole seed analysis in 1985 and in the first portable spectrometers (McClure et al., 

2002). The low power consumption, price, small size, and long lifetime (around 25 years) 

of LEDs still make them the most suitable light sources for miniaturized instruments and 

specific screening applications outside the laboratory environment (McClure et al., 2002, 

Axun technologies, 2005). Conventional LEDs emit in short wavelength ranges (30 – 50 

nm) around their center point. Several of them can be mounted in an array with 

narrowband interference filters if wider wavelength ranges need to be covered, although 
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measuring many wavelengths with this configuration is not an economical approach 

(Malinen et al., 1998). LED devices have been improved during the recent years to 

overcome some of their limitations. For instance, some commercial instruments allow 

easy switching of LEDs according to the application.  

Finally, the most innovative light sources are tunable diode lasers, or also called 

superluminiscent light-emiting diodes (SLED). Using the semiconductor technology of 

diodes, tunable diode lasers are much smaller than the traditional tunable laser, cheaper, 

with excellent wavelength resolution, brighter, and with lower noise frequencies than 

tungsten lamps. SLEDs are suitable for measuring weak absorptions at good signal-to-

noise ratio and as light sources in miniature instruments. Improvement of tunable diode 

lasers allow controlling emitted light at specific wavelength, combining light source and 

wavelength selection features. 

 

2.3. Wavelength Selection 

Most detectors collect light intensity from a relatively wide range of wavelengths. 

Recording signal values at specific wavelengths is required for analytical purposes. 

Filters were the first wavelength selection device to be used for this purpose and are the 

element in the spectrometer which leads to more diversity of instruments in the 

spectrometer market for infrared spectroscopy (Stark and Luchter, 2005). The most 

simple filters work by absorption (absorption filters), which are discrete bandpass filters 

that absorb all light wavelengths but the one of interest.  

Narrow bandpass interference filters (Fabry-Perot) achieve better spectral resolution and 

higher output intensity by selecting wavelengths according the refractive index and 

thickness of the dielectric material between the two layers of reflective material (Pou, 

2002). To select multiple wavelengths, interference filters are mounted in a wheel which 

can be automatically controlled to rotate and select the suitable filter for the wavelength 

selected. This creates spectrometers that provide few spectral measurements and are 

usually called filter photometers instead of spectrometers. Although filters are an 

alternative that provides acceptable results, problems of image misalignment and slow 

operation are common. (Balas, 2009).   
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Acousto-optic tunable filters (AOTF) and liquid crystal tunable filters (LCTF) allow 

faster tuning for wavelength selection, and provide better reproducibility without the need 

of mechanical devices because one filter can generate several output wavelengths.  AOTF 

filters modulate the light wavelength and intensity through the interaction of sound waves 

generated in a birefringent TeO2 crystal. The frequency of the acoustic signal makes the 

refractive properties of the crystal change allowing wavelength specific transmission. 

Wavelength discrimination in liquid crystal tunable filters (LCTF) is carried out by 

applying variable voltage to progressively change the polarity of a liquid crystal (Garini 

et al., 2006). Those filters provide a better output quality compared to AOTF filters, but 

their short wavelength range is limited (below 1800 nm), and give a lower intensity 

dependent on the selected wavelength (Stark and Luchter, 2005; Balas, 2009).  

Dispersive type instruments use a prism or a grating, which diffracts the incident 

collimated light beam at different degrees while resolving it in discrete wavelengths. 

Light dispersion can be done before scanning a sample (predispersive instruments) or 

after radiating the sample with polychromatic light (postdispersive). Postdispersive 

instruments offer advantages such as less environmental interferences with the lamp 

radiation, analyzing wider sample areas, and hold longer distances between sample and 

light sources (Schumann and Meyer, 2000; Wang and Paliwail, 2006). Prisms have been 

replaced by gratings because of lower cost and better linear wavelength dispersion of the 

last ones. There are two types: Holographic (photosensitive film with fringes) and ruled 

(concave surface with fringes). Ruled gratings require being complemented with other 

optical elements such as lens, and show less stray-light rejection than holographic 

gratings (Holler et al., 1998; Domanchin and Gilchrist, 2001).  

In the dispersive instruments group, there are monochromators and spectrographs such as 

diode-array instruments. Monochromators are pre-dispersive instruments that scan a 

sample with grating mechanical motion. The basic principle is as follows (Figure 6): 

Polychromatic NIR light enters through an entrance slit and is then collimated (light rays 

are made parallel) by a mirror. The light hits the dispersion grating and later hits a 

focusing mirror, which reflects it to a second exit slit to either hit the sample 

(transmittance mode) or hit the single-channel detector (reflectance mode). Entrance and 
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exit slits of a monochromator are very carefully designed to have accurate geometry since 

they are critical for instrument observed resolution (smallest wavelength difference 

distinguished by the spectrometer) and effective wavelength bandwidth (full width of a 

band at half of its maximum value, FWHM). When using grating alone without slits, 

resulting resolution is not enough for most chemical measurements in plastic or 

pharmaceutical applications (Thermo Fisher Scientific, 2006). Small slits (around 0.1 mm) 

give low band width, more dispersion, and high spectral definition useful in qualitative 

applications; large slits (around 2 mm) give more intense radiation and are more suitable 

for quantitative analysis (Holler et al., 1998).  

 

 

Figure 6. Schematic of a monochromator predispersive instrument 

 

Diode arrays spectrographs are post-dispersive instruments that measure all the 

wavelengths at the same time thanks to a fixed grating and a set of detectors placed in 

array (multichannel detectors). There is no need of exit slits. There are fewer optical 

elements compared to monochromators and resolution depends on the number of 

elements in the detector array and array characteristics. The latest advances in 

wavelength selection besides tunable light sources are the Micro-Electro-Mechanical 

Systems (MEMS) created with semiconductor technologies. MEMS diffraction gratings 

control light diffraction by electronically controlled movement of diffracting 
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microelements. Their small size and lower cost has lead to a new generation of portable 

instruments. Figure 7 shows one of the pioneer NIR hand-held instruments in using 

MEMS as grating technologies, Phazir by PolychromixTM. 

 

 

 

 

 

 

 

 

 

 

Figure 7. Handheld spectrometer (Phazir) by PolychromixTM 

 

 

2.4. Detectors 

Detectors transform the incident light energy to electric analog signal. The electrical 

signal is then amplified and transformed to digital, which may later be further processed 

by the computer. Detectors and amplifiers are considered the most common sources of 

non-systematic noise in instruments (random noise). Random noise is reduced in most 

commercial instrumentation by averaging several spectra from a same sample, improving 

the signal-to-noise ratio (SNR). SNR achievable values in NIR spectroscopy according to 

Workman range from 25,000:1 to 100,000:1 (Workman, 2005).  

An effective detector must have a linear relationship between the energy input and signal 

output within its dynamic or working range - from the minimum detectable signal to the 

maximum before reaching saturation -. Measurement linearity is influenced by other 
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factors besides detector characteristics; for instance, the number of bits of the analog to 

digital converter device and slight detector misalignments, which can lead to capturing a 

small fraction of the reflected specular component (often called stray light) in reflectance 

mode instruments. Without linearity, more complex and potentially unstable mathematics 

are needed to calibrate the instrument.  

Photo-sensitive detector materials are chosen according to the NIR region to be covered. 

From 400 to 1100 nm, silicon detectors (Si) are common (Stark and Luchter, 2005). Si 

detectors are stable, fast, not too expensive, and sensitive to low light intensity to achieve 

good performance. Lead Sulfide (PbS) or Indium Gallium arsenide (InGaAs) detectors 

can cover higher wavelength regions than Si detectors, being usual working with both 

types. Photodiode Arrays (PDAs) spectrographs have a set of InGaAs detectors or 

charged coupled devices (CCDs) in array (Figure 8). While InGaAs PDAs offer high 

signal precision, require less signal processing, are simpler to build, have high SNR and 

less sensitivity to high light intensities when compared to CCD, CCDs have higher signal 

sensitivity and resolution (Greensill and Walsh, 2000). CCDs are usually used for 

imaging devices later explained. PDA instruments take faster measurements (all 

wavelengths measured at the same time) and can be smaller in size than grating 

monochromators, which optical conformation cannot be easily reduced in size because it 

would lead to low throughputs and resolution (Smith, 2000). 

 

  
 
Figure 8. Pictures of a charged-coupled device (CCD) (left) and a photodiode array (right) 
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3. Other Near Infrared Technologies 

 
There are other NIRS technologies and instrumentation use of NIR light under slightly 

different principles from traditional spectroscopy.  Two of the most well-established are 

Fourier transform NIR (FT-NIR) and NIR chemical imaging, further discussed. 

 

3.1. Fourier Transform NIR (FT-NIR) 

Fourier Transform (FT) is widely popular in MIR spectroscopy, and it has recently 

gained high popularity in NIRS. FT technology offers advantages such as high SNR, high 

light outputs due to absence of slits, fast measurements, instrumental simplicity, and high 

resolution and accuracy (Thermo Fisher Scientific, 2006). Brimmer et al. (2001) claim 

that those advantages are more perceptible when working in the MIR region due to the 

limitation of higher detector noise relative to signal when working in the NIR region.  

FT-NIR measurements are carried out in time domain and the direct instrument output 

from sample scanning is an interferogram instead of a spectrum. NIR interferometers 

(Figure 9) split the NIR light beam in two; one of the beams is reflected to a fixed mirror, 

and the other is reflected to a mirror that moves forward and backward at carefully 

controlled speed - usually tuned by a HeNe laser-. The reflected beams are recombined 

back in the beam splitter to generate the interferogram signal, which is a result of light 

interferences.  When displacing the moving mirror, the pathlength difference respect to 

the fixed mirror change, leading to different grades of interference between the two 

reflected beams and which are correlated with different light frequencies.  After the 

interferogram light reaches the sample, transmitted or reflected signal is read by the 

detector in time sequence (ms), hence measurements are fast. Although interferograms 

contain information from all the frequencies or wavelengths encoded, it has to be first 

processed with the Fourier transform. The computation takes as an input a time domain 

wave signal (the interferogram) from which the transform principle states signal is made 

from an addition of sines and cosines of a set of individual wave frequencies. The 

processed signal or output looks like the spectra obtained by any traditional spectrometer, 

but with the expectation of higher throughput and frequency accuracy. One of the 

drawbacks is the fact that FT-NIR instruments are complex and expensive, and suitable 
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for controlled environments mainly (such as laboratories), due to their sensitivity to 

external factors such as temperature and vibrations. 

 

 
 

Figure 9. Scheme of a Fourier-Transform set up of optics and mirrors (left). The result is 

an interferorgram (right). Image retrieved from Foss instruments website. 

 

3.2. Hyperspectral Imaging 
 

Near Infrared chemical imaging (NIR-CI), or also called NIR hyperspectral imaging, has 

rapidly become popular, especially in measurements by diffuse reflectance. It combines 

the advantages of near infrared spectroscopy with digital mapping: the chemical 

compounds of a sample can be both discriminated and quantified in the sample spatial 

frame. This is especially useful for analyzing compound distribution and sample 

heterogeneity. Instrument parts and operating principle are very similar to traditional 

spectrophotometers. The sample scanning procedure can be carried out in two ways: 1) 

by push-broom or moving imager technique, popular for in-line measurements and 

sensing, or 2) by fixed staring systems.  

 Pushbroom instruments measure a spectrum from a whole sample by small consecutive 

areas or lines while the sample platform is moved and their wavelength selection is 

usually by dispersion. Staring systems scan on still samples, one wavelength at a time, 
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using either AOTF or CLTF filters. The mapping capability of imaging systems is 

brought by digital cameras with 2 dimensional arrays of detectors (pixels) such as CCDs 

that are effective in lower light intensities. Pixel size or area analyzed per pixel range 49 

to 1,600 squared microns in commercial instruments, depending on selected 

magnification. Higher magnification (or smaller sample area captured per pixel) will lead 

to more detailed spatial analysis and a lower dilution effect of the compound of interest 

within the sample matrix.   

 
NIR-CI Data Structure  
 
NIR-CI data structure can be thought of as a cube or a stack of cards, where two spatial 

dimensions are combined with a third dimension corresponding to the chemical 

information or spectra (wavelengths). Depending on the manufacturer, around 320 x 512 

pixels (2D) are arranged to capture both sample area and spectra. In that previous 

example, a total of 320 x 512 = 163,840 spectra would be generated for a single 

wavelength and correlated to small sample portions as a chemical map. If the instrument 

had 200 sampling wavelengths, the final “image” or data cube would have a total of 320 

x 512 x 200 = 32,768,000 data points. Although the amount of data generated is large, 

visual selection of image areas or pattern recognition techniques help discarding pixels 

with no relevant information. 

This concept is illustrated in figure 10, where each squared surface is like a picture taken 

at one single wavelength and the small squares within represent pixels. In common 

imaging terminology, “samples” and “lines” specify the number of columns and rows of 

pixels; “bands” refer to the discrete number of wavelengths, or following the previous 

analogy, the number of cards in the stack.  
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Figure 10. NIR-CI data configuration, showing the data cube of images at different 

wavelengths. A single spectrum is obtained from each pixel. 

 
 

Captured data or pixel readings are usually recorded as analog to digital sensor units 

(ADU), also known as raw units. Modern instruments digitize with more than 16 bytes of 

resolution.  Digital data can be stored following different interleave types or formats such 

as band-sequential (BSQ), band interleaved pixel (BIP), or band-interleaved line (BIL).  

The main difference among these formats is the order and sequence that pixel readings 

are stored:  BIP for instance stores first in a single file the information from a same pixel 

at different wavelengths or bands (store the whole spectrum obtained from that pixel), 

while in BSQ formats the whole image at a certain wavelength is first stored, and then the 

second, as a deck of cards so all images are stored as separate files.  Since in NIR 

chemical image applications there may be over a hundred wavelengths to be stored, BIL 

and BIP formats are preferred to avoid too many data files.  

Data are stored in an image general format. ENVI is a common raw data format for 

hyperspectral images which has two files: One file contains the binary data, and another 

file is a plain text header that provides information about the data such as the interleave 

storage format, data dimension, or sensor specifications among others. It is important to 
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specify the type of data that has been stored in a file. Data can be stored as raw counter 

units or normalized/reflectance units.  Raw counter units are directly readings from the 

camera sensor that must be digitized and are not useful for spectral applications.  Raw 

data are function of the light intensity and, at higher degree, a function of sensor 

sensitivity which is dependant on the wavelength, as it is the detector dark current 

(Geladi et al., 2004).  Pixel calibration or data normalization is needed to correct for dark 

noise and a posterior transformation to reflectance units. 

Similarly to the normalization procedure carried out on single point instrument data, a 

reference standard of high reflectance is used to calibrate the data at single pixel level. 

But before pixel calibration, readings taken without sample are intended to provide dark 

current data that is removed from the sample images.  Most of the instruments, for time 

and expenses reasons, are calibrated using a single Teflon reflectance standard of 90 -

99% reflectance. Knowing the reflectance value of the standard and obtaining the raw 

counter values, each pixel can be calibrated to reflectance units using the following one-

point linear regression (for a standard of 100% reflectance value and for per cent 

reflectance units): 

 

Equation 8.                           
( )
( )BlackWhite

BlackSample
x cereflec −

−
=tan  · 100 

 

The best pixel calibrations are carried out when several standards of different reflectance 

are available because they allow non-linear calibrations (such as quadratic), which is 

found to successfully model the normal detector reading behavior (Geladi et al., 2004).  

 

4. Chemometrics 

 
NIRS data analysis requires chemometrics. Chemometrics, a term widely used in NIRS-

related literature, refers to the use of mathematics, statistics and computational devices in 

chemical analysis.  Without computing capabilities and multivariate methods, NIRS 

applications would not be possible. Chemometrics made possible the dealing of NIR 
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units in resolving highly overlapped and broad peaks, high sensitivity to sample physical 

characteristics, and high information redundancy. While information redundancy can be 

an advantage and can allow working with different wavelength ranges, determining 

which wavelengths hold information of interest without having correlation between them 

is not a problem which can be efficiently solved by trial-error experimentation.  

Figure 11 shows a block diagram with the basic steps for developing a NIRS calibration. 

In that procedure, the broad absorptions (spectra) from a sample irradiated with NIR light 

are correlated with the compound concentration or sample characteristic which user 

pretend to analyze.  The compound to be measured should either be of organic nature 

(direct measurement) or be correlated with sample physical characteristic or another 

organic compound (indirect measurement).  Some relevant aspects of the calibration 

procedure can be pointed from the diagram: 1) there is the need for a fundamental 

analytical method, called the reference method, in order to obtain the dependent variable 

to be calibrated; 2) a suitable number of samples uniformly covering a wide enough range 

of analyte concentration should be part of the calibration set, and 3) the calibration model 

should be later validated to test the model performance on future samples.  

Chemometric methods are at least used in two stages: preprocessing of spectra and model 

development. Outlier detection is another stage which may require chemometrics 

depending on the data complexity. Sophisticated multivariate methods such as genetic 

algorithm or particle swarm optimization may be also used for selecting the variables to 

be included in the calibration or discrimination models. Some of the most common 

preprocessing methods, calibration and discrimination methods are further explained.     
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Figure 11. Diagram of steps for developing a NIRS calibration 

 

4.1. Selecting Samples, Reference Methods, and Spectral Data 

The importance of choosing an adequate calibration set is often underestimated and not 

usually covered in the literature. There is no fixed number or rule-of-thumb to determine 

the number of samples to be included in a calibration. At least between 20 and 30 

samples should be taken for feasibility studies and initial calibrations (Williams, 2001), 

but more robust calibrations may use few hundred (for instance, instrument built-in 

calibrations for grain analysis). Calibrations of homogeneous mixtures (i.e. 

pharmaceutical powders) may require smaller calibration sets than agriculture samples of 

high compositional complexity and heterogeneity, such as whole grains or forages.  

Users work under the constraints of sample availability and reduced budget. Nevertheless, 

there is not enough emphasis on the ultimate consequence of using calibrations developed 

with inadequate calibration sets: calibrations with low predictive ability.  An ideal 

calibration set should cover the chemical, spectral, and physical characteristics of the 

population to be analyzed and avoid future extrapolations when predicting new samples 

(Fearn, 2005).  The distribution of reference values should be uniform. If the distribution 
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is normal (bell shaped distribution), samples belonging to either higher or lower 

concentrations have the chance to get more relevance in the calibration, which would not 

be desirable. Because reference values are not always known and reference analyses of 

large sample sets may be expensive there are other methods to select an initial calibration 

set, using spectra. A method developed by Naes (Naes, 1987) and later illustrated by 

Naes et al. (2002a) uses principal component analysis (PCA) on the spectra and cluster 

analysis of the data. PCA is a technique that projects the spectral data to a new reduced 

dimensional space and it is later explained in detail. 

NIRS calibrations can match or virtually achieve better precision and accuracy than 

traditional wet chemistry methods (Coats, 2002), but paradoxically, NIRS relies on them 

for calibrations. The quality of the reference data influences NIRS calibrations. Careful 

search for the suitable method and laboratory should be carried out. In the case of NIRS 

instrumentation for grain analysis, calibrations are often preloaded, e.g. wheat protein. 

Although this may seem an opportunity to save time and resources in developing custom 

calibrations, the performance of any built-in calibration must be carefully validated to 

determine its suitability for a particular situation.  Calibrations from an instrument brand 

and model may not perform successfully when loaded to a similar instrument, or used on 

different samples than the original calibration population. Outliers from either reference 

values or spectral data exist and most calibration methods are highly sensitive to them 

(Kovalenko et al., 2006; Hubert et al., 2008).Visual check of the spectra can identify 

abnormal and noisy spectra. Visual check is often not enough, and possible outliers may 

not be detected until data is either preprocessed, or a first attempt of calibration has been 

carried out.  

Detecting multiple potential outliers is not simple; their effect is masked with each other. 

Traditional approaches to detect single outliers do not perform well (Walczak and 

Massart, 1998, Naes et al., 2002b). The use of influence measures such as Leverage or 

Hotelling’s T2 statistic in combination with checking model residuals are a powerful 

alternative for outlier detection (Haaland and Thomas, 1988). Influence statistics give an 

idea of how different a sample is from the rest of the data in a given dimension. While 

that does not explicitly make a data point an outlier, high leverage followed with a high 
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residual value (the sample was poorly modeled by the model) give chances that the 

sample is an influential outlier. Its exclusion from the calibration set could improve the 

calibration. However, if removed, enough similar samples should remain in the 

calibration set to avoid significant reduction of representativeness, especially in reduced 

data sets.  

 

4.2. Spectra Pretreatments 

 

Pretreatments or spectral preprocessing methods are a set of mathematical procedures on 

spectra before developing a calibration model. Although raw or not preprocessed 

absorbance values can be used directly to create good predictive models, other times the 

nature of the samples require mathematical preprocessing for better model performance. 

Mathematical pretreatment of spectra reduces noise or background information 

(smoothing techniques) and increases signal from the chemical information 

(differentiation). In other words, they allow overcoming variability in sample thickness 

and differences in light scattering, keeping a more linear relationship between analyte 

concentration and absorbance values. Any applied pretreatment must lead a robust model 

with good predictive ability. Basically, preprocessing methods can be classified as 

baseline correction – normalization, signal enhancement, and statistical filtering of signal 

noise. 

The selection of best pretreatments depends on the signal and data origin, such as 

instrument and sample characteristics, but the selection of the best method usually 

requires trial-error and user experience.  Although there are several techniques explained 

in the literature, most of them are variants from the basic well-known pretreatment 

methods following explained.  More than one method can be used simultaneously in any 

order, although any scatter correction technique (MSC, SNV, normalization) should be 

performed prior to differentiation techniques. Users should avoid increasing the 

complexity of models using too much preprocessing, when in fact, the opposite should 

happen (i.e. fewer latent factors in Partial Least Squares models). 
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4.2.1. Mean Centering 

 

Mean centering is carried out subtracting the average from all spectral values at each 

individual data point from each spectrum, moving the mass of the data center to the space 

coordinates origin without affecting the distance between the points.  When performing 

this operation, we remove the absolute absorbance or baseline value so the data analysis 

focuses more on the absorbance variability in each wavelength. This basic pretreatment is 

commonly used when we carry out principal component analysis (PCA) or partial least 

square regression (PLS) later explained in detail. Centering the data to the mean value 

can reduce the model complexity, often reducing the number of latent variables to be 

employed by one (Haaland and Thomas, 1988).  

 

4.2.2. Scaling 

 
Scaling gives as a result variance equal to 1 for each wavelength after dividing each 

individual value by the standard deviation of all the values in that wavelength.  Scaling 

the whole data matrix allows each wavelength to have the same weight (or eliminates the 

initial weights) during the modeling procedure, which is suitable if the previous relevance 

of variables for the calibration is unknown.  Haaland and Thomas (1988) suggest not 

using scaling when the errors are independent from the changes occurring in the spectra 

(error not being proportional to wavelength) and most of the spectra do not contain much 

chemical information, since the importance of variables containing noise will get the 

same importance as variables containing chemical information.  When operations of 

scaling and mean centering are performed together, the operation is called autoscaling (or 

Z transform), and while the data spread is affected by any type of scaling, the relative 

data distribution and overall meaning is not affected (Lavine, 2000). 

 

4.2.3. Mean Averaging Smoothing 

 

Mean averaging, or best known when applied as the moving window mean averaging, is 

a filtering method that performs smoothing after calculating the average from the data 
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points inside the window (which length is user-specified) and replacing the value of the 

first data point with the mean. The process is done moving the window one data point 

and carrying out the same procedure until the end of the spectra. Other modifications to 

this smoothing technique is the weighted mean moving window, which tends to give 

more weight to the central point in the data window, or the median smoother. Using the 

median smoother instead of the mean helps to remove data spikes but is not as effective 

removing noise (Alfasi et al., 2005). 

 

4.2.4) Multiplicative Scatter Correction (MSC) 

 

The method, applied by Geladi et al. in 1985, helps to eliminate sample physical 

characteristics – path length variability- from the spectra. Packing and geometry 

differences in reflectance spectra can lead to offset baseline due to increase of light 

intensity from specular reflectance (Gemperline, 2006). 

It is proven that the representation of a sample spectrum versus the average spectrum 

from a set of samples (which is used as a basis or reference spectrum) give almost 

straight lines (Figure 12). When applying MSC, the spectra is first averaged and each 

individual spectrum is regressed by partial least squares to the total average. The 

regression equation slope and intercept represent the additive and multiplicative effects of 

light scattering, respectively. Finally, each spectrum is corrected for offset (the offset 

value is subtracted) and each wavelength of the spectrum is divided over the slope. The 

regression coefficients should be stored and applied to new data. The variability of points 

from the line is interpreted as the variability due to the chemical information.  Each 

individual spectrum is corrected removing the offset value from the whole spectrum and 

dividing it by the slope.  

Figure 12 shows three spectra from three different samples represented versus the 

average of the set they have been selected from as a black line.  The sample with pink 

spectrum and pointed with an arrow shows the most additive scattering effect.  
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Figure 12. Sample spectra vs average spectra of all the samples  

 

MSC is advised to be applied in wavelength regions where there is not much chemical 

information, which is often difficult to determine in NIRS, or on whole spectrum when 

the scatter effect is important. Otherwise, the technique will remove also information 

related to the chemical composition together with the scattering effects (Naes et al., 

2002c). Pretty recent publications suggest a loopy application of MSC. Performing MSC 

more than once allowed correction for additional variations in several sets under 

experimentation (Windig et al., 2008). 

 

4.2.5. Standard Normal Variate (SNV) and Normalization 

 

The method, developed by Barnes et al. in 1985, centers and scales the spectrum of each 

sample. The mean of the spectrum is subtracted from each spectrum wavelength (in 

equation 9, a is equal to the spectrum average value), and the result is divided by the 

standard deviation of the spectrum (b in equation 9) so the total set of spectra has a mean 

of 0 and variance equal to one after the treatment. SNV removes the offset and any effect 

that contributes to the overall variation of the spectrum. It is common to use de-trending 

techniques which account for the baseline shift and curvilinear. The results after this 

transformation are similar to MSC, but with the advantage of not needing a reference 



 

32 

 

spectra and not requiring to save regression coefficients. The application of both 

techniques requires a careful checking of score plots for data artifacts and non-linearities 

that may arise after the data transformation.  

 

Equation 9.                      
b

ai
corrected

−
=
λ

λ  

 

Normalization techniques are similar to SNV, but a from equation 9 equals to 0, and b is 

a vector-norm. For instance, the most used is the Euclidian Norm (the square root of sum 

of the squared elements). 

 

4.2.6.  Derivatives 

 

Derivatives enhance relevant peaks correcting for overlapping as is shown in figure 13. 

The models resulting from applying derivatives usually require fewer factors, thus 

resulting models are more robust.  Although it is possible to use high degree derivatives, 

up to fourth degree derivatives are the most used in the literature; first and second 

derivatives are the most common.  First derivative removes the displacements from the 

baseline (constant factors for all the wavelengths) while second derivative corrects the 

terms that vary linearly with the wavelength (Pou, 2002). Forth degree derivatives are 

found to be good to curve sharpening and good for absorbers separation (Hopkins, 2008). 

Gap-segment and Savitzky-Golay are the best known techniques to perform spectra 

derivatives pretreatment. It previously requires fitting a polynomial function to the 

spectra.  Fitting the spectrum to a certain polynomial function can be used as a smoothing 

technique without applying derivatives as well. Savitzky and Golay polynomial involves 

the creation of data subsets from a spectrum, and fitting a polynomial by least squares.  

The process is done for each data subset of user defined number of odd points (or also 

called data window). The window is moved one point to the right to fit again the 

polynomial of user-defined degree.  Higher degrees would allow a better fit, but then no 

smoothing action would be performed and the applied derivatives on the polynomial 
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would enhance the noise.  Choosing the window size for the polynomial fit is also 

important, since big windows can remove both noise and signal, and small windows may 

not improve the signal.   

 

 

 

Figure 13. Spectra with overlapped peaks (A) is corrected with second derivative 

treatment (B), where the individual peaks arise. (Source: Drydden, 2003) 

 

4.3. Principal Component Analysis (PCA)  
 
Principal Component Analysis (PCA) is independently here because its popularity and 

involvement in most of the NIRS analysis. Besides being used in combination or coupled 

with other regression or discriminatory analysis, the same principle with some 

modifications is applied in methods such as PLS. 

PCA is well known in clustering analysis and data compression. Spectral data is usually 

formed by a high number of variables (wavelengths) with a high correlation degree. That 

is to say, the information provided by several wavelengths may be redundant and show 

collinearity.  When regression is carried out on highly correlated variables, fitted 

regression points do not provide a defined structure and the resulting model is unstable. 
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For instance, if regression is carried out with two variables highly correlated (Figure 14), 

the points fit a plane (doted lines) which spans low variability. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 14. Plane formed when carrying out a multiple regression with two highly 

correlated variables 

 
Basically, PCA summarizes the variance-covariance matrix of the spectral variables, 

reducing the dimensionality of the data but keeping the main information from the 

variables.  Geometrically, PCA changes the initial highly correlated axis of the data to a 

smaller set of axis, called principal components (PCs). The data is projected on new 

orthonormal axes (PCs which are perpendicular with each other and unit length) which 

are built as linear combinations of the original variables: the wavelengths. The algorithm 

finds these new axes seeking for the orthogonal directions which explain the maximum 

data variability. The first PC will be drawn following the direction which explains the 

highest variability. The second PC will seek the second direction of maximum variability 

under the constraint of being orthogonal (perpendicular) to the first PC. The third PC will 

seek the third direction of maximum variability being perpendicular to the first and 

second PCs and so on. The PCA concept is represented in Figure 15. The initial data (a) 

is plotted in 3 dimensions where two of them are highly correlated. Step b shows the way 

that PCs would be created: PC1 follows the direction of highest variability as a 

combination of the two highly correlated variables. PC2 is generated through the next 
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direction with more variability and at the same time the angle with PC1 is 900. PC3 would 

mainly represent residual variability, and could be omitted in (c), where data has been 

rotated and fitted to the new axes or PCs, eliminating data collinearity.  

 

 

Figure 15. Example of Principal Component Analysis (PCA) on three 

dimensional correlated data (Source:  Kavraki, 2007) 

 

The new axes or PCs are defined by the loadings, which are the cosines of the angles that 

each PC forms with the old axis (wavelengths). The loadings can also be seen as the 

weights for each original wavelength in each principal component. 

Previously to carry out PCA, data must be normalized by autoscaling or mean centering 

so the data is centered.  The original data will be projected to the new PC axes according 

to equation 10. 

 

Equation 10.                                              T = X*P + E 

 

X is the original data matrix. P is the matrix of loadings (P). T is the score matrix, or the 

new values that original data acquire on the new axes. E is the matrix of residuals. The 

number of PCs that can be calculated depends on either the number of initial variables or 

samples, but commonly only up to 20 are calculated from NIR data. Only few PCs – the 

first ones - are considered important at the end, depending on the variance they explain 
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over the total data variance. This can be checked from the eigenvalues. Each PC has an 

eigenvalue associated (the sum of all the eigenvalues is equal to the number of PCs) 

which is a constant number obtained through the projection and calculation process of 

each PC (eigenanalysis). The last PCs will not have important information because they 

explain very small sources of variability, usually associated with noise. When researchers 

use PCA to summarize their data, they may use all PCA that have an eigenvalue higher 

than 1, or commonly, they plot all eigenvalue and do not take further PCs after the first 

inflexion point of the plot or elbow. 

 

4.4. Linear Calibration Models 

 

Sample absorbance is expected to be linearly related to the compound to be measured 

according to Lambert’s law in most of the cases. Three of the most popular linear 

calibration methods are following discussed. Among them, Partial Least Squares (PLS) 

seems to be the most popular although its performance is similar to principal component 

regression (PCR).  

 

4.4.1. Multiple Linear Regression (MLR) 

 

MLR is one of the oldest multivariate regression methods, used by Norris in his later 

experiments. The method provides good results if the number of measured wavelengths is 

relatively low (for instance, data measured from filter instruments) or an advanced 

wavelength selection method such as Genetic Algorithm could be applied. Another 

important consideration when using this method is to avoid strong collinearity among the 

wavelengths: the information from each of the wavelength measurements is not strongly 

correlated with any of the others. 

MLR is a generalization of the univariate inverse method based on least squares fitting of 

y to x (it is also known as inverse least-squares). The algorithm gives a linear regression 

equation (equation 11). 

 

Equation 11.                    
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Each independent variable (for i = 1 … n) xi  is correlated with the dependent variable 

(the reference value) and its correlation is measured with  the coefficient of correlation r 

(or coefficient of determination r2). This is done in a stepwise manner through creation of 

a sequence of multiple linear regression equations unless it is known beforehand which 

variables are going to be introduced. At each step of the sequence, one variable that 

makes the greatest reduction in the error sum of squares of the sample data (or the one 

that provides the greatest increase in the F statistic) is added to the regression equation. 

The process is continued until some stopping criterion is met or all the predictors are 

processed. In this manner all possible linear regressions on all subsets of the available 

independent variables are tested. The subset of predictors that produces the lowest 

standard error is reported.  The error term is also known as residuals. One of the problems 

associated with MLR is that it is prone to over-fitting (Davies and Grant, 1987), when a 

significant amount of irrelevant information (noise) or too many predictors are 

incorporated into the model.  

 

 4.4.2. Partial Least Squares (PLS) and Principal Component Regression (PCR) 

 

Both PCR and PLS successfully deal with wavelength correlation and redundancy of 

information. PLS, as it is following explained, can be seen as an improvement of PCR 

since the principal components are calculated not only taking in account the spectral data 

matrix but also the reference values. For this reason while PCR is considered an 

unsupervised regression method, PLS is already classified as supervised regression.  

PCR is a direct application of the principal component analysis (PCA) method. Once the 

spectral data is projected to the new orthogonal non-correlated dimensional axis (PCs) a 

regression process by multiple linear regression least squares is performed between the 

projected data and the reference values. Wold’s introduction of PLS (1975) was an 

improved alternative to PCR; Both methods carry out regression on data projected to a 

new dimensional space, but the new space coordinates created in PLS regression take in 

account the information from the reference value matrix. For this reason the new 

variables receive the name of latent variables (LVs) instead of principal components 
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(PCs). The way that the latent variables are calculates is by maximizing the covariance 

between X and Y. That is to say, X and Y are decomposed at the same time and while the 

covariance between them is forced to be maximized; another constraint sets that both 

matrices residuals from Y and X decomposition are close to zero.  Both data and 

reference matrices are mean-centered or autoscaled previously of being decomposed as 

follows in equation 12 and 13, respectively: 

 

Equation 12.                                

 

Equation 13.                                

 

Where T is the matrix of scores, P is the loading matrix for the spectral matrix. U is the 

score matrix and Q is the loading matrix for the concentration matrix. The P loadings are 

not following the exact direction of maximum variability since they are also considering 

the information from the reference matrix: The decomposition of both matrices is not 

independent; it is done simultaneously so there is an inner relationship described in 

equation 14: 

 

Equation 14.                                     

 

Where for each component a a regression coefficient b establishes the relationship 

between the scores of the spectral and reference matrices. Through this relationship, the 

reference matrix can be expressed as in equation 15: 

 

Equation 15.                                        

 

Where B is the matrix with the regression coefficients. The prediction equation can be 

expressed in a way that new data does not need to be projected again in the latent 

variables. Being xi the spectrum from a sample of unknown concentration, this can be 

predicted using the following equation 16: 
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Equation 16.                                           

 

Where b0 is the intercept and B is the matrix of the regression coefficients. 

Although both methods provide similar results, PLS become more popular. PLS 

accuracies may not usually be significantly higher than those of PCR but they are 

achieved by including fewer latent variables in the final calibration (Naes et al., 1986; 

Hammateenejad et al., 2007; Muñiz et al., 2009). PLS is preferred because the algorithm 

is faster, models have higher precision, and provides more harmonious calibration models 

(Kalivas and Gemperline, 2006). There are at least two main algorithms to perform PLS 

calibrations: NIPALS (Non-linear Iterative Partial Least Squares) and SIMPLS. NIPALS 

works slower but is told to be more transparent than SIMPLS, which is faster (Wise, no 

date).   

PCR and PLS calibrations are only based on a relatively small number of PCs/LVs 

because similarly to what has been explained with PCA, since they are extracted 

following the direction of maximum data variability, the last PCs/LVs usually involve 

noise.  If an excessive number of variables are included in the calibration, a fraction of 

noise is also modeled and the calibration becomes too specific to the calibration set. This 

phenomenon is known as overfitting and leads to a reduction of model accuracy in future 

predictions. There are different approaches to estimate the appropriate number of 

PCs/LVs to be kept for the calibration model. One of the most employed approaches uses 

cross-validation, mentioned later as an alternative validation method as well. The general 

idea of cross-validation is to keep a single sample (full-cross validation or leave-one-out 

cross-validation) or a group of samples (k-fold cross validation) apart and develop a 

calibration with the remaining samples. The remaining samples are then predicted by the 

developed calibration (validation) and the prediction values are compared with the real 

reference values to calculate the error. This procedure is consecutively done until all the 

samples have been predicted once. The error is finally expressed as Predicted Residual 

Error Sum of Squares (PRESS) (equation 17, where hii are the leverages for each 
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observation). In other words, PRESS is the addition of the squared error from each 

sample when predicted by the model.  

 

Equation 17.                       ( )
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The PRESS value can be used to select the number of latent variables or principal 

components in the final model. Chemometric software does this cross-validation 

procedure using several PCs or LVs and displays the cumulative PRESS value 

graphically so users may visually select the number of PCs/LVs that lead to the first 

minimum PRESS value from the plot. The best number of PCs to select would be the one 

that shows the elbow on the plot as then the value does not significantly decrease. 

Another option is calculating the ratio of the new PRESS after adding a new PC/LV over 

the residual sum of squares before adding the new latent component since it gives an idea 

of the significance of the new component added (i.e. how much variance is explaining), 

considering it significant when the ratio is equal or smaller than 0.9 (Wold et al., 2004).  

The F test by Haalan and Thomas (1988), is based on the idea of picking the component 

number which PRESS value is not significantly higher than the previous one. The ratio of 

PRESS value at certain component over the PRESS at the previous component is 

calculated for all the components, and it is assumed to follow an F-Fisher distribution 

with degrees of freedom equal to the number of observations. Each ratio is compared 

with the tabulated value for the one-tail F distribution to determine when two PRESS 

values are not significantly different. 

 

4.5. Non-linear Models 

 

There may be cases where the relationship between sample spectra and reference values 

is not linear. There may exists several sources that make the relationship chemical 

information-spectra nonlinear, such as stray light, detector’s characteristics, very high or 

low absorbance, overlapping signals or particle size (Despagne and Massart, 1998). Any 
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of the previously cited calibration methods can handle small nonlinearities, but when 

prediction residuals show certain pattern of positive and negative values or plots of 

predicted versus reference values show appreciable curvature, nonlinearity need to be 

addressed (Naes et al., 2002d). Often, curvature may not be noticeable but for the fact 

that calibration statistics are not good. The Durvin-Watson statistic can be used as an 

assessment tool for detecting nonlinearity (Howard and Workman, 2005). Although being 

a low power statistic and requiring a large number of samples to be used, it is a sensitive 

and specific test for nonlinearities in predictions. The test is based on the ratio of standard 

deviation by successive differences of residuals by the ordinary standard deviation of 

residuals. Its value is close to 2 (not significantly different than two) when the residuals 

are not correlated – no hidden non-modeled variability source or nonlinearities -. It 

assumes that ordinary standard deviation is dependent on the curvature, so if 

nonlinearities exist the denominator will increase and DW will achieve values 

significantly lower than two.  To perform the test, data must be first ordered according 

the reference values.  

Once the nonlinearity is detected, there are some solutions suggested by Naes et al. 

(2002d) such as new preprocessing, deleting wavelengths, adding extra principal 

components/latent variables to the model, using nonlinear calibration models, or split the 

data in subsets using an approach similar to the cluster analysis for sample selection 

(Naes, 1991). If none of those approaches work, there are nonlinear methods that handle 

more complex relationships between spectra and analyte.  Those are following explained. 

 

4.5.1. Local Regression and Locally Weighted Regression  

 

Local regression (LR) and locally weighted regression (LWR) are not intrinsically 

nonlinear regression methods –local methods use subsets of the whole data-, but since 

they allow developing traditional calibration methods such as PLS or PCR in non 

homogeneous or highly clustered data they allow modeling nonlinearities up to certain 

extent.  



 

42 

 

LR and LWR are applied piece-wise. This make the method useful for highly clustered 

data since approximately one local regression will be developed for each cluster 

independently. Since the local models are built with smaller sets of samples (neighbours) 

there is some risk of having not very stable calibration parameters (Despagne and 

Massart, 1998) and in order to use this method with accurate results is recommendable to 

keep adding samples to the calibration pool.  

One of the LWR algorithms is found in the PLS_Toolbox, a set of functions developed 

by Eigenvector Inc. for use with MatlabTM. A global calibration model is performed first 

on the calibration set (i.e. PCR, PLS) and the loadings are obtained. During the prediction 

of an unknown sample, its score on the first PC is calculated. The distance between the 

sample and the rest of the data pool in that PC is calculated (Mashalanobis distance), 

finding the closest set of used-defined number of neighbors. For the closest neighbors, 

the distance of all the points in the neighborhood is normalized dividing by the radius of 

the neighborhood (i.e. the largest distance value), and a weight function is applied to give 

more relevance to the closest points for the prediction of a new sample. There are several 

available weighting functions, but the tricube (equation 18) seems to be the most popular 

and used in the algorithms. Linear and biquadratic can be obtained substituting the cubic 

exponent in equation 18. Engster and Parlitz (2006) mention that results obtained from 

the different weighting functions in time series analysis is pretty similar in terms of 

prediction accuracy, but the higher the exponential term the fewer points affect or 

contribute to the local model.  

 

Equation 18.                                                ( )331SW d= −  

 

where SW is the weight associated with a calibration sample and d, the scaled distance 

between the new sample to predict and the calibration sample.  

Summarizing, LWR develop a model with training data, but when new predictions must 

be done, the training data is retrieved again. It could be defined as a “dynamic” model. 

Although LWR takes in account the whole set of data every time a sample must be 

predicted, it only uses for prediction the set of data that is close to the sample and that is 
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the reason why it is called “local”.  It does not need a high number of initial training 

samples when compared to Artificial neural networks (ANN) explained later, although it 

requires more samples than PCR and PLS (Burns and Ciurzack, 2007). 

 

4.5.2. Artificial Neural Networks Regression (ANN) 

 

Artificial Neural Networks (ANN) is a computational method that can be applied to NIR 

data to develop nonlinear calibrations. By trying to simulate the human nervous system, 

ANN uses the calibration set to learn about any relationship (no matter how complex and 

does not need to be linear like in MLR, PCR or PLS) that may exist between spectra and 

references. ANN regression is much more complex that the previously mentioned 

methods and require adjusting and optimizing several parameters. The most common 

type of nets for this purpose, which we will later describe a little more, are the multi-

Layer feed-forward backpropagation learning nets.  

An artificial neural net is composed by neurons (the basic units) or nodes, layers, and 

transfer functions that join the neurons from different layers (Figure 16). When working 

with NIR spectra, the input nodes would be either the absorbance values from the 

wavelengths or the scores from principal components, and the output node would be the 

predicted value. Other nodes may be created in hidden layers (multilayer perceptron 

model), which increase model complexity and ability to model non-linear relationships.  

 

 

Figure 16. Structure of a neural net with 4 inputs, 5 hidden neurons in a single hidden 

layer, and a single output 
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The nodes or neurons, similarly to biological neurons, have a specific number of 

connections with other neurons by the transfer functions. The connections acquire 

specific weights during the training process, which either positive or negative values 

(excite or inhibit). The absolute value of the weights will depend on the relationship 

between the input data and the target or output. The weights will define the efficiency of 

information transfer to that connection, and can be interpreted as a way of stored 

knowledge.  The neuron input is the result of the dot product of the input vector and the 

weights vector, which is then processed by the activation function (equation 19). 

 

 
Equation 19 
 
 

Where j is the input connection, w is the weight of the connection j for a neuron k, and x 

is the input value coming from the connection j. 

Therefore, the output of the neuron would be the outcome of the activation function on 

the value of vk.  Among the several activation functions cited in the literature (threshold, 

piece-wise linear, and sigmoids) the sigmoid type are the functions used for multilayer 

models, with common functions such as the logistic and hyperbolic tangent (Massart et 

al., 1998).  Sigmoid functions have linear response for intermediate values, and can 

model nonlinear responses thanks to their non-linear behavior in their extremes (Figure 

17). The hyperbolic tangent function forces the results to be in the range of -1 and 1 

(normalization), but both curved tails offer a lack of sensitivity during training of highly 

non-linear sets and require more time to modify the weights (the tails are activated to 

model non-linear responses).  The linear functions are most common in the output layer if 

most of the modeling part has been carried out in the hidden layers and are preferred for 

the output layer in classification problems (Massart et al, 1998). 
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Figure 17. Graphic representation of hyperbolic tangent function 

 

 

The nodes or neurons are located in layers. Nets with hidden layers with more nodes 

interconnected performing functions are known as multilayer perceptron model, although 

direct connection between input and output layers is possible (no hidden layer). The 

number of nodes or neurons per layer should never exceed the number of training 

samples, and usually half the number of training samples is proved to work well 

(Despagne and Massart, 1998). The optimal network morphology (number of hidden 

layers and neurons) can be determined growing the network (adding additional neurons 

and carrying out training) while observing the network performance.  Once there is no 

more improvement, no more neurons are added.  On a similar way, we can start with a 

big number of neurons and removing one until no improvement is observed; this process 

is called pruning.  Usually with just one or two hidden layers the network performs with 

accuracy.  The output layer can have more than one neuron or node, that is to say, 

multiple responses can be modeled although unless the responses are correlated to model 

one output at a time is proved to perform better (Despagne and Massart, 1998). 

Previously to ANN, PCA is usually applied for data compression if the number of 

variables is large, although other methods of data compression such as wavelets and 

Fourier together with a wide variety of variable selection methods can be used to keep the 

variables with high relevance for a given prediction or classification problem.  
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Learning Procedure and Delta Rule 

Once the net morphology has been set, it needs to be trained. During the training is when 

the weights between connections are set and gradually modified under either supervised 

training (when targets are provided) or unsupervised training (the same input spectra is 

provided as target to make the net classify spectra by their patterns).  

There are several ways to carry out training.  Incremental training performs modification 

of the weights every time an input is processed, so it is a slower training process but 

equivalent to the faster batch training method, which performs weight modifications after 

all the inputs are processed- it is thus a more memory consuming process -.  These 

modifications are done following any of the existing learning rules. One of the most 

popular is the delta rule, which states that a weight is modified according to the 

difference between the obtained value from the activation function and the desired one 

(equation 20): Whenever there is a difference, there is learning.  

 

Equation 20.                                        ∆wki = η (tk – xk) xi  

 

Where xi is the input associated with the initial weight wi, xk is the current output from 

the activation function of the neuron k, t is the target, and η is a learning rate which value 

is between 0.0 and 1.0, as later explained.  

The delta rule is based on the gradient descent theory.  It assumes that the error function 

follows a n-dimensional parabola-shaped surface when representing the squared error 

versus the weight value.  The surface has a minimum that ideally would be reached when 

obtaining the ideal weights through carrying out the delta rule learning. The ideal 

situation happens when there is a single linear activation function in the network without 

hidden layers. However, almost all the ANN applications require a hidden layer with one 

or more neurons. In such cases, the error surface does not follow the ideal parabola and 

several local minima may exist, forcing the training process to stop when the best weights 

are not yet achieved. 

In order to train more complex multilayer networks, more than the simple application of 

the delta rule for learning is required.  The backpropagation learning algorithm offers a 
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solution to train more complex methods under the similar principles of the delta rule – 

and for this reason the algorithm is also called the general delta rule -. The algorithm 

works assigning random weights in the beginning, processing the inputs through the 

network (additions and activation functions), and comparing the final output with the 

targets. The error is calculated using the squared error for instance, and it is 

backpropagated through the network modifying the weights (Equation 21). 

 

Equation 21.                                      E = ½ ·∑k (tk – xk)
2  

 

Where t is the target value and x is the actual output value of the neuron k. The weight 

modification is done by derivation of each output error function in each neuron respect to 

its inputs, and it is evaluated respect to the weights (Equation 22). 

 

Equation 22.          ∂E/∂wki = ∂ [½ (tk – xk)
2] / ∂wki =  -(tk – xk) g′(hk) xi  

 

From the equation, g(h) is the activation function applied to the h input. Sigmoid 

activation functions are derivable and continuous, one of the conditions that the algorithm 

requires in order to carry out this learning process (Massart et al., 1998). The error 

function derivative respect to the weight provides the weight modification value 

(Equation 23). 

 

Equation 23.                          ∆wji = η(tj - xj) g′(hj) xi 

 

η is again the training rate.  The learning rate of a network measures the change rate of 

weights in each iteration or epoch.  The desired learning rate is neither too fast nor too 

slow in order to achieve a convergence with the goals without taking too long in 

computing.  It depends on the activation function, while sigmoidal activation functions 

perform well at learning rates above 0.5, linear activation functions work with 

considerably lower values (Massart et al., 1998).  High learning rates may lead to system 

oscillation that could be avoided introducing a momentum term in the equation, which 

basically control which proportion of the calculated weight difference will be taken for 
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the modification.  The number of iterations to be performed should not be excessive since 

the net would start modeling noise and becoming too specific for the training set, loosing 

accuracy for future predictions. 

 
Network Performance 

The best way to control the training process and network performance is through 

monitoring the training error after each iteration, together with the error of a monitoring 

set. The monitoring set is independent from the training set, thus the error obtained after 

the set is processed by the network is expected to be higher than the one obtained from 

the training set.  Examining both training and monitoring error trends by plotting them 

help to determine when there is overtraining (overfitting or noise modeling that leads to 

poor model generalization) or the network is not successfully learning. In this last case, 

both errors do not decrease enough to be acceptable and we may want to check the 

transfer function values: This phenomenon tends to happen when too many nodes lead to 

have the activation function values either too high (approaching 1) or too low (Massart et 

al., 1998). Checking the error trend also allow finding system oscillations which may 

have learning rates too high. 

The net training is stopped once the sum of squared errors from the monitoring set either 

stabilizes or falls below a given threshold, or the net performance degenerates.  Because 

the number of initial samples to develop an ANN model is required to be high to get an 

appropriate training, the number of samples is usually a limitation for using this 

technique. An additional third sample set (test set) could be used to test the network 

predictive performance for new samples.  Whenever it is possible, model validation 

should be referred to the test set; otherwise, the monitoring set could be used as 

validation set which would be an equivalent of the use of cross validation for PLS.  The 

use of cross validation in ANN is also possible if there are not enough samples to set a 

monitoring set.  

ANN is complex due to the big amount of parameters that need to be controlled and 

tuned. Furthermore, it has been considered a “black box” method. The interpretation of 

weights and judging the importance of the input neurons is difficult or nearly impossible. 
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4.5.3. Support Vector Machines (SVM) 
 
The SVM method is based on principles of statistical learning theory developed by 

Vapnik and Lerner (Vapnik and Lerner, 1963). Initially, the method was intended for 

solving classification problems, but then was adapted for linear and nonlinear function 

estimation (Drucker et al., 1997). 

SVM applied to a linear regression problem would be carried out using a regression 

function as the equation 24 (with < > denoting dot product), where x are vectors from the 

data matrix and w is a weight vector that defines the regression “hyperplane”. The 

predictions should not exceed a specified deviation value respect to the targets ε (Figure 

18), while the function should have small curvature through minimizing ½ ||w||2. This 

constraint helps to reduce the number of infinite functions that could be constructed 

through the given finite points (Durbha et al., 2007). 

 
 
Equation 24.                                       F(x) = wX + b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18. Regression by SVM and established maximum deviation between samples 

and regression line 

 
Because there may not always be a function that can be built under all those constraints, 

the introduction of two new variables (C and ξ) in the function allows controlling the 

relevance of the constraints. How flat the function should be and the tolerance value of 



 

50 

 

exceeding ε is controlled with the regularization parameter C in equation 25 to be 

minimized. C allows controlling the global deviation of the model: small C brings more 

tolerance to the errors (more importance to obtain a flat function) while high-value C 

brings more complexity to the model while it becomes more sensitive to errors (Colliez et 

al., 2006) which could give more relevance to possible outliers.  

 
 
Equation 25.             Minimize ½ ||k||2 + C Σ(ξ + ξ *) 
 

 

ξ  and ξ * are slack variables, lower and upper difference from ε , which mathematically 

leads to the constraints (equation 26) 

 

 

Equation 26.         y - w X - b ≤ ε + ξ     and    - y - wX  + b ≤ ε + ξ* 

                               with  ξ  and  ξ * ≥ 0 

 
 
A loss function is defined to determine ξ and the quality of the model predictions.  The 

linear ε–insensitive loss function (Vapnik, 1995) is the most commonly used since it does 

not account for ε but only for sample distances higher than ε. Other loss functions are 

quadratic, Huber, or Laplace. Furthermore, the linear loss function presents the highest 

robustness for estimations since it has the lowest rate of error increment compared to the 

other loss functions (Colliez et al., 2006). Equation 27 and figure 19 represent the linear 

loss function in mathematical and visual forms, respectively. 

 

Equation 27.         

 

 So ξ = 0 if y-f(x,w)  ≤ ε     and  | y-f(x,w) | - ε   otherwise 
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Figure 19. Graphic representation of the linear loss function. The perpendicular line 

locates the regression line. 

 
It is important to notice that in order to work with the regularization parameter constraints, 

only the points which variability ξ exceeds the previously specified ε, as is shown in 

figure 19, contribute to the loss function. Those points are called support vectors and used 

for model development. If ε is set too high, it may lead not having support vectors to 

build the model, and on the opposite, with ε too small too many points are used in the 

model which can lead to a lack of the generalization ability. The slope of the loss 

function is specified by the regularization parameter C.  

In order to find the optimal solution to the equation 27, Lagrange multipliers optimization 

can be performed to obtain the weight vector (w) (equation 28). 

 

Equation 28.                                    w ∑
=

⋅=
N

1k
kkα x  

 

This is one of the strengths of SVM compared to ANN: the Lagrange error function only 

has a single minimum thus there is no risk to be stuck in a local minimum (Zomer, 2004). 

The resulting function or regression model is shown in equation 29. 

 

Equation 29.                             ŷ ∑
=

+⋅⋅=
N

1k
kk bα xx                
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where vector x represents new sample, xk is kth training sample, αk is Lagrangian 

multiplier for kth training sample , and b is the offset calculated from the Karush-Kuhn-

Tucker conditions.  There is an important observation from equation 29: the algorithm 

takes the dot product of the vectors of the data matrix, which means that the 

dimensionality of the data is “not important” in the function. This is the key that allows 

applying support vector machines for non-linear regression problems.  

Until now, the model has been developed using linear correlation between input data and 

targets, but the same procedure can be used for non-linear correlation because the final 

optimum regression function is not based on data dimensionality. The same SVR 

algorithm can be used in highly dimensional data. When SVR is performed on the initial 

space, a linear correlation may not be possible but the regression may be linear in another 

highly dimensional space. To get the data to this new space, the initial data matrix is 

mapped using a mapping function Φ. Thanks to the fact that the regression function 

predicts using dot product of the data, there is no need to know about the mapping 

function details, but work with what is called a kernel function (equation 30).  

 

Equation 30.                                  K(xi, xj)=Φ(xi)*Φ(xj).  

 

The kernel K function is equal the product of two samples in a given high dimensional 

space. Kernel functions do not deal with Φ implicity, so computations are less 

complicated and take less computation resources even if Φ is highly dimensional (Burges, 

1998). Similarly to equation 29, we can introduce the kernel function in final regression 

quation (Equation 31). 

 

Equation 31.                               ŷ ∑
=

+=
N

1k
kk b)K(α xx,       

 

There are several well-known kernel functions such as polynomial, linear, sigmoid, 

splines, additive kernels, or inverse-multi quadratic. Linear kernel is the simplest one, the 

rest require tuning additional parameters related to the kernel characteristics. One of the 
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most used is the Gaussian Radial Basis function (RBF) (equation 32), because there is the 

need for only tuning one parameter (σ). It is of easier computation than polynomial kernel, 

for instance, that requires finding the best degree and an addition constant.  

 

 

Equation 32. 

 

 

The RBF kernel parameter (σ) is known as the kernel Pardzen window width, which 

affects the degree of generalization of future predictions. Small width will lead to have 

less variance and project to higher dimensions, but lead to higher bias as well. The best 

kernel parameters are chosen usually together with the optimal values of ε and C by grid 

search (by small increments of the kernel parameters and comparing the obtained error) 

and cross validation. The grid search allows simultaneous tuning of the parameters – 

since they can not be optimized independently – applying increments of each variable 

and comparing the prediction error from each combination and retaining the combination 

that minimizes that error. It is usually time consuming and not necessary to work over 

large ranges of values – furthermore, the risk of falling in local minima of the error 

function is high-, so other methods establish approximate values where the grid search 

could start from. Cherkassky and Ma (2002) suggest using the following approximation 

in equation 33 for obtaining the value of C. 

 

Equation 33.                              

 

where ŷ and σ are the mean and standard deviation of the reference data, respectively.  ε 

can be approached depending on the sample size (n) as shown in equation 34 (note that 

for big sample sizes another random constant τ needs to be defined by the user). Other 

alternative methods are based on pattern search (Momma and Bennet, 2002; Frohlich and 

Zell, 2005) but they have not replaced the popularity on the grid search-cross validation 

search. 
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 Equation 34.        

 
 

 
Least squares support vector machines (LS-SVM) is a variant of SVR that uses least 

squares instead of the ε–insensitive loss function.  Instead of working with slack variables 

ξ and ε, the least squares function works taking the error from each data point to the 

regression function (Figure 20); The function to minimize this time is shown in equation 

35. 

 
 

 
 

Figure 20. Sample error to the regression line 
 

 

Equation 35.                   Min     ½ ||k||2 + C/2 Σ(e2
i )   

 

With the equality constraint      for i=1 to n 
 
Although LS-SVM uses all the training data points, thus all the points are support vectors, 

it is computationally faster than SVR because it avoids the quadratic programming 

needed to solve the constraints from the Lagrangian function in SVR. The problem is 

reduced to a linear system instead (Abe and Onishi, 2007).  
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4.6. Pattern Recognition and Classification 

 

Pattern recognition is a widely used term to refer to the identification of clustering or 

similarities in data, with or without previous information about existing data classes. 

When there are established initial data classes, methods of supervised classification such 

as SVM classification or discriminant analysis can be used. Other methods such as K-

neighbor allow data classification when classes are not known a priori (unsupervised 

classification).  

Most of the previously explained calibration methods can be used for supervised 

classification. PLS in classification (also known as PLS discriminant analysis, PLS-DA) 

and ANN work under the same principles of regression models using dummy variables as 

reference. When regressing with dummy variables, the reference values are set in either a 

vector or a matrix with as many columns as many classes are, which has only one 1 per 

row (sample) in certain column, to indicate the class where each sample belongs. The 

predictions of new samples to be classified won’t be necessarily a matrix of 0 and 1, thus 

the classification process from the predictions starts setting adequate thresholds. 

Thresholds are set according to the number of samples in each class, setting it as the 

division of the number of calibration samples from a certain class divided by the total 

number of samples. However, it is important to note that methods such as ANN can be 

biased if the number of samples in each class significantly differs. 

SVM was initially designed for linear classification. As classifier, its objective is to draw 

a line or hyperplane that has a maximum distance to objects on the border of the classes, 

that is, maximizing the space (also called margin) between samples on the boundaries 

from the two classes and which are the support vectors. The optimization process 

(maximization of the margin) is carried out using Lagrangian multipliers similarly to the 

optimization of the slack variables in SVM regression. The classifier gets the final form 

of equation 36 where yi gets values of either 1 or -1 depending on the class it belongs. 

 

Equation 36.                            )()(
1

bxxysignxf ii

ni

i
i +⋅⋅⋅= ∑

=

=

α  
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Note that the function relies again on dot product so kernel mapping functions allow 

classifying the data in highly dimensional spaces when the linear separation in the current 

dimensions are not possible (Figure 21).   

 

 

Figure 21. Visual representation of a complex classification scenario converted to linear 

discrimination at higher dimensions by support vector classification. (Source: Improved 

outcomes software website, 2004)  

 

Perfect separation will not be always possible. The lagrangian parameters indicate the 

importance of a SV defining the hyperplane. The value can be extremely high if the SV is 

located in a zone where there are predominantly another data class, leading to a less 

reliable classification due to data overfitting (Zomer, 2004). It is solved, such as in the 

case of SVM regression, with the concept of soft margin classifier. With the addition of a 

regularization parameter in the constraints that controls the margin maximization (0 ≤ α I 

≤ C) while the number of misclassified samples is kept inside an acceptable range the 

overfitting problem is solved.  

SVM was originally designed to classify two classes, but there are few approaches that 

allow multiclass classification reducing the data to few binary classification problems. 

The “one against all” approach is based on developing classification of a single class 

from the rest of classes, and it is done for all the classes in the set. Each new sample to be 

classified acquires as many decision values (from decision functions) as data classes, and 



 

57 

 

it is classified in the class where the sample obtained the highest value (Hsu and Lin, 

2002). One of the problems of this method is the errors that can be derived of using 

unbalanced number of classes. The ‘One against one” method seems to be better for 

multiclass classification purposes, but it is very memory demanding since it works with 

pair of samples, comparing the new sample to each sample from the data set and keeping 

the most predominant class according to the decision function. The winning class is 

assigned to the sample.  

Recalling, ANN and SVM are powerful alternatives for identifying patterns or classifying 

data in higher dimensions (cannot be separated with a hyperplane in the actual 

dimensions). For more straight forward classification problems, some other methods with 

low complexity should perform well. K-nearest neighbor clustering is a simple yet 

successfully used alternative for supervised classification, and similarly K-means is a 

good simple alternative for unsupervised classification. Both methods are based on 

similarity among data based on distance measures and do not require much computational 

efforts or need of normality distribution of the variables. However, those do not have 

much popularity in NIRS. Other methods are based on developing PCA. An example is 

the Soft Independent Method of Class Analogy (SIMCA) and PCA followed by either 

linear or quadratic discrimination analysis are briefly discussed. These methods are 

briefly discussed in the following sections. 

 

4.6.1. K-nearest neighbor 

 

The similarity between two data points can be measured by either the distance between 

them (deterministic methods) or by probabilities of belonging to certain cluster 

(probabilistic classification) (Tran et al., 2005). K-nearest neighbor and K-means are 

deterministic methods.   

In the K-nearest neighbor algorithm, usually the Euclidean distance of each sample to be 

classified to every other sample in the set is calculated. This way, K odd number of 

closest neighbors is chosen and the wining class labels the new sample. The optimal 

number of neighbors k may be calculated by iterations, although generally low values 
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from 1 to 5 tend to work the best. Despite the simple approach the method, the results 

obtained by k-nearest neighbor can be as good as the more complex methods such as 

ANN, but there is a need to introduce other criterions of majority if the number of 

samples belonging to the different classes is not similar (Massart et al., 1998).  

 

4.6.2. K-means 

 

K-means algorithm is similar to the k-nearest neighbor but it is an unsupervised 

classification method so previous class information is not required. It starts assigning the 

first k samples (where k is again user-selected) a cluster class. The next samples to be 

classified are assigned to any of the existent clusters according to the distance to the 

centroid of each cluster. Once the sample is assigned to a certain cluster, the mean 

centroid of the cluster is updated. A second check is performed, and the distance of each 

sample to the centroid of the existent clusters is calculated. If a sample initially assigned 

to a cluster is found to be closer to another cluster centroid, the sample is moved to the 

new cluster and both previous and current cluster means are updated. There usually are 

several iterations until convergence is achieved and there are no new assignments.  

 

4.6.3. Discriminant Analysis 

 

The classification is performed after creating an explicit optimal boundary between 

classes known a priori. When the boundary is created, either using a straight line (linear 

discriminant analysis, LDA) or a quadratic function (quadratic discriminant analysis 

QDA), all samples are classified in any of the existent classes. That can be a problem for 

samples that may belong to new masked classes or samples that belong to unspecified 

class because of being outliers. 

For LDA, also known as Fisher’s discriminant analysis (1963), and supposing the case of 

two classes (Figure 22), where the two ellipses that had been generated by the same 

confidence probability values touch, a line or plane tangent to the two ellipses can be 

drawn (y = wTx) which maximizes the separation of classes. Another line or plane 
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perpendicular to the last one will serve as a projection line or plane, where the new value 

from each sample or score are defined by a linear combination of the initial variables. 

LDA maximizes the between-class scatter while minimizing the within-class scatter this 

way. We will be looking for a projection where examples from the same class are 

projected very close to each other and the projected means from each class are as far 

apart as possible. At the end, there will be as many linear equations as sample classes. 

The general equation for any class t has the form of equation 37. 

 

 

 

 

 

 

 

 

 

Figure 22. LDA for two classes and two variables. 

 

 

Equation 37. Dt = w0 + wt1*x1 + wt2*x2 + …. wtnxn = W’X + w0 

 

 

D is the dependent variable, a discriminant score or membership value for class t. In 

NIRS, x would be wavelengths or PCs. w are the weight coefficients for each variable n 

that predict a class t (w0=0 if data is standardized) which are calculated under the 

assumption that the variance of each class is the same. This is an important detail that 

should be taken in account since the pooled variance (Sd pooled) is used for calculating the 

weight as shown in equation 38 for a two class classifier. Implicitly, LDA assumes that 

the mean from each group is the discriminating factor, not their variance. 
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Equation 38.                                  W’= (– 2x )’٠Sd-1
pooled 

 

Where  and 2x are the averages of samples in group 1 and 2 respectively. The way that 

the projection line is created is following the direction that gives the optimum separation 

between classes thanks to the weight coefficients. The classification rule is defined for 

class A as D<0 and class B as D>0.  In the case of more than two classes, the 

classification rule is based on choosing the highest value generated by a new sample (x0) 

when plugged in equation 39 for each class t.  

 

Equation 39.                           )log(
2

1 11
0 pxSxxSxD tpooled

T
ttpooled

T
t +⋅−= −−   

 

Where t is the class, tx the average of values in that class, and the last term p is the prior 

probability of the group that would account for the different population size in each class. 

LDA works the best in situations that the centroids from the data classes are far apart 

forming dense data clusters: The variability between classes is high and the variability 

within class is small. Other of the assumptions that should be taken in account is the 

multivariate normal distribution of the samples belonging in each class.  

With quadratic discriminant analysis (QDA) the groups or classes does not need to have 

the same variance since its discrimination function considers each individual class 

variance independently. This can be seen in the corresponding decision equation 40: 

 

Equation 40.                )log()()(
2

1
|)log(|

2

1
0

1
0 pxxSxxSD tt

T
ttt +−−−−= −  

 

5.4) Soft Independent Modeling of Class Analogy (SIMCA) 

 

SIMCA (soft independent modeling of class analogy) is a close alternative to PLSDA 

which is proven to perform when classes are not very homogeneous and are more spread 

in the projection plane and/or overlapped – this is also called “soft” classification 
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problem - (Wold et al., 1976). In fact, Frank and Lanteri (2001) reported the similarity of 

SIMCA to QDA. PCA is performed in each predefined class, where users have the 

chance to select the best number of PCs to be kept for each class (using for instance the 

eigenvalues). Choosing the number of PCs that should be kept is a critical step, enough 

PCs should contain necessary class information, but too many would diminish the signal 

information adding noise. When a new sample is presented to be classified, its residual 

variance after being fit in each class model is measured and compared with the average 

residual variance of a class, for instance using a F test. The upper limit would be set by 

the training samples already belonging to the class.  

SIMCA has some advantages to PLSDA besides the one referred to classes homogeneity 

lately mentioned, such as the fact of being able to assign a sample to more than one class 

when falls between two classes with not clear assignment or not being assigned anywhere 

if the residuals exceed the limits from all classes, while PLSDA or K-NN only allow 

assigning samples to one single class, masking problematic classification cases (Kalivas, 

and Gemperline, 2006).  

 

4.7. Variable Selection 
 
Variable selection is a process that can be performed on both the principal components 

and on wavelength variables.  In certain cases there may be previously available 

information from the sample to be analyzed and the wavelengths that may offer the most 

correlation with the analyte of interest. This could facilitate to choose the wavelength 

range of maximum information, although since NIR information is reproduced more than 

once in the whole NIR range, working with fewer wavelengths does not assure better 

calibration models for all applications. Other fast preliminary assessing techniques 

include the use of derivatives to find the peaks which height varies proportionally to the 

concentration of the compound to be measured.   

Checking the values of the regression coefficients from PLS and PCR models give an 

idea of the wavelength region of interest and may bring the chance to improve the model 

removing the wavelength where the regression coefficients are not significantly different 

from zero or show noisy behavior. Similarly for ANN and as discussed, the input weights 
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of the hidden neurons can be checked to find the variables of more relevance, although 

high complexities of the net (many hidden neurons) makes this task more challenging. 

Basic methods of stepwise addition or stepwise variable elimination consist in starting the 

calibration with an initial number of variables and increase or decrease the number to be 

included in the model consecutively while monitoring the predictions (validation 

statistics). Validation stops once the results do not further improve. These methods are 

high time consuming, and stepwise addition may omit later variables that may contain 

valuable information.  

While common methods for selecting the optimal number of cumulative PCs or latent 

variables in PLS and PCR regression have been previously discussed in the 

corresponding section, there are other more sophisticated methods that allow selecting a 

combination of individual PCs and wavelengths that lead to optimal regression or 

classification results. One of the most popular evolutionary algorithm is the genetic 

algorithm for variable selection. It is inspired by the natural genetic evolution: crossing of 

individuals, mutations, and the survival of the best individuals. The algorithm starts with 

a high number of random individuals, which are represented by their genome or group of 

genes – for our applications, the genes would be wavelengths -. The individuals are 

pictured as possible solutions or combination of genes. A fitness function is defined in 

order to asses how good or successful is an individual, such as the percent correct 

classification if the algorithm selects variables for classification, or RMSECV for 

calibration. By crossover, two individuals that survive to the selection act as parents to a 

generation of other individuals, interchanging some of their genomic information. The 

process of mutation imitates natural environments and randomly changes one or two 

digits in the individuals created by the crossover of two parent individuals, allowing 

keeping the population variability. The process stops after a fixed number of generations 

or when the goal is achieved (i.e. % misclassification). 
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4.8. Validation Procedure and Statistics 

 

An adequate validation of the calibration models is a crucial step to determine the 

suitability of the model to predict new samples, which is the whole purpose of developing 

NIR calibrations. Ideally, the best validation should be done with distributed samples 

which were not previously used for calibrating. Since independent validation may not 

always be possible, cross-validation can provide a basic assessment regarding calibration 

performance. Because the final calibration model is not tested but rather several 

submodels developed with calibration data subsets, any statistic reported from cross-

validation cannot be directly compared or interpreted the same way that statistics from a 

real validation of the final model with new samples.  The standard errors from cross-

validation are often optimistic and, especially in k-fold validation, highly affected by data 

artifacts (Naes et al., 2002e). However, reporting cross-validation statistics are preferred 

over reporting calibration results alone. 

Table 1 shows the most used NIR validation statistics among the suggested and detailed 

in Williams (2001). However, it is not unusual to find literature using other statistics, 

reporting not so relevant figures of merit, or simply not reporting enough information for 

a good statistical assessment of the model quality. The coefficient of determination (R2), 

which provides an estimation of how much variance between reference and predicted 

values is explained versus the total variance, seems to be one of the erroneously preferred 

guides for validation assessment. Its high dependency on the reference value range is 

often ignored (Fearn, 2002).  The standard error of prediction (SEP, or SECV when 

reporting cross-validation results) provides information regarding calibration precision. 

SEP is corrected for the bias value (or systematic error); thus, when reporting SEP bias 

must be reported as well. The square root of mean standard error of prediction (RMSEP) 

is related to SEP and Bias according to equation 41. Because RMSEP accounts for bias 

and provides information regarding calibration accuracy, it can be reported alone, 

especially when bias is small (then RMSEP ~ SEP) (Davies and Fearn, 2006).  

 

Equation 41.                          222 BiasSEPRMSEP +=  
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The final statistic to be discussed is the ratio of performance of deviation or relative 

predictive determinant (RPD), which is dimensionless and specific of   NIR spectroscopy. 

It is related with the ability of the model to predict future data in relation to the initial 

variability of the calibration data.  Basically, if a calibration leads to a low SEP but the 

calibration was carried out with a small range of reference values (standard deviation of 

reference values almost the same as SEP), the model would only be predicting the data 

average. Williams (2001) provides ranges of RPD values related to the calibration 

suitability: values above 8 indicate that the calibration can be used for any purpose, while 

values below 2.3 indicate a poor calibration performance, with use for predicting new 

samples not advisable.   

 

Table 1. Table of common validation statistics for NIR calibrations 

Statistic Units Equation 

Coefficient of 
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Statistic Units Equation 

Bias 

(d) 

 

Same as reference 

values 

( )
n

i
y

i
y

d

n

i
∑
=
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= 1

ˆ

 

Ratio of 

performance 

of deviation 

(RPD) 

 

Unitless 

 

SEP

Sd
RPD y=  

ŷi= ith validation sample predicted value 

yi= ith  validation sample reference value 

n=number of samples in validation set 

Sdy = standard deviation of reference values from the validation set 

 

 

5. Near Infrared Spectroscopy for Single Seed Analyses 

 

5.1 NIRS applications in quantitative analysis of single seeds 
 

One of the limitations in single seed analysis is the small sample size and thus the amount 

of the compound to be measured, which may be below the NIR detection limits. 

Transmittance measurements seem to be more attractive for measuring low 

concentrations since the light goes through the whole sample, but seeds are variable in 

size and this negatively impacts the light pathlength (Cogdill et al., 2004). Low 

repeatability of spectral measurements in function of kernel mass/size have been reported 

(Delwiche, 1995), which seemed to be weaker in reflectance mode (Delwiche, 1998). 

Reflectance measurements may not be so affected by the seed pathlength, but they are 

affected by sample heterogeneity. This is important for grains such as corn, which have a 

differentiated germ side and the side to be analyzed matters. Janni et al. (2008) indicated 

that kernels are opaque to wavelengths above 1300 nm, which are common in reflectance 
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measurements, depending on their size. Furthermore, it has been indicated that higher 

wavelengths may not produce linear responses between spectra and analyte concentration 

in single kernel analysis (Delwiche, 1998).  

There are several conventional chemical methods for single seed analysis which have 

been applied and correlated with NIRS spectra in the literature.  Those are applied to 

measure some major compounds such as moisture, protein, and oil. NIRS is dependent on 

an external reference method, and for this reason the resulting calibration precision can 

be as maximum as good as the reference method. It has to be considered that other errors 

specific from a given laboratory are added to the intrinsic error associated with the 

method. 

Some methods are already very popular in single seed analysis. Pulsed low resolution 

NMR is preferred for absolute oil analysis (Alexander et al., 1967). This method gives 

more precise results than Soxhlet or supercritical fluid extraction, as pointed by 

Robertson and Windham (1981) and Cogdill et al. (2004), who targeted the reference 

method as one of the sources of error for their corn kernel oil calibration. Moisture can be 

determined by either mass difference after seeds are oven-dried and low resolution NMR, 

simultaneously to oil determination. Protein is usually determined by combustion, giving 

precisions around 0.2% (Hunt et al., 1977). Protein determination by Biuret, a 

colorimetric assay, is reported to be more accurate for larger samples (Baianu et al., 

2004). 

Other minoritary compounds such as fatty acids and amino acids are found in the seed at 

very small concentrations, and single kernels themselves suppose a very small sample 

amount to be analyzed so the resulting NIRS calibrations are expected to have average 

correlations between reference values and spectra with high prediction errors.  

Reference values or determined compound can be expressed as absolute value (i.e. 

mg/kernel) or relative units (weight percentage of the compound on seed weight). 

Different moisture basis can be used to express the seed weight: (1) current moisture of 

the seed at the time of analysis (as is), (2) percentage of the compound on dry seed 

weight, or (3) percentage of the compound on seed weight at a given moisture level. That 
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last option is common for soybeans (usually 13% moisture level) and corn (15% moisture 

level). 

 

5.1.1 Analysis of grains 

 

Corn. Corn kernels have been the grain more extensively analyzed by NIR single kernel 

quantification due to its significance in US, its complications due to the heterogeneity in 

physical traits, and the extensive breeding programs to achieve highest oil and starch 

concentrations.  The first NIR quantitative analysis in corn single kernels is dated back in 

1978 for determining moisture. Finney and Norris (1978) used one of the first NIR 

transmittance monochromators instruments (Cary) and a multiple linear regression 

(MLR) approach on a short wave range (920-950 nm). Their results gave a very good 

correlation spectra-moisture content (R2= 0.93) and accuracies of 2 – 3% by weight.   

Quantification of oil has been of high interest as reflected by the number of studies that 

can be found in the literature. Corn oil is of high value in the area of biodiesels and food, 

and research is focused on developing corn varieties with high oil content in corn while 

maintaining high yield in the field. The main results from the literature are summarized in 

table 2.  Comparing those results from the literature is difficult not only due to different 

statistics reported (accuracy vs precision, correlations), reference methods involved in the 

analysis, or error contribution of the reference laboratories; but also the oil range in the 

calibration set and its effects on corn kernel physiologic structure according to Janni et al. 

(2008). Their reported results in table 2 considered samples up to 8% in oil content, and 

observed that working with samples at higher concentrations the errors increased 

considerably. 
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Table 2. Summary of NIRS oil calibrations for single corn kernel found in the literature. 

As is moisture basis used, best preprocessing method applied to the spectra. 

Technology 
Validation 
Samples R2 RMSEP (%) SEP (%) Key Reference 

Conventional 
Transmittance 
 

73 0.75  ** SECV 
1.20(b) 

Orman and 
Schumann, 1992 

Imaging 
Transmittance  
 

151 0.54 
 
 

** SECV 
1.38(b) 

Cogill et al., 
2004 

Imaging 
Reflectance   
 

100 0.67 1.10 b  
Weinstock et al., 

2006 

Tumbling 
Kernel 
Reflectance  
 

80 0.94 1.5 - 0.40 a,b  
Janni et al., 

2008 

Light Tube 
Reflectance 
 

115 0.86 0.79 b  
Spielbauer et al., 

2009 

Rotating  Cup 
Reflectance  

~250 0.95 0.60 c   Jiang et al. 2007 

a. Oil concentrations in calibration below 7.8%, 12 seconds of analysis.  
b. As is weight moisture basis 
c. Dry weight moisture basis 

 

The earliest oil predictions were carried out by Orman and Schumann in 1992 using 

transmittance measurements. Principal component regression (PCR), and mathematical 

preprocessing techniques of the spectra such as derivatives were applied.  They 

performed multiple scans on the kernels, removing and replacing them and averaging the 

spectra in order to improve the signal-to-noise ratio, but they did not find improvement in 

the results probably because the effect of changes in kernel position overcame any 

improvement that could result from averaging several spectra. Cogdill et al. (2004) also 

reported the difficulties of sampling in transmittance measurements, although kernel 

positioning (germ up or down) did not affect in repeatability or spectra quality. Sample 

pathlength differences could have been one of the big error sources which impacted his 

study with NIR transmittance imaging.  Each kernel was represented by 60,000 pixels, 
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and he averaged them to obtain a single spectrum per kernel previous to carry out the 

calibrations. His PLS calibration for kernel moisture had a lower coefficient of 

determination compared to the one reported by Finney and Norris (1978) (R2=0.87) and 

cross-validation precision (SECV) of 1.04%. His oil calibration in as is moisture basis 

(table 2) gave lower accuracies than the ones reported by conventional transmittance, and 

a big part of that was attributed to the reference method, by solvent extraction, which is 

less precise than NMR used by Orman and Schumann (1992). 

As previously mentioned, even though the side of corn kernel facing the light does not 

matter for transmittance measurements since the light goes through the whole seed, it 

does for reflectance measurements. A small portion of light penetrates the sample and 

gets to be measured as diffuse reflectance, so kernel size affects NIR reflectance spectra 

as noticed by Orman and Schumann (1992) in their PLS oil calibrations. Larger kernels 

lead to positive residuals in their models, thus oil was over predicted for those kernels. 

And it was the opposite for smaller kernels.  The most recent quantitative analysis of corn 

kernels have been carried out by reflectance mode and it has been found the use of 

mathematical preprocessing methods such as standard normal variate (SNV), 

multiplicative scatter correction (MSC), derivatives and the combination of those to lead 

to calibrations with better predictive ability. When carrying calibrations with absolute 

(mg/kernel) and relative units (%), the first gave higher coefficients of determination (R2) 

and better predictive ability in terms of RPD, but were negatively affected by SNV and 

MSC preprocessing (Spielbauer et al, 2009). That could suggest that those pretreatments 

remove information related to seed size or information relevant for determining the 

absolute composition.  

Jiang et al. (2007) worked in conventional reflectance with a rotating cup and developed 

PLS calibrations with over 600 kernels for oil, protein, and starch. Kernels were scanned 

10 times both germ up (facing the light and detector) and down, and developed 

calibrations individually for each side and averaging both up and down spectra. 

Averaging both sides lead to the best predictive models for protein (R2=0.95, 

RMSEP=0.30%). Germ-up spectra worked best for starch calibrations (R2=0.89, 

RMSEP=0.96%) while germ-down, curiously, worked the best for oil prediction reported 
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(table 2). By reflectance imaging, Weinstock et al. (2006) quantified oil and oleic acid 

isolating the kernel germ. Spectra from all pixels representing the germ were averaged for 

their calibrations. The best predictive calibrations were obtained using genetic algorithms 

for optimal wavelength selection and PLS, after preprocessing the data with first 

derivatives. With 7-8 optimum wavelengths selected, oil predictions were less precise 

than the ones reported by Jiang et al. (2007) (table 2), but still better than transmittance 

calibrations. The prediction of oleic acid was less successful, as expected due to the low 

concentration of this compound in individual kernels (R2=0.65, RMEP=13.7%). They 

also found that for their static imaging unit, kernel orthogonal orientations (i.e. 0 degrees 

vs 90 degrees) on the focal plane had as much as impact as positioning the corn kernel 

upside or downside, in terms of spectra baseline effects. Fortunately, that could be 

eliminated by baseline subtraction from the spectra. For other applications such as 

discrimination of wheat infestation discussed later, the kernel orientation in imaging units 

did not show any difference (Singh et al., 2009).  

It has been suggested that the predictive ability of calibrations developed by reflectance 

could be enhanced by total and homogeneous illumination, and measurements from the 

whole kernel in each side (Janni et al. 2008). Two recent approaches for kernel 

measurements by NIR reflectance have pursued this objective. Janni et al (2008) 

introduced an air-tumbling kernel approach, patented by Pioneer Hi-Breed international 

(Wright, S., 2007; Janni, 2007). They used a diode-array instrument with a pro, a pipette 

with air flow, and a duraflect coated tube to host the sample. The instrument scans the 

seed while tumbling for a certain amount of time. At least 12 seconds of analysis were 

required for good performance, according to optimization results. The resulting oil 

calibration was more predictive than the one reported for the rotating cup (table 2). This 

was in agreement by their validation of the tumbling kernel equation by rotating and 

static (both germ up and down) kernel spectra. Validation of the tumbling equation by 

averaging both sides spectra gave better oil predictions (RMSEP=1.60%, as is moisture 

basis) than validation with one side spectra, demonstrating that the tumbling technique 

was scanning the whole seed. The worse validation results were obtained from the one-

side static cup (RMSEP=1.20%).  
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The problem of the tumbling approach is the long analysis time, which makes it not 

practical for continuous data collection. The second approach is proposed by Armstrong 

(2006), and it is based on a light tube illuminated by 48 tungsten lamps. A bifurcated 

fiber optic, one output in each extreme of the light tube, captures the spectra which are 

read by the spectrograph. The scanning time is trigged by sensors. The seed enters the 

tube where it is completely illuminated and the spectrum from a big part of the seed is 

collected. A single spectrum measurement takes 30ms. The tube is not wide enough to let 

the corn kernel tumble unless is a popcorn variety, thus the orientation of the corn kernel 

had a slight effect. Based on PLS moisture calibrations, the best precision was achieved 

introducing the kernel with dent end orientation in the tube (SECV=0.76%, R2=0.97, 

RPD=5.5). A later study used the same instrument to develop PLS calibrations for starch, 

protein, and oil in corn kernels at dry weight basis (Spielbauer et al, 2009). Starch 

predictions showed the highest standard error of repeatability after taking multiple scans 

for a same kernel, highest SEP (3.72% and 18.2 mg/kernel) and lower coefficient of 

determination (R2=0.66 and R2=0.85 for relative and absolute units, respectively). Starch 

absolute values were strongly correlated with the seed weight, and it was seen that linear 

regression between seed weight and absolute starch content leaded to better predictions 

than the NIR calibration. Kernel weight was highly correlated with the NIR spectra 

(R2=0.86). The best protein calibration was similar to the oil calibration in table 2 

(R2=0.88, SEP=0.81% and SEP= 3.82mg/kernel in as is moisture basis).  

Several researches use the bulk reference data for single corn kernel calibrations to avoid 

the expensive reference analysis of single kernels. Finney and Norris (1978) realized how 

averaging the individual kernel spectra, the precisions were better for predicting a whole 

bulk sample moisture than the precisions obtained for single kernel prediction.  Tallada et 

al. (2009) worked with the light tube from Armstrong’s (2006). Averaging kernel spectra 

and using bulk reference data, they developed PLS calibrations for tryptophan, lysine, 

protein, oil, and soluble sugars. Calibrations using relative units (% dry basis) did not 

give good predictive models, with R2<0.5 and RPD below 2 for most of compounds. 

Absolute value units (mg/kernel), similar to previous studies, gave models with 

predictive abilities suitable for gross screening when no spectra preprocessing was 
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applied, with precisions very similar to the ones they achieved using single kernel 

references. For protein, RPD=3.15, R2=0.89, and SEP=3.6 mg/kernel. For Oil: 

RPD=2.53, R2=0.88, and SEP=2.49 mg/kernel. And mass: RPD=2.98, R2=0.88, and 

SEP=0.02 mg/kernel. 

 

Wheat. Determination of protein content and hardness in wheat is important because both 

attributes affect the quality of flour. The first protein PLS calibrations for single wheat 

kernel reported used transmittance (Delwiche, 1995). Different wheat classes were 

involved (white, red, soft, and hard) and independent calibrations for each class were 

developed. Kernels were only scanned once (no multiple spectra averaged) since the old 

instruments in the study took long time (about 3 minutes per scan). The best results with 

second derivative and MSC spectra preprocessing were promising: R2 > 0.85, SEP 

between 0.4 and 0.9 % (12% moisture basis), and bias values up to 1% depending on the 

analyzed class.  Similar results were later achieved by Nielsen et al. (2003), with 

RMSEP=0.48% (dry basis). By reflectance measurements, Delwiche (1998) showed that 

developing a general calibration with all what classes did not reduce prediction 

accuracies. Testing both PLS and MLR models with up to 8 wavelengths, the best 

predictions were achieved with PLS: SEP values ranged 0.42 to 0.59%, R2 of 0.90 – 0.97, 

RPD between 2.88 and 4.72, and absolute biases much lower than the previous 

transmittance studies (below 0.2%). A later study carried out by Delwiche and Hruschka, 

(2000) averaged single kernel reflectance spectra, from 10 to 100 kernels and each single 

kernel spectrum being the result of averaging 32 scans or spectra, in the short wavelength 

region from 1100 to 1398 nm. The difference in cross validation precision decreased fast 

when averaging spectra from 10 to 30 kernels (SECV from 0.35% to 0.22%, 12% 

moisture basis) and continued decreasing at smaller intervals when averaging 50 and 100 

kernels (0.18 and 0.16%, respectively).  

An attempt to predict vitriousness was carried out by Nielsen et al. (2003), who 

correlated single wheat kernel transmittance spectra with red reflectance measurements 

by RGB image analysis. Validation statistics were not acceptable (R2=0.58 and RMSEP= 

4.6 absorbance units). Not successful predictions were obtained for neither kernel density 
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employing diverse reference methods nor kernel hardness. Delwiche (1993) also 

developed transmittance hardness calibration using reflectance predictions using the 

American Cereal Chemists method (1983) for obtaining references. R2 equal to 0.70, SEP 

about 15 hardness units, and Bias around 1 harness units were obtained. He stated the 

need of improvement of the reference method and the existence of other factors which 

affect grain hardness and NIR cannot measure. Better results were achieved combining 

visible light and NIR reflectance, but after averaging from 5 to 50 kernels from each class 

(Maghirang and Dowell, 2003). Averaging 50 kernels gave the best results (R2 = 0.91, 

SECV=7.57 hardness units, and RPD=3.35).  

Dowell et al. (1999) carried out a study to predict mold damage by scab (Triticum 

aestivum L.), vomitoxin, and ergosterol (alcohol associated with the mold invasion) in 

wheat kernels. Vomnitoxin calibration was developed for levels above 5 ppm, since 

below that limit the performance was considerably worse, probably because of working 

far below the NIR detection limits. The results, although there was some correlation 

between the spectra and the variables, were not satisfactory:  R2 = 0.66 and SEP = 52 

ppm for vomitoxin, and R2 = 0.64 and SEP = 108 ppm for ergosterol.  

 

5.1.2 Analysis of oil seeds 

 

Oil is not the only compound of interest to be quantified in single oilseeds and several 

researches carry out the quantification of other specific compounds. For instance, the first 

study analyzing single soybeans determined moisture by transmittance (Lamb and 

Hurburgh, 1991), PLS models lead to SEP values of 0.65-0.69%. Later, Armstrong 

(2006) used the light tube proprietary instrument to determine moisture in soybean seeds 

by reflectance mode, and obtained SECV=0.32%, R2=0.99, and RPD=10.5. He also 

developed PLS protein calibrations (SECV=0.99% at 13% moisture weight basis, 

R2=0.96, and RPD=4.9). He found MSC to be the preprocessing method that leaded to 

more precise predictions. Those results were on the same order of Tajuddin et al. (2002) 

who worked by transmittance (SEP=1.32% - 1.57%, dry weight basis) and used Biuret as 

reference method instead of the common combustion. Calibrations with highest 
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precisions were obtained from soybeans with higher diameters ( >6 mm). An oldest 

research carried by Abe et al. (1996) reported protein calibrations with better prediction 

statistics (SEP=0.67%) when analyzed spectra was the average from two measurement 

points, in transmittance mode.  Baianu et al. (2004) also reported promising results using 

both a diode array reflectance instrument and a Fourier Transform (FT). SECV was 0.3% 

for the FT-NIR instrument and 1.1% for the diode-array (dry weight basis).  Delwiche et 

al. (2006) developed protein and inorganic phosphorous calibrations for single seed 

soybeans using absolute reference values (g/kg for protein and mg/kg for phosphorous). 

They achieved calibrations with low predictive ability: RPD=1.2 for both protein and 

inorganic phosphorous, R2<0.50, and RMSEP = 13.93 g/kg for protein and 568.6 mg/kg 

for inorganic phosphorous. Protein models have been also developed for rapeseeds in the 

literature using reflectance mode. First, Velasco and Mollers (2002) obtained calibrations 

that leaded to R2=0.94 and SEP=0.77%. Hom et al. (2007) obtained similar results with 

cross-validation (R2=0.96 and SECV=0.74%, dry weight). 

Tajuddin et al. (2002) also developed PLS oil calibrations for soybean seeds with the 

same grating reflectance unit used for protein calibrations, obtaining SEP= -0.14% and -

0.09% (as is moisture weight basis) for smaller (< 6 mm) and larger seeds, respectively, 

using hexane and chloroform extraction as reference method. Calibrations using the same 

reference method were developed by Baianu et al. (2004), and SECV were on the same 

range (SECV=0.2% for FT-NIR and 0.5% for diode-array reflectance). 

For husked sunflowers achenes, Sato et al. (1995) carried out a research examining the 

correlation of fatty acids extracted by gas chromatography and reflectance NIR spectra. 

Errors were not reported, but correlations were above 0.90 for linoleic acid and total fatty 

acids. Velasco et al. (2004) obtained promising PLS reflectance models for linoleic acid 

(R2 = 0.93, SEP=64.3g/kg), oleic acid (R2=0.92, SEP=82.9g/kg), and stearic acid 

(R2=0.83, SEP=42.0 g/kg) in husked achenes of sunflowers, as is moisture weight basis. 

Previously, Velasco et al. (1999a) carried out some work to determine oleic and linoleic 

acid in unhusked achenes, obtaining R2=0.88 but predictive errors very close to the 

husked achene calibrations. It was concluded that removing the husk from sunflower 

achenes did not improve the calibration performance for those two fatty acids. Another 
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research carried out by Tillman et al. (2006) was based on developing oleic and linolenic 

acid PLS calibrations in single peanuts using FT-NIR. The results from those calibrations 

were better than the ones achieved for sunflower seeds, probably because of the bigger 

seed size (RMSEP=20 kg/g for oleic acid and RMSEP=19 g/kg for linoleic).Rapeseeds 

also showed significant correlation coefficient between NIR spectra and their extracted 

oil (R=0.86) (Sato et al., 1998). Hom et al (2007) predicted oil content using the 

gravimetric extraction method for obtaining seed references, and the calibrations were 

promising (SECV=1.14% in % dry seed R2= 0.97).  Individual fatty acid NIR calibrations 

could be also developed. Using relative units respect to the percentage of total fatty acids, 

Niewitetzki et al. (2010) obtained SEPs=2.7 – 3.7% for oleic acid (R2 up to 0.91), 

SEP=1.2 – 1.8% for linolenic acid (R2 up to 0.90), and SEP = 2.5 – 4.2 % for linoleic 

acid (R2 up to 0.78). Hom et al (2007) also analyzed other compounds which leaded to 

calibrations with rough screening abilities. Those were total glucosinates 

(SECV=10.3µmol/g dry weight, R2=0.86), alkenlyl (SECV=9.29 µmol/g dry weight, 

R2=0.83), and Indole (SECV= 1.35 µmol/g dry weight, R2=0.86). One of the calibrations, 

total aromatic compounds, was not successful (SECV=0.34 µmol/g dry weight, R2=0.36).  

 

5.1.2 Analysis of other seeds 

 

Researches concerning the quantification of organic compounds from other seeds can be 

found in the literature. One of the oldest researches was carried out by Patrick and Jolliff 

(1997) regarding the use of transmittance for quantification of meadow-foam seed oil. A 

couple of calibrations were developed using NMR as reference method: SECV of 3.6 and 

4.4%, and R2=0.95. Those results were compared with the ones that were achieved for 

corn kernel oil calibrations with similar total oil range, although problems with seeds 

with oil content under 5 mg were reported.  Armstrong’s light tube approach (2006) was 

used to develop calibrations for common beans (phaseolus vulgaris L.) for protein, starch 

and seed weight (Hacisalihoglu et al., 2010). Protein PLS calibration in dry weight basis 

gave SEP=1.6% and R2=0.82, SEP=4.9% and R2=0.56 for starch, and SEP=41.2 mg and 

R2=0.74 for seed weight. Simmilarly to soybean calibrations, starch showed the highest 
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difficulty to be calibrated. Protein calibrations could be compared to Armstrong’s for 

soybean seeds, which validation was not carried out with an independent set but by cross-

validation, thus expected SEP values would be higher.  

 

5.2 NIRS for seed sorting and discrimination  

 

Discriminative studies intend to set or classify seeds in two or more groups. Besides 

using qualitative attributes for classification (i.e. infested vs non-infested seeds), any 

quantitative calibrations which shows prediction errors valid for rough screening (RPDs 

around 2-3) can be thought as a two-class discriminative model: high analyte content vs 

low analyte content. This gives the chance for calibrations with low accuracies/precision 

to be used with the underlying interpretation of a discriminative model and still be usable 

to create more homogeneous populations. With the currently improved grain varieties 

developed following specific applications, sorting seeds to increase purity and 

homogeneity in batches is of high interest at farmer’s and industrial levels. From a 

breeder’s point of view, most of the times the interest is in finding the seeds with the 

highest or lowest concentration of certain compound, without focusing on the exact 

amount. For instance, Orman and Schumann (1992) determined that their oil prediction 

for corn kernels resulted enough for screening and they wanted to use it as a method to 

select the kernels with highest oil content. They compared their NIR prediction results 

with their reference method, NMR, and they found out that from the top 25% corn 

kernels with highest oil concentration only 58% of them were in agreement with the top 

kernels selected from NMR results. Interestingly, scanning each kernel 10 times and 

averaging them, resulted in 75% of agreement even if this did not translate in better 

prediction error in the quantitative analysis.   

 

5.2.1 Grain 

 

Damage, toxins and infestation are popular research topics in NIR discriminative analysis 

of grain. Toxin contaminated corn kernel and wheat infested kernels have been widely 
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analyzed by NIRS. Furthermore, common pest insects were studied by NIRS without 

being associated with the grain. Dowell et al. (1999) could differentiate primary and 

secondary pests insects over 99% accuracy using neural network model. ANN and PLS-

DA could get accuracies over 95% in classifying the insects within a genus. Dowell et al. 

(2000) worked discriminating fly puparia and its parasitoids, and the PLS-DA the 

classification accuracies ranged from 80 to 90%. Even the discrimination among insect 

types and sex is possible. Tsetse fly pupae sex could be determined by reflectance (950 – 

1700 nm) and PLS-DA, with accuracies up to 97% for pupae from 1-6 days previous to 

emergence. The accuracy dropped to up to 75% for pupae of 23 days before emergence 

(Dowell et al., 2005). 

Innovative and current on-going researches involve discrimination of transgenic and 

conventional grains. In a recent study of Jiao et al. (2010) transgenic rice was 

discriminated combining spectroscopy and conventional chemical methods that proved 

that the differences were mainly due to protein, aminoacids, two fatty acids, and two 

vitamins. 

 

Corn. Few researches concern the discrimination of corn kernel according the differences 

in their endosperm characteristics such as vitreosity, floury, and hardness. The difference 

in varieties of single and double-mutant recessive alleles which affect starch structure in 

corn kernels could be discriminate by Campbell aet al. (2000). The normal corn kernels 

vs mutants could be classified with PLS-DA with high accuracy as the discrimination 

was possible also visually most of the times, leading no misclassifications when using 9 

latent variables. The discrimination accuracy between mutants from a same class was not 

constant and depended on the variety. They also worked on discriminating low and high 

amylose content kernels, which lead to 70% of correct classified samples in the low 

concentration group, and 90% for kernels belonging to the high concentration class. 

Manley et al. (2009) used reflectance chemical imaging to analyze kernel endosperm to 

differentiate flourly and vitreous endosperms. The PLS-DA model was acceptable 

(R2>85%) and they found a third class of endosperm which show characteristics from 

both flourly and vitreous endosperm and which was visually differentiable in the PCA 
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score plots. Williams et al. (2009) classified single kernel endosperm spectra in either 

glassy or floury at 99% accuracy. Hardness, which besides being a genotypic expression 

is also affected by environmental and handling factors, could also be deduced in this 

study from the ratio of glassy and floury endosperm of each kernel.  

The raising problem, especially in harvest years with high precipitation levels, of fungal 

toxin contamination of corn and the associated risks in human health, lead to find for 

methods of fast screening of corn batches. Single kernel analysis is very adequate, since 

representative sampling in bulk batches is difficult due to the fact that toxins may be 

found in only few highly contaminated kernels (Pearson et al., 2001).  Detection and 

classification of corn kernels with toxins was reported by Perason et al. (2001) for 

aflatoxins (toxin from Aspergillus flavus fungi) and by Dowell et al. (2002) for fumonisin 

(toxin from Fusarium verticillioides fungi), both using reflectance and transmittance NIR 

scanning modes. For both studies, discriminant analysis (DA) using few wavelengths and 

PLS discrimination analysis (PLS-DA) for the entire range were tested as discriminative 

algorithms. For discriminant analysis, three classifications based on toxin concentration 

thresholds were created: 1ppb, 10 ppb and 100 ppb for aflatoxins; and 10, 50 and 100 

ppm for fumonisins. The best threshold for toxin detection based on correct classified 

kernels (positive or negative) was 10 ppb for aflatoxin, and 10 ppm for fumonisin. In 

both studies, DA performed better than PLS-DA, and was suspected that transmittance 

could lead to more accurate results. This could be especially true in the case of aflatoxins, 

since the mold may stay inside the kernel. For aflatoxins also, the germen facing the 

detector in reflectance provided better classifications, but the kernel position was not 

relevant in the fumonisin study. The best aflatoxin classification with DA misclassified 

over half of the kernels with toxin content between 10 and 100 ppb, but 95% of the 

kernels out of that range (either lower or higher concentrations) were correctly classified. 

This pattern was slightly better for fumonisin, where the best classification lead to 23% 

of the kernels between 10 and 100 ppm misclassified. Although those studies showed that 

NIR can discriminate between low contamination levels and very high, the application 

cannot be used for safety control.  
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Wheat. Similarly to corn researches, wheat endosperm has been also analyzed by NIR. 

Vitreousness is an indicator of quality as it is related to protein content and an attribute 

that leads to better qualities in foods like pasta and other derived products. Dowell (2000) 

proved that NIRS could discriminate vitreous and non-vitreous single kernels of wheat, 

and the best accuracy (99%) was achieved with kernels that were clearly distinguishable 

by inspectors as on of both classes. Some kernels were not clearly one class or the other, 

and when introduced in the calibration made the accuracies drop to 75%. In his study, he 

concluded that protein or starch concentrations together with light scattering effects could 

be what NIRS was measuring. On the other hand, In Manley et al. (2009), corn kernel 

virtuousness and floury classifications showed the highest beta coefficients in the 

carbohydrate and water region – meaning that what NIRS was measuring for 

discrimination was mainly starch and/or water binding-. Wang et al. (2002) carried out 

another study of classification of vitreous and non-vitreous spring wheat kernels, 

including defective kernels such as bleached, cracked and sprouted. He concluded that 

scattering was also a major contributor to the classification together with color, hardness, 

starch content, and protein concentration in agreement with Manley et al. (2009) and 

Wang et al. (2002). He achieved accuracies over 90% including defective kernels, but 

75% of the bleached kernels were misclassified.  

A couple of researches carried practical studies with NIR instrumentation and sorting 

devices to homogenize batches with mixtures of wheat. The discrimination of wheat 

kernels with high protein (>12.5% at 12% moisture weight basis) and low protein 

(<11.5%, 12% m.b.) was carried out by Pasikatan and Dowell (2004) in reflectance 

mode. It was estimated that with maximum two consecutive sorting processed, blends of 

95:5 could lead to protein concentration (measured in two subsamples) of the initially 

dominant class of protein. Color and vitreousness seemed to drive the classification, thus 

reassuring that protein and vitreousness are both factors for quality assessment and can be 

detected by NIRS. This observation kept on agreeing with the previous results of 

discrimination of vitreous wheat kernels. Dowell et al. (2006) sorted wheat kernel from 4 

mixture bins, being able to achieve at the end 4 bins with 1% increasing protein fractions, 

being the average difference of bins with high protein bins and low protein of 3.1% 
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points. They also classified the kernels by hardness, and NIRs could narrow the hardness 

distribution in each bin to 17 hardness units of difference between the highest hardness 

fraction and the lowest.   

Discrimination among varieties is another way to improve the quality of a bulk batch of 

grain as different classes may be suitable for different purposes and have different end 

value. The mixture of classes may be sometimes accidental, by inadequate cleaning and 

handling, and this would result in a batch of mixed classes that have a lower value 

overall. Delwiche and Massie (1996) developed PLS-DA and MLR binary decision 

models to discriminate among wheat classes at screening level but with good 

repeatability. Classes that had different colors such hard white and hard red winter leaded 

to excellent accuracies around 99% using wavelengths close to the visible, and dropping 

to 78-91% when using the near infrared region. The tree decision technique later used for 

further classification of classes of the same color was not sufficient when only NIR data 

was used. In a later research, red and white kernels were classified using NIR reflectance 

and visible light with PLS-DA, attaining classification accuracies over 95% (Dowell, 

1998). Waxy varieties, which are characterized for having starch which lacks amylose, 

were discriminated from partially-waxy and wild wheat varieties according to variation 

of amylose content by reflectance PCA, using discriminant analysis  (Delwiche and 

Graybosch, 2001). The first PC allowed already 50% correctly classified kernels. 

Applying either linear discriminant analysis or quadratic discriminant analysis, maximum 

accuracies were around 70%. NIR seemed to detect the differences in amylose and 

amylopectin in the kernels, but the overlap in amylose content in classes could be what 

prevented to get better accuracies. Delwiche et al. (2006b) worked with durum wheat 

kernels, classifying them according to their possible 4 waxy alleles with PCA linear 

discriminant analysis (LDA). The full waxy genotype was classified with accuracies 

above 95% but the classification accuracy of the non-waxy genotypes was not possible. 

Dowell et al. (2006) besides classifying wheat, they also segregated waxy kernels for 

batch homogenization. They could increase the percentage of 94% of waxy millets in 

unsorted samples to 98% in 42 of the 48 samples, the 6 samples left had a decrease in 

waxy kernels (from 94.5 to 93%) probably due to reference method errors and lack of 
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representatibity of the selected kernels. Overall classification of wheat kernels from 

different Canadian varieties using NIR chemical imaging have been reported, with 

classification accuracies over 90% using LDA, QDA, and ANN classifiers (Mahesh et al., 

2008).  

Another NIRS single seed application which had big impact is the sorting of damaged 

wheat kernels, especially insect-damaged and infested kernels as it is a common problem 

in grain-storing facilities. Some insect species are easily removable by cleaning 

operations but other insects grow inside the kernels, making them invisible for methods 

based on visual inspections (Perez-Mendoza et al., 2004). By manual sieving and 

exhausting visual inspection, it cannot be detected insect concentrations below 5 insects 

per kilogram of grain (Wilkin and Fleurat-Lessard, 1990), so automated methods to help 

in this task is of high interest.  The first NIR single kernel infestation researches involved 

the discrimination of wheat infestation by rice weevils (Sitophilus oryzae). Ghaedian and 

Wehling (1997) worked with PCA and Mahalanobis distances over full and partianl 

reflectance spectra range (1100–2498 nm and 1100–1900 nm, respectively) to 

discriminate between not-infested and rice weevils infested wheat kernels. The short 

wavelength region provided the highest accuracies and found that the region 1980 - 2498 

nm had not usable information for the discrimination. Ridgway and Chambers (1998) 

worked with imaging reflectance and could get the best differences among sound and 

infested kernels substracting the images at 1300 nm from the images at 1202 nm. Not 

infested kernels appeared darker, which could be mainly due to loss of starch in the 

kernel. They later developed two models using short wavelength ranges (either 982-1014 

nm or 972-1032 nm) which achieved accuracies of rice weevils larvae-infested vs not-

infested wheat kernels over 96%. They agreed with Ghaedian and Wehling (1997) in the 

matter of not needing wide wavelength ranges for obtaining good discriminations. 

Dowell et al. (1999) PLS model for detection of scab-damaged versus absence of 

vomitoxin or ergosterol in wheat kernels also gave better results than the identification of 

scab –damaged grains by visual inspection. A research carried out by Baker et al. (1999) 

involved single kernel infestation by rice weevils and their associated parasitoid 

Anisopteromalus calandrae, which sometimes rears the host rice weevils in the 
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infestation. Kernels with pupae, larvae, parasite pupae, parasite larvae, and not infested 

kernels were scanned by transmittance. PLS-DA lead to classifications over 95% for 

infested vs not infested kernels, but the discrimination between infested with weevil 

larvae and parasitized weevil larvae was not possible. Maghirang et al. (2003) created an 

automated system to discriminate non-infested wheat kernels, infested kernels with dead 

rice weevils, and infested kernels with larvae/pupae at different growth stages. Live 

pupae got the highest accuracy (94%) while the small larvae got the lowest (63%). PLS-

DA model created with pupae and large larvae when validated with the data from the 

same kernels stored through time (1 to 56 days) could be used to detect the insect, either 

dead or alive, with accuracies from 86 to 96%. The study of the damage to the kernels by 

insects using chemical imaging was investigated by Singh et al. (2009, 2010). Images 

from 1,101.69 and 1305 nm in form of a single PC scores, in agreement with Ridgway 

and Chambers (1998) results, were used for discrimination. LDA and QDA applied to 

several image features and statistics lead to accuracies ranging from 85 to 100%, 

depending on the insect causing the damage. When working with a colour imaging 

system, QDA seemed to work the best, correctly identifying over 96% of the healthy 

kernels and from 91 to 100% of the insect damaged (Singh et al., 2010). Overall, it was 

determined that the relevant wavelengths in insect infestation were the ones related to 

water from metabolic processes of insects, protein, lipids, phenolic compounds, and 

carbohydrates due to chitin insect cuticle absorption and a decrease of starch levels in the 

grain (Ghaedian and Wehling, 1997; Baker et al. 1999; Dowell et al., 2000).Another kind 

of damage, heat-damaged wheat kernels, was studied by Wang et al. (2001).  The NIR 

region worked better than visible, and all kernels were correctly classified by PLS-DA. 

Light scattering was suggested to be a factor driving the classification. 

Finally, the detection of sprouting of wheat could be assessed by reflectance chemical 

imaging in early stages by reflectance chemical imaging by Smail et al. (2006). The 

kernels, placed germ up, showed in the NIR absorbance image a wider area occupied by 

the germ when naked eyes could not see it.  They concluded that NIRS could anticipate 

the detection of sprouting wheat much earlier than human eyes. 

 



 

83 

 

5.2.2 Oil seeds 

 

Current NIR researches involving discrimination of oil seeds are mostly carried on 

soybeans. Wang et al. (2002) classified soybean seeds according to different kinds of 

damage: sound, heat, weather, mold, sprout, and frost. ANN with no hidden layer and 

taking VIS + NIR reflectance region (490 – 1700 nm) lead to good classification 

accuracies: 100% for weather, 98% for frost, 97% fr sprout, 64% for heat, and 97% for 

mold. In a later study,  fungal-damaged soybean seeds could be again classified at high 

accuracies (99%) with PLS-DA and reflectance mode, which was also proven in the 

previus study, and seeds could be classified as sound or damaged by any 4 fungi (5 class 

model) using ANN at maximum overall accuracy of 94.6% (Wang et al., 2003). Kusamat 

et al (1997) could classify artificially aged soybeans from normal. DA using 2PC (PC2 

and PC3) had a 60% of accuracy hen aged seeds were 3 days, 80% for 5-day aged seeds, 

and 100% when seeds went in aging procedure for 7 days. A decrease in phospholipid 

content in soybean seeds while ageing showed to be one of the main factors detected by 

NIRS.  

 

5.2.3 Other seeds 

 

Seed infestation, filled or viable, and empty seeds of three species of Larix tree was 

studied by transmittance measurements (Tigabu and Oden, 2004). Seeds were classified 

in those three groups by three PLS-DA models (one for each of the species), with 

accuracies equal or almost 100% in all independent models. Previously, the same authors 

had carried out discrimination among empty and viable Pinus Patula seeds, by both 

transmittance and reflectance (Tigabu and Oden, 2003). Reflectance worked better than 

transmittance for that application, leading the last one to perfect discrimination by PLS-

DA. It was possible to visually discriminate checking the scores of the first PC, possibly 

due to lipid absorption of filled seeds. Similarly, insect-damaged Juniperus procera seeds 

could be discriminated with a single principal component at 90% accuracy (Tigabu et al., 

2007). An application similar to variety discrimination, NIRS with combination of VIS 
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allowed the discrimination of Pinus Sylvestris seeds by their origin sources and parents 

with PLS-DA (Tigabu et al., 2005). The accuracies when taking in account the four 

maternal origin ranged from 80 to 90% (11 PCs); when taking in account parental origin, 

from 70 to 100% (10PCs). The results reassured that maternal parenting highly influences 

on the total seed mass. The classification accuracy according to their origin sources was 

100% of correctly classified seeds.  

 

JUSTIFICATION FOR WORK AND OBJECTIVES 

 
This dissertation involves the application of NIRS in discrimination of single seeds for 

quality and safety purposes. Current legislations in countries such as the ones in the 

European Union have strict standards regarding the presence of genetically modified 

organisms (GMOs). Current analytical methods for GMO detection are slow and 

destructive, thus only a small portion of each shipment can be analyzed. The first 

application in this dissertation, which is the major part, involves the discrimination of 

Roundup ReadyTM single soybeans from conventional using NIR technologies. The 

discrimination of bulk samples has been previously proved, but not at single seed level. 

The feasibility of NIR for this purpose could suppose a solution for analyzing entire seed 

batches and eliminate the sampling effect, resulting in a percentage of GM contamination 

closer to the actual. On the other hand, a comparison of diverse technologies and 

classification algorithms in this application is carried out in order to identify the best 

instrumentation for this purpose.  

A couple of applications for quality control involve discrimination of damaged corn 

kernels. Damaged kernels impact the US grading system and thus decrease the quality of 

an entire lot. Replacing the current human inspection by a non-destructive automatized 

method would save time and improve the value of entire seed lots. Because damage may 

impact seed viability, the feasibility of discrimination viable and non-viable corn kernels 

and soybean seeds with NIRS is analyzed. Furthermore, the feasibility of this application 

could be a great tool for seed banks.  Seeds kept in storage, even at controlled conditions, 

age and eventually die. Germoplasms have to closely control the viability of their stored 
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seeds and replace them once this drops bellows some limits. No practical method exists 

for breeders to know the percentage of viable seeds in the germoplasm but carrying out 

periodical accessions and germination tests. This supposes a waste of resources and time.  

Finally, as the result of the growth of NIR in diverse field and the interest of scientist to 

learn about its use for future applications, this dissertation provides an insight of the 

limitations and problems of learning about NIR spectroscopy. Based on the experience 

acquired in the Grain Quality Laboratory and my earned teaching certificate, a reflection 

regarding teaching the technologies to young students and the need of suitable material, 

activities, and guidance is exposed.   

 

The general objectives of this dissertation can be summarized in: 

1. Analyze the feasibility, best technologies and algorithms to discriminate Roundup 

Ready genetically modified soybean seeds from conventional with near infrared 

spectroscopy 

2. Analyze the feasibility of near infrared reflectance spectroscopy to discriminate 

damaged corn kernels, and viability of corn kernels and soybean seeds. 

3. Analyze the current training system in the grain quality laboratory, identify 

critical points, and update the training material 
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ABSTRACT 
 
Identification and proper labeling of genetically modified organisms is required and 

increasingly demanded by law and consumers worldwide. In this study, the feasibility of 

near infrared reflectance technologies for discriminating Roundup Ready® and 

conventional (not genetically modified) soybean (Glycine max L.) seeds is studied. Over 

200 seeds of each class (Roundup Ready® and conventional) were used. A low resolution 

pushbroom imaging unit, a commercial diode array instrument with single seed adapter, 

and a non-commercial instrument (light tube) which takes the whole seed reflectance 

spectra were tested.  Principal Component Analysis with Artificial Neural Networks 

(PCA-ANN) and Locally Weighted Principal Component Regression (LWR-PCR) were 

used for creating the discrimination models. Imaging unit classification accuracies around 
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89% were achieved with both PCA-ANN and LW-PCR when validation was performed 

with seeds belonging to samples and images included in the training set. Independent 

validation with new images with a percentage of seeds from samples not included in the 

training set gave accuracies around 75%. PCA-ANN models for both single point 

instruments lead to accuracies in the low 80 percent range when validated with seeds 

belonging to samples included in the training set. LWR-PCR models had higher 

accuracies (over 90%). The light tube outperformed the two other instruments due to its 

sensitivity to seed size and shape. The overall accuracies dropped below 80% when new 

models were validated with seeds from samples not represented in the training set. These 

results show the ability of NIRS reflectance technologies to discriminate individual 

Roundup Ready and conventional seeds at good screening accuracies whenever the seeds 

belong to a sample already included in the training set. 

 

KEYWORKDS:  Roundup Ready soybeans, Near Infrared, discrimination, imaging, 

reflectance. 

 

INTRODUCTION 

 

In 1994, the first genetically modified (GM) soybean (Glycine max L.) variety was 

introduced in the United States market. They were the first generation of Roundup 

Ready® soybeans that incorporates a gene from the bacterium Agrobacterium 

Tumefaciens conferring resistance to the glyphosate Roundup-brand herbicide. Although 

other GM soybean varieties are expected in the future– with genes conferring high oleic 

acid or resistance to other herbicides - the most widespread GM soybean varieties at 

present are Roundup Ready ®, comprising close to 60% of worldwide soybean crops.1 

Despite rapid acceptance controversy remains. The uncertainty of GM effects on human 

health, environmental safety, and ecological quality (i.e. varietal preservation) are some 

of the concerns associated with GM technologies.  

Low-level mixtures of GM in conventional batches of soybeans, for instance by 

incomplete cleaning of machinery during harvesting operations, are common and 
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virtually impossible to eliminate.2 With the increasing demand for organic products, 

worldwide governments have created regulations for  labeling and control of GM 

products. Worldwide acceptance thresholds of adventitious GM contamination in 

soybeans range from 1 to 5%. Below those thresholds, there is no need for specific 

labeling of soybean batches destined to both human and animal feeding purposes, as there 

is no rule for GM-fed animal products for human consumption.3 The European Union has 

the smallest tolerance for GM admixture.  The European Novel Food Regulation EC 

1829/2003 sets a threshold of 0.9 % of GM contamination in food and animal feed 

without labeling if the adventitious contamination comes from one of the accepted GM 

varieties (2 soybean varieties so far, Roundup Ready®  being one of them). A 0.5% 

tolerance limit is applied for unauthorized GM varieties if they are proved safe by 

relevant scientific committees.  

The need for GM detection methods that are accurate, fast, and inexpensive remains. 

Currently, there are two recognized classes of GM identification methods, both based on 

detecting two molecules: DNA and protein. Polymerase Chain Reaction (PCR) methods 

are the most sensitive, with lower limits of GM DNA detection of 0.1%.4 Protein-based 

detection methods such as Enzyme-Linked Immunosorbent Assay (ELISA) are less 

accurate; more sample is needed, and prior knowledge of the GM protein (or specific GM 

event) is required. However, protein-based methods are faster and simpler to perform. 

Other methods are seed germination, tetrazolium tests, insect resistance bioassays, 

biosensors, chromatography, use of microfabricated devices, and nanoscale analysis.5 All 

require sample destruction, considerable time, and human resource expenses. Because 

only few seeds can be taken per analysis, the accuracy of the method becomes dependant 

on the sampling procedure. The distribution of GM seeds in a conventional batch of any 

grain can create up to 20% sampling error.6 

Roussel et al.7 introduced the use of Near Infrared Spectroscopy for discrimination of 

conventional and Roundup Ready® bulk soybeans by Near Infrared Spectroscopy (NIRS) 

transmittance. Three classification methods (Partial Least Squares Discrimination 

Analysis (PLS-DA), Artificial Neural Networks (ANN), and Locally Weighted 

Regression (LWR)) were tested. Non-linear methods, ANN and LWR, achieved the 
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highest classification accuracies of 88 and 93% respectively. Near Infrared measurements 

do not measure compounds at trace levels such as part per million, but could measure the 

physical or chemical expression of a genetic trait. In this case, it was suspected that 

differences among Roundup Ready® and conventional soybeans arose from fiber 

structure, after observing the relevance of the regression coefficients from the PLS-DA 

models in the carbohydrate absorbance region (894 - 950 nm).       

Near Infrared technologies are known to provide fast and non-destructive analysis, which 

offers an attractive way to measure whole batches of seeds and reduce sampling 

limitations. The previous study7 was carried out on bulk samples, which implies that a 

whole sample of around 250 – 500 grams of seeds was scanned and classified as either 

Roundup Ready® or conventional. The threshold or percentage of sample impurity was 

unknown. In this study, we use Near Infrared Reflectance Imaging (NIR-CI) and two 

single point NIRS reflectance instruments to discriminate GM and conventional single 

soybean seeds. Since reflectance measurements are especially adequate for online 

measurements, the success of this application would provide a fast and inexpensive 

method to detect Roundup Ready® impurities expressed as proportion or number of GM 

seeds in whole batches of conventional soybeans. There were two main objectives in this 

study: 1) to study the feasibility of NIRS reflectance technologies for discrimination of 

Roundup-Ready® and conventional soybean single soybean at the single seed level. 2) to 

compare possible differences in classification accuracies from technologies (imaging 

versus single point instruments) and instrumentation or sampling method (whole seed 

versus half seed).  

 

EXPERIMENTAL 

 

Chemical Imaging Unit 

Instrumentation. The reflectance imaging system used for this study was a line-scanning 

instrument (DV Optics Ltd., Padua, Italy) with an InGaS camera with low resolution (320 

x 240 pixels, 12 bits resolution) and a Specim N17E spectrograph (Spectral Imaging Ltd., 

Oulu, Finland). The wavelength range covered was from 880 nm to 1,720 nm, taking data 
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points every 7 nm. The translation stage located under the camera where seeds were 

placed was set to a speed equal to 20 µm/s, obtaining images of 350 lines by 320 

columns. The seeds were arranged in batches of 60 seeds on the instrument translation 

stage (FIG. 1).  

 

 

 

FIG.1. Absorbance image showing the placement of 60 soybean seeds. The image has 

been reduced to 310 long (lines) x 220 pixels wide (columns) to remove empty pixels.  

 

Samples and scanning. We picked 216 Roundup Ready® (RR) and 202 conventional 

soybean samples from the Grain Quality Laboratory storage bank at Iowa State 

University (Ames, IA), covering crop years from 1984 to 2008. Fifteen individual seeds 

were randomly taken from each sample and mixed, obtaining two bags of 3,240 

conventional and 3,030 RR seeds. A first set of 92 images were obtained scanning 30 RR 

and 30 conventional seeds per image, drawn from the two bags (RR and conventional) 

and randomly arranged on the instrument translation stage as shown in figure 1.  

We collected a second set of 31 images with a small and variable proportion of Roundup 

Ready® seeds, simulating a real situation of screening for Roundup Ready® 
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contamination of conventional batches (TABLE I). Again, a total of 60 seeds were 

arranged per image. Twenty new RR samples, not used in the previous 92 images, were 

selected. Thirteen seeds were drawn from each RR sample and mixed in a bag. The 

conventional seeds used in those 31 images were taken from a mixture of 45 previously 

used samples (20 new seeds drawn per sample) plus a set of 25 new conventional 

samples (22 seeds/sample). Summarizing, all RR seeds and approximately ¼ of the 

conventional seeds in the 31 images belonged to new samples not included in the initial 

92 images.  

 

 

TABLE I. Composition of the 31 images used as validation set with the number of 

seeds from each category (conventional and RR) per image and number of images 

Number of 60-seed images 6 6 6 7 6 

Number of Conventional seeds 59 58 55 50 40 

Number of Roundup Ready® seeds 1 2 5 10 20 

 

 

Image and Spectra Processing. Matlab v.7.4 (Mathworks, Natick, MA) and PLS_toolbox 

v.3.5.4 (Eigenvector Research, Inc., Wentachee, WA) were used for collecting and 

preprocessing the images. Individual seed spectra were retrieved by building an 

absorbance mask at 1,048 nm; the absorbance threshold was selected after series of small 

tests to achieve a conservative value which excluded the seed edges with high light 

scattering and background. Each seed was represented by approximately 150 pixels (150 

spectra) on average. The spectra belonging to each pixel from a seed was preprocessed by 

multiplicative scatter correction (MSC)8 using the individual seed mean absorbance 

spectrum (average of all pixel spectra for that seed) as reference. The overall average 

from the MSC preprocessed spectra was taken to obtain one spectrum per seed.  This 

method has enhanced the signal and reduced curvature effect in spherical objects. 9 The 
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working wavelength range was reduced to the region of 943 - 1,643 nm to reduce noise.  

Noise peaks at 1,321 nm were observed for some of the spectra, possibly due to light 

scattering effects on instrument conformation. Principal component analysis (PCA) was 

carried out on the spectra from 1300 nm to 1405 nm. Spectra with the noise peak 

characteristic at 1,321 nm showed high score values on the third principal component 

(FIG.2), allowing efficient identification and removal of those spectra. The final data set 

from the initial 92 images had 5,222 spectra (5% of the total data removed as potential 

outliers). From the next 31 images, the final data set had 1765 spectra (5% of data 

removed as potential outliers, again).  

 

FIG.2. Sample scores on second (PC2) and third (PC3) principal components from PCA 

carried on single seed spectra from 1300 nm to 1405 nm. Circled samples showing high 

scores on PC3 belonged to noisy spectra that were removed.  

 

Mathematics. Following the previous work at Roussel et al.7, we used non-linear 

classification methods for this study: Locally Weighted Principal Component Regression 

(LW-PCR), and Principal Component Analysis followed by Artificial Neural Networks 

(PCA-ANN).  We utilized Matlab v.7.04 (Mathworks, Natick, MA) combined with the 
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PLS_toolbox v.3.5.4 (Eigenvector Research Inc., Wenatchee, WA) functions for data 

analysis and model development. LW-PCR models were based on the original algorithm 

provided by PLS toolbox v.2.1.1 (Eigenvector Research Inc., Wenatchee, WA) in 2000. 

In this algorithm, each new sample category is determined according to a reduced 

optimized number of neighbors or closest samples according to spectral similarity. The 

closeness between spectra is defined by Mahalanobis distance in the first principal 

component and their relevance in the classification of the new sample is defined by a 

cubic weight function. The closest neighbors have more relevance when determining the 

new sample category by Principal Component Regression (PCR) in the reduced 

neighborhood. The number of principal components for PCR and neighbors were 

optimized by iteration, across a range from 20 to 1000 neighbors at increments of 20, and 

from 8 - 20 PCs.  

Artificial Neural Networks (ANN) simulates the human nervous system regarding data 

management and learning procedure. ANN models were created and trained by feed-

forward backpropagation, meaning that according to the error calculated after each 

training session (epoch) the weights of each neuron are adjusted. The best training 

function was chosen among those offered by the ANN toolbox for Matlab v.7.04 

(Mathworks, Natick, MA): resilient backpropagation algorithm, Bayesian regulation 

backpropagation, and Levenberg-Marquardt backpropagation. The number of input 

neurons, as with the number of PCs, was optimized by iteration from 10 to 20.  The 

number of neurons in the hidden layer was also optimized, testing from 2 to 4. Transfer 

functions connecting the neurons between the input and hidden layer were hyperbolic 

tangent sigmoids. The connection between hidden and output layer, with two neurons 

corresponding to the two classification categories, was done by linear transfer functions. 

The seed classes were coded (1,0) for conventional and (0,1) for RR seeds. The number 

of learning epochs were monitored and optimized to avoid overfitting. The weights were 

reset to zero ten times for each combination of parameters to avoid local minima, and 

best final model was selected according to the lowest number of misclassified samples 

from the validation set. 
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Discrimination Models. Two types of models were created in order to test the 

generalization ability of the algorithms to new seeds coming from new samples and new 

images. For the first models, data belonging to the first set of 92 images were taken for 

both training and validation. For PCA-ANN models (PCA-ANN (1)), half of the total data 

was picked for training (every other seed, 2,612 spectra). One fourth of the total data 

(1,306 spectra) was kept apart as an early stopping or monitoring set to avoid 

overtraining of the net, and the remaining data (1,305 spectra) was used for validation. 

For LWR-PCR models (LWR-PCR (1)), the previously spectra used for monitoring and 

training were joined and used as training set (3918 spectra). The validation set was the 

same set of spectra used for validation in the PCA-ANN(1) models (1,305 spectra).  

 The second set of classification models (PCA-ANN(2) and LWR-PCR(2)) were trained 

with data belonging to the first 92 images and validated with the next independent 31 

images with fewer RR seeds drawn from a new set of samples not represented in the 

training set, simulating a real screening situation where the variability from new images 

and new seeds may not be accounted for in the training set. For PCA-ANN models (PCA-

ANN(2)), one fourth of the data from the first 92 images was kept apart as a monitoring 

set (1,305 seeds). Spectra used for all models is shown in TABLE II, after removing 

outliers.  

 

TABLE II. Spectra (one spectrum per seed) used for the imaging unit models 

Discrimination 

Model 

Training Set Validation set 
Monitoring set 

(PCA-ANN models) 

Conventional RR Conventional RR Conventional RR 

PCA-ANN(1) 1,283 1,329 633 671 658 648 

LWR-PCR (1) 1,941 1,977 633 671 ---- ---- 

PCA-ANN(2) 1,912 2,005 1,544 221 662 643 

LWR-PCR(2) 2,574 2,648 1,544 221 ---- ---- 

(1) Training and validation with seeds from the initial 92 images 
(2) Training with seeds from the initial 92 images, validation with seeds from a new set 

of 31 images, fewer RR seeds from new samples 
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Single Point Instruments 

Instrumentation. Two reflectance instruments were utilized. The Perten DA 7200 (Perten 

Instruments, Inc., Springfield, IL) is a diode array instrument that covers the wavelength 

region from 850 to 1,650 nm, taking measurements at 5 nm intervals. A special single 

seed adapter provided by the company consisting of a concave mirror was used (FIG.3). 

The instrument was set to take the average of two scans per each seed, taking two blank 

measurements. The approximate analysis speed was seven seeds per minute; seeds were 

placed on the concave mirror using tweezers.  

The second instrument, called “light tube” in this paper (FIG. 4), was a non-commercial 

spectrophotometer built by the USDA facility in Manhattan, KS.10,11  It consisted of a 

silica tube with 48 miniature tungesten lamps arranged in 6 rows surrounding the tube. A 

bifurcated fiber optic BIF600-VIS-NIR (Ocean Optics, Dunedin Fla.) with its ends 

attached to the tube (one in each end) collected the reflected light from the entire seed to 

be combined in a spectrometer (model NIR256-1.7T1-USB2/3.1/50um SNIR 1074, 

Control Development, Inc., South Bend, Ind.) that collects from 904 to 1686 nm, at 1nm 

sampling increments. The blank measurement was taken every 30 minutes as a 

measurement of the illuminated empty tube. The individual seeds were introduced 

manually into the tube through a small funnel and a photoelectric switch (D12DAB6FP, 

Banner Engineering Corp., Minneapolis, MN) located on the top of the tube triggered the 

spectrometer measurement upon seed detection. Each seed was run through the tube three 

times and the average from the three scans was taken. This instrument had an 

approximate analysis speed of fifteen seeds per minute.  
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FIG.3. Single seed adapter provided by Perten (Perten Instruments, Inc., Springfield, IL) 

manufacturers consists of a concave mirror where the seed is placed  

 

 

 

FIG.4. The sampling section of the USDA light tube, with the miniature tungsten lamps 

surrounding the tube and the funnel where the seeds are introduced.  
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Samples. The same original samples used in the imaging unit were also used for the 

single point instrument analysis (total of 227 conventional and 236 RR samples), plus 21 

new samples from 2009 crop (6 RR and 16 conventional). Fifteen new seeds were 

randomly drawn from each sample, 7,275 seeds total. The seeds from each sample were 

kept in individual bags, not being mixed (keeping the seed identity). The same seeds were 

scanned in both single point instruments. 

Spectra processing. Spectra collected by Perten DA 7200 were reduced to the working 

range from 955 to 1,645 nm (first and last data point removed) and the final data set had 

7,013 spectra. The light tube working range was reduced to wavelengths from 914 nm to 

1594 nm.  The final data set had 7,274 spectra. Possible outliers were visually detected 

from the spectra and score plots and removed (only one spectrum for the USDA light 

tube and around 3% of the Perten data). 

Discrimination Models for the Conventional-Single Point Instruments. PCA-ANN(1) 

models were created including samples in the training set similar to the first models from 

the imaging unit: ½ of the seeds from all samples were picked as training set, ¼ of the 

seeds were picked as monitoring set, and ¼ as validation set. All samples were 

represented in the training set. Perten DA 7200 models were created using 3,504 spectra 

for training, 1,755 spectra for early monitoring set, and 1,757 for testing. Light tube 

models had 3,637 train spectra, 1,819 early stop or monitoring set, and 1,819 for 

validation. LWR-PCR(1) models used the same spectra set as PCA-ANN models for 

validation, while the monitoring and training set were combined for training. 

Fifty eight RR and conventional samples (116 samples total, 1,740 seeds) were kept apart 

for independent validation of the second set of PCA-ANN(2) and LWR-PCR(2) models. 

The training sets did not have seeds from the excluded samples. For PCA-ANN(2), again 

¼ of the total training spectra were kept apart as an early stop or monitoring test. Table 

III and table IV show the spectra used for model training and validation, for Perten DA 

7200 and the light tube instruments, respectively.  
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TABLE III. Spectra (one spectrum per seed) used for the Perten DA 7200 models 

Discrimination 

Model 

Training Set Validation set 
Monitoring set 

(PCA-ANN models) 

Conventional RR Conventional RR Conventional RR 

PCA-ANN(1) 1,748 1,756 877 880 876 879 

LWR-PCR (1) 2,624 2,635 877 880 ---- ---- 

PCA-ANN(2) 1,974 1,984 870 869 658 658 

LWR-PCR(2) 2,632 2,642 870 869 ---- ---- 

(1) Training with seeds from all the samples, validation with seeds from samples 
represented in the training set 

(2) Training with seeds from 369 samples, validation with seeds from new 116 samples 
 

 

TABLE IV. Spectra (one spectrum per seed) used for the Light Tube models 

Discrimination 

Model 

Training Set Validation set 
Monitoring set 

(PCA-ANN models) 

Conventional RR Conventional RR Conventional RR 

PCA-ANN(1) 1,814 1,823 907 911 908 911 

LWR-PCR (1) 2,722 2,734 907 911 ---- ---- 

PCA-ANN(2) 2,069 2,100 870 855 690 697 

LWR-PCR(2) 2,759 2,797 870 855 ---- ---- 

(1)Training with seeds from all the samples, validation with seeds from samples 
represented in the training set 
(2)Training with seeds from 369 samples, validation with seeds from new 116 samples 

 

RESULTS AND DISCUSSION 
 

The best classification accuracies achieved are summarized in TABLE V. For LW-PCR, 

often similar results are achieved with several combinations of neighbors and principal 

components. The combination giving the highest accuracy requiring the lowest number of 

PCs is reported.  
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TABLE V. Summary of best classification results 

 Imaging Unit Light Tube Perten DA 7200 

PCA-ANN (1)    

PCs 10 13 11 

Correctly Classified 
1,176/1,304 

(90.2%) 

1,456/1,818 

(80.0%) 

1,443/1,757 

(82.1%) 

PCA-ANN (2)    

PCs 10 9 10 

Correctly Classified 1,350/1765 

(76.5%) 

1,327/1,725 

(76.8%) 

1,386/1,739 

(79.7%) 

LWR-PCR (1)    

PCs 9 18 18 

Neighbors 480 380 440 

Correctly Classified 
1,160/1,304 

(88.9%) 

1,713/1,818 

(94.2%) 

1,625/1,757 

(92.5%) 

LWR-PCR (2)    

PCs 8 9 8 

Neighbors 940 80 540 

Correctly Classified 
1,370/1765 

(74.1%) 

1,253/1,725 

(72.6%) 

1,373/1,739 

(78.9%) 

(1) Models trained with seeds from all the samples and validation with seeds from 
samples represented in the training set.  
(2) Models trained with 70% of samples and validated with seeds from samples left 
out. For the imaging unit, models were trained with the first 92 images and validated 
with the new set of 31 images.  

 

Discrimination by NIRS Imaging 

 

The best PCA-ANN classification accuracies were achieved with nets with 3 hidden 

neurons and resilient backpropagation training with 20 epochs maximum for the first 
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models (PCA-ANN(1) ) and 15 epochs for the models validated with the new set of 31 

images (PCA-ANN(2) ). For models validated with seeds from the same images, the 

classification accuracies were around 90% for both LW-PCR and PCA-ANN algorithms 

(TABLE V). The number of misclassified seeds was similar for both RR and 

conventional (TABLE VI). Accuracies dropped below 75% for models created with the 

spectra from the 92 images and validated with the additional 31 images. Considering that 

a big part of the conventional seeds belonged to samples represented in the training set, 

we could conclude that the imaging unit performs the worse when seeds belonging to 

new images and samples not included in the training set are brought to classification.  

Most of the misclassifications were conventional seeds classified as RR (TABLE VI). 

 

TABLE VI. Confusion matrix of the classification results from the imaging unit  

 PREDICTED 

PCA-ANN(1) LWR-PCR(1) PCA-ANN(2) LWR-PCR(2) 

ACTUAL Conv. RR Conv. RR Conv. RR Conv. RR 

Conv. 565 68 578 55 1,134 410 1,159 385 

RR 60 611 89 582 5 216 10 211 

(1)Training and validation with seeds from the initial 92 images 
(2)Training with seeds from the initial 92 images, validation with seeds from a new 
set of 31 images 

 

The best predictor LW-PCR(2) model required a large number of neighbors (960) which 

indicates that the imaging unit spectra are noisy. This could be the result from a variety of 

factors such as non-homogeneous illumination of the sampling surface or low instrument 

resolution, which add up to the intrinsic diluted signal of imaging technologies when 

compared to conventional NIRS. The new variability added by new images and seeds 

from new samples is also reflected in the surface plot of correctly classified seeds for 

each combination of neighbors and PCs. The surface plot of correctly classified seeds 

from the LWR-PCR(1) iterations is smoother (FIG.5) compared with the surface plot of 

LWR-PCR(2) correctly classified seeds (FIG.6). 
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FIG.5. Surface plot of correctly classified seeds from the LW-PCR(1) (validation with 

seeds from same images and samples of training set) iterations in optimizing the best 

number of neighbors for the local classification and number of principal components 

 

FIG.6. Surface plot of correctly classified seeds from the LW-PCR(2) (validation with 

seeds from 31 new images) iterations in optimizing the best number of neighbors for the 

local classification and number of principal components 
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Discrimination by single point instruments 

The best initial PCA-ANN models (PCA-ANN(1) ), which were validated with seeds from 

samples already included in the training set, were also obtained with 3 hidden neurons, 

resilient backpropagation training and around 25 epochs. The best classification 

accuracies were in the lower 80 percent range for both instruments; those are lower than 

the ones achieved by PCA-ANN (1) models from the imaging unit (90% correctly 

classified); this may be due to additional within image variability, which may be modeled 

and boost the percentage of correctly classified seeds. The best discrimination by LWR-

PCR(1) models reached accuracies over 90% for both instruments (TABLE V). The best 

LWR-PCR models had better accuracies than PCA-ANN; this may not only be due to the 

intrinsic method approach, but could also indicate the need of better tuning of the neural 

net parameters. However, the optimization of LW-PCR parameters (neighbors and PCs) 

is done based on the test set so it increases the risk of overfitting and give optimistic 

results. Since there are several combinations that give approximately the same accuracies, 

a second validation test would help determining the best combination among the good 

ones. 

For models validated with seeds from samples kept apart (PCA-ANN(2)  and LWR-

PCR(2)), the accuracies dropped below 80% for both instruments and discrimination 

methods. The accuracy decrease specially impacted the amount of RR misclassified in 

LWR-PCR models (TABLE VII and TABLE VIII), which resembled the results from 

PCA-ANN(2) for Perten DA 7200. LWR-PCR(2) model with light tube data lead to an 

amount of misclassified RR seeds three times higher than the amount of misclassified 

conventional seeds (TABLE VIII). Perten DA 7200 LWR-PCR(2) models showed slightly 

better classification accuracies compared to the light tube. Light tube spectra are visibly 

affected by seed size and shape (FIG. 7). This characteristic may help boosting the LWR-

PCR model accuracy when seeds belong to samples represented in the training set, as 

additional information regarding seed physical traits is already represented in the training 

set. But on the opposite, if the seeds do not belong to any pre-existing sample in the 

training set, the resemblance to other spectra is low. This is reflected in TABLE V, where 
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LWR-PCR(1) for the light tube achieves accuracies of 94%, but for LWR-PCR(2) the 

optimum number of neighbors is much smaller than Perten 7200 and the imaging unit, 

with classification accuracies significantly lower than Perten DA 7200. The difference 

among instruments was smaller for PCA-ANN (2) models.  

 

FIG.7. Light tube spectra of two soybean seeds from two different samples. The 

difference among them is not only visually detected on baseline differences but on 

specific peaks. 

 

TABLE VII. Confusion matrix of the classification results from the Perten DA 7200 

 PREDICTED 

PCA-ANN(1) LWR-PCR(1) PCA-ANN(2) LWR-PCR(2) 

ACTUAL Conv. RR Conv. RR Conv. RR Conv. RR 

Conv. 781 96 825 52 754 116 745 125 

RR 218 662 80 800 237 632 241 628 

(1) Validation with seeds from samples included in the training set 
(2) Validation with seeds from 116 independent samples 

Wavelengths (nm) 
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TABLE VIII. Confusion matrix of the classification results from the Ligh t Tube 

 PREDICTED 

PCA-ANN(1) LWR-PCR (1) PCA-ANN(2) LWR-PCR(2) 

ACTUAL Conv. RR Conv. RR Conv. RR Conv. RR 

Conv. 751 156 874 34 768 102 794 76 

RR 206 705 71 839 296 559 396 459 

(1) Validation with seeds from samples included in the training set 
(2) Validation with seeds from 116 independent samples 

 

 

CONCLUSIONS 

 

In this study we demonstrated that discrimination at a single seed level of conventional 

and RR soybean is possible using Near Infrared reflectance technologies and non-linear 

models such as PCA-ANN and LW-PCR. Similar accuracies to the ones achieved by 

transmittance of bulk samples7 were attained whenever the seeds to be classified are 

represented in the training set. PCA-ANN(1) models showed lower accuracies in single-

point instruments, probably indicating that either there may be variability within images 

from the imaging unit which has been accounted during the training and favored the 

classification of seeds included in the same images of training seeds, or that the two 

single point instrument fell in a local minimum during the training. The classification 

accuracies among single-point technologies were not very distant from one to another, 

although the light tube combined with LWR-PCR models showed the most promising 

performance because the instrument is more susceptible to seed physical characteristics. 

That helped classifying seeds with good accuracies whenever the sample is represented in 

the training set. On the opposite, this characteristic negatively impacts the accuracies if 

an unknown seed belongs to a sample not represented in the training set. The imaging 
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unit performed slightly worse. The accuracy of models validating with seeds represented 

in the training sets from coming from new images has not been evaluated, but the new set 

of 31 images which had more than half of seeds from samples already represented in the 

training set lead to accuracies close to the ones from single point instruments, validated 

with seeds entirely coming from new samples. From the single-point instruments, a 

highest proportion of misclassified seeds were RR classified as conventional. For the 

imaging unit, it was the opposite. This last would be preferred, since highest sensitivity to 

RR could serve as a first screening precaution, and any sample not passing the screening 

could be later reanalyzed by another official method.  

Although the attained accuracies (higher 80 - lower 90 percent range) are not high 

enough to allow using these technologies as a solo discrimination tool under most of the 

restrictive legislative thresholds, NIRS could be used as a screening method for farmers 

and elevators because it is low cost and does not require special sample preparation. 

Technologies such as the USDA light tube allow fast scanning of whole seed batches 

without the need of subsampling, thus reducing this error associated with current official 

GMO detection methods. Future application of the method could focus on comparing the 

NIRS discrimination ability of entire seed batches versus the subsampling error using 

traditional methods. Any correlation could help creating strategies for RR detection, 

either using NIRS alone or combining NIRS with an official method, improving the 

overall detection/discrimination process. Locally weighted algorithms are the best overall 

choice according to current results. The method requires fewer parameters to be 

optimized and may lead to better accuracies. However, a careful process for optimizing 

the number of neighbors and PCs used in the local models should be carried out. Partial 

least squares (PLS) regression could be tried to obtain more parsimonious local models.12 

 It has been shown that although the current discrimination models included a wide range 

of samples (harvesting years, overall composition) in the training set, those are still not 

enough to attain good accuracies when new seeds from new samples must be 

discriminated. Having over 150 samples of each class represented in the training set was 

not enough to classify seeds from new samples with good accuracies.  
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ABSTRACT 
 
Roundup Ready® soybeans which have been genetically modified to be resistant to 

Roundup® herbicide, is one of the first genetically modified crops recognized safe and 

commercialized. However, most of the current worldwide regulations for importing and 

exporting food demand the control, identification, and proper labeling of all genetically 

modified agriculture products. Previous studies showed that Near Infrared Spectroscopy 

(NIRS) could distinguish among Roundup Ready® and conventional soybeans at bulk and 

single seed sample level (classification accuracies between 80 and 94%). In this paper we 

focus on single seed discrimination of fewer conventional varieties (five) with their 

respective Roundup Ready® version. Analysis carried out in Fourier Transform 

transmittance mode and whole-surface reflectance in single seed levels lead to better 

discriminations from reflectance mode with either using Least Squares Support Vector 

Machines (accuracy of 82%) or Locally Weighted Principal Component Regression 
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(accuracy above 90%).  Varieties with higher misclassification rates had the lowest bulk 

moistures, but when validating the models, seeds at higher moistures all were classified 

as Roundup Ready®. That indicates a possible interaction between absorption of 

carbohydrate bonds relevant in the discrimination models and moisture. The excellent 

discrimination accuracies within varieties (above 95% for most varieties) showed once 

more how the Roundup Ready® gene generate changes in the seeds which make them 

different from the conventional and are easily measurable by NIRS. This could help 

breeders to obtain lots with higher purity of either conventional or Roundup Ready® 

soybean seeds. 

 

KEYWORDS:  Roundup Ready®, soybeans, transmittance, moisture, discrimination 
 

INTRODUCTION 

 

Genetically modified (GM) organisms have been manipulated to avoid diseases, to 

increase resistance to herbicides, and to increase their nutritional value. Their worldwide 

acceptance has been accompanied by controversy regarding their safety for humans (with 

introduction of new allergens and resistance to antibiotics) and environment (biodiversity 

issues).1,2 For this reason, most countries set regulations for identification, quantification, 

and appropriate labeling of products containing genetically modified organisms (GM). 

Roundup® is a popular glyphosate-based herbicide produced by Montsanto Company; 

Roundup® kills a broad variety of weeds on contact. Roundup® application in fields used 

to be only adequate to crops at certain development stages and direct application had to 

be avoided.3 The development of crops with resistance to the herbicide reduced those 

hassles and restrictions. The patent and marketing of Roundup® resistant crops, licensed 

with the name of Roundup Ready®, was done by Montsanto. By genetic recombinant 

DNA technology, genetic material from the bacteria Agrobacterium Tumefacien was 

introduced to the crop genoma, conferring the crop a high tolerance to the herbicide, 

leading to less restrictive use of Roundup®, lower production costs, and even higher crop 

yields.4 
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Soybeans (Glycine max L.) were the first Roundup Ready® (RR) crop to be introduced in 

the markets in 1996. They rapidly displaced conventional soybeans for the previously 

mentioned advantages on crop management and yields, being RR currently more than 

half of the soybean fieldcrops around the world.5 RR soybeans are widely accepted in the 

global markets; they are one of the two currently accepted GM varieties of soybeans in 

Europe, which has the most restrictive laws regarding GM importation. But despite of 

their acceptance, they must be labeled as a GM crop, even if they are present as 

adventitious contamination in conventional batches whenever their percentage exceeds 

pre-established thresholds, determined in function of several parameters such as company 

and consumer requests or political aspects.6 Current thresholds of adventitious GM 

contamination in conventional soybeans for feeding range from 0.9% (i.e Europe) to 5% 

(i.e. Japan or Taiwan). In the case of Europe, the tolerance limit applies to contamination 

of recognized GM varieties; otherwise, the threshold is reduced to 0.5 % whenever the 

varieties are proved safe.  

Determination of GM traces in big batches is challenging. On one hand, current 

determination methods are time consuming and complex, not suitable for on-site 

measurements (laboratory-based methods). Analyses are divided as Protein-based 

methods and DNA-based methods. Protein-based methods such as Enzyme-Linked 

Immuno Sorbent Assay (ELISA) work with specific antibodies, which require previous 

knowledge of the GM to be analyzed, but are fastest, cheapest, and simpler than DNA-

based methods.6 DNA-based methods, such as Polymerase Chain Reaction (PCR), are 

more sensitive: the lowest limit of detection of GM DNA material is around 0.1%.7 On 

the other hand, these methods are destructive, meaning that even in the case they could 

perform faster and be applied on-line, only a small portion of the sample could be 

analyzed. This leads to the added problem of taking representative samples from big 

batches, proved to be in function of the type of grain and the threshold to be analyzed.8 

 The first attempt to use Near Infrared (NIR) to discriminate RR and conventional 

soybeans was done by Roussel et al.9 In their study, NIR transmittance was used to scan 

over 4,000 bulk soybean samples from each class. Non-linear classification methods such 

as locally weighted principal component regression (LW-PCR) and artificial neural 
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network (ANN) were required to achieve classification accuracies of 93 and 88% 

respectively, using independent validation sets. A more recent study10 was carried out to 

study the feasibility of NIR reflectance to discriminate among RR and conventional 

single seeds, and thus be used as method to determine seed lots impurity. Three 

reflectance NIR technologies were used: a chemical imaging unit, a single point 

instrument with a single seed adapter, and the USDA light tube.11,12  Over 5000 seeds 

belonging to around 240 samples (15 seeds per sample) of each class (RR and 

conventional) were scanned.  LW-PCR accuracies were best for the light tube (94%) 

when seeds for validation were picked from samples represented in the training set. ANN 

results were similar for all technologies, with accuracies in the lower 80% range. Those 

results were very similar to those of Roussel et al.9 using independent validation sets. 

When seeds were from samples not represented in the training set, regarding that models 

were developed with over 150 samples from each class, classification accuracies dropped 

in all the instruments. The best accuracy was achieved by the traditional single point 

instrument (79%).  

In this paper we use a Fourier-Transform Near infrared Transmittance (FT-NIR) and the 

USDA light tube instruments.11,12  Transmittance measurements have higher throughputs 

and may be more accurate when analyzing heterogeneous samples, as the irradiated light 

goes through the entire sample. The USDA light tube, on the other hand, takes 

reflectance spectra from whole seeds. Both measurement modes are compared. A smaller 

set of 10 samples, 150 seeds picked per sample, were tested. Five conventional varieties 

and their five corresponding varieties with the RR gene were utilized. The objectives of 

the study were (1) to compare discrimination accuracies between the whole seed 

reflectance mode by the light tube and FT transmittance measurements in discrimination 

of RR soybeans and conventional, (2) to compare the performance of two different 

classification algorithms: Least Squares Support Vector Machines (LS-SVM) and 

Locally Weighted Principal Component Regression (LW-PCR) (this last proven to 

outperform ANN in the previous research), (3) compare accuracies with the previous 

study with more samples and fewer seeds per sample, (4) to determine and compare the 

discrimination accuracies within a single variety (conventional and RR modified) and 
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when more than one variety is involved, and (5) to analyze the impact of seed moisture 

on discrimination accuracy, using higher moisture seeds for validation of the obtained 

models. Moisture was suspected to have influence in discriminating bulk samples by 

transmittance. 9 Since the application of the method in elevators or commodities suppose 

variable seed moistures, any effect that moisture may induce to the discriminative ability 

of the models should be acknowledged. 

 

MATERIAL AND METHODS 

 
Samples 

 

Five conventional public soybean varieties from 2007 crops (labeled as M97-302, M97-

303, M97-304, M97-305, and M97-306 varieties) and the same respective varieties with 

the Roundup Ready® (RR) gene transferred were used in this study. This made a set of 10 

samples. A hundred and fifty seeds from each sample were picked and scanned by the 

two instruments consecutively (1,500 scanned seeds total). The initial average moisture 

of the bulk seeds was measured by scanning them with a Infratec 1221 transmittance 

instrument (Foss North America, Eden Prairie, MN, USA) using a cuvette and the Iowa 

State moisture calibration. Sample composition predicted with NIRS Iowa State 

calibrations is shown in table 1. The standard error of prediction (SEP) of moisture 

calibration was 0.37%, SEP=0.52% for protein, SEP=0.37% for oil, and SEP=0.08% for 

fiber. No appreciable physical differences were detected among the conventional and RR 

samples within a variety. Additional sets of 150 seeds more from each sample were 

picked and sealed in individual small plastic bags with a wet paper towel on the top. The 

bags were kept in the fridge for around 3 weeks or until their average moisture was over 

13%. The moisture was monitored and predicted with the Infratec 1221 instrument. 

During that period of time, the paper towels were replaced when dry and seeds were 

shaken to allow better distribution of the moisture within samples. After scanning each 

seed in the two instruments consecutively, the approximate moisture of each seeds was 
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estimated by weight difference oven drying for 3 hours at 130 C (AOCS, Ac 2-41 

method).  

 

Table 1. Composition of the ten samples used in the study, predicted with NIR 

transmittance with Iowa State calibrations  

Sample 
Initial Moisture 

(%) 
Protein (%)* Oil (%)* Fiber (%)* 

M97-302  RR 8.8 34.9 16.9 5.0 

M97-302 8.6 36.1 18.1 4.8 

M97-303  RR 8.4 36.0 18.8 4.7 

M97-303 8.4 36.4 17.4 4.8 

M97-304 RR 8.2 37.9 17.0 4.7 

M97-304 8.3 36.2 18.0 4.8 

M97-305 RR 9.3 38.0 17.3 4.6 

M97-305 8.9 36.3 17.9 4.8 

M97-306 RR 9.5 36.2 18.3 4.7 

M97-306 8.9 34.6 18.0 4.7 

* 13% moisture weight basis 

 

Instrumentation  

 

In this study, two spectrometers were used. Buchi NIRFlex N-500 (Buchi Corporation, 

New Castle, DE) is a Near Infrared Fourier Transform (FT-NIR) spectrometer which has 

the capability of working in both reflectance and transmittance mode with the use of 

appropriate modules. For this research, the NIRFlex solids transmission module with the 

10-well sample cell (Figure 1) was used to analyze the individual seeds. The instrument 

covers the spectral range from 11,520 to 6,000 cm-1 (868.1 – 1,666.7 nm), with 4 cm-1 
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sampling increment (1,381 data points) at full resolution of 8 cm-1. The second 

spectrometer (Figure 2) was designed and built by the United States Department of 

Agriculture (USDA) in the Manhattan (KS) facility and differs from conventional single 

point spectrometers in the fact that takes spectra from all the seed surface. The light tube 

instrument sample cell is a silica tube where a single seed passes through being 

illuminated by 48 miniature tungsten lamps located surrounding the tube. A photoelectric 

switch D12DAB6FP (Banner Engineering Corp., Minneapolis, MN) detects when the 

seed is manually dropped to the tube from a small funnel located on the top of the tube 

and the instruments starts the reflectance spectra measurement from the whole seed 

through Y-shaped bifurcated fiber optic BIF600-VIS-NIR (Ocean Optics, Dunedin Fla.) 

with two of the ends attached one in each end of the tube. The third end of the fiber optic 

is connected to the CDI spectrometer model NIR256-1.7T1-USB2/3.1/50um SNIR 1074 

(Control Development, Inc., South Bend, Ind.) with 1 nm sampling increments from 904 

to 1686 nm. More information related to the instrument can be found in the literature. 
11,12  The blank measurement, taken as a measurement of the empty illuminated tube with 

the funnel, was taken every 20 minutes. Each seed spectrum was the average of three 

spectra.  

 

 

 

Figure 1. FT-NIR Buchi NIRFlex N-500 working in transmittance mode with the 10-

well sample cell 
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Figure 2.  Image of the tube surrounded by the miniature tungsten lamps with the funnel, 

where seeds are introduced, on the top. The two extremes of the Y-shaped optic fiber are 

connected on the top and on the bottom of the tube. 

 

Data Management and Discrimination Models 

 

Spectral data was used raw (as apparent absorbance measurement), as previous tests 

indicated that spectral pretreatments such as standard normal variate (SNV) or Savitzky-

Golay derivatives decrease classification accuracies, probably because they remove 

relevant information. For both instruments, wavelengths from the two extremes of the 

spectra were removed. For the FT-NIR instrument, 10 data points were removed from 

each extreme. The working wavelength range was from 6,040 cm-1 to 11,480 cm-1 (871 

– 1655 nm). The working spectra from the light tube covered the range from 953 nm to 

Input 
funnel 

Optic 
fiber pro 

Tungsten 
lamps 
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1636 nm (50 data points removed from each extreme). Data was imported to The 

Unscrambler v.9.8 (Camo AS, Trondheim, Norway). Detection and outlier removal tasks 

were carried out both visually and with principal component analysis (PCA) within 

varieties. Samples showing either extreme scores in the first 14 principal components 

(PCs) or having high leverage vs residual values when compared with the rest were 

flagged as possible outliers. Discrimination models were developed in Matlab 7.10.0 

(2010a) (Mathworks, Natick, MA). Two classification algorithms were tested: least 

squares support vector machines (LS-SVM) and locally weighted principal component 

regression (LW-PCR).  

LS-SVM models were developed using LS_SVMlab v.1.5 toolbox functions. 13 We used 

the Guassian Radial Basis Function (RBF) as the kernel function for high-dimensional 

mapping (non-linear discrimination). Both kernel width (σ) and the model regularization 

parameter (γ) were simultaneously tuned using grid search based on 15-block cross-

validation for the general model, and 10 block cross-validation for within-variety models. 

The inputs were the PCA scores after autoscaling the spectra, testing from 9 to 15 

principal components. The number of optimum PCs were selected according to the best 

classification results in the external validation set. PLS_toolbox v.3.5.4 (Eigenvector 

Research Inc., Wenatchee, WA) functions were used for data processing and PCA, while 

the original algorithm for LWR-PCR was retrieved from the PLS toolbox v.2.1.1 

(Eigenvector Research Inc., Wenatchee, WA).  In that algorithm, the new sample is 

assigned to a class (either 0 or 1) according to a local model built with its neighbors. The 

neighbors are samples which have resemblance or closeness to the new sample spectra, 

measured by Mahalanobis distance in the first principal component. The relevance of 

each neighbor in the PCR classification of the new sample is defined by a cubic weight 

function (Equation 1) which is function of d, the Mahalanobis distance. Both numbers of 

neighbors and PCs for the PCR discrimination were optimized by iteration, considering 

the best combination the one that lead to a small number of misclassifications when 

predicting the validation set.  

 

Equation 1.                   
 

( )331SW d= −
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Experimental Design 

 

General classification models which included all dry seeds (table 1) from the 5 varieties 

(both RR and conventional) were created with data from both instruments (FT-NIR 

transmittance and light tube reflectance) and both discrimination models (LS-SVM and 

LWR-PCR). Two thirds of the data was used for training (approximately 1000 spectra), 

and one third was kept for validation (500 spectra). Five other additional classification 

models were created to discriminate within single varieties (conventional versus RR). In 

each single-variety model, also two thirds of the data was used for training (200 spectra) 

and one third for validation (100 spectra). The experimental design with the final number 

of samples is summarized in table 2. Outliers were only evident from the FT-NIR data; 

no clear outliers were spotted in the light tube instrument.  

 

Table 2. Used spectra in both discrimination algorithms 

 V
arieties  

Training Spectra Validation 

Spectra 

Conv. RR Conv. RR 

Overall 
Classification 

Buchi  
FT-NIR 

5 485 454 250 250 

 Light tube 
reflectance 

 5 500 500 250 250 

Within-Variety 
Classification 

Buchi  
FT-NIR 1 

     (1) 99 

 (2)100 
        (3) 93 

(4) 98 

(1) 98 
(2) 97 
(3) 98 
(4) 97 

(1) 48 
(2) 48 
(3) 50 
(4) 50 

(1) 50 
(2) 49 
(3) 49 
(4) 50 

Light tube 
reflectance 1 100 100 50 50 

(1) M97-302, (2) M93-303, (3) M97-304, (4) M97-305, (5) M97-306 
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Moisture Effect  

Both LS-SVM and LW-PCR general models were validated with high moisture seeds. 

The first validation was carried out using seeds from a single variety (M97-304, later 

shown to be variety with higher misclassifications). The tested seeds belonged to 

different moisture ranges, in order to determine if there was a moisture threshold in 

which classifications changed. A second validation set included seeds from all the 

varieties, covering a wider high moisture range (13.5 – 17%) (Table 4). The amount of 

seeds from each test set was limited by the moisture achieved by each individual sample 

brought to moisture increase. The final moisture was not homogeneous, and differed 

between and within samples. 

 

Table 3. Composition of the validation set including seeds from the variety M97-304 

Moisture (%) Conv. RR Total 

8.5 - 10 % 3 4 7 

10 – 13.5 % 16 12 28 

13.6 – 15 % 18 26 44 

 

Table 4. Composition of the validation set including all varieties with high moisture 

range  (13.5 – 17%) 

 
Varieties  

M97-302 M97-303 M97-304 M97-305 M97-306 Total 

Conv. 20 20 20 20 20 100 

RR 17 20 20 20 10 87 
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RESULTS AND DISCUSSION 

 

Overall Classification with Dry Samples 

 

FT-NIR Instrument. The best classification accuracy applying LS-SVM (392 correctly 

classified spectra over 500 test spectra, 78%) was achieved using 13 PCs. According to 

the number of spectra that had to be deleted, the instrument shows problems related with 

sample positioning which may be added to the variability caused by differences in seed 

thickness and light pathlenght. This sensitivity negatively influenced the spectra and thus 

the discrimination model.  Figure 3 shows the number of misclassified seeds of each 

variety from the validation set. The RR samples of varieties M97-303 and M97-304 had 

the highest misclassifications, while variety M97-305 had the lowest. Both M97-303RR 

and M97-304RR had the lowest bulk moisture predictions of the entire set (table 1). 

M97-305RR and M97-306RR are the two samples with highest bulk moisture, and got 

the lowest misclassification results from the RR samples. 

 

 

 

Figure 3. FT-NIR transmittance Buchi instrument misclassifications per variety from the 

validation of the LS-SVM model 
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Higher discrimination accuracies were achieved with the use of LW-PCR. The correctly 

classified rate was 88% (443 correctly classified over 500 test spectra) with a number of 

neighbor samples of 380 and 11 PCs used in local models. This result is similar to the 

achieved by the reflectance imaging unit from an earlier study.10 Noise originated by 

sample positioning overcome the advantage of high throughput of FT-NIR transmittance, 

leading to results close to what a low resolution reflectance imaging unit gave. 

Misclassifications from the validation set are shown in figure 4. The 57 misclassified 

seeds followed a different pattern than the ones misclassified by LS-SVM. Some samples 

(e.g. M97-304RR) still were problematic to be discriminated from conventional seeds, 

most of the RR tested samples achieved better discrimination accuracies compared with 

the LS-SVM model. Compared with LS-SVM misclassifications, moisture did not seem 

to be correlated with LW-PCR misclassifications.  

 

 

Figure 4. FT-NIR transmittance instrument misclassifications per variety, using the 

optimum LW-PCR overall classification model 
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Light Tube Instrument. The instrument outperformed the classification accuracies 

obtained by the FT-NIR instrument. LS-SVM validation achieved 411 spectra correctly 

classified over 500 (82%), using 14 PCs.  This result is similar to the previous study10 

with PCA combined with artificial neural networks (ANN) models were developed using 

a larger number of samples represented by a smaller number of seeds. We could conclude 

that algorithms such as LS-SVM and ANN may not lead to better accuracies when they 

are trained with seeds from fewer samples, and being each sample represented by a high 

number of seeds. 

Figure 5 shows the bar plot of the validation set misclassifications from each variety. The 

highest misclassification rates were from M97-304RR and M97-305 conventional. 

However, the third sample with highest misclassifications was M97-303RR. M97-305RR 

and M97-306RR had the lowest misclassification rates, and the highest bulk moistures 

(Table 1). This agrees with previous suspicions9 of moisture having influence on the 

classification. RR varieties with higher bulk moisture seem to have better classification 

rates in LS-SVM models, and the opposite.  

 

 

Figure 5. USDA reflectance light tube instrument misclassifications per variety from the 

validation of the LS-SVM model 
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With LWR-PCR, the validation set could be discriminated at 99% (494/500) using a 

smaller number of neighbors (240) and 14 PCs. Several combinations lead to similar 

accuracies. Higher accuracies can be achieved for local models with 190 – 300 neighbors 

and 18 PCs (499 correctly classified spectra over 500, 99.8%), but there is a higher risk 

of overfitting. Those accuracies exceed the ones also reported for LWR-PCR in a 

previous study using the light tube instrument (94%).10 As opposted to LS-SVM and 

ANN, LW-PCR models may benefit of having more seeds representing each sample in 

the training set. However, it should be taken in account that LS-SVM regularization 

parameter and kernel width have been optimized by cross-validation (the optimum 

number of PCs was optimized from the validation set), while optimal number of 

neighbors and PCs for local models in LW-PCR was determined from the validation set. 

This can result in slightly optimistic results for those models.  

 

 

 

Within Variety Classification 

 

Within variety classifications accuracies with LS-SVM were overall much better than the 

general model with all the varieties (table 5), except of those which already had higher 

misclassification rates in the previous validation (e.g. M97-305). As seen in table 1, some 

of the varieties have slight differences in bulk protein or oil content between RR and 

conventional, but it cannot be considered that the discrimination among them is due to 

differences in concentrations from any of those compounds.  
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Table 5. Validation results of within variety LS-SVM models 

Instrument Variety Pcs 
Misclassified Total Accuracy 

(%) Conv. RR 

B
uc

hi
 F

T
-N

IR
 

T
ra

ns
m

itt
an

ce
 M97-302 8 1 2 96.8 

M97-303 12 7 17 75.3 

M97-304 15 9 9 81.8 

M97-305 12 4 1 95.0 

M97-306 13 3 4 92.7 

U
S

D
A

 L
ig

ht
 T

ub
e 

R
ef

le
ct

an
ce

 

M97-302 13 8 1 91.0 

M97-303 13 2 7 91.0 

M97-304 10 14 13 73.0 

M97-305 13 3 1 96.0 

M97-306 10 4 5 91.0 

 

 

LW-PCR models within each variety were again better than LS-SVM as shown in table 

6. Most of the varieties can be discriminated at 100% of accuracy with the USDA light 

tube and over 90% with the FT-NIR Buchi. The average of neighbor points needed for 

local models range from 25 to 55. Close attention when using such a small number of 

neighbors should be paid; especially if the amount of required PCs is relatively large. 

This could be the case of local models from varieties such as M97-302 and M97-304 

from the light tube data. For most of the varieties, using a lower number of PCs (5,6) and 

around 50 neighbors still lead to accuracies over 90%. However, good accuracies can be 

achieved using other combinations of neighbors and PCs, which could be tested with a 

second validation set. 
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Table 6. Validation results of within variety LW-PCR models 

Instrument Variety Pcs Neighbors 
Misclassified Total 

Accuracy (%) Conv. RR 

B
uc

hi
 F

T
-N

IR
 

T
ra

ns
m

itt
an

ce
 M97-302 9 55 0 0 100.0 

M97-303 13 165 0 6 93.8 

M97-304 10 105 0 1 99.0 

M97-305 5 15-80 0 1 99.0 

M97-306 5 35-80 0 0 100.0 

U
S

D
A

 L
ig

ht
 T

ub
e 

R
ef

le
ct

an
ce

 

M97-302 8 25 0 0 100.0 

M97-303 9 55 0 0 100.0 

M97-304 13 55 1 0 99.0 

M97-305 8 35 0 0 100.0 

M97-306 8 45 0 0 100.0 

 

 

Discrimination of High Moisture Seeds 

 

The validation of the general model carried out by seeds from the M97-304 variety at 

different high moisture ranges lead to a completely opposite misclassification pattern for 

this variety when compared with the validation results done with dry seed spectra. Most 

of the RR seeds were correctly classified and most of conventional seeds were 

misclassified as RR. The results were the same for both LS-SVM and LW-PCR 

algorithms. The misclassifications were similar among moisture rates, so a slight 

increment of moisture leaded to the same results as higher moisture increments. 
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Table 7. Validation of LS-SVM models from both instruments with seeds from variety 

M97-304. Misclassified seeds over total per moisture range. 

 Transmittance NIR-FT Light Tube Reflectance 

Moisture (%) Conv. RR Conv. RR 

8.5 - 10 % 3/3 1/4 2/3 0/4 

10 – 13.5 % 14/16 1/12 15/16 2/12 

13.6 – 15 % 17/18 2/26 15/18 0/26 

 

 

Table 8. Validation of LW-PCR models from both instruments with seeds from variety 

M97-304 RR. Misclassified seeds over total per moisture range. 

 Transmittance NIR-FT Light Tube Reflectance 

Moisture (%) Conv. RR Conv. RR 

8.5 - 10 % 3/3 0/4 1/3 0/4 

10 – 13.5 % 15/16 0/12 11/16 0/12 

13.6 – 15 % 17/18 2/26 15/18 0/26 

 

 

Similar results were achieved when validating the LS-SVM general models with high 

moisture seeds from all the varieties (Figure 6). For models from both instruments, most 

of the conventional seeds were classified as RR. RR samples showed lower 

misclassification rates, although samples with higher misclassifications were not the 

same for both instruments. These results show that the hyperboundary created with LS-

SVM algorithm to discriminate conventional and RR seeds was relying on the 

information located in the water absorption region, which is located also in the 

carbohydrate absorption.  The validation of LW-PCR models with high moisture seeds 

lead to different results for both instruments. While the LW-PCR predictions for FT-NIR 

also had all the RR seeds correctly classified and all conventional misclassified as 

conventional as what happened with LS-SVM model validation, the predictions from the 

light tube were random. High misclassification rates were observed for both RR and 



 

142 

 

conventional samples (Figure 7). This could indicate that the combination of neighbors 

and PCs in the last model may not be the optimal but could be overfitted to the first 

validation set, focusing on modeling intrinsic set features instead of information which 

allows generalization of the discrimination ability.  

 

 

Figure 6. Misclassified seeds from the validation of the initial LS-SVM models (Light 

tube model to the left and FT-NIR model to the right) with high moisture seeds (13.5-

17%) from all the varieties. 
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Figure 7. Validation of the Light Tube LW-PCR model with high moisture seeds (13.5-

17%) from all the varieties 

 

 

The initial guess from these results could involve the fact that initial moistures in RR 

seeds may be slightly higher than conventional, so discrimination models were mainly 

driven from moisture differences. This affirmation, although could be logical based on 

this single study, cannot explain the discrimination among conventional and RR seeds in 

a previous study 10 involving a large population of seeds from hundreds of samples. 

Furthermore, when seeds have similar high moistures they are still differentiable. Figure 

8 shows the PCA score plot (PC2 vs PC3) of the M97-304 variety scanned with the light 

tube, with both RR (pink, circled) and conventional (blue) seeds used for validation 

(similar moisture ranges involved). RR samples seem to have higher scores on the second 

PC. This pattern can also be seen, although not so clear, in the score plot from the Buchi 

FT-NIR instrument (figure 9). 
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Figure 8. Score plot of seeds from the M97-304 validation set. RR seed spectra in pink 

and conventional in blue. Most of RR spectra are located in the circle. 

 

 

Figure 9. Score plot of seeds from the M97-304 validation set. RR seed spectra in pink 

and conventional in blue. 
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Another explanation is that there may be an interaction between water and fiber 

absorptions (carbohydrate) as they both happen in the wavelength range of 1400 – 1450 

nm in the first overtone. In order to test this hypothesis, we selected the variety M97-304 

spectra, both conventional and RR, and seeds from low and high moistures. We 

preprocessed the spectra with standard normal variate (SNV) in order to correct for offset 

and we averaged them, obtaining two spectra for sample M97-304 RR as a result of 

averaging dry and high moisture seed spectra, and  similarly two spectra more for sample 

M97-304 conventional. The approach was as follows: The dry seed spectrum was 

removed from the high moisture spectrum. In absence of interactions, the water peak at 

1,400 – 1,450 nm should be the only noticeable. Figure 10 shows the difference spectra 

for M97-304 RR (left plot) and M97-304 conventional (right plot). The absolute values of 

the difference spectrum are higher for the conventional sample because the wet 

conventional seeds had higher average moisture (17.8%) compared to the RR wet seeds 

(14.7%). However, it is interesting to see that in both cases, besides obtaining a peak in 

the carbohydrate absorption region which also includes water absorption (1,350 – 1,450 

nm) another peak in the purely carbohydrate absorption region on the first overtone 

(1,150 – 1,250 nm) arose. The higher the moisture, the more relevant this last peak 

becomes, in correlation with the water peak. From this result we can conclude that the 

hypothesis of interaction between fiber and moisture eaxists and it affects the RR-

conventional discrimination accuracies. Higher moistures may favor the identification of 

RR seeds decreasing the accuracy on conventional seeds.  
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Figure 10.  Difference between the average of wet seed SNV preprocessed spectra (150 

seeds) and the average SNV preprocessed spectra of dry seeds (150 spectra) for sample 

M97-304 RR (left, plot A) and M97-304 conventional (right, plot B). Spectra was 

obtained from the light tube instrument. 

 

CONCLUSIONS 

 
The discrimination of RR and conventional dry seeds (moisture below 9%) using 5 

varieties with their conventional and RR genetically modified versions and represented 

by 100 seeds each, lead to similar results compared to previous studies when using LS-

SVM algorithms.9,10 The performance of LS-SVM models were close to the performance 

of PCA-ANN models (lower eighty percents). LW-PCR lead to higher discrimination 

accuracies (over 95% for the light tube instrument) than LS-SVM and the LW-PCR 

models developed in the previous study.10 The algorithm did benefit of having fewer 

samples with a larger number of seeds represented in the training set, instead of large 

number of samples with few seeds from each in the model as in the first study. However, 

it should be taken in account that LW-PCR models were optimized on the validation set 

and some of the best combinations of PCs and neighbors may lead to an overfitting of the 

models to the validation set.  FT-NIR transmittance measurements were highly affected 

A B 
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by sample position and it negatively impacted the classification accuracies (78% with LS-

SVM, 88% with LW-PCR) when compared with the light tube (82% with LS-SVM, 99% 

with LW-PCR. Within variety discriminations (same variety, conventional and with RR 

resistance gene) gave high accuracies for most of the classes. LS-SVM correctly 

discriminated the 92% of the seeds on average in both instruments, and discriminations 

were close to 100% with LW-PCR. This indicates that NIRS could be used for 

discriminating conventional and RR soybean seeds developing models for single 

varieties. However, some varieties could be easily discriminated (above 95% with LS-

SVM) than others (around 75% with LS-SVM). So the application may not be usable for 

all varieties. Further work could develop models including seeds from different crop 

seasons and fields and test any changes in accuracies.  

Varieties showing the highest misclassification rate often showed the lowest bulk 

moisture when compared to the total data set. Samples with higher moistures seemed to 

be easily discriminated. RR seeds were the most negatively affected by lowest moistures. 

However, when the discrimination models trained with dry seeds were validated with 

higher moisture seeds all the conventional seeds were misclassified as RR while most of 

the RR seeds were correctly classified. Moisture difference alone does not drive the 

classification of RR and conventional soybean seeds. Previous studies suggested that 

fiber was playing an important role in NIRS discrimination of RR and conventional 

soybean seeds.9 Because the water absorption region on the first overtone (1,400 – 1,450 

nm) overlaps with the carbohydrate (fiber) region (1,350 – 1,450 nm), a possible 

interaction of water-fiber may affect the discrimination. We proved by subtracting the 

soybean dry average spectrum to the high moisture spectrum that carbohydrate peaks in 

both the overlapping absorption region (1,350 – 1,450 nm) and the region exclusively 

involving carbohydrate absorption ( 1,150 – 1,250 nm) remain relevant. Changes in 

bonds and vibrations of carbohydrate molecules due to water absorption could have 

modified the absorption signal in those regions. The implication of this finding is the 

usability of discrimination models only at short moisture ranges. This is not a problem for 

breeders, who deal with seeds with similar moisture. The success of within variety 
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discrimination models with seeds with wide moisture range in the training set is 

unknown, as it is the algorithm that would perform the best in that situation.  
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ABSTRACT 
 
Current US corn grading system accounts for the percent of damaged kernels, which is 

carried by time-consuming visual inspection. Near infrared spectroscopy (NIRS), a non-

destructive and fast analytical method, is tested as analytical tool for discriminating heat 

and frost-damaged corn kernels. Four classification algorithms were utilized: Partial least 

squares discriminant analysis (PLS-DA), soft independent modeling of class analogy 

(SIMCA), k-nearest neighbors (K-NN), and least-squares support vector machines (LS-

SVM). The feasibility of NIRS for discriminating viable or germinating corn kernels and 

soybean seeds from abnormal or dead seeds was also tested. This application could be 

highly valuable for seed breeders and germoplasms because current viability test are 
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based on a destructive test of germination. Head-damaged corn kernels were best 

discriminated by PLS-DA, with accuracy equals to 99%. The discrimination of frost-

damaged corn kernels was not possible; NIRS could not detect any difference between 

frost-damaged and sound kernels. Discrimination of non-viable seeds from viable was not 

possible either. Since previous results in literature are contradictory with the current 

results in damage discrimination, the seed damage extent in which NIRS can detect 

enough seed changes to carry out discrimination should be analyzed in the future.  The 

viability discrimination results showed that in analyzing damaged seeds, NIRS is entirely 

discriminating based on changes in the seeds due to purely damage, without any 

correlation with the seed ability to germinate.  

 

KEYWORKDS:  corn kernel, near infrared, heat damage, frost damage, viability 

 

1.INTRODUCTION 

 
Corn (Zea mays L.) is the main feed for cattle in US (90% of total grains used for 

feeding) (USDA, 2010), and it is also processed in many end products for human 

consumption and industrial uses.  Genetic traits, compositional characteristics, and 

overall quality of corn are factors which relevance varies depending on the final product 

and technological process. For instance, wet milling processes for ethanol production 

require of high starch corn;  the quality of the prime material (properly dried, no cracks or 

broken kernels, absence of foreign material) is more important for wet milling than for 

commodity grain. Environmental conditions and other post-harvesting activities impact 

the final grain quality. High moisture, heal, freezing, and artificial drying are some of the 

factors that damage grains and negatively impact grain quality and economical value. Six 

corn grades in US establish a measurement of grain quality based on batch test weight 

and % total damaged kernels (USDA-GIPSA, 2001). For total damaged kernels, the 

maximum percentage of heat-damaged (by either excessive drying or not proper moisture 

adjustment during storage), broken, and foreign material (BCFM) in each grade is 

specified. The percentage of frost, sprout or mold damaged seeds is included in the total 

damaged seed category. Other characteristics which affect corn quality but are not 
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reflected in the US grading system are % waxy corn, stress cracks, and insect infestation. 

Although environmental conditions cannot be controlled and affect grain quality, 

adequate handling of grain during harvesting and storing help preserve it. Genetic 

manipulation impacts the quality. Seed breeders seek the genes of interest that led to the 

expression of a targeted physiological trait and carry out the improvement of future lines 

through genetic manipulation. Germplasms and seed banks are pools of plant genetic 

material which maintain genotypic diversity and provide genetic resources for breeders. 

Seeds are kept for several years with controlled storage conditions of moisture and 

temperature. However, seeds progressively age, losing the ability to germinate, and 

eventually die. This forces seed banks to periodically monitor seed viability in 

accessions. Regeneration of seed batches is needed when germination falls below 85% 

(Humeid et al., 1995).  

Both quality control of grains and determination of germination of stored seeds are 

carried out by qualified personnel and are time consuming tasks. For instance, the official 

detection of damaged and infested kernels is carried out by visual inspection. The 

germination of seeds can only be determined by destructive tests which suppose the 

reduction of the number of stored seeds over time. Germination, in percentage of 

germinated seeds over the total tested seeds, is the estimated capability of a seed lot to 

produce normal plants with good vigor under favorable controlled conditions. Dormancy 

(%) is also referred as the percentage of hard seeds over the total tested which did not 

germinate during the germination test. This may be due to either intrinsic physical 

characteristics of the seed (seed coat and internal structures) or induced conditions by 

environmental changes. Both percent of dormant seeds and germination are required 

characteristics on certified seed package labels. The higher percentages the better, as it 

assures farmers higher productions in normal field conditions, and longer storage of the 

seeds. The germination test is the official method for testing seed viability, with several 

variants according to the conditions for which the seeds need to be tested for. The test 

also allows detecting abnormal, low vigor and dormant seeds. Tetrazolium dying of seeds 

(Cottrell, 1948) serves as a fast alternative for testing seed viability, but since it relies on 

the subjective evaluation of died seed structures it should be validated with germination 
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test (International Seed Testing Association, 1985). Some researchers have analyzed 

the germination process as an attempt to determining which seeds produce either 

abnormal plants or are dead in advance. Non-destructive study of changes in temperature 

profile during seed aging helped in the prediction of seed viability by Infrared 

thermography (Kranner et al., 2010). By iterative comparison of the thermal profile of a 

given seed with previously studied seed profiles, dead seeds were discriminated from 

alive at 85% accuracy, and heat-killed seeds from viable seeds at 100%.  Water binding 

within seeds and on seed cells seems to be the most influencing factors in seed aging and 

deterioration (Becker, 1998), followed by processes of protein and lipid modification by 

oxidation (Bernal-Lugo and Leopold, 1998). Nuclear Magnetic Ressonance (NMR) was 

used to study the changes in tissue water and water-binding from viable and accelerated 

aging seeds (dead) (Krishnan et al., 2004), finding differences in the way that seed 

rehydratation happened but it concluded that more research and advances in 

instrumentation are needed in order to quantify the water status of intact seeds to 

determine seed viability status.  

This paper analyzes the feasibility of Near Infrared Spectroscopy (NIRS) for 

discriminating heat and frost-damaged corn kernels from sound, and discriminate viable 

and non-viable corn and soybean seeds. Four algorithms were tested to find the most 

suitable discrimination method and understand the data characteristics: Partial least 

squares discriminant analysis (PLS-DA), soft independent modeling of class analogy 

(SIMCA), k-nearest neighbors (K-NN), and least-squares support vector machines (LS-

SVM). NIRS is a technology which principle is based on the absorption of near infrared 

light by organic compounds and water. Some of the best well-known advantages of this 

technology are the high speed of analysis, low sample preparation requirements, and no 

destruction of the sample. Those advantages open the possibilities of applying NIRS for 

whole seed batch inspection and breeders purposes when used in single seed analysis. 

The limitations, on the other hand, are the initial dependence and reliability to an 

alternative external reference method (i.e. HPLC, GLC, Combustion…) and the high 

detection limits, which only allows NIRS quantifying compounds above trace 

concentrations. However, NIRS has been used in several applications for single seed 
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analysis with notable success. Quantitative applications in single corn kernel are mainly 

targeting oil (Orman and Schumann, 1992; Cogdill et al., 2004; Weinstock et al., 2006; 

Jiang et al. 2007; Janni et al., 2008; Spielbauer et al., 2009) but there are also researches 

developing calibrations of moisture (Finney and Norris,1978; Armstrong, 2006), starch 

(Spielbauer et al, 2009), and protein (Spielbauer et al, 2009). The predictive ability of 

those calibrations indicated that NIRS is a suitable technology for screening organic 

compounds in single corn kernels. The discriminative analyses of corn kernels found in 

the literature are based on endosperm characteristics (vitreosity, hardness). Good 

discrimination among kernels with vitreous and fliury endosperm have been reported 

(Campbell et al. 2000; Williams et al., 2009). Although a couple of studies tried the 

discrimination of kernels according to their toxin contamination setting different 

thresholds (Pearson et al., 2001; Dowell et al., 2002), those applications could only work 

at high accuracies discriminating sound kernels and kernels contaminated with toxin at 

high concentrations (>100 ppm for fumonisin, and >100 ppb for aflatoxin). 

There are only a couple of studies which used NIRS for discriminating sound and 

damaged soybeans and wheat kernels. Wang et al. (2001) analyzed heat-damaged kernels 

using NIRS and could achieve very good accuracies (>95% of correctly classified) with 

just two wavelengths and partial least squares discriminant analysis (PLS-DA). They 

suggested that the classification was driven by differences in light scattering and color 

change in heat-damaged kernels. When carrying out a classification model for wheat 

based on vitreous and non-vitreous endosperms including defective kernels such as 

bleached, cracked and sprouted, bleached kernels were found to be the ones misclassified 

(Wang et al., 2002a). Wang et al. (2002b) also classified soybean seeds according the 

type of damage  (sprout, heat, frost, mold or weather) with rates over 90% for most of the 

cases using artificial neural networks (ANN), but in that study heat damage 

classifications achieved lower accuracies compared to the ones achieved in heat-damaged 

wheat kernels (64%). Up to date, no publications have analyzed the use of NIRS for seed 

viability discrimination. Kusama et al (1997) used near infrared spectroscopy (NIRS) for 

analyzing ageing soybeans. They classified at 60% accuracy between sound and 3-day 

artificially- aged soybean seeds, 80% when aged for 5 days, and 100% when aged for 8 
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days. However, the correlation with seed viability was not considered. In this paper we 

analyze the possibility of detecting differences between viable (normal alive) and non-

viable (dead and abnormal) seeds.  

 

2.EXPERIMENTAL 

 

2.1. Seed samples  

 

2.1.1 Heat Damage  

Twenty four corn kernels from nine accessions of nine different accessions (216 kernels 

total) were obtained and heat-treated in the National Center for Genetic Resources 

Preservation (Fort Collins, Colorado). The varieties were: NSL 2843, NSL 6528, PI 

267209, PI 515179, NSL 32736, PI 167968, PI 213766, PI 176800, and PI 483549. 

Individual kernels were placed on a petri dish and microwaved for 45 seconds. 

Microwaving is a way to heat damage the kernels without obvious color change for most 

of the cases. Three of the seeds showed excessive heat damage and were not scanned. An 

addional set of 216 corn kernels from the same accessions were kept as sound seeds (not 

damaged).  

 

2.1.2 Frost Damage  

A hundred Frost damaged kernels from a single hybrid variety were obtained from the 

department of Agronomy in Iowa State University (Ames, Iowa). Fifty of those kernels 

were artificially frost damaged in their early growth stages (moisture content from 50 to 

55%) when still in the husk. Ears were frozen in a Conviron growth chamber (Controlled 

Environment Limited, Winnipeg, Manitoba, Canada) in a 24 hour frost cycle. Damaged 

and sound corn kernels were stored in a cooler for several months at the same conditions 

before being taken out to achieve environmental temperature and being scanned.  
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2.1.3 Viability  

The corn kernels and soybean seeds were obtained from the National Center for Genetic 

Resources Preservation (Fort Collins, Colorado). Three corn kernels accessions (three 

varieties: NSL 2837, NSL2838, NSL2842) and two soybean accessions (two varieties: 

PI79379 and PI132214) available in the bank were selected. Those seeds were stored at 

controlled temperature and moisture conditions since the early 1960s. Their selection was 

carried out according to the last viability results, dated from 2010 for corn samples and 

2006 for soybean samples. Samples with similar percentage of germinated and no 

germinated seeds were desired for this study. The available germination results on record 

are shown in table 1. 

 

Table 1.  

Last available germination results for selected corn and soybean samples 

Crop Variety Germination (%) 

Corn 

NSL2837 54.0 

NSL2838 56.0 

NSL2842 54.0 

Soybean 
PI79379 80.0 

PI132214 72.0 

 

 

For each corn variety, 168 kernels were selected (total number of corn kernels analyzed 

equal to 504). Two hundred forty soybean seeds for each variety were selected, giving a 

total of 480 soybean seeds to be analyzed. All seeds were sent and scanned at the Grain 

Quality Laboratory at Iowa State University (Ames, Iowa). The kernels, individually 

identified in plastic plates of 24 wells for corn and 48 wells for soybeans, were sent back 

to the National Center for Genetic Resources Preservation (Fort Collins, Colorado) to 

conduct the warm standard germination test (7 days at 25C).  
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2.2. NIRS spectrometer and data collection 

 

The instrument used for the three studies was a Perten DA 7200 (Perten Instruments, Inc., 

Springfield, IL). It is a diode array instrument which takes measurements from 850 nm to 

1,650 nm, at 5 nm intervals (141 data points). The company provided a special single 

seed adapter consisting of a concave mirror surface (Fig.1) which can be inserted in the 

place of the regular bulk sample cup. The instrument was set to take three scans per each 

kernel after taking two blank readings, and provide the average spectrum. The seeds were 

placed with tweezers on the concave mirror with the germ facing up to the light and 

detectors. 

 

 

 

Fig.1. Perten DA 7200 single seed adapter. The corn kernel is located approximately on 

the center of a concave mirror using tweezers. 

 

2.3. Data processing and discrimination models 

 

Data from the instrument was imported with Jcamp format to The Unscrambler v.9.8 

(Camo AS, Trondheim, Norway) for organization purposes. Matlab v.7.10 (Mathworks, 

Natick, MA) with PLS_toolbox v.5.8.3 functions (Eigenvector Research Inc., Wenatchee, 

WA) was utilized for data handling and developing the discrimination models. Two data 
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points from each side of the whole spectra were removed to reduce noise, leaving the 

working wavelength range from 860 to 1,640 nm. Possible outliers were visually detected 

by plotting the spectra and carrying out principal component analysis (PCA), where 

possible outliers would show high residual values and high Hotelli’s T statistic values. 

For each of the studies, four classification algorithms following described were tested: 

Partial least squares discriminant analysis (PLS-DA), Soft Independent Modeling of 

Class Analogy (SIMCA), Least Squares Support Vector Machines (LS-SVM), and K-

nearest neighbors (K-NN). The spectra was analyzed both raw (only mean-centering 

applied) and preprocessed with standard normal variate (SNV). This popular 

preprocessing method is known to reduce the scattering effects smoothing the noise on 

the signal, and has led to improvement in the results of several researches of single seed 

applications using NIRS and removed differences due to sample positioning (Weinstock 

et al., 2006). 

 

2.3.1 Training and Validation Sets 

 

For the first two studies of corn damage, the 75% of the spectra was utilized for 

developing the models and the remaining 25% (one spectrum picked every four spectra 

from the database) was kept for validation as test sets. The models were validated with 

the test sets and the accuracies were reported according the number of misclassified 

kernels in each study. Table 2 shows the number of samples for both training and 

validation in both studies.  

 

Table 2  

Final number of kernels (spectra) for each class utilized in each study. Class 1 are sound 

kernels, while class 2 are damaged kernels  

Study 
Training Set Validation Set 

Class 1 Class 2 Total Class 1 Class 2 Total 

Heat Damage 155 151 306 52 51 103 

Frost Damage 37 38 75 13 12 25 
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The germination test results from the seed viability study are showed in Table 3; the 

percentage of dead seeds is low. The abnormal category makes reference to seeds which 

show damage or shredding in leaves, missing shoot or leaves, weak roots, or show 

impaired structures. Although those seeds are able to germinate, they show a lack of 

vigor which wouldn’t allow long survival in regular environmental conditions. For this 

reason, those are considered non-viable together with dead seeds.   

 

 

Table 3.   

Germination results for corn kernels and soybean seeds per variety 

Seed Variety Normal Abnormal Dead 

Corn 

NSL2837 111 37 20 

NSL2838 112 23 33 

NSL2842 109 28 31 

Soybean 
PI79379 190 41 9 

PI132214 159 46 35 

 

 

Because some of the classification methods to be tested such as PLS-DA and LS-SVM 

can give biased results when the training class sizes are unbalanced (different number of 

samples in each class) and most of the seeds showed normal germination, we selected a 

reduced set of seeds from each variety for the training set in order to have similar number 

of samples per class (Table 4). The validation set included all samples left after creating 

the training set.  
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Table 4.  

Final number of seeds (spectra) for each class utilized in each study. Class 1 are sound 

seeds, while class 2 are no viable. N stands for normal, A stands for abnormal, and D 

stands for dead. 

 

 

2.3.2 PLS-DA Models 

PLS-DA is a popular supervised classification method in NIRS applications because 

allows dealing with the highly correlated NIR variables (wavelengths). Similarly to 

partial least squares (PLS) for quantification, data reduction is conducted creating latent 

variables which are orthogonal with each other but at the same time trying to describe the 

response variable (in this case, the class labels). The SIMPLS algorithm offered by the 

PLS_toolbox v.5.8.3 functions was used (Eigenvector Research Inc., Wenatchee, WA). 

The class labeling was entered as a logical array, being each class represented by a 

column of zeros and ones (this last indicating the membership to one of the classes). The 

threshold for class separation was calculated according to the initial membership in each 

class. Through leave-one-out cross-validation, the optimal number of latent variables for 

the final model was selected looking at the fractional misclassification rate of each class 

and the root mean squared error of cross validation (RMSECV). 

 

2.3.3 SIMCA Models 

SIMCA works modeling each class independently by principal component analysis 

(PCA), a popular method known for reducing data dimensionality while keeping the 

Seed 
Training Set Validation Set 

Class 1 Class 2 Total Class 1 Class 2 Total 

Corn 90 N 
45 D 

45 A 
180 242 N 

39 D 

43 A 
324 

Soybean 50 N 
25 D 

26 A 
101 299 N 

19 D 

61 A 
379 
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relevant information. For each class, an acceptance boundary defined by the maximum 

residuals of the samples from that group is created. Each class is expected to be modeled 

by a different number of principal components. We chose determined them by 10-fold 

cross-validation, being assessed by the eigenvalues, the Q and T2 values plot from cross-

validation, and the Predicted Residual Error Sum of Squares (PRESS). When a new 

sample is presented to be classified, it is fitted in each model and the residual variance is 

calculated. If it is significantly higher than the average residuals for that class, the sample 

do not belong to that group. In this study the combination of Q and Hotelling’s T2 

statistics are used for that purpose. The Q statistic is a measure of the residual between a 

sample in its initial dimension and its projection into the principal components. T2 is 

calculated from the sample scores (projected samples) gives an idea of the variation of 

each sample within the PCA model. The sample will belong to the group where it will 

have a low Q and T2. However, it is possible that a sample do not belong to any group or 

fits in both; in the first case, the PLS_toolbox algorithm assigns the class to the one 

which has the closest centroid in Euclidean distance. When the sample does not fit in any 

class, it is assigned to the group which leads smaller residual and T2. 

.  

2.3.4 LS-SVM Models 

Classification methods known as Support Vector Machines (SVM) were initially created 

for linear discrimination between two classes. The method is based on finding the widest 

margin of separation between classes. Thanks to the use of a mapping function (kernel 

function), this method can deal with complex classification problems which are not linear 

in the initial dimension but they may be at high dimensional spaces. We developed LS-

SVM models using the LS_SVMlab v.1.5 toolbox functions for Matlab (Lukas et al., 

2003). The Guassian Radial Basis Function (RBF) was selected as the non-linear 

mapping function. Two parameters had to be optimized: the kernel width (σ) and the 

model regularization parameter (γ), which is the trade-off between the margin width and 

tolerance to misclassification. The values of both parameters were simultaneously 

optimized using grid search ten-fold cross-validation. The input spectra were previously 

mean-centered, and the sample classes were defined by a binary vector of 1 and -1.  
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2.3.5 K-NN Models 

For this algorithm, any new sample is classified according to the majority of vote from its 

“k” closest neighbors. The distance between two spectra, after mean-centering, is 

calculated from each wavelength as the difference in intensity between the two. The 

squared root of the sum of the squared distances at all wavelength points gives the 

Euclidean distance between the two spectra in equation 1, where the distance d between 

point i and j is calculated adding the differences in absorbance x between the two spectra 

at each wavelength l. The number of neighbors k is an odd number which we tested for 1, 

3, 5, 7, and 9. The optimal number was selected by the one that lead to a lower leave-one-

out cross-validation misclassification of the training set and then it was validated with the 

test set.  

 

Equation 1. 

 

 

3.RESULTS AND DISCUSSION 
 
3.1 Heat damage 

 

The first thing to notice from heat damaged kernels was the overall low absorptions when 

compared with sound kernels (Fig. 2). This observation would agree with Wang et al. 

(2001) observation regarding the levels of light reflection and scattering between sound 

and heat-damaged wheat kernel being significantly different. However, offset and 

baseline differences can be easily removed by spectral preprocessing. In order to check 

for underlying differences, Savitzky-Golay second derivative (5 points gap and third 

order polynomial) was applied to remove baseline and overlapping effect (Fig. 3). The 

major absorbance differences between sound and heat-damaged kernels seem to arise in 

the carbohydrate regions, which could be easily explained by the fact that starch 

constitutes more than half of the corn kernel by weight and any change in this fraction 

may be more easily detectable than any change in the germ, which may also exist. 
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Fig.2. Heat-damaged corn kernels spectra (red) show lower absorptions than sound 

kernels (blue). 

 

 

Fig.3. Savitzky-Golay second derivative of heat-damaged (red) and sound (blue) kernel 

spectra. The peaks where the major differences arise, which are in the wavelengths where 

carbohydrate absorption occurs, are circled. 
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Regarding the visual differences among spectra, the misclassification rates summarized 

in table 5 shows that not all the algorithms were equally successful in the discrimination. 

PLS-DA achieved the lowest misclassification rates with 8 latent factors (7 factors with 

SNV preprocessing), with almost perfect classification of the two classes. The regression 

vector plot shows also the relevance of the carbohydrate region in the classification 

model (Fig.4).  

SIMCA achieved the second lowest misclassification rate when using raw spectra, using 

9 PCs for heat-damaged kernels and 8 PCs for sound. When applying SNV preprocessing 

the misclassification rate rapidly increase. SNV may reduce the variability between 

classes due to light scattering and lead to similar PCA models for both classes. This again 

would agree with the relevance of light scattering in heat-damaged kernels classification 

(Wang et al., 2001). LS-SVM features for non-linear classification lead to higher 

misclassification rates but it was the only method which benefits of the use of SNV 

because the misclassification rate decreased considerably, indicating that it widened the 

lineal separation among classes in the projection hyperspace. K-NN models showed no 

difference when preprocessing with SNV, the algorithm performed the poorest. The best 

number of neighbors from cross-validation was initially spotted as 1, 3, and 7, with a total 

number of misclassified of 39. When tested on the validation set, 7 neighbors gave the 

best classification accuracies shown in table 5.  

 

Table 5.  

Misclassified corn kernels in the heat-damage study for each tested algorithm  

Algorithm Raw Spectra SNV Preprocessing 

Damaged Sound Total 

(%) 

Damaged Sound Total 

(%) 

PLS-DA 0/51 1/52 1.0 0/51 2/52 1.0 

SIMCA 3/51 2/52 5.0 3/51 13/52 15.0 

LS-SVM 6/51 9/52 15.0 2/51 3/52 5.0 

K-NN 10/51 8/52 17.0 10/51 8/52 17.0 
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Fig.4. Regression coefficients (regression vector) from the PLS-DA model showing the 

largest absolute values in the carbohydrate region 

 

 

Those results are better than the ones achieved by Wang et al. (2002) with soybean seeds 

and using artificial neural networks (ANN), who could only achieve classification 

accuracies on the upper 60%. On the other hand, the previous study by Wang et al. 

(2001) with wheat kernels lead to similar results (>97% accuracies by PLS-DA). They 

could get classification accuracies above 96% using just two wavelengths. Looking at 

figure 4 we could guess that using wavelengths from ranges of 1250 - 1400 nm could also 

lead to satisfactory classification accuracies, while best two-wavelength models from 

Wang et al. (2001) involved the wavelengths 985, 1,050, 1,550, and 1,575. Those 

wavelengths are mainly absorbed by protein. The differences in the relevant wavelengths 

in our regression model may be due to the heating method (hot air drying vs 

microwaving).  
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3.2 Frost damage 

 

Differences among frost and sound corn kernels were not appreciable by the spectra and 

this was also shown in the discrimination results (table 6). The classification by NIRS 

was unsuccessful for all the discrimination methods, which lead to the same results. 

Sound and frost damaged kernels could not be differentiated and SNV lead to almost all 

the damaged kernels to be classified as sound for SIMCA and LS-SVM.  PLS-DA 

optimal model used 5 latent variables with raw data and 3 latent variables with SNV 

preprocessing. Three and four PCs modeled frost and sound kernels respectively for 

SIMCA modeling. Both classes showed very similar PRESS and eigenvalues, which can 

be an indicator of the tight closeness of both classes. SNV preprocessing reduced the 

required number of PCs. (6 for frost damaged and 5 for sound), but the misclassification 

rate remained the same but bringing the two classes close, as all the misclassified kernels 

were damaged to sound. K-NN with both 5 and 7 neighbors gave the results shown in 

table 6 (K=7 when preprocessing with SNV).  

 

 

Table 6. 

 Misclassified corn kernels in the frost-damage study for each tested algorithm 

Algorithm Raw Spectra SNV Preprocessing 

Damaged Sound Total 

(%) 

Damaged Sound Total 

(%) 

PLS-DA 6/12 4/13 40.0 6/12 2/13 32.0 

SIMCA 6/12 4/13 40.0 10/12 0/13 40.0 

LS-SVM 6/12 4/13 40.0 11/12 0/13 44.0 

K-NN 5/12 5/13 40.0 3/12 7/13 40.0 
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3.3 Viability  

The discrimination according viability was not successful for either corn or soybeans, and 

algorithm used (tables 7 and 8). The elevated misclassification rates show that 

discriminations were more random and no difference was detected by NIRS. Both PLS-

DA and SIMCA models required again 4 latent variables or PCs. The use of SNV 

allowed using 1 latent variable more for PLS-DA and up to 7 and 8 PCs for SIMCA 

models but without enough improvement to lead to a successful application. Preprocessed 

spectra brought the two classes together for SIMCA models, similarly to the case of frost-

damaged spectra. Reported K-NN results were achieved using a single neighbor.  

 

Table 7. 

 Misclassified corn kernels in the viability study for each tested algorithm 

Algorithm Raw Spectra SNV Preprocessing 

Damaged Sound Total 

(%) 

Damaged Sound Total 

(%) 

PLS-DA 125/242 30/82 47.8 80/242 44/82 38.3 

SIMCA 112/242 37/82 46.0 126/242 32/82 48.8 

LS-SVM 133/242 28/82 49.7 124/242 43/82 51.5 

K-NN 116/242 37/82 48.5 119/242 42/82 49.7 

 

Table 8. 

 Misclassified soybean seeds in the viability study for each tested algorithm 

Algorithm Raw Spectra SNV Preprocessing 

Damaged Sound Total 

(%) 

Damaged Sound Total 

(%) 

PLS-DA 150/299 32/80 48.0 142/299 37/80 47.2 

SIMCA 157/299 29/80 49.1 247/299 16/80 67.8 

LS-SVM 166/299 37/80 53.6 133/299 35/80 44.3 

K-NN 178/299 30/80 54.9 120/299 44/80 43.3 
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4.CONCLUSIONS 
 
Among the three tested applications, only the discrimination of heat-damaged corn 

kernels was feasible. The achieved results are similar to the ones achieved by Wang et al. 

(2001) for wheat kernels, although in our study the carbohydrate region is the most 

relevant for the classification, probably for the difference in methods used for heat 

damage. PLS-DA performed the best, and more complex methods such as LS-SVM with 

RBF kernel mapping performed worse. SNV preprocessing, which has been useful for 

quantitative applications, did not lead to better results overall. It only benefit the LS-

SVM algorithm, increasing the separation of classes in the higher dimension space where 

the data is mapped by the RBF kernel. K-NN, although performing the worse, gave 

discrimination accuracies very close to LS-SVM. Although the method is rarely used in 

NIRS studies, may have potential to be utilized in applications because of the 

convenience of gaving to optimize a single parameter (the number of neighbors). 

Discrimination of frost-damaged corn kernels was not possible, even with the use of non-

linear methods such as LS-SVM. Frost-damaged soybean discrimination by NIRS has 

been reported to be successful (accuracy over 90%) using ANN (Wang et al., 2002b). 

This arises the question of how sensitive is NIRS to detect damage in single seed or how 

appreciable the damage must be in order to be detected.  Because high damage may affect 

seed viability, the test of viability discrimination served also to test the hypotheses that 

NIRS accuracy in discriminating damaged seeds depend on seed viability (the higher the 

damage, the higher the possibilities the seed is not viable). No differences were detected 

between sound corn and soybean seeds (viable) and naturally dead or abnormal (non- 

viable) with none of the tested algorithms. This indicates that NIRS can discriminate the 

considerable damage in seeds in terms of physical and chemical changes induced by the 

damage, but cannot detect changes merely caused by the dead of the seed (i.e. changes in 

water binding, oxidation of lipids, changes in protein). Seed aging has been proved to be 

tracked by NIRS (Kusama et al., 1997), but the threshold that separates aged and non-

viable seeds is not differenciable by NIRS. 
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Abstract 

 

Near Infrared Spectroscopy is a new technology that requires knowledge of several fields 

or disciplines. When training young students, there are some problems that we face.  

Inadequacy of current material for training and boosting the interest of learners are two of 

the most remarkable. We identify the drawbacks and limitations when training single 

students in this technology in our initial analysis and we expose an instruction system 

plan. Our approach counts on a hands-on activity or real-life problem, with the support of 

a training booklet created to cover student needs. Student mentors seem one of the keys 

of this system viability and efficiency, but the issue of training and preparing the mentors 

for their task still needs to be addressed.   

 

Keywords: Near Infrared technologies, training, manual 
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Introduction 

 

Near Infrared Spectroscopy (NIRS) is a relatively new technology based on the 

measurement of the absorption of near infrared light by organic compounds, which can 

be correlated with their concentration with the use of mathematical models. By 

developing a calibration model using reference data, which is basically a regression with 

more than one independent variable, this technology allows fast predictions of unknown 

concentrations of the calibrated organic compound in samples without the need of being 

destroyed or undergoing specific preparation for the analysis. 

Although the discovering of the near infrared light region dates from the nineteenth 

century, it was not until the 1960s that it started being used as an analytical tool. The 

main reason for that delay was the lack of understanding of the chemical information held 

in that region, which was not directly interpretable and required advanced mathematical 

and statistical methods to be used for quantitative analysis. After the first successful 

applications for measuring moisture in seeds (Hart & Norris, 1962; Norris & Hart, 1965), 

there was an exponential growth of the use of the technology, which could be also 

attributed to the development of new algorithms and the fast improvement in computing 

power. NIRS is currently included in several analytical methods from the American 

Association of Cereal Chemists (AACC) and American Oil Chemical Society (AOCS) to 

determine moisture, protein, and oil in grains.  

The Grain Quality Laboratory in Iowa State University has more than 20 years’ 

experience with near infrared technology for grain analysis and other agriculture 

applications. It counts on a diverse group of instrumentation, big sample storage, and 

constant loads of new crop materials. Because it is currently well-known in the field, 

there are well-set internship programs and frequent visits of short term scholars interested 

in learning about near infrared technologies.  The training activity in the laboratory is 

becoming one of the main priorities, but yet is challenging to combine the teaching task 

with the daily laboratory activities. Training personnel are involved in managing the 

laboratory or other research projects and this leads to low availability, thus an efficient 

training plan was long required. Firstly, our students needed some material to conduct 
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and support their learning experience while in the laboratory.  Available material 

regarding theory and tips for successful analysis using NIRS is often very technical and 

oriented to professionals with a strong scientific background. As a result, our students 

became uninterested in the lecture, discouraged, and overwhelmed. Furthermore, 

inconsistency issues in the literature regarding terminologies increased the beginners’ 

confusion. Secondly, monitoring of the learning achievements needed to be accomplished 

without requiring excessive attention from the lab personal, encouraging self-regulated 

learning. And finally, suitable projects and hands-on work had to be created according to 

the established expectations and final learning goals.   

 After struggling with a highly personalized, time consuming, and not fully efficient 

training system, we target the problems and critical aspects of training young students to 

a multidisciplinary technology such as NIRS with self-learning as an important 

component of the instruction. We identify confusing points of working with new 

analytical technologies which are still in process of being addressed by the scientific 

community. As a result of identifying those needs and bumps in the learning process, we 

suggest a training approach following an ASSURE approach (Analyze learners, set 

objectives, select material and media, utilize media, require learner participation, evaluate 

and revise) of instructional system design. As a prescriptive model, it provides a 

framework for organizing the process of creating instruction in a learner-centered, 

flexible, and dynamic manner. Although none of the current instruction system design 

models cited in the literature show a high efficiency and effectiveness as a whole 

(Blessing, 1995), the ASSURE approach seems the most appropriate under our 

circumstances (partial self-learning of a technology), as it gives special attention to the 

learners and media used. The final basic elements of our program were (1) a training 

manual for young students which boost a self-regulated learning about NIRS without the 

need of having previous background on the technology, (2) hands-on work in the 

laboratory and projects for new students to develop, and (3) a student’s final presentation 

and report of the project to the laboratory personnel. 
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Analysis Phase: Approaching Young Students to NIRS and to Laboratory Dynamics  

 

In the analysis phase of any instructional design model, the problems and needs must be 

identified.  A comprehensive, detailed, and objective description of the needs is not 

possible and it always takes a high degree of subjectivity from the instructional designer 

(Lawson, 1980); In consequence, it is probable that needs change and new ones arise 

while the instruction is implanted. Similarly, proposed solutions may not be the best and 

may require an iterative process until the most suitable solution is found.  Our initial 

analysis focused on several elements and characteristics summarized in Table 1, which 

were fundamental to setting both the final learning goals and using the right approach.  

Those are in accordance to Reigeluth’s (1999) instructional situations, who stated that 

four main conditions drive the environment and outcomes of the instruction: nature of 

learners, nature of what needs to be learned, nature of learning environment, and nature 

of constraints. 

 

Table 1. Relevant elements of analysis  

Element Key Characteristics 

Learners Age 

Nationality 

Background 

Previous knowledge 

Intrinsic characteristics 

Heterogeneity within group 

Topic and Content 

 

Multidisciplinary 

Complex 

Specific terminologies and 

concepts 
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Element Key Characteristics 

Specific software 

Data handling 

Environment Staff 

Organization 

Resources 

Training 

 

Time 

Resources 

 

Analysis of the learners: Young students and self-regulated learning 

To know the learner characteristics before designing instruction is a relevant stage in 

ASSURE and the rest of instructional design models. In our case, that is extremely 

important because the resulting material should generate enough motivation and a stand-

alone learning for the most part.  

Our learners were targeted to be mainly in their early 20s, thus in their first years in 

college.  Those are students very skilled in using new technologies such as computers and 

phones, yet it is reported that this new generation is lacking more ability of reflection 

(Prensky, 2001). Reflection is a key element in learning and adding new knowledge, 

helping students to relate new knowledge to prior understanding or choose strategies to 

novel tasks (Mezirow, 1991; Hmelo & Ferrari, 1997).  

Encouraging and guiding learners towards a reflective process would benefit them not 

only in NIRS training but in their whole life as continuous learners. Values, habits and 

learning motivators among countries are known to be different (Howe and Strauss, 2000). 

In fact, Brookfield (1995) indicates that factors such as culture, political views, ethnicity 

and individual’s personality have far more influence than the learner age inside the adult 

learner context. Narrowing the trainees’ nationality is not feasible and it is not our intent 
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to do so because that would lead to discrimination. Motivation degree may be highly 

variable, as young students may still not have determined their career path and they 

would rather be interested in learning about the new environment and new country. In 

order to work on the motivation and enthusiasm of new students before they face any 

difficulty on the topic, the relevance and possible uses of the technology should be 

summarized and what they will achieve in their work is useful. Searching for a student’s 

intrinsic interest and motivation may become a trainer’s primary task, depending on the 

student, adjusting the extrinsic interest of any task according to the initial student 

motivation. Giving the student self-control of the activity without the responsibility being 

overwhelming or leaving them by themselves in a right measure requires close attention 

to each individual (Lepper, 1988). 

The learner’s background influences the way they will process the new information and 

how they will make a meaning of it (Leindhart, 1992). Learners who may already have 

some hints about the topic or may have contact to close disciplinary areas should still be 

checked in their current knowledge since there is a good chance there may be 

misconceptions that need to be addressed so they do not create new blocks of knowledge 

on the wrong basis (Dick, 1992). However, as we explain later, NIRS combines several 

fields and this imposed a limitation or additional problem for making the instruction the 

most effective even narrowing down the background of our trainees to agricultural 

engineering.  Assuming all trainees will have similar background, heterogeneity due to 

programs and individual preferences will always remain. Setting assumptions regarding 

previous knowledge on any of the fields involved in NIRS technologies (chemistry, 

statistics, mathematics, computing…) were one of the old problems that haunted NIRS 

training although the flaw was mainly found in dumping too much information for such a 

short period of time and the final training goals. No previous information regarding the 

topic is assumed. Another factor related to the trainee is the stress to face. Students are 

often international and are hosted for a short period of time which would require 

adjustment to the new environment, language, and working system. Inevitably this 

impacts their attention span, already variable among different individuals.  

Achieving Learner’s preferences regarding delivery and environment, besides being 
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variable among individuals it was also much delimited for personnel’s time constraints 

and laboratory environment, which cannot resemble conventional classes and cannot 

gather big student groups. A maximum of two or three students could be gathered at a 

time, but hosting a single individual was common. We had to rely on individual self-

directed learning with external guidance for most of the training period. Self-learning and 

self-regulated learning are characteristics mastered in adult learning, but the disposition 

to this kind of learning involves cultural and personal factors still not well understood 

(Brookfield, 1995). It could be interpreted from the same author, that learners feel more 

comfortable with teachers from the same ethnicity, thus self-learning could avoid cultural 

shocks which would be otherwise observed in traditional learning.  

 

Analysis of the topic: Dealing with a multidisciplinary technology 

When dealing with Near Infrared Spectroscopy (NIRS), the term “chemometrics” is used 

frequently through all literature. The definition or meaning of this term refers to the use 

of computers, statistics, and chemistry. Basically, any sample containing organic 

compounds can be analyzed when it is irradiated with near infrared (NIR) light. Either 

reflected or transmitted light is measured (what is called spectrum), and it is either 

correlated through mathematical algorithms to the concentration of a specific compound 

(quantitative analysis and calibration of the instrument) or  qualitatively analyzed for 

discrimination of samples according to specific characteristics. Without statistics and 

mathematics is impossible to use NIR light for analytical purposes, thus the introduction 

of equations and mathematical terms to novices becomes unavoidable. It is obvious that 

NIRS is a multidisciplinary field which requires some knowledge of  at least basic 

chemistry, mathematics, statistics, instrumentation and informatics to become a 

successful professional in the field, develop any application, or simply carry out routine 

analysis. Furthermore, whenever the technology is applied to areas such as 

pharmaceutics, agriculture, or material science among others, specific knowledge from 

that field of work is required as well. 

The threshold among disciplines becomes blurry as they all are part of the final body of 

knowledge and their interaction is a must for the growth of this field. This is a problem 
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according to the current education system as Wicklein and Schell (1995) related in their 

research. They set the need of reassembling topics and subjects such as mathematics, 

science and technology instead of considering them as segregated subjects and set clear 

boundaries. This fragmentation, according to Senge (1990), makes learners have a hard 

time connecting the pieces to create a whole concept and may be an impediment to 

achieving high-thinking solving problem skills, which require the use of different criteria 

and complex relationships (Resnick, 1987). 

In conclusion, NIRS had to be introduced to our learners as a whole, as a topic that can 

only exists because of the fusion, correlation and understanding of several fields. Extreme 

care had to be taken to avoid excessive detail or relevance in any of the disciplines 

involved, especially when the topic is introduced for the first time and due to time 

constraints cannot be presented for the students to specialize and analyze in depth any of 

the aspects. This approach of equilibrated dose of each discipline in the topic is also 

optimal for the learner, who will have the chance to get a general taste and according to 

his/her interests and abilities will develop curiosity or stronger connections with certain 

areas.  

We faced yet another problem: the adequacy of current material and information to be 

handed to the learners. We first used to provide our learners with additional reading 

material (papers, books, literature reviews), but we found that either those were not read 

at all or they were skimmed and no substantial learning was acquired. The language used 

in the literature seemed to be too far on the technical and scientific side for what our 

learners were ready to assimilate given their background. We think that one of the most 

frequent errors in current training materials, tutorials and reviews is trying to target a 

wide diversity of readers (or similarly, not target any specific reader at all). This approach 

works in scientific communities, where the driven professional seeks other sources to fill 

the knowledge gaps given their previous solid knowledge from a specific scientific area. 

This is not the case of young students, who are still building their knowledge bases. To 

round off, current training material deals excessively in depth with some or most of the 

areas (chemical theory, mathematics), which is neither unnecessary given the nature of 

our learners, who tend to reject any embellishment and considerably narrow down the 
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content to their learning safety zone (Blais, 1988). Another problem related to journal 

papers and reviews is the agreement in concepts and terminology, especially when they 

are retrieved from years of early NIRS stages. Because of the recent use of this 

technology and the growth of users and professionals from many different fields, the 

technology expanded in each disciplinary area independently for a while. Authors from 

diverse fields and even the same field were adopting their own terminologies and 

proceedings. One example involves statistics used for validation of the calibration 

models. Chemists and statisticians adopted, for a while, different terminologies for 

expressing the errors from the predictions, even if the meaning was ultimately the same. 

An agreement on what was the best way to report validation results (robustness and 

predictive ability of a calibration model) was not met among scientific papers either, 

leaving some applications and models incorrectly validated or not correctly reported to 

the scientific community. The use of acronyms and abbreviations has led to additional 

confusion. Most of the algorithms and methodologies in NIRS are composed of 

composite names that need to be abbreviated with acronyms, and while most become 

easily learned straight forward, a few have taken years to be unified in their spelling and 

meaning. For instance, this is the case of the abbreviation of near infrared as the light 

region (NIR) or near infrared technologies/near infrared spectroscopy (NIRS). It is also 

common to find papers where the measurement modes (either transmittance or 

reflectance) become part of the acronym of the technology (i.e. NIRT). Another case 

worth mentioning is a popular statistic in the NIRS community abbreviated RPD, which 

is used for describing the predictive ability of calibration models. Its original spelling by 

Williams (1987) was “the ratio of the standard error of prediction to the standard 

deviation” but because the spelling is so long and does not seem to connect with its 

acronym, other spellings such as “relative predictive determinant” can be found in the 

literature. Overall, different terminologies, acronyms and spellings can slow down the 

NIRS learning process and add confusion. 

Another aspect to cover in NIRS training is the instrumentation. Spectrometers or 

spectrophotometers are easy to use in routine analysis if they have been previously 

calibrated. Instruments which have calibrations loaded are ready to provide fast 
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predictions right after the sample has been run (scanned). The process starts when 

pouring the sample to either a specific container or to the instrument hopper, entering the 

sample ID using a keyboard, and pressing a start button. The instrument automatically 

reads the sample absorbance, and through the load calibrations, displays the sample 

predictions (one from each calibration in use, usually one calibration per compound to be 

measured). Although the task is straight forward, students may encounter some problems 

associated with instrument conformation, sample characteristics, and software. Dealing 

with instrument warnings requires experience and knowing the instrument, which is a 

matter of time and a continuous process of overcoming difficulties, often requiring the 

instrument company support.  There are some basic rules among instruments such as 

required warming up time, adequate sample presentation, and data base handling 

specifications.  

Users working in routine analysis can leave instrument and calibration maintenance to 

external specialized companies since they are only interested in good measurements 

(predictions). No more data than the pop-out predictions is needed in the previous 

situation: a calibration model of interest has been previously developed and loaded in the 

suitable format for instrument recognition. Basically, the instrument will carry out sample 

readings or scans, will plug the data readings in the calibration model (which is basically 

an equation) and will display the prediction. Although routine analysis do not require 

more than that, NIR spectrometers can also store their readings at multiple wavelengths 

(spectrum). That data can later be used by the analyst to create calibrations or prediction 

models.  

The process of exporting data is not very straight forward and each instrument stores the 

data in different formats. Furthermore, instruments support calibration models loaded in 

specific formats which can only be created using specific software and this leads to 

several software which are used to develop multivariate calibrations or regression 

models. Some are well known, such as SAS, R, or Matlab. Others (GRAMS, The 

Unscrambler) have been especially designed for spectroscopic applications. Instrument 

companies often have their own proprietary software, which pairs with the software used 

for data collection in the instrument, making the task of exporting data easier. Ultimately, 
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each instrument company encourages the use of their own software because they produce 

calibration models in a format directly compatible with their instrument. This would be 

no problem if all those proprietary software had the same logic and structure, which is not 

often the case. Furthermore, they tend to not be very flexible or intuitive to the users. The 

help command from software is an important yet forgotten tool when learning new 

software, but we have observed that for most software the help section is not very 

explanatory and fails to provide guidance or answer basic questions. For advanced 

applications, learning programming can be useful for processing and analyzing data. 

However, this is not strictly required since spectroscopy programs are evolving towards 

adding more algorithms without the need of programming. On the other hand, successful 

professionals in the field have been dealing with complex data avoiding the use of 

complex techniques and programming, concluding that for most of the cases a good 

understanding of the data and using the right combination of basic preprocessing methods 

is as powerful as using the most sophisticated calibration algorithms.  

 

Analysis of the Context and Learning Environment 

Context is the setting where acquired knowledge will be used or transferred into practice.  

We have already mentioned how in order to have a successful training leading the 

learners to reflection and context needs to be analyzed since it is a relevant factor when 

planning and designing instruction. Song et al. (2005) found that a reflective learning 

environment is one of the most important underlying factors behind development of 

reflective thinking in teenagers. Several years ago, Wittgenstein (1953) expressed that the 

best way to make learners understand and find the meaning of given information was to 

specify the final use of it, which is closely related to the final context. Later researches 

carried from a constructivist point of view of learning, agreed and target the 

contextualization of what has been taught as the key for motivation, understanding, and 

learning (Berryman, 1991; Bruner, 1966) and the lack of usefulness of whatever 

information which cannot be framed in any social, physical, or problem context (Dick et 

al., 2001).  

It is difficult to predict future context of NIRS applications, as it can be used both in-situ 
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or rough environments (field, conveyors, fermenters) and laboratory or research-like 

activities. In our case, we can offer the learners the NIRS application for routine analysis 

of grain in a laboratory facility and the contact with on-going research projects. The 

laboratory is close in services and dynamics to any other laboratory in that field, although 

it has a more student-friendly environment since it is part of the university, and several 

full- and part-time students can be found working on a daily basis, both at graduate and 

undergraduate level.   

One of the big pros is the chance of seeing and using a wide variety of instruments. Over 

15 instruments with different conformations and from diverse companies can be found in 

the laboratory. The students have the chance to physically run the samples and become 

familiar with the laboratory dynamics and everyday activities. By immersion, students’ 

learning is enhanced (Mourtos, 2003). Among those activities there are all the steps that 

new samples go through when they first reach the laboratory (identification, 

characterization, physical and compositional analysis, storage), meeting manufacturers 

and visitors from the grain industry, and attending staff meetings. The Learning 

environment, also known and learning context, is in both the laboratory and the office 

where the student will have an assigned desk and computer for his/her exclusive use. 

Other students, often carrying out different projects, are located in the same office so new 

scholars do not feel isolated. For an optimal learning environment, learners need to feel 

respected and safe in the environment (King, 2003). Although interactions are sought and 

encouraged through staff meetings and social activities, each student has to carry out a 

significant amount of self-learning. 

In addition to the analysis of physical characteristics of the learning site (instrumentation, 

facility), the social aspect (student-oriented) and the relevance of the learning material to 

the hands-on work, Dick et al. (2001) suggest analyzing the support to the learners in 

their instructional system model. Learners of any age always need support, not only for 

assessment and to drive their learning to the right direction, but for motivation and 

encouragement (Rowntree, 1977). The laboratory manager and one or two more veteran 

students are assigned to support the new learner through the whole scholar term and 

respond to doubts and questions. They are introduced to the scholar project and carry out 
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a close follow up of the scholar activities and learning process. 

 

Setting the Learning Goals 

Once the analysis of relevant factors in the instruction have been done and needs and 

limitations have been detected, we had to figure out what we really wanted to teach or 

accomplish. We had to set some constraints and realistic learning targets, defining what 

our scholars should get out of the experience. Our overall final goal was for our students 

to understand how NIRS works and to develop their own calibrations for a given 

spectrometer data. We had to nail down the relevance of the material to what would allow 

students to answer how, with what, why and what can be predicted using NIRS. Some 

key questions and leading objectives are: 

(1) What the technology limitations and advantages are.  

(2) How to use basic instrumentation. The students should understand why sample 

characteristics are important and what effects may be caused when being scanned by the 

instruments.  

(3) How to export data from selected instruments to specific software 

(4) Which steps must be followed in developing calibrations. 

(5) What basic algorithms/calibration models exist for calibrating. 

(6) What basic methods can be used to mathematically process spectral data for signal 

enhancement or removing any signal noise. 

(7) When those calibration models should or not be used. 

(8) What is the best way to report any calibration performance.  

 

Designing Material and Choosing Media 

 

From the analysis thoughts and keeping in mind the relevance of the context, any 

instructional activity to be designed should resemble activities and experiences that 

learners may experience once they are done with the training for a more efficient 

transferring of skills and knowledge. Reflection, a high level thinking, is facilitated by 

contextualization but it is also associated with intrinsic motivation and positive attitudes. 
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While extrinsic motivation is driven by external forces (rewards, punishments…), 

intrinsic punishment is pretty much associated with the individual personality and 

willingness to learn. Both of them are equally important for learning (Lahey, 2007), but 

intrinsic motivation drives the individuals to work in more autonomy and be self-driven 

(Sheldon, 1995).Due to our constraints on personnel and the reduced number of scholars 

hosted at the same time, we had to enhance the intrinsic motivation of our learners 

making them enjoying the activities without  expecting rewards, pass evaluations, be 

forced to compete and carry out tasks with a tight time frame, and have someone 

controlling them all the time. Those actions, according to Hennessy (2003), negatively 

impact intrinsic motivation.  Following those rules, no reward or evaluation in a formal 

manner was created in our training approach but the informal encouragement and 

assessment to students at periodic basis, and the small assignment of sharing with the 

laboratory personnel what they accomplished in a presentation under an informal 

environment. Although the whole training period was defined, no time constraints were 

set for the student to carry out the activities but just the final presentation before they 

leave the laboratory. Finally, and as mentioned in the analysis phase, it is neither possible 

no feasible to have anyone survealling the learners, although having enough support is 

equally necessary. For this reason, a couple of mentors or students were assigned to be 

there for any arising doubt and need of the new learner. 

Although it is not so easy to target what is going to enhance the learning in each 

individual, it is certain that the designed activities and material should awake the student 

curiosity, not being excessively hard or too easy, have meaningful goals, and some 

degree of uncertainty (Lepper, 1988).  

 

Developing a Training Manual 

Which kind of material or technology is best for an instruction is not an easy choice and 

may not be the most relevant according to Bernard et al. (2004) and Tallent-Runnels et al. 

(2006) , who found that no differences between training delivery media (presencial, on-

line, class-room) were found in terms of effectiveness, but what really matters is the 

learning environment and the instruction design (Clark, 1983). Again, laboratory 
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constraints in personnel availability influenced the way that information had to be 

delivered. In order to gain some time and get the students started, we developed a training 

manual which is sent to the students prior to their arrival to the laboratory. The main 

sections are summarized in table 2 and explained later with more detail.  

 

 

Table 2. Main sections of the training booklet 

Section Learning Purpose 

Near infrared story and theory Terminology, origin, technology strengths and 

weaknesses 

Instrumentation theory Instrument conformations and suitability, 

measurement modes 

Processing and calibration 

methods 

Overview of algorithm steps, method suitability 

Steps for calibration 

development 

Procedures, stages, and tips for calibration 

development 

Advanced topics Additional,  intrinsically motivated learning 

Practical examples and exercises Reinforce software use, dealing with diverse 

problems and data formats 

 

Ideally, the first contact with the learning material should be self-directed, so when the 

student starts hands-on work he/she has basic knowledge to start building new one and 

draw connections between the blocks of knowledge. Often and unavoidably, this is not 

the case, and the first contact with the topic happens once the student starts in the lab. In 

any case, if the first contact happens by oral explanation of the laboratory manager of 

student mentors while having a laboratory tour, the assimilation is equally efficient since 
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the instrumentation and samples are physically present (contextualization).  

The manual is intended to be a guide for the student through the training period and still 

be a guide after the training experience, for their personal use and consultation if they 

decide to continue on the field. It is designed to comprise the relevant aspects of theory 

and terminology, relevant sources of information for further research, a step by step guide 

for data analysis and calibration development, and practical exercises. It was relevant to 

constantly ask what was really relevant according to the established goals, and what 

could somehow be related to a practical aspect and application. If students fail in figure 

out the practical aspect of the exposed theory, they may not find the meaning of the 

material and consecutively fail in transferring it to the real context or in practical 

situations (Bransford, Sherwood, Hasselbring, Kinzer, and Williams, 1990). 

We expect our young students to read the most detailed theoretical aspects by themselves 

and ask any possible questions or doubts, while focusing on the aspects they may want to 

learn more from. This would be in agreement with Dick’s theory (1992), which gives the 

learners the freedom to select learning activities in favor of the theory of constructivism 

which supports the individual learner processing of information, and, as previously 

mentioned, this should be in favor of intrinsic motivation.  

 

Near Infrared theory. We briefly introduce the story of near infrared as analytical tool 

and its evolution through the years. That brings the understanding that NIRS is a new 

technology which has experienced a big growth in the recent years due to the advances in 

statistical analysis, development of new algorithms, and increase in computer power. The 

chemical theory is introduced overviewing basic theory of atomic and molecular 

structure. Although knowing the chemical theory may seem not so useful in the 

beginning or not needed for practical applications, it is important to understand what a 

NIR spectrum is and how it looks like. That also helps recognizing each spectral region 

and the compounds involved in the absorption of certain light (protein, water…) and 

improve the process of calibration, targeting those spectral regions that seem more 

relevant to measure certain analyte. Finally, in this chapter we discuss different ways to 

measure near infrared absorption (by transmittance or reflectance). This provides a good 
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starting point for students to choose the best measurement mode when developing new 

applications and choosing instrumentation. 

 

Instrumentation. This chapter introduces the basic instrument sections and up-to-date 

conformations. It is out of scope for our students to put hands on the internal section of 

the instrumentation in such early learning stages, but we consider useful to know the 

basic instrument conformations available in markets. Understanding the uniqueness of 

each instrument and advantages/weaknesses that each conformation brings to the analysis 

can make the students think about their suitability in developing further applications. 

Physic and optic set up behind the instrumentation is complex, and so they are individual 

parts such as lenses, detectors, gratings, or filters. There is a high variety of 

conformations, and there is not much updated material available which explain them. A 

good literature review from existent instrumentation and advances in the field was 

required to have a good up-to-date summary which students could consult. We intended 

to have our learners focusing on the instrument general conformation and data collection 

system rather than go too much in detail on the principles behind optics and electronic 

devices. It was also not considered appropriate to give instructions regarding the use of 

individual instruments because there are many instruments in the lab, some are temporal, 

new ones may arrive, and the one/s to be used will depend on the selected project. 

Furthermore, providing the instructions while performing the hands-on work task by the 

manager or mentor is much more efficient and it never gave problems. Since the use of 

the instrument is systematic, if there are any doubts during the process the learner can 

also consult other students in the lab and that helps them interacting.  

Most of literature includes nice diagrams of the internal sections of the spectrometers, 

which are very useful in understanding the scanning and data collection process (how 

light irradiates a sample, is read back by the detectors after passing the optic set up, and 

finally received by the computer). One of the limitations of showing the diagrams is that 

their appearance is far from the real physical instrument, and students would not 

recognize the components when the instrument is open. Since there is not always the 

possibility to have a look on the internal section of the instruments, we gathered pictures 
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from each important section (manufacturer’s websites or taken pictures) so students can 

relate the real piece with the diagram. This is another case of the previously mentioned 

contextualization: creating a strong learning connection between the real object (real 

world) after they understand its function in the instrument clearly motivate their learning 

(Mourtos, 2003). Figure 1 shows an example of an instrument conformation (pre-

dispersive grating) with its relevant sections, and figure 2 shows the real picture of 

gratings. Having both diagram and picture allows students identifying the section 

whenever they have the chance to see the internal parts of an instrument in the future.  

 

 

Figure 1. Diagram of a conventional pre-dispersive grating conformation of a NIRS 

instrument 

 

 

Figure 2. Picture of real diffractive gratings used in instruments (Source: Hitachi High-

Tech company web-site) 
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Overview of basic methods for calibration and data processing. We introduce the most 

common statistic methods and algorithms to carry out the data handling and analysis in 

developing calibrations. The redaction of this section has been done with care of using 

only strictly necessary equations. Our students often have an engineering background, 

and although their mathematical skills may be strong enough, the concept of multivariate 

statistics (working with highly dimensional data) differs from conventional modeling 

seen in engineering curriculum. The excessive use of equations is not advisable. 

According to Blais (1988), the conventional explanations of algebra with complex 

equations encourage an algorithmic activity far from the essence that learners perceive as 

important, so novices and new learners tend to select the minimum from the whole 

explanation that will allow them to achieve the mandated performance. This has been 

targeted as one of the reasons of the current mathematical atrophy. Summarizing, 

excessive in-depth explanations of both mathematical and chemical theories creates the 

follower role of students and a habit of dependence which does not let the student 

become expertise (Blais, 1988). Keeping the things basic and simple but yet induce to 

give some thought seem to be the right way to approach the algorithms and statistics of 

NIRS in our learners.  

The visualization of the concepts by pictures and drawings is desirable for complex 

concepts as proven by Aso (2001). Figures and plots help explaining the effects on data 

of processing methods, for instance. We give some basic tips on how to choose the right 

algorithms and preprocessing methods, and point general differences in their impact to 

spectral data. 

 

Steps for developing calibrations. The basic steps for developing robust calibrations are 

summarized in this section together with the introduction of popular statistics used to 

express the quality of any calibration model. Learners should be able to follow the given 

steps and advices in this section to create calibration models, and still be a useful guide 

for them in the future. In this section we introduce some aspects regarding (1) data 

formats and dealing with data cleaning, (2) enhance the relevant information and reduce 
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noise, (3) calibration process, and (4) validating and report the right statistics.  

 

Advanced topics. This section gathers more complex preprocessing and calibration 

transfer methods (i.e. how to make data from two instruments be more alike, how to use 

the calibration from one instrument to another). Those are way beyond the learning 

objectives, but we still wanted to provide a hint of other kind of research for students who 

wanted to learn more – students acquiring high intrinsic motivation-. 

 

Practical examples and codes. This section offers the student guided examples of the 

whole process of calibration procedure in connection to the previous chapter using 

different data types from different instruments. We provide the data to be used in several 

formats to be imported. We use two different software in the examples and exercises: The 

learners will start using The Unscrambler; Matlab examples are intended for advanced 

users who either have some previous experience programing in that language or want to 

use more advanced methods.   

 

Hands-on project in the laboratory 

We assign the scholars a project which represents either a current problem in the 

laboratory, testing a new instrument, or a new application of NIRS. The project is defined 

before the student starts the training, and the topic depends on the lab needs. In any case, 

the project involves hands-on work in the laboratory and use of instruments, data 

handling, and calibration development. Giving the students responsibility and a project 

that has a real use motivates them and through engaging them at emotional level, the 

learning experience happens faster and more efficiently (Leamnson, 2000). Furthermore, 

Bransford and Vye (1989) believe that learners have to use  and experience what they 

have learnt by themselves. Not much variability among project difficulty is expected, 

although more or less success in the last results may be attained. This uncertainty in the 

final results, anyway, is what keeps the learner intrigued and motivated as previously 

indicated (Lepper, 1988). 

Hands on work on each step of conventional sample analysis (from placing new 
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identification numbers to the samples, to finally scan them) underline the relevance of 

knowing the samples, being consistent, and follow certain operation order. This task not 

only helps students on not losing track of the data, but it is also required for the 

laboratory traceability system.   Scanning the samples themselves and having to deal later 

with any mistake they did during sampling is a good experience that help them reinforce 

some working habits and important requirements when working with NIRS. Dealing with 

that extra work caused by mistakes and overcoming frustrations are important 

concomitants of the learning experience (Kort et al., 2001). 

Dick et al. (2001) express how new skills and acquired knowledge is easily put in 

practice whenever there is support from managers and supervisors. Feeling supported is 

an important aspect for young students in order to maintain their initial level of 

engagement.  This encouragement is part of the role of tutors. The current limitation for 

the task of assigning tutors and mentors is the individual personality of the available 

students and their formation or teaching experience. They are not especially trained and 

as students, may only get this task for a couple of years before they graduate and move on 

to their professional path. The best tutors are individuals that find challenging activities, 

point the problems and inconsistencies of student approaches to solve problems, and 

provide good analogies, examples or illustrations (Lepper , 1988). Excessive guidance 

does not make an individual a good tutor. Similarly to the negative effects of 

surveillance, excessive help and spoon-feeding to the student is not recommended by 

authors such as Weinert, Schrader and Helmke (1989), who point that learners who 

excessively rely on the mentors may not develop their self-regulating learning skills (i.e. 

how to plan and evaluate their own learning). 

The sense of belonging to the lab group and interacting with other students and mentors 

has been also proved to enhance their performance and motivation. Not only by 

immersion as previously stated (Mourtos, 2003), but because higher achievements come 

from cooperative learning (Johnson & Johnson, 1989) because learners can process what 

they are learning from the theory and share their learning experience with other students 

(Johnson et al., 1998). Interaction with tutors and other learners brings better learning as 

students search for understanding all around Bowden (1990). This is one of our limiting 
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resources because as we mentioned, one or two students are involved in the training 

process. For this reason, tutors and their location in the office with other veteran students 

should allow them get cooperation. Relationships and cooperation with other working 

students in the laboratory reinforce the social nature of learning through keeping the 

general view of the activities against individual mastery (Leinhardt, 1992).  

The routine use of instrumentation is easy, fast, and becomes a routine after several 

samples have been scanned but that period helps the students to get adapted with the 

whole environment and get used to the whole laboratory dynamics.  After having all 

samples scanned by the selected instruments in the laboratory, we export the data for 

them. Although we briefly introduce possible data formats in the training manual, we 

often leave the tasks of exporting data from instruments as a voluntary task. The 

terminology used in the instrument software requires a good understanding of what the 

instrument set up is, what data you need to import, or which additional processed you 

want the instrument software perform on it (transpose, standardize, average…). Quite 

often, there are several exporting formats available to choose from. This has been one of 

the most controversial issues constantly reported by the NIRS community and which 

arise whenever using several instruments and software. Although text formats such as 

ascii or csv are very popular, there is a large list of proprietary data formats associated 

with the existent software. This makes the process of exporting data sometimes very 

confusing for new users, and undeniably inefficient for laboratories dealing with more 

than one instrument.  

 

Data analysis with special software 

Once the data is exported in the right format, the student is ready to work on their 

assigned computer in the office. The rest of their training period will be spent learning 

how to use the calibration software, organizing data, and finally developing the 

calibration/s. From the current software, we selected the one that could be easier to use, 

intuitive. The friendliness of the software must be taken in account. Friendly software has 

a spreadsheet based system with logic arrangement of options and uses standard terms. 

By similarity in the overall look and in the organization of option menus, it should be 
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similar to more popular programs such as Microsoft Excel, so users would get 

familiarized faster.  In fact, students often start working with the data in excel, carrying 

out some sorting and cleaning tasks, and once they understand the data structure they 

proceed to export the data to the selected software. Excessive flexibility of software – 

characteristic that most powerful programs such as Matlab have - is not highly desirable 

for our new learners, who can become overwhelmed with too many options when 

choosing helpful plots and the analysis options during calibrations. At the end, our goal is 

to avoid the software to be a nuisance to overcome, but rather have a friendly structure 

which leads the user to only worry about understanding the calibration procedure.  

The calibration development procedure was shown hands on once or twice by the tutor 

prior to having the training material, but we noticed how the amount of information we 

could give them through the process was not completely assimilated and thus the 

teaching was not very efficient. In order to be so, the process should be repeated a couple 

of times more which is not feasible.  Students need to experience it by their own. Authors 

such as McKeachie’s (1986) already reveal that in order to achieve active learning there 

must be active thinking of the student and not just sit and listen.   Taking notes during the 

explanation do not let them pay enough attention to the practical examples and use of the 

software. The training manual was created to be a key material in this learning stage.  

Despite software characteristics and the whole complex mathematic theory behind, 

students struggle with a feeling of uncertainty the very first time they start their own 

calibrations. The reason for that is the subjectivity on some of the choices during the 

process, for instance the deletion of bad samples or outliers. Some students do not feel 

confident to select samples that may be problematic. This issue is faced for more 

advanced users as well, when does a sample should be deleted? Sometimes it becomes a 

matter of trial-error and some hints and tricks are learned with experience. Making 

students understand that they can develop several models, resulting of trying several 

times with different processing methods, and understand that some of the choices are 

pretty much subjective takes several trials and encouragement. They ultimately should 

understand that what will specify the worthiness of the model is its validation. They 

should get to the point they can feel comfortable taking their own decisions whenever 
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they are justified. This phenomenon happens with other aspects during the calibration 

process. Having many choices and not having a right answer or rule to follow bring some 

anxiety on them. A final critical point is the validation procedure of the obtained 

calibration model. Their common doubts are regarding the use of the statistics, with the 

major question “how good my results are”. If they practice with grain samples, they can 

compare their validation statistics with several of the lab calibrations. Choosing the right 

statistics to report their validation and understand their meaning or significance has been 

shown to be one of the areas we have to put more attention to clarify.  

 

Learner Participation and Overall Evaluation 

Besides on-going assessment carried out by tutors and the manager, the overall 

evaluation of our training is done at the end, at the same time that the student presents in 

a staff meeting the project and the found solution where the student outcomes are 

analyzed, and compared with the outcomes expected from the instruction. Outcomes are, 

by definition, results that are measurable or observable. Most of the outcomes are shown 

on the go, while the student asks questions and expected reports, usually one or two. A 

close attention to real student outcomes give information regarding the efficiency of the 

training method: According to the instructional system design theory, learning outcomes 

should be evaluated. Evaluation of the learners through test of exams did not make much 

sense in this kind of instruction, but because learners should have some motivation and a 

small pressure to be on track, the laboratory checks the accomplishment of the goals 

making the learner present the results of the assigned project in an informal meeting. 

Knowing they have to present their results at the end, make them have a clear idea of the 

learning targets and create a small pressure or fear to disappoint, which positively impact 

their constant work according to Leamnson’s theory (2000). During the preparation of the 

presentation and get together of the results, our learners unconsciously carry out a self-

assesment that allows them finding out where they stand and how far are from the goal. 

Together with formative assessment from the laboratory personnel, this process follows 

the one suggested by Chappuis (2005), who supports that students should be able to carry 

out their own assessment besides the one given by the mentors.  
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Conclusions 

Teaching NIRS means dealing with a multidisciplinary field, and recognizing the extent 

of the theory to be thought is a critical point for young learners. Excessive theory is not 

useful, discourages their learning, and leads to confusion. Yet, not enough understanding 

may lead to incorrect use of the technology in the future, resulting in unstable 

calibrations, incorrectly reported and validated. We have summarized some of the critical 

aspects that make teaching this technology especially difficult with our reflexions and 

suggestions. Current papers and books have not been enough for our training needs so 

far, because they are often too technical for learners who are young and novice in the 

area. Furthermore, some inconsistencies can be found given the fact that the technology 

is relatively new. A user-friendly approach of summarized and practical material was 

needed so students could have some guidance to achieve the major learning goals mainly 

by self-learning given a hands-on task in our laboratory.  

Our instruction is based on the assignment of a real-life project which starts with hands-

on work in the laboratory and ends up with data analysis and a final exposition to the 

laboratory personnel. We created a booklet as a support material intended to be used 

through the whole learning process. More visual aids, fewer equations, use of more user-

friendly language, reduction of theory depth, examples, and practical exercises using 

different data sets are some of the suggestions included in our booklet. One of the 

drawbacks is training young students individually due to time, personnel and economic 

resources. In this case, the role of assigning tutors or mentors is fundamental for training 

individual young students as they hold the key of encouragement and comfort in the 

laboratory. We still have to address the issue of instructing students assigned to be tutors.  
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CHAPTER 6.GENERAL CONCLUSIONS 

 

1. The feasibility of near infrared technologies to discriminate Roundup Ready® 

genetically modified soybean seeds from conventional was proven. Models developed 

with reflectance instruments and over 150 varieties from each class from several crop 

years and 15 seeds per class achieved accuracies between the upper 80% and lower 

90% range when validated with seeds from samples represented in the training set.  

2. There was no difference among classification algorithms when models are validated 

with seeds from varieties not included in the training test. Either locally weighted 

principal component regression (LW-PCR) or artificial neural networks (ANN) gave 

accuracies in the 70% range.  

3. The USDA reflectance light tube instrument performed the best. When developing 

models with fewer varieties and represented by 100 seeds each, accuracies using LW-

PCR algorithm were above 95%. However, extreme care must be taken as LW-PCR 

may be prone to overfit. Improvement of the optimization method is advised. 

4. The low resolution imaging instrument and the transmittance instrument performed 

the worst. The imaging unit besides requiring more data manipulation and showing 

longer scanning times, it had the lower overall accuracies. The transmittance 

instrument showed high sensitivity to seed positioning, which negatively impacted 

discrimination accuracies.  

5. The best technology should work on reflectance mode to avoid sampling variability 

affecting transmittance measurements, and take the spectra from the whole seed 

instead of just from one angle (e.g. conventional single point instruments). 

6. In the second study with fewer varieties represented with more seeds, similar results 

to ANN models from the first study were achieved by modeling with support vector 

machines, with discrimination accuracies of 78% for the Fourier transform 

transmittance instrument (FT-NIR) and 82% for the USDA light tube. 

7.  Classifications within a same variety with and without the resistance gene gave 

accuracies above 90% for three of the varieties, with all instruments and both SVM 
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and LW-PCR models. However, two of the samples were not easily discriminated, 

with accuracies ranging 73 to 88% for both instrument and both discrimination 

models. The application of NIRS for Roundup Ready® and conventional varieties 

may be a useful tool for breeders, as best accuracies were achieved classifying seeds 

within a single variety. However, not all varieties may be discriminated with high 

accuracies. 

8. High misclassification rates seemed to be correlated with low sample moistures. It 

was later proved that moisture affected classification accuracies, higher moistures 

leading to higher discrimination accuracies for Roundup Ready® seeds and higher 

misclassification rates for conventional seeds. We proved that there is a fiber-water 

interaction, and since fiber is a relevant compound in the discrimination, seed 

moisture is a relevant factor to control. The moisture of seeds to be tested should be 

within the training set moisture range.  

9. Heat-damaged corn kernels could be discriminated at 99% accuracy by partial least 

squares discriminative analysis (PLS-DA), similar to previous results with wheat 

kernels. However, frost-damaged kernels could not be differentiated from sound. This 

result was opposite from the good classifications (above 90%) obtained in a previous 

study with soybean seeds.  

10. The discrimination of viable (sound) and non-viable (abnormal and dead) was not 

possible. This indicates that NIRS damage discrimination does not involve seed 

viability, but only involves physical or chemical changes induced by damage. The 

extent of detectable damage by NIRS is unknown and should be analyzed in future 

researches.  

11. We exposed the current training system and the training limitations when teaching 

NIRS in the grain quality laboratory. The most  problematic aspects are the new 

terminologies used in the field, inconsistencies in terminologies, and null,  incomplete 

or invalid reporting of model  validation. When teaching young students and self-

driven learning is needed, the role of mentors and hands-on activities is enhanced. 

However, mentors should receive proper training as well.  
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PREFACE  

 

The purpose of this manual is to introduce the basics of near-infrared spectroscopy 

(theory, terminology, instrumentation, and applications) and calibration development to 

beginners. The authors intend to provide the key aspects of NIRS to ultimately guide 

novices through the process of understanding the critical aspects of this technology and 

developing robust calibrations. Through the use of user-friendly approaches with limited 

chemical, mathematical terminologies and equations, new users with a basic background 

in sciences should be able to gain a general but relevant view of the technology.  The 

steps to develop applications can be mastered with the examples, data, and exercises 

provided in this manual so the reader is ready to work on their own applications.  
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1. INTRODUCTION AND PRINCIPLES OF NEAR 
INFRARED SPECTROSCOPY 

 
 
1.1) What is Near Infrared Spectroscopy? 

 

Near Infrared Spectroscopy (NIRS) is one of the several technologies included in 

a bigger group of analytic technologies called vibrational spectroscopy . All of them 

have in common that they are based on the analytical use of the vibration that light causes 

to atoms or molecules (that is the reason why is called vibrational spectroscopy). The 

term “spectroscopy” is derived from spectra , which as you will later learn, is the result 

of recording that vibration in means of absorbed light. 

As analytical technique, NIRS is used to analyze organic compounds  based 

on their absorption of near infrared light. Organic compounds are those that have 

functional groups with O-H, N-H, C-H bounds. Explained in a more manner, compounds 

which can be found in organic matter or living beings. Some examples of organic 

compounds currently measured in grains are protein, starch, or fat. Water is not an 

organic compound but because of its O-H bound can be also measured by NIRS – in fact, 

it is one of the compounds more easily measured! -. This analysis can be qualitative  

(classify or identify. For instance, classify grains according to high or low concentration 

of fat) or quantitative  (predict the concentration of amount of certain compound in a 

sample).   

 

1.2) Properties of Radiation 

 

Let’s first talk about light, what is light? Light is energy and has wave properties, 

but it also has mass properties as it is made of small particles or energy packages called 

photons (this is known as the wave-particle duality). Light is radiation that can be seen. 

There are other non-visible radiations with variable energey. When describing radiation 
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in terms of energy or wave, it is common to name its frequency  or its wavelength in 

spectroscopy. Figure 1 shows those two concepts. The wavelength is the distance 

between peaks of a wave. The frequency would be the number of oscillations in the wave 

per second, which is the definition of the unit Hertz (Hz). The higher the frequency, the 

more energetic the radiation is.  It is the opposite with the wavelength: smaller 

wavelengths come from more energetic radiation.  

 

 

 

Figure 1. Principal parts of waves: wavelength, oscillation (which is related to 

frequency), and amplitude 

 

 

When you arrange radiation in function of its energy, frequency or wavelength, 

you get the electromagnetic spectra  shown in figure 2. In the figure you will 

recognize several names of energetic waves (micro waves and X-rays for sure!), all of 

them with very different properties leading to very different applications. Now give it 

some thought. Which radiation is more energetic, near infrared (NIR) or microwaves? If 

you check well the electromagnetic spectrum, the near infrared region is inside the 

infrared region, in grey, close to the visible light. Microwaves are next to the right of the 

infrared, with higher wavelength and lower frequency, so those are less energetic. 
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Figure 2. Electromagnetic spectra in function of frequency (Hz) and wavelength (m) 
 
 

Note the wavelength units, which are international units of length: meters (m). If 

you remember the unit prefixes, you should be familiar with nanometers  (1 nm = 10-9 

m). This is the wavelength unit generally used to work in the NIR region, which covers 

from 750 nm to 2,500 nm, or from 2120 to 400 THz in frequency. In the mid-infrared 

region and reduced communities of NIR users, a unit called wavenumber  is also 

popular.   A wavenumber in spectroscopy is equal to inverse centimeters (1/cm), so 

knowing that 1 cm is 10,000,000 nm you can convert from one unit to the other.  

 
 
1.3) Principles Behind the Absorption of Near Infrared  
 

Molecules have natural vibration at discrete frequencies according to their 

composition (heavy or lighter atoms) and environmental conditions such as temperature. 

In order for a molecule to absorb NIR radiation, it must have its molecular vibrational 

frequency matching the frequency of the radiation and, furthermore, the dipole 

momentum of the molecule must change. This last concept is more complex to explain 

and we will not detail it, but the concept to retain is that a specific molecule in specific 

environmental conditions will only be able to absorb certain frequencies or wavelengths.  

Let’s go a little bit deeper in the theory. The quantum theory states that molecules 

and atoms can only be found in states of certain discrete energy, called electronic states. 

There are three electronic states: ground, first, and second. In each electronic state there 

are other energy sublevels, called vibrational states, as you can see in figure 3. The first 
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level in the ground state is an equilibrium state in which the probability to find an atom or 

molecule is the highest in standard conditions. As represented in figure 3, we can see how 

more energetic radiation, such as ultraviolet, induce the molecules to jump further from 

the ground state, while infrared only has energy to induce to molecular vibrations.  When 

a molecule absorbs NIR the result of this radiation-molecule interaction is stretching, 

bending and molecular rotations (Davies, 2005).  

 

 

Figure 3. Diagram of molecular energy levels achieved by the absorption of light  

 

If a molecule which is found in the ground state achieves the next one, it will need 

to absorb energy (from irradiated light in our case) equal to the difference between the 

first initial state and the new one. Because light energy as we said before depends on its 

wavelength and frequency, the emitted/absorbed radiation will be of a specific 

wavelength and frequency. In terms of molecular excitation, is there a big difference 

between the absorption of mid infrared and near infrared? Yes. In the beginning there 

were some theories that resulted being wrong. The first said that the energy between the 

vibrational energy levels was the same; that is to say, the states were like steps from a 

perfect stair, evenly spaced. This resulted not being true, you can see in figure 3 how the 

states are closer (less energy required) the higher the energy levels. Secondly, it was 



 

226 

 

believed that it was only possible to jump between consecutive states. When a molecule 

absorbs light that makes it go from one vibrational state to the next consecutive one, this 

is called a fundamental absorption . This is what happens when a molecule absorbs 

mid infrared light. Summarizing, the belief of the last theories made the existence of near 

infrared absorption not explained: if near infrared was more energetic than mid-infrared, 

but less energetic than UV light, then… what happened if a molecule absorbed NIR? Or, 

could a molecule absorb NIR if that energy did not match neither the energy for a 

fundamental absorption nor the energy required to go to another electronic state? It was 

later discovered that it is possible to jump more than one vibrational level, which 

phenomenon is called overtone .  You can see this concept in figure 4. Note that each 

overtone requires more energy, and it is more difficult to happen. In fact, there are up to 

four overtones, but you will only find that literature mentions three, because the fourth 

one happens such as low probabilities – so few molecules absorb at those wavelengths or 

frequencies- that you cannot record it with the instrument, the signal is too weak.  

Therefore, lower wavelengths in the NIR region cause higher overtones, because they are 

energetic. 

 

Figure 4. Diagram of the ground electronic state which its vibrational levels, showing the 

concept of overtones and fundamental absorption  

 

 

 

 

 

 

 

Some things to remember: 
 

• In order for a molecule to absorb infrared light, it has to vibrate at the same frequency 
(wavelength) as the irradiated light and change its dipole moment 

• The absorption of infrared light induces to organic molecules to achieve more energetic levels 
due to an increase of its vibration: higher vibrational levels. 

• Absorption of MIR light induces to fundamental transitions (jump to a consecutive vibrational 
level) while absorption of NIR light induces to overtones (jumps of more than one vibrational 
level) 

• To achieve higher overtones a molecule need more energetic light: NIR light with shorter 
wavelengths 
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1.4) Using NIR Spectra for Analytical Purposes 

 
 

Now we have seen what happens to the molecules when absorb NIR radiation, we 

can talk about how to use this phenomena to carry out chemical analysis. Let’s imagine 

we have a sample of soymeal and we want to know how much protein we have using 

NIRS. We will follow some reasoning steps to figure out how the radiation can be used 

for this purpose.  

 

1.4.1) Principles of Beer’s law 

Knowing that NIR can be absorbed by organic compounds, we can think that 

protein will absorb NIR radiation. What comes next is the application of one of the most 

important laws for techniques based on radiation absorption: Beer’s law  (Equation 1). 

This law states that you can correlate the absorbed radiation from a sample with the 

concentration of a particular compound (Cx).  

 
Equation 1.         Absorbance = Cx• e •  l         Cx = Concentration of the test solute 
                                                                             e = Molar absorptivity of the test solute  
                                                                             l = Path length traveled by the radiation 
 

The law is directly applied when working with mid-infrared, because the 

absorbance from a single wavelength can be correlated very well with a certain 

compound concentration. Which wavelength should be chosen? As previously said, a 

specific molecule to get to the next energy level needs a specific wavelength. This has 

been studied for years, so current scientists know which wavelength has to choose and 

measure the absorbance from knowing the compound of interest. Note how the path 

length is also included in the equation. Since the molar absorptivity is constant for a same 

compound, if the pathlength is kept constant and you have several samples of known 

concentration, you should be able to create a correlation curve, called calibration  or 

regression  line like the one shown in figure 5. Once you have that curve and you 

determine the equation often by least squares (slope and intercept of the line), you will be 
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able to predict the unknown concentration in new samples just plugging the absorbance 

value and leaving the concentration as the unknown. 

 

 

Figure 5. Regression or calibration with MIR spectra, using the absorbance from a single 

wavelength versus the concentration (microliters/liter of a specific compound) of 

standards. The displayed equation can be used to predict the concentration of new 

samples with unknown concentration,  

 

This concept is not so straight-forward when using NIR. NIR absorptions are 

weaker and some other assumptions of the equation such as no correlation between 

multiple absorbers, sample homogeneity, or negligible light scattering. Furthermore, it is 

not possible to use the absorbance from a single NIR wavelength to accurately measure 

the concentration of a compound. Still, a calibration or regression model is still needed 

and the law is still true: You can correlate the NIR absorption from a compound with its 

concentration, but some tricks explained later are needed.  

 

 
 
 
 
 
 

X = concentration 
(microliters/liter) 
Y = absorbance 

Some things to remember: 
 

• NIRS is based on Beer’s law which states that the absorbance of a compound is correlated 
with its concentration in a sample 

• Pathlength is of high relevance and should be kept constant (check Beer’s law) 
• Beer’s law can be applied directly to MIR absorptions, but not to NIRS 
• A calibration or regression is needed in order to predict the compound of interest in new 

samples. That is to say, you have to measure first samples with known concentration of the 
compound of interest. 
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1.4.2) Measuring absorption of radiation 

When a sample is irradiated with light, according to energy conservation law, 

fractions are reflected, transmitted, and absorbed (Figure 6).  The proportion of each 

depends on the light wavelength and sample properties (composition and thickness 

among others). If in order to work with NIRS we need to measure the absorption, how do 

we measure it?  Probably the first answer is “with the right instrument”. But, in fact, how 

can you measure how much light a samples absorbed?  Although absorbed light cannot 

be directly measured, transmittance and diffuse reflectance can be correlated to light 

absorption according to Equation 2 and 3, respectively. The measurement mode, either 

transmittance or reflectance, will of course influence instrument characteristics such as 

the detector position (Figure 7) 

 

Equation 2.    

 Apparent Absorbance = log(Po/P) =  log(100/T(%)) 

 

Equation 3.      

 

 

 

Figure 6. Resulting fractions of incident light when it encounters a sample 
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Figure 7. General instrument conformation for transmittance (a) where the detector is 

placed right after the sample. For reflectance measurements (b) the detector/s is/are 

placed keeping an specific angle to avoid capturing the specular component 

 

 

Transmittance (T) is defined as the ratio of radiation passing a sample per unit 

area (P) divided by the initial radiation power (P/Po), expressed as percentage. That is to 

say, it is the percentage of radiation which has passed through a sample. Log(1/T), also 

known as optical density,  is called apparent absorbance and it is a close approximation to 

the real absorbance. 

The reflected fraction shows higher complexity. There are two main components 

of reflected radiation: specular  and diffuse . The specular component angle of 

reflection is the same as the incident light, is reflected to a single direction, and achieves 

its maximum intensity when the irradiated light is perpendicular to a smooth sample 

surface. It lacks NIR relevant information due to its minimum contact with the sample: 

the sample can’t absorb that radiation. The NIR diffuse reflectance component refers to 

the part of the incident beam that achieves certain degree of sample penetration (few 

millimeters), it is scattered within the sample while some absorption occurs, and returns 

to the surface where it can be measured by a detector.  Looking at equation 3, Relative 

reflectance (Rrelative) is measured as the ratio of the sample measured reflectance 
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(Rsample) over the measurement from a highly reflective material (Rstandard, with 

reflectance approximately 100%) such as Teflon  or Spectralon . 

Transmittance measurements are best taken at lower wavelengths (700 to 1800 

nm is common in instruments that measure transmittance) because they are more 

energetic, have more penetration power and the absorption of those wavelengths is 

weaker (Because for a molecule to achieve higher overtones is difficult and less probable, 

the amount of molecules that will experiment it is lower and thus there will be smaller 

absorption in that region). Measurements by diffuse reflectance are best taken at 

wavelengths between 1200 nm and 2500 nm. Measuring diffuse reflectance allows 

working with thicker and denser samples without inducing as much heating as 

transmission since only a small fraction is penetrated by the radiation. While sample path 

length is predetermined and must be kept constant for transmittance measurements as we 

saw in Beer’s law, reflectance measurements are not so strict in their pathlenght but it has 

to be known that it is highly dependent on the wavelength range used in the analysis and 

sample characteristics such as density or packing, particle size, and material absorption 

(Berntsson et al., 1998). Physical characteristics affect reflectance measurements 

especially at higher wavelengths hence any sample changes will create an additional 

source of variability and noise in the measurements (Norris and Williams, 1984).  

Overall, reflectance measurements show lower sensitivity because by diffuse 

reflectance a smaller sample portion is analyzed (Corti et al., 1999). Its repeatability of 

measurements is slightly worse which is more noticeable in heterogeneous samples. In 

specific applications, those limitations may not create significant errors, or may be 

mitigated by using of a wider range of wavelengths (Kays et al., 2005).  Transmittance 

measurements exceed the accuracy of reflectance measurements in most pharmaceutical 

measurements, although analytical sensitivity, signal to noise ratio and limit of detection 

is highly affected by sample position and changes in geometry (Short et al., 2008).  

Comparison studies in agriculture fields do not lead to a unanimous conclusion regarding 

superior performance of any of the two measurement modes (Orman et al., 1991; 

Williams and Sovering, 1993; Borjesson et al., 2007; Xing and Guyer, 2008). Although 

there is a general preference towards transmittance measurements when small 
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concentrations need to be measured, the differences with reflectance measurements 

usually arise from combination of factors such as selected wavelength range, instrument 

and sample characteristics, data processing/analysis, and sampling procedure (Kays et al., 

2005; Short et al., 2005; Delwiche, 1995; Cogdill et al., 2007).  

 
 
 
 
 
 
 
 
 
 
 
 

 

1.4.3 The NIR spectra 

The term spectrum  (its plural is spectra)  refers to the group of absorbance, 

transmittance or reflectance measurements carried out at diverse wavelengths. Figure 8 

shows an example of NIR spectrum with the different regions. The highest overtone 

happens at shorter wavelengths. The last region in wavelengths from 1900 nm to 2500 

nm approximately, is called the combination bands  region. That region has a mixture 

of information resulting from basically involves a combination of vibrations from the 

same chemical groups of the overtones, but  as a result of interactions between molecular 

vibrational frequencies, overlapped information from Fermi resonances, and inactive 

MIR bounds among other complex phenomena (Bokobza, 1998). 

  The X axis of any tipical spectra has the wavelengths in nanometers or 

wavenumbers (not so common), and on the Y axis the absorbance units which have been 

calculated through the conversion of transmittance. Probably the correct way to represent 

it would be through points, but commonly the spectrum is a line drawn joining all the 

measurement points.  

Some things to remember: 
 
• You can not measure a sample absorbance directly. 
• You can measure the reflectance and transmittance of NIR light with detectors, and correlate any of 

those measurements with absorbance 
• Transmittance measurements are carried out with shorter wavelengths and require a specific fixed 

pathlength. When working with transmittance mode be careful with termolabile samples and sample 
position 

• Reflectance measurements are more flexible since allow working with thicker samples, although they 
are affected by sample physical characteristics. Be aware of sample heterogeneity. 
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Figure 8. An example of a NIR absorbance spectrum with its parts 

 

 

Figure 9 shows three different spectra from three different soybean samples. You 

may not see much difference among those three spectra, but when you use the right 

mathematical and statistical techniques explained later, you can see that those three 

spectra belong to three different samples. NIR spectra usually look broad. For instance, 

compare the NIR absorbance soybean spectra with the MIR transmittance bio-oil spectra 

in Figure 10. The wavelength units are wavenumbers, and besides that, note how MIR 

spectra have more noticeable and sharp peaks. Those peaks can be easily assigned to 

specific compounds (that’s the reason Beer’s law can be applied more directly), but as 

you see this is not possible in NIR spectra because there are no noticeable peaks. In fact, 

there are peaks but they are overlapped so unless you treat it mathematically you cannot 

differentiate them. NIR spectra from any sample showed broad and overlapped low 

intensity bands, between 10 and 100 times attenuated compared to the sharper MIR 

fundamental absorptions (Dryden, 2003). 

 
 
 
 
 
 

Absorbance Units 

Wavelengths (nm) 

Combination band 

First Overtone 

Second Overtone 

Third overtone 
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Figure 9. Three NIR spectra from three soybean samples 

 
 

 
Figure 10. MIR transmittance bio-oil spectrum  

 

Another of the particularities from NIR spectra is the fact that the chemical 

information is repeated several times. We have seen how it is the result of diverse 

overtones and the combination bands, so a same molecule can be absorbing the light from 

the three overtone regions plus absorptions in the combination band region. It is very 

useful to use the tables of near infrared absorptions  to guess which wavelengths 

may be absorbed from a specific compound. Figure 11 shows one example of the table. 

On the bottom, X axis, you can read the wavelengths and on the top each overtone region 

is marked. Small blocks indicate the absorption regions of functional groups. For instance, 

in which wavelengths would water absorb? You would find around wavelengths 950 nm 

(third overtone), 1430 nm (second overtone), 1930 nm (first overtone) and 2250 nm in 

combination bands region. 
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Figure 12. Picture of Herschel, 
German musician and 
astronomist, measuring the 
temperature of light colors 

Figure 13. Picture of Karl 
Norris, called “the father of near 
Infrared spectroscopy” 

2. HISTORY OF NEAR INFRARED SPECTROSCOPY (NIRS) 
 
The discovering of the near infrared region of the light (NIR) was done by William 

Herschel (Figure 12), back in the beginning of the nineteenth century. His experiments 

were based in measuring the heat produced by filtering the sun light on different colors 

with a thermometer. He realized that temperature increased from going to blue color to 

red, but amazingly, it kept rising even after 

positioning the thermometer further from the visible 

red. His findings (Herschel,1800; also reproduced by 

Davies (2000)), suggested there were light waves 

beyond visible light – light that could not be seen. Not 

further significant research on the NIR region was 

carried out for 150 years, besides being able to record 

the absorption of NIR light by organic compounds. 

This was carried out the first time in 1881 by William 

D. Abney and Edward R. Festing, two English 

chemists and astronomers, who using a special 

emulsion (photographic techniques), measured the 

spectra of 48 organic liquids. With the advances of 

spectra-recording instrumentation in the 1950s, few applications using NIR were 

developed. Most of them were functionality and 

qualitative studies of phenols, fuels, and polymers 

(Whetsel, 1968). Researchers found that working with 

NIR data was not easy: the spectra showed broad bands, 

and those were not correlated with compound 

composition with enough accuracy to be solved for 

measuring compound concentrations. Karl Norris (Figure 

13), still known as the father of NIRS, was a United 

States Department of Agriculture (USDA) employee 

who became the first to introduce NIRS in agriculture 
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and food fields in the 1960s. After his first applications in measuring moisture in whole 

seeds (Norris and Hart, 1965), he later showed the possibility of carrying out 

measurements of the NIR reflected light besides the transmitted by the sample after some 

adjustments to the instrument were made. This lead to big advantages explained later in 

this manual, such as less sample preparation required. Another of the big propelling 

factors of NIRS technologies, also attributed to Norris team, was the application of 

multiple linear regression calibration to correlate multiple absorbance readings at 

different wavelengths (spectra) with current grain composition. Using the reading from 

more than one wavelength at a time made possible to finally use NIRS for quantitative 

purposes. The growth of NIRS the following years was exponential thanks to the gain in 

power of computation systems, the development of new multivariate calibration and data 

processing algorithms, and advances in instrumentation.  
 
 

3. APPLICATIONS  
 

Below there is a list of some of the major practical applications of NIR 

spectroscopy. Detailed descriptions of most of them could be found in Siesler et al. 

(2002), Burns and Ciurczak (2001), and Williams and Norris (2001). 

 

Agricultural products 
and foodstuffs 

- Analysis of grain and individual seeds for moisture, 
protein, oil, starch, and fiber content. 
 

- Measurement of digestion and intake of forages. 
 

- Quality assessment of animal feed. 
 

- Determination of baking quality parameters of flower 
(protein, moisture, particle size, ash, color, starch damage, 
and water absorption). 
 

- Determination of protein, fat, and moisture in sliced bread. 
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- Measurement of sugars and neutral detergent fiber in 
cereal foods.  
 

- Analysis of milk for fat, protein, lactose, and total solids.  
 

- Determination of the ripening stage of cheese. 
 

- Analysis of alcohol, original gravity, real extract, apparent 
extract, sugars, total solids in beer, wine, and distilled 
spirits. 
 

- Measurement of total nitrogen in barley and malt and α-
acids in hops. 
 

- Measurement of degrees Brix and acidity in nonalcoholic 
beverages.  
 

- Determination of degrees Brix, moisture, dry matter, 
acidity, and firmness in fruits and vegetables. 
 

- On-line monitoring of drying process. 
Polymers - Discrimination between different types of polymers. 

 
- Identity confirmation of various polymer-based fabricated 

products. 
 

- Discrimination of “in spec” and “out of spec” materials.  
 

- Separation of plastics from nonplastics. 
 

- On-line control of polymerization process in a batch 
reactor. 
 

- Measurement of crystallinity, viscosity, and particle 
size/fiber diameter in polymers. 
 

- Determination of homogeneity of blending processes. 
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Textiles  - Determination of reducing sugars from cotton surface. 
 

- Control of cotton and polyester blending process. 
 

- Measurement of the degree of mercerization of fabrics. 
 

- Determination of cotton fiber maturity. 
 

- Percent moisture measurement in nylon fibers. 
 

- Measurement of twist setting of synthetic yarns. 
 

Pharmaceutical and 
medical sciences 

- Identification of individual amino acids (as raw materials 
for pharmaceutical products).  
 

- Estimation of active ingredients and water content in 
tablets.  
 

- Discrimination between coated and uncoated tablets with 
identical content of active substance. 
 

- Distinguishing between types of lactose with different 
particle size and purity. 
 

- On-line monitoring of blend uniformity. 
 
 

- Measurement of blood substrates (total protein, glucose, 
total cholesterol, urea, and triglycerides).  
 

- Monitoring of changes in human blood during storage.  
 

- Analysis of urine for glucose, urea, creatinine, and protein 
content.  
 

- Prediction of fatty acid content in bovine muscle tissue.  
 

- Analysis of lipoprotein and apolipoprotein composition of 
the surfaces of living arteries using NIR imaging.  
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- Differentiation between malignant and benign tissues.  

 
- Noninvasive monitoring of tissue physiology with respect 

to blood and tissue oxygenation and respiratory status.  
 

Petrochemicals - Determination of heats of formation, mean molecular 
weight, and the number of methyl groups per molecule. 
 

- Measurement of octane number, vapor pressure, API 
gravity, Br number, Pb, S, aromatic compounds, and 
olefinic compounds. 
 

- Detection of propane and methane gas. 
 

- Determination of methanol in gasoline.  
 

- Determination of moisture and density of crude oil 
samples. 
 

- Measurement of additives in aqueous cooling lubricant 
emulsions. 
 

- Determination of concentrations of constituent chemicals 
in refining operations. 
 

 
 
 

4. INSTRUMENTATION 
 

Despite proprietary instrument conformations, any commercial NIR 

spectrophotometer has five basic sections: (1) Sample compartment, (2) Light source, (3) 

Light wave selection system, (4) detector/s, and (5) signal processor or computer.  

Previously to discuss in detail each section, some popular and relevant terms in 

instrumentation need to be explain. 
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Signal-to-Noise Ratio: Signal-to-noise ratio (S/N) is the mean signal level 

divided by one standard deviation of the fluctuations of the signal. It is popular to think 

about the strength of relevant signal over the noise. The calculation is performed by 

instrument companies (it is often given as an instrument specification, the higher the 

better). Some instrument noise sources include detector dark current, thermal emission of 

the instrument, non-uniformity of detector arrays, mechanical vibrations in heterogeneous 

samples, and readout-related noise (Swayze et al., 2003). SNR achievable values in NIR 

spectroscopy according to Workman range from 25,000:1 to 100,000:1 (Workman, 2005). 

Optical resolution: It is commonly measured as the Full Width Half Maximum 

(FWHM) – the full width of a band at half of its maximum value-. In plain words, it is the 

smallest wavelength difference distinguished by a spectrometer between two adjacent 

bands.  

  

4.1) Sample Compartment 

 

Instruments working by reflectance do not need sample confinement for in-line 

measurements, but it is common to use open sample cups or sample cells confined by 

silica or quartz (materials transparent to NIR light) in laboratory instrumentation. 

Transmission instruments may work with confined sample cells as well, but they use 

specific pre-set pathlenghts ranging from 0.1 to 10 cm, depending on the product to be 

analyzed (Lipp, 1992). Figure 14 shows some of the common sample cells, the black one 

is logically for reflectance measurements. The other cells could be used for both 

reflectance and transmittance, but taking the pathlength into account for the last 

measurement mode. An integrated adjustable sample compartment with automatic 

flushing is used for whole grain analyzers. One of the advantages of NIR light is its 

ability to pass through optical glass fibers preserving most of the signal integrity (losses 

lower than 5% per km of cable), even if the resulting output intensity is low. This is 

especially useful for measurements to be made far from the physical instrument and for 

multiple sampling/ sequential analyses in multiplexer systems. The use of optic fibers 

with probes for either transmission or diffuse reflectance measurements allows sampling 
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by immersion in liquids for controlling fermentation or other liquid reaction processes 

(Buchanan et al., 1988; Tamburini et al., 2003; Sarraguca et al., 2009), contact on small 

sample areas such as works of art (Bacci et al., 2005), in-vivo medical analysis (Yu et al., 

2007 ), and development of smaller spectrophotometers (Smith, 2000) 

 
 

 
 

Figure 14. Four sample cells from four different instruments 
 

 

4.2) Light Sources 

 

The most popular NIR light source is the tungsten halogen lamp , which has 

wavelength emission ranges from 320 to 2500nm. The halogen gas allows recycling of 

the evaporated tungsten (Stark and Luchter, 2005), and brings the advantage of longer 

lifetime compared to traditional tungsten lamps without halogen.  

Light emitting diodes (LED)  were used as light source in the first commercial 

instrument for whole seed analysis in 1985 and in the first portable spectrometers 

(McClure et al., 2002). Christmass decorative lights are LEDs, although those operate in 

other wavelength range. The low power consumption, price, small size, and long lifetime 

(around 25 years) of LEDs still make them the most suitable light sources for 

miniaturized instruments and specific screening applications outside the laboratory 

environment (Stark and Luchter, 2005; Axun technologies, 2005). Conventional LEDs 
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emit in short wavelength ranges (30 – 50 nm) around their center point. Several of them 

can be mounted in an array with narrowband interference filters if wider wavelength 

ranges need to be covered, although measuring many wavelengths with this configuration 

is not an economical approach (Malinen et al., 1998). LED devices have been improved 

during the recent years to overcome some of their limitations. For instance, some 

commercial instruments allow easy switching of LEDs according to the application.  

Finally, the most innovative light sources are tunable diode lasers, or also called 

superluminiscent light-emiting diodes (SLED). Using the semiconductor technology of 

diodes, tunable diode lasers are much smaller than the traditional tunable laser, cheaper, 

with excellent wavelength resolution, brighter, and with lower noise frequencies than 

tungsten lamps. SLEDs are suitable for measuring weak absorptions at good signal-to-

noise ratio and as light sources in miniature instruments (Lang, 1999). Because they are 

tunable, this means you can electronically control which wavelength they must emit. 

All lights have in common that they need certain time to stabilize their radiation. 

For this reason, most instruments require warming up time which takes from 20 to 40 

minutes. 

 

 

4.3) Wavelength Selection 

 

Common lamps and even LEDs emit in a continuous range of wavelengths and 

also detectors read from a wide range as well. As it has been explained previously, any 

spectrum is obtained having the absorbance (by transmittance or reflectance) values at 

specific wavelengths. For this reason, there is the need to use any device to select the 

wavelength of interest from the rest of wavelengths so the detector will measure that 

single wavelength. Discrete wavelength values can be obtained by filtering the 

polychromic light beam. The most simple filters  work by absorption (absorption filters), 

which are discrete bandpass filters that absorb all light wavelengths but the one of interest. 

Narrow bandpass interference filters (Fabry-Perot) achieve better spectral resolution and 

higher output intensity by selecting wavelengths according the refractive index and 
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thickness of the dielectric material between the two layers of reflective material (Pou 

Saboya, 2002). To select multiple wavelengths, interference filters are mounted in a 

wheel which can be automatically controlled to rotate and select the suitable filter for the 

wavelength selected (Figure 15). This creates spectrometers that provide few spectral 

measurements. Although filters are an alternative that provides acceptable results, 

problems of image misalignment and slow operation are common. (Balas, 2009).   

 

                       
 

Figure 15. Diagram of a wheel filter instrument 
 
 
 

Acousto-optic tunable filters (AOTF)  and liquid crystal tunable filters 

(LCTF) allow faster tuning for wavelength selection, and provide better reproducibility 

without the need of mechanical devices because one filter can select several wavelengths.  

AOTF filters (figure 16) modulate the light wavelength and intensity through the 

interaction of sound waves generated in a birefringent TeO2 crystal. The frequency of the 

acoustic signal makes the refractive properties of the crystal change allowing 

wavelength-specific transmission. Wavelength discrimination in liquid crystal tunable 

filters (LCTF) is carried out by applying variable voltage to progressively change the 
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polarity of a liquid crystal (Garini, 2006). Those filters provide a better output quality 

compared to AOTF filters, but their short wavelength range is limited (they work below 

1800 nm), and give a lower intensity which is dependent on the selected wavelength 

(Stark and Luchter, 2005; Balas, 2009).  

 

 

 

Figure 16. Diagram of an AOTF filter instrument 

 

There are other type of instruments, called dispersive , which use a prism or a 

grating to diffract the incident collimated light beam at different degrees while resolving 

it in discrete wavelengths. That is to say, when the light hits any of those two elements, it 

is dispersed according to its wavelengths (the concept is illustrated in figure 17) concept 

Light dispersion can be done before scanning a sample (predispersive instruments) or 

after radiating the sample with polychromatic light (postdispersive). Postdispersive 

instruments offer advantages such as less environmental interferences on the lamp 

radiation, analyzing wider sample areas, and can hold longer distances between sample 

and light sources (Schumann and Meyer, 2000; Wang and Paliwal, 2006 ). Prisms have 

been lately replaced by gratings because of lower cost and better linear wavelength 

dispersion of the last ones. A grating  is a small piece which has grooves or rulings on 

the side exposed to the light, so when it hits the surface there are phenomena of light 

interference that leads to the final dispersion. Figure 18 shows two holographic gratings 

from Shimadzu. There are two types of gratings: Holographic (photosensitive film with 
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fringes) and ruled (concave surface with fringes). Ruled gratings require being 

complemented with other optical elements such as lens, and show less stray-light 

rejection than holographic gratings (Holler et al., 1998; Domanchin and Gilchrist, 2001). 

 

 

Figure 17. Illustration of the concept of dispersion of light through a prism 

 

 

 

Figure 18. Two holographic gratings 

(http://www.shimadzu.com/products/opt/oh80jt0000001tr4.html) 

 

In the dispersive instruments group, there are monochromators  and 

spectrographs  such as diode-array instruments. Monochromators are pre-dispersive 

instruments that scan a sample with grating mechanical motion. The basic principle is as 

follows (Figure 19): Polychromatic NIR light enters through an entrance slit and is then 
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collimated (light rays are made parallel) by a mirror. The light hits the dispersion grating 

and later hits a focusing mirror, which reflects it to a second exit slit to either hit the 

sample (transmittance mode) or hit the single-channel detector (reflectance mode). 

Entrance and exit slits of a monochromator are very carefully designed to have accurate 

geometry since they are critical for instrument observed resolution  (smallest 

wavelength difference distinguished by the spectrometer) and effective wavelength 

bandwidth (full width of a band at half of its maximum value, FWHM). When using 

grating alone without slits, resulting resolution is not enough for most chemical 

measurements in plastic or pharmaceutical applications (Thermo Fisher Scientific, 2006). 

Small slits (around 0.1 mm) give low band width, more dispersion, and high spectral 

definition useful in qualitative applications; large slits (around 2 mm) give more intense 

radiation and are more suitable for quantitative analysis (Holler et al., 1998).  

 

 

Figure 19. Diagram of a predispersive scanning monochromator with grating, in 

reflectance mode 

 

Diode arrays spectrographs (Figure 20) are post-dispersive instruments that 

measure all the wavelengths at the same time thanks to a fixed grating and a set of 
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detectors placed in array (multichannel detectors). There is no need of exit slits. There are 

fewer optical elements compared to monochromators and resolution depends on the 

number of elements in the detector array and array characteristics. The latest advances in 

wavelength selection besides tunable light sources are the Micro-Electro-Mechanical 

Systems (MEMS)  created with semiconductor technologies. MEMS diffraction 

gratings control light diffraction by electronically controlled movement of diffracting 

microelements. Their small size and lower cost has led to a new generation of portable 

instruments.  

 

 

 

 

 

 

 

 

 

 

Figure 20. Diagram of a postdispersive diode-array instrument 

 

 

4.4) Detectors 

 

Detectors transform the incident light energy to electric analog signal. The 

electrical signal is then amplified and transformed to digital, which may later be further 

processed by the computer. Detectors and amplifiers are considered the most common 

sources of non-systematic noise in instruments (random noise). Random noise is reduced 

in most commercial instrumentation by averaging several spectra from a same sample, 

improving the signal-to-noise ratio (SNR).  
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An effective detector must have a linear relationship between the energy input and 

signal output within its dynamic or working range - from the minimum detectable signal 

to the maximum before reaching saturation -. Measurement linearity is influenced by 

other factors besides detector characteristics; for instance, the number of bits of the 

analog to digital converter device and slight detector misalignments, which can lead to 

capturing a small fraction of the reflected specular component (often called stray light) in 

reflectance mode instruments. Without linearity, more complex and potentially unstable 

mathematics are needed to calibrate the instrument.  

Photo-sensitive detector materials are chosen according to the NIR region to be 

covered. From 400 to 1100 nm, silicon detectors (Si) are common (Stark and Luchter, 

2005). Si detectors are stable, fast, not too expensive, and sensitive to low light intensity 

to achieve good performance. Lead Sulfide (PbS) or Indium Gallium arsenide (InGaAs) 

detectors can cover higher wavelength regions than Si detectors, being usual having both 

types combined in a same instrument. Photodiode Arrays (PDAs)  (Figure 21) 

spectrographs have a set of InGaAs detectors in array equally spaced or two dimensional 

charged coupled devices (CCDs)  (Figure 22). While InGaAs PDAs offer high 

signal precision, high SNR and less sensitivity to high light intensities when compared to 

CCD, CCDs have higher signal sensitivity and resolution (Greensill and Walsh, 2000). 

PDAs take faster measurements (all wavelengths measured at the same time) and can be 

smaller in size than grating monochromators, which optical conformation cannot be 

easily reduced in size because it would lead to low throughputs and resolution (Smith, 

2000). 
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4.5) Selecting Instrumentation: General Aspects  

 
There is currently a wide range of instruments with a wide range of prices in the 

market: small portable instruments for little over 8,000 $, and big sophisticated laboratory 

instruments over 50,000 $. Instrument price increases with instrument complexity and 

market position. This need not mean that most expensive spectrophotometers will lead to 

better performances; indeed, the opposite may be true if no further considerations are 

taken before purchasing analytical instrumentation. The important point is to know what 

the instrument function will be and what it could become in future projections. It should 

be taken in account that calibration costs increases with instrument cost, and the success 

of any NIR analytical application is highly dependent on data analysis and calibration 

development up to the point that instrumentation may become a relative afterthought.   

To select a suitable instrument, the user must describe the nature of the materials 

to be tested (sample physical and chemical properties), identify potential applications or 

uses (environmental conditions and variability in sampling procedures), and determine 

the accuracy required for the analysis (i.e. screening or demanding quality purposes). 

Those points should be written down before looking at instruments. Instrument versatility 

Figure 21. Picture of a 
Photodiode array (PDA) 

 

Figure 22. Picture of a 
Photodiode array (PDA) 
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is a relevant aspect for researchers, and for users whose samples show variable 

composition and physical characteristics. Sampling speed, although usually not a major 

limiting factor in NIR spectroscopy, must be considered for in-line analysis and process 

monitoring. For these last applications, grating monochromators would not be 

recommended as they take longer scanning times and need regular wavelength 

standardization due to higher number of mechanical moving parts and PDAs would be 

more suitable. Instrument robustness is inversely proportional to the number of moving 

parts and dictates its suitability for rougher environments. Due to the reduced flexibility 

and versatility of measurements by transmittance in sample presentation and 

characteristics, in-line monitoring, remote sensing and field applications have been 

leaded by NIR diffuse reflectance spectroscopy (Drden, 2003; Fischer and Pigorsch, 

2000). 

Spectral resolution provided by manufacturers, known as observed resolution, 

affects spectral peak location and hence may impact measurement accuracies. This term 

can be often confused with wavelength sampling increment also in nanometers 

(wavelength increment between two consecutive measurements or data points in the 

spectra), which is greater than resolution.  Although high resolution (0.1 nm) may look 

desirable, it is not always required for success. In analyzing biological or materials with 

complex composition, resolution shows low impact since the NIR absorption happens 

over broad regions (Armstrong et al., 2006; Mcarthur and Greensill, 2007). Economical 

instrumentation with resolution over 4 nm is common and provides acceptable 

performances in many applications. Resolutions between 1 and 2 nm were required to 

obtain satisfactory discrimination of compounds with good accuracy when analyzing 

complex chemical matrices of pharmaceutical and mineral compounds (Mcarthur and 

Greensill, 2007; Chung et al., 2004). Although both resolution and SNR affect instrument 

sensitivity and selectivity enhancing SNR compensates for limitations caused by lower 

resolutions (Greensill and Walsh, 2000; Tarumi et al., 2009, Wash et al., 2000).  

Technical support, periodic maintenance and training by the supplier are 

important. Instrument maintenance is expensive because most operations beyond 

replacing the light source need to be performed by supplier personnel. Customer services 
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availability, quality and training are valuable support, especially during the initial stages 

of instrument set-up, data collection, and calibration development. Several aspects from 

the data acquisition software have a direct impact on instrument user-friendliness and 

efficiency on data managing. Current instrumentation has a wide selection of data file and 

calibration formats requiring varying user knowledge in data handling. Any facility in 

managing data is highly desirable. From the time spent since the data is collected and the 

calibration is developed, 80% can be spent on arranging and organizing the data (i.e. 

exporting, setting the right formats) and just 20% on the real data analysis (Hurburgh and 

Rippke, 2008). 

 

4.6) List of Popular Manufacturers of NIR Spectrometers  

 

1. ABB, www.abb.com. 
 

2. Analytical Spectral Devices, www.asdi.com. 
 

3. Avantes, www.avantes.com. 
 

4. Axiom Analytical, www.goaxiom.com. 
 

5. Brimrose Corporation of America, www.brimrose.com. 
 

6. Bruins Instruments, www.bruins.de. 
 

7. Bruker Optics, www.brukeroptics.com. 
 

8. BUCHI, www.buchi.com. 
 

9. Carl Zeiss, www.zeiss.com. 
 

10. Control Development, www.controldevelopment.com. 
 

11. DICKEY-john, www.dickey-john.com. 
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12. FOSS, www.foss.dk. 
 

13. Jasco, www.jasco.co.uk. 
 

14. HORIBA Jobin Yvon, www.jobinyvon.com. 
 

15. Kett, www.kett.com. 
 

16. NIR Technology Australia, www.nirtech.zip.com.au. 
 

17. Ocean Optics, www.oceanoptics.com. 
 

18. PerkinElmer, www.perkinelmer.com. 
 

19. Perten Instruments, www.perten.com. 
 

20. PIKE Technologies, www.piketech.com. 
 

21. Thermo Electron, www.thermo.com. 
 

22. Unity Scientific, www.unityscientific.com. 
 

23. Zeltex, www.zeltex.com. 

 

 

 

 

5. OTHER NIRS-RELATED TECHNOLOGIES 
 

There are other NIRS technologies and instrumentation use of NIR light under 

slightly different principles from traditional spectroscopy.  Two of the most well-

established are Fourier transform NIR (FT-NIR) and NIR chemical imaging. Other 

emerging technologies specifically in medical fields such as NIR fluorescence are not 

discussed in this review. 
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5.1) Fourier-Transform Near Infrared Spectroscopy 

 

Fourier Transform (FT) is widely popular in MIR spectroscopy, and it has 

recently gained high popularity in the NIR range as well. FT technology offers 

advantages such as high SNR, high light outputs due to absence of slits, fast 

measurements, instrumental simplicity, and high resolution and accuracy (Thermo Fisher 

Scientific, 2006). Brimmer et al. (2001) claim that those advantages are more perceptible 

when working in the MIR region due to the limitation of higher detector noise relative to 

signal when working in the NIR region.  

FT-NIR measurements are carried out in time domain and the direct instrument 

output from sample scanning is an interferogram  instead of a spectrum. NIR 

interferometers (figure 23) split the NIR light beam in two; one of the beams is reflected 

to a fixed mirror, and the other is reflected to a mirror that moves forward and backward 

at carefully controlled speed – usually tuned by a HeNe laser-. The reflected beams are 

recombined back in the beam splitter to generate the interferogram signal, which is a 

result of light interferences.  When displacing the moving mirror, the pathlength 

difference in relation to the fixed mirror change, leading to different grades of 

interference between the two reflected beams and which are correlated with different 

light frequencies.  After the interferogram light reaches the sample, transmitted or 

reflected signal is read by the detector in time sequence (ms), hence measurements are 

fast. Although interferograms contain information from all the frequencies or 

wavelengths encoded, it has to be first processed with the Fourier transform. The 

computation takes as an input a time domain wave signal (the interferogram) from which 

the transform principle states signal is made from an addition of sinus and cosinus of a set 

of individual wave frequencies. The processed signal or output looks like the spectra 

obtained by any traditional spectrometer, but with the expectation of higher throughput 

and frequency accuracy. One of the drawbacks is the fact that FT-NIR instruments are 

complex and expensive, and mainly suitable for controlled environments (such as 

laboratories) due to their sensitivity to external factors such as temperature and vibrations. 
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Figure 23. Diagram of a interferometer for Fourier-transform transmittance 
measurements 

 

 

 

5.2) Near Infrared Chemical Imaging 

 

Near Infrared chemical imaging (NIR-CI), or also called NIR hyperspectral 

imaging, has rapidly become popular, especially in measurements by diffuse reflectance. 

It combines the advantages of near infrared spectroscopy with digital mapping: the 

chemical compounds of a sample can be both discriminated and quantified in the sample 

spatial frame. This is especially useful to analyze compound distribution and sample 

heterogeneity. Instrument parts and operating principle are very similar to traditional 

spectrophotometers. The sample scanning procedure can be carried out in two ways: 1) 

by push-broom or moving imager technique, popular for in-line measurements and 

sensing, or 2) by fixed staring systems.  

  Pushbroom instruments  measure a spectrum from a whole sample by small 

consecutive areas or lines while the sample platform is moved and their wavelength 

selection is usually by dispersion. Staring systems  scan on still samples, one 
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wavelength at a time, using either AOTF or CLTF filters. The mapping capability of 

imaging systems is brought by digital cameras with 2 dimensional arrays of detectors 

(pixels) such as CCDs that are effective in lower light intensities. Pixel size or area 

analyzed per pixel range 49 to 1,600 squared microns in commercial instruments, 

depending on selected magnification. Higher magnification (or smaller sample area 

captured per pixel) will lead to more detailed spatial analysis and a lower dilution effect 

of the compound of interest within the sample matrix.   

NIR-CI data structure can be thought of as a cube or a stack of cards, where two 

spatial dimensions are combined with a third dimension corresponding to the chemical 

information or spectra (wavelengths). Depending on the manufacturer, around 320 x 512 

pixels are arranged to capture both sample area and spectra. In that previous example, a 

total of 320 x 512 = 163,840 data points would be generated for a single wavelength and 

correlated to small sample portions as a chemical map. If the instrument had 200 

sampling wavelengths, the final “image” or data cube would have a total of 320 x 512 x 

200 = 32,768,000 data points. Although the amount of data generated is large, visual 

selection of image areas or pattern recognition techniques help discarding pixels with no 

relevant information. 

This concept is illustrated in figure 24, where each squared surface is like a 

picture taken at one single wavelength and the small squares within represent pixels. In 

common imaging terminology, “samples” and “lines” specify the number of columns and 

rows of pixels; “bands” refer to the discrete number of wavelengths, or following the 

previous analogy, the number of cards in the stack.  
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Figure 24. Representation of imaging data cubes in both space and spectral dimensions 

 

 

6. CHEMOMETRICS AND CALIBRATION PROCESS 

 

As defined by International Society of Chemometrics (ISC), chemometrics is the 

science of relating measurements made on a chemical system or process to the state of 

the system via application of mathematical or statistical methods. International Union of 

Pure and Applied Chemistry (IUPAC) define chemometrics as the application of statistics 

to the analysis of chemical data (from organic, analytical or medicinal chemistry) and 

design of chemical experiments and simulations. In plain words, chemometrics is the 

combination of statistics and computers for chemical analysis. Chemometrics made 

possible the dealing of NIR spectra in resolving highly overlapped and broad peaks, high 

sensitivity to sample physical characteristics, and the high information redundancy we 

already explained.  
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We explained how in order to use NIR information for analytical purposes such as 

compound quantification through Beer’s law, we need first to develop a calibration 

model. That is to say, sample spectra needs to be correlated with sample compositions by 

a suitable model which will be later used to predict from unknown sample spectra. 

Developed calibration models can be loaded to instruments, so when new samples are 

scanned the spectrometer directly provides the predictions. Discrimination or 

qualification models stick to the same concept with small variations. Models for 

predictions are the heart of NIR instrumentation and are part of the American Association 

of Cereal Chemists (AACC) method 39-00 and the American Oil Chemists Association 

(AOCS) guidelines Am 1a-09. We will refer to the steps and stages of calibration 

development in agreement with the methods. 

Figure 25 shows a diagram with the basic steps for developing a NIRS calibration. 

In that procedure, a set of samples are selected and scanned with a NIR instrument. The 

broad absorptions (spectra) from a sample irradiated with NIR light are correlated with 

the compound concentration or sample characteristic which user pretend to analyze by a 

mathematical model.  The compound to be measured should either be of organic nature 

(direct measurement) or be correlated with a sample physical characteristic or another 

organic compound (indirect measurement).  Some relevant aspects of the calibration 

procedure can be pointed from the diagram on figure 25: 1) there is the need for a 

fundamental analytical method, called the reference method , in order to obtain the 

dependent variable to be calibrated; that is to say, we need another reliable method which 

can provide the concentration of our compound 2) a suitable number of samples 

uniformly covering a wide enough range of analyte concentration should be scanned and 

be part of the calibration set, and 3) the calibration model should be later validated  to 

test the model performance on future samples. Accuracy and precision of predicted 

concentration values depend on many instrumental (hardware and software) and operator-

related factors with the main one being the correctness of the calibration model. Unlike 

prediction, calibration is usually an expensive and time-consuming process. Therefore, to 

assure effectiveness of this process, it is very important not only to know the steps 

involved, but also to understand their implications.  
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In the case of NIRS instrumentation for grain analysis, calibrations are often 

preloaded, e.g. wheat protein. Although this may seem an opportunity for new users to 

save time and resources in developing custom calibrations, the performance of any built-

in calibration must be carefully validated to determine its suitability for a particular 

situation. Calibrations from an instrument brand and model may not perform successfully 

when loaded to a similar instrument (this will require standardization processes, check 

the advanced topics section), or used on different samples than the original calibration 

population. Those critical aspects are following explained. 

 

 
 

 
Figure 25. Diagram of the NIR calibration and validation process 
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6.1) Selecting Samples and Reference Method  

 

 The importance of choosing an adequate calibration set is often underestimated 

and not usually covered in the literature. There is no fixed number or rule-of-thumb to 

determine the number of samples to be included in a calibration. At least between 20 and 

30 samples should be taken for feasibility studies and initial calibrations (Williams, 2001), 

but more robust calibrations may use few hundred (for instance, instrument built-in 

calibrations for grain analysis). The number of samples to be taken for calibration also 

depends on the calibration algorithm to be used. In the AOCS guidelines Am 1a-09 the 

approximate number of samples is given. Calibrations of homogeneous mixtures (i.e. 

pharmaceutical powders) may require smaller calibration sets than agriculture samples of 

high compositional complexity and heterogeneity, such as whole grains or forages.  

 Users work under the constraints of sample availability and reduced budget to pay 

for chemical analysis. Nevertheless, there is not enough emphasis on the ultimate 

consequence of using calibrations developed with inadequate calibration sets: calibrations 

with low predictive ability.  An ideal calibration set should cover the chemical, spectral, 

and physical characteristics of the population to be analyzed and avoid future 

extrapolations when predicting new samples (Fearn, 2005). For example, in a case of 

wheat composition analysis, factors contributing to variation of protein concentration 

include wheat variety, origin of the samples, their moisture content, sample temperature, 

etc. Therefore, the calibration/validation sample set for the protein analysis must include 

samples with different origin, moisture content, and so on. Furthermore, these sources of 

variation have to be represented equally : The distribution of reference values should be 

uniform. If the distribution is normal (bell shaped distribution), samples belonging to 

either higher or lower concentrations have the chance to get more relevance in the 

calibration, which would not be desirable.  Those two concepts can be seen in figure 26. 
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Figure 26. For any compound to be measured, a representative sample of the population 

usually follows a normal distribution (a). The ideal calibration set should include the 

entire variance source from the population but follow uniform distribution (b). 

 
 
 Because reference values are not always known and reference analyses of large 

sample sets may be expensive there are other methods to select an initial calibration set, 

using spectra. A method developed by Naes (1987) and later illustrated by Naes et al. 

(Naes et al., 2002c) uses principal component analysis (PCA)  on the spectra and 

cluster analysis of the data. PCA is a technique explained later, which basically projects 

the spectral data to a new reduced dimensional space. Some software have incorporated 

proprietary algorithms which allow selecting calibration samples based on their spectra or 

both spectra and reference value, which would be more advisable to obtain robust 
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With: 
yij: ith replicate and jth sample 

ỹj: mean of the replicates for the jth sample 
R: number of replicates 

N: number of reference samples 

calibrations because this way samples are selected taking in account more variability 

(some unknown sources of variability may be reflected in the spectra).  

The chemical reference data 
 

NIRS calibrations can match or virtually achieve better precision (repeatability) 

and accuracy (closeness to the true value) than traditional wet chemistry methods (Coats, 

2002), but paradoxically, NIRS relies on them for calibrations. The quality of the 

reference data influences NIRS calibrations. In the case of grain analysis, reference 

methods should follow the AACC and AOCS methods and guidelines. For other products 

and compounds, an extensive literature research should be carried out to find the best 

method. Once the method is selected, the selection of the right laboratory is the next 

critical step. All laboratories, as all measurements, have errors (both random and 

systematic) but their magnitude and proportions are different. That is the reason why 

once a laboratory is selected, all samples to be included in the calibration have to be 

analyzed by the same laboratory. Otherwise, the error from different laboratories would 

add up, worsening the final calibration model. 

One good way to check for the laboratory precision is sending replicates from the 

same sample, if possible. Equation 4 which is the “Standard Error of the Laboratory” can 

be used. The smaller the SEL, the better. Laboratory accuracy is impossible to tell unless 

there is another method which provides known “true values” to compare with. Some 

programs and associations of laboratories try to bring together different laboratories to 

agree in the results, and thus improve the overall accuracy of laboratories in the field.  

 
 

Equation 4.            

( ) ( )

N

Ryy

SEL

N

i

R

j
jij∑ ∑

= =








−−

=
1 1

2 1/

 

                
 
 
 
 
 
 



 

263 

 

 
 
 
Example. Sending two samples with three replicates, we get the following values (in %) 
from the lab: 
 
Sample 1: 10.1, 10.5, 10.3 
Sample 2: 13.0, 13.1, 13.4 
 
What is the SEL?   Solution: 0.20% 
 

 

6.2) Getting the Data Ready 

 

Exporting, organizing, and cleaning the data are the more time consuming tasks of 

the calibration process. Once the samples have been scanned in a NIR instrument, data is 

saved in databases following a specific format. Those databases may be such as 

Microsoft Access files (*mdb extension) or may be a more simple format such as text 

files (*txt extension). That data usually require to be exported in different format so you 

can work on the desired software, organizing and cleaning your data. The exporting 

format depends on the chemometric software the user will use. Virtually all NIR 

instrumentation manufacturers offer their own software for analysis of NIR data: WinISI 

and Vision by FOSS, OPUS by Bruker Optics, RESULT by Thermo Electron, CORA by 

Zeiss, Indico Pro and ViewSpec Pro by ASD, SpectraSuite by Ocean Optics, and so on. 

Instrument proprietary software is often not very user friendly and lacks of flexibility, 

more advanced options, use their own terminologies, and the displays are not high quality. 

However, there are also several instrument-independent (for the most part) 

nonproprietary NIR processing packages which are popular among users of multiple 

brands of NIR instruments. Although programs such as R or SAS can be used for 

calibration development, there are three programs especially known and used in NIRS 

communities: The Unscrambler  (by CAMO), PLS_Toolbox  (by Eigenvector 

Research Inc.) with MATLAB , and GRAMS Suite  (by Thermo Scientific). Matlab is 

popular software in engineering fields which require learning programming language, but 
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offers big flexibility. For this reason, Eigenvector has developed a product for 

multivariate analysis that does not require the use of Matlab: SOLO (Stand Alone 

Chemometrics Software). Most of the examples and exercises in this manual have been 

developed with PLS_Toolbox + Matlab and The Unscrambler.  

At the end, the instrument dictate which software to use since every instrument 

brand only accepts calibration models loaded in specific formats. This is a big 

inconvenience for laboratories with different instrument brands which end up dealing 

with different data formats and software. Some common formats you may be able to 

export from the instrument and which are compatible and importable in most of the 

software are ascii text files (.txt extension), comma-separated values (.csv), Excel (.xls), 

and Jcamp – DX. Table 1 is taken from CAMO and shows some common data formats 

and their extensions which can be imported to The Unscrambler. Files with 

extension .spc contain spectra information and is generic of GRAMS Suite.  

 

Table 1. Common data formats which can be imported to The Unscrambler  
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 Once the data is imported in the selected format, the most common way to 

organize it is having the wavelength measurements in columns, where each row is a 

sample. The concentration values (reference values) would go in another independent 

column. Figure 27 shows how it would look in The Unscrambler interface, in this case 

there are two compounds (two calibrations can be calibrated).The number of wavelengths 

depend on the instrument (its wavelength range and its sampling interval; that is to say, 

the wavelength range between measurements), you may have less than 50 wavelength 

columns in a filter instrument, but the number of wavelengths or data points (columns) 

easily reach over 1,000 in reflectance instruments. Note that in terms of statistical 

analysis the wavelength readings are a big matrix  (nxm) where n is the number of 

samples and m is the number of wavelengths or data points the instruments provides). 

The reference values from a single compound are placed in a single column, which is a 

vector . This concept is important; remember that NIRS calibrations are based on 

multivariate analysis (more than one variable, which in this case means several 

wavelengths), so when talking about calibration models and algorithms it must be used 

matrix notation. 

 

 
 
 
 
 
 
 
  
Figure 27. Data organization in The Unscrambler. Each measured compound (i.e. protein, 

moisture…) would be a vector of concentration values. Those would be the dependent 
variables (y) in future models. Spectral data can be thought of a big matrix of 

independent variables (X), which are the wavelengths   
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 Once the data are imported and organized, there should be a check for mistakes 

and outliers . Outliers are those samples that for any reason have higher error associated 

from either bad reference data or incorrect/problematic sample scanning. Outliers from 

either reference values or spectral data exist and most calibration methods are highly 

sensitive to them (Kovalenko et al., 2006; Hubert et al., 2008). Some tests and statistics 

such as Dixon test (Dixon, 1950) or Grubbs studentized mean deviation (Grubbs, 1950) 

can be used as an assessment for potential outliers from the reference data a priori. When 

the problem comes from sample scanning, visual check of the spectra can identify 

abnormal and noisy spectra as shown in figure 28 with soybean spectra. 

 
 
 

 
 

Figure 28. Soybean spectra from four samples. The arrow indicates a noisy spectrum 
which should be removed from the calibration set. 

 
 

Visual check is often not enough, and possible outliers may not be detected until 

data is either preprocessed (next section explains preprocessing methods and its purpose), 

or a first attempt of calibration has been carried out. Detecting multiple potential outliers 

is not simple; their effect is masked with each other. Traditional approaches to detect 

single outliers do not perform well (Walczak and Massart, 1998; Naes et al., 2002a). One 
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basic approach to detect potential problematic spectra is carrying out Principal 

Component Analysis (PCA).  PCA is well known in clustering analysis and data 

compression because it basically summarizes the information from a high number of 

variables (in our case, wavelengths) to a set of fewer new variables, which are called 

principal components (PCs).  Going a little bit deeper, PCA summarizes the 

variability from the variance-covariance matrix of the spectral variables, reducing the 

dimensionality of the data but keeping the main information from the variables.  

Previously to carry out PCA, data (all wavelength readings) must be normalized by 

autoscaling or by mean centering (those are preprocessing treatments explained in the 

following section) so the data will be centered at the new coordinate axis.  The data 

matrix is projected on new orthogonal axes : those are the new variables, the principal 

components (PCs) which are built as linear combinations of the original axes (the original 

variables: wavelengths). This projection to the new axes is done according to equation 5. 

Because the axis or new variables are orthogonal, the new data matrix after the projection 

should not have correlation between variables anymore (remember that NIR spectra 

shows higher correlation between the wavelengths, carrying out PCA this correlation and 

redundancy is eliminated) 

 

Equation 5.                            T = X*P + residuals 

 

X is the original data matrix, where each row are readings from a sample, and 

each column contains the readings from all samples at certain wavelength (this is the way 

your data was previously organized). The loadings  (P) can be understood as the weights 

for each original wavelength in each principal component. The original wavelengths will 

contribute differently to the new variables (PCs), for instance one wavelength may be one 

of the most important in the second PC, and not be contributing significantly in the third. 

T is the score matrix , or the new values that original data acquire on the new dimension. 

Basically, the new data axes (PCs) will be calculated following the direction of the 

largest variability of the data. PCs are calculated consecutively: The first PC is calculated 

following the direction of largest variability; the second PC will be calculated following 
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the second direction of largest variability but at the same time being orthogonal with the 

first PC; the third PC will be orthogonal to the first and the second PC and will be 

calculated following the third direction of highest variability, and so on. The concept is 

summarized in Figure 29 with a three-dimensional data set (three variables) where two of 

the variables are correlated (Figgure 29.a). Figure 29.b shows the three principal 

components drawn from the direction of highest variability (PC1) to the lowest (PC3). In  

Figure 29.c, data are projected on the new PC axis or new variables, and data 

dimensionality is reduced to two dimensions after removing the initial collinearity.  The 

number of PCs that can be calculated depends on either the number of initial variables or 

samples, but commonly only up to 20 are calculated. Only few PCs – the first ones - are 

considered important at the end, depending on the variance they explain over the total 

data variance. This can be checked and deduced from the eigenvalues . Each PC has an 

eigenvalue associated (the sum of all the eigenvalues is equal to the number of PCs) 

which is a constant number obtained through the projection and calculation process of 

each PC (eigenanalysis). The last PCs will not have important information because they 

explain very small sources of variability, usually associated with noise. When researchers 

use PCA to summarize their data, they may use all PCA that have an eigenvalue higher 

than 1, or commonly, they plot all eigenvalue and do not take further PCs after the first 

inflexion point of the plot or elbow 
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Figure 29. A data set with three dimensions show a clear correlation among two of the 

variables (a). The three principal components are drawn following the direction of 

highest variability while maintaining the constraint of orthogonallity among them (b). 

The third PC can be discarded as it represents small variance (c). 

 

 Section 8 has an exercise to carry out PCA which helps clarify these concepts. 

Available software carries out the calculations for you, so the most important right now is 

to understand the meaning of the results. Further detail on the mathematical procedure of 

the whole PCA is out of scope, a big number of useful tutorials can be found on-line. The 

main concept that user must keep in mind is what PCA does to the data: Summarizing the 

important information of the spectral data in a smaller set of non-correlated variables 

called principal components.  

 So how PCA can help us check for outliers? The fact is that when you plot the 

spectra, unless a specific spectrum is really abnormal, it is difficult to identify 

problematic spectra. Carrying out PCA and summarizing the information in fewer 

variables makes this task easier. Figure 30 shows an example where spectra does not 

show much unless very close attention (check out the red spectrum), but after carrying 

out PCA an representing the scores on the second PC and the third, it is easy to see that 

one sample has some problem in its spectra (Figure 31). This may or may not be an 

outlier, so it is not recommended to delete the sample but flag it and check how it may 

affect the final calibration. 
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Figure 30. Soybean spectra looking normal at first sight 
 
 
 
 
 
 

 
 

Figure 31. Scores from the second principal component versus the scores of the third 

principal component showing one of the samples is different from the rest 
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Measurements of influence such as Leverage  or Hotelling’s T 2 statistic give an 

idea of how different a sample is from the rest of the data in a given dimension, as they 

measure the distance of each sample from the origin. Hotelling’s T2 statistic is distributed 

as Fisher’s distribution but in a multivariate extension. For this reason a sphere of a 

desired confidence level (a tolerance volume) can be drown in the PCA score plot 

(PLS_Toolbox has this function in its PCA interface) to help flagging samples 

significantly different from the rest. Leverage is directly proportional to Hotelling’s T2 

and is correlated to the Mahalanobis distance , another popular way to measure 

distances in multivariate analysis (Equation 6, where N is the number of samples an h is 

the leverage).  

 

Equation 6.            Mahalanobis distance = (N − 1)(h − 1/N)        

 
 

Most of the calibration models are based on PCA approaches so both Leverage or 

Hotelling’s T2 can be used once the calibration model is developed. Plotting sample 

Leverage or hotelling’s T2 values versus their residuals (what have not been explained by 

the model, sample error) is a powerful alternative for outlier detection (Naes et al., 

2002a). The exexclusion of a sample targeted as outlier from the calibration set could 

improve the calibration. However, if removed, enough similar samples should remain in 

the calibration set to avoid significant reduction of representativeness, especially in 

reduced data sets. 

 

 

6.3) Data Preprocessing (Pretreatment) 

 

Pretreatments or spectral preprocessing methods are a set of optional 

mathematical procedures carried out on the spectra before developing a calibration 

model. Mathematical pretreatment of spectra reduces noise or background information 

(smoothing techniques) and increases signal from the chemical information 
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(differentiation). Any pretreatment must lead a robust model with good predictive ability 

at the end. Basically, preprocessing methods can be classified as baseline correction – 

normalization, signal enhancement, and statistical filtering of signal noise. Pretreatments 

can be very helpful but there is always a tradeoff between information loss and noise 

reduction: when removing scattering effects, the chemical signal may also be reduced. 

We have already mentioned one example of preprocessing in the previous section. 

The conversion of transmittance (or reflectance) values into absorbance is already a 

preprocessing method which helps making the relationship between sample’s optical data 

and its chemical composition more linear and close to Beer’s law. Some of the common 

data preprocessing methods used in NIR technology are listed below and illustrated in  

Figure 32.  The optimum pretreatment for a given spectra depends on the type of signal 

(i.e. transmittance, reflectance), sample characteristics, instrument conformation, and 

application or final goal (calibration or discrimination).  There is no absolute or general 

rule for choosing the adequate preprocessing method; it usually requires a trial-error 

process guided by experience. Reflectance measurements often benefit from methods that 

reduce light scattering effects such as MSC or SNV. Sometimes, the predictive ability of 

a calibration model is not improved with further mathematical treatments. Predictive 

ability may worsen if preprocessing excessively smoothes the signal, affecting the model 

ability for predicting new samples (generalization capability). For more details on data 

preprocessing methods and tips refer to Næs et al., 2002, and Siesler et al., 2002. 
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Figure 32.  Examples of effects of  preprocessing methods on soybean spectra 
 

 

6.3.1) Offset correction (0-th order baseline) 

 It removes a constant component from the spectrum. The minimum value of the 

individual spectrum is removed from each wavelenght: 

 

 Equation 7.    )min( kikik xxx −= ,  
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where ikx is a corrected optical value at ith wavelength of kth spectrum, ikx is a 

corresponding raw optical value, and kx is a mean optical value for kth spectrum. In 

figure 32, instead of the minimum value the spectrum average has been removed as set by 

the PLS_toolbox algorithm, while the first algorithm is adopted by The Unscrambler. 

 

6.3.2)Baseline correction (n-th order baseline)  

It removes the constant component and low-frequency noise from spectrum. 

Check in figure 32 how each spectrum averages zero same as the offset correction but 

that ascending trend has been removed.  The way it is done is selecting two wavelengths 

of interest and set those to zero; then by linear/quadratic and so on interpolation the rest 

of values of the variables between them are recalculated. If the original spectra is very 

step, second or third order baseline correction may work well, but first and second order 

are more popular.  

 

6.3.3)Savitsky-Golay Smoothing  

This is one of the most popular smoothing methods (others are moving average or 

other filters) which removes high-frequency noise from spectral data. The algorithm fits a 

specified degree polynomial function to a window points (user-defined) by least squares. 

So it splits each spectrum in pieces that have the selected number of smoothing points, 

and then a polynomial fits the data and becomes the preprocessed spectrum. Selecting 

higher polynomial degrees and small window size leads to high function fit to the data, 

but the noise is modeled as well, with no smoothing effect. Low polynomial order and 

wide window size may lead to excessive smoothing and deletion of spectra features 

containing information. 

 

6.3.4)Savitsky-Golay Derivatives 

  It includes derivation to the previous smoothing process which differentiates 

overlapping signal peaks. Although it is possible to work with high degree derivatives, 
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most of the works in the literature use a maximum of fourth degree for curve sharpening 

and absorber separation. First and second derivatives are the most common and provide 

satisfactory results (Hopkins, 2008).  First derivative removes baseline offset while 

second derivative corrects the signal terms that vary linearly across the wavelengths 

(baseline slope) (Pou Saboya, 2002). Figure 32 shows the effect of a second derivative. 

 

6.3.5)Standard Normal Variate (SNV) 

It helps to reduce light scattering effect in spectral data by centering and scaling 

each spectrum individually, so each has a mean equal to 0 and standard deviation equal to 

1:  

 Equation 8.    
k

kik
ik SD

xx
x

−
= ,  

   

where ikx is a corrected optical value at ith wavelength of kth spectrum, ikx is a 

corresponding raw optical value, kx is a mean optical value for kth spectrum, and SDk is 

a standard deviation of optical values for kth spectrum. 

 

6.3.6)Multiplicative scatter correction (MSC) 

 It reduces light scattering effect in spectral data similarly to SNV (in fact, they 

are considered to lead to the same calibration results) but MSC is more complex and 

memory consuming because depends on the whole spectra set.When applying MSC, the 

spectra is first averaged and each individual spectrum is regressed by partial least 

squares to the total average. The regression equation slope and intercept represent the 

additive and multiplicative effects of light scattering, respectively. Finally, each 

spectrum is corrected for offset (the offset value is subtracted) and each wavelength of 

the spectrum is divided over the slope. The regression coefficients should be stored and 

applied to new data. 

 

 Equation 9.    
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where ikx is a corrected optical value at ith wavelength of kth spectrum, ikx is a 

corresponding raw optical value, a and b are bias and slope coefficients from least 

squares linear regression of kth spectrum vs. average calibration spectrum.  

 

6.3.7)Mean Centering and Autoscaling  

Two of the most common normalization methods for variables (spectral or 

reference). With mean centering, all variables are set to zero mean removing the absolute 

absorbance value (absolute baseline) and enhancing the absorbance from each individual 

wavelength. With autoscaling, all variables are set to zero mean and unit variance: 

 

Equation 10.   
i

iik
ik SD

xx
x

−
= ,  

 

where ikx is a corrected optical value at ith wavelength of kth spectrum, ikx is a 

corresponding raw optical value, ix is a mean optical value for ith wavelength, and SDi is 

a standard deviation of optical values for ith wavelength.  Autoscaling allows each 

wavelength to have the same weight or relevance during calibration development. 

Haaland and Thomas (Haaland and Thomas, 1988) suggest not using scaling when a big 

part of the spectra do not contain useful information because variables which have more 

noise than relevant information will get the same importance as the ones with relevant 

signal. Either one of those pretreatments are mandatory for PCA and PCA-based 

calibration methods detailed in the later section because they reduce the final model 

complexity, often reducing the number of variables to be employed by one (Haaland and 

Thomas, 1988)). 
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6.4) Calibration Methods 
 

Although not excessively time consuming, development of calibration model is 

the most important and complicated step of the procedure. The objective of this step is to 

find a relationship between multiple independent variables x1, x2, …, xn (absorbance at 

corresponding wavelengths) and dependent variable y (constituent concentration). The 

process of deriving this relationship is usually referred to as multivariate 

regression. The first assumption when carrying out a calibration is the linear correlation 

between analyte or the property to be measured and its absorbance according to Beer’s 

law. Multiple Linear Regression (MLR), Principal Component Regression (PCR) and 

Partial Least Squares (PLS) are three of the best known calibration methods that work 

under this assumption. There may be cases where the relationship between sample 

spectra and reference values is not linear. Any of the previously cited calibration methods 

can handle small nonlinearities, but when prediction residuals (sample prediction errors) 

show certain pattern of positive and negative values or plots of predicted versus reference 

values show appreciable curvature, we are having a clear case of non-linearity (Naes et 

al., 2002b). This can be seen in figure 33, where the predicted values versus the real 

values instead of following a straight line show a bow. 

 

 

Figure 33. Example of a calibration model which shows high non-linear correlation of 

the compound to be measured with sample spectra 
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Often curvature may not be noticeable but for the fact that calibration statistics are 

not good. Once the problem is detected, there are some solutions suggested by Naes et al. 

(Naes et al., 2002b) such as trying new preprocessing methods, ignoring wavelengths, 

adding extra principal components/latent variables to the model, or using non-linear 

calibration models.  Artifical Neural Networks and Support Vector Machines are two 

complex non-linear regression methods which are not supported by all the instruments. 

For this reason, linear methods should be tried first. 

 

6.4.1)  Multiple Linear Regression (MLR) 

MLR is one of the oldest multivariate regression methods that should be used when 

the following conditions apply: 

 

1) Nonlinearity between optical data and constituent concentration is not detected (or 

expected). (Note: nonlinearity may be detected, for example, by performing 

principal component analysis and plotting scores of several  principal components 

versus constituent concentrations.) 

 

2) The number of wavelengths measured is comparatively low (for instance, data 

from filter instrument) or an advanced wavelength selection method such as 

Genetic Algorithm could be applied (check the advanced topics section for more 

information) 

 

3) Independent variables have a well-understood relationship to the response 

(knowing in advance which wavelengths are of interest)  

 

4) No strong collinearity is present among independent variables: the information 

from each of the wavelength measurements is not correlated with any of the 

others. 
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MLR is a generalization of the univariate inverse method based on least squares 

fitting of y to x. The algorithm gives a linear regression equation of the form: 

 

 

Equation 11. 

 

 

Each independent variable (for i = 1 … n) xi  is correlated with the dependent 

variable (the reference value) and its correlation is measured with  the coefficient of 

correlation r (or coefficient of determination r2). This is done in a stepwise manner 

through creation of a sequence of multiple linear regression equations. At each step of the 

sequence, one variable that makes the greatest reduction in the error sum of squares of the 

sample data (or the one that provides the greatest increase in the F statistic) is added to 

the regression equation. The process is continued until some stopping criterion is met or 

all the predictors are processed. In this manner all possible linear regressions on all 

subsets of the available independent variables are tested. The subset of predictors that 

produces the lowest standard error is reported.  The error term is also known as 

residuals. One of the problems associated with MLR is that it is prone to over-fitting 

(Davies and Grant, 1987), when a significant amount of irrelevant information (noise) 

becomes incorporated into the model.  

 
 

 6.4.2) Partial Least Squares (PLS) and Principal Component Regression 

(PCR) 

 
Both PCR and PLS successfully deal with wavelength correlation. PCR is a direct 

application of the principal component analysis (PCA) method, and once the spectral data 

is projected to the new orthogonal non-correlated dimensional axis (PCs) a regression 

process by least squares is performed between the projected data and the reference 

values. Wold’s introduction of PLS (1975) (Wold, 1975) was an improved alternative to 

PCR; Both methods carry out regression on data projected to a new dimensional space, 
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but the new space coordinates created in a process similar to PCA in PLS regression take 

in account the information from the reference value matrix, and PLS is thus classified as 

a supervised regression method;  the new variables receive the name of latent variables 

(LVs) instead of principal components (PCs) as the new variables are not exactly the 

same as PCs. Both methods proved to perform well in situations in the following 

conditions:  

 

1) Like with MLR, nonlinearity between optical data and constituent concentration 

is not detected (or expected). 

 

2) The number of wavelengths is large: Because they are both based on PCA, they 

deal with multiple wavelength summarizing them in a smaller set of smaller 

variables 

 

3) There is no need for a well-understood relationship between independent 

variables and the response. 

 

4) Independent variables are characterized by a strong collinearity because of being 

a PCA-based calibration methods (remember that PCs and LVs are not-correlated 

variables) 

 

5) The main objective is simply to create a good predictive model, and the effect of 

each individual wavelength on the response does not need to be explained.   

 

Although both methods provide similar results, PLS become more popular. PLS 

accuracies may not usually be significantly higher than those of PCR but they are 

achieved by including fewer latent variables in the final calibration (Naes et al., 1986, 

1986; Hammateenejad et al., 2007; Muñiz et al., 2009). PLS is preferred because the 

algorithm is faster, models have higher precision, and provides more harmonious 

calibration models (Kalivas and Gemperline, 2006). PLS is based on projecting the initial 
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variables (wavelengths) from a X matrix (spectra) on a plane formed with a new set of 

variables (latent variables, similar to PCs) that are orthogonal and linear combination of 

the initial ones (the wavelengths), but they are furthermore good predictors – in terms of 

least squares- of the compound to be measured (reference values Y). There are at least 

two main algorithms to perform PLS calibrations that advanced users may want to check: 

NIPALS  (Non-linear Iterative Partial Least Squares) and SIMPLS. NIPALS works 

slower but is told to be more transparent than SIMPLS, which is faster (Wise, no date).  

For more details on PLS regression refer to Næs et al., 2002, Martens and Næs, 2001. 

The final calibration model takes the form: 

 

Equation 12.              ŷ = f(w, l) = w0 + w1l1 + w2l2 + w(p-1)l(p-1) + wplp, 

 

where l is a vector of new independent variables (LVs), and p is their number. The 

elements of l are determined by searching spectral data space for successive linear 

combinations of those original predictors that have the greatest covariance between 

response (y dependent variable or reference) and x-variables. Software like The 

Unscrambler provides the final calibration equation with a similar form to MLR: It 

provides n coefficients (where n is the number of wavelengths) and an offset value, so in 

order to predict new samples you only need to multiply each coefficient to its 

corresponding wavelength reading and add the offset. 

PCR and PLS calibrations are only based on a relatively small number of 

PCs/LVs because similar to what has been explained with PCA, since they are extracted 

following the direction of maximum data variability, the last PCs/LVs usually involve 

noise.  If an excessive number of variables are included in the calibration, a fraction of 

noise is also modeled and the calibration becomes too specific to the calibration set. This 

phenomenon is known as overfitting  and leads to a reduction of model accuracy in 

future predictions. There are different approaches to estimate the appropriate number of 

PCs/LVs to be kept for the calibration – remember that for PCA, where you were not 

correlation the spectra to any compound concentration, you could check for the 

eigenvalues; here you have to take in consideration the predictive ability of the model and 
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check for good predictions-. One of the most employed uses cross-validation , later 

also mentioned as an approximate validation method. The general idea of cross-validation 

is to keep a single sample (full-cross validation or leave-one-out cross-

validation ) or a group of samples (k-fold cross validation ) apart and develop a 

calibration with the remaining samples. The remaining samples are then predicted by the 

developed calibration (validation) and the prediction values are compared with the real 

reference values to calculate the error. This procedure is consecutively done until all the 

samples have been predicted once. The error is finally expressed as Predicted Residual 

Error Sum of Squares (PRESS). In other words, PRESS is the addition of the squared 

error from each sample when predicted by the model. The PRESS value can be used to 

select the number of latent variables or principal components in the final model. 

Chemometric software does this cross-validation procedure using several PCs or LVs and 

displays the PRESS value graphically so users may visually select the number of 

PCs/LVs that lead to the first minimum PRESS value from the plot. Figure 34 shows an 

example of this plot provided by The Unscrambler (the root mean squares of the 

prediction errors versus the number of PCs used). The best number of PCs to select 

would be the one that shows the elbow on the plot as then the value does not significantly 

decrease: Six PCs would be a good choice to start with.  
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Figure 34. Plot representing the Root Mean Square Error of PLS models using different 

number of principal components. Users should pick the number of principal components 

that correspond to the plot elbow. 

 
 

6.4.3) Artificial Neural Networks (ANN) 

 
Artificial Neural Networks (ANN) is a computational method that can be applied to 

NIR data to develop nonlinear calibrations. By trying to simulate the human nervous 

system, ANN uses the calibration set to learn about any relationship (no matter how 

complex and does not need to be linear like in MLR, PCR or PLS) that may exist 

between spectra and references. ANN regression is much more complex that the 

previously mentioned methods and require adjusting and optimizing several parameters. 

Matlab ANN toolbox has very good material to help new users using ANN and has a lot 

of options to create highly customized nets. The most common type, which we will later 

describe a little more are the feedforward backpropagation learning nets. ANN regression 

is best used under the following conditions: 
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1) Presence of nonlinearity between spectral data and concentration values. The 

method deals with linear data as well, but because of its complexity and lack of 

compatibility with most of NIR instrumentation it is best to leave it as a non-

linear calibration option. 

 

2) Constituent's concentration of the future samples is expected to be within the 

concentration range of calibration samples (Extrapolation is not advised in any 

case, but this is especially true for ANN).  

 

3) The main objective is to develop a model for prediction purposes and there is no 

need to interprete the wavelength effects on the calibration. ANN is considered as 

a “black box” because its complexity and the lack of complete information of the 

learning process that happens in the net. The role of each wavelength in the final 

model is unknown. 

 

 
4) This method requires lots of samples to produce robust calibrations.  In the AOCS 

guidelines Am 1a-09 is stated that over 1,000 samples are required for non-

controlled environments. 

 
An artificial neural net is composed by neurons (the basic units) or nodes, layers, and 

transfer functions that join the neurons from different layers (Figure 35). When working 

with NIR spectra, the input nodes  would be either the absorbance values from the 

wavelengths or the scores from principal components, and the output node  would be 

the predicted value. Other nodes may be created in hidden layers  (multilayer 

perceptron model), which increase model complexity and ability to model non-linear 

relationships. The nodes are linked by transfer functions , which are continuous 

functions.  

 
 
 



 

285 

 

 
 

Figure 35. Visual diagram of a neural net with 4 inputs, a hidden layer with 5 
neurons, and a single output 

 
 
Selecting the best net structure for the first training is a matter of experience and a 

vahue approximation that will be later to be modified for sure. When the net morphology 

is defined (i.e. number of input nodes and hidden layer nodes), it is trained usually by 

feedforward backpropagation  to start the learning process. In training by 

backpropagation algorithm, random small weights are assigned to each transfer function 

and are updated according to the prediction error, which is propagated back through the 

net elements (nodes and transfer functions). This process is done numerous times 

(epochs  or iterations) until a minimum established error is met. The learning rate 

(measurement of the change rate of weights in each epoch) and the number of epochs 

have to be closely monitored to check for model instability and overfitting (Vandegiste et 

al., 1998). Using an additional sample set (early stopping set) besides calibration and 

validation sets is a common practice to avoid the net modeling noise besides relevant 

information (overfitting).  

Once the training is finalized, the final ANN calibration model is a function described 

by number of hidden layers, number of neurons at each layer (with their transfer 

functions), and a set of weights (including bias terms) assigned to links connecting the 

neurons. The equation for a network with D inputs, K neurons in one hidden layer, and 

transfer functions  σ1 (output layer) and  σ2 (hidden layer) shown in takes the form: 
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Equation 13.                           ŷ 
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where Xi is ith input variable, wij is the weight of the connection from ith input to jth 

neuron of the hidden layer (number of w-weights is equal to D for each hidden layer 

neuron); vj is the weight of the connection from jth neuron of the hidden layer to output 

neuron (number of v-weights is equal to K); bj is bias of jth neuron of the hidden layer; b0 

is bias of the output neuron; σ 1 and σ 2 are functions defined, for example, as  

 

Equation 14.                                                 z)(
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The dependence of the weights and the amount of parameters involved make the 

interpretation of each weight and the training process rather complex. Complexity 

increases as more nodes and transfer functions are added, and it also increases the need 

for more calibration samples. Another problem that may be encountered associated with 

the nature of the error function involved in the training process is the high risk of fall in 

local minima solutions (Despagne and Massart, 1998). That is to say, to achieve a 

solution with small error but not the best solution overall.  

 

6.4.4) Support Vector Machines (SVM) 

 
SVM regression is the newest method out of the four discussed calibration methods 

which supposes a more robust alternative to ANN. SVM regression may be a good choice 

when:  

 

1) Nonlinearity between spectral data and concentration values is present. However, 

SVM also performs well on linear data, but again it is better to use PCR or PLS in 

that case because of instrument support and model complexity. 
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2) The number of calibration samples does not exceed a few thousands. SVM is a 

computationally intense algorithm, and although it has fewer parameters that need 

to be optimized, current optimization methods are very memory consuming.  

 

3) Constituent's concentration of the future samples is expected to be within the 

concentration range of calibration samples; again, extrapolation should be 

avoided.  

 

4) Similarly to ANN, there should be no need for interpretation of individual 

wavelengths on the model because it is not possible.  

 
2. The SVM method is based on principles of statistical learning theory developed 

by Vapnik and Lerner (Vapnik and Lerner, 1963). Initially, the method was intended for 

solving classification problems, but then was adapted for linear and nonlinear function 

estimation (Drucker et al., 1997). SVM creates a tube-shaped regression volume with 

variable diameter. The called “kernel trick” originally introduced by Aizerman et al. 

(Aizerman et al., 1964) made the algorithm very popular because it opened the 

opportunity of applying the linear regression algorithm in higher dimensional data: 

dimensionality does not matter in the final optimum SVM regression function. This 

basically says that while a linear correlation may not be possible in the initial dimension, 

the correlation may be linear in another highly dimensional combination of features. The 

initial data can be mapped to the higher dimensional space applying a mapping function 

called kernel  or kernel function ϕ(x). There are several kernels with variable 

complexity (polynomial, Gaussian or Radial Basis Function (RBF)…) with which users 

can experiment, although more complex kernels may be prone to overfitting issues 

(Ivancicuc, 2007). The final regression model using Least Squares SVM regression (LS-

SVM) by Suykens et al., 2002 leads to the following equation: 

 

   Equation 15.                            ŷ ∑
=

+=
N

1k
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where vector x represents new sample, xk is kth training sample, αk is Lagrangian 

multiplier for kth training sample, b is bias term, N is number of training samples, K(x, 

xk) is a kernel function defined as  

 

 

Equation 16.                                 K(x, xk)= ϕ(x)’ϕ(xk)     
 
 
 

LS-SVM model contains information about relevance of each training sample for 

calculation of ŷ and makes its predictions based on relative comparison of new 

(unknown) sample spectra to the spectra of training samples. Few parameters such as 

function regularization and kernel parameters (for instance, width in the case of RBF 

kernel) need to be chosen for optimum prediction ability. However, the number of 

parameters to be adjusted is much smaller than ANN. Other the already implied 

advantages of SVM over ANN are fewer samples required and resistance to local minima 

since SVM uses a Lagrangian function  that has a single general minimum (Zomer, 

2004). More information on SVM may be found in Vapnik et al., 1997, Smola and 

Scholkopf, 1998, Suykens et al., 2002, and Cogdill and Dardenne, 2004. 

 

 

6.4) Validation   

 

An adequate validation of the calibration models is a crucial step to determine the 

suitability of the model to predict new samples, which is the whole purpose of developing 

NIR calibrations. Ideally, the best validation should be done with distributed samples 

which were not previously used for calibrating. Ideally, the calibration and validation 

sample subsets should not be correlated; they have to be assembled independently. 

However, if the pool of data available for calibration is relatively large (an order of a few 

hundred samples or more), and it was accumulated over an extended period of time, this 

requirement does not need to be so strict. Assuming that this is the case, one can proceed 
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to dividing samples into two subsets. A simple procedure that splits the set into two with 

the ratio of 3:1 (calibration: validation) can be performed in the following steps: 

 

1) List samples from lowest to highest concentration of the constituent of interest. 

2) Starting from the top of the list, transfer three data points into calibration sample 

set. 

3) Transfer the next data point into validation sample set. 

4) Repeat steps (2) and (3) for the rest of the samples.  

 
Since independent validation may not always be possible, cross-validation discussed 

before can provide a basic assessment regarding calibration performance. Be aware that 

the final calibration model is not tested, but rather several submodels developed with 

calibration data subsets. That is the reason why any statistic reported from cross-

validation cannot be directly compared or interpreted the same way that statistics from a 

real validation of the final model with new samples.  The standard errors from cross-

validation are often optimistic and, especially in k-fold validation, highly affected by data 

artifacts (Naes et al, 2002d). However, reporting cross-validation statistics are preferred 

over reporting calibration results alone. Table 2 shows the most used NIR validation 

statistics among the suggested and detailed in Williams (2001). However, it is not 

unusual to find literature using other statistics, reporting not so relevant figures of merit, 

or simply not reporting enough information for a good statistical assessment of the model 

quality.  

 

The coefficient of determination (R 2), which provides an estimation of how 

much variance between reference and predicted values is explained versus the total 

variance, seems to be one of the erroneously preferred guides for validation assessment. 

It ranges from 0 to 1, the higher the better. The calibration model is considered usable for 

quality assurance applications if r2 is equal to or higher than 0.92 (Williams, 2001). This 

statistic is highly dependant on the reference value range (Fearn, 2002), so you cannot 

use R2 to compare two calibrations unless they have the same range of reference data. It 
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is common to report this statistic – it has been even abused-, but it should not be reported 

alone. 

The standard error of prediction  (SEP, or SECV when reporting cross-

validation results) provides information regarding calibration precision. That is to say, the 

error you would obtain running the same sample more than once. SEP is corrected for the 

bias value (or systematic error); thus, when reporting SEP bias must be reported as well. 

According to a common in NIR community rule of thumb, SEP is considered acceptable 

(sufficiently small or comparable to the error of the reference method) if it is smaller than 

1.5 to 2 times the standard error of lab (SEL), previously introduced.  

The square root of mean standard error of predictio n (RMSEP) is related 

to SEP and Bias according to (Equation 17). Because RMSEP accounts for bias and 

provides information regarding calibration accuracy, it can be reported alone, especially 

when bias is small (then RMSEP ~ SEP) (Davies and Fearn, 2006).  

 

Equation 17.                           222 BiasSEPRMSEP +=  

 

The ratio of performance of deviation or relative predi ctive 

determinant (RPD)  is dimensionless and specific of   NIRS communities. It is related 

with the ability of the model to predict future data in relation to the initial variability of 

the calibration data.  Basically, if a calibration leads to a low SEP but the calibration was 

carried out with a small range of reference values (standard deviation of reference values 

almost the same as SEP), the model would only be predicting the data average. Williams 

(2001) provides ranges of RPD values related to the calibration suitability: values above 

8 indicate that the calibration can be used for any purpose, while values below 2.3 

indicate a poor calibration performance, with use for predicting new samples not 

advisable.   

 
 

Table 2. Common statistics used to report the predictive performance of NIR models 
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Statistic Units Equation 
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Unitless 

 

SEP
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ŷi= ith validation sample predicted value 
yi= ith  validation sample reference value 
n=number of samples in validation set 
Sdy = standard deviation of reference values from the validation set 
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Example. The following figures (36 and 37) show the regression lines from two 

calibrations from a same compound. Which one is better? 

 

 
Figure 36. Example 1 of statistics from model validation 

 
 

 

 
Figure 37. Example 2 of statistics from model validation 

 

 

Answer. Note checking the square with the software results how the first has 

higher R2, lower SEP, and lower Bias (you must check Bias as absolute value, not taking 

in account the positive or negative sign). So the first calibration looks slightly better. 
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Note also that the first calibration has two samples with lower concentration which may 

be very relevant, although we would prefer to have the data evenly distributed through 

the range, at least having those two samples with low concentration would allow 

predicting samples with lower concentration more safely – extrapolation, which is 

prediction outside of the calibration range, must be avoided-.  

 

 

7. ADVANCED TOPICS 

 

7.1) Optimization Methods 

 

There are developed applications based on the selection of a few variables from a 

spectrum. Sometimes, certain measurements benefit of using just few wavelengths 

instead of the whole range. For instance, Foss Analytical patented the use of four 

wavenumbers (1700, 1407, 1365, and 1238 cm-1 or 5882, 7107, 7326, and 8077 nm) to 

develop models for the prediction of acetone in milk (US Patent 6385549 – May 2002). 

Variable selection is a type of optimization fairly common in NIRS. Another type of 

optimization is to use only the most appropriate samples in calibration, the samples that 

will provide the best fit for the new sample. These models are called local models. Both 

optimization methods aim to reduce the complexity of the model and can be used 

together. In this section we expose some methods to both optimize variable and sample 

selection. 

 

7.1.1) Variable selection 

 

7.1.1.1  Exhaustive search 

This is the most intuitive way to select the variables. Basically, is saying “try each 

variable and combination to get the best result”. The problem of this approach is the time 

to perform the calculations. For an instrument collecting n wavelengths, the total number 
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of possible combinations is 2n – 1. For n = 100, the total number of possible variable 

combination is 2100 -1 or 1.2677 x 1030. This number is large and, even with a powerful 

computer, the exhaustive search of the best variable combination takes very long to 

perform. A type of exhaustive search is Interval PLS  (Norgaard et al, 2000). Instead of 

selecting a single variable at a time, a group of adjacent variables are selected; they are 

called intervals. PLS models based on these intervals are developed and their RMSECV 

is calculated. The interval presenting the best fitness value is selected. This interval is 

then combined to other intervals, one at a time. New PLS models are developed and the 

best combination of intervals is kept. The operation is carried on until the fitness value 

starts increasing. A reverse-interval PLS can be implemented where the first model is 

developed with all intervals and intervals are removed one at a time until the lowest 

fitness value is reached. Note that the number of PCs to use in each model is chosen by 

the user at the beginning of the optimization process. The main disadvantage of interval 

PLS is its calculation time. When the size of intervals is low and the number of variables 

large, the convergence time can get very long (hours). 

 

7.1.1.2. Genetic algorithms 

Alternatives to exhaustive search methods have been developed based on 

stochastic approaches. A stochastic method  is a method involving some randomness. 

Genetic algorithms are stochastic methods that imitate biological evolution (“the best 

individual survives”). They involve gene modification methods (combination and 

mutation) to progressively improve the breed, in this case the fit (i.e. decrease the 

predictive error). To use genetic algorithms for variable selection, it is necessary to 

randomly determine individuals: a subset of consecutive (or not) variables. PLS or PCR 

models are developed using each individual in calibration and RMSECV is used to 

evaluate the fit. The number of factors to use is predetermined by the user. At the end of 

this first step, a table representing, for each individual, its fitness and the variable ID is 

obtained. The flag yes/no of each variable that determine if a specific variable is part of 

an individual is called a gene. Table 2 presents such map of individual/gene. 
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The second step of the algorithm is discarding individuals that have a fitness 

value (RMSECV) larger than the median. Noisy variables (responsible for higher 

RMSECV) are discarded through the whole process, because less and less individuals 

have them. In the present example, individuals 1, 3, 4, 5, and 10 will be discarded. To 

“repopulate” the number of individuals, there are combinations or cross-over among the 

survival individuals. The variability in the population is generated by mutations (the 

frequency of mutation is usually user-defined). 

 

 

Table 2. Map of individuals with selected variables of a 30 wavelength spectrum (white 

squares represent selected variable). 
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3                                      0.218 
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5                                    0.178 

6                                       0.135 

7                                      0.128 
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For practicality, we will represent black squares with 0 and white squares with 1. 

Individuals 1 and 2 from the original population can then be represented as follows: 
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Individual 1:  010110111011100111001110110011 

Individual 2:  110111101111011101111011101111 

 

A combination or crossover consists in exchanging parts of the parent genes to 

create new individuals. The crossover can be single or double. In the single crossover, a 

variable is selected and everything on the left of this variable will be crossedover to the 

other individual. In a double crossover, two parts of the individual are exchanged. Thus, 

using Individuals 1 and 2 as parents, we would obtain with a single cross-over at variable 

21, the following two new individuals: 

 

New Individual 11:  010110111011100111001|011101111 

New Individual 12:  110111101111011101111|110110011 

 

and with a double cross-over at variables 7 and 15, we would obtain: 

 

New Individual 11:  0101101|01111011|111001110110011 

New Individual 12:  1101111|11011100|101111011101111 

  

If only combinations were possible, the offspring could not contain variables that 

were not selected during the initial random assignment. Mutations allow this by randomly 

converting a non-selected variable to a selected variable. Using individual 1 as parent, a 

mutation occurring at gene 10 would give: 

 

New Individual 11:  010110111111100111001110110011 

 

 The generation of offspring carries on until the population of individuals is back 

to its original size (10 in our example). RMSECVs are calculated, just like after the 

random initial population assignment. The optimization process carries on as long as 

some percentages of individuals use the same variables, the total number of generation is 

reached (also set by the user), or the optimization goal is achieved. At the end, the 
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selected variables can then be used to develop a calibration model, where the number of 

principal components can be chosen. The cross-validation process can also be replaced 

by an independent validation set to evaluate the real performance of the model. The 

whole process is thus summarized in 5 steps: 1. random creation of individuals, 2. fitness 

evaluation, 3. individual removal, 4. population breeding, 5. population mutation. Steps 2 

to 5 are carried on until the algorithm stops.  

The use of genetic algorithms requires the tuning of many parameters (the number 

of PCs to use in the automatically generated models, the nature of combination –there are 

different approaches- , the rate of mutation, the number of generations allowed …) and it 

is also prone to overfitting. A consistent validation strategy should be implemented to 

avoid that. Genetic algorithms have been used for twenty years in NIRS, but the main 

issue that developers are facing is that few instrument have software able to implement 

them (only available in statistical suites). However, they can be easily applied into 

instruments because regression coefficients of non selected variables can simply be set to 

zero. The literature reports successful applications over full spectrum methods for soluble 

solid content in apple (Shi et al, 2008) and grains (Davies, 1987; Leardi et al, 1992). 

 

7.1.1.3. Particle swarm optimization 

Another stochastic approach for variable selection is particle swarm optimization 

(PSO). PSO represents a family of algorithms that mimic the behavior of social insects or 

swarms. They were introduced by James Kennedy and Russell Eberhart in 1995 and are 

based on three sociocognitive underpinnings: Evaluate, Compare, and Imitate. For 

variable selection, the use of PSO is quite similar to GAs since it is a binary combinatory 

problem. PSO has been used for the optimization of ANN (to replace the back 

propagation algorithm) and this technique generates a lot of interest in the NIRS 

community (Kennedy and Eberhart, 2001). 

 In PSO, each particle (individual in GA) – a subset of variables among the 

variable population – is provided with an initial velocity. At each generation, the fitness 

of each particle is compared and its velocity is updated in function of its performance at 

generation n and earlier, the best global particle, and the best neighboring particles. Thus, 
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the best performing particles will be imitated by other particles and the process will carry 

on until the performance criterion is reached. The pseudo code of PSO is provided below. 

 

1-   Loop 

2- For i = 1 to Number of Particle 

3-  If Fitness(Particle i)  < Fitness(Historical Best) 

4-   For d = 1 to Dimensions 

5-    Particleid = New Bestid 

6-   Next d 

7-  End If 

8-  g = i 

9-  For j = indexes of Neighbors 

10-           If Fitness (Neighbors j) < Fitness (New Best) 

11-     Then g = j 

12-           End If 

13-  Next j 

14-  For d = 1 to number of Dimensions 

15-           νid(t) = νid(t-1) x Wi + φ1 x rand() x (New Bestid – … 

16-   Particleid (t-1)) + φ2 x rand() X (Best Neighborgd – … 

17-   Particleid (t-1)) 

18-           If ρid< s(νid(t))  

19-     Then Particleid (t) = 1 

20-     Else Particleid (t) = 0 

21-           End If 

22-  Next d 

23- Nest i 

24-   Until criterion 

 

where νid represents the velocity of the particle i and dimension d at step t or t-1, Wi is the 

inertia weight for the particle i, φ1 and φ2 are learning factors whose sum is 2.0, and ρ is 

Step 1: 
Adapt based on 
best overall 

Step 2: 
Find best in 
neighbors 

Step 3: 
Update velocity 
and particles 
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a random vector between 0 and 1. νid(t) is the parameter that determines if a dimension d 

will take the value 0 or 1 (0 meaning the variable is not selected, and 1, the variable is 

selected).  

 

To obtain values between 0 and 1 the velocity is scaled using a sigmoid function. 

 

Equation  18.                                         ( )
( )
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1 expid
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s ν
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 Since PSO looks for the best performing particles in the entire population and best 

previous state of the particle, the convergence is often quicker than for GA. The fitness 

parameter is usually the RMSECV. Since few studies have used PSO for variable 

selection, it is not possible to tell which method, PSO or GA, performed better for NIR 

spectra. More theory on PSO can be found in Kennedy and Eberhart (2001). 

 

7.1.1.4.Other methods 

Other optimization methods have been implemented to select variables. We can 

mention simulated annealing and evolutionary programming. We will not discuss these 

techniques, but their use is increasing in NIRS (Luke, 1994; Swierenga et al, 1998; Lu et 

al, 2004; Shen et al, 2004). 

 

 

7.1.2. Local regression 

Local models aim to optimize the prediction model statistics by choosing only the 

most appropriate samples to include in the calibration set. A model is generated each time 

a new sample is scanned for prediction. Tom Fearn (2001) stated that “A local calibration 

is one in which the equation used to predict for a given unknown sample is derived from 

only a subset of the available training samples, this subset having been chosen because 

the spectral data for the samples it contains resembles the spectral data for the unknown 

in some particular way”. 



 

300 

 

 

Local models have been developed to deal with clustering issues or non linearity 

issues. Figure 38.A presents the relationship between a parameter, y, and a univariate X. 

A clear non-linear pattern exists. However, as displayed by figure 38.B, it is possible to 

select only a reduced range of data, and still be able to use linear regression methods to 

perform an accurate prediction over this range. 

 

 

0 1000 2000 3000 4000
0

20

40

60

80

100

120

140

160

180

200

X

y

0 1000 2000 3000 4000
0

20

40

60

80

100

120

140

160

180

200

X

y

A B

 

Figure 38. Non-linearity issues. Plot A shows a non-linear relationship between two 
variables X and y. Plot B presents a possible data range where local regression with linear 

regression method is possible. 
 

 

The implementation of local models globally follows the same steps, no matter 

the algorithm used: 

 

1. Creation of  a calibration set 

2. Collection of a new sample spectrum to be predicted 

3. Selection of samples the “closest” or the most “similar” 

from the calibration set to the sample to predict 

4. Prediction of the new sample based on the “local” model. 
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First, it is necessary to have a large library of samples. Enough samples should be 

present in the neighborhood of the new samples to ensure its precise and accurate 

prediction. It is then necessary to select the most appropriate samples from the available 

database to develop a local calibration set. Depending on the algorithm, different methods 

are used to find the closet samples. Here, the three most common techniques used in 

NIRS will be presented (CARNAC, LOCAL, and locally weighted regression). 

 

In the method CARNAC (Davies et al, 1988; Davies and Fearn, 2006b), standing 

for Comparison Analysis using Restructured Near-infrared And Constituent data, the 

database, as well as the new sample to predict, is compressed using Fourier or wavelet 

transform and a similarity index is determined. This index is defined as 

 

Equation 19.                                 
2

1

(1 )
s

r
=

−
 

 

where r2, the coefficient of determination, exposes the similarity of the new sample with 

those in the database. The number of samples to include can be set by either using a 

threshold on s or by selecting a fixed number of samples, among the closest. The 

algorithm LOCAL (Shenk et al, 1997) performs similarly by determining the correlation 

coefficient (r) between the spectra in the database and the new spectrum (US Patent 

5798526 – August 1998). Spectra can be raw or pretreated, but no compression method is 

used. Similarly, the number of samples to keep is determined by a threshold or a fixed 

number of samples to include.  

The locally weighted regression (LWR) algorithm (Cleveland et al, 1988, Næs et 

al, 1990) uses a different approach to find the closest spectra. A PCA compresses the 

database and the sample to predict. The closest samples are determined by calculating 

Euclidian or Mahalanobis distances between scores of the new sample and scores of the 

calibration set. A modification to LWR (LWRY) introduced the possibility to add 

information from the Y-matrix in the distance calculation (Chang et al., 2001). 

The Mahalanobis distance was replaced with a more complex distance expression: 
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Equation 20.                             ( )1-i i iD Yd Xdα α= +  

 

where iXd  is the Mahalanobis distance for sample i to predict, α is a weighting factor 

and  Yd is a normalized chemical distance calculated as follows: 

 

Equation 21.                              
( )

,

,max

i l

i

i l

y y
Yd

y y

−
=

−
 

 

where y , the estimated unknown property estimated by a global regression and ,i ly is the 

reference value of each local sample. 

 

 The next step consists of developing the local model and predicting the new 

sample. CARNAC is particular because it does not use any regression method, but the 

prediction of the new sample is determined by a weighted average of the y values of the 

selected samples. The logarithm of the similarity index is used as a weighting factor. 

LOCAL and LWR methods, however, predict the y value of the new spectrum using a 

regression method (PLS or PCR). In LOCAL, several models are developed for different 

PCs and the final prediction is a weighted average of all predictions. LOCAL algorithm 

automates the choice of the number of PCs. The weight associated with each prediction is:  

 

Equation 22.                            
1

k
residual BetaCoef

W
X RMS

=
×

 

 

where kW is the weight associated with the kth PC, residualX , the difference between the 

reconstructed spectra (from PLS or PCR decomposition) and the true spectrum to be 

predicted, and BetaCoefRMS , the root mean square of the regression coefficient. The best 

principal component will present the best reconstructed spectra and the smoothest 
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regression coefficient and will thus maximize the weighting factor ( residualX decreases 

while BetaCoefRMS increases with the number of PCs). For LWR, the determination of the 

best PC is not automated. However, a weighting function is applied to each selected 

sample using a cubic weight function (figure 39) based on the distance of the sample to 

predict with the local calibration samples (the farthest is scaled to have a distance of 1). 

The weighting function is as follows: 

 

Equation 23.                                               ( )331SW d= −  

 

where SW is the weight associated with a calibration sample and d, the scaled distance 

between the new sample to predict and the calibration sample. Like every calibration 

procedure, the last step in the development of a local method should be a validation 

procedure. 
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Figure 39. Cubic weight function. 

  

 

 Local strategies have their pros and cons. They can be as accurate as global 

models, robust, and able to deal with non-linear relationships. However, they are time 

consuming, have little instrumental support (mostly offline applications), and cannot be 

approved in heavy regulatory environments. From a local model point of view, no 



 

304 

 

calibration can be approved because each model is different. However, this regulatory 

issue could be solved by approving the sample database, since the database is fixed for 

each new sample (Cogdill et al, 2002). 

 

7.2) Standarization 

 

Individual calibrations can be developed for each instrument, but sometimes the 

resources are limited. Then, calibrations developed from a single instrument can be 

transferred to the rest. Calibration models are often developed using spectra of a single 

instrument called a master unit. This master unit should be chosen among other units of 

the network of instrument available to the chemometrician because of its precision and 

accuracy (Siska et al, 2001). However, the master unit is often located in the research 

laboratory and does not participate to the actual online processes or quality controls. The 

model needs to be transferred to these instruments. This is called standardization and is 

an essential part of the implementation of NIRS. 

 

Three types of standardization techniques exist: 

- Optical standardization or calibration transfer by adaptation of the 

secondary unit’s spectra to match master’s spectra 

- Post regression correction or standardization by correction of the 

predicted values of the secondary units using calibration developed 

on master unit. 

- Robust models or standardization by calibration model adaptation 

 

7.2.1) Optical standardization techniques 

Optical standardization techniques try to adjust secondary unit’s spectra to the 

spectra of the master unit. The intent is for the calibration model to perform as well as if a 

sample was scanned on the master unit. To perform the spectral modifications, a set of 

samples, called standardization samples, need to be run on both master and secondary 

units. Bouveresse and Massart (1996) presented a comprehensive description of the 
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selection and the use of standardization samples in their review of standardization 

techniques.  This can be done with a high leverage method proposed by Wang et al (1991) 

or the Kennard-Stone algorithm (Kennard et al, 1969). Bouveresse et al (1994) presented 

two simple techniques to select standardization samples. The first consisted in selecting 

samples that were the best predicted among the validation set. The second consisted in 

using samples from a different source but of similar nature (not artificial samples). When 

dealing with several prediction models, using the same standardization samples for all 

factors is often convenient, but may not result in the best standardization since a sample 

may be predicted well for a factor but not for another. 

Several techniques exist to match spectra. Five of the best known techniques will 

be presented here. Other methods have been developed, but remain marginal in their use 

because their lengthy calculations do not bring real improvements compared to existing 

methods. Examples of complex techniques are ANN based standardization (Despagne et 

al, 1998; Duponchel et al, 1999), maximum likelihood PCA (Andrews et al, 1997), 

positive matrix factorization (Xie et al, 1999), Kalman and Wiener filters (Teppola et al, 

1999 and Siska et al, 2001 respectively), and other standardization of the regression 

coefficient techniques (Wang et al, 1991). 

 

7.2.1.1 Single wavelength standardization 

This method, developed by Shenk and Westerhaus (Paynter et al, 1983; Shenk et 

al, 1985), consists of correcting, for each wavelength, the absorbance shifts (adjust the 

intensity differences between instruments). It is done by regressing, one at a time, the 

absorption values of a standardization set scanned on the master unit against the one 

obtained when the same set is scanned on the secondary unit. A slope and an offset are 

obtained and the secondary unit is corrected. This simplistic technique is applicable only 

when a limited shift in the X-axis (wavelength) exists.  

Figure 40 shows the application of this technique in standardizing two Foss 

Infratec units (master unit: Infratec 1241, secondary unit: Infratec 1229). Twenty soybean 

standardization samples were used and the wavelength of interest was 852 nm. The 
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secondary unit had a lower intensity in its measurements and the correction function at 

this wavelength would be: 

 

Equation 24.                              852 8520.88 0.19Scor SW W= × +  

 

where 852
ScorW corresponds to the corrected value of the secondary unit at 852 nm, 852

SW  is 

the original value of the secondary unit, and 0.88 and 0.19 are the slope and the offset 

values respectively obtained when fitting a first order polynomial to the data. 

The quality of the standardization samples is critical because a wrong 

approximation of the correction factors at each wavelength can have a large impact on the 

final SEP. 
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Figure 40. Single wavelength standardization. An offset and a slope need to be applied to 
this wavelength to correct the signal. 
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 7.2.1.2. The patented algorithm – Shenk and Westerhaus 

An updated version of the single wavelength standardization included the 

possibility to correct for shifts in the X-axis. This method has been patented and is used 

by the chemometric package WinISI (US Patent 4866644 – September 1989). Shenk et al 

(1993) and Bouveresse et al (1994) describe the functioning of the algorithm.  

 

It is divided into two steps. The first step is called wavelength index correction 

and consists in correcting the X-axis shifts while the second part corrects the intensity 

differences. Standardization spectra are preprocessed using a first derivative treatment. 

For each wavelength of the master, a spectral window of neighboring wavelength on the 

secondary instrument is chosen and for each wavelength of the window, the correlations 

with the master are computed. A quadratic model is fit to the correlation values to 

estimate more precisely the position of the wavelength that produces maximum 

correlation.  The fit is between the wavelength that has the highest correlation and its two 

neighboring wavelengths. The new locations obtained from the quadratic model 

(inflection points of the windowed quadratic equation) are recorded and a new spectrum 

is built. A second quadratic model is developed to relate the master wavelength to the 

matching wavelength on the modified secondary unit spectra. Definitive values for the 

secondary unit wavelengths corresponding to the master wavelengths are obtained. This 

process is called the wavelength index correction. The modified secondary unit spectra 

are then interpolated. Wavelengths of the secondary unit are shifted to the corresponding 

master wavelength, at each wavelength (similar to what was implemented in the single 

wavelength standardization method) using a linear regression. A slope and an offset for 

each wavelength are obtained and are used to correct spectral intensity. 

The wavelength index and the spectral intensity correction factors are stored and 

applied to new spectra scanned on the slave instrument.  This method is adapted to many 

standardization situations involving similar instruments. When facing instruments with 

more complex differences like a peak broadening, the patented algorithm is not sufficient 

because it “assume that no relationship exists between neighboring correction models” 

(Feudale et al, 2002). 
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7.2.1.3. Direct standardization 

Wang et al (1991) introduced two standardization techniques able to cope with 

peak broadening. Both methods imply that spectra from the master and the secondary unit 

are linearly related and this relation can be described by a transformation matrix such as 

 

Equation 25.                                         M SS = S F 

 

where MS is a spectra scanned on the master unit, SS a spectra scanned on the secondary 

unit, and F the transformation matrix. In direct standardization (DS), the transformation 

matrix is simply estimated as 

 

Equation 26.                                         +
S MF = S S  

 

where +
SS is the pseudo inverse of SS . With F calculated, any new spectra NS can be 

modified to the original measurement space so that the calibration will predict it 

appropriately using 

 

Equation 27.                                         Ntrans NS = S F 

 

where NtransS is the new spectrum modified to the original measurement space. NtransS is 

then applied to the calibration model developed on the master unit. 

 

 The computation of F assumes that the difference between instruments is due to 

instrumental variations. However, the variation in the chemical composition (due to non-

complete sample homogeneity) is also modeled and may be a source of error. Also, 

because the number of samples used to create F (standardization samples) is smaller than 

the number of channels to evaluate, DS is subject to overfitting. F is typically estimated 

using PCR or PLS to obtain a least squares solution.  

Another approach to limit overfitting is to reduce the number of channels 

estimated at a time. This is the purpose of piecewise direct standardization (PDS). 
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7.2.1.4.Piecewise direct standardization 

In DS, each wavelength of the master unit is related to all the wavelengths of the 

secondary unit. PDS is a local alternative to DS. Influence of shifts of the X-axis between 

instruments is limited to certain spectral regions and does not impact the standardization 

of other wavelengths. PDS performs the same calculations as DS but at a local level. The 

user defines a window size and transformation coefficients are calculated to relate one 

wavelength of the master unit with several wavelengths on the secondary unit: 

 

Equation 28.                                             j j jr = R b  

 

where jr is the absorption value at wavelength j from the master unit, jR  is the 

absorption value at wavelength j from the secondary unit, and jb  is the vector of 

transformation coefficients for wavelength j. The size of the window usually varies 

between 3 and 5 wavelengths and a wavelength on the secondary unit is used several 

times to explain different wavelength on the master unit (moving window, one master 

wavelength at a time). For each window, transformation coefficients are estimated and 

assembled to form a banded diagonal matrix F according to 

 

Equation 29.                            ( )T T T T
1 2, ,..., ,...,j kdiag=F b b b b  

 

where k is the number of wavelengths. Thus, the transfer matrix relates the response of a 

number of wavelengths (size of the window) of the secondary unit to a single wavelength 

of the master unit (figure 41). 
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Figure 41. Structure of the transformation matrix  

 

 PDS is often used as reference method for other standardization techniques. Many 

authors have used it successfully, but few instruments are able to use a transfer matrix 

onboard (Perten DA (Perten Instruments AB, Huddinge, Sweden) can use PDS with a 

window size of 1). The standardization using DS or PDS has to be done offline. This 

situation is similar to the use of the patented algorithm except that Foss NIRSystems 

instruments are equipped with software that can accommodate the standardization 

parameters. Notice that a PDS with a window size of 1 is equivalent to single wavelength 

standardization. The difference is that in PDS, coefficients are estimated using a PCR or 

PLS. 

 To carry on the example introduced with single wavelength standardization, table 

3 presents the transformation matrix for wavelength at 850 nm, 852 nm, and 854 nm 

when a window size of 3 is used on the secondary unit. With each wavelength a bias is 

associated. In this particular case, they are -0.0114, -0.0074, and -0.0077 for 850 nm, 852 

nm, and 854 nm respectively. With these parameters, the calculation of the corrected 

absorption value of a spectrum collected on a secondary unit for the wavelength at 852 

nm would be: 

 

Equation 30.         852 850 852 8540.3601 0.3601 0.3589 ( 0.0074)Scor Sraw Sraw SrawW W W W= × + × + × + −  

 

The reason for coefficients to be so similar is that there is no shift in the 

wavelength axis. 



 

311 

 

 

 

Table 3. Structure of the transformation matrix for the example using a window size of 3 
wavelengths. 

 

    Master Unit 

    
850 852 854 … 

    

        

S
ec
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da
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ni
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850   0.5420 0.3601   

852   0.5401 0.3601 0.3614  

854    0.3589 0.3601 … 

856     0.3589 … 

…      … 

  

An attempt to use DS and PDS on spectra transformed in the wavelet domain was 

published by Tan et al (2001). They showed that the standardization at the approximation 

level with PDS and the detail level with DS was more robust and reliable than using DS 

or PDS only. 

 

7.2.2) Post regression correction techniques 

This second type of model transfer method does not modify the spectra. It adjusts 

predictions made on the secondary unit by the model developed on the master unit. Post 

regression correction techniques are easily implemented by every embedded software or 

firmware and are also easier to understand (for users).  

Often called slope and bias correction, this technique is widely used among very 

similar instruments (one can note the misuse of the term bias which in reality corresponds 

to term intercept). In this technique, a standardization set is scanned on all instruments 

(the secondary units as well as the master units) and predictions are compared to the 

reference values (Bouveresse et al, 1996). A linear regression is implemented and the 
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slope and intercept of the trend line are determined. These parameters are then used to 

systematically correct predictions from the secondary instrument using the prediction 

equation developed on a master unit. This is a very simple approach that requires only 

that the range of the standardization samples cover the range of the calibration samples. 

A special case of slope and intercept correction is bias only correction. Bias is 

calculated from standardization samples predictions and reference values and is added to 

the future predictions. This situation is suitable only when the slope is significantly equal 

to one. This signifies that the difference between the two units is mainly based on 

absorption intensities differences and not a shift in the X-axis. The slope in post 

regression correction appears when the wavelength alignment between the instruments is 

not correct. As an example, predictions of the standardization set by a protein model 

developed on Infratec 1241 and run on Infratec 1229 are compared with the reference 

measurements. Figure 42 shows the relationship between the two units as well as the 

slope and intercept necessary to implement slope and bias correction and the bias for bias 

only correction. 
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Figure 42. Post-regression correction results for protein. Slope and intercept or bias only 
correction can be used to correct the measurements. 
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In this situation, using slope and bias post regression correction, the prediction on 

the secondary unit should be corrected as follows: 

 

Equation 31.                            ̂ ˆ0.982 0.595Sec Sec
Cor RawX X= × +  

 

And using bias only correction, it would look like: 

 

Equation 32.                               ̂ ˆ ( 0.059)Sec Sec
Cor RawX X= + −  

 

 

7.2.3) Robust standardization techniques 

Robust statistics are statistics that do not rely as much as classical statistics on 

assumptions. Many of the classical techniques require a normal or uniform distribution of 

the data. It is the case of MLR, PCR, and PLS while ANN and SVM are robust methods. 

They are more tolerant to outliers and emulate classical methods. However, the term 

robust, in robust standardization techniques, represents the idea of being resistant to 

outliers, but does not always involve the use of robust statistic techniques. Several robust 

standardization methods have been developed, but few papers have been published on the 

topic. 

 

7.2.3.1. Spectral preprocessing 

A possibility to make a calibration robust is to use pretreatment methods to 

remove instrumental interferences. But these methods do not work if there is a shift in the 

X-axis among instruments (Perten DA instruments uses MSC to standardize diode array 

instruments). Standardization by preprocessing is fairly easy, but cannot cope with large 

or inconsistent instrumental differences. 
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7.2.3.2. Variable selection 

It is also possible to make a model robust by selecting wavelengths that are not 

subject to shifts (isonumeric wavelengths (Mark and Workman, 1988)) and to develop 

models using MLR. However, it is necessary to correct for intensity differences (Dean 

and Isaksson, 1993). 

 

7.2.3.3. Including external variability 

This family of robust methods consists in scanning all or part of the calibration set 

on all the instruments of the network and by developing a calibration based on all the 

spectra. This way, the calibration algorithm does the standardization work by adapting 

the model to each instrument. Fearn (2001) noted that “The resulting calibration will 

almost certainly be less accurate than a calibration for a single instrument, but this may 

be a price worth paying”. Often preprocessing methods are used to help remove the 

instrumental interferences. 

 

7.2.3.4. Orthogonal-based techniques 

These methods are based on the statistical theory that the column space of the X-

matrix (set of all possible linear combination of column vectors) is “the sum of two 

subspaces, among which only one contains information useful for the model “(Roger et al, 

2003). Thus, by doing the appropriate projection, one can develop a model based only on 

the adequate X-matrix. There exists two ways of estimating the “parasitic” subspace. The 

first consists of finding the space orthogonal to y. This is what orthogonal signal 

projection (OSC) and orthogonal projections to latent structures (O-PLS) are doing. The 

second approach estimates the space in which the external factor occurs. Transfer by 

orthogonal projection (TOP), dynamic orthogonal projection (DOP), and error removal 

by orthogonal subtraction (EROS) are the most popular techniques to find and remove 

the orthogonal space. 

 

Orthogonal signal correction. OSC was introduced by Wold et al in 1998. The 

idea is to compute loading weights, w, such that the scores t calculated from t = Xw 
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describe as much variance as possible. The decomposition into scores is similar to the 

one used to develop PLS. The constraint is that this variance is not correlated to y. It is 

possible to repeat the process and remove more orthogonal factors from the t matrix. This 

corrected t matrix is then used to develop a PLS model.  

 

Orthogonal projections to latent structures. Trygg and Wold introduced a 

variation of OSC in 2002. Instead of removing the orthogonal signal from the t matrix 

prior to calibration development, the O-PLS method removes the orthogonal information 

from the PCs calculated by PLS. The reconstructed X-matrix can then be used to develop 

a calibration model. O-PLS was reported to perform better than OSC. Their primary goal 

is to remove noise. Authors reported that systematic variations could be successfully 

removed by the methods. These variations can be due to scattering or baseline effects, but 

from a standardization standpoint, the removal of systematic variations can correspond to 

deleting instrumental signatures and thus improve model transferability. 

 

Transfer by orthogonal projection. Andrew and Fearn (2004) published an 

orthogonal technique aiming to remove the interfering components from the X-matrix in 

the situation of calibration transfer. Standardization samples are measured on both master 

and secondary units. A difference spectrum is obtained by subtracting standardization 

samples from both units and a PCA is performed on the difference matrix D. The first k 

loadings of D are used to form the matrix P representing the direction of main variation 

between units. P is orthogonalized on the X-matrix to obtain a corrected X-matrix (Xcorr) 

for between-instrument differences using 

 

Equation 33.                               ( )T
corrX = X I - PP  

 

where I  is the identity matrix. Xcorr is then used to develop calibration models. TOP 

requires the use of standardization samples. But in certain situations, collection of 

samples is not possible and orthogonalization is performed using the DOP method. 
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Dynamic orthogonal projection. In DOP (Zeaiter et al, 2006), standardization samples 

are replaced by virtual standards. These standards are chosen to represent a variation to 

be removed. In calibration transfer situations, a few samples collected from the secondary 

instruments ( tX ) are used to create virtual standards using a kernel function. Equation 51 

demonstrates how virtual standards are created using the calibration set (X and y) and the 

reference value of the samples collected on the secondary unit (yt): 

 

Equation 34.                                 ̂tX AX=  with  ( )
tiij y ja F y=  

 

where ˆ
tX are the virtual standards, 

tiyF is a Gaussian kernel function centered on tiy for 

the ith sample and the jth variable. A difference matrix D is calculated (D = ˆ
tX - tX ) and 

similarly to TOP, the first k loadings from a PCA are selected to form P. The X-matrix is 

then orthogonalized similarly to TOP using equation 34. By not requiring the same 

samples run on both master and secondary unit, DOP is more flexible, especially for on-

line applications. 

 

Error removal by orthogonal subtraction. EROS (Zhu et al, 2008) is based on the same 

principles as TOP and DOP. The difference arises from the way the P matrix is calculated. 

In EROS, the difference matrix D is mean centered and a new matrix W representing the 

difference between measurements is calculated as follows: 

 

Equation 35.                                                   
( )1

Tm
i i

i

D D
W

r m=

=
−∑  

 

where r  is the total number of spectra in the D matrixes and m is the number of samples 

(also the number of D matrixes). W represents the pooled within-sample covariance 

matrix of the replicate spectra. The k first PCA loadings of W are selected and used to 

form the matrix P, used to orthogonalize the X-matrix using equation 34. 
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 Orthogonal methods need to be tuned. The number of times orthogonal 

components are removed for OSC and O-PLS need to be optimized. Similarly, TOP, 

DOP, and EROS require tuning k, the number of factors to orthogonalize. 

TOP, DOP, and EROS have the advantage of being embedded in the calibration 

model (the regression algorithm will not take into account the orthogonal signal and the 

beta coefficients will emphasis the orthogonalization by not taking into account the 

orthogonal part of the signal in prediction mode). Thus, these methods are implemented 

during the calibration process. Validation samples do not need any orthogonalization step 

on the contrary to all other preprocessing and standardization methods. They have the 

tremendous advantage to be useable by all instrument software settings (even firmware). 

These same methods can be used to remove other interferences than instrumental 

differences such as temperature, batch effects, and other unwanted external effects 

presenting a repetitive effect across samples (Zeaiter et al, 2006). 
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8. THE UNSCRAMBLER EXAMPLES 
 

8.1) Carrying out Principal Component Analysis (PCA) 
 

8.1.1) Importing data 

For this example you will need the data file “Pipes.csv”. This file cannot be open 

directly in The Unscrambler, it is a comma delimited file. You need to import it. So go to 

file ���� import ���� ascii and then browse for the file. You can open the file in Excel so then 

you can see how it looks like, and fill the right fields from the importing window (figure 

43). 

 

 
Figure 43. Importing ascii window 

 
 

Once the data is imported, the data table should have the wavelength number on 

the top row and the sample numbers on the first column (Figure 44). The first wavelength 

(top row) is 802 nanometers and the last one is 2498 nm, so you can suspect that this is 

data from a reflectance instrument. The instrument reads the absorbance every 2 nm 

(check how wavelengths increase by two nanometers).  
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Figure 44. Imported data table 

 

 

8.1.2) Plotting data 

 It is always important to plot your spectra so you can see if you have any bad 

sample and if the overall data looks as it should. First, select the data to plot with the 

mouse and then go to Plot�Line and leave the drop off menu at “All variables” so it will 

plot all wavelength range. Be sure you select by rows and not by columns, otherwise 

when you plot your data you won’t plot sample spectra but wavelength values in function 

of the samples. If you do it right, you should get something like Figure 45 (a), otherwise 

you will get something like Figure 45 (b). 

 

 

 
 

Figure 45. Right spectra (a) and bad plot (b) 

 

a b 
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One interesting thing to notice in the plot is a kind of cut in the wavelength value 

1100. It is not a problem, what it is is a change on the instrument detector: The 

instrument has two detectors (remember that some detectors work better at certain 

wavelength ranges) so some type of reading discontinuity is unavoidable. The best thing 

to do is not consider that small range of 3 wavelengths in the analysis.  

 

8.1.3) Carrying out PCA 

Close the plot window to be back to the data table. No select Task � PCA. You 

should get a window where you can select several options. First notice there are two tabs, 

one with samples and the other with variables. Let’s start with samples. The sample set, 

will be all samples or selected samples (use the 100 samples we have). If you ever want 

to ignore any sample, you can type them in the Keep out of calculation section or you 

can define the samples to work clicking on define and following the steps.  

 Let’s go to the validation Method. We will use the Cross validation method. 

Click on Setup. You will see that you get the chance to select how you want to do your 

cross validation from the drop off menu (Figure 46). We advise to leave it random or if 

you have few samples (less than 50 for instance) select the Full cross validation. The 

reason why is that if you have few samples and you split them in subgroups, you will be 

creating models with such small number of samples that will be really different from the 

last real model. On the opposite, if you have a lot of samples and you select full cross 

validation the program will take forever to do the validation. Because we have 100 

samples, we can select random and you can either adjust the number of segments 

(number of submodels to be created) or samples per segment (the number of samples 

included in each submodel). Let’s adjust that last option so we have 20 samples per 

segment so this leaves the number of segments equal to 5. Click ok. 
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Figure 46. Cross validation Setup 

 

 
Once on the main window, check the model size. If you leave it in Full and 20 

PCs, the software will calculate up to 20 PCs for you. We don’t want so many for now 

because it would take longer, select 10 PCs. Once the window looks like Figure 47, select 

the variables tab, where you can select the wavelengths you want to include in the 

analysis.  Remember we saw that discontinuity due to a change of detectors and we want 

to leave those wavelengths out. To make it much easier, we will include in the analysis 

wavelengths above 1104 nm and ignore shorter wavelengths. To do that, on the variable 

tab, check the Variable Set section. Right now, all variables are selected. Click on define 

to enter the desired range. The Set Editor will pop out. Right now it is empty because you 

have not defined any range, so click Add. The New Variable Set window will show: enter 

a name (for instance, short spectra), Data type: Spectra (it does not matter but it will help 

you remember) and then fill the interval section. To do so, you can either click on select 

and add it through dragging with the mouse, or you can enter the range using a dash. 
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Note that you don’t enter wavelengts in the range but the column number. The 

wavelength 1104 is located in column 152, so the range would be 152 – 849 (Figure 48) 

 

 
Figure 47. Setting the sample tab options 

 
 

 
Figure 48. Adding a wavelength range 
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Everything is ready. Click ok to the New Variable Set window, ok to the Set 

Editor , and ok to the Principal Component Analysis window.  The program should 

start calculating. You will see in the progress window how it displays blue bars 

respresenting the variance in each component. As we previously explained the first PCs 

explain most of the variance, so you should see a larger bar in the first PC and then the 

bars are getting shorter (sometime the variance is so small that the rest of PCs do not get 

any bar). This process is done as many times as submodels (we had 5 submodels). If you 

ever see that the variance bars do not decrease but increase, this is a sign that the specific 

submodel has some trouble: it is very easy that during the random selection of samples 

one of the submodels get samples from a smaller range and when it is validated it fails. 

Sometimes, it may also indicate we have outliers.  

 

8.1.4) Checking the results 

Once the calculation is finished, you can click on View to check the results. Four 

plots are displayed by default, although there are other plots you could check.  

Score Plots. The most interesting plot is the scores plot (Figure 49), there is where 

you will see if there is any sample relationship and clusters. We have clear clustering in 

our data, like 6 clusters. Knowing the data in advance, we know that this is due to 6 

different pipe sizes. Now you can see how PCA can be used to find similarities among 

samples. On the bottom, it gives you the percentage of variability that each PC represent 

(first PC represents the 79%, the second PC. A 21%). You can check the scores from 

other PCs clicking on that plot and playing with the green arrows on the right top. For 

instance, if you represent the scores on PC2 vs scores on PC3, you will see there are 4 

samples pretty far from the rest (Figure 50).  PC3 represents such small variability that 

the program displays 0% . 
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Figure 49. Score plot of PC1 vs PC2 
 
 
 
 

 
 

Figure 50. Score plot of PC3 vs PC2 

 
 

Influence Plot. You can check for problematic samples in the influence plot, 

where sample residual is plotted versus its leverage (Figure 51). We can check there for 

samples that have been difficult to model during the PCA process, and samples that have 

a big influence on it. In our exercise, those 4 samples we saw in figure 50, are the ones 

with highest residuals so they probably were not well measured. If you would like to 

calculate the model without them, you would select them using the right icon on the top 

left and select them with the mouse, and then go again to tasks���� recalculate without 
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marked. There are a couple of samples with high leverage: those are shown to be a little 

different than the others and have a higher influence on the model, but they have low 

residuals so are important samples to keep. 

 

 

 
Figure 51. Influence plot showing four samples with high residual 

 

 
Explained/Residual Variance Plot. This plots helps you determine how many 

PCs you want to use and keep. The software stops in base of a conservative significance 

test, so you can use the suggested number of PCs (in this exercise is two, you can see this 

on the bottom of the influence plot) or you can use your own number using the green 

arrows on the top right of the window. The explained variance plot though it is a good 

visual way to see the variance represented by each PC. Personally, I found that when 

displayed as residual variance is found much useful as you can see the elbow that helps 

determine when to stop adding PCs in your model. In case you don’t have the residual 

variance display by default (Figure 52), the icon is the last one on the top of the window. 
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Figure 52. Residual Variance Plot, showing that with 2 PCs almost all data variance can 

be explained 

 
 

X-loadings plot. This plot is helpful to determine which wavelengths have more 

relevance in each PC. For instance, on the first PC (Figure 53) wavelengths above 2300 

nm do not seem to have much relevance, while from 1650 to 1700 nm and around 1200 

nm the wavelengths seem to have the highest relevance. You can click on the green 

arrows on the top to check other PCS. The second PC should have a high influence from 

the highest wavelengths and again, from wavelengths around 1700 nm. 

 

 
 

Figure 53. Loading values from all the wavelengths on the first PC 
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8.1.5) Saving the model and applying it 

Once you are happy with it (after removing samples and recalculate it if required) 

you only need to save it going to File ���� save as. It automatically lets you browse for the 

directory and enter a name, and the file is saved as a calibration result (check how under 

the file name it says “save as type: PCA”). The saved model has a .M extension. You can 

now try to apply the model. Remember that to apply the model, you need to have data 

from the same instrument and remember the work conditions: we worked with 

wavelengths above 1104 nm. 

Just to try, close the results window and be back to the data table. We will now 

apply our model to the same data to practice. Go to task � Project samples (what a PCA 

model does is project the new spectra to the new variables, PCs. Our model has 2 PCs). 

By default, all the fields form the Project samples window should be fine, because we 

used the same data to create the model. If the data were new, you should be sure that you 

go to the variable tab and you select the same wavelength range. Otherwise, you won’t be 

able to use the model (The Unscrambler won’t even find it). Right now, we are fine, so 

you can go to the Model Name section and click on Find to browse for the model. Once 

you find it, click OK. You should get the same plots we got before, because it is the same 

data, but being new spectra you should be able to check the plots to search for answers. 

 

8.2) Developing a basic PLS calibration 

 

8.2.1) Checking data 

You will need the data file “SoybeanOil.OOD”. It is a The Unscrambler file so 

you do not need to import it, you can directly open it. The file is obtained from a 

transmittance instrument that measures from 850 nm to 1048 nm at 2 nm increments. 

There are two columns with reference values corresponding to two compounds: Protein 

and oil. We will carry out a calibration for oil, and you can later carry out a calibration 

for protein for further practice. 
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First, let’s check the sample spectra. Select all samples (rows) and click on plot � 

line. Now be careful, for variable set it says “All variables”. You do not want to plot all 

variables, because remember you have two columns that are not spectral data. So you will 

have to define a new variable set (click on define, add a new set, and select the right 

range: from column 3 to the last column). You should have 100 wavelengths or variables 

to plot. So far, we cannot see any bad sample (Figure 54) 

 

 
 

Figure 54. Soybean absorbance spectra from a transmittance instrument 
 
 
 

Now, let’s check the reference data. Select the column with oil values. Now go to 

Plot � Histogram. This allows checking for the distribution. Ideally, we would like a 

uniform distribution, but the common distribution in a population is the normal 

distribution. We can see this in our histogram (Figure 55), the statistics on the right left 

can be useful, especially the number of elements or samples, (skewness and kurtossis can 

be used to check the distribution, but for our purposes, a fast visual inspection is enough), 

the mean, and the standard deviation. We have a higher proportion of samples with oil 

ranging from 19.1 to 19.9% approximately. We don’t have a big amount of samples, but 

we could remove 10 samples from that range to make the distribution more uniform. 

Closing the histogram, go to Modify���� Sort samples. We will sort the samples according 

to their oil content; all samples sorted by Values. In the Keys section of the sort samples 
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window, set the first variable at 2 (oil is set on the second column) and second variable as 

2 as well. Click ok. Now we will find the samples that have oil content higher than 19.1 

and we will delete one sample every 3 (delete 59, 62…) up to the samples that have 

higher content than 20.1%. If you check the histogram again, you will see that looks  a 

little bit better although it is common to have a smaller amount of samples with high and 

low oil content (having a perfect uniform distribution would mean to have very few 

samples!) 

This is a fast way to do it and maybe not the most advisable as we may be 

removing interesting samples. There are a couple of sample selection algorithms that take 

in account sample spectra as well, but they are not very extended or they are part of 

propiertary software. Right now, it is a valid enough approach.  

 

 
 

Figure 55. Distribution of oil content (histogram) before deleting samples 
 

 

8.2.2) Calibration process and results 

Now we are ready to start the PLS calibration. Go to Task � Regression . The 

regression window will open. Right on the top, there are the possible regression methods 

in The Unscrambler, we will leave it in PLS1 (PLS for 1 compound). Similarly to the last 

PCA exercise, we will check cross validation as the Validation Method . We will pick 

this time full cross-validation even if it takes a little longer (it means the program will 
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create over 100 submodels). Click ok, and then from the regression window set the 

number of PCs to calculate to 12 (right now, 12 is enough).  

Go to the X-variable tab and set the right interval. That is, all the wavelength 

range (column 3 to the end). Do the same with the Y-variable, which is the compound to 

be measured. For this first example is oil, so it is just the second column. When you have 

the set-up ready (Figure 56) click OK. We will check the plots we obtain. 

 

 

Figure 56. regression window correctly filled 
 

 

Scores Plot. Like in PCA, the score plot can be check in PLS, but remember that 

we are not exactly checking PCs but Latent Variables although the program gives them 

the same name, those have been calculated a slightly different than PCs, taking in account 

the reference values (oil content). The plot is not one of the most important this time, but 

it may still be useful to see any strange data clustering. If you see clustering in PLS, be 

careful. You should apply preprocessing methods and see of those can be eliminated, 
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different clusters may lead to non-linearities and may mean that you have completely 

different populations in your calibration set (could be an indication of different reference 

methods used for instance…you should check why). 

Residual/Explained Validation Variance Plot. This is again the plot you have to 

check to know how many LVs should be included in your model (check the PCA 

exercise). The software again is giving its suggestion (8 PCs, you can see it on the bottom 

of the two remaining plots). Eight may be a good choice, and you could even add another 

one (check the new results with 9 PCs clicking on any of the plots and using the green 

arrows on the top).  

Regrescion Coefficients (B). Those are the real results of your calibration model 

(those are the coefficients you need to multiply to each corresponding wavelenghts from 

a new spectra to obtain a prediction of oil content), displayed graphically (Figure 57). 

This plot looks like a spectrum, and it is desirable it looks smooth. On the X axis there 

are the wavelenghts and on the Y axis there are no units as they are coefficients. On the 

bottom of the plot, there is the offset value. You may need to check the numerical value 

of the coefficients. To do so, right click on the plot, go to View���� Numerical. The results 

are displayed for the model with selected PCs (by default, using the 8PCs) (Figure 58). 

You will note you have fewer values than wavelengths, that’s because the wavelengths 

that got a coefficient equal to 0 are not displayed. You can copy them by right clicking 

and paste them in word or excel.  

 

 

Figure 57. Regression Coefficients plot 
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 So just to check it is clear, the way that those coefficients are utilized in future 

predictions would be: 

 

Predicted Oil content (%) = B0 + coefficient1*absorbance1 + coefficient2*absorbance2 +…  

 

 

Predicted vs Measured Plot. This is the plot you should use to report your 

calibration and your calibration validation by cross-validation. By default, it is showing 

two values for each of the parameters in the box. The most interesting ones are RMSE 

and R-square. If you click on the plot and then you unclick on the icon on the top and to 

the right that says Cal, the plot will only display the cross-validation results and you will 

get more statistics. Those are the approximate results you should get doing so (Figure 58 

a and b) I say approximate because since our cross-validation is random, your subsets and 

mine will be different and will lead to slightly different results.   

 

 

Figure 58. Predicted vs measured of both calibration and validation (a) and just for 
validation (resulting from the cross-validation submodels) (b) 

 

 

Getting the results from just the validation, allows obtaining more statistics. Here 

you can find the statistics we previously mentioned: Bias, SEP, RMSEP, R-square. Be 

sure you really uncheck Cal instead of Val, otherwise you should notice that instead of 

a b 



 

333 

 

displaying SEP, SEC (standard error of calibration) is displayed. You should see that we 

have a good calibration according to the results. 

Influence Plot. This plot is not shown by default, so you should click on any of 

the plots you do not need and then go to Plots�Residuals and check influence plot. You 

have other plots you may want to see, although with the ones we already saw most of the 

relevant information have been checked. We have already seen the Influence plot in the 

PCA analysis and we have seen that it is very useful to detect outliers. In our example, 

we do not have clear outliers, but we have a set of samples that show high residuals 

(Figure 59). You can try to delete them (first, click on the right icon on the top and select 

the samples) and recalculate the model (task����recalculate without marked). You should 

get a significant improvement (my SEP drop to 0.5% from the initial 0.63%). 

 

 

Figure 59. Influence plot with suggested samples to delete 
 

 

8.2.3) Saving and applying the model  

Similar to the PCA example, go to file���� save as, and save your regression model. 

This time, we will try to use this model to predict from new data. The trick is that the data 

we will use (called “SoybeanOilVal.OOD”) comes from another instrument but from the 

same brand. We will see what happens. 
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One you have your model saved, now close your data table too and open the 

validation file (“SoybeanOilVal.OOD”). Before you predict, you should first select the 

variables (the scans). If you don’t do that, The Unscrambler will think that all your data 

tables are scans only, and when you will try to find the model it won’t let you use it (in 

fact, you won’t even have the chance to select it) because it has been created with 100 

variables and not 102. Be careful with that, this is one of the tricky things with The 

Unscrambler. To select the variables you can go to Edit����Select variables and then 

Define a new set. You only have to do what you did before with your first data, enter the 

right range where you have the spectra (column 3 to 102). You could also select them 

manually (highlight them), but this way is much easier.  

One you have the spectra selected, go to task ���� predict and browse for the model. (in 

Model Name section, click on Find…). Now go to the Y-reference Tab and click 

“Include Y-Reference” (Figure 60). We can do that because we have the reference values 

of our data and we can validate the model again; if we did not and we only need the 

rpedictions, then leave it like that. Then you have to define the column that has the 

reference data (the second column again). You can click Ok and The Unscrambler will 

predict for you. 
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Figure 60. Setting the Reference in the prediction box 
 

 
By default, the results will be displayed as box plots and numerically (Figure 61), 

but we want to get the statistics (SEP, R-Square…). So you can go to Plots���� prediction 

and then select Predicted vs Reference. You should see how we did not get bad results at 

all (Figure 62): bias increased significantly (as expected, the accuracy will get slightly 

worse) but SEP just increased a little. This should give you a taste of what would come 

next: how to standardize or transfer a calibration from one instrument to another.  
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Figure 61. Default display for prediction results 

 
 

 
Figure 62. Prediction results: predicted vs reference 

 
 
 

A suggestion is you try now to carry out a calibration with protein and then try to 

predict from the validation file. You can also try to apply preprocessing methods (go to 

Modify� transform and select a few), is any of them giving better models for both cross-

validation and “independent” validation (using SoybeanOilVal file and predict)?  
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9. MATLAB EXAMPLES AND CODES 

MATLAB programming environment in combination with toolboxes, individual 

custom-written functions, and scripts is an extremely versatile and powerful software 

package for analysis of NIR data. Effective utilization of this software requires general 

programming skills, knowledge of MATLAB programming language, and strong 

familiarity with the available tools and features. However, MATLAB has a very useful 

help material for its functions and toolboxes and some step-by-step examples. We 

provide in this section some useful exercises and example codes to help users start using 

matlab environment and PLS_toolbox for NIR analysis. The examples were originally 

created with Matlab 7.0.1 (R14), LS_SVMlab v.1.5, and PLS_Toolbox 3.0.1 but have 

been further tested with Matlab 7.0.4 and PLS_Toolbox 3.5.4. For more information on 

MATLAB functionality and features refer to technical documentation 

(www.mathworks.com), help files, and demos. All data files used in the examples are 

located on the Grainbin file server (\\grainbin\Users\Shared\NIR Primer). 

 

9. 1) Importing XLS files 
 
Task: Import spectral and reference data from file “matlabEx8p1DataFile.xls” into 
MATLAB.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

>> % First, make sure the data file is located in the current 
>> % working directory. Otherwise, instead of just fil e name,   
>> % use full path, for example ‘C:\Matlab\work\filena me.xls’.  
>> 
>> [data1]=xlsread('matlabEx8p1DataFile.xls','Sheet 1'); 
>> [data2]=xlsread('matlabEx8p1DataFile.xls','Sheet 2'); 
>> [data3]=xlsread('matlabEx8p1DataFile.xls','Sheet 3'); 
>> 
>> whos 
  Name        Size                    Bytes  Class 
 
  data1     102x251                  204816  double  array 
  data2     102x251                  204816  double  array 
  data3     102x27                    22032  double  array 
 
Grand total is 53958 elements using 431664 bytes  
 
>> % Save sample IDs. 
>> IDs=[data1(1,2:end),data2(1,2:end),data3(1,2:end )]; 
>> 
>> % Save wavelengths.  
>> wLens=[data1(2:end-1,1)]; 
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>> % Merge spectral data from data1, data2, and data3 into one   
>> % matrix spectra.   
>> spectra=[data1(2:end-1,2:end),data2(2:end-1,2:en d),... 
data3(2:end-1,2:end)]; 
>> 
>> % Merge reference data into one vector prot.  
>> prot=[data1(end,2:end),data2(end,2:end),data3(en d,2:end)]; 
>> 
>> % Delete unnecessary variables. 
>> clear data1 data2 data3; 
>> 
>> whos 
  Name          Size                    Bytes  Clas s 
 
  IDs           1x526                    4208  doub le array 
  prot          1x526                    4208  doub le array 
  spectra     100x526                  420800  doub le array 
  wLens       100x1                       800  doub le array 
 
Grand total is 53752 elements using 430016 bytes 
 
>> % Since it is more customary to store variables in columns and   
>> % samples in rows, transpose matrix spectra and vec tor prot. 
>> spectra=spectra'; prot=prot'; IDs=IDs'; 
>> whos 
  Name          Size                    Bytes  Clas s 
 
  IDs         526x1                      4208  doub le array 
  prot        526x1                      4208  doub le array 
  spectra     526x100                  420800  doub le array 
  wLens       100x1                       800  doub le array 
 
Grand total is 53752 elements using 430016 bytes 
 
>> % For visual inspection of the data, plot spectra a nd protein.  
>> plot(wLens, spectra); 
>> xlabel('Wavelength, nm'); ylabel('Absorbance'); 
>> 
>> figure, hist(prot); 
>> xlabel('Protein, %'); ylabel('Frequency'); 
>> 
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9. 2) Importing TXT files 
 
Task: Import spectral data from file “matlabEx8p2DataFile.txt” into MATLAB. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

>> allData=importdata('matlabEx8p2DataFile.txt'); 
>> 
>> % Variable allData is a structure with three fields :  
>> allData 
 
allData =  
 
          data: [2151x61 double] 
      textdata: {1x61 cell} 
    colheaders: {1x61 cell} 
 
>> % Save spectral data.  
>> spectra=allData.data(:,2:end); 
>> 
>> % Save wavelengths.  
>> wLens=allData.data(:,1); 
>> 
>> % Save sample IDs.  
>> IDs=allData.colheaders(2:end); 
>> 
>> % Delete allData structure and transpose IDs and sp ectra. 
>> clear allData; 
>> IDs=IDs'; spectra=spectra'; 
>> whos 
  Name          Size                    Bytes  Clas s 
 
  IDs          60x1                     11040  cell  array 
  spectra      60x2151                1032480  doub le array 
  wLens      2151x1                     17208  doub le array 
 
Grand total is 134991 elements using 1060728 bytes 
 
>> % Plot spectra. 
>> plot(wLens,spectra); 
>> xlabel('Wavelengths, nm'); ylabel('Absorbance');  
>>  
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9. 3) Importing SPC files 
 
Task: Import spectral data from file “matlabEx8p3DataFile.spc” into MATLAB. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9. 4) Saving MATLAB data in TXT and CSV files 
 
Task: Save selected variables from MATLAB workspace as TXT and CSV files. 
 
 
 
 
 
 
 
 
 
 
 

>> [spectra,wLens]=spcreadr('matlabEx8p3DataFile.sp c'); 
>> 
>> whos 
  Name          Size                    Bytes  Clas s 
 
  spectra     625x100                  500000  doub le array 
  wLens         1x100                     800  doub le array 
 
Grand total is 62600 elements using 500800 bytes 
 
>> wLens=wLens'; 
>> plot(wLens,spectra); 
>> xlabel('Wavelength, nm'); ylabel('Absorbance'); 
 

 

>> load matlabEx8p4DataFile.mat 
>> save('spectra.txt', 'spectra', '-ASCII'); 
>> save('protein.txt', 'prot', '-ASCII'); 
>> 
>> csvwrite('spectra.csv', spectra); 
>> csvwrite('protein.csv', prot); 
>> 



 

341 

 

 
 

9. 5) Storing spectral and reference data in MAT files 
 
Task: Store spectral and reference data in MAT file for subsequent use in MATLAB and 
The Unscrambler. 
 
Note: Advantage of storing data in MATLAB file format vs. MS Excel or MS Access is 
that MAT database does not have limitation on number of columns (Excel and Access 
tables are limited to 254 columns).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

>> % Resultant MAT file should contain following vari ables: 
>> %     fileInfo        - general info about data; d ata class:  
>> %                       cell array.  
>> %     refData         - reference chemistry data; data class: 
>> %                       double-precision vector or  matrix. 
>> %     refDataLabels   - reference data labels; dat a class: matrix 
>> %                       of characters.  
>> %     sampleIDs       - sample IDs; data class: nu merical  
>> %                       double-precision column ve ctor. 
>> %     sampleIDsChar   - sample IDs for reading by  
>> %                       The Unscrambler; data clas s: matrix of  
>> %                       characters. 
>> %     spectra         - spectral data (samples in rows, variables 
>> %                       in columns); data class: n umerical  
>> %                       double-precision matrix. 
>> %     wLens           - wavelengths in nm; data cl ass: numerical  
>> %                       double-precision column or  row vector. 
>> %     wLensChar       - wavelengths in nm for read ing by The  
>> %                       Unscrambler; data class: m atrix of  
>> %                       characters. 
>> 
>> % First, perform data import steps from the exampl e  
>> % “8.1. Importing XLS files”. 
>>  
>> [data1]=xlsread('matlabEx8p1DataFile.xls','Sheet 1'); 
[data2]=xlsread('matlabEx8p1DataFile.xls','Sheet2') ; 
[data3]=xlsread('matlabEx8p1DataFile.xls','Sheet3') ; 
IDs=[data1(1,2:end),data2(1,2:end),data3(1,2:end)];  
wLens=[data1(2:end-1,1)]; 
spectra=[data1(2:end-1,2:end),data2(2:end-1,2:end), ... 
data3(2:end-1,2:end)]; 
prot=[data1(end,2:end),data2(end,2:end),data3(end,2 :end)]; 
clear data1 data2 data3; 
spectra=spectra'; prot=prot';IDs=IDs'; 
>> 
>> whos 
  Name          Size                    Bytes  Clas s 
 
  IDs           1x526                    4208  doub le array 
  prot        526x1                      4208  doub le array 
  spectra     526x100                  420800  doub le array 
  wLens       100x1                       800  doub le array 
 
Grand total is 53752 elements using 430016 bytes 
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9. 6) Opening MAT files in The Unscrambler 
 

Task: Import MAT data file into The Unscrambler v. 9.1.  

 

Solution:  

a) Start The Unscrambler. 

>> % Even though wLens variable is a column header and  it would be 
>> % logical to transpose it into a row vector, we ar e not going to  
>> % do it.  Here is why: conversion of a numerical r ow vector into  
>> % character variable will result in one long strin g of characters  
>> % which will not be understood by The Unscrambler as wavelength  
>> % variable names.  
>>  
>> fileInfo={'Commodity: soybeans'; 'Instrument: FO SS Infratec';... 
'Author: Name'; 'Date: xx/xx/xxxx'; 'Comments: ...' }; 
>>  
>> refData=prot; 
>> refDataLabels=['Protein']; 
>> 
>> sampleIDs=IDs;  
>> sampleIDsChar=num2str(sampleIDs); 
>> 
>> wLensChar=num2str(wLens); 
>> clear IDs prot; 
>> 
>> whos 
  Name                Size                    Bytes   Class 
 
  fileInfo            4x1                       372   cell array 
  refData           526x1                      4208   double array 
  refDataLabels       1x7                        14   char array 
  sampleIDs         526x1                      4208   double array 
  sampleIDsChar     526x8                      8416   char array    
  spectra           526x100                  420800   double array 
  wLens             100x1                       800   double array 
  wLensChar         100x4                       800   char array 
 
Grand total is 64212 elements using 451168 bytes 
 
>> % Before saving data, make sure that MATLAB is set to save MAT 
>> % files in v.6 format (The Unscrambler v.9.1 does n ot read MATLAB  
>> % v.7 files). In MATLAB, go to File/Preferences/Gen eral/MAT-Files  
>> % and select “Ensure backward compatibility (-v6)”.   
>>  
>> % Save file in the current working directory.  
>> save 'SbFossInfratecProteinCalData.mat'; 
>>  



 

343 

 

b) First, import spectral data: go to File/Import/Matlab and locate MAT file to be 

imported (see Figure 8.1). Click Import.  

c) In the next window, select spectra in the Data field, sampleIDsChar in Sample 

names, and wLensChar in Variable names (Figure 63). Click OK.  

 
 

 
 

Figure 63. Locating MAT file to be imported.  
 
 

 
 

Figure 64. Selecting MAT file variables for importing spectral data. 
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d) Insert an empty 1st column that in the next few steps will be filled with the 

reference values. Go to Edit/Insert/Variable. 

e) Import reference data: go to File/Import/Matlab and select “Current data table 

(from origin)” (Figure 65). Click OK. 

f) Locate the same MAT file and click Import. 

g) In the next dialog window, select reference data vector (refData), sample names 

(sampleIDsChar), and reference variable name (refDataLabels) as shown in 

Figure 66. To finish data import, click OK.  The result is shown in Figure 67. 

 
 

 
 

Figure 65. Selecting destination for reference data. 
 
 
 

 
 
 

Figure 66. Selecting MAT file variables for importing reference data. 
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Figure 67. MAT file imported into The Unscrambler.  
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9. 7) Calibration using PLS regression 
 
Task: Develop and validate PLS calibration model using data set  
“SbFossInfratecProteinCalData.mat”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

>> % Load data file.  
>> load SbFossInfratecProteinCalData.mat; 
>>  
>> % Preprocess spectra (2nd derivative).  
>> spectra=savgol(spectra,5,3,2); 
>>  
>> % Divide data into calibration and validation sets.  
>> % Use 75% of the samples for calibration and the ot her 25%   
>> % for testing.  
>> 
>> inputTrain=spectra([1:4:end,2:4:end,4:4:end],:);  
>> targetTrain=refData([1:4:end,2:4:end,4:4:end],:) ; 
>> 
>> inputTest=spectra(3:4:end,:); 
>> targetTest=refData(3:4:end,:); 
>>   
>> % Normalize (autoscale) inputs and targets.  
>> [inputTrainNorm,meanInputTrainNorm,stdInputTrain Norm]=... 
auto(inputTrain); 
>> inputTestNorm=scale(inputTest,meanInputTrainNorm ,...  
stdInputTrainNorm); 
>> [targetTrainNorm,meanTargetTrainNorm,stdTargetTr ainNorm]=... 
auto(targetTrain);   
>> 
>> % Perform cross-validation to find the best number of   
>> % PLS predictors. 
>> [press,cumpress,rmsecv,rmsec,cvpred]=... 
crossval(inputTrainNorm,targetTrainNorm,'sim',{'con ' 5},20); 
>> 
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>> % From the graph, select number of latent variables  corresponding  
>> % to the lowest value of RMSECV(0); 
>> nLV=6; 
>> 
>> % Perform PLS regression.  
>> plsOptions=pls('options');  
>> plsOptions.display='off';  
>> plsOptions.plots='none';  
>>     
>> plsModel=pls(inputTrainNorm,targetTrainNorm,nLV, plsOptions);  
>> plsPredictedNorm=pls(inputTestNorm,plsModel,plsO ptions);  
>>  
>> plsPredicted=rescale(plsPredictedNorm.pred{2},.. . 
meanTargetTrainNorm,stdTargetTrainNorm);  
>>       
>> [plsSlope,plsIntercept,plsR]=postreg(plsPredicte d',targetTest');  
>> plsBias = sum(targetTest-plsPredicted)./length(t argetTest-... 
plsPredicted);  
>> plsSEP = std(plsPredicted-targetTest);  
>> plsRPD = std(targetTest)/plsSEP;  
>>     
>> PLS.model=plsModel;  
>> PLS.numOfLVs=nLV;  
>> PLS.residuals=targetTest-plsPredicted;  
>> PLS.r=plsR;  
>> PLS.rSq=plsR^2;  
>> PLS.SEP=plsSEP;  
>> PLS.slope=plsSlope;  
>> PLS.intercept=plsIntercept;  
>> PLS.bias=plsBias;  
>> PLS.RPD=plsRPD;  
>>            
>> close all; 
>> 
>> % Display results  
>> PLS 
 
PLS =  
 
        model: [1x1 struct] 
     numOfLVs: 6 
    residuals: [131x1 double] 
            r: 0.9630 
          rSq: 0.9275 
          SEP: 0.9404 
        slope: 0.9627 
    intercept: 1.5166 
         bias: -0.1149 
          RPD: 3.6790 
>> 
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>> figure; plot(PLS.residuals,'bx');  
>> title('Residuals of PLS model');  
>> xlabel('Sample (from min to max ref. concentrati on)');  
>> ylabel('Prediction error');  
>> hold on;  
>> plot([1:length(PLS.residuals)],0,'r-');  
>> hold off;  
 
  

 
 
 

>> plsPredictedNorm=pls(inputTestNorm,PLS.model,pls Options);  
>> plsPredicted=rescale(plsPredictedNorm.pred{2},.. . 
meanTargetTrainNorm,stdTargetTrainNorm);  
>> figure; postreg(plsPredicted',targetTest');  
>> title('PLS model');  
>> xlabel('Actual'); ylabel('Predicted');  
>>   
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9. 8) Calibration using ANN regression 
 
Task: Develop and validate ANN calibration model using data set  
“SbFossInfratecProteinCalData.mat”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

>> % Load data file.  
>> load SbFossInfratecProteinCalData.mat;  
>> 
>> % Preprocess spectra (2nd derivative).  
>> spectra=savgol(spectra,5,3,2);  
>>  
>> % Divide data into calibration and validation sets.  
>> % Use 75% of the samples for calibration and 25% fo r testing. 
>> inputTrain=spectra([1:4:end,2:4:end,4:4:end],:);  
>> targetTrain=refData([1:4:end,2:4:end,4:4:end],:) ;  
>> inputTest=spectra(3:4:end,:); 
>> targetTest=refData(3:4:end,:);  
>> 
>> % 10% of the calibration data will be used as an "e arly  
>> % stopping set" to prevent overtraining.  
>> inputVal=inputTrain(1:10:end,:);  
>> targetVal=targetTrain(1:10:end,:);  
>>   
>> % Transpose matrices for ANN training. 
>> inputTrain=inputTrain';  
>> inputVal=inputVal';  
>> inputTest=inputTest';  
>> targetTrain=targetTrain';  
>> targetVal=targetVal';  
>> targetTest=targetTest'; 
>> 
>> % Normalize spectra.  
>> [inputTrainNorm,meanInputTrainNorm,stdInputTrain Norm]=... 
prestd(inputTrain); 
>> inputValNorm=trastd(inputVal,meanInputTrainNorm, ... 
stdInputTrainNorm); 
>> inputTestNorm=trastd(inputTest,meanInputTrainNor m,... 
stdInputTrainNorm);  
>> 
>> % Reduce number of inputs using PCA compression.  
>> minFracOfVar=0.0025; 
>> [inputTrainNormTrans,transMat]=prepca(inputTrain Norm,... 
minFracOfVar);  
>> % prepca finds PCs that are responsible for  
>> % (100-100*minFracOfVar)% of total variation;  
>> temp=size(inputTrainNormTrans);  
>> PCs=temp(1); clear temp; 
>> 
>> inputValNormTrans=trapca(inputValNorm,transMat);  
>> inputTestNormTrans=trapca(inputTestNorm,transMat ); 
>> val.P=inputValNormTrans; 
>> val.T=targetVal; 
>> 
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>> % Train ANN model.  
>> valMse=1000; % initial value of MSE of intermediate testing;  
>> numOfNeurons=3; % number of neurons in a hidden layer;  
>> 
>> for reinit=1:10;  
    disp(sprintf('Number of PCs (inputs):       %g' ,PCs));  
    disp(sprintf('Neurons in a hidden layer:    %g' ,numOfNeurons));  
    disp(sprintf('Reinitialization:             %g' ,reinit));  
      
    net=newff(minmax(inputTrainNormTrans),[numOfNeu rons 1],... 
{'tansig' 'purelin'},'trainlm');  
    [net,trRec]=train(net,inputTrainNormTrans,targe tTrain,... 
[],[],val);  
  
    predictedFromTest = sim(net,inputTestNormTrans) ;  
    [fSlope,fIntercept,fR] = postreg(predictedFromT est,targetTest);  
       
    fBias = sum(targetTest-predictedFromTest)./... 
length(targetTest-predictedFromTest);  
    fSEP = std(targetTest-predictedFromTest);  
    fRPD = std(targetTest)/fSEP;  
     
    if (trRec.vperf(end)<valMse)  
       valMse=trRec.vperf(end)  
       finalNet.net=net;  
       finalNet.testData.inputTestNormTrans=inputTe stNormTrans;  
       finalNet.testData.targetTest=targetTest;  
       finalNet.testData.transMat=transMat;  
       finalNet.minFracOfVar=minFracOfVar;  
       finalNet.explVar=(100-100*minFracOfVar);  
       finalNet.numOfPCs=PCs;  
       finalNet.numOfHLNeurons=numOfNeurons;  
       finalNet.r=fR;  
       finalNet.rSq=fR^2;  
       finalNet.SEP=fSEP;  
       finalNet.slope=fSlope;  
       finalNet.intercept=fIntercept;  
       finalNet.bias=fBias;  
       finalNet.RPD=fRPD;     
    end;     
   end;  
>> 
>> % Display results.  
>> finalNet  
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finalNet =  
 
               net: [1x1 network] 
          testData: [1x1 struct] 
      minFracOfVar: 0.0025 
           explVar: 99.7500 
          numOfPCs: 23 
    numOfHLNeurons: 3 
                 r: 0.9656 
               rSq: 0.9324 
               SEP: 0.8997 
             slope: 0.9246 
         intercept: 2.8719 
              bias: -0.0371 
               RPD: 3.8454 
 
>> close all; 
>> pred=sim(finalNet.net,finalNet.testData.inputTes tNormTrans); 
>> figure, postreg(pred,finalNet.testData.targetTes t);  
>> title('ANN model'); 
>>  
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9. 9) Calibration using LS-SVM regression 
 

Task: Develop and validate LS-SVM calibration model using data set  
“SbFossInfratecProteinCalData.mat”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

>> % Load data file.  
>> load SbFossInfratecProteinCalData.mat;  
>>   
>> % Preprocess spectra (2nd derivative).  
>> spectra=savgol(spectra,5,3,2);  
>>  
>> % Divide data into calibration and validation sets .  
>> % Use 75% of the samples for calibration and the o ther 25% for  
>> % testing.  
>> 
>> inputTrain=spectra([1:4:end,2:4:end,4:4:end],:);  
>> targetTrain=refData([1:4:end,2:4:end,4:4:end],:) ;  
>>   
>> inputTest=spectra(3:4:end,:);  
>> targetTest=refData(3:4:end,:);  
>> 
>> % Normalize (autoscale) inputs and targets.  
>> [inputTrainNorm,meanInputTrainNorm,... 
stdInputTrainNorm]=auto(inputTrain); 
>> inputTestNorm=scale(inputTest,meanInputTrainNorm ,... 
stdInputTrainNorm); 
>> [targetTrainNorm,meanTargetTrainNorm,... 
stdTargetTrainNorm]=auto(targetTrain); 
>> 
>> % LS-SVM regression.  
>> gamSig2Range=[100 10; 1000000 100000]; % range for the two 
>> % optimization parameters; 
>> lssvmModel=initlssvm(inputTrainNorm,targetTrain, ... 
'f',1,0.1,'RBF_kernel','original'); 
>> lssvmModel=tunelssvm(lssvmModel,gamSig2Range,...  
'gridsearch',{},'crossvalidate',... 
{inputTrainNorm,targetTrain,5,'mse','mean','origina l'}); 
>> lssvmModel=trainlssvm(lssvmModel); 
>> lssvmPred=simlssvm(lssvmModel,inputTestNorm); 
>> 
>> figure;  
>> [lssvmSlope,lssvmIntercept,lssvmR]=postreg(lssvm Pred',... 
targetTest'); 
>> title('LS-SVM model'); 
>> 
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>> lssvmBias=sum(targetTest-lssvmPred)./length(targ etTest-... 
lssvmPred); 
>> lssvmSEP=std(targetTest-lssvmPred); 
>> lssvmRPD=std(targetTest)/lssvmSEP; 
>> LSSVM.model=lssvmModel; 
>> LSSVM.residuals=targetTest-lssvmPred; 
>> LSSVM.r=lssvmR; 
>> LSSVM.rSq=lssvmR^2; 
>> LSSVM.SEP=lssvmSEP;  
>> LSSVM.slope=lssvmSlope;  
>> LSSVM.intercept=lssvmIntercept;  
>> LSSVM.bias=lssvmBias;  
>> LSSVM.RPD=lssvmRPD;  
>> LSSVM.testData.pred=lssvmPred;  
>> LSSVM.testData.actual=targetTest; 
>> 
>> % Display results.  
>> LSSVM 
 
LSSVM =  
 
        model: [1x1 struct] 
    residuals: [131x1 double] 
            r: 0.9688 
          rSq: 0.9386 
          SEP: 0.8572 
        slope: 0.9445 
    intercept: 2.1860 
         bias: -0.0976 
          RPD: 4.0360 
     testData: [1x1 struct] 
>> 
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9. 10) Creating uniformly distributed data sets 
 
Task: Obtain a uniformly distributed in reference values data set from normally 
distributed data in “SbFossInfratecProteinCalData.mat”.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

>> % Load data file.  
>> load SbFossInfratecProteinCalData.mat; 
>> 
>> % Assemble initial data matrix. 
>> % 1st column is sample IDs, 2nd col. is reference values,  
>> % the rest of the columns is spectral data. 
>> data=[sampleIDs,refData,spectra]; 
>> % Sort rows by reference values. 
>> data=sortrows(data,2); 
>>  
>> % Plot original distr. & define size of bin.  
>> [rows,cols]=size(data); 
>> binSize=floor(sqrt(rows/30)); 
>> num=10*binSize; % number of bins  
>> conc=data(:,2); 
>> subplot(1,2,1); hist(conc,40); 
>> yAxisRange=get(gca,'YLim'); 
>> title('Original distribution'); 
>> xlabel('Concentration, %'); ylabel('Frequency');  
>> minc=min(conc); 
>> maxc=max(conc); 
>> bin=(maxc-minc)/num; 
>>  
>> % Initialize bins.  
>> for j=1:num  
      bins(j).samps=[];  
  end; 
>> 
>> % Assign samples to bins.  
  for i=1:length(conc)  
      b=ceil((conc(i,:)-minc)/bin);  
      if b==0  
         b=1;  
      end;  
      bins(b).samps=[bins(b).samps; data(i,:)];  
  end; 
>> 
>> % Resample bins.  
>> clear j; 
>> for j=1:num 
      numSamps=size(bins(j).samps); 
      numSamps=numSamps(1); 
      if numSamps>binSize               
          step=floor(numSamps/binSize); 
          bins(j).samps=bins(j).samps(1:step:end,:) ; 
      end; 
  end; 
>>  
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>> % New uniform data set.  
>> dataU=[];  
>> clear j;  
>> for j=1:num  
      dataU=[dataU;bins(j).samps];  
  end;  
>> 
>> % Plot new distribution.  
>> subplot(1,2,2); hist(dataU(:,2),40); 
>> set(gca,'YLim',yAxisRange); 
>> title('Modified (uniform) distribution'); 
>> xlabel('Concentration, %'); 
>> ylabel('Frequency'); 
>> 
 
 

 
 
 
 
 
>> 
>> % dataU is a new data set uniformly distributed in reference  
>> % values; 1st column of dataU is sample IDs, 2nd col.  is  
>> % reference values, the rest of the columns is spec tral data.  
>> 
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9. 11) Removal of spectral outliers 
 

Task: Using principal component analysis, identify and remove spectral outliers from 
the data set in “SbFossInfratecProteinCalData.mat”.  
 

Solution:  
a) In MATLAB command window: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) Load x-data (spectral data) into PCA tool: File/Load Data, select variable spectra, 

and click Load. 

c) Perform principal component analysis by clicking calc button.  

>> % Load data file.  
>> load SbFossInfratecProteinCalData.mat;  
>>  
>> % Start Principal Component Analysis tool. 
>> pca 
>>  
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d) Select number of PCs that explain 100% of variation (5 PCs) and click apply. The 

result of this operation is shown in Figure 68. 

 
 
 

 
 
 

Figure 68. Selecting number of PCs.   
 
 
 

e) Click scores button. Two additional windows will appear: plot of scores and Plot 

Controls dialog window.  

f) In Plot Controls window, select Q Residuals for X-axis of the graph and Hotelling 

T^2 for Y-axis (Figure 69).  
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Figure 69. Selecting X-  and Y-axes for the plot of scores.   

 

g) In Plot Controls window, checkmark a box next to Conf. Limit 95%. Two dashed 

lines identifying 95% confidence limit intervals for Q Residuals and Hotelling T2 

will appear on the “plot of scores” (Figure 70). 

 

 
 

 
Figure 70. Plot of Hotelling T2 vs. Q Residuals with 95% confidence limit intervals.   
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h) Using polygon selection tool (in Plot Controls, go to Edit/Selection 

Mode/Polygon and then click Select button), select data points beyond 95% limit 

(Figure 71).  

 
 

 
 
 
Figure 71. Plot of Hotelling T2 vs. Q Residuals with data points beyond 95% confidence 

limit selected.   
 
 
 
 

i) Exclude selected data points: in Plot Controls, go to Edit/Exclude Selection.  

j) Save data to the MATLAB work space: File/Save Data, call new variable pcaData, 

and click Save.  

k) In MATLAB command window: 
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>> includedSamps=pcaData.include{1}; 
>> 
>> spectraNew=spectra(includedSamps,:);  
>> refDataNew=refData(includedSamps,:);  
>> sampleIDsNew=sampleIDs(includedSamps,:); 
>> 
>> figure, subplot(2,1,1),plot(wLens,spectra);  
>> title('Original spectra');  
>> xlabel('Wavelengths, nm');  
>> ylabel('Absorbance'); 
>> 
>> subplot(2,1,2),plot(wLens,spectraNew);  
>> title('Spectra with outliers removed');  
>> xlabel('Wavelengths, nm');  
>> ylabel('Absorbance');  
>> 
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>> % The difference between original and new data sets  
>> % is more visible if the spectra are normalized usi ng SNV.  
>> 
>> spectraSnv=snv(spectra);  
>> spectraNewSnv=snv(spectraNew);  
>> figure,subplot(2,1,1),plot(wLens,spectraSnv);  
>> title('Normalized original spectra');  
>> xlabel('Wavelengths, nm');  
>> ylabel('Absorbance');  
>> subplot(2,1,2),plot(wLens,spectraNewSnv);  
>> title('Normalized spectra with outliers removed' );  
>> xlabel('Wavelengths, nm');  
>> ylabel('Absorbance'); 
>>  
 

 
 

 
>> % If a PLS calibration model is developed for a ne w data set,  
>> % its validation r^2 improves from 0.928 (see examp le 8.7) to  
>> % 0.936.  
>> 



 

362 

 

 

10. RECOMMENDED READING 

 
 
10.1) Books  

 
A User-Friendly Guide to Multivariate Calibration and Classification by Tormod 
Næs, Tomas Isaksson, Tom Fearn, Tony Davies; NIR Publications, Chichester, UK, 
2002, ISBN 0952866625. 
 
Chemometric Techniques for Quantitative Analysis by Richard Kramer; Marcel 
Dekker, 1998, ISBN 0824701984. 
 
Chemometrics: Statistics and Computer Application in Analytical Chemistry by 
Matthias Otto; John Wiley & Sons, 1999, ISBN 352729628X. 
 
Data Fitting in the Chemical Sciences By the Method of Least Squares by Peter 
Gans; John Wiley & Sons, 1992, ISBN 0471934127. 

Handbook of Near-Infrared Analysis by Donald A. Burns, Emil W. Ciurczak; 
Marcel Dekker, 2nd edition, 2001, ISBN 0824705343. 

Multivariate Analysis of Quality: An Introduction by Harald Martens, Magni 
Martens; John Wiley & Sons, 2001, ISBN 0471974285. 

Multivariate Calibration  by Harald Martens, Tormod Naes, Tormod Ns; John Wiley 
& Sons, 1989, ASIN 0471909793. 

Near-Infrared Applications in Biotechnology by Ramesh Raghavachari; Marcel 
Dekker, 2001, ISBN 0824700090. 

Near-Infrared Spectroscopy: Principles, Instruments, Applications by H. W. 
Siesler, Y. Ozaki, S. Kawata, H. M. Heise; John Wiley & Sons, 2002, ISBN 
3527301496. 

Near-Infrared Technology in the Agricultural and Food Industries by Phil 
Williams, Karl Norris; American Association of Cereal Chemists, 2nd edition, 2001, 
ISBN 1891127241. 

Neural Networks in Chemistry and Drug Design by Jure Zupan, Johann Gasteiger; 
John Wiley & Sons, 2nd edition, 1999, ISBN 3527297790. 
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Principles and Practice of Spectroscopic Calibration by Howard Mark; Wiley-
Interscience, 1991, ISBN 0471546143. 

Statistical Methods in Analytical Chemistry by Peter C. Meier, Richard E. Zünd; 
Wiley-Interscience, 2nd edition, 2000, ISBN 0471293636. 

10. 2) Internet resources 
 

Council for Near Infrared Spectroscopy:  
http://www.idrc-chambersburg.org. 
 
Glossary of NIR Terms: 
http://www.asdi.com/ASD-600520_NIR-Glossary_Rev1.pdf. 
 
NIR Publications: 
http://www.nirpublications.com. 
 
NIR Publications Discussion Forum: 
http://www.nirpublications.com/discus. 

 
Quantitative Analysis Using NIR and Chemometrics: 
http://www.postech.ac.kr/class/chem441/exp8.htm. 
 
Selection of a Multivariate Calibration Method: 
http://minf.vub.ac.be/~fabi/calibration/multi/pages/start.html. 
 
Spectroscopy Europe: The Tony Davies Column: 
http://www.spectroscopyeurope.com/td_col.html. 
 
Spectroscopy Magazine: 
http://www.spectroscopymag.com/spectroscopy.  
 
SpectroscopyNow: 
http://www.spectroscopynow.com.  
 
Theory and Principles of NIR Spectroscopy: 
http://www.spectroscopyeurope.com/NIR_14_01.pdf. 
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