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                                     ABSTRACT  

 

Biodiesel, or fatty acid alkyl ester, is a non-toxic, biodegradable and renewable 

source of energy. It is mostly produced from vegetable oils.  Other sources include 

animal fat, oils obtained from algae, fungi, bacteria, etc.  Esterification of oil with alcohol 

in the presence of moderate temperature (60°C) and a catalyst to produce fatty acid alkyl 

esters is known as transesterification. The transesterification process, facilitated by 

mechanical mixing, is commercially used to produce biodiesel. 

In industry, biodiesel is characterized using proton nuclear magnetic resonance 

spectroscopy (1H NMR spectroscopy). In the first section of this study, 

thermogravimetric analysis (TGA) is demonstrated as a potential method for monitoring 

biodiesel production by transesterification of soybean oil with methanol. Soybean oil and 

commercially available biodiesel were mixed in varying proportions by weight as 

standards. In addition, mixtures of different biodiesel/soybean oil ratios were also created 

by periodically interrupting base-catalyzed transesterification of soybean oil with 

methanol. The mixtures produced by both approaches were analyzed with TGA and the 

results were then compared with analytical data obtained by NMR spectroscopy. It was 

found that results from both analytical methods were in good agreement (± 5 %). Thus 

TGA is a simple, convenient, and economical method for monitoring biodiesel 

production for screening characterization.  

In the second section of this study, the effect of ultrasonics on biodiesel 

production is studied by applying ultrasonics during transesterification reaction to the 



 ix 

 

reactants, i.e., soybean oil and methanol, in the presence of sodium hydroxide as a 

catalyst. Ultrasonics are sound waves of a high frequency above the audible range of to 

humans. Ultrasonic energy was applied in two different modes: pulse and continuous 

sonication. Soybean oil was mixed with methanol and sodium hydroxide and was 

sonicated at three amplitudes (60 µmpp, 120 µmpp and 180 µmpp) in pulse mode (5 s on/ 

25 s off). In the continuous mode, the same reaction mixture was sonicated at 120 µmpp 

for 15 s. The reaction was monitored for biodiesel yield by stopping the reaction at 

selected time intervals and analyzing the biodiesel content by TGA. The results were 

compared to a control group where the same reactant composition was allowed to react 

by mechanical stirring at 60 °C without ultrasonic treatment. It was observed that 

ultrasonic treatment resulted in a 96 % yield (percent conversion to biodiesel) in less than 

90 s using the pulse mode; compared to 30 to 45 minutes for the control sample. In 

continuous sonication, the highest biodiesel conversion of 86 % was obtained at 15 s.  It 

was also found that significantly less energy was used to produce biodiesel with 

ultrasonics compared to conventional heating and stirring. 

Thus biodiesel can be produced at a faster rate and the high efficiency of 

commercial methods can be maintained by using ultrasonics. 
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CHAPTER 1: INTRODUCTION 

 

 

1.1 Introduction  

Over the last few decades, the world has experienced an alarming increase in 

consumption of fossil fuels such as coal, oil, natural gas, etc. Fossil fuels are hydrocarbon 

deposits formed inside the earth’s crust by the decay of plant and animal matter over long 

periods of time extending up to millions of years. They are non-renewable sources of 

energy. Today’s majority of industrial as well as household activities are accomplished 

by using energy derived from these fossil fuels. Due to the increasing world population 

and industrialization, the demand of fossil fuels is also increasing proportionally. The 

growth in world energy consumption in 2007 was 2 % per year and a growth rate of 1.1 

% per year is expected in the future [1]. There is a finite reserve of these depleting fuel 

sources. Therefore, there have been continuous efforts to explore new renewable sources 

of energy so that the demand on fossil fuels is reduced. 

 Another concern regarding the use of fossil fuels is their detrimental effects on 

the environment. Large amounts of particulate matter, sulfur, and green house gases, such 

as carbon dioxide and carbon monoxide, are constantly released into the atmosphere by 

burning fossil fuels. These gases pollute the atmosphere and cause green house effects 

that ultimately lead to global warming.  

A solution to this problem is renewable energy resources also known as alternate 

fuels or non-conventional sources of energy. Alternate fuels refer to substances that have 
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characteristics similar to fossil fuels and can efficiently replace fossil fuels. Examples of 

renewable fuels include biodiesel produced from vegetable oils and ethanol produced 

from plant biomass. According to the Energy Policy Act of 1992, pure biodiesel (B100) 

is considered to be an alternative fuel in the United States [2]. Alternate fuels are mostly 

produced from plant/ animal feedstock; therefore, they are renewable and biodegradable 

in nature. Combustion of B100 reduces carbon dioxide content in atmosphere. 

Combustion of biodiesel produces 8.7 % less carbon dioxide per kilogram than diesel [3]. 

B100 also reduces atmospheric carbon monoxide content by 35 %, sulfur oxides by 8 % 

and particulate matter by 32 % [4]. Carbon dioxide released from the combustion of these 

fuels is absorbed by the plants and these same plants are used for additional biodiesel 

production. Thus carbon dioxide is recycled in the atmosphere, forming a closed system.  

Biodiesel is produced primarily from vegetable oil, but there are various other 

sources currently being used or studied for biodiesel production, such as animal fats, 

algae, fungi and bacteria. Pure biodiesel sold as B100 can be directly used in standard 

diesel engines. The disadvantage of using pure biodiesel is its high viscosity, which leads 

to poor engine performance. To overcome this problem, biodiesel is typically blended 

with standard diesel fuel. In more detail, B20 contains 80 % diesel and 20 % biodiesel. 

B5 blend contains 5 % biodiesel and 95 % diesel.  Both of these blends are acceptable for 

use in most diesel engines. It is important that, when using these blends in any diesel 

engine, the biodiesel should be pure and  meet the quality standard D 6751 specified by 

ASTM  International (American Society of Testing and Materials). 

The acceptability of biodiesel blends has increased the demand of biodiesel in 

recent years, as is evident from Figure 1. There has been a sudden increase in biodiesel 
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production in 2005 and this trend is continuing. According to the National Biodiesel 

Board, there are 105 plants in operation as of early 2007 with an annual production 

capacity of 864 million gallons. 

 

Figure 1. Trend of biodiesel production in United States in recent years [5] 

 

With the increase in the demand for biodiesel, new methods of increasing and 

enhancing biodiesel production are being researched. The commercial method of 

biodiesel production is time consuming and energy intensive. It is a batch process that 

requires maintaining the reactants at a temperature of 60 °C for 1–2 h. In some protocols, 

the process is repeated 2–3 times. With optimized conditions, a theoretical yield as high 

as 97–98 % can be achieved.  
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1.2 Biodiesel 

Biodiesel is a term given to fatty acid alkyl esters produced as a result of 

transesterification reaction between a triglyceride and any alkyl alcohol. It is an 

alternative fuel and can be used in diesel engines. It is processed mainly from vegetable 

oils, is non–toxic and free of sulfur and aromatic compounds. Biodiesel has properties 

similar to diesel fuel, but has many advantages compared to diesel fuel: 

• Reduction of carbon dioxide emissions: Carbon dioxide is a greenhouse gas and a 

major contributor of global warming. Combustion of pure biodiesel B100, when use 

in engines, produces less carbon dioxide emissions [3].  

• High oxygen content: Oxygen content in biodiesel fuel facilitates its complete 

combustion. Biodiesel contains 10–11 % more oxygen by wt. as compared to diesel. 

• Reduction of carbon monoxide emissions: Carbon monoxide is also an important 

greenhouse gas and causes serious health hazards by blocking oxygen intake in 

humans and animals. B100 reduces carbon monoxide emissions by 35 % [4]. 

• Reduction of particulate matter emissions: Particulate matter is a mixture of 

complex organic and inorganic compounds, such as carbon residues, unburnt fuel, 

lubricating oil components, metal ash, etc., some of which are carcinogenic in nature. 

B100 reduces particulate matter emission by 32 % [4]. 

• Reduction of sulfur oxides emissions: sulfur dioxide causes respiratory tract 

irritation. Biodiesel fuel is sulfur–free, as long as sulfuric acid is not used in the 

biodiesel production process. B100 reduces net sulfur oxide emissions by 8 % [4]. 
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• Higher flash point: Flash point is the temperature at which a fuel becomes 

flammable. Biodiesel has higher flash point (≥ 120 °C) than diesel fuel (≥ 55 °C), 

which makes it less hazardous during fuel transport and storage. 

The density and energy value of biodiesel is comparable to diesel as shown in Table 1. 

 

Table 1. Average density and heating value of diesel, biodiesel and blends [4] 

Fuel Density 
(g/cu. cm) 

Net heating value Avg. 
(MJ/l) 

No. 2 Diesel 0.850 36.09 
Biodiesel (B100) 0.880 32.97 
B 20 Blend (B20) 0.856 35.47 
B 2 Blend (B2) 0.851 36.03 

 

The energy content of biodiesel is 37.2 MJ/kg, which is slightly lower than the 

energy content of diesel (42.6 MJ/kg). Biodiesel combustion does not produce any NOx 

emissions. NOx emissions are mainly produced by aromatic hydrocarbons, which 

represent 25–35 % by wt. of diesel fuel. Table 2 shows a comparison of the properties of 

No. 2 diesel and biodiesel fuels [6]. 

 

Table 2. Properties of B100 biodiesel and No. 2 diesel fuel [6] 

Fuel property No. 2 Diesel Biodiesel (B100) 
Fuel standard ASTM D975 ASTM D6751 
Lower heating value Btu/gal 129,050 118,170 
Kinematic viscosity cSt @ 40 °C 1.3-4.1 4.0-6.0 
Specific gravity kg/l @ 60 °F 0.85 0.88 
Density, lb/gal @ 15 °C 7.079 7.328 
Water and sediment, vol % 0.05 max 0.05 max 
Carbon, wt. % 87 77 
Hydrogen, wt. % 13 12 
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Oxygen, by dif. wt. % 0 11 
Sulfur, wt. %  0.05 max 0.0 to 0.0024 
Boiling point, °C 180 to 340 315 to 350 
Flash point, °C 60 to 80 100 to 170 
Cloud point, °C -15 to 5 -3 to 12 
Pour point, °C -35 to -15 -15 to 10 

 

 

1.3 Transesterification 

Transesterification is the process of modifying esters. In more detail, triglycerides 

such as oils from vegetables can be transesterified into long chain alkyl esters known as 

biodiesel. The reaction between a triglyceride (present in vegetable oil) and alkyl alcohol 

produces alkyl esters and glycerol. Examples of triglycerides are vegetable oil, fatty 

tissues, or tallow obtained from animals. The alkyl alcohols generally used are methanol 

and ethanol. Figure 1 details the transesterification reaction between a vegetable oil, such 

as soy oil, corn oil, etc., and methanol. 
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Figure 2. Transesterification reaction 

 

Transesterification reactions were first described in 1852 [7]. They were used in 

industry mainly for high quality soap and water free glycerol production. It was not until 
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the 1980’s that production of vegetable oil methyl esters for use in diesel engines was 

industrialized. 

 

 

1.3.1 Mechanism of transesterification reaction 

Figure 3 details the mechanism of an alkali catalyzed transesterification reaction. 

This reaction takes place in three steps. Triglyceride is converted into a diglyceride in the 

first step, monoglyceride in the second step, and glycerol in the third step. All the steps of 

this reaction are reversible, therefore an excess of alcohol is typically provided to 

promote the reaction in a forward direction. The final products of the reaction are fatty 

acid methyl esters (or biodiesel) and glycerol, which form two separate immiscible 

layers, biodiesel forming the top layer and glycerol forming the bottom layer. 

 

1 mol Triglyceride + 1 mol Alcohol 1 mol Diglyceride + 1 mol RCOOR1

1 mol Diglyceride + 1 mol Alcohol

1 mol Monoglyceride + 1 mol Alcohol

1 mol Monoglyceride + 1 mol RCOOR2

1 mol Glycerol + 1 mol RCOOR3  

Figure 3. Step by step transesterification reaction [8] 

 

 

 

 



 8 

 

1.3.2 Requirements of the transesterification reaction 

In order to successfully promote transesterification of oils, there are three 

requirements: 

• High temperature: This reaction occurs efficiently at a temperature between 50-70 

°C. The reaction will occur at room temperature, but it will take longer for 

completion. 

• Catalyst: A catalyst is required to increase the reaction rate. Various catalysts have 

been studied. Examples of common catalysts for the reaction include homogeneous 

strong base catalysts, such as alkali metal hydroxides and alkoxides, metal oxides, 

and acid catalysts such as HCl and H2SO4. Alkali metal alkoxides and hydroxides are 

considerably more effective catalysts than acid catalysts and in addition, they operate 

at lower temperatures. 

• Mechanical mixing: Because oil and methyl alcohol have different densities, they 

tend to separate and form two different layers due to gravity. For this reason they 

have to be continuously stirred/ mixed to facilitate the reaction. 

 

 

1.3.3 Factors affecting transesterification 

Assuming the requirements of transesterifcation are met, process optimization is 

affected by a range of factors, which are detailed in Sections 1.3.3.1 to 1.3.3.4. 
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1.3.3.1 Molar ratio of vegetable oil to alcohol 

Methanol is a commonly used alcohol for transesterification because of its low 

price and highly reactive nature [9]. The stoichiometric ratio required for 

transesterification is 1:3 moles of vegetable oil to alcohol. However, it has been found 

that the molar ratio of vegetable oil to alcohol depends on the type of catalyst used for the 

reaction. For example, the molar ratio of 1:6 moles of soybean oil to methanol has been 

found to be the most suitable in the case of alkali-catalyzed transesterification because an 

excess of alcohol is required to drive the reaction [10]. For acid-catalyzed 

transesterification, a 1:30 vegetable oil to alcohol ratio is generally used [11]. 

 

 

1.3.3.2 Moisture content 

Water content promotes the formation of soap during the reaction and reduces 

catalyst efficiency. The presence of water in acid catalyzed transesterification reduces the 

percentage of biodiesel produced to a greater extent compared to an alkaline catalyst. For 

example, in a reaction mixture of soybean oil, methanol and sulfuric acid, 0.5% water 

content reduces the resultant biodiesel conversion from 95% to 90% [12]. 

 

 

1.3.3.3 Free fatty acids 

For an alkali catalyzed transesterification reaction, vegetable oil should not 

contain any free fatty acids. If any free fatty acids are present in the vegetable oil, an 

alkaline catalyst (e.g. NaOH) is utilized in neutralizing these free fatty acids which only 
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consumes the catalyst and slows down the reaction. The acid value of glycerides should 

be less than 1 for a NaOH–catalyzed transesterification reaction [13]. Acid value is the 

milligrams of potassium hydroxide (KOH) required for neutralizing the free fatty acids 

present in 1 g of vegetable oil. 

 

 

1.3.3.4 Catalyst 

Transesterification reactions can occur in the absence of catalysts, [14] however, 

it requires high temperature, pressure and long reaction times. If all these requirements 

are met, the process cost is relatively high. This method produces relatively high purity 

esters and soap-free glycerol, but because it is un-economical, it is typically not 

considered for industrial production of biodiesel.  

Three types of catalysts are generally used for biodiesel production: alkaline 

catalysts, acidic catalysts, and enzymes. 

Alkaline catalysts: Alkaline catalysis is the most commonly used process for 

biodiesel production. Its main advantage is that a high ester yield is obtained in short 

reaction times under mild reaction conditions [12].  However, alkaline catalysts are 

highly sensitive to free fatty acids in vegetable oils. Therefore only low acidic vegetable 

oils produce high ester yields after transesterification. However, de-acidification of 

vegetable oil prior to transesterification reduces this issue. Examples of alkali catalysts 

are: sodium hydroxide, potassium hydroxide, alkali metals (such as sodium), alkali metal 

carbonates (such as sodium carbonate, and potassium carbonate). 
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Acidic catalysts: Acid–catalyzed transesterification requires a relatively high 

temperature (~100 °C), pressure (~5 bars) and large amounts of alcohol. It is also slower 

in comparison to alkaline catalysis. The only advantage of this type of catalytic 

conversion is that it can efficiently esterify free fatty acids in vegetable oils and is 

therefore used to transesterify high free–acid–containing feedstock, such as waste edible 

oil [15]. 

Enzymes: Enzymes or lipases extracted from microorganisms can also be used as 

catalysts for the transesterification reaction [16].  

The advantages of these biocatalysts are: 

• Biodiesel conversion under mild temperature, pressure, and pH conditions. 

• No catalyst residues or soap in the final product.  

• High quality glycerol is produced. 

• These catalysts efficiently esterify free fatty acids and thus can be used for 

transesterification of oils or fats containing high free fatty acid contents. 

The disadvantages of these catalysts include: 

• Long reaction times and higher catalyst concentrations are required. 

• These catalysts are expensive and not economical for commercial use. 

• Enzymes are typically difficult to remove from the final products (i.e., biodiesel and 

glycerol) after the reaction is complete. 

 

 

1.3.4 Feedstock for biodiesel production 

The various feedstocks for biodiesel production include: 
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• Vegetable oils, including soybean oil, sunflower oil, rapeseed oil, corn oil, oil palms, 

peanut oil, cottonseed oil, coconut oil, olive oil and jatropha oil. 

• Waste vegetable oil. 

• Animal fats and fish oil: These are by-products of meat and fishery industries and are 

available at relatively low prices. These include beef tallow, lard, and fish oil. 

• Oil extracted from algae, bacteria, and fungi [17]. 

In the United States, soybean oil is the main feedstock for vegetable oil 

production, followed by canola and corn oils. This is due to their availability and high oil 

content.  Approximately 90 % of biodiesel produced in the US is processed from soybean 

oil. The average soybean yield in Iowa in 2007 was 50 bu/ac [18]. 

 

 

1.3.4.1 Soybean oil 

Soybean seeds contain an average of 20% oil by wt. Typical fatty acid 

composition of soybean oil is detailed in Table 3 [15]. Mechanical extraction of soybean 

oil has historically been the extraction method typically used. In this process, a hydraulic 

press squeezes the oil from the beans. Although the soybean oil obtained by this method 

is free of impurities, the yield is low and a significant amount of oil remains in the soy 

meal. Hexane extraction is a more efficient method of oil extraction and is used widely in 

newer soybean oil extraction plants. For hexane extraction, soybeans are first dehulled by 

cracking and separating hulls by mechanical separation. Cracked soybeans are then 

heated to a temperature of 75 °C. These cracked beans are then cut into flakes and put in 

counter-flow hexane percolation extractors. Hexane dissolves soybean oil from flakes 
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and is collected separately. Soybean oil is separated from hexane in evaporators and 

recovered hexane is recycled into the process. 

 

Table 3. Fatty acid composition of soybean oil 

 16:1 [wt%] 18:0 [wt%] 18:1 [wt%] 18:2 [wt%] 18:3 [wt%] 
Soybean oil 11-12 3-5 23-25 52-56 6-8 

 

 

1.4 Characterization of biodiesel produced from vegetable oil using 

thermogravimetric analysis 

Thermogravimetric analysis is a method of measuring changes in composition of 

a substance (element or compound) relative to the change in weight of the substance as a 

function of temperature [19]. It can be used to measure the amount of biodiesel and 

soybean oil present in a mixture of soybean oil and biodiesel.  

Figure 4 shows the set–up for thermogravimetric analysis. The sample is placed in 

a pan in a furnace and is weighed by a sensitive balance. A gas (oxygen or nitrogen) is 

continuously purged into the furnace. The temperature of the furnace is programmed to 

increase at a particular rate with time. The highest temperature obtained in most 

thermogravimetric furnaces is 1500 °C and the rate of temperature change is 1 °C to 50 

°C. The weight loss percent of the sample is monitored throughout the process. The 

weight loss of the sample is relative to the weight percentage of the components of the 

sample. 
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Figure 4. Thermogravimetric analysis furnace 

 

Figure 5 shows the thermogravimetric plots for pure biodiesel and pure soybean oil. 

The mass of the biodiesel starts to decrease approximately at temperatures higher than 

150 °C and it continues its decrease until all the biodiesel present in the sample is 

vaporized. Similarly, evaporation of soy oil starts at approximately 350 °C. Because these 

evaporation temperatures vary by a relatively large amount (ca 200 °C), this method is be 

quite effective in distinguishing biodiesel from soybean oil. 
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Figure 5. Overlay of thermogravimetric curves for pure biodiesel and soybean oil 

(mass % versus temperature) 

 

 

1.5 Ultrasonics 

 Ultrasonics is the term used for sound waves having frequencies higher than the 

normal human hearing range (i.e., > 18 kHz) [20]. Ultrasonic waves propagate in a 

medium as a series of alternate compression and rarefaction regions of pressure as 

detailed in Figure 6 [21]. The frequency of a sound wave is defined as the number of 

waves that pass through a single point at unit time (s). Wavelength is the peak to peak 

distance between two adjacent waves.  

Ultrasound can be divided into two categories: 

• High power ultrasound: These ultrasonic waves have high power and typically lower 

frequency. These waves, if applied to liquids, have the potential of producing 

physical and chemical changes in the liquids. They are used in industry for welding, 
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cleaning, chemical reactions, etc. They typically have a frequency range of 20 kHz – 

100 kHz. 

• Low power ultrasound: These ultrasound waves typically have high frequency and 

low power. They do not cause and chemical physical changes. They are used to 

measure velocity and the absorption coefficient of waves in a medium, and thus are 

used in medical scanning, imaging, treatments of stains, dentistry, etc. High 

frequency ultrasonic waves have small wavelengths that enable detection and imaging 

of small areas with high definition. Frequencies of 1-10 MHz are used for this 

purpose. 

Ultrasonic waves or ultrasound has been used in industry for many years. The first 

commercial application of ultrasound was in 1917, when it was used for estimating the 

depth of water through an echo-sounding technique. Ultrasound has found its application 

in many fields, including: 

• Industry:  Ultrasonic welding and ultrasonic cleaning are the most common 

applications of high power ultrasonics. It is also used for drilling, cutting, and 

grinding.  Low power applications include non-destructive testing and flaw detection.  

• Medicine: Ultrasound imaging (2-10 MHz) is used in obstetrics, cleaning, drilling of 

teeth, and muscle strain treatments (20-50 kHz). 

• Biology and biochemistry: High power ultrasound is used for cell disruption, 

filtration (e.g. reducing clogging of filters and by increasing filtration rates), 

degassing of liquids, crystallization (by producing more uniform and smaller crystals 

in supersaturated solutions), and dispersion of solids. The use of ultrasonics in 

chemistry is known as sonochemistry. Research has shown that ultrasonics can 
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accelerate the rate of reaction in many chemical reactions. This is also true for the 

experiments in this thesis.  

Ultrasonics do not directly react with liquids in a chemical reaction but it induces 

several physical effects in the liquid that help in increasing the reaction rate; namely 

cavitation and streaming, which are detailed in the following sections. 

 

 

1.5.1 Cavitation 

 Cavitation is the phenomenon of the generation of large numbers of 

microbubbles (cavities) in a liquid when a negative pressure is applied. When sound 

waves propagate through a liquid medium, they generate compression and rarefaction 

regions in the liquid. The intermolecular distances between the liquid molecules also 

expand and contract along these waves. At very low pressure in the rarefaction region, 

the intermolecular spaces exceed the critical molecular distance and the liquid tears apart 

to form void spaces or micro bubbles. These micro bubbles oscillate with the wave 

motion and grow in size by taking in vapor from the surrounding liquid medium and by 

aggregating with other micro bubbles [21]. Within a few cycles they grow to an unstable 

size and collapse violently, releasing large amounts of energy and creating localized 

temperatures of up to 5000 °K [22]. The growth and subsequent collapse of cavitation 

bubbles is shown in Figure 6.The bubble collapse produces high shear forces which mix 

the liquid vigorously and fracture nearby particles. 
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Propagation of sound waves in alternate compression and rarefaction pattern 

Cavitation bubble forms in 
negative cycle

Growth of bubble in negative cycle Unstable size and high negative pressure inside 
the bubble cause violent collapse and result in 
localized high temperature and shear forces  

Figure 6. Growth and collapse of cavitation bubble in a liquid medium when 
ultrasonic waves are applied 

 

 

1.5.2 Acoustic streaming 

When ultrasonic waves are introduced into a liquid, movement of liquid opposite 

to the direction of ultrasonic waves is observed (Figure 7). The sound energy is converted 

into kinetic energy and this effect is independent of the cavitation effect. Acoustic 

streaming helps in heat and mass transfer in the liquid. It facilitates distribution of 

ultrasonic energy and dissipation of heat [25]. In addition to cavitation and acoustic 

streaming, heat is produced in the liquid by shearing at interfaces such as the interface 

between the metal horn and liquid. 
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Figure 7. Phenomenon of streaming observed in a liquid on application of ultrasonic 
waves 

 

 

1.5.3 Tooling design 

An ultrasonic probe is used to produce and transfer ultrasonic waves to the liquid 

medium. Figure 8 shows a typical set–up of an ultrasonic stack assembly. The stack is 

connected to a power supply which converts line voltage to DC voltage which is then 

modulated at the desired high frequency. This stack consists of three components: 

 

 

1.5.3.1 Converter  

The converter (transducer) converts electrical energy to mechanical energy 

(ultrasonic vibrations). The transducer consists of a piezoelectric element. Thin crystals 

of piezoceramic are stacked together and voltage is applied to their relative interfaces. 
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When a charge is applied to the two faces of a piezoelectric material, it expands and 

contracts depending on the polarity of the applied charge. Thus, if a rapidly alternating 

voltage is applied to such a material, its dimensions change depending on the frequency 

of the applied voltage and ultrasonic the vibrations. The converter used in this study 

produces 20-25 umpp at 20 kHz [24]. 

 

 

Figure 8. Ultrasonic probe used for sonochemical reactions (Picture by David 
Grewell) 

 

 

1.5.3.2 Booster  

The booster, as well as other stack components, is generally made of titanium or 

aluminum alloy. The function of the booster is to transfer the ultrasonic vibrations from 

the converter to the horn. It can also be used to amplify or decrease the amplitude of 

ultrasonic waves, depending on the design of booster.  
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1.5.3.3 Horn 

The horn is generally made of titanium or aluminum alloy. Its function is to pass 

the ultrasonic waves into the liquid medium. For this reason, the horn should be 

chemically inert, resistant to deterioration from cavitation, and should have maximum 

efficiency in transferring ultrasonic waves. The horn can also amplify the amplitude of 

ultrasonic waves. Horns will have different ultrasonic amplitude gains, depending on 

their design (or mass).  

 

 

1.5.3.4 Relation between frequency of ultrasonic waves and power 

The frequency of ultrasonic wave propagation is inversely proportional to 

available power. In more detail high power is typically generated at lower frequencies of 

20 kHz to 100 kHz. As the frequency increases, the size of the converter decreases and 

power density (power per unit volume) of the converter increases. Because converters are 

95-96% efficient, a small amount of energy is dissipated as heat from the converter 

surface.  At high frequencies, the smaller converter results in higher energy densities and 

promotes heating of the converter, which causes internal stresses in the transducers. To 

maintain proper balance, high frequency transducers are designed for lower power 

dissipation applications. 

High frequency waves cannot effectively be used for producing cavitation effects. 

At higher frequency, the rarefaction or low pressure phase is very short in duration. It 

does not allow micro bubble formation and therefore cavitation does not effectively 
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occur. Therefore, higher amplitude (or power) is required to produce the same cavitation 

effects as produced at lower frequencies. Because high power at high frequency cannot 

be obtained owing to the limitations discussed in last paragraph, cavitation cannot be 

produced at high frequencies. 

 

 

1.6 Enhancing transesterification reaction using ultrasonics 

Transesterification reactions involve reactions between oil and alcohol in the 

presence of a catalyst. Oil and methyl alcohol are immiscible liquids and form separate 

layers when mixed together in a vessel. Traditional transesterification reaction requires 

mixing continuously for long periods of time to facilitate the reaction between oil and 

alcohol, because the reaction can takes place only in the interfacial region between the 

two liquids. When this mixture is sonicated, ultrasonic waves produce cavitation at these 

interfacial areas. As a result, an emulsion of oil and alcohol forms, providing large 

surface areas for reaction. It is observed that reaction time is reduced significantly. 

 

 

1.7 Literature review 

Vegetable oils (and fats) are made up of water-insoluble molecules which called 

triglycerides. The first evidence of use of vegetable oil as fuel was by Rudolf Diesel [25]. 

In 1900, during the Paris Exposition, a prototype of his engine used peanut oil instead of 

petroleum (for which the engine was originally designed). Vegetable oils were used as 

fuel for diesel engines in some countries until the 1930’s and 1940’s when petroleum-
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derived fuels became less expensive. The interest in vegetable oil as fuel diminished in 

the following years because of the relatively lower prices and availability of fossil fuels. 

Vegetable oils have a high heat content (80% of heat content of biodiesel), and are 

renewable, they have several issues associated with their direct use in diesel engines. 

They have a viscosity 10-20 times higher than that of diesel fuels [15].  In addition, they 

have low volatility, which results in poor atomization of the fuel in the engine, 

incomplete combustion, and engine deposits upon prolonged use. Although vegetable 

fuels have extremely high flash points, they undergo thermal oxidation and oxidative 

polymerization at elevated temperature, forming higher molecular weight compounds 

which increase the viscosity of oil. The high flash point of vegetable oil implies low 

volatility and hence low fire hazard, this property causes ignition delay and difficulty in 

starting the engine in cold weather. Oxidative polymerization leads to deposit formation 

on injector nozzles, degradation of lubrication oil, and sticking of piston rings [26]. 

Blends of vegetable oil and diesel were also tested for their performance in diesel engines 

but the problems of acid composition, high density, free fatty acid content, oxidation, 

polymerization, carbon deposits, and thickening of lubricating oil still existed [27]. Three 

possible solutions [28] to this problem were considered as discussed below: 

Pyrolysis is the process of thermally decomposing vegetable oils in the presence 

of catalysts and in absence of oxygen to produce short- and long-chained alkanes, 

alkenes, alkadienes, aromatics, and carboxylic acids. The catalysts used are mainly SiO2 

and Al2O3. The resultant composition is similar to the hydrocarbons in fossil fuels. The 

properties of pyrolysis synthesized fuel, such as sulfur, water and sediments 
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concentration are within acceptable limits. But its high viscosity, ash and carbon content 

make it an inefficient fuel for long time use [27].  

Micro emulsifications are thermodynamically stable colloidal dispersions of 

vegetable oil with alcohols, such as methanol and ethanol [26]. Organic solvents are used 

as surfactants for this purpose. Droplet diameters of microemulsions typically range 

between 100 and 1000 Å. These microemulsions are also not suitable for long term use in 

engines as they also have high viscosity, undergo incomplete combustion, and form 

carbon deposits. Also, they have a low heating value owing to the high alcohol content of 

their compositions.  

Transesterification is the conversion of vegetable oil and an alkyl alcohol into 

biodiesel in the presence of high temperature and a catalyst, as discussed in previous 

sections. 

Transesterification is the most common method used for the production of 

biodiesel on a commercial scale. It has been shown by various studies that ultrasonics can 

be used to increase the rate of biodiesel production. Ultrasonic treatment of soybean oil 

and methanol resulted in almost 100% biodiesel yield in 10-20 min [29]. Ultrasonics can 

also be used to increase the rate of transesterification in corn oil, grapeseed oil, canola oil, 

palm oil, etc. [30]. 

Thermogravimetric analysis has been used in the past to measure the boiling point 

and vapor pressure of short chain hydrocarbons present in biodiesel made from rapeseed 

oil and tallow [31]. The volatilities and boiling points of methyl and ethyl esters made up 

of various vegetable oils, such as canola oil, soybean oil, etc. have been measured using 

thermogravimetric analysis [32]. 
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1.8 Thesis organization 

This thesis is divided into four chapters: 

1. Chapter 1 includes the introduction, literature review and objectives. 

2. Chapter 2 is a journal paper to be submitted to Energy & Fuels and is titled 

“Thermogravimetric quantification of biodiesel produced via alkali catalyzed 

transesterification of soybean oil”. 

3. Chapter 3 is also a journal paper to be submitted to Energy & Fuels and is titled 

“Enhancing biodiesel production from soybean oil using ultrasonics”. 

4. Chapter 4 includes general conclusions from chapter 2 and chapter 3. 

 

 

1.9 Objectives 

The objectives of this study are: 

1. To find a suitable method for shortening the time of the biodiesel production 

process, while maintaining the efficiency of biodiesel conversion and, if 

possible, reducing the energy consumption. 

2.  To experiment with the effect of ultrasonics on the transesterification reaction 

and biodiesel production and estimate its efficiency with respect to biodiesel 

conversion, and 

3. To establish thermogravimetric analysis as a possible viable method of 

characterizing biodiesel. For this purpose, thermogravimetric analysis is 

compared with NMR spectroscopy. 
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2.1 Abstract  

The aim of this study was to demonstrate the use of thermogravimetric analysis 

(TGA) as a potential method for monitoring biodiesel production by transesterification of 

soybean oil with methanol. Soybean oil and commercially available biodiesel were mixed 

in varying proportions by weight as standards. In addition, mixtures of different 

biodiesel/soybean oil ratios were also created by periodically interrupting base-catalyzed 

transesterification of soybean oil with methanol. The mixtures produced by both 

approaches were analyzed with TGA over a temperature range of 25-500 ºC. The results 

were then compared with analytical data obtained by proton nuclear magnetic resonance 

spectroscopy (1H NMR spectroscopy), an industry standard for biodiesel quantification. It 

was found in the TGA experiments that a significant weight loss at ca 150 ºC correlated 

to the volatilization of biodiesel. The relative weight losses in both sets of mixtures 
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correlated well to the proportion of biodiesel present in the transesterification samples 

and the results from both analytical methods were in good agreement (± 5%). Thus, TGA 

is a simple, convenient and economical method for monitoring biodiesel production.  

 

2.2 Introduction 

Burgeoning demand for biodiesel derived from plant oils has grown significantly 

over the last decade 1-9. As is commonly known, the conversion of vegetable oil to 

biodiesel occurs during a transesterification process in the presence of a catalyst and heat 

(Fig. 9). 

 

 

Figure 9. Transesterification reaction of soybean oil with methanol in presence of 
sodium hydroxide as catalyst. 

 

Biodiesel production has increased from 500,000 gallons in1999 to 450 million 

gallons from October 1, 2006 to September 30, 2007 in the United States alone and it is 

expected that this growth will continue to increase at a high rate10.  It is anticipated that 

with this growth in production there will be an accompanying need for convenient and 

rapid analytical means for monitoring biodiesel production. Currently, there are a variety 

of standard methods for analyzing biodiesel contents in mixtures, including gas 

chromatography (GC) 11, high performance liquid chromatography (HPLC) 12, gel 

permeation chromatography (GPC) 13, 14, proton nuclear magnetic resonance 
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spectroscopy (1H NMR)7, 14, near infrared (NIR) 15 spectroscopy, and Fourier transform 

infrared spectroscopy (FTIR) 14.  Among these, 1H NMR spectroscopy has been used 

extensively and is often considered a standard characterization method of biodiesel7, 15, 17. 

Thermogravimetric analysis (TGA) is a technique for characterizing a material 

(element, compound or mixture) by measuring changes in its physico-chemical properties 

expressed as weight change as a function of increasing temperature18. Therefore, the 

change in mass of a substance is measured as a function of increasing temperature and it 

is correlated to the thermal stability of a material that is directly related to the material’s 

volatility or thermal degradation to gaseous products.   

The TGA instrument consists of a precision mass balance which records the initial 

and instantaneous mass of a sample and a furnace which is heated in a linear relationship 

as a function of time (the range of temperatures obtained typically being between 20°C 

and 1000 °C).  Mass measurements are performed in air or in an inert gas such as 

nitrogen or argon.  The advantages and limitations of TGA as a method of quantitating 

biodiesel production in comparison to other methods are tabulated in Table 4. 

Table 4. Comparison of TGA with other methods known for the quantitation of 
biodiesel. 

Quantification 
method 

Advantages Disadvantages 

TGA No reagent or solvent 
required 
Differentiates easily between 
biodiesel and plant oil due to 
large differences in boiling 
points 
Relatively inexpensive 
compared with 1H NMR 
Gives acceptable results (as 
detailed in this paper) 

Does not differentiate among 
different fatty acid methyl esters in 
biodiesel 
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1H NMR Simple, accurate and precise 
in determining the biodiesel 
content 

Deuterated solvents required (CDCl3 
in the present case) 
Instrumentation relatively more 
expensive 

GC Can differentiate mono-, di- 
and tri-glycerides, methyl 
esters and glycerol 

 

Standard solutions of components 
prepared for addition to biodiesel 
samples for dilution with heptanes  
Cumbersome to calculate direct 
conversion 

NIR No solvent required 
Can differentiate soybean oil, 
biodiesel and glycerol 

Can not quantify low levels of 
contaminants 

HPLC Differentiates mono-, di- and 
tri-glycerides, methyl esters 
and glycerol 

 

External solvents and standards such 
as triolein, trilinolein, trilinolenin, 
etc. are required to determine 
particular components of the 
mixture 
Cumbersome to calculate direct 
conversion 

 

This paper examines the agreement of TGA and 1H NMR spectroscopy in 

determining biodiesel content in soybean oil with the aim of evaluating TGA as a viable 

alternative analytical method for monitoring biodiesel production in research as well as 

industrial settings.    

 

2.3 Experimental procedures 

Mixtures of laboratory grade biodiesel and soybean oil were prepared and 

analyzed by TGA and 1H NMR spectroscopy.  TGA results were then compared to 1H 

NMR results in order to determine the accuracy and precision of the TGA analysis of 

biodiesel.  In addition, sample mixtures were taken during the conversion of soybean oil 

to biodiesel catalyzed by sodium hydroxide, a commonly used catalyst in the industry.       
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2.3.1 Materials 

The materials used in this study were commercially refined soybean oil obtained 

from Watkins E. Inc. Sodium hydroxide, methanol, anhydrous magnesium sulfate 

(MgSO4·7H2O) and hexane were all obtained from Fisher Scientific and used as received.  

The biodiesel used as the external standard for TGA was prepared using our previous 

protocol 17. 

 

 

2.3.2 Preparation of standard mixtures of biodiesel and soybean oil 

Mixtures of commercial soybean oil and biodiesel from the aforementioned 

sources were prepared. In more detail, the biodiesel was prepared at ambient temperature 

from soybean oil and methanol using nanocrystalline calcium oxide as the catalyst 17.This 

biodiesel was found to be ≥ 99% pure by 1H NMR spectroscopy. The soybean oil was 

also analyzed by 1H NMR spectroscopy and was also found to be virtually free of 

contaminants. 

The oil and biodiesel were mixed in different proportions by weight. For preparing a 

50:50 mixture of biodiesel and soybean oil, 10.00 g of soybean oil was first added to a 

glass vial using an analytical balance. Biodiesel was then added to complete the total 

weight of the mixture to 20.00 g. The mixture was then mixed thoroughly for 1 minute 

using a vortex mixer. The remaining standard mixtures were prepared similarly. The 

weight proportions of soybean oil to biodiesel used for the analyses were: 25.00:75.00, 

30.00:70.00, 50.00:50.00, 75.00:25.00 and 80.00:20.00, respectively. These samples were 

then analyzed by TGA and 1H NMR spectroscopy. 
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2.3.3 Preparation of biodiesel/soybean oil mixtures during transesterification 

Biodiesel/oil mixtures were also prepared by partially transesterifying soybean 

oil. Using a syringe, 5.00 mL of methanol was added to 0.20 g of sodium hydroxide to 

generate a 0.74M solution of sodium hydroxide. This mixture was continuously stirred 

magnetically at a temperature of 40 ºC for 5 min to form a sodium methoxide/sodium 

hydroxide equilibrium mixture which was then added to 20.00 mL of soybean oil.  It 

should be noted that for this amount of oil, the theoretical amount of methanol required is 

approximately 3.00 mL for 100% conversion to biodiesel (i.e., a 1:3 molar ratio).  

However, an excess of 2.00 mL of methanol was supplied to drive the reaction 

equilibrium nearer to completion and to accelerate the reaction.  The mixture was allowed 

to react at 60 ºC in a shaker water bath with continuous stirring of the reactants via 

swirling of the flask. The reaction was quenched at a predetermined time by adding water 

(50.00 mL) and hexane (50.00 mL) to the reaction mixture. Additional hexane (200.00 

mL) was then added to extract the biodiesel and residual soybean oil and the mixture was 

allowed to settle for ten minutes in a separatory funnel for separation of the two layers. 

The top layer containing the biodiesel, soybean oil and hexane was then isolated and 

anhydrous magnesium sulfate was added to remove trace amounts of water. This mixture 

was then passed through filter paper to remove the magnesium sulfate and then the filter 

paper was washed with hexane (3 × 20 mL) to obtain residual biodiesel and soybean oil.  

The filtrate was subjected to rotary evaporation to remove the solvent and then the 

remaining sample was analyzed by TGA and 1H NMR spectroscopy for the degree of 

conversion to biodiesel. It is critical that the all the glycerin (the bottom layer in the 
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separatory funnel) is removed from the sample prior to TGA analysis as this method does 

not accurately distinguish between biodiesel and glycerin. 

 

2.4 Analytical methods 

1H NMR spectra were recorded at ambient temperature on a Varian VXR-400 

MHz spectrometer using standard procedures. The chemical shifts were referenced to the 

residual peaks of CHCl3 in the CDCl3 (7.26 ppm).  The relevant signals chosen for 

integration were those of methoxy groups in the FAMEs (3.66 ppm, singlet) and those of 

the α-methylene protons present in all triglyceride derivatives (2.3 ppm, triplet) of the 

soybean oil. The conversion was calculated directly from the integrated areas of the 

aforementioned signals18.1H NMR integrations on five separately created standard 

samples of 25/75 wt% biodiesel/soybean oil biodiesel mixtures, and on five separately 

made standard samples of 75/25 wt% biodiesel/soybean oil mixtures indicated that the 

experimental error was within ± 3% in all cases. 

TGA analyses of the biodiesel and oil contents were completed with 10.00 µL 

samples of biodiesel and oil mixtures heated at a constant heating rate of 10 °C/min in an 

atmosphere of nitrogen. The temperature range employed was 25 - 500 °C.  As further 

detailed in the following paragraph, the mass loss recorded for biodiesel at ca 150 °C 

correlates to the mass percentage of biodiesel present in the sample. Similarly, the mass 

loss associated with soybean oil (ca 350 °C) correlates to the mass percentage of soybean 

oil in the sample.  Because these temperatures vary by a relatively large amount (ca 200 

°C) this method should be quite effective in distinguishing biodiesel from soybean oil. 
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Figure 10. Overlay of thermogravimetric curves for pure biodiesel and soybean oil 

(mass % versus temperature). 

 

Figure 10 shows the thermogravimetric plots for pure biodiesel and pure soybean oil. 

The mass of the biodiesel starts to decrease at approximately after 150 °C and it 

continues its decrease until all the biodiesel present in the sample is vaporized. Similarly, 

evaporation of soy oil starts at approximately 350 °C. The percentage of biodiesel and 

soybean oil in a sample could be calculated from the TGA plot of the sample taking into 

account the first derivative of the weight change of the sample mixture.  

As shown in Figure 11, when the mixture is analyzed by TGA, we first used the rate 

of weight loss (“derivative weight percentage”) to determine the relevant temperatures.   

Here it was assumed that inflection points at the lowest rate of weight change values 

correlated to the temperatures of interest.  In order to better indentify the inflection point, 

the second derivative of the mass change was calculated in EXCEL ® and an absolute 

value greater than 3% wt/s2 (approximately 0.02 mg/s2) was assumed to indicate a 

significant rate change. Using this procedure instead of the conventional approach of 
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evaluating the weight loss resulted in a significant increase in the accuracy of the 

measurement.  Our approach resulted in only a maximum of a 5% difference between the 

measurements and the actual values, while the conventional approach resulted in 

differences as high as 10%.Thus, for example, as seen in Figure 3, the initial inflection 

point is at 100.44°C and the second inflection point is at 260.85°C.  Thus, the relative 

weights were 99.79% and 23.15, respectively, indicating 76.64% bio-diesel content, 

which is in good agreement with the actual value of 75.00%.  The initial loss of 0.21% 

weight of the sample is attributed to the presence of volatile impurities.  The accuracy of 

the approach is further discussed in the Results and discussion section. This approach, 

while non-standard, takes into account the relatively wide range of molecular weights of 

the biodiesel esters to be included in the measurements. 
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Figure 11. Thermogravimetric curve for a mixture containing 75.00% 
biodiesel and 25.00% soybean oil. 
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Typically, and as is consistently assumed in this paper, the amount of biodiesel 

present in a sample is equal to the mass percentage that lies between the condition where 

the biodiesel mass drops (at ca. 150 °C) and the condition where all the biodiesel is 

vaporized and the mass remains constant. The biodiesel/soybean oil TGA plots were 

compared with plots from known mixtures, thus allowing a determination of the percent 

by weight of biodiesel in the sample obtained from the transesterification reaction. 

 

2.5 Results and discussion 

The biodiesel yields as measured by TGA analysis of the standard 

biodiesel/soybean oil mixtures were very similar to their actual values based on weight 

percent in those mixtures (Figure 12).  The linear fit between the two data series results in 

an R2 value of 0.9981 which confirms this conclusion. The TGA biodiesel analyses were 

also plotted as a function of the 1H NMR analyses as seen in Figure 13. The data is 

typically within ±1.5% of agreement, with the largest difference being ±4.5%. 
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Figure 12. Biodiesel % by weight obtained from TGA analysis plotted against the 
actual biodiesel weight % in the standard sample. 

 

The linear fit between these two methods showed an R2 value of 0.9997. Again the 

linear regression analysis suggests that TGA accurately quantifies the amount of 

biodiesel present. 
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Figure 13. Biodiesel content (weight %) in the standard mixtures obtained by TGA 
and NMR spectroscopy. 

 

Figure 14 shows biodiesel production as a function of transesterification time as 

determined by 1H NMR spectroscopy and by TGA. It is important to note that in these 

experiments that there are varying amounts of partially transesterified oil, unlike the 

previously detailed experiments with the standard mixtures that contained pure biodiesel 

and pure soybean oil with all the glycerin removed. Thus, the data depicted in Figure 14 

are more representative of actual laboratory or industrial production conditions.  

Nonetheless it is again seen that there is good correlation between the two 

characterization methods. These results suggest that TGA can be efficiently used for 

analyzing biodiesel contents within ± 5% (the average of the differences between TGA 

and NMR measurements) in vegetable oil transesterification reactions. 
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Figure 14. Biodiesel conversion in the transesterification of soybean oil determined 
by TGA and NMR analysis. 

 

2.6 Conclusions 

Our results suggest that thermogravimetric analysis (TGA) is an effective method, 

typically within ±1.5% relative to the proton NMR method for estimating the percentage 

of biodiesel in transesterification reaction mixtures. This method was validated with the 

existing NMR spectroscopic method for this analysis and the two methods produced 

results that were very comparable. With respect to the time required to perform various 

methods of biodiesel characterization, TGA is comparable to GC and HPLC, but requires 

more time than NMR and NIR. However, the TGA method does not require addition of 

reagents or solvents to the sample prior to analysis, thus reducing the cost and the 

probability of errors from such sources.  
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3.1 Abstract  

The objective of the study was to determine the effect of ultrasonics on biodiesel 

production from soybean oil. In this study, ultrasonic energy was applied in two different 

modes: pulse and continuous sonication. Soybean oil was mixed with methanol and 

sodium hydroxide and was sonicated at three amplitudes (60 µmpp, 120 µmpp and 180 

µmpp) in pulse mode (5 s on/ 25 s off). In the continuous mode, the same reaction mixture 

was sonicated at 120 µmpp for 15 s. The reaction was monitored for biodiesel yield by 

stopping the reaction at selected time intervals and analyzing the biodiesel content by 

TGA. The results were compared to a control group where the same reactant composition 

was allowed to react at 60 ºC for intervals ranging from 5 minutes to 1 hour with no 

ultrasonic treatment. It was observed that ultrasonic treatment resulted in a 96 % yield 

(percent conversion to biodiesel) in less than 90 s using the pulse mode; compared to 30 

to 45 minutes for the control sample. Also in pulse mode, the highest yield was obtained 
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from sonicating the mixture at 120 µmpp amplitude. In continuous sonication the highest 

biodiesel conversion obtained at 15 s is 86 %. 

 

3.2 Introduction 

Vegetable oils such as soybean oil have been considered as fuel for diesel 

engines.1 However, such oils cannot be used directly in standard diesel engines because 

of their high molecular mass, kinematic viscosity, poor atomization, lubrication 

problems, and carbon deposits due to incomplete combustion.2 These issues can be 

resolved by: dilution, micro emulsification, pyrolysis3 and transesterification with 

methanol; the latter approach being used most commonly in industry.4 As is commonly 

known, the conversion of vegetable oil to biodiesel occurs during a transesterification 

process in the presence of a catalyst and heat (Fig. 15). 

 

 
Figure 15. Transesterification reaction of soybean oil with methanol in presence of 

sodium hydroxide as catalyst. 

 

As mentioned earlier, biodiesel is produced by reacting vegetable oil and an alcohol 

in the presence of a suitable catalyst. This process requires continuous mixing at 60°C, 

which represents significant energy consumption. 
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It has been observed that the transesterification reaction time can be significantly 

reduced by irradiating the reactants with ultrasonic sound waves at room temperature.5 

Ultrasonic waves are sound waves that are above normal human hearing range (i.e., 

above 18-20 kHz). 6 

The effect of ultrasonic waves on liquids has been explained in detail by Suslick.7 

When ultrasonic waves are passed through a mixture of immiscible liquids, such as 

vegetable oil and alcohol, extremely fine emulsions can be generated. These emulsions 

have large interfacial areas, which provide more reaction sites for the catalytic action and 

thus increase the rate of the reaction. For example, in this work, ultrasonic energy 

increased the reaction rate several fold, reducing the reaction time from approximately 30 

to 45 minutes to less than a minute.   In addition, ultrasonic treatment of liquids produces 

streaming, 8 which further promotes mixing of reactants. 

In this work, Thermogravimetric Analysis (TGA) was used to study the reaction rate 

of biodiesel production.9 TGA is an experimental method for characterizing a system 

(element, compound or mixture) by measuring the changes in its physico-chemical 

properties as a function of increasing temperature. A study by Grewell et al. of the 

thermal degradation of biodiesel and soybean oil mixtures using TGA showed that the 

weight percentage of biodiesel in a mixture consisting of soybean oil and biodiesel can be 

easily determined by TGA.9  

The goal of this work was: 

a) To obtain a high biodiesel conversion percentage in less time from 

transesterification of soybean oil with the ultrasonic treatment. For this purpose, 

biodiesel was produced by two methods: 
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• By mechanical stirring of the reactants, and 

• By applying ultrasonics to the reactants. 

The biodiesel conversion percentage at various times was recorded for both 

methods and compared to determine the effect of the ultrasonic energy. 

b) Comparison of energy balance between the processes. 

3.3 Experimental Procedures 

3.3.1 Materials 

The materials used in this study were commercially refined soybean oil obtained 

from Watkins E. Inc. Sodium hydroxide, methanol, anhydrous magnesium sulfate 

(MgSO4·7H2O) and hexanes were all obtained from Fisher Scientific. A Branson 2000 

Series bench scale ultrasonics unit with a maximum power output of 2.2 kW and a 

frequency of 20 kHz was used. The ultrasonic horn used was a 20 kHz catinodial titanium 

horn with a flat 13 mm diameter face and a gain of 1:8. The booster used in this study had 

a gain of 1:1.5. 

 

3.3.2 Preparation of biodiesel/soybean oil mixtures from transesterification through 

mechanical stirring:  

Mixtures were prepared by collecting samples from a transesterification reaction 

mixture at specific times.   In the experiments that characterized conventional mixing 

techniques for biodiesel production, 150 mL of methanol was added to 6 g of sodium 

hydroxide (0.74 M). This mixture was continuously stirred at a temperature of 40 ºC for 5 

min to form a sodium methoxide solution.   This mixture was then added to 600 mL of 
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soybean oil, which requires approximately 90 ml of methanol to undergo 100% 

conversion to biodiesel (1:3 molar ratios); however, excess methanol was supplied to 

drive the reaction equilibrium to completion and to account for losses during the reaction. 

The mixture was allowed to react at 60 ºC in a shaker water bath with continuous stirring. 

Samples of 5 ml were withdrawn from the reaction mixture at predetermined times. The 

reaction was stopped by adding water (50 mL) and hexanes (50 mL) to the reaction 

mixture. Water stops the reaction and the biodiesel and residual soybean oil are extracted 

with the hexanes. Additional hexanes (200 mL) were added to dissolve biodiesel and 

soybean oil. This mixture was allowed to separate for ten minutes in a separatory funnel 

to produce the two distinct layers. The top layer contained biodiesel, soybean oil, and 

hexanes, while the bottom layer contained glycerol, water, catalyst, and soap. The layers 

were separated and anhydrous magnesium sulfate was added to the top layer to remove 

trace amounts of water. This mixture was then passed through filter paper to remove the 

magnesium sulfate, and the filtrate was subjected to rotary evaporation to remove the 

solvent. The remaining sample was then analyzed by TGA to determine the degree of 

conversion to biodiesel.  For accuracy of results, all the experiments in this paragraph 

were replicated five times. 

 

3.3.3 Preparation of biodiesel/soybean mixtures from transesterification through 

ultrasonics:  

For the experiments that evaluated ultrasonic treatment for biodiesel production, 

10 ml soybean oil was added to sodium methoxide solution prepared by reacting 2.5 ml 

methanol and 0.1 gm sodium hydroxide. The same method of preparation of sodium 
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methoxide as explained in the previous section was used. The sample size was scaled to 

match the available reaction chamber size for the ultrasonic horn (~30 mL). Ultrasonic 

energy was applied in two different modes; pulse and continuous sonication. In pulse 

mode the ultrasonic energy was applied as 5 s on and 25 s off. Thus, samples were 

collected at the end of every 30, 60, 90, 120 and 150 s time intervals. Three amplitude 

levels were studied: 60 µmpp, 120 µmpp and 180 µmpp. In continuous sonication mode, the 

reactants were sonicated continuously for 15 s at 120 µmpp. In this case, samples were 

collected at every second i.e. 1, 2, 3,...15 s. The reaction was stopped by adding water (50 

mL) and hexane (50 mL) immediately after ultrasonic treatment. Mixtures of oil and 

biodiesel were separated in a similar manner as detailed in the previous section. For 

accuracy of results, all the experiments in this paragraph were replicated five times. It is 

important to note that external heating was not used in any of these experiments. 

 

3.4 Analytical methods: 

TGA was used to measure the biodiesel and oil contents in the samples. In this 

experiment, 10 µL samples of biodiesel and oil mixture were heated at a constant heating 

rate of 10 °C/min in an atmosphere of nitrogen. The temperature range was maintained at 

25 °C to 400-500 °C and the weight loss occurring at approx. 150 °C was assumed to 

correlate to biodiesel as reported by Grewell et al.9 The weight loss provided the weight 

percentage of biodiesel present in the sample. Similarly, weight loss associated with 

soybean oil occurred at approx. 350 °C providing the weight percentage of soybean oil in 

the sample. 
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3.5 Results and Discussion 

Figure 16 shows biodiesel conversion as a function of time for the conventional 

production method of heating and mixing only. It is seen that the highest conversion to 

biodiesel was 97% and the reaction time was 60 min (3600 s). 
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Figure 16. Biodiesel conversion (%) from transesterification of soybean oil through 
mechanical stirring 

 

Figure 17 shows the biodiesel production as a function of esterification time with the 

ultrasonic treatment in pulse mode at three different amplitudes. It is seen that relatively 

high yields (+85%) were achieved within 90 s and yields as high as 96% were produced 

within 120 s with amplitude of 120µmpp. Compared to the control group (Figure 16), the 

time required to achieve a yield above 95% is reduced from 30 min to 1.5 min by using 

ultrasonic treatment. 
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Figure 17. Comparison of biodiesel conversion (% by wt.) obtained at three 
amplitude levels in pulse mode. 

 

This enhanced reaction kinetic is believed to be related to the emulsions that are 

generated by the ultrasonic treatment as well as the streaming effects of the ultrasonics. 

Figure 18 A and B shows the microscopic image of reaction mixture which was sonicated 

for 15 sec in continuous mode and conventional mixing respectively. These pictures were 

taken a few seconds after sonicating/ mixing the mixture.  It is seen that the ultrasonic 

sample has a finer emulsion compared to the conventional mixing. When these samples 

were allowed to settle for approximately 1 hour, two separate layers were formed. The 

top layer consists of biodiesel and soybean oil (if any was left in the sample) and bottom 

layer was glycerol. 
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        (A)                                                          (B) 

Figure 18. (A) View of reaction mixture under microscope after sonication for 15 
sec. (B) View of reaction mixture after transesterification by the commercial 

method. 

 

The highest biodiesel conversion yield was obtained when the reactants were 

sonicated for 150 s in the pulse mode as detailed in Table 5. It is seen that the highest 

yield was generated with the 120 µmpp amplitude.  It is believed that the higher amplitude 

180µmpp (109 W, average power during sonication) promoted degradation of the 

chemistries and the lower amplitude 60µmpp (44 W) required longer times than those 

studied to achieve a higher yield.   

Therefore 120 µmpp was used for continuous sonication of the reactants. Figure 19 

shows the results of continuous sonication. The highest biodiesel yield obtained at 15 s 

and was 86%. Because the temperature was not regulated the temperature in the reaction 

chamber reached 60 °C at the end of the 15 s. 

Table 5. Highest biodiesel production and temperature for various sonication 
treatments in pulse sonication mode 

Amplitude (µmpp) 60 120 180 
Highest biodiesel content in the product 
 (% by wt.) 

87 96 92 

Highest temperature (°C) 48 52 60 
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Figure 19. Biodiesel conversion (% by wt.) from transesterification of soybean oil by 
application of ultrasonics in continuous sonication mode. 
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Figure 20. Comparison of biodiesel conversion (% by wt.) obtained by commercial 
method, pulse sonication mode and continuous sonication mode (log/log plot). 

 

Figure 20 shows the biodiesel conversion % obtained by all three methods discussed 

in this paper. It is important to note the lines are the plotted functions from the previous 

models of the experimental data (equations) and not the experimental data.  It is also 
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important to note that in order to differentiate between the treated samples and the control 

sample, a log/log plot was used. That is to say, without using a log/log plot, the extreme 

scales of the various plot (0-60 s for the treated samples and 0-3000 s for the control 

sample) made it difficult to visualize the separate plots. It is seen that the application of 

ultrasonics reduces the time of reaction while maintaining the biodiesel yield. Reaction 

time can be lowered to a few seconds by using either pulse mode or continuous 

sonication mode, as compared to 45-60 min in case of commercial method. 

Based on these results it is believed that high yields can be obtained in a continuous 

sonication mode with ultrasonic chambers designed for continuous flow systems. In 

continuous flow, oil, methanol and catalyst can be continuously fed into the reactor and 

sonicated for 15-20 sec and biodiesel along with glycerol will be released at the outlet of 

the reaction chamber. 

As previously mentioned the second objective of this study was to compare the 

energy utilized in commercial method and sonication method.  

The energy consumed during conventional production was estimated assuming 

adiabatic heating.  In more detail the energy required to raise the temperature of reaction 

mixture from room temperature i.e. 20 °C to 60 °C was estimated based on adiabatic 

heating and applying following formula: 

Energy = Cp oil * ρ oil * ∆T + Cp methanol * ρ methanol * ∆T  

10Cp oil = 2269 Jkg-1 K-1  

ρ oil = 0.918 g cm 
-3 

Cp methanol = 2470 J kg-1 K 
-1

 

ρ methanol = 0.791 g cm-3 
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∆T = 40 K 

Total Energy = 162 kJ L-1 

Thus 162 kJ of energy is required to raise the temperature of soybean oil and 

methanol. The energy required for stirring the reactants was assumed to be insignificant 

and therefore excluded from this calculation.  

The energy consumed by the ultrasonic system was based on integration of the power 

dissipation as reported by the power supply of the ultrasonic system and is detailed in 

Table 6 for the various conditions. 

  

Table 6. Amount of energy supplied during transesterification through sonication 
and commercial method 

Reaction mode Pulse Mode Continuous  
Mode 

Commercial 
Method 60 µm 120 µm 180 µm 

Energy 
(kJ/L reaction mixture) 

82 110 117 112 162 

Highest temperature (°C) 48 52 60 60 60 

 

In all these four experiments, the energy consumed per litre of reaction mixture is less 

than the energy consumed in commercial method. Thus, 47% more energy is consumed if 

the reaction is done by the commercial method instead of the 120 µm pulse mode.  
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3.6 Conclusion 

The time required to achieve a 96% yield was reduced by several fold by 

ultrasonic treatment in a pulse mode.  In more detail, by using standard mixing systems, 

the time required to achieve 96% biodiesel yield was about 45 minutes, while in contrast, 

this time was reduced to 1.5 minutes when ultrasonic treatment was used in pulse mode. 

Also in continuous sonication mode, an 87% biodiesel yield is obtained in 15 s. 

The energy required for transesterification through ultrasonics method is less than 

commercial method, for comparable biodiesel yields. 

Further experiments are required to determine the optimum amplitude for highest 

biodiesel conversion percentage as well as to characterize the quality of the biodiesel in 

terms of consistency, energy content and gel temperature. 
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CHAPTER 4: FINAL CONCLUSION 

 

Thermogravimetric analysis can be used for testing the amount of biodiesel 

present in a biodiesel and soybean oil mixture for screening purposes. As detailed in 

Chapter 2, the results from thermogravimetric analysis are comparable to the results from 

NMR spectroscopy, which is the prevailing method of biodiesel characterization. It can 

be used in industry as well as in laboratories owing to its inexpensive and convenient set 

up. It should be noted that TGA is not able to distinguish between glycerin and oil, but 

with proper washing of the mixture to remove the glycerin is able to measure the level of 

biodiesel conversion within 5%. 

Use of ultrasonics can increase the reaction rate by a factor of 10 as shown in the 

previous chapter. The time required to achieve a 96 % yield was reduced by several fold 

by ultrasonic treatment in a pulse mode.  In more detail, by using standard mixing 

systems, the time required to achieve 96 % biodiesel yield was about 45 minutes, while in 

contrast, this time was reduced to 1.5 minutes when ultrasonic treatment was used in 

pulse mode. Also in continuous sonication mode, an 87 % biodiesel yield is obtained in 

15 s. 

The energy required for transesterification through ultrasonic conversion is less 

than that required for mechanical stirring as calculated in Chapter 3. The increasing 

demand for biodiesel in present times, it proves to be a very efficient method for 

biodiesel production using considerable less time. The advantage of this method is that 

continuous flow ultrasonic chambers of required capacity can be constructed and used in 

laboratory as well as in industry. 
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Future work should include testing and optimizing continuous flow ultrasonic 

chambers for transesterification. Thermogravimetric analysis should be tested for 

biodiesel and oil mixtures of various oils other than soybean oil. More work is required 

for finding the optimum amplitude for maximum biodiesel conversion in a minimum 

amount of time. 
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