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ABSTRACT 

 

This study characterized the use of ultrasonic energy to increase the production of the 

methane as a biogas from the anaerobic digestion of coproducts of dry milling. Dried 

distillers grain with solubles (DDGs), solids, thin stillage, and corn syrup were treated with 

various ultrasonic conditions and compared to untreated (control) samples. The amplitude 

ranged from 52.8 µmpp to 160 µmpp and the time was varied from 10 to 50 s. The resulting 

samples were characterized using scanning electron and optical microscopy (SEM, OM) and 

particle size analysis. Samples consisting of solid/liquid suspensions (DDGs, solids) showed 

a significant decrease in particle size (44.5% decrease in DDGS and 42.9% decrease in 

solids) and an associated increase in the surface area to volume ratio, thus promoting 

anaerobic digestion for enhanced biochemical methane production (BMP).  In addition, thin 

stillage and corn syrup exhibited a slight increase in the peak particle size.  It should be noted 

that the overall mean particle size decreased (65.73% decrease in syrup, and 74.57% in thin 

stillage) despite that the peak particle size increased. This observation is counter intuitive to 

ultrasonic treatment and is believed to be the result of oil agglomeration after being released 

from lipid bio-layers. 
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CHAPTER 1: INTRODUCTION 

 

1.0 Vision 

 

As industrialized nations search for alternative fuels to supply the growing need for more 

energy sources, research in bio-fuels has increased.  The vision of this research is to improve 

biogas production by various ultrasonic treatments (amplitude and time) of selected dry mill 

ethanol production co-products and promoting anaerobic digestion for enhanced biochemical 

methane production (BMP).   

 

1.1 Origin of corn  

 

 Mesoamerica extends from northern Mexico to Central America as seen in Figure 1.1.  

The region's environmental diversity, from arid landscapes and mountainous areas to tropical 

lowlands, played a large role in the area becoming the source of ancestral forms of major 

present-day crops, including corn [1].  Native Americans grew maize (more commonly called 

corn) at least 5600 years ago. Scientists and historians believe the Mesoamerican natives first 

tamed wild relatives of corn to turn them into a usable food crops.  To make it edible, the 

corn was typically ground into flour or soaked in lye or other substances to soften the outer 

shell [2].  Although there have been many theories, the precise origin of corn remains 

uncertain, as the plant is found only in cultivation and does not grow in the wild [3]. 
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Figure 1.1 Mesoamerica [4] 

 

1.2 Types of corn 

 

 There are five main types of corn: dent corn, flint corn, sweet corn, waxy corn, and 

popcorn. Figure 1.2 shows some of these varieties. Dent corn (Zea mays indenata), 

commonly referred to as field corn, and is often used as livestock feed, in industrial products 

or in processed foods. Either white or yellow, dent kernels contain both hard and soft 

starches that become indented as the crop matures. [5] 
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Figure 1.2 Corn types [6] 

 

 Flint corn (Zea mays indurate), popularly known as Indian corn, is often used for 

purposes similar to those for dent corn. Flint corn is distinguished from other corn varieties 

with kernels having a range of colors from white to red. Today, most flint corn is grown in 

Central and South America [5]. 

 

 Sweet corn (Zea saccharata or Zea rugosa) can be eaten from the cob, or it can be 

canned or frozen for future consumption. Sweet corn is seldom used for feed or flour and has 

a softer outer shell because it is harvested before the kernel matures and hardens. Sweet corn 

is typically sweeter in taste than dent and flint corn because it contains more natural sugars 

[5]. 

 

 Waxy corn, discovered in the early 1900’s in China, is very similar to dent corn, but it 

has its own distinctive characteristic: it is composed entirely of amylopectin (a starch 
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composed of branched glucose chains); while dent corn contains 75% amylopectin and 25 

percent amylase (composed of unbranched glucose chains). Research is currently being done 

at many universities to exploit its unique traits [7]. 

 

 Popcorn is unique in that it is not initially edible like sweet corn. Kernels are cooked, 

usually in oil or in the presence of a heat source alone, until the insides of the kernels explode 

through the tough outer shells. Its origins date back over 1000 years to Native Americans, 

who introduced it to early settlers and explorers [8].  

 

 Dent corn, the type used in this study, is higher in starch and lower in sugar than 

sweet corn. The stalks of dent corn typically grow taller than those of the sweet corn, and 

their individual kernels have distinctive dentations on their sides, probably leading to the 

common name. The corn itself is often dried for processing and is obtainable in a number of 

different forms including whole cobs, individual kernels, and ground flours. Dent corn grows 

best in regions with long summers that allow the ears of corn to fully mature, and when 

cultivated appropriately dent corn usually can be stored for around two years [9]. 

 

Dent corn is also one of the most cultivated crops worldwide and has a wide range of 

uses. Dent corn is commonly found in animal feeds; since it is inexpensive to grow, it is 

often used as a bulk additive for improved livestock supplementation [9]. In addition to being 

a source of food for humans and livestock, dent corn contains starch and other coproducts 

that can be processed into many other useful items, including biodegradable plastics, 

alcohols, cosmetic and skin care products, drugs, batteries, rubber, beverages, crayons, soaps, 
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absorbent materials for diapers, food additives, food supplements, and other commercial 

products [10]. Because dent kernel corn has a variety of uses, it is very important 

economically in some regions of the United States [9]. 

 

 

1.3 Properties of the corn kernel 

 

 A kernel of corn is wrapped in a hard fibrous outer shell.  Inside the kernel is the 

germ, or embryo, from which a new corn plant can develop. These parts of the kernel can be 

seen in Figure 1.3. Around the germ is the kernel’s food supply, the endosperm, which is 

mostly starch. When the kernel germinates, it draws nourishment from the endosperm until it 

develops roots and obtains nutrients from the soil. The endosperm of the kernel accounts for 

approximately 82% of the kernel’s dry weight. The starch is the most extensively used potion 

of the kernel. Starch is used in foods or as a key component in biofuels, sweeteners, and 

bioplastics, and other products [11]. 
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Figure 1.3 Corn kernel [13] 

 

 The pericarp is the hard fibrous outer covering that protects the kernel and preserves 

the nutrient value of the endosperm inside. The pericarp resists water, many insects and 

microorganisms.  

 

 The germ is the only living part of the corn kernel itself after the corn has fully 

matured. The germ contains the vital genetic sequence, enzymes, vitamins, and minerals 

required for the kernel to grow into a fully developed corn plant. Roughly 25% of the germ 

consists of corn oil (typically high in polyunsaturated fats.) The “tip cap” connects the kernel 

to the cob. Water and nutrients flow into the kernel through the tip cap, and it is the only 

portion of the kernel that is not covered by the pericarp [12].  
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1.4 Components and uses of corn 

 

 Each corn kernel contains four main chemistries: starch, protein, oil, and fiber. These 

components are processed to create a wide range of products [14].  

 

 

Figure 1.4 Corn products [15] 

 

 For example, there are numerous food, drug, cosmetic, and industrial applications for 

cornstarch. A few of these examples can be seen in Figure 1.4. The starch is also often 

converted into dextrose (a pure crystalline sugar) or corn syrup, which also have multiple 

consumer and industrial uses. Products and processes that use cornstarch include batteries, 

bookbinding, papers, fireworks, lubricants, paints, oil refining, baby food, mustard, beer and 

ale, chewing gum, sauces and gravies, antibiotics, lipstick, lotions, soaps, and pet foods.  

Dextrose is used in food (e.g., carbonated beverages, chocolate, peanut butter, yeast, wine, 

condensed milk, and doughnuts, among others) and in many pharmaceutical and industrial 

applications, including leather tanning, rubber, adhesives, biodegradable plastics, textiles, 

electroplating and galvanizing, coatings for pills, medicinal syrups, and even intravenous 
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injections. Dried or aqueous corn syrups also are used in many industrial and medical 

products. These include shoe polish, rayon, theatrical makeup, plasticizing agents, 

fermentation processes, cereals, desserts, canned fruits and vegetables, maple syrup, 

marshmallows, frozen and dried eggs, and an assortment of snack foods [14]. 

 

 The solubles from a milling process also provide a significant feedstock for various 

products. For example the steep water is useful in the production of antibiotics, chemicals, 

pharmaceuticals, and yeast. Some examples of solubles uses are: paints, varnishes, 

insecticides, rubber substitutes, livestock feed, rust preventative, margarine, mayonnaise, 

cooking oil, salad dressings, vitamins, antibiotics, and soap [14]. 

 

 Another common coproduct from milling corn is corn gluten. Gluten meal is protein 

rich and is used primarily in animal feed for poultry and swine, and in pet food. The fiber in 

corn, much of which comes from the hull of the corn, is made into a feed product called 

gluten feed. It is used mostly in beef and dairy cattle provisions. The germ can also be 

ground into meal for animal feed. Approximately 25% of the germ is corn oil, which has 

food, drug, and manufacturing uses [16]. 
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1.5 U.S. corn production 

 

 Corn is the most widely produced feed grain in the United States, accounting for 90% 

of the total grains. It is estimated that 80 million acres of land are planted with corn every 

year [17].  Furthermore, the United States is the largest corn producer in the world. In 2003, 

corn growers in the United States produced 256.9 million metric tons (MMT) of corn, 

exporting nearly 20% of the crop (51.0 MMT). The top five destinations for U.S. corn are 

Japan, Mexico, Taiwan, Canada, and Egypt as shown in Figure 1.5. [18].  

 

 

Figure 1.5 Top 2003 U.S. corn customers [18] 
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1.6 U.S. production of corn-based ethanol 

 

 The production of corn-based ethanol in the United States is dramatically increasing, 

due primarily to the increased demand for ethanol as a fuel additive. According to the 

Renewable Fuels Association (RFA), in 2007 the United States had 134 ethanol plants 

operational and 77 plants being built. A map of the plant locations is shown in figure 1.7.  

Production has increased by a factor of 27 since 1980 [19]. As corn-based ethanol production 

is increasing, there is a corresponding increase in coproducts. 

  

 Coproducts from ethanol production are primarily used as livestock feeds, which can 

provide ethanol producers with a significant secondary revenue source and increase the 

profitability of the ethanol production process. With increasing numbers of ethanol plants, 

the industry is finding new applications for the resulting coproducts in order to increase the 

economic viability of ethanol. Coproducts such as distillers grains (see Figure 1.6) with 

solubles (DDGS), solids, syrups, and thin stillage have potential for value-added processing 

[20]. While many of these coproducts are currently used as animal feed, they also have the 

potential to produce methane gas through anaerobic digestion [21]. 
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Figure 1.6 DDGS pile [22] 

 

 

Figure 1.7 U.S. ethanol facilities [23] 

 

 



 12 

 Ethanol can be produced from corn by either wet milling or dry grind processing. In 

wet milling the corn kernel is separated into different components, which results in a number 

of products.  

 

 In dry grind facilities the corn kernel components are not separated, and the main 

coproduct is distillers dried grains with solubles (DDGS). Dry grind plants typically require 

less equipment and capital compared to wet mills plants. The vast majority of the increase in 

ethanol production during the past decade is credited to growth in the dry grind industry. The 

sale of the coproducts produced at ethanol plants provides an additional revenue source [24]. 

 

 There have been many studies in recent years to estimate the energy used to produce 

ethanol. The studies have resulted in a wide range of estimates due to the variation in the 

source of data collected and assumptions built into the models. A recent study in 1995 by H. 

Shapouri, J. Duffield, and M. Graboski for the U.S. Department of Agriculture showed that 

the net energy value of corn ethanol has a positive energy output when the fertilizers are 

produced by modern processing plants, the corn is converted in modern facilities, and 

farmers achieve normal corn yields. The study estimated that 67,768 BTU of energy is 

required to produce one gallon of ethanol. The study concluded that corn ethanol is energy 

efficient because the data showed a positive energy ratio of 1.24.  Or, for every BTU 

dissipated to producing ethanol there was a net 24% energy gain.  This is based on 

assumption that the energy for ethanol is 83,961 BTU 1 [25]. 
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 Other more recent studies consider other factors. For example, D. Pimentel in 2003 

includes all 50 states in his study instead of just the nine top corn-producing states in the 

Midwest. Pimentel also includes the environmental impacts of insecticides and fertilizers and 

takes into consideration the strain on the human food supply created by the demand for 

ethanol. He further explains that the energy balance of ethanol production is negative (that it 

takes 29% more energy to produce ethanol than it yields) with the additional costs factored 

into the energy balance formula. The article also states that profitable utilization of the by-

products of ethanol production can help moderate the negative energy balance ratio [26], 

which was not included in his energy balance equation which partially accounts for the 

negative energy balance.  It is also important to note that his model assumed a higher than 

normal usage of fertilizer. 

 

 

1.7 Ethanol production 

 

 The production of ethanol or ethyl alcohol from starches and sugar-based feedstocks 

is a technology that dates back more than 1000 years. While the basic steps remain the same 

as original technique, the process has been refined over the years. Although this refinement 

has lead to a relatively efficient process, the industry continues to search for improvements 

for the overall efficiency and profitability of the plants. For example, some facilities are now 

utilizing biomass gasification and methane gas digesters to help cut the costs of the natural 

gas used during production [23]. 
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As indicated in the previous section, there are two different processes for ethanol 

production: dry milling and wet milling. The biggest difference between the two processes is 

in the initial treatment of the grain. These two processes are detailed in the following 

sections. 

 

 

1.7.1 Dry milling 

 

 In dry milling the entire corn kernel is first ground into meal, and processed without 

separating the component of the grain. The meal is mixed with hot water (+120°C) and a 

small portion of enzymes in a jet cooker (hydro-cooker) to form mash.  This process softens 

and sterilizes the corn. Additional enzymes are then added to the mash to convert the starch 

to glucose, a simple fermentable sugar. Ammonia is normally added for pH control and as a 

nutrient for the yeast. The mash is cooled and then transferred to the fermentation tanks, 

where yeast is added, and the conversion of starches to sugars is completed, as well as the 

fermentation of the sugars to ethanol and carbon dioxide.  Dry milling process is depicted in 

Figure 1.8 [62]. 
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Figure 1.8 Dry milling processes [62] 

 

 The fermentation process can take up to 50 hours. During this phase of the process, 

the mash is continuously agitated and kept at the correct temperature range below 35°C to 

assist the activity of the yeast.  It has been reported that the optimum temperature range is 

between 32-35°C [60] and at temperatures higher than 35°C the fermentation efficiency 

significantly decreases [61].  After fermentation the resultant product is transferred to 

distillation columns, where the ethanol is separated from the remaining stillage. The ethanol 

is then concentrated to 190 proof (80% wt) by distillation, and dehydrated to approximately 

200 proof (100% wt) in a molecular sieve column. The resulting anhydrous ethanol is then 
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mixed with approximately 5% denaturant, such as gasoline, to make it inconsumable by 

humans, so it is not subject to alcohol beverage taxes. It is delivered to gas stations or other 

retailers [23]. 

 

 The remaining stillage is passed through a centrifuge that separates the coarse grain 

from the solubles. The solubles are then concentrated to approximately 30 to 50 % solids by 

evaporation, resulting in condensed distillers solubles (CDS) or syrup. The coarse grain and 

the syrup are then dried together to produce dried distillers grains (DDG). Usually a portion 

of the CDS is added to the DDG to improve the nutritional value and the final product is 

dried distillers grains with soluble (DDGS), and sold as livestock feed. The carbon dioxide 

that is released during fermentation is typically captured and sold for other uses, such as 

carbonating soft drinks and beverages, and the production of dry ice [23]. 

 

 

1.7.2 Wet milling 

  

 In the wet milling process, the grain is initially soaked in water and diluted sulfurous 

acid for 24 to 48 hours. This steeping process facilitates the separation of the grain into its 

components. After steeping, the corn slurry is sent through a sequence of grinders to separate 

the corn germ. The corn oil from the germ is either extracted during this step, or the germ is 

sold off to other facilities that extract the corn oil. The remaining fiber, gluten, and starch are 

further segregated using centrifugal, screen, and hydrochloric separators [23]. 
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 The steeping liquor is concentrated in an evaporator. This concentrated product, 

commonly called heavy steep water, is dried with the fiber component and is then sold as 

corn gluten feed for livestock. Heavy steep water can also be sold by itself as a feed 

ingredient. The gluten component, high in protein, is filtered and dried to produce the corn 

gluten meal coproduct. The starch and any remaining water from the mash can then be 

processed in three ways. It can be fermented into ethanol, dried and sold as dried or modified 

cornstarch, or processed into corn syrup. The fermentation process for ethanol is very similar 

to that used in dry milling, as shown in Figure 1.9 [62]. 

 

Figure 1.9 Wet milling process [62] 
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1.8 Anaerobic digestion 

 

 Anaerobic digestion is a process that uses microorganisms to break down 

biodegradable substances in the absence of oxygen. It is commonly used to treat wastewater 

and break down sewage wastes. The anaerobic digestion process has four essential steps: 

hydrolysis, acidogenesis, acetogenesis, and methanogenesis. Each of the steps has its own 

unique type of bacteria. One of the biggest drawbacks to anaerobic digestion is the technical 

expertise required to properly use and process the bacteria and feedstocks. This, along with 

high capital costs and lower process efficiencies, are a few reasons why this process has not 

been widely developed on an industrial scale [27]. 

 

 During hydrolysis, complex organic polymer chains such as carbohydrates, fats, and 

proteins are broken down into simple sugars, fatty acids, and amino acids. The second step in 

this process is acidogenesis. The acidogens convert the resulting sugars, fatty acids, and 

amino acids into carbonic acids, alcohols, hydrogen, carbon dioxide, and ammonia gas. The 

third stage of the anaerobic digestion process is acetogenesis. Throughout the acetogenesis 

process, acetogens further digest the remnants of the previous process into hydrogen, acetic 

acid, and carbon dioxide. The final stage of anaerobic digestion is methanogenesis. The 

methanogens finish digesting the hydrogen, acetic acid, and carbon dioxide into methane and 

carbon dioxide gases. The chemical reaction for the entire anaerobic digestion, which 

converts complex sugars and carbohydrates into carbon dioxide and methane gas, is C6H12O6 

→ 3CO2 + 3CH4 [27]. 
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Figure 1.10 Anaerobic digestion stages [27] 

 

1.9 Ultrasonics 

 

 Ultrasound is defined as sound waves that are above the audible hearing range of 

humans, typically greater than 18 kHz, with most of the practical higher power applications 

falling in the 20-60 kHz range. [28] Low power ultrasound is commonly used in electronic, 

navigational, industrial, security applications, and in medicinal applications [29].   

 

 Low power ultrasound can also be used for imaging because the high frequency 

acoustic waves reflect off objects. The distance to an object can be determined by measuring 

the time between the transmission of an ultrasound pulse and the return of the echo.  Bats use 

this ultrasound technique to find their way during the night and hunt for food. Marine 

animals such as dolphins and whales are also believed to use this technology.  Ultrasound 

also can be used in maritime sonar systems to determine the depth of the water in a specific 

location, to find groups of fish, to locate submarines, or to detect scuba divers [29]. 

 



 20 

 

Figure 1.11 Ultrasound [30] 

 

 Another good example of the use of ultrasonic frequencies is an ultrasonic detection 

system. Its constant high frequency acoustic signals are transmitted by a group of 

transducers. The ultrasonic waves inundate the area that is being monitored by the system.  

The receiving transducers check the ultrasound reflected by objects in the field. If 

movements or changes in the area produce a variation in the phase of some of the reflected 

waves that go back to the receivers, this phase change is detected and then sends signals to 

sound the alarm system.  Such ultrasonic security systems are popular among car owners.  

Other applications of ultrasound are in medical imaging (shown in Figure 1.11), where the 

high frequency acoustic energy is transmitted into the human body by transducers that are 

placed on the skin. The ultrasound waves reflect off organs and surrounding fluids in the 

body and between areas of differing tissue density.  This is mostly used to monitor the 

condition and behavior of fetuses preceding birth. It can also be used to locate tumors or 

cancerous legions and to examine the condition of muscles and bones in the body. 

Ultrasound can be used in industry to evaluate the consistency and purity of liquids and 

solids.  It can also be used for ultrasonic cleansing purposes. [29]  
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1.9.1 Background 

  

 The conversion of electrical energy into mechanical vibrations is critical for efficient 

ultrasonic production. This is typically achieved in a transducer.  The transducer converts the 

electrical energy to mechanical energy. A common design of a transducer is a piece of 

polarized material that has electrodes attached to its positive and negative faces. When an 

electric field is applied across the material, the polarized molecules align themselves with the 

electric field, causing the material to change dimensions. This phenomenon is known as 

electrostriction. A permanently polarized material such as quartz (SiO2) or barium titanate 

(BaTiO3) will produce an electric field when the material changes dimensions as a result of 

an imposed mechanical force. This is known as the piezoelectric effect [31]. 

 

 The active element of most acoustic transducers used today is a piezoelectric ceramic. 

Prior to the development of piezoelectric ceramics in the early 1950s, ceramic nonferrous 

piezoelectric crystals made from quartz and magnetostrictive ferrous materials were 

primarily used, and the active element is still often referred to as the crystal. [31]. 

 

 Magnetostrictive ferrous materials change shape in the presence of a magnetic field, 

converting the energy in a magnetic field into mechanical energy, while piezoelectric 

materials change shape (show in Figure 1.12) by converting the electrical energy into 

mechanical energy when an electric voltage is applied through it.  The inverse is also true in 

piezoelectric materials; when a mechanical force is applied, it will produce an electric 

voltage. Piezoelectric systems also transfer energy more efficiently compared to 
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magnetostrictive systems due to the direct transfer of energy.  In more detail, a 

magnetostrictive system must transfer energy from electrical to magnetic, and then into 

mechanical energy. [59]  

 

 After piezoelectric ceramics were introduced, they became the major material for 

transducers due to their high efficiency and their ease of manufacture into a variety of shapes 

and sizes. The first piezoceramic in common use was barium titanate, and that was followed 

during the 1960s by the lead zirconate titanate compositions that are now the most commonly 

employed ceramic for making transducers. New materials such as piezopolymers and 

composites are also being used today [31]. 

 

 

Figure 1.12 Piezoceramics [31] 

 

 The thickness of the active element is determined by the desired frequency of the 

transducer, as well as selected voltage available from the power supply. There are limitations 

though, as the higher the frequency of the transducer, the thinner the active element. [31] 
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1.9.2 High power ultrasonics 

 

 In contrast to low power applications, high power ultrasonic applications use lower 

frequencies typically in the range of 20 to 100 kHz [32] because the power is constrained by 

the heat limitation on an ultrasonic system when using higher power.  The maximum 

available power of a system is limited by the capacity of the ultrasonic transducer .In more 

detail, in order to maintain resonance, maximum available power is inversely proportional to 

frequency as detailed Figure 1.13. [58] 

 

Figure 1.13 Maximum available power as a function of frequency [58] 
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 Typical operating frequencies for high power applications are 10, 15, 20, 25, 30, 35, 

and 40 kHz.  Systems with a frequency between 20-30 kHz are a good compromise, 

maintaining a relatively high power without sacrificing frequency significantly. [58] 

 

 

1.9.3 Cavitation 

 

 When high power ultrasonics is applied through a medium such as water, cavitation 

due to ultrasonic rarefaction occurs. These low-pressure cavities implode violently, causing 

the surrounding particles in the solution to break apart due to the intense hydromechanical 

shear forces in the solution [33].  In more detail, the magnitude of the negative pressure in 

the areas of rarefaction eventually becomes sufficient to cause the liquid to fracture 

producing bubbles [34]. 

 

 

Figure 1.14 Cavitation bubble collapse [35] 
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 Cavitation "bubbles" are typically created at nucleation sites such as impurities or 

interfaces.  As the liquid fractures or tears because of the negative pressure of the sound 

wave in the liquid, the liquid is vaporized. As the wave fronts propagate, the cavitation 

bubbles oscillate under the influence of positive and negative pressure and eventually grow 

to an unstable size. The violent collapse of the cavitation bubbles results in implosions, 

which cause shock waves and jets radiated from the sites of collapse [34].  

 

 

1.9.4 Acoustic streaming 

 

 Another phenomenon that occurs in a nonelastic medium such as water, when 

exposed to ultrasonic energy is acoustic streaming [34]. Acoustic streaming is the 

phenomenon caused by high frequency sound waves when present in a fluid [36]. This is also 

called acoustic flow [37].  When ultrasonic waves are applied through water, the temperature 

of the liquid and any solid object in it increases. The origin of this increase in heat transfer is 

due to the agitation effect from the microjets of cavitation shearing and from acoustic 

streaming [38].  It has been found in recent studies that the acoustic streaming velocity is 

proportional to the square of the vibration amplitude [39].  

 

 In a similar study, it was determined that acoustic streaming velocity is determined by 

the properties of the fluid such as acoustic attenuation (loss of intensity), viscosity, sound 

velocity, time of exposure, frequency, aperture size, and pressure amplitude. It has been 

theorized that acoustic streaming velocity increases when amplitude, attenuation, and 
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frequency increases, and when aperture (opening) size decreases. It was further found that 

acoustic streaming velocity decreases when the fluid viscosity increases [40]. 

 

 

1.9.5 Resonance 

 

 In mechanical terms, resonance is the tendency of a system to oscillate at maximum 

amplitude with least amount of driving force and occurs at certain frequencies. Because the 

system stores energy at these frequencies, smaller forces can produce large amplitude of 

vibrations. Resonance can occur with a wide range of energy including mechanical, and 

electromagnetic waves [41]. 

 

 Many objects usually have more than one resonance frequency, as well as associated 

harmonics for each mode of resonance. A system will vibrate at those fundamental resonance 

frequencies, and vibrate less at the harmonic frequency.  Acoustic resonance is also a 

common consideration in many designs but most evident in the design of acoustical 

instruments. These resonators are for example, the strings and body of a violin, the length of 

a flute, or the shape of a drum [42].   In contrast, a classic example of an undesired resonance 

was the destruction of the Tacoma Narrows Bridge in Tacoma, Washington on November 7, 

1940 [43]. 
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1.9.6 Equipment 

 

1.9.6.1 System and components 

 

 There are four main components to an ultrasonic system: the power supply, the 

converter, booster, and the horn. The power supply converts the input electrical power to the 

current, voltage, and frequency that the system requires. The converter, or transducer, 

converts the electrical power into mechanical vibrations at the resonant frequency. The 

motion/strain within the transducer is produced by piezoelectric disks, which are held 

together by high tensile strength bolts. The booster, a mechanical amplifier, which is 

optional, is commonly used to increase the vibration amplitude of the system. The last 

component of the system, the horn, which comes in a variety of shapes and sizes, is 

dependant on the application [44].   

 

 The peak to peak amplitude can be estimated by multiplying the four factors of the 

ultrasonic stack, namely the percentage of the controller amplitude and the converter's rated 

amplitude with the gain of the booster and the horn that are detailed in Figure 1.15.  

 

Example: =××−× )8:1()1:1() µm200()%100( HornBoosterConverterAmplitude  

             )8()1()20()1( ×××  = 160 µmpp 
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Figure 1.15 Ultrasonic unit assembly [44] 

 

1.9.6.2 Tooling  

 

 Industrial ultrasonic tooling manufacturers will typically design and build both 

custom and standard ultrasonic horns (examples shown in Figure 1.16) for use on all brands 

of ultrasonic systems [45]. These horns are often called the tooling. 

 

 

Figure 1.16 Ultrasonic horn varieties [45] 

 

 There are many typical applications for ultrasonic tooling, including but not limited to 

welding, inserting, spot welding, de-gating, staking, liquid treatment, cleaning, cutting, 

machining, scientific experimentation, and textile cut, and sealing. Ultrasonic tooling can 

Booster Horn Converter 
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also be made for specific frequencies ranging anywhere between 1 and 100 kHz, but 

preferably for 20 kHz, 30 kHz, or 40 kHz. The ultrasonic horns are also made in a wide range 

of shapes, including rectangular, rectangular slotted, circular, circular slotted, circular 

hollow, catenoidal, and exponential. Ultrasonic horns are typically made from aluminum, 

titanium, hardened powdered steel, or hardened tool steels. Horns can also be anodized or 

coated in chrome plating, titanium nitride, or other materials to increase the wear resistance, 

preventing oxidation on aluminum horns or rust on steel horns. Tooling is generally 

customized to the application of the ultrasonic device itself [45]. 

 

 

1.10   Optical microscopy 

 

 Optical or light microscope is a type of microscope that uses a series of lenses and 

visible light to magnify small objects (see Figure 1.17.) They are the oldest and the simplest 

types of microscopes. Early versions of simple optical microscopes consisted of a single lens 

such as the versions made by famed scientist Antonie van Leeuwenhoek. While the single 

convex lens types are now considered obsolete, they are still used for other magnification 

devices such as magnifying glasses and loupes. The compound microscope, a light 

microscope that utilizes more than one lens, was developed in the late 1500s to the mid- 

1600s. While van Leeuwenhoek is often credited with the development of the first compound 

microscope, other scientists such as Dutch spectacle makers Hans and Zacharias Janssen and 

astrologer Galileo Galilei also experimented with the use of multiple convex and concave 

lenses in series [46]. 
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Figure 1.17 Optical microscope conceptual components [46] 

 

 Modern optical microscopes have sets of objective lenses (typically 4x, 5x, 10x, 20x, 

40x, 80x, and 100x magnification) and a set of eyepiece lenses (typically 2x, 5x, and 10x 

magnification). The final magnification of the object is obtained by simply multiplying the 

objective lens magnification to the eyepiece magnification. The image of the object being 

observed is viewed though the series of the selected lenses with the illumination of the object 

provided, either by a natural light source and a reflective mirror, or by an artificial source 

from a bulb [46].    
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1.11 Scanning electron microscopy 

 

 The scanning electron microscope (SEM) is an electron microscope that images a 

sample's surface by scanning it with a beam of electron particles in a raster scanning pattern 

in a vacuum chamber rather than using light to create the image (see Figure 1.18.)  Modern 

SEMs typically have a magnification from approximately 25 times to 250,000 times the 

original sample's size. The first SEM image was obtained in 1935 by scientist Max Knoll, 

and this concept was further developed and patented by British scientist Manfred von 

Ardenne in 1937 and later by Professor Sir Charles Oatley in 1965 [47]. In a standard SEM, 

the electrons are emitted by a tungsten filament cathode and accelerated towards the anode 

through the magnetic lens to the sample. The electron beam hits the sample and it emits 

primary electrons, secondary electrons, and x-rays, which are collected and converted into a 

signal that produces the image [48]. 
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Figure 1.18 SEM conceptual components [48]  

 

 Non-electrically conductive samples (such as biological sample) must be coated with 

an electrically conductive material before they can be imaged with a standard SEM system.  

This coating will ensure that the electrons have a path to be grounded. A coating such as 

gold, gold/palladium alloy, platinum, tungsten, or graphite is deposited on the sample either 

by low vacuum sputter coating or by high vacuum evaporation.  In the 1980s environmental 

scanning electron microscopes (ESEMs) were developed that allowed samples that were not 

electrically conductive to be observed without coatings. This is due to the sample chamber 

being at a higher pressure than the vacuum in the electron optical column. The pressure and 

the type of gas in the chamber can be controlled as needed [47]. 
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1.12 Particle distribution analysis 

 

 Particle distribution analysis is the measuring and quantifying of a granular/powdered 

sample or dispersed particles, and is often completed in a fluid. It is also known as particle 

size distribution (PSD) analysis.  There are many types of PSD analysis, the simplest being 

sieve analysis. Sieve analysis uses a series of sieves to examine the percentage of particles 

that fall through consecutive smaller sieve range. There are disadvantages to this technique: 

not all particles are a perfect spherical shape, and the smallest practical sieve size ranges 

from 20 to 40µm. Other types of PSD analysis include automated optical counting using 

electron micrographs, as well as the coulter counter, sedimentation, and laser diffraction. The 

coulter counter determines the number of particles by measuring the changes that occur in the 

conductivity of a liquid passing though an orifice and tabulating the pulses of back pressure 

that occur when particles in the liquid pass through the orifice. In the sedimentation 

technique, the particles are suspended in a liquid, and the optical density of each layer of 

particles is measured. In laser diffraction, the diffracted light pattern is produced when the 

laser beam passes through a dispersion of particles in air or in a liquid. As the particle sizes 

increase, the angle of diffraction decreases. Modern electronic equipment measures the angle 

of diffraction, and can calculate a continuous measurement of the particles. Laser diffraction 

PSD is highly accurate and can measure particles smaller than 1 µm. Laser diffraction has 

now become the dominant procedure for measuring PSD [49].  
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1.13 Research questions 

 

The research questions that will be answered in this thesis are: 

 

1) What are the effects of ultrasonic treatment on selected dry mill ethanol co-products? 

2) How much of a reduction in particle size is realized in ultrasonic treatment of these co-

products? 

3) Is there a difference in particle size reduction of the various co-product types? 

4) What are the changes in morphology of the various coproducts after ultrasonic treatment? 

 

1.14 Objective 

 

 The objective of this research was to determine the effects of the various ultrasonic 

treatment exposures on the selected dry mill ethanol production coproducts by analyzing and 

observing the treatments with optical imaging microscopy, scanning electron microscopy, 

and particle size analysis. The vision of this research is to improve biogas production by 

various ultrasonic treatments (amplitude and time) of selected dry mill ethanol production 

coproducts and promoting anaerobic digestion for enhanced biochemical methane production 

(BMP).   
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CHAPTER 2: METHODS 

 

 

2.1 Sample extraction 

 

 The coproducts analyzed in this study were collected from the Lincoln Way Energy 

ethanol production facility located in Nevada, Iowa [22]. The coproducts studied were (1) 

DDGs, (2) solids, (3) syrup, and (4) thin stillage, and the collection locations are detailed in 

Figure 2.1. 

  

 

Figure 2.1 Extraction points [22] 
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2.2 Sample preparation 

 

 The four samples were treated using a 2.2 kW, 20 kHz Branson 2000 series ultrasonic 

unit [50] with a 1:1 gain booster and a 1:8 gain titanium catenoidal horn with a 10 mm 

diameter face.  Figure 2.2 shows the ultrasonic treatment setup used for experimentation.  

 

 

Figure 2.2 Experimental setup 

 

 Screening experimentation indicated that a maximum of 3 g of DDGs, solids, and 

syrup was allowable in a 35 ml volume of water in a plastic 50 ml tube to achieve uniform 

ultrasonic treatment as shown in Figure 2.3.  Higher solid levels resulted in poor mixing 

during treatment. The catenoidal horn was lowered into the vial to the 15ml line.  After the 

samples were treated, the horn was cleaned and submersed into cool water before running 

other sample types. The treatments were completed at three different amplitudes, 33% (52.8 

µmpp), 66% (105.6 µmpp), and 100% (160 µmpp), and five treatment times, 10, 20, 30, 40, and 

50 s.  
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Figure 2.3 Untreated and treated sample in 50 ml tube 

 

 A subset of the experimental design, detailed in Figure 2.4, was chosen for the optical 

microscopy imaging (OM), scanning electron microscopy imaging (SEM), and particle 

distribution analysis (PDA). Treatments of 10 s at amplitude of 52.8 µmpp, 50 s at amplitude 

of 52.8 µmpp, 10 s at amplitude of 160 µmpp, and 50 s at amplitude of 160 µmpp were 

performed for the characterization study. The BMP tests conducted to determine the biogas 

yield from the control and ultrasonically pretreated coproducts are reported in a related paper 

[51]. 
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Figure 2.4 Treatment matrix for OM, SEM, and PDA 

 

 To observe the effects of the sonication, OM images at three magnifications (10x, 

20x, and 40x) were captured using the Aixo Imager 2 imaging system attached to the Zeiss 

Compound Microscope for the DDGs and solids sample types [52]. For the thin stillage and 

syrup sample a Nova Vision Series microscope was used at three magnifications (10x, 40x, 

and 100x), and images were captured with a Cannon SD110 Powershot digital camera 

attached to the optical lens.  

 

Figure 2.5 Optical microscope 
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 A Hitachi S-2460N variable pressure scanning electron microscope was used for 

SEM imaging [53]. Images were captured at 7x, 20x, 100x, 300x, and 1000x magnification 

with the Oxford Instruments "Isis" energy-dispersive x-ray system [54], which was attached 

to the SEM. Because this is variable pressure system, precoating of the samples was not 

required and direct imaging of the substrates was possible.  

 

 

Figure 2.6 Hitachi S-2460N SEM 

 

 Particle distribution analysis (PDA) was completed using dry samples (DDGs and 

solids) that were screened through a sieve to remove particles larger than 1000 µm because 

of the limitations of the Malvern Mastersizer 2000 PDA system [55].  The DDGs samples 

were sifted through a 500 µm No. 35 sieve; however, due to the higher moisture content of 

the solids, a larger No. 20 sieve was used for the solids. Approximately 30-40% of the solid 

particles fell through the sieve for the solid sample types. The syrup and the thin stillage 

particle sizes did not require sieving. 
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Figure 2.7 Sieving solid samples   Figure 2.8 Malvern Mastersizer 2000 PDA 
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CHAPTER 3: RESULTS AND DISCUSSION 

 

3.1 Optical microscope imaging 

 

 After the samples were treated, it was observed that there was a significant difference 

between the treated and the control samples (no ultrasonic treatment).  For example, after 

treatment gravity settling resulted in three visible layers that appeared to have varying 

densities, while in contrast, the control group only exhibited a single layer. Microscopic 

evaluation confirmed that each layer correlated to various particle sizes. Figures 3.1 and 3.2 

show optical micrographs images at 40x magnification of untreated and treated samples of 

the DDGs. Comparing the control to the treated sample, it is seen that the particles were 

broken apart by the ultrasonic treatment.  In more detail, it is seen that cell destruction and 

remnant debris are scattered (Figure 3.2) when the samples are treated with ultrasonics.  

 

  

 Figure 3.1 DDGs control     Figure 3.2 DDGs treated   

 

DDGS Control @ 40x DDGS 160µm, 50s @ 40x 
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 Figures 3.3 and 3.4 shows the images of the solids of the control and the treated sample, 

respectively, at 40x magnification. While the particle destruction is not as apparent as in the 

DDGs images above, it is seen that the treated sample exhibited more and smaller lipid 

droplets. In more detail, in the treated sample the lipids are more abundant and are noticeably 

smaller in size compared to the control. This observation is most likely related to 

emulsification often seen with ultrasonic treatment of discontinuous liquid phases. 

 

   

 Figure 3.3 Solids control                Figure 3.4 Solids treated   

 

 Figures 3.5 and 3.6 show the control and the treated samples of the syrup at 40x 

magnification, and Figures 3.7 and 3.8 show the control and treated samples of the thin 

stillage at 40x magnification. It should be noted that the particles appear larger in size for the 

syrup and thin stillage treated samples compared to the control group. While the particles 

themselves are broken down during ultrasonic treatment, it is speculated that during 

treatment they bind together or flocculate.  This increase in particle size may also be the 

result of oils being released during sonication and the droplets coalescence after treatment 

Solids Control @ 40x  Solids 160µm, 50s @ 40x 

Lipids 
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into larger droplets. These findings, an increase in particle, were not expected and 

conclusively not fully understood at this time. 

 

  

Figure 3.5 Syrup control    Figure 3.6 Syrup treated   

 

  

Figure 3.7 Thin stillage control    Figure 3.8 Thin stillage treated   

 

 

Syrup 160µm, 50s @ 40x Syrup Control @ 40x 

Thin Stillage Control @ 40x Thin Stillage 160µm, 50 s @ 40x 
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3.2 Scanning electron microscope imaging 

 

 The SEM images of the DDGs revealed similar results as seen with the optical 

imaging, as seen in Figure 3.9. In more detail, Figure 3.9 shows the control group, where the 

DDGs appear to be relatively intact. That is, the cell walls are intact, and the cell cytoplasm 

and other cell interior morphologies are located inside the cells.   In contrast, in the treated 

sample (160 µm, 50 s) the cell walls are fragmented and contain porous features most likely 

due to ultrasonic cavitation, as seen in Figure 3.10. Figure 3.11 shows the DDGs control 

group at 300x magnification, and Figure 3.12 shows the treated sample (160 µm, 50 s). 

Again, it is seen that cell destruction is prominent in the treated sample as a result of the 

cavitation produced by ultrasonics, and the results are similar to those reported by others 

[56]. It should be noted that after sonication, the hull particles of the DDGs were destroyed 

(compare Figures 3.11 and 3.12), and many of the lipid droplets are scattered and smaller in 

size.  

 

 

Figure 3.9 SEM of DDGs control    Figure 3.10 SEM of DDGs treated   

 

DDGS Control @ 1000x  DDGS 160µm, 50s @ 1000x  

Ultrasonic 
Cavitation  

Intact Cell  
Structures   

Lipids 
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Figure 3.11 SEM of DDGs control   Figure 3.12 SEM of DDGs & Cavitation   

 

 Figure 3.13 shows the SEM images for the solids control group at 20x magnification. 

It is important to note that the particles are relatively intact, in contrast to the ultrasonically 

treated sample (160 µm, 50 s) shown in Figure 3.14. The particles appear to be noticeably 

smaller, consisting mostly of powder-like granules with a few of the larger particles 

remaining. It is believed that the powder-like substance is residual cell fragments. Figure 

3.15 shows the solids control group at 1000x magnification. It is important to note the 

distinct cavities/pores present in the cell walls in Figure 3.15, but not present in Figure 3.16. 

 

 

Cavitation  

Intact Hull 
Structure   

Lipids 

DDGS Control @ 300x  DDGS 160µm, 50s @ 300x  
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3.13 SEM of solids control   3.14 SEM of solids treated   

 

 

Figure 3.15 SEM of solids control    Figure 3.16 SEM of solids treated   

 

 Figure 3.17 shows the SEM image of the syrup control sample at 1000x, and the 

ultrasonically treated sample (160 µm, 50 s) at 1000x is seen in Figure 3.18. Figure 3.19 

shows the thin stillage control sample at 1000x, with the treated sample (160 µm, 50 s) at 

1000x magnification shown in Figure 3.20.   

 

 These images suggest there is little difference between the control and treated 

samples. That is to say, there is no visible difference between the treated and control groups 

Solids Control @ 20x  Solids 160µm, 50s @ 20x  

Solid particles  

Sonicated “dust” 
solids 

Remnant solid 
particles  

Intact solids cell 
structures 

Lipids 

Destroyed solids cell 
structures 

Solids Control @ 1000x  Solids 160µm, 50s @ 1000x  
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for the thin stillage and syrup samples.  While both treated samples appear to have some 

evidence of pores, that maybe the result of cavitations; however, based on their limited 

number and size, it is difficult to conclude that they were produced by the treatment. 

 

 

Figure 3.17 SEM of syrup control   Figure 3.18 SEM of syrup treated   

 

 

Figure 3.19 SEM of thin stillage control  Figure 3.20 SEM of thin stillage treated 

 

 

 

 

Syrup Control @ 1000x  Syrup 160µm, 50s @ 1000x  

Thin Stillage Control @ 1000x  Thin Stillage 160µm, 50s @ 1000x 
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3.3 Particle distribution analysis 

 

 Statistical data generated by the Malvern Mastersizer software was utilized to create 

distribution plots for PDA analysis (Figures 3.21-3.24). In most cases, the distribution plots 

indicate reduction in particle size by ultrasonic treatment compared with the untreated sample 

(control group). For example, as seen in Figure 3.21, there is a peak population near a 

particle size of 800 µm for the untreated sample (control). However, with increasing 

treatment (time and amplitude), the peak population is reduced and shifted to the smaller 

particles. It is also interesting to note that a tri-nodal distribution of the DDGS is seen. It is 

believed that this is due to the morphology and fundamental composition of the substrate. For 

example, the peak at 20-40 µm may correspond to residual starch granules or protein 

structures. 

 

 As seen in Figure 3.22, similar results are obtained with the solids. However, for the 

syrup and thin stillage samples, as seen in Figures 3.23 and 3.24, the PDA data converged to 

a more uniformly distribution with increasing treatment (time and amplitude). It is also 

interesting to note that there is a slight increase in peak particle size, shown by the shift of the 

curve’s peak to the right (larger size).  While there is no evidence, it is theorized that the 

smaller particles are agglomerated by the ultrasonic treatment through high-speed impacts, 

similar to the behavior observed with metal spheres [57]. As previously noted, this may also 

be the result of oil droplets coalescencing to form larger droplets, and this oil is released by 

the ultrasonic treatment. 
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Figure 3.21 DDGs PDA graph 

 

 

Figure 3.22 Solids PDA graph 
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Figure 3.23  Syrup PDA graph 

 

Figure 3.24 Thin stillage PDA graph 

 

 After the data was collected, the Malvern software calculated the mean particle size 

of each treatment.  These 3 means were averaged and compared to each other, using a t-test 

to verify their significance.   The p-value chart, null and alternative hypothesis are detailed in 

Figure 3.25.  In each comparison for various treatments and sample types it was assumed that 
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a p-value smaller than 0.01 corresponds to significant difference between the means/average.   

An ANOVA table is seen in Figures 3.26 to 3.29.    

 

 

Figure 3.25 p-value & hypothesis. 

 

 For the DDGs sample type the treatment averages decreased with increasing 

treatment. This resulted in a decrease in particle size of 44.5% when comparing the 

maximum treatment average to the control mean. The t-test comparison between each 

treatment type and control resulted in a small p-value (<0.0001), which suggests there is 

strong evidence against the null hypothesis; thus there is a significant difference in particle 

size.  The ANOVA test also resulted in a very small p-value, supporting the t-test as shown 

in Table 3.1.  It is seen that for various treatment conditions there is significant difference 

between the average particle sizes. 

 

 

 

 

 

 



 52 

DDGS Control 33%, 10s 33%, 50s 100%, 10s 100%, 50s 
Mean 473.4 433.8 375.3 360.6 267.5 

St. Dev. 3.5 5.2 1.6 8.1 10.3 
Var. 12.8 27.6 2.6 66.1 107.9 

n 3.0 3.0 3.0 3.0 3.0 
d.f. - 8.0 8.0 8.0 8.0 

t - 23.1 74.4 57.0 95.4 
p - < 0.0001 < 0.0001 < 0.0001 < 0.0001 
      

Source D.F. S.S. M.S. F p 
Between 4 73948.6 18487.1 467.9 < 0.0001 
Within 11 434.6 39.5   
Total 15 74383.2    

Table 3.1 DDGs t-test and ANOVA table.  

 

 For the solids sample type the treatment average also decreased with increasing 

treatment. This resulted in a decrease in particle size of 42.9% comparing the maximum 

treatment mean to the control mean. The t-test comparison between each treatment type and 

control resulted in a very small p-value (<0.0001), which suggests there is a significant 

difference in the average.  The ANOVA test also resulted in a very small p-value, supporting 

the t-test as shown in Table 3.2.  

 

Solids Control 33%, 10s 33%, 50s 100%, 10s 100%, 50s 
Mean 441.8 368.3 393.4 311.2 250.4 
St. Dev. 8.4 8.2 15.7 9.9 9.4 
Var. 71.2 68.3 247.4 99.7 88.8 
n 3.0 3.0 3.0 3.0 3.0 
d.f. - 8.0 8.0 8.0 8.0 
t - 31.1 36.1 52.6 78.4 
p - < 0.0001 < 0.0001 < 0.0001 < 0.0001 
      
Source D.F. S.S. M.S. F p 
Between 4 60017.4 15004.3 143.3 < 0.0001 
Within 11 1151.2 104.6   
Total 15 61168.6    

Table 3.2 Solids t-test and ANOVA table. 
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 For the syrup sample type the treatment means also shows a decreasing trend with 

increasing treatment. This resulted in a decrease in particle size of 65.73% when comparing 

the maximum treatment mean to the control mean. The t-test comparison between each 

treatment type and control resulted in a very small p-value, which suggests there is a 

significant difference in the average.  The ANOVA test also resulted in a very small p-value, 

supporting the t-test as shown in Table 3.3.  

 

Syrup Control 33%, 10s 33%, 50s 100%, 10s 100%, 50s 
Mean 68.2 49.2 30.3 24.4 23.5 
St. Dev. 5.9 2.4 4.9 3.8 0.9 
Var. 35.8 6.0 24.6 14.4 0.8 
n 3.0 3.0 3.0 3.0 3.0 
d.f. - 8.0 8.0 8.0 8.0 
t - 11.6 20.1 24.5 29.8 
p - < 0.0001 < 0.0001 < 0.0001 < 0.0001 
      
Source D.F. S.S. M.S. F p 
Between 4 4560.7 1140.1 76.5 < 0.0001 
Within 11 163.8 14.8   
Total 15 4724.5    

Table 3.3 Syrup t-test and ANOVA table. 

 

 For the thin stillage sample type, the treatment means also shows a decreasing trend 

with increasing treatment. This resulted in a decrease in particle size of 74.57% when 

comparing the maximum treatment mean to the control mean. The t-test comparison between 

each treatment type and control resulted in a very small p-value, which suggests there is a 

significant difference in the average.  The ANOVA test also resulted in a very small p-value, 

supporting the t-test as shown in Table 3.4.  
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Thin Stil. Control 33%, 10s 33%, 50s 100%, 10s 100%, 50s 
Mean 88.2 64.0 36.6 30.3 22.4 
St. Dev. 4.0 13.3 5.9 4.8 5.6 
Var. 16.1 178.4 35.5 23.8 32.0 
n 3.0 3.0 3.0 3.0 3.0 
d.f. - 8.0 8.0 8.0 8.0 
t - 10.0 23.3 33.6 36.6 
p - < 0.0001 < 0.0001 < 0.0001 < 0.0001 
      
Source D.F. S.S. M.S. F p 
Between 4 8918.1 2229.5 42.8 < 0.0001 
Within 11 572.1 52.0   
Total 15 9490.2    

Table 3.4 Thin stillage t-test and ANOVA table.  

 

 Additionally a two-way ANOVA was performed to test for interaction between the 2 

independent variables, time and amplitude, and also compared their effect on the dependent 

variable, mean particle size (Table 3.5).   

 

DDGS ANOVA Two-Factor      
Source of Variation SS df MS F P-value F crit 
Time 17195.2 1 17195.2 341.0 7.61E-08 5.3 
Amplitude 24502.9 1 24502.9 486.0 1.89E-08 5.3 
Interaction 912.6 1 912.6 18.1 0.002781 5.3 
Within 403.3 8 50.4    
       
Total 43014.1 11     

Table 3.5 DDGS two-factor ANOVA. 

 

 The results of the DDGS two factor ANOVA indicated that time and amplitude were 

significant factors and that there is interaction between the two variables with a p-value of 

0.002781 as seen in Table 3.5. 
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Solids ANOVA Two-Factor      
Source of Variation SS df MS F P-value F crit 
Time 6048.0 1 6048.0 47.8 0.000122 5.3 
Amplitude 15987.0 1 15987.0 126.4 3.51E-06 5.3 
Interaction 758.4 1 758.4 5.9 0.039 5.3 
Within 1011.4 8 126.4    
       
Total 23804.9 11         

Table 3.6 Solids two-factor ANOVA. 

 

 The two factor ANOVA of the data from the solids indicate that time and amplitude 

were significant factors, and that there was moderate evidence of interaction between the two 

variables with a p-value of 0.039 as seen in Table 3.6. 

 

Syrup ANOVA Two-Factor      
Source of Variation SS df MS F P-value F crit 
Time 294.0 1 294.0 25.3 0.0010 5.3 
Amplitude 748.9 1 748.9 64.4 4.25E-05 5.3 
Interaction 246.6 1 246.6 21.2 0.0017 5.3 
Within 92.9 8 11.6    
       
Total 1382.4 11         

Table 3.7 Syrup two-factor ANOVA. 

 

 The two factor ANOVA of the data from the syrup, indicate that time and amplitude 

were significant factors, and that there was strong interaction between the two variables with 

a p-value of 0.0017 as seen in Table 3.7. 

 

 

 

 



 56 

Thin Stillage ANOVA Two-Factor     
Source of Variation SS df MS F P-value F crit 
Time 937.2 1 937.2 13.9 0.0057 5.3 
Amplitude 1714.8 1 1714.8 25.4 0.0009 5.3 
Interaction 285.6 1 285.6 4.24 0.0734 5.3 
Within 538.8 8 67.3    
       
Total 3476.5 11         

Table 3.8 Thin stillage two-factor ANOVA. 

 

 The two factor ANOVA of the data from the thin stillage indicated that time and 

amplitude were significant factors, and that there was suggestive evidence of interaction 

between the two variables with a p-value of 0.0734 as seen in Table 3.8. 
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Figure 3.26 Particle size distributions with respect to time 
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 Due to the increase in peak particle size of the treated syrup and thin stillage samples 

as detailed in Figures 3.23 and 3.24, it was theorized that this is due to particles 

agglomerating. In order to confirm this theory, thin stillage and syrup samples were 

characterized with the Malvern Mastersizer PDA immediately after sonication, 1 h after 

sonication, and 2 h after sonication comparing amplitude to time.   Figure 3.26 shows particle 

size distribution for various time intervals after sonication for the thin stillage. It is seen that 

there is little difference for the various times, suggesting the agglomerates were formed 

during sonication.   

 

 The mean particle size by volume for the DDGs and solids for the various treatments 

are seen in Figure 3.27. It can be seen that with increasing treatment there is a general 

decrease in particle size. This is consistent with the OM and SEM images. In contrast, when 

a similar analysis is completed for the syrup and thin stillage samples, there is an increase in 

peak particle size. For these samples, the particle size was normalized as a function of 

dissipated energy during treatment. This increase in the peak values is shown relative to the 

energy input in joules as shown in Figure 3.28.  
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Figure 3.27 Mean particle size DDGS and solids 

 

 Again it is believed that this increase in peak particle size is due to oil droplets 

coalescencing and agglomerization of particles during treatment for the syrup and thin 

stillage samples.  

  

 

Figure 3.28 Peak particle size thin stillage and syrup 
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Figure 3.29 Energy input  

 

 When comparing the dissipated energy to the treatment types as shown in Figure 

3.29, it is seen there is a proportional relationship between energy and time and between 

energy and amplitude.  Both treatment types show an approximately 4x increase in power 

input when 40 s were added to the same amplitude setting.   Figure 3.30 compares the mean 

particle size to energy, which also shows a decreasing trend in particle size as energy input 

increases.   
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Figure 3.30 Mean particle size as a function of energy. 
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CHAPTER 4: CONCLUSIONS AND RECOMMENDATIONS  

 

 Analysis of the OM and SEM imaging, and PDA results show a decrease in particle 

size for the selected dry mill ethanol coproducts after ultrasonic treatment.  It was also found 

that the particle size was generally inversely proportional to the amplitude and treatment 

time.  Using the numerical data from the PDA system, the percentage of particle size 

decrease was calculated. It was found that there was a 44.5% decrease in the mean particle 

size for the DDGS, 42.9% in the solids, 65.7% in the syrup, and 74.57% in the thin stillage.  

It should be noted that the peak values of the thin stillage and syrup samples increase, as 

shown in the PDA graphs, as a shift to the right suggesting an increase in peak particle size.  

While misleading, this should not be confused with an overall average decrease when 

observing the entire curve.   

 

 The SEM images of the DDGS and solids samples showed evidence of ultrasonic 

destruction of the cell walls when comparing the control group to the treated samples.  

Cellular structure was often found to be fragmented and visually shown to have distinct 

porous features on the surface of the particles on the ultrasonically treated samples.  Particles 

were also noticeably smaller in size when comparing the control to the treated samples, as 

this was most apparent when comparing the control to the maximum treatment.   

 

 This evidence was not present with the thin stillage and syrup samples.  The SEM 

images of the thin stillage and syrup samples did not provide any suggestions as to have any 
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effect; this probably was due to the significantly initial smaller particle size.  Although it was 

not visually as apparent, the statistical data suggests there was a difference.  

 

 In a companion paper by Wu-Haan [51], the ultrasonically pretreated samples were 

compared to the untreated samples for biomethane potential. In the study it was shown that 

ultrasonically treating the dry mill ethanol coproducts increases methane production during 

anaerobic digestion. The DDGs coproduct resulted in a 23% average increase in methane 

biogas production, and the solids showed a 10% average increase. The study further 

concluded that ultrasonic treatment was far more effective on the solid sample types and that 

it would be very beneficial if the DDGS and solid coproducts were used in methane gas 

production by anaerobic digestion.   Because the Malvern Mastersizer particle analyzer could 

only measure particles smaller than 1000 µm, this research could be improved if the larger 

particles were also measured for the DDGS and solids samples.  Future work related to this 

research should evaluate the potential of ultrasonics installed on an industrial scale, 

improving ethanol production facilities energy output by utilizing the increased biogas 

production from sonicated coproducts.  Ultrasonics could also play a role in improved 

generation of value added products extracted from sonicated DDGS and solids such as oils 

and proteins.  
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