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CHAPTER 1. GENERAL INTRODUCTION 
 
 

Introduction 
 

 Iowa stands at a fascinatiing and challenging agricultural crossroads at the state 

moves forward into the 21st century. On one hand, Iowa has become a model of agricultural 

productivity with ever increasing corn and soybean yields, phenomenal swine output, and 

other highly productive agricultural sectors (Tables 1 and 2). Iowa has further emerged as a 

national leader in biofuel production and the pursuit of value-added crop bioenergy options 

will likely intensify in the future. However, the state also finds itself positioned at the 

epicenter of agricultural pollution controversy, due to the intensity of crop and livestock 

production, crop production nutrient inputs, altered hydrological landscapes, and other 

factors. Ongoing and at times contentious debate regarding the severity of the pollution 

problem and appropriate solutions has continued unabated during my 20-year history at the 

Center for Agricultural and Rural Development (CARD). It is this debate that I hope to enter 

into in a constructive way with this study, with the goal of providing useful insights that will 

assist in the overall pursuit of nonpoint source pollution mitigation in Iowa.  

 At the outset, it is important to recognize that tremendous effort has been made by 

federal, state, county, local, and other agencies, private organizations, and individual 

landowners in both Iowa and across the nation to establish conservation practices, re-

establish riparian zones and wetlands, improve cropland nutrient management practices, and 

provide other rural landscape improvements. The annual average investment cost of 

installing terraces, grassed waterways, Conservation Reserve Program (CRP) land, and four 

other key conservation practices was estimated by Feng et al. (2008) to exceed $430 million 
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Table 1. Key Iowa crop production statistics for 2005a. 

Selected Crop Category Rank % of U.S. total 

Corn (grain) 1 17 

Corn (silage) 7 4 

Soybeans  1 14 

Oats 5 7 

Winter Wheat 37 - 

Alfalfa Hay & Mixtures 6 6 

Total area of principal crops harvested 1 8 
aSource: IDALS (2006). 

 
Table 2. Key Iowa livestock production statistics for 2005a. 

Selected Livestock Category Rank % of U.S. total 

All hogs  1 27 

Beef cows (that have calved) 10 3 

Dairy cows (that have calved) 12 2 

Cattle & calves on feed 5 7 

All sheep & lambs 9 4 

All egg layers 1 14 
a Source: IDALS (2006). 

 
in Iowa, based on cost share and other data obtained from state and federal sources. 

Extrapolation of this figure to the complete set of supported conservation practices at the 

national level would indicate an investment of tens of billions of dollars over the past several 

decades. Clear successes have resulted from these investments. National estimates of soil 

erosion rates exceeding soil loss tolerance rates show declines of 35 and 45% between 1982 

and 2003 for highly erodible land (HEL) and non-HEL land (USDA-NRCS, 2003). 
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Argabright et al. (1996) further report that erosion rates declined 42% between 1930 and 

1992 in the northern Mississippi Loess Hills Region (Major Land Resource Area 105), which 

transcends portions of Iowa, Illinois, and Wisconsin. Another Indicator of environmental 

improvement is surveyed statewide average fertilizer rates (USDA-ERS, 2007) that declined 

in the late 1980s and have remained relatively stable since the late 1990s1, while corn grain 

yields (USDA-NASS, 2007) have steadily increased (Figure 1), implying better utilization of 

nitrogen inputs. Other examples of environmental benefits can be observed including 

sizeable enrollments of HEL and other vulnerable land in the CRP and similar programs.  

Despite these clear signs of progress, acute nonpoint source environmental problems 

persist in Iowa, including areas where intensive efforts to reduce pollutant losses have 

occurred. For example, extensive installation of terraces in the Sny Magill Creek watershed 

in northeast Iowa resulted in only a 7% reduction in sediment after 10 years of monitoring 

(Fields et al., 2005). Similar results were reported by Schilling et al. (2006) for the Walnut 

Creek watershed in Jasper County, Iowa, where restoration of prairie grasses from 1992 to 

2005 (ultimately about 23.5% of the watershed area) resulted in no measurable reduction in 

sediment loss after 10 years of monitoring (although declines in nitrate losses were found). 

Monitoring data collected by the Des Moines Water Works, which serves over 300,000 

people in central Iowa (DMWW, 2007), reveals that five-year running average nitrate 

concentrations have steadily increased near the outlet of the Raccoon River during the years 

of 1978 to 2004 (Jones, 2005) in spite of ongoing upstream conservation efforts.  

 

                                                 
1Statewide average fertilizer application rates derived from fertilizer sales data generally show somewhat higher 
application rates (see ISUE, 2004). It is not clear if the upward trend in application rates shown in 2003 and 
2005 is a short-term anomaly or gradual increase in fertilizer application rates.   
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Figure 1. Iowa average annual nitrogen application rate and corn yield trends between 1964 
and 2005 (data not reported for 2004 due to lack of reported nitrogen application rate data; 

Sources: USDA-NASS, 2007; USDA-ERS, 2007). 
 

Other studies performed for larger regions including parts or all of Iowa further 

underscore the pervasiveness of the nonpoint source pollution problem in Iowa. Kalkoff et al. 

(2000) report that nitrogen and phosphorus levels measured in several large eastern Iowa 

watersheds, which drain to the Mississippi River, were among the highest found in the Corn 

Belt region and in the entire U.S. as part of the U.S. Geological Survey (USGS) National 

Water-Quality Assessment Program. Libra et al. (2004) estimated that Iowa contributed 20% 

of the nitrogen load to the Gulf of Mexico via the Mississippi River during 2000-2002, based 

on a statewide nutrient balance study that included nutrient load estimations for 68 

watersheds that drain roughly 80% of the state. Goolsby et al. (2001) report that streams 

draining Iowa and Illinois accounted for an estimated 35% of the nitrogen discharge to the 

Gulf of Mexico for “average years” during 1980-1996. Alexander et al. (2007) suggest 
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somewhat lower nitrogen loads originating from Iowa and the Upper Mississippi River Basin 

(UMRB), with the UMRB Gulf of Mexico nitrogen contribution estimated at about 33% (and 

18% of the phosphorus load). Regardless of the exact contributions, Iowa is clearly a major 

source of the nitrogen and phosphorus discharged from the mouth of the Mississippi River. 

These nutrients have been implicated as the primary cause of the seasonal oxygen-depleted 

hypoxic zone which occurs in the Gulf of Mexico (USEPA 2007a; b), that has covered 

upwards of 20,000 km2 in recent years (Rabalais et al., 2002; Turner et al., 2006).  

 
Corn Ethanol Production: Increased Water Quality Pollution? 

 The explosive growth of biofuel production has dominated news headlines during 

much of the past three years in Iowa (2004-2007). Corn-based ethanol production has 

especially skyrocketed, with Iowa production levels reaching approximately 1.5 billion 

gallons in 2006, which equaled 28% of the total U.S. production (Figure 2). Brasher et al. 

(2007) reports that current U.S. ethanol production capacity has reached 6.9 billion gallons, 

with an expected increase to 13.5 billion gallons once all new facilities or facility expansions 

under construction are completed; equivalent Iowa production numbers stand at 1.98 and 3.8 

billion gallons2 (Hart, 2007). However, Brasher further reports that overcapacity already 

exists in the ethanol market, and that increasing production levels portend greater uncertainty 

in future ethanol markets and prices for corn producers in Iowa and other states. A number of 

factors will ultimately determine the future profitability of ethanol production, including 

critical decisions made at the federal congressional and state legislative levels. 

                                                 
2Both the U.S. volumes reported by Brasher and the Iowa volumes reported by Hart were for October 2007.  
Hart further reports expected U.S. future capacity at 14.5 billion gallons; the difference between the two 
estimates may reflect planned projects that were canceled, underscoring the volatile and fluid nature of the 
industry at this time. 
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Figure 2. Total ethanol production in the United States and Iowa between 1980 and 2006 
(Source: ICA, 2007). 

 
 

Meanwhile, ongoing debate has focused on the true net energy balance and the 

associated real environmental impacts of grain-based biofuel production, especially corn 

ethanol production. Leading critics argue that corn ethanol production results in net negative 

energy benefits (e.g., Patzek et al., 2005; Pimental and Patzek, 2005). However, recent 

reviews by Farrell et al. (2006) and Hammerschlag (2006) counter the net negative energy 

balance argument, by pointing to an overall research consensus that corn ethanol production 

does yield a positive net energy balance and clearly requires less fossil fuel inputs than  

gasoline. Farrell et al. and Hammerschlag also show that the net energy benefits of cellulosic-

based ethanol production would be much greater than the current grain-based approach that 

is standard in the industry. This fact has important implications for future cropping systems 

and potential resulting environmental impacts.  
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Quantifying the environmental impacts of corn ethanol production is also complex 

and controversial. Patzek et al. (2005) and Pimental and Patzek (2005) again argue that corn-

based ethanol production results in multiple negative environmental externalities including 

drawdown of groundwater supplies that exceed recharge rates, increased atmospheric 

emissions of green house gases (GHGs), and greater export of pesticides and nutrients to 

stream systems from expanded corn production. A rising chorus of voices echo one or more 

of these concerns, including recent articles or reports published by the National Geographic 

Society (Bourne, 2007), the National Research Council (NAS, 2007), the Worldwatch 

Institute (2007), and the Des Moines Register (Clayworth, 2007; Elbert, 2007).  However, 

conflicting results have been reported between different environmental impact studies, 

including recent analyses of GHG emissions resulting from corn ethanol production. 

Pimental and Patzek (2005) and Patzek et al. (2005) state that corn ethanol production results 

in overall greater atmospheric pollution and increased or neutral GHG emissions, as 

compared to petroleum-based fuel production. However, Babcock et al. (2007) concluded 

that corn ethanol production will result in reduced GHG emissions based on a life-cycle 

analysis of biofuel feedstocks, providing crop production shifts in other countries don’t 

negate the GHG gains. A second life-cycle study performed by Adler et al. (2007) concluded 

that corn ethanol and soybean biodiesel production reduced GHGs by almost 40% relative to 

gasoline and diesel production 

Complex questions also emerge regarding the more pertinent question of corn ethanol 

production impacts on water quality. Pimental and Patzek (2005), Patzek et al. (2005), NAS 

(2007), Bourne (2007), and Widenoja (2007) all point to increased fertilizer and pesticide use 

in corn production that will result inevitable increased nonpoint source pollution. The 
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concerns expressed by these authors are based largely on anecdotal information rather than 

actual data. However, two recent studies (Simpson et al., 2008; Donner and Kucharik et al.,  

2008) do provide validation of the water quality concerns raised in the above studies. 

Simpson et al. project that increased acreage of corn could lead to higher losses of nitrogen 

and phosphorus by 37% and 25%, respectively, based primarily on inferences from previous 

field and large regional assessments. They further state that the resulting negative effects 

would be particularly acute in the Mississippi River Basin and that the use of dried distiller’s 

grains (which are a by-product of the ethanol production process) as a livestock feed 

supplement could further exacerbate water quality problems. Donner and Kucharik project 

that export of dissolved inorganic nitrogen via the Mississippi and Atchafalaya rivers to the 

Gulf of Mexico could increase by 10-34% in response to meeting federal biofuel goals of 15 

to 36 billion gallons by 2022. 

In contrast, there are signals from some field studies in Iowa and Minnesota that 

indicate that current ethanol-driven cropping shifts from typical corn-soybean to rotations 

with more corn may not necessarily result in large nonpoint source pollution increases. 

Randall et al. (1997) report that total nitrate (NO3-N) losses measured in tile drain effluent 

over 1990-1993 in southern Minnesota were only 7% higher for continuous corn (218 kg    

ha-1) versus corn-soybean (203 kg ha-1).  Similar differences were also reported during 1990-

93 for comparisons of NO3-N measured in tile drains beneath continuous corn and corn-

soybean cropping systems near Gilmore City in north central Iowa (IDALS, 1994). Baksh 

and Kanwar (2007) further found that average NO3-N loadings measured in tile drainage 

outflow during 1993-1998 for continuous corn were 16.9 kg ha-1, versus 13.7 and 13.3 kg ha-

1 for two cropping systems of corn rotated with soybean. However, they also reported that 
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average NO3-N losses beneath continuous corn (64.9 kg ha-1) were almost double those of 

the two corn-soybean cropping systems (both about 35.0 kg ha-1) during 1990-92. The results 

of these studies reveal that NO3-N leaching losses from soybeans can be similar to those 

reported for corn, but the results were influenced by several factors including variations in 

nitrogen application rates and precipitation that could warrant further investigation.  

There are other potential impacts of biofuel production that also warrant investigation 

including shifts from CRP and other grassland into corn-dominated crop rotation, biomass 

removal of corn stover, and shifts into switchgrass or other biofuel crops that could greatly 

alter present Iowa agricultural landscapes. Secchi et al. (2007) show in a recent simulation 

study for Iowa that conversion from CRP land to corn-dominated cropping systems could 

result in proportionally much greater environmental impacts. They further point out that 

shifts to conventional tillage are expected for rotations with increased corn production, which 

could lead to greater soil erosion. On the other hand, shifts into switchgrass and similar 

perennial crops could provide extensive environmental benefits. Overall, these issues point to 

the need for further research on cropping and management system impacts on nonpoint 

source pollution in Iowa watersheds.   

 
Statement of the Problem 

 It is clear that nonpoint source pollution remains a vexing and difficult problem to 

solve in Iowa and the Upper Midwest in general, and current corn ethanol production trends 

may exacerbate those problems. Questions linger about the effectiveness of in-field nutrient 

management adjustments and related practices in reducing nitrogen losses from cropland, and 

what exactly the best suite of practices is to reduce nutrient losses to Iowa stream systems. 
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One interesting potential mitigation strategy is the placement of more perennials/close grown 

crops on agricultural landscapes that will result in reduced nonpoint source pollution 

including nitrogen losses. To date, evaluation of perennial impacts on water quality at the 

watershed scale in Iowa have been very limited, and further research is definitely needed. 

Therefore, there is a need for systematic analysis of the potential environmental impacts of 

biofuel/ethanol-based production scenarios, such as expanded corn acreage and expanded 

acreage of perennials (such as switchgrass), should cellulosic ethanol production become 

reality (which has an obvious tie-in to the use of perennials to reduce nonpoint source 

pollution).  

 Simulation models can be an effective tool for evaluating biofuel cropping scenarios 

for cropping conditions. However, there is a need to further test existing models for current 

Iowa conditions, to ensure they are accurately replicating the effects of typically used 

cropping systems and management practices, before applying them to emerging and potential 

future biofuel scenarios. This research seeks to address this testing need by performing in-

depth testing of a widely used water quality model that holds promise for application to 

biofuel related scenarios.  

 
Case Study: The Boone River Watershed 

The Boone River Watershed (BRW) is an intensively cropped region located in north 

central Iowa which exemplifies the Iowa agricultural production characteristics and water 

quality issues described above. The BRW was identified by Libra et al. (2004) as discharging 

some of the highest nitrogen loads during 2000-2002 among the 68 Iowa watersheds that 

were analyzed within their statewide nutrient balance study. The BRW has also been 
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identified within the UMRB as both an area of freshwater biodiversity significance and a 

priority area for biodiversity conservation (Weitzell et al., 2003). The biodiversity 

conservation designation reflects the fact that the watershed has been identified as currently 

possessing a “relatively un-degraded stream ecosystem,” but that it is also very vulnerable to 

future increased degradation (Neugarten and Braun, 2005).  Potential biodiversity threats 

listed by Neugarten and Braun include consistently high in-stream nitrogen concentrations, 

farm production methods that may be ecologically harmful, and inadequate treatment of 

wastewater. Ethanol production also poses potential environmental impacts, with one ethanol 

refinery located within the watershed and several others in operation or under construction in 

the north central Iowa region. 

The research I present here has been performed in the context of a larger CARD 

research study, which was initiated to evaluate a broad set the potential economic and 

environmental impacts of alternative land use and management practices for the BRW. I 

specifically focus on the environmental component of the modeling system, which features 

the Soil and Water Assessment Tool (SWAT) model (Arnold and Forher, 2005; Gassman et 

al., 2007) that is used worldwide and has been foundational in much of our CARD research 

team’s efforts during the past decade. The goal of the overall CARD BRW study is to 

identify strategies that can potentially mitigate loss of nitrates and other pollutants from 

agricultural cropland, which could lead to improved water quality in the BRW stream 

network as well as in downstream ecosystems such as the Gulf of Mexico. The specific 

research I report here is centered on testing SWAT for BRW baseline conditions, including 

accounting for the tile drained landscapes and intensive nutrient inputs from fertilizer and 

livestock manure. Insights gained from this research may also be transferable to other 
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watersheds that drain parts of the Des Moines Lobe, which are generally characterized as 

regions of high nitrogen export.  

 
Overview of Dissertation Chapters 

The study is divided into seven chapters including this initial general introduction. 

The remaining chapters are: (2) the Soil and Water Assessment Tool: Developmental 

History, Applications, and Future Directions, (3) Development of a Common Land Unit 

(CLU) – Based Modeling System Framework for the Boone River Watershed, (4) SWAT 

Baseline Simulation Results for the Boone River Watershed: Analysis and Issues Regarding 

Two Simulation Approaches, (5) An In-Depth Assessment of Corn and Soybean Yields 

Predicted with SWAT for the Boone River Watershed, and (6) General Conclusions.      

Chapter Two is an extensive invited paper (Gassman et al., 2007) which was 

published in Transactions of the American Society of Agricultural and Biological Engineers 

and chronicles the development of SWAT, worldwide applications, strengths and 

weaknesses, and future research needs. This chapter documents the successful application of 

SWAT for a wide variety of environmental conditions and watershed scales, and that it has 

proven to be a very flexible tool for assessing a wide range of land use, climatic, 

management, and other scenarios for hydrologic and/or pollutant impact assessments. 

However, the review also reveals that the model has performed poorly for some conditions 

and that a wide range of improvements are required to address emerging 21st century water 

quality research and water resources needs. The literature review performed within this 

chapter undergirds the research presented in chapters three through seven.  
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Chapter 3 describes the modeling framework that has been developed for the Boone 

River Watershed. The framework has been constructed on the basis of Common Land Units 

(CLUs), which are essentially field-sized land parcels and are further described by NAS 

(2007a). Land use, conservation practices, and soil data have been collected at the CLU level, 

forming an extremely intensive data set to support simulation scenarios for the watershed. 

These data are described in detail in this chapter, along with climate, topographic, 

distribution of tile drainage, and other data key data inputs. The interface between the data 

inputs and the suite of available models at CARD is described, with an emphasis on the 

modeling structure used to support the SWAT simulations including the interactive SWAT 

(i_SWAT) software developed in-house at CARD which is a key model interface tool in our 

simulation approach.    

The SWAT baseline calibration and validation results for the Boone River watershed 

are reported in Chapter 4. Two different calibration/validation approaches are described 

which reflect differences between the “traditional” (USDA-NRCS, 2004) and “new” 

(Kannan et al., 2007) Runoff Curve Number (RCN) options provided in SWAT2005, as well 

as other differences in input assumptions. Differences in the hydrologic and pollutant loss 

predictions are presented including problems encountered in fully calibrating the model with 

the new RCN approach. The implications of the two approaches are also discussed, 

particularly in regards to the different hydrologic balance and nitrogen movement results. 

Chapter 5 presents an in-depth assessment of the SWAT corn and soybean yield 

results for the two baseline approaches discussed in Chapter 4, and also introduces yield 

predictions generated with the Environmental Policy Impact Climate (EPIC) model 

(Williams et al., 1990; Gassman et al., 2005) for comparison purposes. Very few studies 
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report comparisons of SWAT crop yield predictions with measured data and thus there is an 

urgent need to test the biomass and grain yield capabilities of the model. The results provide 

some interesting insights into the effects of the two hydrologic calibration approaches on the 

crop yield predictions and reveal weaknesses that need to be addressed in future SWAT 

development efforts. The results also show that SWAT corn yield predictions are very 

sensitive to tillage, and that further research is needed to verify if the current responses are 

consistent with field measurements.   

The final chapter (Chapter 6) provides an overall set of conclusions for the study 

including recommendations for future research. 
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CHAPTER 2: THE SOIL AND WATER ASSESSMENT TOOL: 
HISTORICAL DEVELOPMENT, APPLICATIONS, AND FUTURE 

DIRECTIONS 
 

A paper published as an invited paper in Transactions of the American Society of 
Agricultural and Biological Engineers1 

 

Philip W. Gassman2,3, M. R. Reyes4, C. H. Green5, J. G. Arnold5 

 
Abstract 

The Soil and Water Assessment Tool (SWAT) model is a continuation of nearly 30 

years of modeling efforts conducted by the USDA Agricultural Research Service (ARS). 

SWAT has gained international acceptance as a robust interdisciplinary watershed modeling 

tool as evidenced by international SWAT conferences, hundreds of SWAT-related papers 

presented at numerous other scientific meetings, and dozens of articles published in peer-

reviewed journals. The model has also been adopted as part of the U.S. Environmental 

Protection Agency (USEPA) Better Assessment Science Integrating Point and Nonpoint 

Sources (BASINS) software package and is being used by many U.S. federal and state 

agencies, including the USDA within the Conservation Effects Assessment Project (CEAP). 

At present, over 250 peer-reviewed published articles have been identified that report SWAT 

applications, reviews of SWAT components, or other research that includes SWAT. Many of 
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Engineers, 2007, 50(4), 1211-1250. Copyright ASABE 2007.  
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3Primary researcher and author, and author for correspondence.  
4Professer, Biological Engineering Program, Dept. of Natural Resources and Environmental Design, School of 
Agriculture and Environmental Sciences, North Carolina A&T Univ., Greensboro, North Carolina.  
5Soil Scientist and Agricultural Engineer, USDA-ARS, Grassland, Soil and Water Research Laboratory, 
Temple, Texas. 
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these peer-reviewed articles are summarized here according to relevant application categories 

such as streamflow calibration and related hydrologic analyses, climate change impacts on 

hydrology, pollutant load assessments, comparisons with other models, and sensitivity 

analyses and calibration techniques. Strengths and weaknesses of the model are presented, 

and recommended research needs for SWAT are also provided. 

 
Introduction 

The Soil and Water Assessment Tool (SWAT) model (Arnold et al., 1998; Arnold 

and Fohrer, 2005) has proven to be an effective tool for assessing water resource and 

nonpoint-source pollution problems for a wide range of scales and environmental conditions 

across the globe. In the U.S., SWAT is increasingly being used to support Total Maximum 

Daily Load (TMDL) analyses (Borah et al., 2006), research the effectiveness of conservation 

practices within the USDA Conservation Effects Assessment Program (CEAP, 2007) 

initiative (Mausbach and Dedrick, 2004), perform "macro-scale assessments" for large 

regions such as the upper Mississippi River basin and the entire U.S. (e.g., Arnold et al., 

1999a; Jha et al., 2006), and a wide range of other water use and water quality applications. 

Similar SWAT application trends have also emerged in Europe and other regions, as shown 

by the variety of studies presented in three previous European international SWAT 

conferences, which are reported for the first conference in a special issue of Hydrological 

Processes (volume 19, issue 3) and in proceedings for the second (TWRI, 2003) and third 

(EAWAG, 2005) conferences. 

Reviews of SWAT applications and/or components have been previously reported, 

sometimes in conjunction with comparisons with other models (e.g., Arnold and Fohrer, 
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2005; Borah and Bera, 2003, 2004; Shepherd et al., 1999). However, these previous reviews 

do not provide a comprehensive overview of the complete body of SWAT applications that 

have been reported in the peer-reviewed literature. There is a need to fill this gap by 

providing a review of the full range of studies that have been conducted with SWAT and to 

highlight emerging application trends. Thus, the specific objectives of this study are to: (1) 

provide an overview of SWAT development history, including the development of GIS 

interface tools and examples of modified SWAT models; (2) summarize research findings or 

methods for many of the more than 250 peer-reviewed articles that have been identified in 

the literature, as a function of different application categories; and (3) describe key strengths 

and weaknesses of the model and list a summary of future research needs. 

 
SWAT Developmental History and Overview 

The development of SWAT is a continuation of USDA Agricultural Research Service (ARS) 

modeling experience that spans a period of roughly 30 years. Early origins of SWAT can be 

traced to previously developed USDA-ARS models (Figure 1) including the Chemicals, 

Runoff, and Erosion from Agricultural Management Systems (CREAMS) model (Knisel, 

1980), the Groundwater Loading Effects on Agricultural Management Systems (GLEAMS) 

model (Leonard et al., 1987), and the Environmental Impact Policy Climate (EPIC) model 

(Izaurralde et al., 2006), which was originally called the Erosion Productivity Impact 

Calculator (Williams, 1990). The current SWAT model is a direct descendant of the 

Simulator for Water Resources in Rural Basins (SWRRB) model (Arnold and Williams, 

1987), which was designed to simulate management impacts on water and sediment 

movement for ungauged rural basins across the U.S. 
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Figure 1. Schematic of SWAT developmental history, including selected SWAT adaptations. 

 

Development of SWRRB began in the early 1980s with modification of the daily 

rainfall hydrology model from CREAMS. A major enhancement was the expansion of 

surface runoff and other computations for up to ten subbasins, as opposed to a single field, to 

predict basin water yield. Other enhancements included an improved peak runoff rate 

method, calculation of transmission losses, and the addition of several new components: 

groundwater return flow (Arnold and Allen, 1993), reservoir storage, the EPIC crop growth 

submodel, a weather generator, and sediment transport. Further modifications of SWRRB in 

the late 1980s included the incorporation of the GLEAMS pesticide fate component, optional 

USDA-SCS technology for estimating peak runoff rates, and newly developed sediment yield 

equations. These modifications extended the model's capability to deal with a wide variety of 

watershed water quality management problems. 
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Arnold et al. (1995b) developed the Routing Outputs to Outlet (ROTO) model in the 

early 1990s in order to support an assessment of the downstream impact of water 

management within Indian reservation lands in Arizona and New Mexico that covered 

several thousand square kilometers, as requested by the U.S. Bureau of Indian Affairs. The 

analysis was performed by linking output from multiple SWRRB runs and then routing the 

flows through channels and reservoirs in ROTO via a reach routing approach. This 

methodology overcame the SWRRB limitation of allowing only ten subbasins; however, the 

input and output of multiple SWRRB files was cumbersome and required considerable 

computer storage. To overcome the awkwardness of this arrangement, SWRRB and ROTO 

were merged into the single SWAT model (Figure 1). SWAT retained all the features that 

made SWRRB such a valuable simulation model, while allowing simulations of very 

extensive areas. 

SWAT has undergone continued review and expansion of capabilities since it was 

created in the early 1990s. Key enhancements for previous versions of the model 

(SWAT94.2, 96.2, 98.1, 99.2, and 2000) are described by Arnold and Fohrer (2005) and 

Neitsch et al. (2005a), including the incorporation of in-stream kinetic routines from the 

QUAL2E model (Brown and Barnwell, 1987), as shown in Figure 1. Documentation for 

some previous versions of the model is available at the SWAT web site (SWAT, 2007d). 

Detailed theoretical documentation and a user's manual for the latest version of the model 

(SWAT2005) are given by Neitsch et al. (2005a, 2005b). The current version of the model is 

briefly described here to provide an overview of the model structure and execution approach. 
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Swat Overview 

SWAT is a basin-scale, continuous-time model that operates on a daily time step and 

is designed to predict the impact of management on water, sediment, and agricultural 

chemical yields in ungauged watersheds. The model is physically based, computationally 

efficient, and capable of continuous simulation over long time periods. Major model 

components include weather, hydrology, soil temperature and properties, plant growth, 

nutrients, pesticides, bacteria and pathogens, and land management. In SWAT, a watershed is 

divided into multiple subwatersheds, which are then further subdivided into hydrologic 

response units (HRUs) that consist of homogeneous land use, management, and soil 

characteristics. The HRUs represent percentages of the subwatershed area and are not 

identified spatially within a SWAT simulation. Alternatively, a watershed can be subdivided 

into only subwatersheds that are characterized by dominant land use, soil type, and 

management. 

 
Climatic Inputs and HRU Hydrologic Balance 

Climatic inputs used in SWAT include daily precipitation, maximum and minimum 

temperature, solar radiation data, relative humidity, and wind speed data, which can be input 

from measured records and/or generated. Relative humidity is required if the Penman-

Monteith (Monteith, 1965) or Priestly-Taylor (Priestly and Taylor, 1972) evapotranspiration 

(ET) routines are used; wind speed is only necessary if the Penman-Monteith method is used. 

Measured or generated sub-daily precipitation inputs are required if the Green-Ampt 

infiltration method (Green and Ampt, 1911) is selected. The average air temperature is used 

to determine if precipitation should be simulated as snowfall. The maximum and minimum 
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temperature inputs are used in the calculation of daily soil and water temperatures. Generated 

weather inputs are calculated from tables consisting of 13 monthly climatic variables, which 

are derived from long-term measured weather records. Customized climatic input data 

options include: (1) simulation of up to ten elevation bands to account for orographic 

precipitation and/or for snowmelt calculations, (2) adjustments to climate inputs to simulate 

climate change, and (3) forecasting of future weather patterns, which is a new feature in 

SWAT2005. 

The overall hydrologic balance is simulated for each HRU, including canopy 

interception of precipitation, partitioning of precipitation, snowmelt water, and irrigation 

water between surface runoff and infiltration, redistribution of water within the soil profile, 

evapotranspiration, lateral subsurface flow from the soil profile, and return flow from 

shallow aquifers. Estimation of areal snow coverage, snowpack temperature, and snowmelt 

water is based on the approach described by Fontaine et al. (2002). Three options exist in 

SWAT for estimating surface runoff from HRUs, which are combinations of daily or sub-

hourly rainfall and the USDA Natural Resources Conservation Service (NRCS) curve 

number (CN) method (USDA-NRCS, 2004) or the Green-Ampt method. Canopy interception 

is implicit in the CN method, while explicit canopy interception is simulated for the Green-

Ampt method. 

A storage routing technique is used to calculate redistribution of water between layers 

in the soil profile. Bypass flow can be simulated, as described by Arnold et al. (2005), for 

soils characterized by cracking, such as Vertisols. SWAT2005 also provides a new option to 

simulate perched water tables in HRUs that have seasonal high water tables. Three methods 

for estimating potential ET are provided: Penman-Monteith, Priestly-Taylor, and Hargreaves 
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(Hargreaves et al., 1985). ET values estimated external to SWAT can also be input for a 

simulation run. The Penman-Monteith option must be used for climate change scenarios that 

account for changing atmospheric CO2 levels. Recharge below the soil profile is partitioned 

between shallow and deep aquifers. Return flow to the stream system and evapotranspiration 

from deep-rooted plants (termed "revap") can occur from the shallow aquifer. Water that 

recharges the deep aquifer is assumed lost from the system. 

 
Cropping, Management Inputs, and HRU-Level Pollutant Losses 

Crop yields and/or biomass output can be estimated for a wide range of crop 

rotations, grassland/pasture systems, and trees with the crop growth submodel. New routines 

in SWAT2005 allow for simulation of forest growth from seedling to mature stand. Planting, 

harvesting, tillage passes, nutrient applications, and pesticide applications can be simulated 

for each cropping system with specific dates or with a heat unit scheduling approach. 

Residue and biological mixing are simulated in response to each tillage operation. Nitrogen 

and phosphorus applications can be simulated in the form of inorganic fertilizer and/or 

manure inputs. An alternative automatic fertilizer routine can be used to simulate fertilizer 

applications, as a function of nitrogen stress. Biomass removal and manure deposition can be 

simulated for grazing operations. SWAT2005 also features a new continuous manure 

application option to reflect conditions representative of confined animal feeding operations, 

which automatically simulates a specific frequency and quantity of manure to be applied to a 

given HRU. The type, rate, timing, application efficiency, and percentage application to 

foliage versus soil can be accounted for simulations of pesticide applications. 
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Selected conservation and water management practices can also be simulated in 

SWAT. Conservation practices that can be accounted for include terraces, strip cropping, 

contouring, grassed waterways, filter strips, and conservation tillage. Simulation of irrigation 

water on cropland can be simulated on the basis of five alternative sources: stream reach, 

reservoir, shallow aquifer, deep aquifer, or a water body source external to the watershed. 

The irrigation applications can be simulated for specific dates or with an auto-irrigation 

routine, which triggers irrigation events according to a water stress threshold. Subsurface tile 

drainage is simulated in SWAT2005 with improved routines that are based on the work 

performed by Du et al. (2005) and Green et al. (2006); the simulated tile drains can also be 

linked to new routines that simulate the effects of depressional areas (potholes). Water 

transfer can also be simulated between different water bodies, as well as "consumptive water 

use" in which removal of water from a watershed system is assumed. 

HRU-level and in-stream pollutant losses can be estimated with SWAT for sediment, 

nitrogen, phosphorus, pesticides, and bacteria. Sediment yield is calculated with the Modified 

Universal Soil Loss Equation (MUSLE) developed by Williams and Berndt (1977); USLE 

estimates are output for comparative purposes only. The transformation and movement of 

nitrogen and phosphorus within an HRU are simulated in SWAT as a function of nutrient 

cycles consisting of several inorganic and organic pools. Losses of both N and P from the 

soil system in SWAT occur by crop uptake and in surface runoff in both the solution phase 

and on eroded sediment. Simulated losses of N can also occur in percolation below the root 

zone, in lateral subsurface flow including tile drains, and by volatilization to the atmosphere. 

Accounting of pesticide fate and transport includes degradation and losses by volatilization, 

leaching, on eroded sediment, and in the solution phase of surface runoff and later subsurface 
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flow. Bacteria surface runoff losses are simulated in both the solution and eroded phases with 

improved routines in SWAT2005. 

 
Flow and Pollutant Loss Routing; Auto-Calibration and Uncertainty Analysis 

Flows are summed from all HRUs to the subwatershed level, and then routed through 

the stream system using either the variable-rate storage method (Williams, 1969) or the 

Muskingum method (Neitsch et al., 2005a), which are both variations of the kinematic wave 

approach. Sediment, nutrient, pesticide, and bacteria loadings or concentrations from each 

HRU are also summed at the subwatershed level, and the resulting losses are routed through 

channels, ponds, wetlands, depressional areas, and/or reservoirs to the watershed outlet. 

Contributions from point sources and urban areas are also accounted for in the total flows 

and pollutant losses exported from each subwatershed. Sediment transport is simulated as a 

function of peak channel velocity in SWAT2005, which is a simplified approach relative to 

the stream power methodology used in previous SWAT versions. Simulation of channel 

erosion is accounted for with a channel erodibility factor. In-stream transformations and 

kinetics of algae growth, nitrogen and phosphorus cycling, carbonaceous biological oxygen 

demand, and dissolved oxygen are performed on the basis of routines developed for the 

QUAL2E model. Degradation, volatilization, and other in-stream processes are simulated for 

pesticides, as well as decay of bacteria. Routing of heavy metals can be simulated; however, 

no transformation or decay processes are simulated for these pollutants. 

A final feature in SWAT2005 is a new automated sensitivity, calibration, and 

uncertainty analysis component that is based on approaches described by van Griensven and 
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Meixner (2006) and van Griensven et al. (2006). Further discussion of these tools is provided 

in the Sensitivity, Calibration, and Uncertainty Analyses Section. 

 
SWAT Adaptations 

A key trend that is interwoven with the ongoing development of SWAT is the 

emergence of modified SWAT models that have been adapted to provide improved 

simulation of specific processes, which in some cases have been focused on specific regions. 

Notable examples (Figure 1) include SWAT-G, Extended SWAT (ESWAT), and the Soil and 

Water Integrated Model (SWIM). The initial SWAT-G model was developed by modifying 

the SWAT99.2 percolation, hydraulic conductivity, and interflow functions to provide 

improved flow predictions for typical conditions in low mountain ranges in Germany 

(Lenhart et al., 2002). Further SWAT-G enhancements include an improved method of 

estimating erosion loss (Lenhart et al., 2005) and a more detailed accounting of CO2 effects 

on leaf area index and stomatal conductance (Eckhardt and Ulbrich, 2003). The ESWAT 

model (van Griensven and Bauwens, 2003, 2005) features several modifications relative to 

the original SWAT model including: (1) sub-hourly precipitation inputs and infiltration, 

runoff, and erosion loss estimates based on a user-defined fraction of an hour; (2) a river 

routing module that is updated on an hourly time step and is interfaced with a water quality 

component that features in-stream kinetics based partially on functions used in QUAL2E as 

well as additional enhancements; and (3) multi-objective (multi-site and/or multi-variable) 

calibration and autocalibration modules (similar components are now incorporated in 

SWAT2005). The SWIM model is based primarily on hydrologic components from SWAT 

and nutrient cycling components from the MATSALU model (Krysanova et al., 1998, 2005) 
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and is designed to simulate "mesoscale" (100 to 100,000 km2) watersheds. Recent 

improvements to SWIM include incorporation of a groundwater dynamics submodel 

(Hatterman et al., 2004), enhanced capability to simulate forest systems (Wattenbach et al., 

2005), and development of routines to more realistically simulate wetlands and riparian 

zones (Hatterman et al., 2006). 

 
Geographic Information System Interfaces and Other Tools 

A second trend that has paralleled the historical development of SWAT is the creation 

of various Geographic Information System (GIS) and other interface tools to support the 

input of topographic, land use, soil, and other digital data into SWAT. The first GIS interface 

program developed for SWAT was SWAT/GRASS, which was built within the GRASS 

raster-based GIS (Srinivasan and Arnold, 1994). Haverkamp et al. (2005) have adopted 

SWAT/GRASS within the InputOutputSWAT (IOSWAT) software package, which 

incorporates the Topographic Parameterization Tool (TOPAZ) and other tools to generate 

inputs and provide output mapping support for both SWAT and SWAT-G. 

The ArcView-SWAT (AVSWAT) interface tool (Di Luzio et al., 2004a, 2004b) is 

designed to generate model inputs from ArcView 3.x GIS data layers and execute 

SWAT2000 within the same framework. AVSWAT was incorporated within the U.S. 

Environmental Protection Agency (USEPA) Better Assessment Science Integrating point and 

Nonpoint Sources (BASINS) software package versions 3.0 (USEPA, 2006a), which 

provides GIS utilities that support automatic data input for SWAT2000 using ArcView (Di 

Luzio et al., 2002). The most recent version of the interface is denoted AVSWAT-X, which 

provides additional input generation functionality, including soil data input from both the 
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USDA-NRCS State Soils Geographic (STATSGO) and Soil Survey Geographic (SSURGO) 

databases (USDA-NRCS, 2007a, 2007b) for applications of SWAT2005 (Di Luzio et al., 

2005; SWAT, 2007b). Automatic sensitivity, calibration, and uncertainty analysis can also be 

initiated with AVSWAT-X for SWAT2005. The Automated Geospatial Watershed 

Assessment (AGWA) interface tool (Miller et al., 2007) is an alternative ArcView-based 

interface tool that supports data input generation for both SWAT2000 and the KINEROS2 

model, including options for soil inputs from the SSURGO, STATSGO, or United Nations 

Food and Agriculture Organization (FAO) global soil maps. Both AGWA and AVSWAT 

have been incorporated as interface approaches for generating SWAT2000 inputs within 

BASINS version 3.1 (Wells, 2006). 

A SWAT interface compatible with ArcGIS versions 9.x (ArcSWAT) has recently 

been developed that uses a geodatabase approach and a programming structure consistent 

with Component Object Model (COM) protocol (Olivera et al., 2006; SWAT, 2007a). An 

ArcGIS 9.x version of AGWA (AGWA2) is also being developed and is expected to be 

released near mid-2007 (USDA-ARS, 2007). 

A variety of other tools have been developed to support executions of SWAT 

simulations, including: (1) the interactive SWAT (i_SWAT) software (CARD, 2007), which 

supports SWAT simulations using a Windows interface with an Access database; (2) the 

Conservation Reserve Program (CRP) Decision Support System (CRP-DSS) developed by 

Rao et al. (2006); (3) the AUTORUN system used by Kannan et al. (2007b), which facilitates 

repeated SWAT simulations with variations in selected parameters; and (4) a generic 

interface (iSWAT) program (Abbaspour et al., 2007), which automates parameter selection 

and aggregation for iterative SWAT calibration simulations. 
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SWAT Applications 

Applications of SWAT have expanded worldwide over the past decade. Many of the 

applications have been driven by the needs of various government agencies, particularly in 

the U.S. and the European Union, that require direct assessments of anthropogenic, climate 

change, and other influences on a wide range of water resources or exploratory assessments 

of model capabilities for potential future applications. 

One of the first major applications performed with SWAT was within the Hydrologic 

Unit Model of the U.S. (HUMUS) modeling system (Arnold et al., 1999a), which was 

implemented to support USDA analyses of the U.S. Resources Conservation Act Assessment 

of 1997 for the conterminous U.S. The system was used to simulate the hydrologic and/or 

pollutant loss impacts of agricultural and municipal water use, tillage and cropping system 

trends, and other scenarios within each of the 2,149 U.S. Geological Survey (USGS) 8-digit 

Hydrologic Cataloging Unit (HCU) watersheds (Seaber et al., 1987), referred to hereafter as 

"8-digit watersheds". Figure 2 shows the distribution of the 8-digit watersheds within the 18 

Major Water Resource Regions (MWRRs) that comprise the conterminous U.S. SWAT is 

also being used to support the USDA Conservation Effects Assessment Project, which is 

designed to quantify the environmental benefits of conservation practices at both the national 

and watershed scales (Mausbach and Dedrick, 2004). SWAT is being applied at the national 

level within a modified HUMUS framework to assess the benefits of different conservation 

practices at that scale. The model is also being used to evaluate conservation practices for 

watersheds of varying sizes that are representative of different regional conditions and mixes 

of conservation practices. 
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Figure 2. Distribution of the 2,149 8-digit watersheds within the 18 Major Water Resource 

Regions (MWRRs) that comprise the conterminous U.S. 
 

SWAT is increasingly being used to perform TMDL analyses, which must be 

performed for impaired waters by the different states as mandated by the 1972 U.S. Clean 

Water Act (USEPA, 2006b). Roughly 37% of the nearly 39,000 currently listed impaired 

waterways still require TMDLs (USEPA, 2007); SWAT, BASINS, and a variety of other 

modeling tools will be used to help determine the pollutant sources and potential solutions  

for many of these forthcoming TMDLs. Extensive discussion of applying SWAT and other 

models for TMDLs is presented in Borah et al. (2006), Benham et al. (2006), and 

Shirmohammadi et al. (2006). 
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SWAT has also been used extensively in Europe including projects supported by 

various European Commission (EC) agencies. Several models including SWAT were used to 

quantify the impacts of climate change for five different watersheds in Europe within the 

Climate Hydrochemistry and Economics of Surface-water Systems (CHESS) project, which 

was sponsored by the EC Environment and Climate Research Programme (CHESS, 2001). A 

suite of nine models including SWAT were tested in 17 different European watersheds as 

part of the EUROHARP project, which was sponsored by the EC Energy, Environment and 

Sustainable Development (EESD) Programme (EUROHARP, 2006). The goal of the 

research was to assess the ability of the models to estimate nonpoint-source nitrogen and 

phosphorus losses to both freshwater streams and coastal waters. The EESD-sponsored 

TempQsim project focused on testing the ability of SWAT and five other models to simulate 

intermittent stream conditions that exist in southern Europe (TempQsim, 2006). Volk et al. 

(2007) and van Griensven et al. (2006) further describe SWAT application approaches within 

in the context of the European Union (EU) Water Framework Directive.  

The following application discussion focuses on the wide range of specific SWAT 

applications that have been reported in the literature. Some descriptions of modified SWAT 

model applications are interspersed within the descriptions of studies that used the standard 

SWAT model. 

 
Specific SWAT Applications 

SWAT applications reported in the literature can be categorized in several ways. For 

this study, most of the peer-reviewed articles could be grouped into the nine subcategories 

listed in Table 1, and then further broadly defined as hydrologic only, hydrologic and  
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Table 1. Overview of major application categories of SWAT studies reported in the literaturea 

Primary Application Category 
Hydrologic 

Only 

Hydrologic 
and 

Pollutant 
Loss 

Pollutant 
Loss 
Only 

Calibration and/or sensitivity 
analysis 15 20 2 

Climate change impacts 22 8 -- 
GIS interface descriptions 3 3 2 
Hydrologic assessments 42 - -- 
Variation in configuration or data 

input effects 21 15 -- 

Comparisons with other models or 
techniques 5 7 1 

Interfaces with other models 13 15 6 
Pollutant assessments -- 57 6 
aIncludes studies describing applications of ESWAT, SWAT-G, SWIM, and other modified 

SWAT models. 
 
 
 
pollutant loss, or pollutant loss only. Reviews are not provided for all of the articles included 

in the Table 1 summary; a complete list of the SWAT peer-reviewed articles is provided at 

the SWAT web site (SWAT, 2007c), which is updated on an ongoing basis. 

 
Hydrologic Assessments 

Simulation of the hydrologic balance is foundational for all SWAT watershed 

applications and is usually described in some form regardless of the focus of the analysis. 

The majority of SWAT applications also report some type of graphical and/or statistical 

hydrologic calibration, especially for streamflow, and many of the studies also report 

validation results. A wide range of statistics has been used to evaluate SWAT hydrologic 

predictions. By far the most widely used statistics reported for hydrologic calibration and 

validation are the regression correlation coefficient (R2) and the Nash-Sutcliffe model 

efficiency (NSE) coefficient (Nash and Sutcliffe, 1970). The R2 value measures how well the 
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simulated versus observed regression line approaches an ideal match and ranges from 0 to 1, 

with a value of 0 indicating no correlation and a value of 1 representing that the predicted 

dispersion equals the measured dispersion (Krause et al., 2005). The regression slope and 

intercept also equal 1 and 0, respectively, for a perfect fit; the slope and intercept are often 

not reported. The NSE ranges from −∞  to 1 and measures how well the simulated versus 

observed data match the 1:1 line (regression line with slope equal to 1). An NSE value of 1 

again reflects a perfect fit between the simulated and measured data. A value of 0 or less than 

0 indicates that the mean of the observed data is a better predictor than the model output. See 

Krause et al. (2005) for further discussion regarding the R2, NSE, and other efficiency 

criteria measures. 

An extensive list of R2 and NSE statistics is presented in Table 2 for 115 SWAT 

hydrologic calibration and/or validation results reported in the literature. These statistics 

provides valuable insight regarding the hydrologic performance of the model across a wide 

spectrum of conditions. To date, no absolute criteria for judging model performance have 

been firmly established in the literature. However, Moriasi et al. (2007) propose that NSE 

values should exceed 0.5 in order for model results to be judged as satisfactory for 

hydrologic and pollutant loss evaluations performed on a monthly time step (and that 

appropriate relaxing and tightening of the standard be performed for daily and annual time 

step evaluations, respectively). Assuming this criterion for both the NSE and R2 values at all 

time steps, the majority of statistics listed in Table 2 would be judged as adequately 

replicating observed streamflows and other hydrologic indicators. However, it is clear that 

poor results resulted for parts or all of some studies. The poorest results generally occurred 

for daily predictions, although this was not universal (e.g., Grizzetti et al., 2005). Some of the  



Table 2. Summary of reported SWAT hydrologic calibration and validation coefficient of determination (R2) and Nash-Sutcliffe 
model efficiency (NSE) statistics 

Calibration Validation  

Daily Monthly Annual Daily Monthly Annual      

Reference Watershed 

Drainage 
Area 

(km2)a Indicator 

Time Period 
(C = calib., 
V = valid.) R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE 

Afinowicz et al. 
(2005) 

North Fork of the Upper 
Guadalupe River (Texas) 

60 Stream 
flow 

C: 1992-1996 
V: 1997 -  
Sept. 2003 

 0.4  0.29    0.09  0.5   

Stream 
flow 

C: 1975 -  
May 1977 

V: June 1977 - 1978

  0.92 
and 
0.86 

0.84 
and 
0.73 

    0.87 
and 
0.81 

0.73 
and 
0.63 

  Arabi et al. 
(2006b)b 

Dreisbach and Smith Fry 
(Indiana) 

6.2 
and 
7.3 

Surface 
runoff 

   0.91 
and 
0.84 

0.80 
and 
0.62 

    0.88 
and 
0.84 

0.75 
and 
0.63 

  

Surface 
runoff 

Varying 
periods 

        0.79 to 
0.94 

   

Ground 
water 
flow 

         0.38 to 
0.51 

   

Arnold and 
Allen (1996) 

Goose Creek, Hadley 
Creek, and Panther Creek 
(Illinois) 

122 
to 

246 

Total 
stream 
flow 

         0.63 to 
0.95 

   

Arnold et al. 
(2000) 

Upper Mississippi River 
(north central U.S.) 

491,700 Stream 
flow 

C: 1961-1980 
V: 1981-1985 

  0.63      0.65    

Crack 
flow 

1998-1999       0.84      Arnold et al. 
(2005) 

USDA-ARS Y-2 (Texas) 0.53 

Surface 
runoff 

1998-1999       0.87      

Runoff 
(by state) 

20-year 
period 

          0.78  Arnold et al. 
(1999a)c 

Conterminous U.S. 
(Figure 2) 

-- 

(by soils )            0.66  
35 8-digit watersheds 
(Texas) 

2,253 
to 

304,620 

Stream 
flow 

1965-1989           0.23 
to 

0.96 

-1.1 to 
0.87 

Arnold et al. 
(1999b) 

Three 6-digit watershedsc 
(Texas) 

-- Stream 
flow 

1965-1989         0.57 to 
0.87 

0.53 to 
0.86 

  

Bärlund et al. 
(2007)[c],[d] 

Lake Pyhäjärvi (Finland) -- Stream 
flow 

1990-1994  0.48           

Behera and  
Panda (2006) 

Kapgari (India) 9.73 Surface 
runoff 

C: 2002 
V: 2003 

(rainy season) 

0.94 0.88     0.91 0.85     
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Table 2 (continued) 
Calibration Validation 

Daily Monthly Annual Daily Monthly Annual 

Reference Watershed 

Drainage 
Area 

(km2)a Indicator 

Time Period 
(C = calib., 
V = valid.) R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE 

Benaman et al. 
(2005) 

Cannonsville Reservoir 
(New York); 
C: four gauges, 
V: two gauges 

37 
to 

913 

Stream 
flow 

C: 1994 -  
July 1999  

V: 1990-1993 

  0.72 to 
0.80 

0.63 to 
0.78 

    0.73 
and 
0.80 

0.62 
and 
0.76 

  

Benham et al. 
(2006) 

Shoal Creek (Missouri); 
upstream gauge 

367 Stream 
flow 

C: May 1999 - June 
2000  

V: June 2001 - Sept. 
2002 

0.40 0.21 0.70 0.63   0.61 0.54 0.61 0.66   

Binger 
(1996)e 

Goodwin Creek 
(Mississippi); 14 gauges 

0.05 
to 

21.3 

Stream 
flow 

V: 1982-1991 
(140 r2  

statistics) 

          93 
> 0.90

 

Bosch et al. 
(2004)f,g 

Subwatershed J, Little 
River (Georgia, U.S.) 

22.1 Stream 
flow 

1997-2002        -0.24 to 
-0.03 

 0.55 to 
0.80 

  

Bouraoui et al. 
(2005)h 

Medjerda River (Algeria 
and Tunisia); three gauges 

163 
to 

16,000 

Stream 
flow 

Sept. 1988 - 
March 1999 

      0.44 to 
0.69 

0.23 to 
0.41 

0.62 to 
0.84 

0.53 to 
0.84 

  

Bouraoui et al. 
(2002) 

Ouse (U.K.); three gauges 980 to 3,500 Stream 
flow 

1986-1990  0.39 to 
0.77 

          

Vantaanjoki (Finland) 1,682 Stream 
flow 

1965-1984          0.87   Bouraoui et al. 
(2004) 

Subwatershed 295  1982-1984  0.81           
Cao et al. 
(2006) 

Motueka River (New 
Zealand); seven gauges 

47.9 
to 

1,756.6 

Stream 
flow 

C: 1990-1994 
V: 1995-2000 

0.52 to 
0.82 

0.36 to 
0.78 

  0.64 
to 

0.95

 0.41 to 
0.75 

0.35 to 
0.72 

    

Cerucci and 
Conrad (2003) 

Townbrook (New York) 36.8 Stream 
flow 

Oct. 1998 - 
Sept. 2000 

  0.72          

Chanasyk et al. 
(2003) 

Three watersheds 
(Saskatchewan) 

0.015 
to 

0.023 

Surface 
 

runoff 

1999-1900  -35.7 
to 

-0.005

          

Chaplot et al. 
(2004) 

Walnut Creek (Iowa) 51.3 Stream 
flow 

1991-1998   0.73          

Cheng et al. 
(2006) 

Heihe River (China) 7,241 Stream 
flow 

C: 1992-1997 
V: 1998-1999 

  0.80 0.78     0.78 0.76   

Stream 
flow 

C: 1994-1995 
V: 1996-1999 

  0.66 0.52     0.69 0.63   

Surface 
runoff 

   0.43 0.35     0.88 0.77   

Chu and 
Shirmohammadi 
(2004)i 

Warner Creek (Maryland) 3.46 

Sub- 
surface 
runoff 

   0.56 0.27     0.47 0.42   
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Table 2 (continued) 
Calibration Validation  

Daily Monthly Annual Daily Monthly Annual      
 
Reference Watershed 

Drainage 
Area 

(km2)a Indicator 

Time Period 
(C = calib., 
V = valid.) R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE 

Coffey et al. 
(2004)e 

University of Kentucky 
ARC (Kentucky) 

5.5 Stream 
flow 

1995 and 
1996 

0.26 
and 
0.40 

0.09 
and 
0.15 

0.70 
and 
0.88 

0.41 
and 
0.61 

        

Coët-Dan (France) 12 Stream 
flow 

C: 1995-1996 
V: 1997-1999 

 0.79      0.42  0.87   Conan et al. 
(2003a)c,i 

Subwatershed  Stream 
flow 

V: 1994 - 
Feb. 1999 

         0.83   

Conan et al. 
(2003b) 

Upper Guadiana River 
(Spain) 

18,100 Stream 
flow 

1975-1991        0.45     

Cotter et al. 
(2003) 

Moores Creek 
(Arkansas) 

18.9 Stream 
flow 

1997-1998 0.76            

Di Luzio et al. 
(2005) 

Goodwin Creek 
(Mississippi) 

21.3 Surface 
runoff 

1982-1993         0.90 to 
0.95 

0.81 to 
0.97 

  

1994-2000 
(auto. calib.) 

0.24 to 
0.99 

0.15 to 
0.99 

          Di Luzio 
and Arnold 
(2004)j 

Blue River (Oklahoma) 1,233 Stream 
flow 

(manual calib.) 0.01 to 
0.98 

-102 to 
0.80 

          

Di Luzio et al. 
(2002) 

Upper North Bosque 
River (Texas) 

932.5 Stream 
flow 

1993 -  
July 1998 

         0.82   

Walnut Creek (Iowa); 
Subwatershed (site 310) 
and watershed outlet 

51.3 Stream 
flow 

C: 1992-1995 
V: 1996-1999 
(SWAT2000) 

 0.39 
and 
0.47 

 0.36 to 
0.72 

   0.35 
and 
0.32 

 0.13 
and 
0.56 

  

Subwatershed (site 210) -- Tile 
flow 

(SWAT2000)  -0.15  -0.33    -0.16  -0.42   

Subwatershed (site 310) 
and watershed outlet  

51.3 Stream 
flow 

(SWAT-M)i  0.55 
and 
0.51 

 0.84 
and 
0.88 

   -0.11 
and 
0.49 

 0.72 
and 
0.82 

  

Du et al. 
(2005)c 

Subwatershed (site 210) -- Tile 
flow 

(SWAT-M)i  -0.23  0.67    -0.12  0.70   

1991-1993 
(SWAT99.2) 

 -0.17           Eckhardt et al. 
(2002) 

Dietzhölze (Germany) 81 Stream 
flow 

(SWAT-G)i  0.76           
El-Nasr et al. 
(2005) 

Jeker (Belgium) 465 Stream 
flow 

C: June 1986 - 
April 1989 

V: June 1989 - 
April 1992 

0.45 0.39     0.55 0.60     
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Table 2 (continued) 
Calibration Validation  

Daily Monthly Annual Daily Monthly Annual      

Reference Watershed 

Drainage 
Area 

(km2)a Indicator 

Time Period 
(C = calib., 
V = valid.) R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE 
1991-1996 

(new snowmelt 
routine) 

           0.86 Fontaine et al. 
(2002) 

Wind River (Wyoming) 4,999 Stream 
flow 

1991-1996 
(old routine) 

           -0.70 

Fontaine et al. 
(2001) 

Spring Creek (South 
Dakota) 

427 Stream 
flow 

1987-1995   0.62  0.94        

Francos et al. 
(2001)k 

Kerava River (Finland) 400 Stream 
flow 

1985-1994          0.65   

Geza and McCray 
(2007) 

Turkey Creek (Colorado) 126 Stream flow 1998-2001   
(SSURGO soils) 

   0.70         

    (STATSGO soils)    0.61         
Gikas et al. 
(2005)c,d 

Vistonis Lagoon 
(Greece); nine gauges 

1,349 Stream 
flow 

C: May 1998 - 
June 1999 

V: Nov. 1999 - 
Jan. 2000 

0.71 to 
0.89 

     0.72 to 
0.91 

     

Gitau et al. 
(2004) 

Town Brook (New York) 36.8l Stream 
flow 

1992-2002   0.76 0.44 0.99 0.84       

Gosain et al. 
(2005)c,i 

Palleru River (India) -- Stream 
flow 

1972-1994         0.61 0.87   

C: 1991 
V: 1990-1995 
(auto. calib.) 

0.86      0.65      Govender  
and Everson 
(2005) 

Cathedral Park Research 
C VI (South Africa) 

0.68 Stream 
flow 

V: 1990-1995 
(manual calib.) 

      0.68      

C: 1995-1998 
V: 1999-2004 
(scenario 1) 

0.7 0.7 0.9 0.9 1.0 0.7 0.5 0.4 0.6 0.5 0.7 0.6 Green et al. 
(2006) 

South Fork of the Iowa 
River (Iowa) 

580.5 Stream 
flow 

C: 1995-2000 
V: 2001-2004 
(scenario 2) 

0.7 0.7 0.9 0.8 0.9 0.9 0.3 0.2 0.6 0.5 0.7 -0.8 

Grizzetti et al. 
(2005)c 

Parts of four watersheds 
(U.K.); 
C: one gauge, 
V: two gauges, 
annual: 50 gauges 

8,900 Stream 
flow 

C and V: 
1995-1999 

 0.75  0.86        0.66 

Grizzetti et al. 
(2003)c 

Vantaanjoki (Finland); 
C: one gauge, 
V: three gauges 

295 
and 

1,682 

Stream 
flow 

Varying 
periods 

 0.81     0.57 to 
0.66 

0.75 
to 

0.81 

    

Hanratty and 
Stefan (1998) 

Cottonwood 
(Minnesota) 

3,400 Stream 
flow 

1967-1991    0.78         

Hao et al. 
(2004) 

Lushi (China) 4,623 Stream 
Flow 

C: 1992-1997 
V: 1998-1999 

  0.87 0.87   0.84 0.81     
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Table 2 (continued) 
Calibration Validation  

Daily Monthly Annual Daily Monthly Annual      

Reference Watershed 

Drainage 
Area 

(km2)a Indicator 

Time Period 
(C = calib., 
V = valid.) R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE 

Hernandez 
et al. (2000) 

Watershed 11, Walnut 
Gulch (Arizona) 

8.2 Stream 
flow 

1966-1974 
(1 vs. 10 rain 

gauges) 

    0.33 
and 
0.57 

       

Heuvelmans 
et al. (2006)j 

25 watersheds (Schelde 
River basin, Belgium) 

2.2 
to 

209.9 

Stream 
flow 

C: 1990-1995 
V: 1996-2001 

 0.70 to 
0.95 

     0.67 to 
0.92 

    

Holvoet et al. 
(2005) 

Nil (Belgium) 32 Stream 
flow 

Nov. 1998 - 
Nov. 2001 

 0.53           

Jha et al. 
(2004a)c 

Maquoketa River (Iowa) 4,776 Stream 
flow 

1981-1990       0.68  0.76  0.65  

Jha et al. 
(2004b) 

Upper Mississippi River 
(north central U.S.) 

447,500 Stream 
flow 

C: 1989-1997 
V: 1980-1988 

  0.75 0.67 0.91 0.91   0.70 0.59 0.89 0.86 

Jha et al. 
(2006) 

Upper Mississippi River 
(north central U.S.) 

447,500 Stream 
flow 

C: 1968-1987 
V: 1988-1997 

0.67 0.58 0.74 0.69 0.82 0.75 0.75 0.65 0.82 0.81 0.91 0.90 

Jha et al. 
(2007)m 

Raccoon River (Iowa); 
Van Meter gauge 

8,930 Stream 
flow 

C: 1981-1992 
V: 1993-2003 

  0.87 0.87 0.97 0.97   0.89 0.88 0.94 0.94 

Base 
flow 

C: July 2002 - 
May 2004 

V: June 2004 - 
April 2005 
(rain gauge) 

  0.30 0.08     0.13 -0.26   

Surface 
runoff 

(rain gauge)   0.77 0.77     0.83 0.73   

Stream 
flow 

(rain gauge) 0.74 0.74 0.85 0.83   0.70 0.64 0.81 0.66   

Base 
flow 

(NEXRAD)   0.31 0.05     0.06 -0.40   

Surface 
runoff 

(NEXRAD)   0.79 0.79     0.84 0.77   

Kalin and 
Hantush 
(2006)c,i 

Pocono Creek 
(Pennsylvania) 

98.8 

Stream 
flow 

(NEXRAD) 0.74 0.73 0.85 0.84   0.66 0.62 0.89 0.75   

Kang et al. 
(2006)k 

Baran (South Korea) 29.8 Surface 
runoff 

C: 1996-1997 
V: 1999-2000 

0.93 0.93     0.87 0.87     

C: Oct. 1999 - 
2001 

V: 2001 -  
May 2002 

(CN approach) 

 0.60 
and 
0.61 

     0.54 
and 
0.60 

    Kannan et al. 
(2007b)g 

Colworth (U.K.) 1.4 Stream 
flow 

(Green-Ampt)  0.51 
and 
0.54 

     0.56 
and 
0.51 

    

Kaur et al. 
(2004) 

Nagwan (India) 9.58 Surface 
runoff 

Varying 
periods 

0.76 0.71     0.83 0.54     
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Table 2 (continued) 
Calibration Validation  

Daily Monthly Annual Daily Monthly Annual      

Reference Watershed 

Drainage 
Area 

(km2)a Indicator 

Time Period 
(C = calib., 
V = valid.) R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE 
1982-1989 

(curve number) 
       0.43  0.84  0.55 King et al. 

(1999)e 
Goodwin Creek 
(Mississippi) 

21.3 Stream 
flow 

(Green-Ampt)        0.53  0.69  0.81 
Rock River (Wisconsin); 
two gauges 

23.2 
and 
190 

Stream 
flow 

1989-1995           0.86 
and 
0.74 

0.41 
and 
0.61 

Kirsch et al. 
(2002) 

12 USGS gaugesc 9,708 Stream 
flow 

Varying 
periods 

    0.28 
to 

0.98

0.18 to 
0.84 

      

Limaye et al 
(2001) 

Dale Hollow (Tennessee); 
subwatershed 

523 Stream 
flow 

C: 1966-1990 
V: 1991-1993 

 0.42  0.74    0.45  0.80   

Lin and  
Radcliffe 
(2006) 

Upper Etowah River 
(Georgia, U.S.) 

1,580 Stream 
flow 

C: 1983-1992 
V: 1993-2001 

 0.61  0.86    0.62  0.89   

Manguerra and 
Engel (1998)g 

Greenhill (Indiana) 113.4 Stream 
flow 

1991-1995    0.93 to 
1.0 

        

Mapfumo et al. 
(2004)i 

Three watersheds 
(Saskatchewan) 

1.53 
to 

2.26 

Soil 
water 

C: 1998 
V: 1999-2000 (overall 

results) 

0.84 0.77     0.72 0.70     

Mishra et al. 
(2007) 

Banha (India) 17 Surface 
runoff 

C: 1996 
V: 1997-2001 

0.93 0.70 0.99 0.99   0.78 0.60 0.92 0.88   

1999-2001 
(rain gauge) 

      0.53 0.48 0.86 0.78   Moon et al. 
(2004)i 

Cedar Creek (Texas) 2,608 Stream 
flow 

(NEXRAD)       0.58 0.57 0.84 0.82   
Moriasi et al. 
(2007)[c] 

Leon River (Texas); 
C: seven gauges, 
V: five gauges 

9,312 Stream 
flow 

--    0.66 to 
1.0 

     0.69 to 
1.0 

  

Muleta and 
Nicklow 
(2005a) 

Big Creek (Illinois) 86.5 Stream 
flow 

1999-2001  0.69           

Muleta and 
Nicklow 
(2005b) 

Big Creek (Illinois); 
separate gauges 
for C and V 

23.9 
and 
86.5 

Stream 
flow 

C: June 1999 - 
Aug. 2001 

V: April 2000 - 
Aug. 2001 

 0.74      0.23     

Varying periods 
(overall annual 

average) 

    0.75 0.75     0.70 0.70 Narasimhan 
et al. (2005)c 

Six watersheds (Texas); 
24 gauges 

10,320 
to 

29,664 

Stream 
flow 

(range across 24 
gauges) 

    0.54 
to 

0.99

0.52 to 
0.99 

    0.63 to 
1.00 

0.55 to 
0.97 
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Table 2 (continued) 
Calibration Validation 

Daily Monthly Annual   

Reference Watershed 

Drainage 
Area 

(km2)a Indicator 

Time Period 
(C = calib., 
V = valid.) R2 NSE R2 NSE R2 NSE 

Daily Monthly Annual   

R2 NSE R2 NSE R2 NSE 
Nasr et al. 
(2007)d 

Clarianna, Dripsey, and 
Oona Water (Ireland) 

15 
to 
96 

Stream 
flow 

Varying 
periods 

 0.72 to 
0.91 

          

Olivera et al. 
(2006) 

Upper Seco Creek 
(Texas) 

116 Stream C: 1991-1992  0.67  0.88    0.33  
flow V: 1993 -  

June 1994 

0.90   

Perkins and 
Sophocleous 
(1999)h 

Lower Republican River 
(Kansas) 

2,569 Stream 
flow 

1977-1994   0.85          

May 1992 - 
July 1994 

 0.04  0.14         Peterson and 
Hamlet 
(1998)i 

Ariel Creek 
(Pennsylvania) 

39.4 Stream 
flow 

May 1992 - 
July 1994 

(no snowmelt 
events) 

 0.2  0.55         

Plus et al. 
(2006)h 

Thau Lagoon (France); 
two gauges 

280 Stream 
flow 

Sept. 1993 - 
July 1996 

0.68 
and 
0.45 

           

Surface 
water 

C: 1998-1999 
V: 2000-2001 

   0.31 to 
0.65 

     -0.04 
to 0.75

  

Ground 
water 

    -9.1 to 
0.60 

     -0.57 
to 0.22

  

Qi and 
Grunwald 
(2005) 

Sandusky River (Ohio); 
five gauges 

90.3 
to 

3,240 

Total 
flow 

    0.31 to 
0.81 

     0.40 to 
0.73 

  

Water 
yield 

1961-1990 
(overall mean) 

          0.92  Rosenberg et al. 
(2003)c 

Conterminous U.S. (18 
MWRRs; Figure 2) 

 

 1961-1990 
(8-digit means by 

MWRR) 

          0.03 to 
0.90 

 

Rosenthal and 
Hoffman (1999) 

Leon River (Texas) 7,000 Stream 
flow 

1972-1974          0.57   

Lower Colorado River 
(Texas); Bay City gauge 

8,927 Stream 
flow 

1980-1989         0.75 0.69   Rosenthal et al. 
(1995)c,f,i 

Upstream gauges            0.69 to 
0.90 

   

Saleh et al. (2000)n Upper North Bosque 
River (Texas); 
C: one gauge, 
V:11 gauges 

932.5 Stream 
flow 

Oct. 1993 - 
Aug. 1995 

   0.56      0.99   
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Table 2 (continued) 
Calibration Validation  

Daily Monthly Annual Daily Monthly Annual      

Reference Watershed 

Drainage 
Area 

(km2)a Indicator 

Time Period 
(C = calib., 
V = valid.) R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE 

Saleh and Du 
(2004) 

Upper North Bosque 
River (Texas) 

932.5 Stream 
flow 

C: 1994 -  
June 1995 

V: July 1995- 
July 1999 

 0.17  0.50    0.62  0.78   

Salvetti et al. 
(2006) 

Lombardy Plain Region 
(Po River basin, Italy) 

16,000 Stream 
flow 

1984-2002  0.50  >0.70         

Santhi et al. 
(2001a)c,o 

Bosque River (Texas); 
two gauges 

4,277 Stream 
flow 

Varying 
periods 

  0.80 
and 
0.89 

0.79 
and 
0.83 

0.88 
and 
0.66 

0.86 
and 
0.72 

  0.92 
and 
0.80 

0.87 
and 
0.62 

  

Santhi et al. 
(2006)c 

West Fork (Texas); two 
gauges 

4,554 Stream 
flow 

1982-2001   0.61 
and 
0.81 

0.12 
and 
0.72 

0.88 
and 
0.86 

0.84 
and 
0.78 

      

Schomberg et al. 
(2005)c 

Three watersheds 
(Minnesota); two 
watersheds (Michigan) 

829 to 3,697 Stream 
flow 

Varying 
periods 

0.10 to 
0.28 

-1.3 to 
0.25 

0.35 to 
0.58 

-1.4 
to 

0.49 

        

Secchi et al. 
(2007)c 

13 watersheds (Iowa) 2,051 
to 

37,496 

Stream 
flow 

Varying periods 
(composite 
statistics) 

        0.76 0.75 0.91 0.90 

Singh et al. 
(2005) 

Iroquois River (Illinois 
and Indiana) 

5,568 Stream 
flow 

C: 1987-1995 
V: 1972-1986 

 0.79  0.88    0.74  0.84   

Spruill et al. 
(2000) 

University of Kentucky 
ARC (Kentucky) 

5.5 Stream 
flow 

C: 1996 
V: 1995 

 0.19  0.89    -0.04  0.58   

Srinivasan et al. 
(2005)i 

Watershed FD-36 
(Pennsylvania) 

0.395 Stream 
flow 

1997-2000  0.62           

Srinivasan and 
Arnold (1994) 

Upper Seco Creek 
(Texas) 

114 Stream 
flow 

Jan. 1991 - 
Aug. 1992 

  0.82          

Srinivasan et al. 
(1998)c 

Richland-Chambers 
Reservoir (Texas); two 
gauges 

5,000 Stream 
flow 

C: 1965-1969 
V: 1970-1984 

  0.87 
and 
0.84 

0.77 
and 
0.84 

    0.65 
and 
0.82 

0.52 
and 
0.82 

  

Base 
flow 

C: July 1994 - 
Dec. 1997 

V: Jan. 1999 - 
May 2001 

  0.51 -0.16     0.29 -1.2   

Surface 
flow 

   0.38 0.20     0.39 -0.35   

Srivastava  
et al. (2006)i 

West Fork Brandywine 
Creek (Pennsylvania) 

47.6 

Total 
flow 

   0.57 0.54     0.34 -0.17   

Stewart et al. 
(2006) 

Upper North Bosque 
River (Texas) 

932.5 Stream 
flow 

C: 1994-1999 
V: 2001-1902 

  0.87 0.76     0.92 0.80   

Stonefelt et al. 
(2000) 

Wind River (Wyoming) 5,000 Stream 
flow 

1990-1997   0.91          
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Table 2 (continued) 
Calibration Validation  

Daily Monthly Annual Daily Monthly Annual      

Reference Watershed 

Drainage 
Area 

(km2)a Indicator 

Time Period 
(C = calib., 
V = valid.) R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE 

Water 
yield 

1960-1989 
(overall mean) 

           0.96 Thomson et al. 
(2003)c,p 

Conterminous U.S. (18 
MWRRs; Figure 2) 

-- 

 1960-1989 
(8-digit means by 

MWRR) 

           0.05 to 
0.94 

Tolson and 
Shoemaker 
(2007)c,i 

Cannonsville Reservoir 
(New York); six gauges 

37 
to 

913q 

Stream 
flow 

Varying 
periods 

0.64 to 
0.80 

0.59 to 
0.80 

    0.69 to 
0.88 

0.43 to 
0.88 

0.88 to 
0.97 

0.88 to 
0.97 

  

Tripathi et al. 
(2003) 

Nagwan (India) 92.5 Surface 
runoff 

1997 (daily) 
1992-1998 (month)

(June - Oct.) 

      0.91 0.87 0.97 0.98   

Tripathi et al. 
(2006)g 

Nagwan (India) 90.3 Surface 
runoff 

1995-1998         0.86 to 
0.90 

   

Vaché et al. 
(2002) 

Buck Creek and Walnut 
Creek (Iowa) 

88.2 
and 
51.3 

Stream 
flow 

Varying 
periods 

  0.64 
and 
0.67 

         

Van Liew et al. 
(2003a)i 

Little Washita River 
(Oklahoma); 
C: two gauges, 
V: six gauges 

2.9 
to 

610 

Stream 
flow 

Varying 
periods 

 0.56 
and 
0.58 

 0.66 
and 
0.79 

   -0.35 to 
0.72 

 -1.1 to 
0.89 

  

Van Liew and 
Garbrecht 
(2003) 

Little Washita River 
(Oklahoma); 
C: two gauges, 
V: three gauges 

160 
to 

610 

Stream 
flow 

Varying 
periods 

 0.60 
and 
0.40 

 0.75 
and 
0.71 

   -0.06 to 
0.71 

 0.45 to 
0.86 

  

Van Liew et al. 
(2003b)c 

Little Washita River 
(Oklahoma); two gauges 

160 Stream 
flow 

Oct. 1992 - 
Sept. 2000 

 0.55 
and 
0.59 

 0.78 
and 
0.77 

        

Little River (Georgia, 
U.S.); two gauges 

114 
and 
330 

Stream 
flow 

C: 1997-2002 
V: 1972-1996 

 0.64 
and 
0.71 

 0.83 
and 
0.90 

   0.66 
and 
0.68 

 0.88 
and 
0.89 

  

Little Washita River 
(Oklahoma); three gauges 

160 
to 

600 

Stream 
flow 

C: 1993-1999 
V: varying 

periods 

 0.54 
and 
0.63 

 0.68 
and 
0.76 

   0.13 to 
0.56 

 -0.36 
to 0.60

  

Mahantango Creek 
(Pennsylvania); two 
gauges 

0.4 
and 
7 

Stream 
flow 

C: 1997-2000 
V: varying 

periods 

 0.46 
and 
0.69 

 0.84 
and 
0.88 

   0.35 to 
0.54 

 0.46 to 
0.75 

  

Reynolds Creek (Idaho); 
three gauges 

36 
to 

239 

Stream 
flow 

C: 1968-1972 
V: varying 

periods 

 0.51 to 
0.73 

 0.52 to 
0.79 

   -0.17 
to 0.62

 0.21 to 
0.74 

  

Van Liew et al. 
(2007)r 

Walnut Gulch (Arizona); 
three gauges 

24 
to 

149 

Stream 
flow 

C: 1968-1972 
V: 1973-1982 

 0.30 to 
0.76 

 0.48 to 
0.86 

   -1.0 to 
-1.8 

 -0.62 
to -2.5
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Table 2 (continued) 
Calibration Validation  

Daily Monthly Annual Daily Monthly Annual      

Reference Watershed 

Drainage 
Area 

(km2)a Indicator 

Time Period 
(C = calib., 
V = valid.) R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE 

Varanou et al. 
(2002) 

Ali Efenti (Greece) 2,796 Stream 
flow 

1977-1993  0.62  0.81         

Stream 
flow 

C: 1980-1994 
V: 1995-2002 

 -0.23 
to 0.28

 0.59 to 
0.80 

   -0.35 
to 0.48

 0.49 to 
0.81 

  Vazquez- 
Amabile 
and Engel 
(2005)c 

Muscatatuck River 
(Indiana); three gauges 

2,952 

Ground 
water 
table 
depth 

  -0.12 
to 0.28

 0.36 to 
0.61 

   -0.74 
to 0.33

 -0.51 
to 0.38

  

Vazquez- 
Amábile et al. 
(2006) 

St. Joseph River (Indiana, 
Michigan, and Ohio); 
C: three gauges, 
V: four gauges 

2,800 Stream 
flow 

C: 1989-1998 
V: 1999-2002 

 0.46 to 
0.65 

 0.64 to 
0.74 

  0.50 to 
0.66 

0.33 to 
0.60 

0.73 to 
0.76 

0.64 to 
0.74 

  

Veith et al. 
(2005) 

Watershed FD-36 
(Pennsylvania) 

0.395 Stream 
flow 

1997-2000 (April to 
Oct.) 

  0.63 0.75         

July 2000 - June 
2004 (reduced ET 

scenario) 

0.92 
and 
0.93 

0.77 
and 
0.71 

          Von Stackelberg 
et al. (2007)h 

Research watersheds D1 
and D2 (Uruguay) 

0.69 
and 
1.08 

Stream 
flow 

(added groundwater 
scenario) 

0.93 
and 
0.94 

0.78 
and 
0.72 

          

Wang and 
Melesse 
(2005)i 

Wild Rice River 
(Minnesota); two gauges 

2,419 
and 

4,040.3 

Stream 
flow 

Varying 
periods 

0.73 
and 
0.68 

0.64 
and 
0.67 

0.89 
and 
0.86 

0.86 
and 
0.86 

0.82 
and 
0.73 

0.80 
and 
0.72 

0.69 
and 
0.52 

0.62 
and 
0.50 

0.93 
and 
0.83 

0.90 
and 
0.83 

0.93 
and 
0.82 

0.90 
and 
0.68 

C: Dec. 1984 - Nov. 
1986 

V: Dec. 1981 - Nov. 
1984 (STATSGO 

soils) 

0.53 0.51 0.89 0.88   0.55 0.31 0.53 0.50   Wang and 
Melesse 
(2006)i 

Elm River (North 
Dakota); subwatershed 

515.4 Stream 
flow 

(SSURGO soils) 0.51 0.49 0.92 0.92   0.55 0.26 0.53 0.49   
Wang et al. 
(2006)g,i 

Wild Rice River 
(Minnesota); two gauges 

2,419 
and 

4,040.3 

Stream 
flow 

Varying 
periods 

0.68 to 
0.76 

0.64 to 
0.70 

0.86 to 
0.92 

0.86 to 
0.90 

0.73 to 
0.91 

0.72 to 
0.90 

0.52 to 
0.69 

0.46 to 
0.64 

0.83 to 
0.93 

0.80 to 
0.91 

0.82 to 
0.93 

0.68 to 
0.91 

 



Table 2 (continued) 
Calibration Validation  

Daily Monthly Annual Daily Monthly Annual      

Reference Watershed 

Drainage 
Area 

(km2)a Indicator 

Time Period 
(C = calib., 
V = valid.) R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE 

Watson et al. 
(2005)k 

Woady Yaloak River 
(Australia) 

306 Stream 
flow 

C: 1978-1989 
V: 1990-2001 

 0.54  0.77  0.77  0.47  0.79  0.91 

Weber et al. 
(2001) 

Aar (Germany) 59.8 Stream 
flow 

1986-1987 (daily), 
1983-1987 (mon.) 

       0.63  0.74   

White and 
Chaubey 
(2005)e,s 

Beaver Reservoir 
(Arkansas); three gauges 

362 
to 

1,020 

Stream 
flow 

C: 1999 and 2000 V: 
2001 and 2002 

  0.41 to 
0.91 

0.50 to 
0.89 

    0.77 to 
0.91 

0.72 to 
0.87 

  

C: 1948-1949 
V: 1950-1965 
(drought years 

for calib.) 

   0.8      0.8   Wu and 
Johnston 
(2007) 

South Branch Ontonagon 
River (Michigan) 

901 Stream 
flow 

C: 1969-1970 
V: 1950-1965 
(average years 

for calib.) 

   0.9      0.4   

Wu and Xu 
(2006)c 

Amite, Tamgipahoa, and 
Tickfaw Rivers 
(Louisiana) 

662.2 
to 

3434.9 

Stream 
flow 

C: 1975-1977 
V: 1979-1999 

 0.83 to 
0.93 

 0.94 to 
0.96 

   0.69 to 
0.78 

 0.81 to 
0.87 

  

Zhang et al. (2007) Luohe River (China) 5,239 Stream 
flow 

C: 1992-1996 
V: 1997-2000 

0.82 0.65 0.82 0.64   0.74 0.54 0.86 0.82   

a Based on drainage areas to the gauge(s) rather than total watershed area where reported (see footnote c for further information). 
b The same statistics were also reported by Bracmort et al. (2006); the validation time period was not reported and thus was inferred from results reported by Bracmort et al. (2006). 
c Explicit or estimated drainage areas were not reported for some or all of the gauge sites; the total watershed area is listed for those studies that reported it. 
d The exact time scale of comparison was not explicitly stated and thus was inferred from other information provided. 
e These statistics were computed on the basis of comparisons between simulated and measured data within specific years, rather than across multiple years. 
f The SWAT simulations were not calibrated. 
g These statistics represent ranges for different input data configurations for either: (1) different combinations of land use, DEM, and/or soil resolution inputs; (2) different 

subwatershed/HRU configurations; or (3) different ET equation options. 
h Specific calibration and/or validation time periods were reported, but the statistics were based on the overall simulated time period (calibration plus validation time periods). 
i Other statistics were reported for different time periods, conditions, gauge combinations, and/or variations in selected in input data. 
j The comparisons were performed on an hourly basis for this study, for 24 different runoff events, because the Green and Ampt infiltration method was used. 
k A modified SWAT model was used. 
l As reported in Cerucci and Conrad (2003). 
m A similar set of Raccoon River watershed statistics were reported for slightly different time periods by Secchi et al. (2007). 
n The APEX model (Williams and Izaurralde, 2006) was interfaced with SWAT for this study. The calibration statistic was based on a comparison between simulated and measured flows at 

the watershed outlet, while the validation statistic was based on a comparison between simulated and measured flows averaged across 11 different gauges including the watershed outlet. 
o The calibration and validation statistics were also reported by Santhi et al. (2001b). 
p Similar statistics for the same time periods were reported by Thomsen et al. (2005). 
q As reported by Benaman et al. (2005). 
r Previous NSE statistics were reported by Van Liew et al. (2005) for the same Little River and Little Washita River subwatersheds and time periods for four different sets of simulations 

(one set was based on a manual calibration approach, while the other three sets were based on an automatic calibration approach with different objective functions and/or selected 
calibration input parameters). 

s The statistics for the War Eagle Creek gauge were also reported by Migliaccio et al. (2007). 

  

   47 



 48

weaker results can be attributed in part to inadequate representation of rainfall inputs, due to 

either a lack of adequate rain gauges in the simulated watershed or subwatershed 

configurations that were too coarse to capture the spatial detail of rainfall inputs (e.g., Cao et 

al., 2006; Conan et al., 2003b; Bouraoui et al., 2002; Bouraoui et al., 2005). Other factors 

that may adversely affect SWAT hydrologic predictions include a lack of model calibration  

(Bosch et al., 2004), inaccuracies in measured streamflow data (Harmel et al., 2006), and 

relatively short calibration and validation periods (Muleta and Nicklow, 2005b). 

 
Example Calibration/Validation Studies 

The SWAT hydrologic subcomponents have been refined and validated at a variety of 

scales (Table 2). For example, Arnold and Allen (1996) used measured data from three 

Illinois watersheds, ranging in size from 122 to 246 km2, to successfully validate surface 

runoff, groundwater flow, groundwater ET, ET in the soil profile, groundwater recharge, and 

groundwater height parameters. Santhi et al. (2001a, 2006) performed extensive streamflow 

validations for two Texas watersheds that cover over 4,000 km2. Arnold et al. (1999b) 

evaluated streamflow and sediment yield data in the Texas Gulf basin with drainage areas 

ranging from 2,253 to 304,260 km2. Streamflow data from approximately 1,000 stream 

monitoring gauges from 1960 to 1989 were used to calibrate and validate the model. 

Predicted average monthly streamflows for three major river basins (20,593 to 108,788 km2) 

were 5% higher than measured flows, with standard deviations between measured and 

predicted within 2%. Annual runoff and ET were validated across the entire continental U.S. 

as part of the Hydrologic Unit Model for the U.S. (HUMUS) modeling system. Rosenthal et 

al. (1995) linked GIS to SWAT and simulated ten years of monthly streamflow without 
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calibration. SWAT underestimated the extreme events but produced overall accurate 

streamflows (Table 2). Bingner (1996) simulated runoff for ten years for a watershed in 

northern Mississippi. The SWAT model produced reasonable results in the simulation of 

runoff on a daily and annual basis from multiple subbasins (Table 2), with the exception of a 

wooded subbasin. Rosenthal and Hoffman (1999) successfully used SWAT and a spatial 

database to simulate flows, sediment, and nutrient loadings on a 9,000 km2 watershed in 

central Texas to locate potential water quality monitoring sites. SWAT was also successfully 

validated for streamflow (Table 2) for the Mill Creek watershed in Texas for 1965-1968 and 

1968-1975 (Srinivasan et al., 1998). Monthly streamflow rates were well predicted, but the 

model overestimated streamflows in a few years during the spring/summer months. The 

overestimation may be accounted for by variable rainfall during those months. 

Van Liew and Garbrecht (2003) evaluated SWAT's ability to predict streamflow 

under varying climatic conditions for three nested subwatersheds in the 610 km2 Little 

Washita River experimental watershed in southwestern Oklahoma. They found that SWAT 

could adequately simulate runoff for dry, average, and wet climatic conditions in one 

subwatershed, following calibration for relatively wet years in two of the subwatersheds. 

Govender and Everson (2005) report relatively strong streamflow simulation results (Table 

2) for a small (0.68 km2) research watershed in South Africa. However, they also found that 

SWAT performed better in drier years than in a wet year, and that the model was unable to 

adequately simulate the growth of Mexican Weeping Pine due to inaccurate accounting of 

observed increased ET rates in mature plantations. 

Qi and Grunwald (2005) point out that, in most studies, SWAT has usually been 

calibrated and validated at the drainage outlet of a watershed. In their study, they calibrated 
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and validated SWAT for four subwatersheds and at the drainage outlet (Table 2). They found 

that spatially distributed calibration and validation accounted for hydrologic patterns in the 

subwatersheds. Other studies that report the use of multiple gauges to perform hydrologic 

calibration and validation with SWAT include Cao et al. (2006), White and Chaubey (2005), 

Vazquez-Amábile and Engel (2005), and Santhi et al. (2001a). 

 
Applications Accounting for Base Flow and/or for Karst-Influenced Systems 

Arnold et al. (1995a) and Arnold and Allen (1999) describe a digital filter technique 

that can be used for determining separation of base and groundwater flow from overall 

streamflow, which has been used to estimate base flow and/or groundwater flow in several 

SWAT studies (e.g., Arnold et al., 2000; Santhi et al., 2001a; Hao et al., 2004; Cheng et al., 

2006; Kalin and Hantush, 2006; Jha et al., 2007). Arnold et al. (2000) found that SWAT 

groundwater recharge and discharge (base flow) estimates for specific 8-digit watersheds 

compared well with filtered estimates for the 491,700 km2 upper Mississippi River basin. Jha 

et al. (2007) report accurate estimates of streamflow (Table 2) for the 9,400 km2 Raccoon 

River watershed in west central Iowa, and that their predicted base flow was similar to both 

the filtered estimate and a previous base flow estimate. Kalin and Hantush (2006) report 

accurate surface runoff and streamflow results for the 120 km2 Pocono Creek watershed in 

eastern Pennsylvania (Table 2); their base flow estimates were weaker, but they state those 

estimates were not a performance criteria. Base flow and other flow components estimated 

with SWAT by Srivastava et al. (2006) for the 47.6 km2 West Branch Brandywine Creek 

watershed in southwest Pennsylvania were found to be generally poor (Table 2). Peterson 

and Hamlett (1998) also found that SWAT was not able to simulate base flows for the 39.4 
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km2 Ariel Creek watershed in northeast Pennsylvania, due to the presence of soil fragipans. 

Chu and Shirmohammadi (2004) found that SWAT was unable to simulate an extremely wet 

year for a 3.46 km2 watershed in Maryland. After removing the wet year, the surface runoff, 

base flow, and streamflow results were within acceptable accuracy on a monthly basis. 

Subsurface flow results also improved when the base flow was corrected. 

Spruill et al. (2000) calibrated and validated SWAT with one year of data each for a 

small experimental watershed in Kentucky. The 1995 and 1996 daily NSE values reflected 

poor peak flow values and recession rates, but the monthly flows were more accurate (Table 

2). Their analysis confirmed the results of a dye trace study in a central Kentucky karst 

watershed, indicating that a much larger area contributed to streamflow than was described 

by topographic boundaries. Coffey et al. (2004) report similar statistical results for the same 

Kentucky watershed (Table 2). Benham et al. (2006) report that SWAT streamflow results 

(Table 2) did not meet calibration criteria for the karst-influenced 367 km2 Shoal Creek 

watershed in southwest Missouri, but that visual inspection of the simulated and observed 

hydrographs indicated that the system was satisfactorily modeled. They suggest that SWAT 

was not able to capture the conditions of a very dry year in combination with flows sustained 

by the karst features. 

Afinowicz et al. (2005) modified SWAT in order to more realistically simulate rapid 

subsurface water movement through karst terrain in the 360 km2 Guadalupe River watershed 

in southwest Texas. They report that simulated base flows matched measured streamflows 

after the modification, and that the predicted daily and monthly and daily results (Table 2) 

fell within the range of published model efficiencies for similar systems. Eckhardt et al. 
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(2002) also found that their modifications for SWAT-G resulted in greatly improved 

simulation of subsurface interflow in German low mountain conditions (Table 2). 

 
Soil Water, Recharge, Tile Flow, and Related Studies 

Mapfumo et al. (2004) tested the model's ability to simulate soil water patterns in 

small watersheds under three grazing intensities in Alberta, Canada. They observed that 

SWAT had a tendency to overpredict soil water in dry soil conditions and to underpredict in 

wet soil conditions. Overall, the model was adequate in simulating soil water patterns for all 

three watersheds with a daily time step. SWAT was used by Deliberty and Legates (2003) to 

document 30-year (1962-1991) long-term average soil moisture conditions and variability, 

and topsoil variability, for Oklahoma. The model was judged to be able to accurately 

estimate the relative magnitude and variability of soil moisture in the study region. Soil 

moisture was simulated with SWAT by Narasimhan et al. (2005) for six large river basins in 

Texas at a spatial resolution of 16 km2 and a temporal resolution of one week. The simulated 

soil moisture was evaluated on the basis of vegetation response, by using 16 years of 

normalized difference vegetation index (NDVI) data derived from NOAA-AVHRR satellite 

data. The predicted soil moistures were well correlated with agriculture and pasture NDVI 

values. Narasimhan and Srinivasan (2005) describe further applications of a soil moisture 

deficit index and an evapotranspiration deficit index. 

Arnold et al. (2005) validated a crack flow model for SWAT, which simulates soil 

moisture conditions with depth to account for flow conditions in dry weather. Simulated 

crack volumes were in agreement with seasonal trends, and the predicted daily surface runoff 

levels also were consistent with measured runoff data (Table 2). Sun and Cornish (2005) 
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simulated 30 years of bore data for a 437 km2 watershed. They used SWAT to estimate 

recharge in the headwaters of the Liverpool Plains in New South Wales, Australia. These 

authors determined that SWAT could estimate recharge and incorporate land use and land 

management at the watershed scale. A code modification was performed by Vazquez-

Amábile and Engel (2005) that allowed reporting of soil moisture for each soil layer. The soil 

moisture values were then converted into groundwater table levels based on the approach 

used in DRAINMOD (Skaggs, 1982). It was concluded that predictions of groundwater table 

levels would be useful to include in SWAT. 

Modifications were performed by Du et al. (2006) to SWAT2000 to improve the 

original SWAT tile drainage function. The modified model was referred to as SWAT-M and 

resulted in clearly improved tile drainage and streamflow predictions for the relatively flat 

and intensively cropped 51.3 km2 Walnut Creek watershed in central Iowa (Table 2). Green 

et al. (2006) report a further application of the revised tile drainage routine using SWAT2005 

for a large tile-drained watershed in north central Iowa, which resulted in a greatly improved 

estimate of the overall water balance for the watershed (Table 2). This study also presented 

the importance of ensuring that representative runoff events are present in both the 

calibration and validation in order to improve the model's effectiveness. 

 
Snowmelt-Related Applications 

Fontaine et al. (2002) modified the original SWAT snow accumulation and snowmelt 

routines by incorporating improved accounting of snowpack temperature and accumulation, 

snowmelt, and areal snow coverage, and an option to input precipitation and temperature as a 

function of elevation bands. These enhancements resulted in greatly improved streamflow 
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estimates for the mountainous 5,000 km2 upper Wind River basin in Wyoming (Table 2). 

Abbaspour et al. (2007) calibrated several snow-related parameters and used four elevation 

bands in their SWAT simulation of the 1,700 km2 Thur watershed in Switzerland that is 

characterized by a pre-alpine/alpine climate. They report excellent SWAT discharge 

estimates. 

Other studies have reported mixed SWAT snowmelt simulation results, including 

three that reported poor results for watersheds (0.395 to 47.6 km2) in eastern Pennsylvania. 

Peterson and Hamlett (1998) found that SWAT was unable to account for unusually large 

snowmelt events, and Srinivasan et al. (2005) found that SWAT underpredicted winter 

streamflows; both studies used SWAT versions that predated the modifications performed by 

Fontaine et al. (2002). Srivastava et al. (2006) also found that SWAT did not adequately 

predict winter flows. Qi and Grunwald found that SWAT did not predict winter season 

precipitation-runoff events well for the 3,240 km2 Sandusky River watershed. Chanasyk et al. 

(2003) found that SWAT was not able to replicate snowmelt-dominated runoff (Table 2) for 

three small grassland watersheds in Alberta that were managed with different grazing 

intensities. Wang and Melesse (2005) report that SWAT accurately simulated the monthly 

and annual (and seasonal) discharges for the Wild Rice River watershed in Minnesota, in 

addition to the spring daily streamflows, which were predominantly from melted snow. 

Accurate snowmelt-dominated streamflow predictions were also found by Wang and Melesse 

(2006) for the Elm River in North Dakota. Wu and Johnston (2007) found that the snow melt 

parameters used in SWAT are altered by drought conditions and that streamflow predictions 

for the 901 km2 South Branch Ontonagon River in Michigan improved when calibration was 

based on a drought period (versus average climatic conditions), which more accurately 
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reflected the drought conditions that characterized the validation period. Statistical results for 

all these studies are listed in Table 2. 

Benaman et al. (2005) found that SWAT2000 reasonably replicated streamflows for 

the 1,200 km2 Cannonsville Reservoir watershed in New York (Table 2), but that the model 

underestimated snowmelt-driven winter and spring streamflows. Improved simulation of 

cumulative winter streamflows and spring base flows were obtained by Tolston and 

Shoemaker (2007) for the same watershed (Table 2) by modifying SWAT2000 so that lateral 

subsurface flow could occur in frozen soils. Francos et al. (2001) also modified SWAT to 

obtain improved streamflow results for the Kerava River watershed in Finland (Table 2) by 

using a different snowmelt submodel that was based on degree-days and that could account 

for variations in land use by subwatershed. Incorporating modifications such as those 

described in these two studies may improve the accuracy of snowmelt-related processes in 

future SWAT versions. 

 
Irrigation and Brush Removal Scenarios 

Gosain et al. (2005) assessed SWAT's ability to simulate return flow after the 

introduction of canal irrigation in a basin in Andra Pradesh, India. SWAT provided the 

assistance water managers needed in planning and managing their water resources under 

various scenarios. Santhi et al. (2005) describe a new canal irrigation routine that was used in 

SWAT. Cumulative irrigation withdrawal was estimated for each district for each of three 

different conservation scenarios (relative to a reference scenario). The percentage of water 

that was saved was also calculated. SWAT was used by Afinowicz et al. (2005) to evaluate 

the influence of woody plants on water budgets of semi-arid rangeland in southwest Texas. 
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Baseline brush cover and four brush removal scenarios were evaluated. Removal of heavy 

brush resulted in the greatest changes in ET (approx. 32 mm year-1 over the entire basin), 

surface runoff, base flow, and deep recharge. Lemberg et al. (2002) also describe brush 

removal scenarios. 

 
Applications Incorporating Wetlands, Reservoirs, and Other Impoundments 

Arnold et al. (2001) simulated a wetland with SWAT that was proposed to be sited 

next to Walker Creek in the Fort Worth, Texas, area. They found that the wetland needed to 

be above 85% capacity for 60% of a 14-year simulation period, in order to continuously 

function over the entire study period. Conan et al. (2003b) found that SWAT adequately 

simulated conversion of wetlands to dry land for the upper Guadiana River basin in Spain but 

was unable to represent all of the discharge details impacted by land use alterations. Wu and 

Johnston (2007) accounted for wetlands and lakes in their SWAT simulation of a Michigan 

watershed, which covered over 23% of the watershed. The impact of flood-retarding 

structures on streamflow for dry, average, and wet climatic conditions in Oklahoma was 

investigated with SWAT by Van Liew et al. (2003b). The flood-retarding structures were 

found to reduce average annual streamflow by about 3% and to effectively reduce annual 

daily peak runoff events. Reductions of low streamflows were also predicted, especially 

during dry conditions. Mishra et al. (2007) report that SWAT accurately accounted for the 

impact of three checkdams on both daily and monthly streamflows for the 17 km2 Banha 

watershed in northeast India (Table 2). Hotchkiss et al. (2000) modified SWAT based on 

U.S. Army Corp of Engineers reservoir rules for major Missouri River reservoirs, which 

resulted in greatly improved simulation of reservoir dynamics over a 25-year period. Kang et 

 



 

 

57

al. (2006) incorporated a modified impoundment routine into SWAT, which allowed more 

accurate simulation of the impacts of rice paddy fields within a South Korean watershed 

(Table 2). 

 
Green-Ampt Applications 

Very few SWAT applications in the literature report the use of the Green-Ampt 

infiltration option. Di Luzio and Arnold (2004) report sub-hourly results for two different 

calibration methods using the Green-Ampt method (Table 2). King et al. (1999) found that 

the Green-Ampt option did not provide any significant advantage as compared to the curve 

number approach for uncalibrated SWAT simulations for the 21.3 km2 Goodwin Creek 

watershed in Mississippi (Table 2). Kannan et al. (2007b) report that SWAT streamflow 

results were more accurate using the curve number approach as compared to the Green-Ampt 

method for a small watershed in the U.K. (Table 2). However, they point out that several 

assumptions were not optimal for the Green-Ampt approach. 

 
Pollutant Loss Studies 

Nearly 50% of the reviewed SWAT studies (Table 1) report simulation results of one 

or more pollutant loss indicator. Many of these studies describe some form of verifying 

pollutant prediction accuracy, although the extent of such reporting is less than what has been 

published for hydrologic assessments. Table 3 lists R2 and NSE statistics for 37 SWAT 

pollutant loss studies, which again are used here as key indicators of model performance. The 

majority of the R2 and NSE values reported in Table 3 exceed 0.5, indicating that the model 

was able to replicate a wide range of observed in-stream pollutant levels. However, poor 



Table 3. Summary of reported SWAT environmental indicator calibration and validation coefficient of determination (R2) and 
Nash-Sutcliffe model efficiency (NSE) statistics 

Calibration Validation  

Daily Monthly Annual Daily Monthly Annual      

Reference Watershed 

Drainage 
Area 

(km2)a Indicatorb 

Time Period 
(C = calib., 
V = valid.) R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE 

Suspended 
solids 

C: 1974-1975 
V: 1976 -  
May 1977 

  0.97 
and 
0.94 

0.92 
and 
0.86 

    0.86 
and 
0.85 

0.75 
and 
0.68 

  

Total P    0.93 
and 
0.64 

0.78 
and 
0.51 

    0.90 
and 
0.73 

0.79 
and 
0.37 

  

Arabi et al. 
(2006b)c 

Dreisbach and Smith Fry 
(Indiana) 

6.2 
and 
7.3 

Total N    0.76 
and 
0.61 

0.54 
and 
0.50 

    0.75 
and 
0.52 

0.85 
and 
0.72 

  

Bärlund et al. 
(2007)d,e 

Lake Pyhäjärvi 
(Finland) 

-- Sediment 1990-1994  0.01           

Sediment C: 2002 
V: 2003 

(rainy season) 

0.93 0.84     0.89 0.86     

Nitrate  0.93 0.92     0.87 0.83     

Behera and 
Panda 
(2006) 

Kapgari (India) 9.73 

Total P  0.92 0.83     0.94 0.89     
Nitrate 1986-1990    0.64         Bouraoui et al. 

(2002) 
Ouse (Yorkshire, U.K.) 3,500 

Ortho P     0.02         
Susp. solids 1982-1984  0.49           

Total N   0.61           
Vantaanjoki (Finland); 
subwatershed 

295 

Total P   0.74           
Nitrate 1974-1998          0.34   

Bouraoui et al. 
(2004) 

Entire watershed 1,682 
Total P           0.62   

Bracmort et al. 
(2006)c 

Dreisbach and Smith Fry 
(Indiana) 

6.2 
and 
7.3 

Mineral P C: 1974-1975 
V: 1976 -  
May 1977 

  0.92 
and 
0.90 

0.84 
and 
0.78 

    0.86 
and 
0.73 

0.74 
and 
0.51 

  

Sediment Oct. 1999- 
Sept. 2000 

  0.70          

Dissolved P    0.91          

Cerucci and 
Conrad 
(2003)f 

Townbrook 
(New York) 

36.8 

Particulate P    0.40          
Chaplot et al. 
(2004) 

Walnut Creek 51.3 Nitrate 1991-1998   0.56          

Sediment C: 1992-1997 
V: 1998-1999 

  0.70 0.74     0.78 0.76   Cheng et al. 
(2006) 

Heihe River (China) 7,241 

Ammonia C: 1992-1997 
V: 1998-1999 

  0.75 0.76     0.74 0.72   
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Table 3 (continued) 
Calibration Validation  

Daily Monthly Annual Daily Monthly Annual      

Reference Watershed 

Drainage 
Area 

(km2)a Indicatorb 

Time Period 
(C = calib., 
V = valid.) R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE 

Sediment Varying periods   0.10 0.05     0.19 0.11 0.91 0.90 
Nitrate    0.27 0.16     0.38 0.36 0.96 0.90 

Ammonium          0.38 -0.05 0.80 0.19 
Total Kjeldahl 

N 
         0.40 0.15 0.66 -0.56 

Soluble P    0.39 -0.08     0.65 0.64 0.87 0.80 

Chu et al. 
(2004)g 

Warner Creek 3.46 

Total P          0.38 0.08 0.83 0.19 
Sediment 1997-1998    0.48         

Nitrate     0.44         
Cotter et al. 
(2003) 

Moores Creek 
(Arkansas) 

18.9 

Total P     0.66         
Sediment Jan. 1993 - 

July 1998 
         0.78   

Organic N           0.60   
Nitrate           0.60   

Organic P           0.70   

Di Luzio et al. 
(2002) 

Upper North Bosque River 
(Texas) 

932.5 

Ortho P           0.58   
Du et al. 
(2006)d,h,i 

Walnut Creek (Iowa); 
subwatershed  
(site 310) and  
watershed outlet 

51.3 Nitrate 
(stream 
flow) 

C: 1992-1995 
V: 1996-2001 
(SWAT2000) 

 -0.37 
and 

-0.41 

 -0.21 
and 

-0.26 

   -0.14 
and 

-0.18 

 -0.21 
and 

-0.22 

  

 Subwatershed  
(site 210) 

-- Nitrate 
(tile flow) 

(SWAT2000)  -0.60  -0.08    -0.16  -0.31   

 Subwatershed  
(site 310) and  
watershed outlet  

51.3 Nitrate 
(stream 
flow) 

(SWAT-M)[j]  0.61 
and 
0.53 

 0.91 
and 
0.85 

   0.41 
and 
0.26 

 0.80 
and 
0.67 

  

 Subwatershed  
(site 210) 

-- Nitrate 
(tile flow) 

(SWAT-M)  0.25  0.73    0.42  0.71   

 Subwatershed  
(site 310) and  
watershed outlet 

51.3 Atrazine 
(stream 
flow) 

(SWAT2000)  -0.05 
and 

-0.12 

 -0.01 
and 

-0.02 

   -0.02 
and 

-0.39 

 -0.04 
and 
0.06 

  

 Subwatershed  
(site 210) 

-- Atrazine 
(tile flow) 

(SWAT2000)  -0.47  -0.04    -0.46  -0.06   

 Subwatershed  
(site 310) and watershed 
outlet 

51.3 Atrazine 
(stream 
flow) 

(SWAT-M)  0.21 
and 
0.47 

 0.50 
and 
0.73 

   0.12 
and -
0.41 

 0.53 
and 
0.58 

  

 Subwatershed  
(site 210) 

-- Atrazine 
(tile flow) 

(SWAT-M)  0.51  0.92    0.09  0.31   
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Table 3 (continued) 
Calibration Validation  

Daily Monthly Annual Daily Monthly Annual      

Reference Watershed 

Drainage 
Area 

(km2)a Indicatorb 

Time Period 
(C = calib., 
V = valid.) R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE 

Sediment C: May 1998 - June 
1999 

V: Nov. 1999 -Jan. 
2000 

  0.40 to 
0.98 

     0.34 to 
0.98 

   

Nitrate    0.51 to 
0.87 

     0.57 to 
0.89 

   

Gikas et al. 
(2005)d,k 

Vistonis Lagoon 
(Greece); nine gauges 

1,349 

Total P    0.50 to 
0.82 

     0.43 to 
0.97 

   

Grizzetti et al. 
(2005)[d] 

Parts of four watersheds 
(U.K.); 
C: one gauge, 
V: two gauges, 
annual: 50 gauges 

1,380 
to 

8,900 

Nitrate 
and 

nitrite 

1995-1999  0.24  0.32    0.004 
and 
0.28 

 -0.66 
and 
0.38 

 0.68 

Total N Varying 
periods 

 0.59      0.43 
and 
0.51 

 0.10 
and 
0.30 

  Grizzetti et al. 
(2003) 

Vantaanjoki (Finland); 
three gauges 

295 
to 

1,682 
Total P   0.74      0.54 

and 
0.44 

 0.63 
and 
0.64 

  

Suspended 
sediment 

C: 1998-1999 
V: 2000-2001 

   -5.1 to 
0.2 

     -1.0 to 
0.02 

  

Total P     -0.89 to 
0.07 

     0.08 to 
0.45 

  

Nitrite     -4.6 to 
0.19 

     -0.16 to 
0.48 

  

Nitrate     -0.12 to 
0.29 

     -0.1 to 
0.57 

  

Grunwald 
and Qi 
(2006) 

Sandusky (Ohio); 
three gauges 

90.3 
to 

3,240 

Ammonia     -0.44 to 
-0.24 

     -0.44 to 
-0.21 

  

Suspended 
sediment 

1967-1991    0.59         

Nitrate 
and nitrite 

    0.68         

Hanratty and 
Stefan 
(1998) 

Cottonwood 
(Minnesota) 

3,400 

Total P     0.54         
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Table 3 (continued)  
Calibration Validation  

Daily Monthly Annual Daily Monthly Annual      

Reference Watershed 

Drainage 
Area 

(km2)a Indicatorb 

Time Period 
(C = calib., 
V = valid.) R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE 

Suspended 
sediment 

1967-1991    0.59         

Nitrate 
and nitrite 

    0.68         

Total P     0.54         

Hanratty and 
Stefan 
(1998) 

Cottonwood 
(Minnesota) 

3,400 

Organic N 
and ammonia 

    0.57         

Hao et al. 
(2004) 

Lushi (China) 4,623 Sediment C: 1992-1997 
V: 1998-1999 

  0.72 0.72     0.98 0.94   

Sediment C: 1981-1992 
V: 1993-2003 

  0.55 0.53 0.97 0.93   0.80 0.78 0.89 0.79 Jha et al. 
(2007)l 

Raccoon River 
(Iowa) 

8,930 

Nitrate    0.76 0.73 0.83 0.78   0.79 0.78 0.91 0.84 
Suspended 

solids 
C: 1996-1997 
V: 1999-2000 

0.77 0.70     0.89 0.89     

Total N  0.84 0.73     0.85 0.65     

Kang et al. 
(2006)k 

Baran (South Korea) 29.8 

Total P  0.81 0.42     0.85 0.19     
Kaur et al. 
(2004) 

Nagwan (India) 9.58 Sediment C: 1984 and 
1992 

V: 1981-1983, 
1985-1989, 1991

0.54 -0.67     0.65 0.70     

Sediment 1991-1995     0.82 0.75       Kirsch et al. 
(2002) 

Rock River (Wisconsin); 
Windsor gauge 

190 
Total P      0.95 0.07       

Mishra et al. 
(2007) 

Banha (India) 17 Sediment C: 1996 
V: 1997-2001 

0.82 0.82 0.99 0.98   0.77 0.58 0.89 0.63   

Muleta and 
Nicklow 
(2005a) 

Big Creek (Illinois) 86.5 Sediment 1999-2001  0.42           

Muleta and 
Nicklow 
(2005b) 

Big Creek (Illinois);  
separate gauges for C and 
V 

23.9 
and 
86.5 

Sediment C: June 1999 
- Aug. 2001 

V: Apr. 2000 
- Aug. 2001 

 0.46      -0.005     

Nasr et al. 
(2007)c 

Clarianna, Dripsey, and 
Oona Water (Ireland) 

15 
to 
96 

Total P Varying 
periods 

 0.44 to 
0.59 
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Table 3 (continued) 
Calibration Validation  

Daily Monthly Annual Daily Monthly Annual      

Reference Watershed 

Drainage 
Area 

(km2)a Indicatorb 

Time Period 
(C = calib., 
V = valid.) R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE 

Nitrate 1993-1999       0.44 
and 
0.27 

     

Ammonia        0.31 
and 
0.15 

     

Plus et al. 
(2006)d,m 

Thau Lagoon 
(France); 
two gauges 

280 

Organic N        0.66 
and 
0.20 

     

Nitrate 1993-1999       0.44 
and 
0.27 

     

Ammonia        0.31 
and 
0.15 

     

Plus et al. 
(2006)d,m 

Thau Lagoon 
(France); 
two gauges 

280 

Organic N        0.66 
and 
0.20 

     

Sediment Oct. 1993 - 
Aug. 1995 

   0.81      0.94   

Nitrate     0.27      0.65   
Organic N     0.78      0.82   

Total N     0.86      0.97   
Ortho P     0.94      0.92   

Particulate 
P 

    0.54      0.89   

Saleh et al. 
(2000)n 

Upper North Bosque River 
(Texas); 
C: one gauge, 
V: 11 gauges 

932.5 

Total P     0.83      0.93   
Total 

suspended 
solids 

C: Jan. 1994 - 
June 1995 

V: July 1995 - 
July 1999 

 -2.5  0.83    -3.5  0.59   

Nitrate 
and nitrite 

  0.04  0.29    0.50  0.50   

Organic N   -0.07  0.87    0.69  0.77   
Total N   0.01  0.81    0.68  0.75   
Ortho P   0.08  0.76    0.45  0.40   

Particulate 
P 

  -0.74  0.59    0.59  0.73   

Saleh and Du 
(2004) 

Upper North Bosque River 
(Texas) 

932.5 

Total P   -0.08  0.77    0.63  0.71   

  

   62 



Table 3 (continued) 
Calibration Validation  

Daily Monthly Annual Daily Monthly Annual      

Reference Watershed 

Drainage 
Area 

(km2)a Indicatorb 

Time Period 
(C = calib., 
V = valid.) R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE 

Sediment C: 1993-1997 
V: 1998 

  0.81 and
0.87 

 0.80 and 
0.69 

    0.98 
and 
0.95 

0.70 
and 
0.23 

  

Mineral N    0.64 and 
0.72 

0.59 and 
-0.08 

    0.89 
and 
0.72 

0.75 
and 
0.64 

  

Organic N    0.61 
and 
0.60 

0.58 
and 
0.57 

    0.92 
and 
0.71 

0.73 
and 
0.43 

  

Mineral P    0.60 
and 
0.66 

0.59 
and 
0.53 

    0.83 
and 
0.93 

0.53 
and 
0.81 

  

Santhi et al. 
(2001a)d,o 

Bosque River (Texas); 
two gauges 

4,277 

Organic P    0.71 
and 
0.61 

0.70 
and 
0.59 

    0.95 
and 
0.80 

0.72 
and 
0.39 

  

Sediment C: 1994-1999 
V: 2001-2002 

  0.94 0.80     0.82 0.63   

Mineral N    0.80 0.60     0.57 -0.04   
Organic N    0.87 0.71     0.89 0.73   
Mineral P    0.88 0.75     0.82 0.37   

Stewart et al. 
(2006) 

Upper North Bosque River 
(Texas) 

932.5 

Organic P    0.85 0.69     0.89 0.58   
Total 

suspended 
solids 

Varying 
periods 

  0.70 
(0.47) 

0.67 
(0.24) 

  0.42 
and 
0.83 

0.33 
and 
0.83 

0.72 
and 
0.83 

0.52 
and 
0.76 

  

Total 
dissolved 

P 

   0.79 
(0.84) 

0.78 
(0.84) 

  0.62 
and 
0.71 

0.61 
and  
-5.3 

0.93 
and 
0.89 

0.89 
and  
-6.5 

  

Particulate P    0.67 
(0.50) 

0.61 
(0.26) 

  0.37 
and 
0.85 

0.32 
and 
0.85 

0.63 
and 
0.88 

0.48 
and 
0.79 

  

Tolson and 
Shoemaker 
(2007)d,j,p 

Cannonsville 
(New York) 

37 
to 

913q 

Total P    0.73 
(0.58) 

0.78 
(0.37) 

  0.43 
and 
0.87 

0.40 
and 
0.78 

0.75 
and 
0.92 

0.63 
and 
0.92 

  

Sediment June-Oct. 1997       0.89 0.89 0.89 0.79   
Nitrate        0.89      

Organic N        0.82      
Soluble P        0.82      

Tripathi et al. 
(2003) 

Nagwan (India) 92.5 

Organic P        0.86      
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Table 3 (continued) 
Calibration Validation  

Daily Monthly Annual Daily Monthly Annual      

Reference Watershed 

Drainage 
Area 

(km2)a Indicatorb 

Time Period 
(C = calib., 
V = valid.) R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE R2 NSE 

St. Joseph River (Indiana, 
Michigan, and Ohio); ten 
sampling sites 

628.2 
to 

1620 

Atrazine 1996-1999  0.14  0.42         Vazquez- 
Amabile et al. 
(2006)i 

Main outlet at Fort Wayne, 
Indiana 

2,620 Atrazine 2000-2004       0.27 -0.31 0.59 0.28   

Veith et al. 
(2005) 

Watershed FD-36 
(Pennsylvania) 

0.395 Sediment 1997-2000   0.04 -0.75         

Sediment C: 2000 or 2001 V: 
2001 or 2002 

  0.45 to 
0.85 

0.23 to 
0.76 

    0.69 to 
0.82 

0.32 to 
0.85 

  

Nitrate 
and nitrite 

   0.01 to 
0.84 

-2.36 to 
0.29 

    0.59 
and 
0.71 

0.13 
and 
0.49 

  

White and 
Chaubey 
(2005)r,s 

Beaver Reservoir 
(Arkansas); 
three gauges 

362 to 1,020

Total P    0.50 to 
0.82 

0.40 to 
0.67 

    0.58 
and 
0.76 

-0.29 
and 
0.67 

  

a Based on drainage areas to the gauge(s)/sampling site(s) rather than total watershed area where reported (see footnote [d] for further information). 
b The reported indicators are listed here as reported in each respective study; the standard SWAT variables for relevant in-stream constituents are: sediment, organic nitrogen (N), organic 

phosphorus (P), nitrate (NO3-N), ammonium (NH4-N), nitrite (NO2-N), and mineral P (Neitsch et al., 2005b). 
c Arabi et al. (2006b) and Bracmort et al. (2006) reported the same set of r2 and NSE statistics for sediment and total P; the calibration time periods were reported by Arabi et al. (2006b), 

and the validation time periods were inferred from graphical results reported by Bracmort et al. (2006). 
d Explicit or estimated drainage areas were not reported for some or all of the gauge sites; the total watershed area is listed for those studies that reported it. 
e The exact time scale of comparison was not explicitly stated and thus was inferred from other information provided. 
f The statistics reported for sediment and organic P excluded the months of February and March 2000; large underestimations of both constituents occurred in those two months. 
g The nutrient statistics were based on adjusted flows that accounted for subsurface flows that originated from outside the watershed as reported by Chu and Shirmohammadi (2004); the 

annual sediment, nitrate, and soluble P statistics were based on the combined calibration and validation periods. 
h The daily and monthly statistics were based only on the days that sampling occurred. 
i Other statistics were reported for different time periods, conditions, gauge combinations, and/or variations in selected in input data. 
j A modified SWAT model was used. 
k The exact time scale of comparison was not explicitly stated and thus was inferred from other information provided. 
l A similar set of Raccoon River watershed statistics were reported for slightly different time periods by Secchi et al. (2007). 
m Specific calibration and/or validation time periods were reported, but the statistics were based on the overall simulated time period (calibration plus validation time periods). 
n The APEX model (Williams and Izaurralde, 2006) was interfaced with SWAT for this study. The calibration statistics were based on a comparison between simulated and measured flows 

at the watershed outlet, while the validation statistics were based on a comparison between simulated and measured flows averaged across 11 different gauges. 
o The calibration and validation statistics were also reported by Santhi et al. (2001b). 
p The calibration statistics in parentheses include January 1996; an unusually large runoff and erosion event occurred during that month. 
q As reported by Benamen et al. (2005). 
r These statistics were computed on the basis of comparisons between simulated and measured data within specific years, rather than across multiple years. 
s The statistics for the War Eagle Creek subwatershed gauge were also reported by Migliaccio et al. (2007). 
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results were again reported for some studies, especially for daily comparisons. Similar to the 

points raised for the hydrologic results, some of the weaker results were due in part to 

inadequate characterization of input data (Bouraoui et al., 2002), uncalibrated simulations of 

pollutant movement (Bärlund et al., 2007), and uncertainties in observed pollutant levels 

(Harmel et al., 2006). 

 
Sediment Studies 

Several studies showed the robustness of SWAT in predicting sediment loads at 

different watershed scales. Saleh et al. (2000) conducted a comprehensive SWAT evaluation 

for the 932.5 km2 upper North Bosque River watershed in north central Texas, and found that 

predicted monthly sediment losses matched measured data well but that SWAT daily output 

was poor (Table 3). Srinivasan et al (1998) concluded that SWAT sediment accumulation 

predictions were satisfactory for the 279 km2 Mill Creek watershed, again located in north 

central Texas. Santhi et al. (2001a) found that SWAT-simulated sediment loads matched 

measured sediment loads well (Table 3) for two Bosque River (4,277 km2) subwatersheds, 

except in March. Arnold et al. (1999b) used SWAT to simulate average annual sediment 

loads for five major Texas river basins (20,593 to 569,000 km2) and concluded that the 

SWAT-predicted sediment yields compared reasonably well with estimated sediment yields 

obtained from rating curves. 

Besides Texas, the SWAT sediment yield component has also been tested in several 

Midwest and northeast U.S. states. Chu et al. (2004) evaluated SWAT sediment prediction 

for the Warner Creek watershed located in the Piedmont physiographic region of Maryland. 

Evaluation results indicated strong agreement between yearly measured and SWAT-
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simulated sediment load, but simulation of monthly sediment loading was poor (Table 3). 

Tolston and Shoemaker (2007) modified the SWAT2000 sediment yield equation to account 

for both the effects of snow cover and snow runoff depth (the latter is not accounted for in 

the standard SWAT model) to overcome snowmelt-induced prediction problems identified by 

Benaman et al. (2005) for the Cannonsville Reservoir watershed in New York. They also 

reported improved sediment loss predictions (Table 3). Jha et al. (2007) found that the 

sediment loads predicted by SWAT were consistent with sediment loads measured for the 

Raccoon River watershed in Iowa (Table 3). Bracmort et al. (2006) report satisfactory SWAT 

sediment simulation results for two small watersheds in Indiana (Table 3). White and 

Chaubey (2005) report that SWAT sediment predictions for the Beaver Reservoir watershed 

in northeast Arkansas (Table 3) were satisfactory. Sediment results are also reported by 

Cotter et al. (2003) for another Arkansas watershed (Table 3). Hanratty and Stefan (1998) 

calibrated SWAT using water quality and quantity data measured in the Cottonwood River in 

Minnesota (Table 3). In Wisconsin, Kirsch et al. (2002) calibrated SWAT annual predictions 

for two subwatersheds located in the Rock River basin (Table 3), which lies within the 

glaciated portion of south central and eastern Wisconsin. Muleta and Nicklow (2005a) 

calibrated daily SWAT sediment yield with observed sediment yield data from the Big Creek 

watershed in southern Illinois and concluded that sediment fit seems reasonable (Table 3). 

However, validation was not conducted due to lack of data. 

SWAT sediment simulations have also been evaluated in Asia, Europe, and North 

Africa. Behera and Panda (2006) concluded that SWAT simulated sediment yield 

satisfactorily throughout the entire rainy season based on comparisons with daily observed 

data (Table 3) for an agricultural watershed located in eastern India. Kaur et al. (2004) 
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concluded that SWAT predicted annual sediment yields reasonably well for a test watershed 

(Table 3) in Damodar-Barakar, India, the second most seriously eroded area in the world. 

Tripathi et al. (2003) found that SWAT sediment predictions agreed closely with observed 

daily sediment yield for the same watershed (Table 3). Mishra et al. (2007) found that SWAT 

accurately replicated the effects of three checkdams on sediment transport (Table 3) within 

the Banha watershed in northeast India. Hao et al. (2004) state that SWAT was the first 

physically based watershed model validated in China's Yellow River basin. They found that 

the predicted sediment loading accurately matched loads measured for the 4,623 km2 Lushi 

subwatershed (Table 3). Cheng et al. (2006) successfully tested SWAT (Table 3) using 

sediment data collected from the 7,241 km2 Heihe River, another tributary of the Yellow 

River. In Finland, Bärlund et al. (2007) report poor results for uncalibrated simulations 

performed within the Lake Pyhäjärvi watershed (Table 3). Gikas et al. (2005) conducted an 

extensive evaluation of SWAT for the Vistonis Lagoon watershed, a mountainous 

agricultural watershed in northern Greece, and concluded that agreement between observed 

and SWAT-predicted sediment loads were acceptable (Table 3). Bouraoui et al. (2005) 

evaluated SWAT for the Medjerda River basin in northern Tunisia and reported that the 

predicted concentrations of suspended sediments were within an order of magnitude of 

corresponding measured values. 

 
Nitrogen and Phosphorus Studies 

Several published studies from the U.S. showed the robustness of SWAT in 

predicting nutrient losses. Saleh et al. (2000), Saleh and Du (2004), Santhi et al. (2001a), 

Stewart et al. (2006), and Di Luzio et al. (2002) evaluated SWAT by comparing SWAT 
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nitrogen prediction with measured nitrogen losses in the upper North Bosque River or 

Bosque River watersheds in Texas. They all concluded that SWAT reasonably predicted 

nitrogen loss, with most of the average monthly validation NSE values greater than or equal 

to 0.60 (Table 3). Phosphorus losses were also satisfactorily simulated with SWAT in these 

four studies, with validation NSE values ranging from 0.39 to 0.93 (Table 3). Chu et al. 

(2004) applied SWAT to the Warner Creek watershed in Maryland and reported satisfactory 

annual but poor monthly nitrogen and phosphorus predictions (Table 3). Hanratty and Stefan 

(1998) calibrated SWAT nitrogen predictions using measured data collected for the 

Cottonwood River, Minnesota, and concluded that if properly calibrated, SWAT is an 

appropriate model to use for simulating the effect of climate change on water quality; they 

also reported satisfactory SWAT phosphorus results (Table 3). 

In Iowa, Chaplot et al. (2004) calibrated SWAT using nine years of data for the 

Walnut Creek watershed and concluded that SWAT gave accurate predictions of nitrate load 

(Table 3). Du et al. (2006) showed that the modified tile drainage functions in SWAT-M 

resulted in far superior nitrate loss predictions for Walnut Creek (Table 3), as compared to 

the previous approach used in SWAT2000. However, Jha et al. (2007) report accurate nitrate 

loss predictions (Table 3) for the Raccoon River watershed in Iowa using SWAT2000. In 

Arkansas, Cotter et al. (2003) calibrated SWAT with measured nitrate data for the Moores 

Creek watershed and reported an NSE of 0.44. They state that SWAT's response was similar 

to that of other published reports. 

Bracmort et al. (2006) and Arabi et al. (2006b) found that SWAT could account for 

the effects of best management practices (BMPs) on phosphorus and nitrogen losses for two 

small watersheds in Indiana, with monthly validation NSE statistics ranging from 0.37 to 
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0.79 (Table 3). SWAT tended to underpredict both mineral and total phosphorus yields for 

the months with high measured phosphorus losses, but overpredicted the phosphorus yields 

for months with low measured losses. Cerucci and Conrad (2003) calibrated SWAT soluble 

phosphorus predictions using measured data obtained for the Townbrook watershed in New 

York. They reported monthly NSE values of 0.91 and 0.40, if the measured data from 

February and March were excluded. Kirsch et al. (2002) reported that SWAT phosphorus 

loads were considerably higher than corresponding measured loads for the Rock River 

watershed Wisconsin. Veith et al. (2005) found that SWAT-predicted losses were similar in 

magnitude to measured watershed exports of dissolved and total phosphorus during a 7-

month sampling period from a Pennsylvania watershed. 

SWAT nutrient predictions have also been evaluated in several other countries. In 

India, SWAT N and P predictions were tested using measured data within the Midnapore 

(Behera and Panda, 2006) and Hazaribagh (Tripathi et al., 2003) districts of eastern India 

(Table 3). Both studies concluded that the SWAT model could be successfully used to 

satisfactorily simulate nutrient losses. SWAT-predicted ammonia was close to the observed 

value (Table 3) for the Heihe River study in China (Cheng et al., 2006). Three studies 

conducted in Finland for the Vantaanjoki River (Grizzetti et al. 2003; Bouraoui et al. 2004) 

and Kerava River (Francos et al., 2001) watersheds reported that SWAT N and P simulations 

were generally satisfactory. Plus et al. (2006) evaluated SWAT from data on two rivers in the 

Thau Lagoon watershed, which drains part of the French Mediterranean coast. The best 

correlations were found for nitrate loads, and the worst for ammonia loads (Table 3). Gikas et 

al. (2005) evaluated SWAT using nine gauges within the Vistonis Lagoon watershed in 

Greece and found that the monthly validation statistics generally indicated good model 
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performance for nitrate and total P (Table 3). SWAT nitrate and total phosphorus predictions 

were found to be excellent and good, respectively, by Abbaspour et al. (2007) for the 1700 

km2 Thur River basin in Switzerland. Bouraoui et al. (2005) applied SWAT to a part of the 

Medjerda River basin, the largest surface water reservoir in Tunisia, and reported that SWAT 

was able to predict the range of nitrate concentrations in surface water, but lack of data 

prevented in-depth evaluation. 

 
Pesticide and Surfactant Studies 

Simulations of isoaxflutole (and its metabolite RPA 202248) were performed by 

Ramanarayanan et al. (2005) with SWAT for four watersheds in Iowa, Nebraska, and 

Missouri that ranged in size from 0.49 to 1,434.6 km2. Satisfactory validation results were 

obtained based on comparisons with measured data. Long-term simulations indicated that 

accumulation would not be a problem for either compound in semistatic water bodies. 

Kannan et al. (2006) report that SWAT accurately simulated movement of four pesticides for 

the Colworth watershed in the U.K. The results of different application timing and split 

application scenarios are also described. Two scenarios of surfactant movement are described 

by Kannan et al. (2007a) for the same watershed. Prediction of atrazine greatly improved 

using SWAT-M as reported by Du et al. (2006) for the Walnut Creek watershed in Iowa 

(Table 3), which is a heavily tile-drained watershed. Vazquez-Amabile et al. (2006) found 

that SWAT was very sensitive to the estimated timing of atrazine applications in the 2,800 

km2 St. Joseph River watershed in northeast Indiana. The predicted atrazine mass at the 

watershed outlet was in close agreement with measured loads for the period of September 

through April during the years from 2000-2003. Graphical and statistical analyses indicated 
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that the model replicated atrazine movement trends well, but the NSE statistics (e.g., Table 3) 

were generally weak. 

 
Scenarios of BMP and Land Use Impacts on Pollutant Losses 

Simulation of hypothetical scenarios in SWAT has proven to be an effective method 

of evaluating alternative land use, BMP, and other factors on pollutant losses. SWAT studies 

in India include identification of critical or priority areas for soil and water management in a 

watershed (Kaur et al., 2004; Tripathi et al., 2003). Santhi et al. (2006) report the impacts of 

manure and nutrient related BMPs, forage harvest management, and other BMPs on water 

quality in the West Fork watershed in Texas. The effects of BMPs related to dairy manure 

management and municipal wastewater treatment plant effluent were evaluated by Santhi et 

al. (2001b) with SWAT for the Bosque River watershed in Texas. Stewart et al. (2006) 

describe modifications of SWAT for incorporation of a turfgrass harvest routine, in order to 

simulate manure and soil P export that occurs during harvest of turfgrass sod within the 

upper North Bosque River watershed in north central Texas. Kirsch et al. (2002) describe 

SWAT results showing that improved tillage practices could result in reduced sediment 

yields of almost 20% in the Rock River in Wisconsin. Chaplot et al. (2004) found that 

adoption of no tillage, changes in nitrogen application rates, and land use changes could 

greatly impact nitrogen losses in the Walnut Creek watershed in central Iowa. Analysis of 

BMPs by Vaché et al. (2002) for the Walnut Creek and Buck Creek watersheds in Iowa 

indicated that large sediment reductions could be obtained, depending on BMP choice. 

Bracmort et al. (2006) present the results of three 25-year SWAT scenario simulations for 

two small watersheds in Indiana in which the impacts of no BMPs, BMPs in good condition, 

 



 72

and BMPs in varying condition are reported for streamflow, sediment, and total P. Nelson et 

al. (2005) report that large nutrient and sediment loss reductions occurred in response to 

simulated shifts of cropland into switchgrass production within the 3,000 km2 Delaware 

River basin in northeast Kansas. Benham et al. (2006) describe a TMDL SWAT application 

for a watershed in southwest Missouri. Frequency curves comparing simulated and measured 

bacteria concentrations were used to calibrate SWAT. The model was then used to simulate 

the contributions of different bacteria sources to the stream system, and to assess the impact 

of different BMPs that could potentially be used to mitigate bacteria losses in the watershed. 

 
Climate Change Impact Studies 

Climate change impacts can be simulated directly in SWAT by accounting for: (1) the 

effects of increased atmospheric CO2 concentrations on plant development and transpiration, 

and (2) changes in climatic inputs. Several SWAT studies provide useful insights regarding 

the effects of arbitrary CO2 fertilization changes and/or other climatic input shifts on plant 

growth, streamflow, and other responses, including Stonefelt et al. (2000), Fontaine et al. 

(2001), and Jha et al. (2006). The SWAT results reported below focus on approaches that 

relied on downscaling of climate change projections generated by general circulation models 

(GCMs) or GCMs coupled with regional climate models (RCMs). 

 
SWAT Studies Reporting Climate Change Impacts on Hydrology 

Muttiah and Wurbs (2002) used SWAT to simulate the impacts of historical climate 

trends versus a 2040-2059 climate change projection for the 7,300 km2 San Jacinto River 

basin in Texas. They report that the climate change scenario resulted in a higher mean 

streamflow due to greater flooding and other high flow increases, but that normal and low 
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streamflows decreased. Gosain et al. (2006) simulated the impacts of a 2041-2060 climate 

change scenario on the streamflows of 12 major river basins in India, ranging in size from 

1,668 to 87,180 km2. Surface runoff was found to generally decrease, and the severity of both 

floods and droughts increased, in response to the climate change projection. 

Rosenberg et al. (2003) simulated the effect of downscaled HadCM2 GCM (Johns et 

al., 1997) climate projections on the hydrology of the 18 MWRRs (Figure 2) with SWAT 

within the HUMUS framework. Water yields were predicted to change from -11% to 153% 

and from 28% to 342% across the MWRRs in 2030 and 2095, respectively, relative to 

baseline conditions. Thomson et al. (2003) used the same HadCM2-HUMUS (SWAT) 

approach and found that three El Niño/Southern Oscillation (ENSO) scenarios resulted in 

MWRR water yield impacts ranging from -210% to 77% relative to baseline levels, 

depending on seasonal and dominant weather patterns. An analysis of the impacts of 12 

climate change scenarios on the water resources of the 18 MWRRs was performed by 

Thomson et al. (2005) using the HUMUS approach, as part of a broader study that comprised 

the entire issue of volume 69 (number 1) of Climatic Change. Water yield shifts exceeding 

±50% were predicted for portions of Midwest and Southwest U.S., relative to present water 

yield levels. Rosenberg et al. (1999) found that driving SWAT with a different set of 12 

climate projections generally resulted in Ogallala Aquifer recharge decreases (of up to 77%) 

within the Missouri and Arkansas-White-Red MWRRs (Figure 2). 

Stone et al. (2001) predicted climate change impacts on Missouri River basin (Figure 

2) water yields by inputting downscaled climate projections into SWAT, which were 

generated by nesting the RegCM RCM (Giorgi et al., 1998) within the CISRO GCM 

(Watterson et al., 1997) into the previously described version of SWAT that was modified by 
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Hotchkiss et al. (2000). A structure similar to the HUMUS approach was used, in which 310 

8-digit watersheds were used to define the subwatersheds. Water yields declined at the basin 

outlet by 10% to 20% during the spring and summer months, but increased during the rest of 

the year. Further research revealed that significant shifts in Missouri River basin water yield 

impacts were found when SWAT was driven by downscaled CISRO GCM projections only 

versus the nested RegCM-CISRO GCM approach (Stone et al., 2003). 

Jha et al. (2004b), Takle et al. (2005), and Jha et al. (2006) all report performing 

GCM-driven studies for the 447,500 km2 upper Mississippi River basin (Figure 2), with an 

assumed outlet at Grafton, Illinois, using a framework consisting of 119 8-digit 

subwatersheds and land use, soil, and topography data that was obtained from BASINS. Jha 

et al. (2004b) found that streamflows in the upper Mississippi River basin increased by 50% 

for the period 2040-2049, when climate projections generated by a nested RegCM2-HadCM2 

approach were used to drive SWAT. Jha et al. (2006) report that annual average shifts in 

upper Mississippi River basin streamflows, relative to the baseline, ranged from -6% to 38% 

for five 2061-2090 GCM projections and increased by 51% for a RegCM-CISRO projection 

reported by Giorgi et al. (1998). An analysis of driving SWAT with precipitation output 

generated with nine GCM models indicated that GCM multi-model results may be used to 

depict 20th century annual streamflows in the upper Mississippi River basin, and that the 

interface between the single high-resolution GCM used in the study and SWAT resulted in 

the best replication of observed streamflows (Takle et al., 2005). 

Krysanova et al. (2005) report the impacts of 12 different climate scenarios on the 

hydrologic balance and crop yields of a 30,000 km2 watershed in the state of Brandenburg in 

Germany using the SWIM model. Further uncertainty analysis of climate change was 
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performed by Krysanova et al. (2007) for the 100,000 km2 Elbe River basin in eastern 

Germany, based on an interface between a downscaled GCM scenario and SWIM. Eckhardt 

and Ulbrich (2003) found that the spring snowmelt peak would decline, winter flooding 

would likely increase, and groundwater recharge and streamflow would decrease by as much 

as 50% in response to two climate change scenarios simulated in SWAT-G. Their approach 

featured variable stomatal conductance and leaf area responses by incorporating different 

stomatal conductance decline factors and leaf area index (LAI) values as a function of five 

main vegetation types; these refinements have not been adopted in the standard SWAT 

model. 

 
SWAT Studies Reporting Climate Change Impacts on Pollutant Loss 

Several studies report climate change impacts on both hydrology and pollutant losses 

using SWAT, including four that were partially or completely supported by the EU CHESS 

project (Varanou et al., 2002; Bouraoui et al., 2002; Boorman, 2003; Bouraoui et al., 2004). 

Nearing et al. (2005) compared runoff and erosion estimates from SWAT versus six other 

models, in response to six climate change scenarios that were simulated for the 150 km2 

Lucky Hills watershed in southeastern Arizona. The responses of all seven models were 

similar across the six scenarios for both watersheds, and it was concluded that climate change 

could potentially result in significant soil erosion increases if necessary conservation efforts 

are not implemented. Hanratty and Stefan (1998) found that streamflows and P, organic N, 

nitrate, and sediment yields generally decreased for the 3,400 km2 Cottonwood River 

watershed in southwest Minnesota in response to a downscaled 2×CO2 GCM climate change 

scenario. Varanou et al. (2002) also found that average streamflows, sediment yields, organic 
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N losses, and nitrate losses decreased in most months in response to nine different climate 

change scenarios downscaled from three GCMs for the 2,796 km2 Pinios watershed in 

Greece. Bouraoui et al. (2002) reported that six different climate change scenarios resulted in 

increased total nitrogen and phosphorus loads of 6% to 27% and 5% to 34%, respectively, for 

the 3,500 km2 Ouse River watershed located in the Yorkshire region of the U.K. Bouraoui et 

al. (2004) further found for the Vantaanjoki River watershed, which covers 1,682 km2 in 

southern Finland, that snow cover decreased, winter runoff increased, and slight increases in 

annual nutrient losses occurred in response to a 34-year scenario representative of observed 

climatic changes in the region. Boorman (2003) evaluated the impacts of climate change for 

five different watersheds located in Italy, France, Finland, and the UK., including the three 

watersheds analyzed in the Varanou et al. (2002), Bouraoui et al. (2002), and Bouraoui et al. 

(2004) studies. 

 
Sensitivity, Calibration, and Uncertainty Analyses 

Sensitivity, calibration, and uncertainty analyses are vital and interwoven aspects of 

applying SWAT and other models. Numerous sensitivity analyses have been reported in the 

SWAT literature, which provide valuable insights regarding which input parameters have the 

greatest impact on SWAT output. As previously discussed, the vast majority of SWAT 

applications report some type of calibration effort. SWAT input parameters are physically 

based and are allowed to vary within a realistic uncertainty range during calibration. 

Sensitivity analysis and calibration techniques are generally referred to as either manual or 

automated, and can be evaluated with a wide range of graphical and/or statistical procedures. 
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Uncertainty is defined by Shirmohammadi et al. (2006) as "the estimated amount by 

which an observed or calculated value may depart from the true value." They discuss sources 

of uncertainty in depth and list model algorithms, model calibration and validation data, input 

variability, and scale as key sources of uncertainty. Several automated uncertainty analyses 

approaches have been developed, which incorporate various sensitivity and/or calibration 

techniques, which are briefly reviewed here along with specific sensitivity analysis and 

calibration studies. 

 
Sensitivity Analyses 

Spruill et al. (2000) performed a manual sensitivity/calibration analysis of 15 SWAT 

input parameters for a 5.5 km2 watershed with karst characteristics in Kentucky, which 

showed that saturated hydraulic conductivity, alpha base flow factor, drainage area, channel 

length, and channel width were the most sensitive parameters that affected streamflow. 

Arnold et al. (2000) show surface runoff, base flow, recharge, and soil ET sensitivity curves 

in response to manual variations in the curve number, soil available water capacity, and soil 

evaporation coefficient (ESCO) input parameters for three different 8-digit watersheds within 

their upper Mississippi River basin SWAT study. Lenhart et al. (2002) report on the effects 

of two different sensitivity analysis schemes using SWAT-G for an artificial watershed, in 

which an alternative approach of varying 44 parameter values within a fixed percentage of 

the valid parameter range was compared with the more usual method of varying each initial 

parameter by the same fixed percentage. Both approaches resulted in similar rankings of 

parameter sensitivity and thus could be considered equivalent. 
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A two-step sensitivity analysis approach is described by Francos et al. (2003), which 

consists of: (1) a "Morris" screening procedure that is based on the one factor at a time 

(OAT) design, and (2) the use of a Fourier amplitude sensitivity test (FAST) method. The 

screening procedure is used to determine the qualitative ranking of an entire input parameter 

set for different model outputs at low computational cost, while the FAST method provides 

an assessment of the most relevant input parameters for a specific set of model output. The 

approach is demonstrated with SWAT for the 3,500 km2 Ouse watershed in the U.K. using 

82 input and 22 output parameters. Holvoet et al. (2005) present the use of a Latin hypercube 

(LH) OAT sampling method, in which initial LH samples serve as the points for the OAT 

design. The method was used for determining which of 27 SWAT hydrologic-related input 

parameters were the most sensitive regarding streamflow and atrazine outputs for 32 km2 Nil 

watershed in central Belgium. The LH-OAT method was also used by van Griensven et al. 

(2006) for an assessment of the sensitivity of 41 input parameters on SWAT flow, sediment, 

total N, and total P estimates for both the UNBRW and the 3,240 km2 Sandusky River 

watershed in Ohio. The results show that some parameters, such as the curve number (CN2), 

were important in both watersheds, but that there were distinct differences in the influences 

of other parameters between the two watersheds. The LH-OAT method has been 

incorporated as part of the automatic sensitivity/calibration package included in SWAT2005. 

 
Calibration Approaches 

The manual calibration approach requires the user to compare measured and 

simulated values, and then to use expert judgment to determine which variables to adjust, 

how much to adjust them, and ultimately assess when reasonable results have been obtained. 
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Coffey et al. (2004) present nearly 20 different statistical tests that can be used for evaluating 

SWAT streamflow output during a manual calibration process. They recommended using the 

NSE and R2 coefficients for analyzing monthly output and median objective functions, sign 

test, autocorrelation, and cross-correlation for assessing daily output, based on comparisons 

of SWAT streamflow results with measured streamflows (Table 2) for the same watershed 

studied by Spruill et al. (2000). Cao et al. (2006) present a flowchart of their manual 

calibration approach that was used to calibrate SWAT based on five hydrologic outputs and 

multiple gauge sites within the 2075 km2 Motueka River basin on the South Island of New 

Zealand. The calibration and validation results were stronger for the overall basin as 

compared to results obtained for six subwatersheds (Table 2). Santhi et al. (2001a) 

successfully calibrated and validated SWAT for streamflow and pollutant loss simulations 

(Tables 2 and 3) for the 4,277 km2 Bosque River in Texas. They present a general procedure, 

including a flowchart, for manual calibration that identifies sensitive input parameters (15 

were used), realistic uncertainty ranges, and reasonable regression results (i.e., satisfactory R2 

and NSE values). A combined sensitivity and calibration approach is described by White and 

Chaubey (2005) for SWAT streamflow and pollutant loss estimates (Tables 2 and 3) for the 

3,100 km2 Bear Reservoir watershed, and three subwatersheds, in northwest Arkansas. They 

also review calibration approaches, including calibrated input parameters, for previous 

SWAT studies. 

Automated techniques involve the use of Monte Carlo or other parameter estimation 

schemes that determine automatically what the best choice of values are for a suite of 

parameters, usually on the basis of a large set of simulations, for a calibration process. 

Govender and Everson (2005) used the automatic Parameter Estimation (PEST) program 
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(Doherty, 2004) and identified soil moisture variables, initial groundwater variables, and 

runoff curve numbers to be some of the sensitive parameters in SWAT applications for two 

small South African watersheds. They also report that manual calibration resulted in more 

accurate predictions than the PEST approach (Table 2). Wang and Melesse (2005) also used 

PEST to perform an automatic SWAT calibration of three snowmelt-related and eight 

hydrologic-related parameters for the 4,335 km2 Wild Rice River watershed in northwest 

Minnesota, which included daily and monthly statistical evaluation (Table 2). 

Applications of an automatic shuffled complex evolution (SCE) optimization scheme 

are described by van Griensven and Bauwens (2003, 2005) for ESWAT simulations, 

primarily for the Dender River in Belgium. Calibration parameters and ranges along with 

measured daily flow and pollutant data are input for each application. The automated 

calibration scheme executes up to several thousand model runs to find the optimum input 

data set. Similar automatic calibration studies were performed with a SCE algorithm and 

SWAT-G by Eckhardt and Arnold (2001) and Eckhardt et al. (2005) for watersheds in 

Germany. Di Luzio and Arnold (2004) described the background, formulation and results 

(Table 2) of an hourly SCE input-output calibration approach used for a SWAT application 

in Oklahoma. Van Liew et al. (2005) describe an initial test of the SCE automatic approach 

that has been incorporated into SWAT2005, for streamflow predictions for the Little River 

watershed in Georgia and the Little Washita River watershed in Oklahoma. Van Liew et al. 

(2007) further evaluated the SCE algorithm for five watersheds with widely varying climatic 

characteristics (Table 2), including the same two in Georgia and Oklahoma and three others 

located in Arizona, Idaho, and Pennsylvania. 
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Uncertainty Analyses 

Shirmohammadi et al. (2006) state that Monte Carlo simulation and first-order error 

or approximation (FOE or FOA) analyses are the two most common approaches for 

performing uncertainty analyses, and that other methods have been used, including the mean 

value first-order reliability method, LH simulation with constrained Monte Carlo simulations, 

and generalized likelihood uncertainty estimation (GLUE). They present three case studies of 

uncertainty analyses using SWAT, which were based on the Monte Carlo, LH-Monte Carlo, 

and GLUE approaches, respectively, within the context of TMDL assessments. They report 

that uncertainty is a major issue for TMDL assessments, and that it should be taken into 

account during both the TMDL assessment and implementation phases. They also make 

recommendations to improve the quantification of uncertainty in the TMDL process. 

Benaman and Shoemaker (2004) developed a six-step method that includes using 

Monte Carlo runs and an interval-spaced sensitivity approach to reduce uncertain parameter 

ranges. After parameter range reduction, their method reduced the model output range by an 

order of magnitude, resulting in reduced uncertainty and the amount of calibration required 

for SWAT. However, significant uncertainty remained with the SWAT sediment routine. Lin 

and Radcliffe (2006) performed an initial two-stage automatic calibration streamflow 

prediction process with SWAT for the 1,580 km2 Etowah River watershed in Georgia in 

which an SCE algorithm was used for automatic calibration of lumped SWAT input 

parameters, followed by calibration of heterogeneous inputs with a variant of the Marquardt-

Levenberg method in which "regularization" was used to prevent parameters taking on 

unrealistic values. They then performed a nonlinear calibration and uncertainty analysis using 

PEST, in which confidence intervals were generated for annual and 7-day streamflow 
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estimates. Their resulting calibrated statistics are shown in Table 2. Muleta and Nicklow 

(2005b) describe a study for the Big Creek watershed that involved three phases: (1) 

parameter sensitivity analysis for 35 input parameters, in which LH samples were used to 

reduce the number of Monte Carlo simulations needed to conduct the analysis; (2) automatic 

calibration using a genetic algorithm, which systematically determined the best set of input 

parameters using a sum of the square of differences criterion; and (3) a Monte Carlo-based 

GLUE approach for the uncertainty analysis, in which LH sampling is again used to generate 

input samples and reduce the computation requirements. Uncertainty bounds corresponding 

to the 95% confidence limit are reported for both streamflow and sediment loss, as well as 

final calibrated statistics (Tables 2 and 3). Arabi et al. (2007b) used a three-step procedure 

that included OAT and interval-spaced sensitivity analyses, and a GLUE analysis to assess 

uncertainty of SWAT water quality predictions of BMP placement in the Dreisbach and 

Smith Fry watersheds in Indiana. Their results point to the need for site-specific calibration 

of some SWAT inputs, and that BMP effectiveness could be evaluated with enough 

confidence to justify using the model for TMDL and similar assessments. 

Additional uncertainty analysis insights are provided by Vanderberghe et al. (2007) 

for an ESWAT-based study and by Huisman et al. (2004) and Eckhardt et al. (2003), who 

assessed the uncertainty of soil and/or land use parameter variations on SWAT-G output 

using Monte Carlo-based approaches. Van Greinsven and Meixner (2006) describe several 

uncertainty analysis tools that have been incorporated into SWAT2005, including a modified 

SCE algorithm called "parameter solutions" (ParaSol), the Sources of Uncertainty Global 

Assessment using Split Samples (SUNGLASSES), and the Confidence Analysis of Physical 
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Inputs (CANOPI), which evaluates uncertainty associated with climatic data and other 

inputs. 

 
Effects of HRU and Subwatershed Delineation and Other Inputs on SWAT Output 

Several studies have been performed that analyzed impacts on SWAT output as a 

function of: (1) variation in HRU and/or subwatershed delineations, (2) different resolutions 

in topographic, soil, and/or land use data, (3) effects of spatial and temporal transfers of 

inputs, (4) actual and/or hypothetical shifts in land use, and (5) variations in precipitation 

inputs or ET estimates. These studies serve as further SWAT sensitivity analyses and provide 

insight into how the model responds to variations in key inputs. 

 
HRU and Subwatershed Delineation Effects 

Bingner et al. (1997), Manguerra and Engel (1998), FitzHugh and Mackay (2000), 

Jha et al. (2004a), Chen and Mackay (2004), Tripathi et al. (2006), and Muleta et al. (2007) 

found that SWAT streamflow predictions were generally insensitive to variations in HRU 

and/or subwatershed delineations for watersheds ranging in size from 21.3 to 17,941 km2. 

Tripathi et al. (2006) and Muleta et al. (2007) further discuss HRU and subwatershed 

delineation impacts on other hydrologic components. Haverkamp et al. (2002) report that 

streamflow accuracy was much greater when using multiple HRUs to characterize each 

subwatershed, as opposed to using just a single dominant soil type and land use within a 

subwatershed, for two watersheds in Germany and one in Texas. However, the gap in 

accuracy between the two approaches decreased with increasing numbers of subwatersheds. 

Bingner et al. (1997) report that the number of simulated subwatersheds affected 

predicted sediment yield and suggest that sensitivity analyses should be performed to 
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determine the appropriate level of subwatersheds. Jha et al. (2004a) found that SWAT 

sediment and nitrate predictions were sensitive to variations in both HRUs and 

subwatersheds, but mineral P estimates were not. The effects of BMPS on SWAT sediment, 

total P, and total N estimates was also found by Arabi et al. (2006b) to be very sensitive to 

watershed subdivision level. Jha et al. (2004a) suggest setting subwatershed areas ranging 

from 2% to 5% of the overall watershed area, depending on the output indicator of interest, to 

ensure accuracy of estimates. Arabi et al. (2006b) found that an average subwatershed equal 

to about 4% of the overall watershed area was required to accurately account for the impacts 

of BMPs in the model. 

FitzHugh and Mackay (2000, 2001) and Chen and Mackay (2004) found that 

sediment losses predicted with SWAT did not vary at the outlet of the 47.3 km2 Pheasant 

Branch watershed in south central Wisconsin as a function of increasing numbers of HRUs 

and subwatersheds due to the transport-limited nature of the watershed. However, sediment 

generation at the HRU level dropped 44% from the coarsest to the finest resolutions 

(FitzHugh and Mackay, 2000), and sediment yields varied at the watershed outlet for 

hypothetical source-limited versus transport-limited scenarios (FitzHugh and Mackay, 2001) 

in response to eight different HRU/subwatershed combinations used in both studies. Chen 

and Mackay (2004) further found that SWAT's structure influences sediment predictions in 

tandem with spatial data aggregation effects. They suggest that errors in MUSLE sediment 

estimates can be avoided by using only subwatersheds, instead of using HRUs, within 

subwatersheds. 

In contrast, Muleta et al. (2007) found that sediment generated at the HRU level and 

exported from the outlet of the 133 km2 Big Creek watershed in Illinois decreased with 
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increasing spatial coarseness, and that sediment yield varied significantly at the watershed 

outlet across a range of HRU and subwatershed delineations, even when the channel 

properties remained virtually constant. 

 
DEM, Soil, and Land Use Resolution Effects 

Bosch et al. (2004) found that SWAT streamflow estimates for a 22.1 km2 

subwatershed of the Little River watershed in Georgia were more accurate using high-

resolution topographic, land use, and soil data versus low-resolution data obtained from 

BASINS. Cotter et al. (2003) report that Digital Elevation Model (DEM) resolution was the 

most critical input for a SWAT simulation of the 18.9 km2 Moores Creek watershed in 

Arkansas, and provide minimum DEM, land use, and soil resolution recommendations to 

obtain accurate flow, sediment, nitrate, and total P estimates. Di Luzio et al. (2005) also 

found that DEM resolution was the most critical for SWAT simulations of the 21.3 km2 

Goodwin Creek watershed in Mississippi; land use resolution effects were also significant, 

but the resolution of soil inputs was not. Chaplot (2005) found that SWAT surface runoff 

estimates were sensitive to DEM mesh size, and that nitrate and sediment predictions were 

sensitive to both the choice of DEM and soil map resolution, for the Walnut Creek watershed 

in central Iowa. The most accurate results did not occur for the finest DEM mesh sizes, 

contrary to expectations. Di Luzio et al. (2004b) and Wang and Melesse (2006) present 

additional results describing the impacts of STATSGO versus SSURGO soil data inputs on 

SWAT output. 
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Effects of Different Spatial and Temporal Transfers of Inputs 

Heuvelmans et al. (2004a) evaluated the effects of transferring seven calibrated 

SWAT hydrologic input parameters, which were selected on the basis of a sensitivity 

analysis, in both time and space for three watersheds ranging in size from 51 to 204 km2 in 

northern Belgium. Spatial transfers resulted in the greatest loss of streamflow efficiency, 

especially between watersheds. Heuvelmans et al. (2004b) further evaluated the effect of four 

parameterization schemes on SWAT streamflow predictions, for the same set of seven 

hydrologic inputs, for 25 watersheds that covered 2.2 to 210 km2 within the 20,000 km2 

Scheldt River basin in northern Belgium. The highest model efficiencies were achieved when 

optimal parameters for each individual watershed were used; optimal parameters selected on 

the basis of regional zones with similar characteristics proved superior to parameters that 

were averaged across all 25 watersheds. 

 
Historical and Hypothetical Land Use Effects 

Miller et al. (2002) describe simulated streamflow impacts with SWAT in response to 

historical land use shifts in the 3,150 km2 San Pedro watershed in southern Arizona and the 

Cannonsville watershed in south central New York. Streamflows were predicted to increase 

in the San Pedro watershed due to increased urban and agricultural land use, while a shift 

from agricultural to forest land use was predicted to result in a 4% streamflow decrease in the 

Cannonsville watershed. Hernandez et al. (2000) further found that SWAT could accurately 

predict the relative impacts of hypothetical land use change in an 8.2 km2 experimental 

subwatershed within the San Pedro watershed. Heuvelmans et al. (2005) report that SWAT 

produced reasonable streamflow and erosion estimates for hypothetical land use shifts, which 
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were performed as part of a life cycle assessment (LCA) of CO2 emission reduction scenarios 

for the 29.2 km2 Meerdaal watershed and the 12.1 km2 Latem watersheds in northern 

Belgium. However, they state that an expansion of the SWAT vegetation parameter dataset is 

needed in order to fully support LCA analyses. Increased streamflow was predicted with 

SWAT for the 59.8 km2 Aar watershed in the German state of Hessen, in response to a 

grassland incentive scenario in which the grassland area increased from 20% to 41% while 

the extent forest coverage decreased by about 70% (Weber et al., 2001). The impacts of 

hypothetical forest and other land use changes on total runoff using SWAT are presented by 

Lorz et al. (2007), in the context of comparisons with three other models. The impacts of 

other hypothetical land use studies for various German watersheds have been reported on 

hydrologic impacts with SWAT-G (e.g., Fohrer et al., 2002, 2005) and SWIM (Krysanova et 

al., 2005) and on nutrient and sediment loss predictions with SWAT-G (Lenhart et al., 2003).  

 
Climate Data Effects 

Chaplot et al. (2005) analyzed the effects of rain gauge distribution on SWAT output 

by simulating the impacts of climatic inputs for a range of 1 to 15 rain gauges in both the 

Walnut Creek watershed in central Iowa and the upper North Bosque River watershed in 

Texas. Sediment predictions improved significantly when the densest rain gauge networks 

were used; only slight improvements occurred for the corresponding surface runoff and 

nitrogen predictions. However, Hernandez et al. (2000) found that increasing the number of 

simulated rain gauges from 1 to 10 resulted in clear estimated streamflow improvements 

(Table 2). Moon et al. (2004) found that SWAT's streamflow estimates improved when Next-

Generation Weather Radar (NEXRAD) precipitation input was used instead of rain gauge 

 



 88

inputs (Table 2). Kalin and Hantush (2006) report that NEXRAD and rain gauge inputs 

resulted in similar streamflow estimates at the outlet of the Pocono Creek watershed in 

Pennsylvania (Table 2), and that NEXRAD data appear to be a promising source of 

alternative precipitation data. A weather generator developed by Schuol and Abbaspour 

(2007) that uses climatic data available at 0.5° intervals was found to result in better 

streamflow estimates than rain gauge data for a region covering about 4 million km2 in 

western Africa that includes the Niger, Volta, and Senegal river basins. Sensitivity of 

precipitation inputs on SWAT hydrologic output are reported for comparisons of different 

weather generators by Harmel et al. (2000) and Watson et al. (2005). The effects of different 

ET options available in SWAT on streamflow estimates are further described by Wang et al. 

(2006) and Kannan et al. (2007b). 

 
Comparisons of SWAT with Other Models 

Borah and Bera (2003, 2004) compared SWAT with several other watershed-scale 

models. In the 2003 study, they report that the Dynamic Watershed Simulation Model 

(DWSM) (Borah et al., 2004), Hydrologic Simulation Program - Fortran (HSPF) model 

(Bicknell et al., 1997), SWAT, and other models have hydrology, sediment, and chemical 

routines applicable to watershed-scale catchments and concluded that SWAT is a promising 

model for continuous simulations in predominantly agricultural watersheds. In the 2004 

study, they found that SWAT and HSPF could predict yearly flow volumes and pollutant 

losses, were adequate for monthly predictions except for months having extreme storm 

events and hydrologic conditions, and were poor in simulating daily extreme flow events. In 

contrast, DWSM reasonably predicted distributed flow hydrographs and concentration or 
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discharge graphs of sediment and chemicals at small time intervals. Shepherd et al. (1999) 

evaluated 14 models and found SWAT to be the most suitable for estimating phosphorus loss 

from a lowland watershed in the U.K. 

Van Liew et al. (2003a) compared the streamflow predictions of SWAT and HSPF on 

eight nested agricultural watersheds within the Little Washita River basin in southwestern 

Oklahoma. They concluded that SWAT was more consistent than HSPF in estimating 

streamflow for different climatic conditions and may thus be better suited for investigating 

the long-term impacts of climate variability on surface water resources. Saleh and Du (2004) 

found that the average daily flow, sediment loads, and nutrient loads simulated by SWAT 

were closer than HSPF to measured values collected at five sites during both the calibration 

and verification periods for the upper North Bosque River watershed in Texas. Singh et al. 

(2005) found that SWAT flow predictions were slightly better than corresponding HSPF 

estimates for the 5,568 km2 Iroquois River watershed in eastern Illinois and western Indiana, 

primarily due to better simulation of low flows by SWAT. Nasr et al. (2007) found that 

HSPF predicted mean daily discharge most accurately, while SWAT simulated daily total 

phosphorus loads the best, in a comparison of three models for three Irish watersheds that 

ranged in size from 15 to 96 km2. El-Nasr et al. (2005) found that both SWAT and the 

MIKE-SHE model (Refsgaard and Storm, 1995) simulated the hydrology of Belgium's Jeker 

River basin in an acceptable way. However, MIKE-SHE predicted the overall variation of 

river flow slightly better. 

Srinivasan et al. (2005) found that SWAT estimated flow more accurately than the 

Soil Moisture Distribution and Routing (SMDR) model (Cornell, 2003) for 39.5 ha FD-36 

experimental watershed in east central Pennsylvania, and that SWAT was also more accurate 
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on a seasonal basis. SWAT estimates were also found to be similar to measured dissolved 

and total P for the same watershed, and 73% of the 22 fields in the watershed were 

categorized similarly on the basis of the SWAT analysis as compared to the Pennsylvania P 

index (Veith et al., 2005). Grizzetti et al. (2005) reported that both SWAT and a statistical 

approach based on the SPARROW model (Smith et al., 1997) resulted in similar total 

oxidized nitrogen loads for two monitoring sites within the 1,380 km2 Great Ouse watershed 

in the U.K. They also state that the statistical reliability of the two approaches was similar, 

and that the statistical model should be viewed primarily as a screening tool while SWAT is 

more useful for scenarios. Srivastava et al. (2006) found that an artificial neural network 

(ANN) model was more accurate than SWAT for streamflow simulations of a small 

watershed in southeast Pennsylvania.  

 
Interfaces of SWAT with Other Models 

Innovative applications have been performed by interfacing SWAT with other 

environmental and/or economic models. These interfaces have expanded the range of 

scenarios that can be analyzed and allowed for more in-depth assessments of questions that 

cannot be considered with SWAT by itself, such as groundwater withdrawal impacts or the 

costs incurred from different choices of management practices. 

 
SWAT with MODFLOW and/or Surface Water Models 

Sophocleus et al. (1999) describe an interface between SWAT and the MODFLOW 

groundwater model (McDonald and Harbaugh, 1988) called SWATMOD, which they used to 

evaluate water rights and withdrawal rate management scenarios on stream and aquifer 

responses for the Rattlesnake Creek watershed in south central Kansas. The system was used 
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by Sophocleus and Perkins (2000) to investigate irrigation effects on streamflow and 

groundwater levels in the lower Republican River watershed in north central Kansas and on 

streamflow and groundwater declines within the Rattlesnake Creek watershed. Perkins and 

Sophocleous (1999) describe drought impact analyses with the same system. SWAT was 

coupled with MODFLOW to study for the 12 km2 Coët-Dan watershed in Brittany, France 

(Conan et al., 2003a). Accurate results were reported, with respective monthly NSE values 

for streamflow and nitrate of 0.88 and 0.87. 

Menking et al. (2003) interfaced SWAT with both MODFLOW and the MODFLOW 

LAK2 lake modeling package to assess how current climate conditions would impact water 

levels in ancient Lake Estancia (central New Mexico), which existed during the late 

Pleistocene era. The results indicated that current net inflow from the 5,000 km2 drainage 

basin would have to increase by about a factor of 15 to maintain typical Late Pleistocene lake 

levels. Additional analyses of Lake Estancia were performed by Menking et al. (2004) for the 

Last Glacial Maximum period. SWAT was interfaced with a 3-D lagoon model by Plus et al. 

(2006) to determine nitrogen loads from a 280 km2 drainage area into the Thau Lagoon, 

which lies along the south coast of France. The main annual nitrogen load was estimated with 

SWAT to be 117 t year-1; chlorophyll a concentrations, phytoplankton production, and 

related analyses were performed with the lagoon model. Galbiati et al. (2006) interfaced 

SWAT with QUAL2E, MODFLOW, and another model to create the Integrated Surface and 

Subsurface model (ISSm). They found that the system accurately predicted water and 

nutrient interactions between the stream system and aquifer, groundwater dynamics, and 

surface water and nutrient fluxes at the watershed outlet for the 20 km2 Bonello coastal 

watershed in northern Italy. 
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SWAT with Environmental Models or Genetic Algorithms for BMP Analyses 

Renschler and Lee (2005) linked SWAT with the Water Erosion Prediction Project 

(WEPP) model (Ascough et al., 1997) to evaluate both short- and long-term assessments, for 

pre- and post-implementation, of grassed waterways and field borders for three experimental 

watersheds ranging in size from 0.66 to 5.11 ha. SWAT was linked directly to the Geospatial 

Interface for WEPP (GeoWEPP), which facilitated injection of WEPP output as point 

sources into SWAT. The long-term assessment results were similar to SWAT-only 

evaluations, but the short-term results were not. Cerucci and Conrad (2003) determined the 

optimal riparian buffer configurations for 31 subwatersheds in the 37 km2 Town Brook 

watershed in south central New York, by using a binary optimization approach and 

interfacing SWAT with the Riparian Ecosystem Model (REMM) (Lowrance et al., 2000). 

They determined the marginal utility of buffer widths and the most affordable parcels in 

which to establish riparian buffers. Pohlert et al. (2006) describe SWAT-N, which was 

created by extending the original SWAT2000 nitrogen cycling routine primarily with 

algorithms from the Denitrification-Decomposition (DNDC) model (Li et al., 1992). They 

state that SWAT-N was able to replicate nitrogen cycling and loss processes more accurately 

than SWAT. 

Muleta and Nicklow (2005a) interfaced SWAT with a genetic algorithm and a 

multiobjective evolutionary algorithm to perform both single and multiobjective evaluations 

for the 130 km2 Big Creek watershed in southern Illinois. They found that conversion of 10% 

of the HRUs into conservation programs (cropping system/tillage practice BMPs), within a 

maximum of 50 genetic algorithm generations, would result in reduced sediment yield of 

19%. Gitau et al. (2004) interfaced baseline P estimates from SWAT with a genetic algorithm 
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and a BMP tool containing site-specific BMP effectiveness estimates to determine the 

optimal on-farm placement of BMPs so that P losses and costs were both minimized. The 

two most efficient scenarios met the target of reducing dissolved P loss by at least 60%, with 

corresponding farm-level cost increases of $1,430 and $1,683, respectively, relative to the 

baseline. SWAT was interfaced with an economic model, a BMP tool, and a genetic 

algorithm by Arabi et al. (2006a) to determine optimal placement for the Dreisbach and 

Smith Fry watersheds in Indiana. The optimization approach was found to be three times 

more cost-effective as compared to environmental targeting strategies. 

 
SWAT with Economic and/or Environmental Models 

A farm economic model was interfaced with the Agricultural Policy Extender 

(APEX) model (Williams and Izaurralde, 2006) and SWAT to simulated the economic and 

environmental impacts of manure management scenarios and other BMPs for the 932.5 km2 

upper North Bosque River and 1,279 km2 Lake Fork Reservoir watersheds in Texas and the 

162.2 km2 upper Maquoketa River watershed in Iowa (Gassman et al., 2002). The economic 

and environmental impacts of several manure application rate scenarios are described for 

each watershed, as well as for manure haul-off, intensive rotational grazing, and reduced 

fertilizer scenarios that were simulated for the upper North Bosque River watershed, Lake 

Fork Reservoir watershed, and upper Maquoketa River watershed, respectively. Osei et al. 

(2003) report additional stocking density scenario results for pasture-based dairy productions 

in the Lake Fork Reservoir watershed. They concluded that appropriate pasture nutrient 

management, including stocking density adjustments and more efficient application of 

commercial fertilizer, could lead to significant reductions in nutrient losses in the Lake Fork 

 



 94

Reservoir watershed. Gassman et al. (2006) further assessed the impacts of seven individual 

BMPs and four BMP combinations for upper Maquoketa River watershed. Terraces were 

predicted to be very effective in reducing sediment and organic nutrient losses but were also 

the most expensive practice, while no-till or contouring in combination with reduced 

fertilizer rates were predicted to result in reductions of all pollutant indictors and also 

positive net returns. 

Lemberg et al. (2002) evaluated the economic impacts of brush control in the Frio 

River basin in south central Texas using SWAT, the Phytomass Growth Simulator 

(PHYGROW) model (Rowan, 1995), and two economic models. It was determined that 

subsidies on brush control would not be worthwhile. Economic evaluations of riparian buffer 

benefits in regards to reducing atrazine concentration and other factors were performed by 

Qiu and Prato (1998) using SWAT, a budget generator, and an economic model for the 77.4 

km2 Goodwater Creek watershed in north central Missouri (riparian buffers were not directly 

simulated). The implementation of riparian buffers was found to result in substantial net 

economic return and savings in government costs, due to reduced CRP rental payments. Qiu 

(2005) used a similar approach for the same watershed to evaluate the economic and 

environmental impacts of five different alternative scenarios. SWAT was interfaced with a 

data envelope analysis linear programming model by Whittaker et al. (2003) to determine 

which of two policies would be most effective in reducing N losses to streams in the 259,000 

km2 Columbia Plateau region in the northwest U.S. The analysis indicated that a 300% tax on 

N fertilizer would be more efficient than a mandated 25% reduction in N use. Evaluation of 

different policies were demonstrated by Attwood et al. (2000) by showing economic and 

environmental impacts at the U.S. national scale and for Texas by linking SWAT with an 
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agricultural sector model. Volk et al. (2007) and Turpin et al. (2005) describe respective 

modeling systems that include interfaces between SWAT, an economic model, and other 

models and data to simulate different watershed scales and conditions in European 

watersheds. 

 
SWAT with Ecological and Other Models 

Weber et al. (2001) interfaced SWAT with the ecological model ELLA and the 

Proland economic model to investigate the streamflow and habitat impacts of a "grassland 

incentive scenario" that resulted in grassland area increasing from 21% to 40%, and forest 

area declining by almost 70%, within the 59.8 km2 Aar watershed in Germany. SWAT-

predicted streamflow increased while Skylark bird habitat decreased in response to the 

scenario. Fohrer et al. (2002) used SWAT-G, the YELL ecological model, and the Proland to 

assess the effects of land use changes and associated hydrologic impacts on habitat suitability 

for the Yellowhammer bird species. The authors report effects of four average field size 

scenarios (0.5, 0.75, 1.0, and 2.0 ha) on land use, bird nest distribution and habitat, labor and 

agricultural value, and hydrological response. SWAT is also being used to simulate crop 

growth, hydrologic balance, soil erosion, and other environmental responses by Christiansen 

and Altaweel (2006) within the ENKIMDU modeling framework (named after the ancient 

Sumerian god of agriculture and irrigation), which is being used to study the natural and 

societal aspects of Bronze Age Mesopotamian cultures. 
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SWAT Strengths, Weaknesses, and Research Needs 

The worldwide application of SWAT reveals that it is a versatile model that can be 

used to integrate multiple environmental processes, which support more effective watershed 

management and the development of better-informed policy decisions. The model will 

continue to evolve as users determine needed improvements that: (1) will enable more 

accurate simulation of currently supported processes, (2) incorporate advancements in 

scientific knowledge, or (3) provide new functionality that will expand the SWAT simulation 

domain. This process is aided by the open-source status of the SWAT code and ongoing 

encouragement of collaborating scientists to pursue needed model development, as 

demonstrated by a forthcoming set of papers in Hydrological Sciences Journal describing 

various SWAT research needs that were identified at the 2006 Model Developer's Workshop 

held in Potsdam, Germany. The model has also been included in the Collaborative Software 

Development Laboratory that facilitates development by multiple scientists (CoLab, 2006). 

The foundational strength of SWAT is the combination of upland and channel 

processes that are incorporated into one simulation package. However, every one of these 

processes is a simplification of reality and thus subject to the need for improvement. To some 

degree, the strengths that facilitate widespread use of SWAT also represent weaknesses that 

need further refinement, such as simplified representations of HRUs. There are also problems 

in depicting some processes accurately due to a lack of sufficient monitoring data, inadequate 

data needed to characterize input parameters, or insufficient scientific understanding. The 

strengths and weaknesses of five components are discussed here in more detail, including 

possible courses of action for improving current routines in the model. The discussion is 

framed to some degree from the perspective of emerging applications, e.g., bacteria die-off 
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and transport. Additional research needs are also briefly listed for other components, again in 

the context of emerging application trends where applicable. 

 
Hydrologic Interface 

The use of the NRCS curve number method in SWAT has provided a relatively easy 

way of adapting the model to a wide variety of hydrologic conditions. The technique has 

proved successful for many applications, as evidenced by the results reported in this study. 

However, the embrace of the method in SWAT and similar models has proved controversial 

due to the empirical nature of the approach, lack of complete historical documentation, poor 

results obtained for some conditions, inadequate representation of "critical source areas" that 

generate pollutant loss (which can occur even after satisfactory hydrologic calibration of the 

model), and other factors (e.g., Ponce and Hawkins, 1996; Agnew et al., 2006; Bryant et al., 

2006; Garen and Moore, 2005). 

The Green-Ampt method provides an alternative option in SWAT, which was found 

by Rawls and Brakenseik (1986) to be more accurate than the curve number method and also 

to account for the effects of management practices on soil properties in a more rational 

manner. However, the previously discussed King et al. (1999) and Kannan et al. (2007b) 

SWAT applications did not find any advantage to using the Green-Ampt approach, as 

compared to the curve number method. These results lend support to the viewpoint expressed 

by Ponce and Hawkins (1996) that alternative point infiltration techniques, including the 

Green-Ampt method, have not shown a clear superiority to the curve number method. 

Improved SWAT hydrologic predictions could potentially be obtained through 

modifications in the curve number methodology and/or incorporation of more complex 
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routines. Borah et al. (2007) inserted a combined curve number-kinematic wave 

methodology used in DWSM into SWAT, which was found to result in improved simulation 

of daily runoff volumes for the 8,400 km2 Little Wabash River watershed in Illinois. Bryant 

et al. (2006) propose modifications of the curve number initial abstraction term, as a function 

of soil physical characteristics and management practices, that could result in more accurate 

simulation of extreme (low and high) runoff events. Model and/or data input modifications 

would be needed to address phenomena such as variable source area (VSA) saturated excess 

runoff, which dominants runoff in some regions including the northeast U.S., where 

downslope VSA saturated discharge often occurs due to subsurface interflow over relatively 

impermeable material (Agnew et al., 2006; Walter et al., 2000). Steenhuis (2007) has 

developed a method of reclassifying soil types and associated curve numbers that provides a 

more accurate accounting of VSA-driven runoff and pollutant loss for a small watershed in 

New York. The modified SWAT model described by Watson et al. (2005) may also provide 

useful insights, as it accounts for VSA-dominated hydrology in southwest Victoria, Australia, 

by incorporating a saturated excess runoff routine in SWAT. 

 
Hydrologic Response Units (HRUs) 

The incorporation of nonspatial HRUs in SWAT has supported adaptation of the 

model to virtually any watershed, ranging in size from field plots to entire river basins. The 

fact that the HRUs are not landscape dependent has kept the model simple while allowing 

soil and land use heterogeneity to be accounted for within each subwatershed. At the same 

time, the nonspatial aspect of the HRUs is a key weakness of the model. This approach 

ignores flow and pollutant routing within a subwatershed, thus treating the impact of 
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pollutant losses identically from all landscape positions within a subwatershed. Thus, 

potential pollutant attenuation between the source area and a stream is also ignored, as 

discussed by Bryant et al. (2006) for phosphorus movement. Explicit spatial representation of 

riparian buffer zones, wetlands, and other BMPs is also not possible with the current SWAT 

HRU approach, as well as the ability to account for targeted placement of grassland or other 

land use within a given subwatershed. Incorporation of greater spatial detail into SWAT is 

being explored with the initial focus on developing routing capabilities between distinct 

spatially defined landscapes (Volk et al., 2005), which could be further subdivided into 

HRUs. 

 
Simulation of BMPs 

A key strength of SWAT is a flexible framework that allows the simulation of a wide 

variety of conservation practices and other BMPs, such as fertilizer and manure application 

rate and timing, cover crops (perennial grasses), filter strips, conservation tillage, irrigation 

management, flood-prevention structures, grassed waterways, and wetlands. The majority of 

conservation practices can be simulated in SWAT with straightforward parameter changes. 

Arabi et al. (2007a) have proposed standardized approaches for simulating specific 

conservation practices in the model, including adjustment of the parameters listed in Table 4. 

Filter strips and field borders can be simulated at the HRU level, based on empirical 

functions that account for filter strip trapping effects of bacteria or sediment, nutrients, and 

pesticides (which are invoked when the filter strip width parameter is set input to the model). 

However, assessments of targeted filter strip placements within a watershed are limited, due 

to the lack of HRU spatial definition in SWAT. There are also further limitations in  
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Table 4. Proposed key parameters to adjust for accounting of different conservation practice effects in SWAT (source: Arabi et al., 
2007a). 

Conservation Practice 
Channel 
Depth 

Channel 
Width 

Channel 
Erodibility 

Factor 

Channel 
Cover 
Factor 

Channel 
Manning 

Roughness 
Coeff. 

Channel 
Slope 

Segment 

Filter 
Strip 

Widthb 

Hillside 
Slope 

Length 

Manning 
N for 

Overland 
Flow 

SCS 
Runoff 
Curve 

Number

USLE 
C 

Factor 

USLE 
P 

Factor 
Contouring          X  X 
Field border       X      
Filter strips       X      
Grade stabilization structures   X   X       
Grassed waterways X X  X X        
Lined waterways X X X  X        
Parallel terraces        X  X  X 
Residue managementa         X X X  
Stream channel stabilization X X X  X        
Strip cropping         X X X X 
aSoil incorporation of residue by tillage implements is also a key aspect of simulated residue management in SWAT.  
bSetting a filter strip width triggers one of two filter strip trapping efficiency functions (one for bacteria and the other for sediment, pesticides, and nutrients) that account 

for the effect of filter strip removal of pollutants. 
 

 

 

 

 

 

 

 



 101

simulating grassed waterways, due to the fact that channel routing is not simulated at the 

HRU level. Arabi et al. (2007a) proposed simulating grassed waterways by modifying 

subwatershed channel parameters, as shown in Table 4. However, this approach is generally 

only viable for relatively small watersheds such as the example they present in their study.  

Wetlands can be simulated in SWAT on the basis of one wetland per subwatershed, which is 

assumed to capture discharge and pollutant loads from a user-specified percentage of the 

overall subwatershed. The ability to site wetlands with more spatial accuracy within a 

subwatershed would clearly provide improvements over the current SWAT wetland 

simulation approach, although this can potentially be overcome for some applications by 

subdividing a watershed into smaller subwatersheds. The lack of spatial detail in SWAT also 

hinders simulation of riparian buffer zones and other conservation buffers, which again need 

to be spatially defined at the landscape or HRU level in order to correctly account for upslope 

pollutant source areas and the pollutant mitigation impacts of the buffers. The riparian and 

wetland processes recently incorporated into the SWIM model (Hatterman et al., 2006) may 

prove useful for improving current approaches used in SWAT. 

 
Bacteria Life Cycle and Transport 

Benham et al. (2006) state that SWAT is one of two primary models used for 

watershed-scale bacteria fate and transport assessments in the U.S. The strengths of the 

SWAT bacteria component include: (1) simultaneous assessment of fecal coliform (as an 

indicator pathogen) and a more persistent second pathogen that possesses different 

growth/die-off characteristics, (2) different rate constants that can be set for soluble versus 

sediment-bound bacteria, and (3) the ability to account for multiple point and/or nonpoint 
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bacteria sources such as land-applied livestock and poultry manure, wildlife contributions, 

and human sources such as septic tanks. Jamieson et al. (2004) further point out that SWAT 

is the only model that currently simulates partitioning of bacteria between adsorbed and non-

adsorbed fractions; however, they also state that reliable partitioning data is currently not 

available. Bacteria die-off is simulated in SWAT on the basis of a first-order kinetic function 

(Neitsch et al., 2005a), as a function of time and temperature. However, Benham et al. 

(2006), Jamieson et al. (2004), and Pachepsky et al. (2006) all cite several studies that show 

that other factors such as moisture content, pH, nutrients, and soil type can influence die-off 

rates. Leaching of bacteria is also simulated in SWAT, although all leached bacteria are 

ultimately assumed to die off. This conflicts with some actual observations in which 

pathogen movement has been observed in subsurface flow (Pachepsky et al., 2006; Benham 

et al., 2006), which is especially prevalent in tile-drained areas (Jamieson et al., 2004). 

Benham et al. (2006), Jamieson et al. (2004), and Pachepsky et al. (2006) list a number of 

research needs and modeling improvements needed to perform more accurate bacteria 

transport simulations with SWAT and other models including: (1) more accurate 

characterization of bacteria sources, (2) development of bacteria life cycle equations that 

account for different phases of die-off and the influence of multiple factors on bacteria die-

off rates, (3) accounting of subsurface flow bacteria movement including transport via tile 

drains, and (4) depiction of bacteria deposition and resuspension as function of sediment 

particles rather than just discharge. 
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In-Stream Kinetic Functions 

The ability to simulate in-stream water quality dynamics is a definite strength of 

SWAT. However, Horn et al. (2004) point out that very few SWAT-related studies discuss 

whether the QUAL2E-based in-stream kinetic functions were used or not. Santhi et al. 

(2001a) opted to not use the in-stream functions for their SWAT analysis of the Bosque 

River in central Texas because the functions do not account for periphyton (attached algae), 

which dominates phosphorus-limited systems including the Bosque River. This is a common 

limitation of most water quality models with in-stream components, which focus instead on 

just suspended algae. Migliaccio et al. (2007) performed parallel SWAT analyses of total P 

and nitrate (including nitrite) movement for the 60 km2 War Eagle Creek watershed in 

northwest Arkansas by: (1) loosely coupling SWAT with QUAL2E (with the SWAT in-

stream component turned off), and (2) executing SWAT by itself with and without the in-

stream functions activated. They found no statistical difference in the results generated 

between the SWAT-QUAL2E interface approach versus the stand-alone SWAT approach, or 

between the two stand-alone SWAT simulations. They concluded that further testing and 

refinement of the SWAT in-stream algorithms are warranted, which is similar to the views 

expressed by Horn et al. (2004). Further investigation is also needed to determine if the 

QUAL2E modifications made in ESWAT should be ported to SWAT, which are described 

by Van Griensven and Bauwens (2003, 2005). 

 

Additional Research Needs 

 Many other research needs have been identified that will also improve the ability of 

SWAT to replicate land use, management, and other effects on watershed hydrology and 
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pollutant transport. Several of the most important needs are listed here including some that 

are being actively investigated in ongoing research: 

• Development of concentrated animal feeding operation and related manure application 

routines, that support simulation of surface and integrated manure application techniques 

and their influence on nutrient fractionation, distribution in runoff and soil, and sediment 

loads. Current development is focused on a manure cover layer. 

• All aspects of stream routing need further testing and refinement, including the QUAL2E 

routines as discussed above. 

• Improved stream channel degradation and sediment deposition routines are needed to 

better describe sediment transport, and to account for nutrient loads associated with 

sediment movement, as discussed by Jha et al. (2004a). Channel sediment routing could 

be improved by accounting for sediment size effects, with separate algorithms for the 

wash and bed loads. Improved flood plain deposition algorithms are needed, and a stream 

bank erosion routine should be incorporated. 

• SWAT currently assumes that soil carbon contents are static. This approach will be 

replaced by an updated carbon cycling submodel that provides more realistic accounting 

of carbon cycling processes. 

• Improvements to the nitrogen cycling routines should be investigated based on the 

suggestions given by Borah et al. (2006). Other aspects of the nitrogen cycling process 

should also be reviewed and updated if needed, including current assumptions of plant 

nitrogen uptake. Soil phosphorus cycling improvements have been initiated and will 

continue. The ability to simulate leaching of soil phosphorus through the soil profile, and 

in lateral, groundwater, and tile flows, has recently been incorporated into the model. 
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• Expansion of the plant parameter database is needed, as pointed out by Heuvelmans et al. 

(2005), to support a greater range of vegetation scenarios that can be simulated in the 

model. In general, more extensive testing of the crop growth component is needed, 

including revisions to the crop parameters where needed. 

• Modifications have been initiated by McKeown et al. (2005) in a version of the model 

called SWAT2000-C to more accurately simulate the hydrologic balance and other 

aspects of Canadian boreal forest systems including: (1) incorporation of a surface litter 

layer into the soil profile, (2) accounting of water storage and release by wetlands, and 

(3) improved simulation of spring thaw generated runoff. These improvements will 

ultimately be grafted into SWAT2005. 

• Advancements have been made in simulating subsurface tile flows and nitrate losses (Du 

et al., 2005, 2006). Current research is focused on incorporating a second option, based 

on the DRAINMOD (Skaggs, 1982) approach, that includes the effects of tile drain 

spacing and shallow water table depth. Future research should also be focused on 

controlled drainage BMPs. 

• Routines for automated sensitivity, calibration, and input uncertainty analysis have been 

added to SWAT (van Griensven and Bauwens, 2003). These routines are currently being 

tested on several watersheds, including accounting of uncertainty encountered in 

measured water quality data, as discussed by Harmel et al. (2006). 

• The effects of atmospheric CO2 on plant growth need to be revised to account for varying 

stomatal conductance and leaf area responses as a function of plant species, similar to the 

procedure developed for SWAT-G by Eckhardt et al. (2003). 
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Conclusions 

The wide range of SWAT applications that have been described here underscores that 

the model is a very flexible and robust tool that can be used to simulate a variety of 

watershed problems. The process of configuring SWAT for a given watershed has also been 

greatly facilitated by the development of GIS-based interfaces, which provide a 

straightforward means of translating digital land use, topographic, and soil data into model 

inputs. It can be expected that additional support tools will be created in the future to 

facilitate various applications of SWAT. The ability of SWAT to replicate hydrologic and/or 

pollutant loads at a variety of spatial scales on an annual or monthly basis has been 

confirmed in numerous studies. However, the model performance has been inadequate in 

some studies, especially when comparisons of predicted output were made with time series of 

measured daily flow and/or pollutant loss data. These weaker results underscore the need for 

continued testing of the model, including more thorough uncertainty analyses, and ongoing 

improvement of model routines. Some users have addressed weaknesses in SWAT by 

component modifications, which support more accurate simulation of specific processes or 

regions, or by interfacing SWAT with other models. Both of these trends are expected to 

continue. The SWAT model will continue to evolve in response to the needs of the ever-

increasing worldwide user community and to provide improved simulation accuracy of key 

processes. A major challenge of the ongoing evolution of the model will be meeting the 

desire for additional spatial complexity while maintaining ease of model use. This goal will 

be kept in focus as the model continues to develop in the future. 
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Abstract 

A modeling framework has been constructed to support analyses of alternative 

management practice and/or cropping system scenarios for the Boone River Watershed in 

north central Iowa. The core of the system is the Soil and Water Assessment Tool (SWAT) 

model (version 2005), which is a widely used water quality model that has been applied for 

several previous Iowa water quality studies. The required input files for the baseline SWAT 

simulation are initially constructed using the standard ArcView SWAT (AVSWATX) 

interface and supporting databases, including hydrologic response units (HRUs) that reflect 

monoculture crop rotations based on a 2002 Iowa land use data layer. The monoculture crop 

rotation HRUs are subsequently converted into more realistic crop rotations for every 

Common Land Unit (CLU) in the watershed, based on survey data collected in the watershed 

during the spring of 2005. Tillage and conservation practices, nutrient applications, and soil 

type are also incorporated into the CLU-based crop rotation HRUs. These updated HRUs and 

other input files are then imported into an Access database and the interactive SWAT 

(i_SWAT) software program, which facilitates execution of the SWAT. An overview of the 

                                                 
1Assistant Scientist, Associate Scientist, Assistant Scientist, and Professor, Center for Agricultural and Rural 
Development (CARD), Department of Economics, 578 Heady Hall, Iowa State University, Ames, Iowa   
2Primary researcher and author, and author for correspondence.  
3Geological Survey, Iowa Department of Natural Resources, 109 Trowbridge Hall, Iowa City, Iowa. 
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modeling system is provided followed by an in-depth description of the land use, tillage 

practices, and conservation practices that were collected in the survey, as well as soil, 

topographic, tile drainage, climate, and other data layers that are used in the modeling 

system. Weaknesses in some of the current data layers are discussed as well as potential 

future improvements for those data layers. Limitations within SWAT and other models to 

fully utilize all of the currently available data in the modeling system is also discussed,  

including how such limitations might be overcome. Finally, the potential to port the approach 

to other watersheds in the immediate region and the greater UMRB is presented.  

 
Introduction 

 Simulation modeling has emerged globally as a key water resources and water quality 

management tool. Both point and nonpoint source water quality assessments are needed by a 

wide range of local, regional, state/provincial, and federal/national government agencies, as 

well as non-governmental organizations (NGOs) such as watershed improvement councils, 

commodity groups, and environmental organizations. Many of these analyses are required for 

agriculturally dominated watersheds or regions and can span a wide range of water use, land 

use/cropping system, alternative tillage and nutrient management strategies, climate 

sensitivity and change, and conservation practice scenarios as documented in Chapter 2 for 

worldwide applications of the Soil and Water Assessment Tool (SWAT) model.  

 A foundational aspect of the application of SWAT and other models is the accuracy 

and resolution of key land use, topographic, climate, and other input data. Only very coarse 

input data are available for some model applications, such as the application of SWAT 

described by Schuol and Abbaspour (2007) for the 4 million km2 region encompassing the 
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Senegal, Niger, and Volta river basins in the western horn of Africa. They found that using 

generated weather instead of measured precipitation and temperature data resulted in better 

simulated stream discharge, when compared with measured discharge data in the region. In 

another example, Jha et al. (2006) report using relatively coarse data provided in the Better 

Assessment Science Integrating Point and Nonpoint Sources (BASINS) package version 3.0 

(USEPA, 2001) for a climate change sensitivity assessment of the Upper Mississippi River 

Basin (URMB), which consisted of 1:250,000 scale soil data, 90 m resolution digital 

elevation model (DEM) data, and low resolution land use data (e.g., only one category for 

agricultural land use is provided that is defined as “Agricultural Generic”). They found the 

BASINS data to be sufficient for the UMRB hydrologic sensitivity analysis but pointed to the 

need for using more detailed land use data to perform future UMRB scenarios, including 

water quality scenarios assessments of alternative cropping and management systems.  

One alternative source of data for UMRB and other watershed studies is the U.S. 

Department of Agriculture (USDA) – Natural Resource Conservation Service (NRCS) 1997 

National Resource Inventory (NRI) that contains land use, conservation practice, soil type, 

and other data for over 800,000 points across the U.S. (USDA-NRCS, 2007a), and provides 

the capability to estimate crop rotations for intensive cropland areas based on cropping 

history data. The 1997 NRI has been used in several Center for Agricultural and Rural 

Development (CARD) SWAT applications including the UMRB (Gassman et al., 2006), the 

Raccoon River Watershed in west central Iowa (Jha et al., 2007), and 13 major watersheds 

covering over 80% of Iowa (Secchi et al., 2007). However, the NRI approach has serious 

limitations due to a lack of spatial resolution for watersheds smaller than the U.S. Geological 
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Survey (USGS) “8-digit watershed level”4 and the fact that it was last compiled a decade 

ago.  

Jha et al. (2007) described reallocating 1997 NRI data to 26, 10-digit watersheds 

within the two 8-digit watersheds that comprise the Raccoon River watershed, in an attempt 

to provide more detailed spatial inputs for the SWAT simulation study they conducted. 

However, this approach was found to be cumbersome and was replaced with a more 

straightforward digital land use-based approach that was used to simulate the Raccoon River 

watershed in a subsequent SWAT Total Maximum Daily Load (TMDL) nitrogen simulation 

study (Schilling and Wolter, 2007), based on a watershed subdivision scheme of 116, 12-

digit watersheds4. Improved methods of simulating livestock concentration and associated 

nutrient inputs, distribution of tile drainage, distribution of soil types and corresponding soil 

layer properties, and point source nutrient inputs to the stream system were also incorporated 

in the second Raccoon River SWAT study. 

The research described for the present study builds on the work reported by Schilling 

and Wolter by using several of the same input data methods and assumptions, but also 

incorporating new refinements that further extend the modeling capabilities currently used at 

CARD. The specific simulation framework described here has been developed for the Boone 

River watershed, which is an intensively cropped region located in north central Iowa. The 

development of the framework is described primarily in the context of supporting SWAT 

simulations for the Boone River watershed. However, a brief description is also provided 

regarding use of the modeling framework for three other environmental models. The key 

                                                 
4See Seaber et al. (1987) and USDA-NRCS (2007b) for a description of the different USGS and/or USDA-
NRCS watershed classifications (i.e., 2-, 4-, 8-, 10-, and 12-digit watersheds) and Santhi et al. (2007) for a 
comparison of NRI 8-digit watershed land use estimates with two other land use data sources for the UMRB.    
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advancement of the system is the development of a framework constructed using Common 

Land Units (CLUs), which are described by NAS (2007) and allows land use data, tillage and 

conservation practices, and soil data to be input to receiving models at a field-scale level, or 

at any desired aggregation of the field-level land parcels. Different approaches for 

incorporating crop rotations into the simulation framework are also presented, which are 

critical to account for in many agricultural scenario studies and can not be derived from 

remote sensing databases available for only a single year; e.g., see discussion provided in 

Chinnasamy et al. (2008).  

The specific objectives of this research are to present: (1) an overview of the 

modeling system including key software tools required to build the data inputs for the BRW 

SWAT simulations, (2) a description of the CLU-based data layers and other data layers 

required for the modeling system, (3) limitations within SWAT and other models to fully 

utilize all of the currently available data in the modeling system, and other limitations of the 

modeling system, and (4) the potential to port the approach to other watersheds in the 

immediate region and the greater UMRB. Weaknesses in some of the current data layers are 

also discussed as well as potential future improvements for those data layers.  

 
Description of the Boone River Watershed 

The Boone River watershed covers over 237,000 ha in six north central Iowa counties 

and is one of 131 8-digit watersheds that are located in the UMRB (Figure 1). It lies within 

the Des Moines Lobe geologic formation, which is the southern most portion of the central 

North American Prairie Pothole Region. An extensive network of subsurface tile drains and 

surface ditches have been installed throughout the watershed, resulting in the elimination of  
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Figure 1. Location of the Boone River Watershed within the UMRB, and the subwatersheds, 
climate stations, and monitoring sites used for the SWAT simulations. 

 
 
most wetland areas and an intensively cropped landscape. The watershed is dominated by 

corn and soybean production as discussed further in subsection 3.3.1.3 (Boone River 

Watershed Land Use). The watershed is also characterized by intensive livestock production, 

with a total of 128 confined animal feeding operations (CAFOs) including 109 swine 

operations that produce about 480,000 head annually (IDNR, 2007b). Land-applied manure 

from these livestock operations and commercial fertilizer applications are the primary 
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sources of nutrients to the watershed stream system. The 1997 NRI indicated that grassed 

waterways were the only structural best management practices (BMPs) in the watershed, and 

that very few acres were affected by the practice. However, a 2005 field-level survey (Kiepe, 

2005) revealed some additional structural conservation practices and extensive use of mulch 

tillage; these findings are discussed in more detail below in the context of the CLU-based 

simulation framework.  

The locations of climate stations in the region, SWAT baseline subwatershed 

boundaries, USGS flow gauge, and Iowa Department of Natural Resources (IDNR) in-stream 

pollutant monitoring site are shown in Figure 1. The pollutant sampling at the watershed 

outlet reveals elevated levels of nitrates, especially during the spring runoff season. The 

watershed was identified by Libra et al. (2004) as discharging some of the highest nitrogen 

loads during 2000-2002 among the 68 Iowa watersheds that were analyzed within their 

statewide nutrient balance study. The Boone River has also been identified within the UMRB 

as both an area of freshwater biodiversity significance and a priority area for biodiversity 

conservation by the Nature Conservancy (Weitzell et al., 2003), and the 42 km (26 mile) 

stretch of the river from Webster City to the watershed outlet has been designated by the 

Iowa Department of Natural Resources (IDNR) as a Protected Water Area (ICC, 1985; 

Wikipedia, 2007)5. The biodiversity conservation designation reflects the fact that the 

watershed has been identified as currently possessing a “relatively un-degraded stream 

ecosystem,” but that it is also very vulnerable to future increased degradation (Neugarten and 

Braun, 2005).  Potential biodiversity threats listed by Neugarten and Braun include 
                                                 
5The Protected Water Area designation and corresponding management plan was originally established in 1985 
by the Iowa Conservation Commission. The vision for the plan apparently dimmed shortly after it was written 
and thus the Protected Water Area status became dormant for roughly two decades. However, it has recently 
been revived and measurable outcomes of the designation are being pursued by IDNR staff.  
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consistently high in-stream nitrogen concentrations, farm production methods that may be 

ecologically harmful, and inadequate treatment of wastewater.  

 
Modeling System Overview 

 
Figure 2 shows a schematic of the SWAT modeling system that has been constructed 

for the BRW simulations. The system supports both SWAT versions 2000 and 2005 

(SWAT2000 and SWAT2005); SWAT2005 is the latest release of the model that features 

several enhancements as described in Chapter 2. SWAT is a conceptual, physically based 

long-term continuous watershed scale simulation model that operates on a daily time step. In 

SWAT, a watershed is divided into multiple subwatersheds, which are then usually further 

subdivided into Hydrologic Response Units (HRUs) that consist of homogeneous land use, 

management, and soil characteristics that represent percentages of the respective 

subwatershed are (i.e., they are not spatially defined within the model). Flow generation, 

sediment yield, and non-point-source loadings from each HRU in a subwatershed are 

summed, and the resulting loads are routed through channels, ponds, and/or reservoirs to the 

watershed outlet. Key components of SWAT include hydrology, plant growth, erosion, 

nutrient transport and transformation, pesticide transport and management practices. Further 

description of the model is provided in Chapter 2. 

A variety of digital data layers are available for constructing the BRW modeling 

system. Table 1 lists the digital data layers that have been investigated so far, the status of 

each data layer regarding application in the modeling system, and whether the data layer can 

be accessed in the Iowa Department of Natural Resources (IDNR) on-line library. The role of 

some of the data layers within the modeling system is briefly discussed in this modeling  
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Figure 2. Schematic of the Boone River watershed SWAT modeling system. 
 
 
system overview. The data layers are further described in subsequent sections, including 

characteristics of the data layers and key processing steps required for the modeling system. 

The modeling system is initiated by processing digital topographic, land use, climate, and 

soil data (Figure 2) within the ArcView SWAT-X (AVSWAT-X) interface (Di Luzio et al., 

2004a), which is an application built for the ArcView Geogrpahic Information System (GIS) 

package (ESRI, 2007b) and is an extension of the original AVSWAT interface (Di Luzio et 

al., 2004b) as discussed in Chapter 2. The AVSWAT-X interface is a standard interface  
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Table 1. Digital data layers available for developing the BRW modeling system  

Data Type  Data layer description (sourcea) Currently 
used? 

In IDNR 
on-line 
libraryc? 

Soil Soil Survey Geographic (SSURGO) Database (USDA-NRCS, 
2006a)   Yes Yes 

 Iowa Soil Properties and Interpretations Database (ISPAID) 
Version 7.2 (ISU, 2004) Yes Yesd 

Topographic Resampled IDNR 30 m Digital Elevation Model Yes No 

 National Elevation Data (NED) 30 m GRID of Iowa  No Yes 

 National Elevation Data (NED) 10 m GRID of Iowa No Yes 

Climate data Iowa Environmental Mesonet (ISU, 2007)      Yes No 

 NOAA Satellite and Information Service (NCDC, 2007) Yes No 

Field boundaries Common Land Units (NAS, 2007) Yes Yes 

Livestock 
operations 2005 Confined animal feeding operations (CAFOs) Yes Yes 

Drainage districts Public Drainage Districts of Iowa Nob Yes 

Point sources Waste Water treatment plants of Iowa  Nob Yes 

Land cover 2002 land cover grid of Iowa  Yes Yes 

 2005 Boone River watershed field-level survey (Kiepe, 2005) Yes No 

 2000-2006 USDA National Agricultural Statistics Service 
(NASS) Cropland Data Layer (USDA-NASS, 2007) No No 

Tillage distribution 2005 Boone River watershed field-level survey (Kiepe, 2005) Yes No 

Conservation 
Practices 2005 Boone River watershed field-level survey (Kiepe, 2005) Yes No 
aMetadata documentation is provided for each data layer included in the IDNR on-line 
library; additional sources are provided here if available.   
bDevelopment has been initiated to include these data layers into the BRW modeling system. 
cSee IDNR (2007b) for on-line library access information.  
dISPAID attribute data can be linked to Iowa Cooperative Soil Survey (ICSS) soil polygons 
available in the IDNR on-line library. 
 

provided for developing SWAT input data and is used worldwide for supporting a variety of 

SWAT applications. A SWAT interface compatible with ArcGIS (ESRI, 2007a) has recently 
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been developed (Olivera et al., 2006) which could be used for future BRW modeling system 

development and is also discussed further in Chapter 2.  

A resampled 30 m DEM layer (Table 1) was processed in AVSWAT-X to delineate 

the subwatersheds and routing configuration required for SWAT (Figure 2). These 

subwatersheds and associated routing structure are held constant across the BRW baseline 

and scenario simulations. Climate data were obtained for 1951-2006 (Table 1; Figure 2) and 

were assigned to specific subwatersheds within AVSWAT-X. The 2002 IDNR land use layer 

(Table 1) and a combination of SSURGO and ISPAID soil data6 (Table 1) were used to build 

the initial cropland and other HRUs for the modeling system; the current structure of 

AVSWAT-X cannot accept a land use layer with crop rotations, thus a static land use layer 

such as the 2002 IDNR dataset must be used. As a result, the initial cropland HRUs created 

in AVSWATX consisted only of monoculture cropping systems dominated by continuous  

corn and continuous soybean. Some editing tools are provided in AVSWATX to convert  

such monoculture HRUs into crop rotations, and to add tillage, fertilizer application, and 

other management operations as appropriate. However, these editing tools are limited and did 

not provide the desired flexibility for building the cropping system and management inputs 

for the BRW SWAT simulations. In addition, these HRUs also represent lumped areas within 

each subwatershed that do not allow model users the ability to account for other specific land 

parcel units of interest such as the CLUs used in this study.    

 

 
                                                 
6SSURGO data were not available for two of the six counties that encompass the BRW when the initial set of 
monoculture HRUs were created. Thus, ISPAID data was converted by Di Luzio (2005) into SSURGO format 
to complete the required soil input data layer. SSURGO soil data has since become available for all six counties. 
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Common Land Units (CLUs): Framework for Input Data Integration 

Recognizing these weaknesses, a method was developed to provide a more accurate 

representation of cropping systems, soil and landscape characteristics, and management at 

the CLU level. The CLU coverage is being developed by the USDA Farm Service Agency 

(FSA) for the entire U.S., which will include over 33 million farm and field boundaries when 

completed (NAS, 2007). At present, the majority of the U.S. CLU coverage has been 

completed including the entire state of Iowa (NAS, 2007). Further description of the CLU 

data is presented in Gelder et al. (2007a).  

The CLU boundaries for the Boone River watershed portion of the Iowa coverage are 

shown in Figure 3. A total of 16,434 CLUs are located within the Boone River watershed; 

this number increases to 22,372 CLUs and CLU fragments when the 30 subwatershed 

boundaries (Figure 1) are overlayed on the CLU coverage. This Boone River watershed CLU 

coverage provides a framework for building model inputs at a much more refined spatial 

scale than in previous modeling efforts. It also provides a consistent basis for lumping data to 

various levels of aggregation, depending on the needs of the specific analysis. 

External software was developed to convert the monoculture HRUs into crop rotation 

HRUs at the CLU level (Figure 2); fertilizer and manure applications, tillage practices, and 

conservation practices were also incorporated into the HRU management schemes in this 

step. The crop rotation, tillage practices, and conservation practices were all determined on 

the basis of a field-level survey performed in 2005 (Table 1). The crop rotation and 

management data were interfaced with dominant soil types determined from the SSURGO 

soil layer (Table 1) for every CLU in the watershed, resulting in a cropping system data set 

for essentially every field in the watershed.  
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Figure 3. Common Land Unit (CLU) boundaries for the Boone River watershed. 
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The HRUs for the modeling system can be based on the individual CLUs and CLU 

fragments, or on aggregations of the CLU-based data as a function of homogeneous CLU 

characteristics. Either approach represents only percentages of land use in each subwatershed 

in SWAT rather than spatially defined land parcels, due to the inability of SWAT to 

recognize spatially defined HRUs at this time. However, the CLU framework allows the 

output to be mapped back to specific spatial units if desired. And it also provides the basis for 

accommodating anticipated future developments in SWAT that will support simulation of 

more spatial detail at the subwatershed level (see Chapter 2). The CLU-based data were 

further aggregated for the Boone River simulations, resulting in a total of 2212 HRUs that 

were used for both the SWAT baseline and scenario simulations. 

The aggregated input data for each SWAT simulation were inserted into an Access 

database (Figure 2), which is used to manage the input and output data for the respective 

SWAT simulation. The SWAT simulations were managed with the interactive SWAT 

(i_SWAT) software (CARD, 2007), which translates the data in Access into the required 

input file formats, executes SWAT, and inserts output data back into the Access database 

(Figure 2). Other i_SWAT features include the option to import (and then execute) existing 

SWAT datasets, print and print preview options of management system lists, modification of 

management and other input data, charts of output by subbasins or HRUs, subbasin routing 

structure maps, and computation of average crop yields at the subwatershed or entire 

watershed levels. This approach provides increased flexibility for modifying SWAT inputs 

using Access queries and is in general a very straightforward method for managing the input 

and output data for a SWAT simulation. 
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Adaptation of the Modeling System for other Environmental Models 

 The Boone River modeling system has also been adapted for three other models used 

at CARD (Figure 4): the Environmental Policy Impact Climate (EPIC) model (Izaurralde et 

al., 2006; Williams, 1990; Gassman et al., 2005), the Agricultural Policy EXtender (APEX) 

model (Williams et al., 2006; Williams and Izaurralde, 2006), and the Century model (Parton 

et al., 1988; Kelly et al., 1997). Interactive software has been developed for each of these 

models (CARD, 2007) which are designed to support large simulations sets required for 

regional analyses. Data are input directly at the CLU level because these models operate at a 

field-scale level. Output data generated at the CLU level can be aggregated to various CLU 

aggregations, depending on the needs of the analysis. A current Boone River watershed EPIC 

application is being tested that consists of over 18,000 individual simulations that are 

simulated at the CLU level using the interactive EPIC (i_EPIC) software package.   

 

 

 
Figure 4. Schematic of the Boone River watershed modeling system for the EPIC, APEX, 

and Century models. 
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Data Layer Development and Characteristics 

 The following discussion provides in-depth descriptions of the development and 

characteristics of each of the key data layers used in the modeling system. The initial 

subsections focus on the data developed at the CLU level, including conservation practice, 

land use, nutrient applications, and soil data. The remaining subsections describe other key 

data layers that are required for the modeling system that are not currently linked directly at 

the CLU level.  

 
Field-Level Survey of Tillage Practices, Conservation Practices, and Land Use 
 

The field-level survey (BRW survey) was performed by Kiepe7 (2005) during the 

spring of 2005 for the entire Boone River watershed in order to obtain land use and 

conservation practice data at the CLU level. The key data collected in the BRW field-level 

survey included current land use, crop rotation, tillage practice, and conservation practices. 

The location of livestock operations and eroded gullies or stream banks was also recorded; 

these data are currently not used in the modeling system because: (1) other confined animal 

feeding operation (CAFO) data are available, and (2) there was not an immediate need to 

apply the eroded gulley/streambank data in SWAT. The survey was performed primarily via 

visual reconnaissance, although local USDA-NRCS and other agency experts were also 

consulted to obtain additional insights regarding practices in certain parts of the watershed. 

There are obvious weaknesses in the approach due to the subjective judgments involved, 

especially when determining crop rotations. However, this approach was the only way to 

obtain detailed field-level practice data at the current time. 

                                                 
7This work was performed by Mr. Charles Kiepe during the spring of 2005. Mr. Kiepe is a former USDA-
NRCS employee and has performed similar surveys for several smaller watersheds in different parts of Iowa.  
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Field-Level Survey: Tillage Practices 

A key set of data collected in the BRW field-level survey was the distribution of 

tillage practices and residue cover quality (categorized as good, average, or poor) at the CLU 

level. Figure 5 shows the resulting distribution of tillage in terms of three tillage levels: 

conventional (< 30% residue cover), mulch (30% < residue cover < 90%), and notill (> 90% 

residue cover8). Both Figure 5 and Table 2 reveal the extensive use of mulch till throughout 

the watershed, and that conventional till and no till were used on relatively small areas. Table 

2 further shows the areal distribution of tillage type by current crop (2005 growing season) 

and residue cover quality. Nearly 95% of the row crop area was classified as being managed 

with mulch till at the time of spring planting in 2005. However, 11.6 and 21.6% of the mulch 

tilled corn and soybean were categorized as having poor residue quality. At present, the 

tillage assumptions used in the BRW baseline SWAT simulation mirror the three broad 

tillage category distributions shown in Table 2. However, future simulations could take into 

account the additional residue quality designations by incorporating more refined tillage 

system treatments in the model simulations.  

 The only other source of tillage data currently available for the BRW is county-level 

survey data collected on a biannual basis by the Conservation Tillage Information Center 

(CTIC), using primarily expert opinion and supporting transect surveys of selected cropland 

areas (typically drive-by surveys of residue on crop fields) to determine the distribution of 

five different tillage categories at the county level (Hill, 2006). Table 3 lists the area (ha) 

reported in the 2004 CTIC survey for no till (including ridge till), mulch till, and  
                                                 
8The residue cover demarcation between mulch and notill can fluctuate some due to the effect of planter passes 
and/or fertilizer application equipment that can bury some residue in a notill system, and also because of 
differences in coverage that occur between corn and soybean residue.  
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Figure 5. Distribution of tillage practices for the Boone River watershed determined from the 

field level survey. 
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Table 2. Distribution of tillage type and associated residue quality by crop as determined in 
the 2005 field-level survey. 

2005 Crop Tillage type     Residue 
quality 

Number 
recordeda 

Total area 
(ha) 

Percentage 
of row crop 

area 

Corn Conventional Till Good 23 396.3 0.2 
Corn Conventional Till Poor 345 5290.7 2.6 
Corn Mulch Till Average 2 16.3 0.01 
Corn Mulch Till Good 4749 76845.6 37.7 
Corn Mulch Till Poor 1576 23676.6 11.6 
Corn No Till Good 210 3581.5 1.8 
Corn No Till Poor 4 105.3 0.05 

Soybean Conventional Till Average 2 45.1 0.02 

Soybean Conventional Till Good 2 48.4 0.02 

Soybean Conventional Till Poor 180 2799.1 1.4 

Soybean Mulch Till Average 7 107.0 0.05 

Soybean Mulch Till Good 2784 45131.2 22.2 

Soybean Mulch Till Poor 2938 43899.3 21.6 

Soybean No Till Good 71 1445.9 0.7 

Soybean No Till Poor 7 125.3 0.06 
aThe number recorded for conventional tilled corn and mulch tilled soybean include 5 (34.6 
total ha) and 8 (143.8 total ha) records, respectively, that were marked as “not applicable”; 
these were assumed to be in the “good” residue quality category for the data reported here.  
 

conventional till (including reduced till) for the six counties that the BRW is located in. 

These CTIC survey results are markedly different than those found in the BRW survey; the 

vast majority of corn area was indicated to be managed with conventional till, and a sizeable  

portion of the soybean area was also reported to be managed with conventional till. Some of 

the inconsistencies between the BRW and CTIC surveys can be attributed to two different 

years of data collection and different overall areas used in the data collection process.  
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Table 3. Distribution of tillage levels reported in the 2004 Conservation Tillage Information 
Center (CTIC) survey by county and crop for the BRW region.  

Corn Soybean 

Notill Mulch Conventional Notill Mulch ConventionalCounty 

-------------------------------------- (ha) -------------------------------------- 

Hamilton 3,151 7,396 55,242 4,829 30,213 26,496 

Hancock 0 9,393 55,685 4,066 37,606 9,148 

Humboldt 209 29,545 22,354 632 41,917 2,665 

Kossuth 1,230 6,149 115,594 2,879 63,340 29,751 

Webster 615 4,539 71,774 2,641 17,540 47,540 

Wright 630 25,366 44,074 5,716 51,445 3,009 
 

However, the comparisons between the two survey approaches clearly points out the need for 

more accurate survey methods, if realistic accounting of tillage practices are going to be 

obtained on a watershed-by-watershed basis.  

It is clear that using field-level reconnaissance will not be a viable approach for 

gathering tillage and residue information on a wide scale. A more realistic method would be 

to use the remote sensing approach described by Gelder et al. (2007b), who successfully 

demonstrated that remote sensing techniques could be used to estimate residue cover for 83 

fields in Boone, Hamilton, and Story counties in the north central Iowa Des Moines Lobe 

region. Further application of this approach is needed at the large regional scale, such as the 

entire state of Iowa to provide consistent and reliable assessment of tillage practices for 

watershed simulation and other studies. 
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Field-Level Survey: Conservation Practices 

 Conservation practice data collected in the field-level survey are shown in Figures 6 

and 7. Figure 7 reveals that structural practices such as terraces, field borders, and water and  

sediment control basins are scattered throughout the watershed and that contouring is also 

practiced to a limited extent. The use of terraces and contouring are concentrated in subareas 

with higher slopes, including areas characterized by glacial moraine formations such as the 

far southern and northern portions of the watershed (Figure 7). Grass field borders are used 

along several stream channel segments in the flatter areas of the watershed, which dominate 

the majority of the BRW topography.  

Table 4 summarizes the total areas of different conservation practices and 

conservation practice combinations in the BRW, based on the areas of the affected CLUs. 

These tabulated results underscore the fact that the use of such practices is not extensive 

across the BRW, but are definitely important in specific BRW subareas. In contrast, the 

statistical sampling approach used in the 1997 NRI found that grassed waterways were the 

only conservation practice used in the watershed, which affected almost 2,700 ha. Grassed 

waterways were not reported in the BRW survey, which may indicate that the grassed 

waterways reported in the 1997 NRI were actually field borders instead. Whether this is true 

or not, the survey conducted for this study clearly reveals the weaknesses that can occur 

when using a statistical sampling approach for determining conservation practices, especially 

in a region dominated by relatively flat topography.  

At present, both terraces and contouring are directly accounted for in the BRW 

SWAT simulations. The possibility of incorporating field borders, ponds, and water and 

sediment control basins can be investigated for future BRW SWAT applications, although  
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Figure 6. Locations of structural conservation practices and contour farming identified in the 
BRW Survey. 
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Figure 7. Examples of zoomed-in subregions showing extent of conservation practices recoded in the BRW field-level survey. 
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Table 4. Total number and area of different conservation practice types found in the field-
level BRW survey. 

Conservation Practice(s) Number recorded Total area affected 
(ha) 

Terraces, Contour Farming, Contour Buffers 1 1.3 

Contour Buffers, Field Borders 2 1.2 

Terraces, Contour Buffers 3 17.3 

Water/Sediment Control Basin 8 99.2 

Field Borders, Pond 9 15.1 

Contour Farming 15 158.8 

Contour Buffers 20 30.0 

Terraces, Contour Farming 54 737.5 

Terraces 89 955.6 

Pond 1,089 2,944.7 

Field Borders 1,545 1,997.4 

No practices documented 20,037 219,977.0 
 

the impacts of ponds and water and sediment control basins would be expected to be minor. 

Improvement in the process of determining conservation practices reported here is not 

foreseeable, due to a lack of viable alternative approaches presently available.   

 
Field-Level Survey: Land Use 

 Current land use and crop rotations were two of the key sets of information that were 

gathered in the survey. Determination of crop rotations is vital for accurately assessing 

nutrient management and other scenarios in SWAT and similar models, by accounting for 

rotation effects on nutrient application rates, tillage practices, and other rotation-driven 

management decisions. The specific crops or the cropland CLUs were determined based on 
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observation of the crops that were being planted during the survey period. The crop rotations 

were determined for each field based on observed plant residue remaining from the 

previously harvested crop and on supplemental expert opinion provided by local agency 

experts for some fields.  

Figure 8 shows the 2005 land use map, overlayed on the CLU boundaries, which was 

generated from the BRW survey and clearly demonstrates the dominance of corn and 

soybean across the majority of the watershed. Figure 9 shows a comparable 2005 land use 

map that is based on the USDA-NASS Cropland Data Layer (NASS CDL) listed in Table 1, 

which was developed from remote sensing data. The NASS CDL land use map confirms the 

dominance of corn and soybean. However, some differences can be observed between the 

two data sources regarding whether corn or soybean was identified in specific land parcels.  

The percentage of primary land use categories are compared in Table 5 between the 

BRW survey, 2005 NASS CDL, and the 2002 IDNR land use data layer (Table 1), which 

was also derived from remote sending data. The land use distributions of the two remote 

sending data sets are very similar, with roughly 95% of the land use indicated to be in corn, 

soybean, or some type of grassland. The BRW survey also indicates that about 95% of the 

watershed area is managed with corn, soybean, or grass, but the combined corn and soybean 

area is about 5% higher than the corresponding combined areas reported by the other two 

land use sources (and the BRW survey grassland area is lower than the corresponding 

estimates for the other two sources by a similar percentage).   

 Error in the 2005 (and 2002) land use estimates could have occurred for several 

possible reasons. Visual misinterpretation and data entry errors may have occurred during the 

course of the BRW survey. Misclassification can also occurred for data collected via remote  
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Figure 8. 2005 Boone River watershed land use based on the BRW Survey results.
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Figure 9. 2005 Boone River watershed land use based on the USDA-NASS Cropland Data 
Layer. 
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Table 5. Comparison of percentages reported for Boone River watershed land use from three 
different sourcesa   

Landuse 2005 BRW Survey  2005 NASS CDL  2002 IDNR  

Alfalfa - 0.3c 0.75 
Corn 48.5 44.6 44.0 
Soybean 41.4 38.9 39.7 
Pasture/CRP/grassland   5.4b 12.3d 10.9 
Urban 2.0 0.43 1.6 
Water/Wetland 0.03 0.06 0.6 
Woodland 2.6 2.3 2.2 
Other  - 1.2e - 
aSee Table 1 for further information on data sources.  
bIncludes hay and oats. 
cIncludes small grains, hay, flaxseed, and oats. 
dIncludes a cryptic category called “Non ag.” 
eIncludes “other crops”, areas shrouded by clouds, fallow/idle cropland, Christmas trees, and 
sunflowers.  
 

 
sensing (Gelder et al., 2007a). This clearly occurred with the 2005 NASS CDL, as evidenced 

by curious land use categories such as flaxseed and sunflowers which are obvious errors. 

Two key apparent discrepancies include: (1) areas interpreted by the remote sensing process 

as grassland, which were found to be corn or soybean in the BRW survey, and (2) CLUs that 

were recorded as corn in the BRW survey that were interpreted as soybean by the NASS 

CDL remote sensing data and vice versa (see zoomed-in areas in Figures 8 and 9). It is 

difficult to establish with absolute certainly which approach was the most accurate. These 

results do point for the need for further research to better confirm the accuracy of using 

NASS CDL and other remote sensing data at the CLU level.  

Land use data in the form of crop rotations were also collected in the BRW survey 

and derived from multiple successive years of the NASS CDL. Figures 10 and 11 show the 

respective crop rotation maps that were based on the BRW survey and the 2002-2006  
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Figure 10. Boone River watershed land use map showing key crop rotations, based on 
data collected in the 2005 BRW field-level survey.  
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Figure 11. Boone River watershed land use map showing key crop rotations, based on 

remote sensing data reported in the 2002-2006 NASS Cropland data layers.  
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NASS CDL9. Both maps show that a two-year sequence of corn-soybean was by far the 

dominant rotation in the watershed and that relatively small areas of continuous corn  

were present. However, the crop rotation map based on the 2002-2006 NASS CDL shows a 

much greater occurrence of three- and four-year rotations with multiple years of corn and 

only one year of soybean. These differences reflect the inherent subjectivity of estimating 

rotation patterns within a field-level survey and also the likelihood of corn acreage expansion 

that was occurring during the 2006 growing season due to increased demand from regional 

corn-based ethanol production (Table 6). However, subjective judgments were also used in 

determining some of the crop rotations for the 2002-2006 NASS CDL, which may have 

introduced errors in those estimations.   

The percentage of each crop rotation reported in the BRW survey, on the basis of 

total cropland area (as opposed to total land area), is compared with similar percentages in 

Table 6 that were determined from the 1997 NRI and the 2002-2006 NASS data. The 

tabulated data shows that the percentage of cropland planted in a corn-soybean rotation was 

17% higher than what was derived from the NASS CDL. Similarly, the NASS CDL shows 

almost 16% more area planted to corn-corn-soybean and corn-corn-corn-soybean relative to 

the BRW survey. The 1997 NRI indicates proportions of corn-soybean and corn-corn-

soybean that are in between the estimates provided by the other two land use data sources. 

The NRI also indicates that slightly over 3% of the cropped area in the watershed was 

planted in soybean-soybean-corn in 1997, which contrasts with the NASS CDL estimate of 

2.2% of the cropped area being planted in continuous soybean during 2002-2006 (and  
                                                 
9The BRW Survey reportd that a small percentage of the grassland CLUs were planted in alfalfa. These CLUs 
with alfalfa were simulated as a five-year rotation (two years of corn followed by three years of alfalfa) which is 
not shown in either Figure 10 or 11.   
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Table 6. Percentages of different crop rotations reported from three land use data sources, 
within the overall Boone River watershed cropland area. 

Percentage of overall cropland area 
Crop rotation 

BRW Survey 1997 NRI NASS CDLa 
Continuous corn 4.3 3.7 3.4 
Corn-soybean 94.0 86.7 77.0 
Corn-corn-soybean 1.5 6.1 10.6 
Corn-corn-corn-soybean - - 6.7 
Soybean-soybean-corn - 3.3 - 
Continuous soybean 0.1 - 2.2 
Corn-alfalfa (5-year) 0.3 0.3 - 
aDeveloped from the NASS CDL (Table 1) for the 2002-2006 growing seasons. 

 
 

virtually no continuous soybean based on the BRW survey results). Both the BRW survey 

and the 1997 NRI show very small percentages (0.3%) of the cropland being devoted to 

rotations that include alfalfa.  

At present, the crop rotation estimates provided by the BRW survey have been used 

for the SWAT baseline simulations. However, the fact that the NASS CDL can be mapped at 

the CLU level points to it being an excellent alternative source of land use data for the BRW, 

with the ability to account for specific crop rotations. Improved crop rotation estimates based 

on the NASS CDL can also be obtained using a filtering approach similar to the one 

described by Gelder et al. (2007a). The option does exist to adjust the survey data with the 

NASS CDL, to reflect greater proportions of corn-corn-soybean, soybean-soybean-corn, or 

continuous soybean rotations. It is also possible to use the NASS CDL instead of the BRW 

survey data, which may be considered for future research. It is clear that the NASS CDL 

approach is the only viable option, in terms of both cost and time, for building similar crop 

rotation-based land use data sets for multiple watershed studies in the UMRB region, 
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especially for watersheds similar in size to the BRW. Recent expansion of the NASS CDL  

for other upper midwest states also points to the potential to build a land use layer with crop 

rotations for the entire UMRB in the near future (Chinnasamy et al., 2008). 

 
Nutrient Inputs From Livestock Production  

 Figure 12 shows the distribution of confined animal feeding operations (CAFOs) 

located in and near the BRW, based on 2005 IDNR data (Table 1), overlayed on the SWAT 

subwatersheds. Some of the operations shown just outside of the watershed in Figure 12 

would actually lie on the watershed border, if standard 12-digit watershed boundaries were 

used instead of the delineated SWAT subwatershed boundaries (see the Topographic Data 

section for further discussion of DEM dataset effects on the watershed boundaries). The vast 

majority of the 128 CAFOs are swine, which are clearly also the dominant species in terms 

of total head and equivalent animal units (Table 7). However, over 25% of the approximately 

266,000 animal units in the BRW region are layer chickens distributed across just six 

operations. The concentration of animal units by CAFO are shown in Figure 13, which 

further demonstrates the large relative size of the layer chicken operations and some of the 

swine operations as compared to the other livestock operations in the BRW.  

 The CAFO operations represent a significant source of cropland-applied nutrients in 

the watershed. Several challenges arise when attempting to assess exactly how manure 

nutrients are managed within any watershed including determination of: (1) the composition 

of the applied manure nitrogen and phosphorus as a function of inorganic and organic 

subcomponents, (2) how much of the manure nutrients (mainly nitrogen) are lost prior to 

land application, (3) the rate the manure nutrient applications are applied at, (4) which  
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Figure 12. Locations of confined animal feeding operations in the Boone River watershed.  
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Table 7. Total number of confined animal feeding operations (CAFOs), and corresponding 
livestock numbers and animal units, in the Boone River watershedb  

Livestock type Total number of 
operations 

Total number of 
livestock Total animal unitsc 

Swine 109a 480,478 192,191
Cattle 13 4,265 4,265 
Chickens (layers) 6 6,962,116 69,621 
a97 are finishing operations and the other 12 are gestating/nursery operations. 
bSource: IDNR (2007b).  
cAnimal unit equivalencies: swine = 0.4; cattle = 1.0; layer chickens = 0.01.  
 

specific cropland the manure is applied to, and (5) when the manure is applied.  

A “composite manure” was developed for the BRW SWAT simulations, which 

reflects the overall relative contributions of the three different livestock species produced in 

the watershed. Annual nutrient production per animal was first determined for each type of 

livestock based on the livestock manure nutrient production data and nitrogen loss 

assumptions for typical manure handling systems reported by Libra et al. (2004), which are 

shown in Table 8. The inorganic and organic fractions for the manure nitrogen and 

phosphorus, that are required to characterize manure nutrient composition in SWAT, were 

based on the fractions used for the study by Gassman et al. (2002) and are shown in Table 9 

by livestock species. The composite manure inorganic and organic fractions used in the 

SWAT simulations are shown in the bottom line of Table 9, which reflect the relative 

amounts of manure contributed by the three livestock species.     

Determination of where the manure would be applied was based on the approach 

described by Schilling and Wolter (2007) for the Raccoon River SWAT TMDL study. The 

initial step in this approach is to estimate manure application zones around each CAFO, 

using software developed at the USDA National Soil Tilth Laboratory (Tomer et al., 2008). 

The resulting manure application zones are shown in Figure 14, which represent concentric  
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Figure 13. Concentration of animal units by confined animal feeding operation for the Boone 
River Watershed. 
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Table 8. Percentage nitrogen loss for typical manure handling systems and total annual 
amount of manure nitrogen and phosphorus by livestock speciesa   

Total manure 
nitrogen   per 

animal     

Total manure 
nitrogen per 
animal after 
losses are 

accounted for  

Total manure 
phosphorus per 

animal        
Livestock 
species 

% nitrogen 
losses for typical 
manure handling 

systems 

---------------------- kg yr-1 (lb yr-1) -------------------- 

 Swine 25 13.2 (29.2) 9.9 (21.9) 3.2 (6.9) 

Cattle 45 54.6 (120.4) 30.0 (66.2) 10.9 (24.1) 

Layer chickens 40 0.5 (1.1) 0.3 (0.7) 0.2 (0.3) 
aBased on data reported in Libra et al. (2004). 
 
Table 9. Manure inorganic and organic nutrient fractions by livestock species and for the 
composite manure that was used for the BRW SWAT simulations 

Livestock 
species 

Inorganic 
nitrogen 

Inorganic 
phosphorus 

Organic 
nitrogen 

Organic 
phosphorus % NH4 

 Swine 0.5695 0.2045 0.1898 0.0361 100 

Cattle 0.2420 0.0881 0.4913 0.1787 75 

Layer chickens 0.1225 0.2357 0.5442 0.0977 94 

Composite 0.4302 0.2117 0.3010 0.0571 97.8 

 

circles around each CAFO (or CAFO cluster). These zones were created on the assumption 

of manure being applied at 100 kg ha-1 (89 lb ac-1) on all corn and soybean fields within a 

given zone, or at an equivalent application rate of 200 kg ha-1 (178 lb ac-1) to corn during the  

corn year of a corn-soybean rotation. Some of the zones lie outside of the watershed, which 

represent CAFOs just over the watershed border. Some of the other zones straddle the  
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Figure 14. Locations of confined animal feeding operations in the Boone River watershed.  
 

boundary including zones generated for some of the large layer chicken operations. These 

zones represent manure application areas that transcend the BRW region.  
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The manure applications for the BRW SWAT simulations were assumed to occur in 

CLUs (or CLU frgaments) that were at least 50% located within one of the manure 

application zones shown in Figure 14 and that were also located within the BRW. The initial 

assumption of 200 kg/ha of equivalent manure nitrogen applied on corn every two years 

within the manure application zones was then modified in two ways for the BRW SWAT 

simulations. First, the assumption was made that 80% of the manure nutrients were applied to 

corn and the remaining 20% was applied to soybean in any given year. This step was taken in 

response to apparent excess manure nitrogen available in the BRW, as discussed below, 

which leads to the conclusion that some of the manure nutrients are being applied to soybean 

(even though soybean does not need the nitrogen). Second, the manure was assumed to be 

applied at an equivalent nitrogen application rate of 190 kg ha-1 on all manured corn and 

soybean fields. This rate was arrived at based on calculations of how much manure nitrogen 

would be required to be spread to CLUs cropped with corn that were at least 50% located 

within a manure zone (Figure 14), and that when summed met the constraint of 80% of the 

overall BRW manure nitrogen being applied to fields planted in corn. The resulting 

equivalent manure phosphorus application rate was 69.8 kg ha-1. All manure applications 

were assumed to occur in the spring for the BRW baseline simulation. 

The modeling system is very flexible and can accommodate variations in these 

manure nutrient application assumptions. Different scenarios can also be simulated that 

reflect differing manure application scenarios, both in terms of location, the crops the manure 

is applied to, and the timing of the manure applications.   
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Nutrient Inputs From Fertilizer 

Table 10 lists the simulated nitrogen fertilizer application rates for corn within a corn-

soybean rotation that are currently used for the BRW SWAT baseline. These rates are based 

on aggregated data obtained by the Iowa Soybean Association (ISA) in collaboration with 

producers in the watershed. A nitrogen application rate of 196 kg ha-1 (175 lb ac-1) was 

assumed for corn grown in a continuous corn rotation and a phosphate (P2O5) application of 

49 kg ha-1 was simulated for corn in all rotations. Fertilizer applications were not simulated 

for soybean in the BRW SWAT baseline. These application rates can be easily adjusted, 

similar to the manure nutrient application assumptions. 

 
Table 10. Nitrogen application rates on corn, within a corn-soybean rotation, based on 2004-
05 Iowa Soybean Association aggregated collaborator data 

Time of year Number of Observations Application rate            
(kg ha-1)a 

Fall 21 183  

Spring 100 172 
aEquivalent application rates in lb/ac are 163 and 154 for fall and spring, respectively.  
 

 The spring nitrogen application rate of 172 kg ha-1 is very similar to the average 

BRW corn nitrogen fertilizer application rate of 169.4 kg ha-1 derived for the IDNR statewide 

nutrient balance study (not reported in Libra et al., 2004). However, the calculations for that 

study indicate that nitrogen fertilizer was applied on all corn fields at that rate, including 

fields that received manure. It is difficult to determine what percentage of the manured fields 

in the BRW also receive nitrogen fertilizer. Thus it was assumed that 50% of the BRW 

manured corn fields also receive nitrogen fertilizer at the rates described above. This results 

in the overall nutrient inputs shown in Table 11 between the two studies. The overall  
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Table 11. Comparison of total annual watershed nutrient inputs between the BRW modeling 
system and the IDNR nutrient balance study 

BRW modeling system IDNR nutrient balance studya

Nutrient input 

---------------- million kg (million lb) ---------------- 

Fertilizer N  15.8 (34.9) 18.0 (39.7) 

Manure N  6.3 (13.8) 5.1 (11.3) 

Fertilizer P  2.2 (5.0) 2.2 (4.8) 

Manure P  2.3 (5.1) 2.4 (5.2) 
aCalculations performed in support of the study performed by Libra et al. (2004). 
 
 
phosphorus inputs were similar between the two studies. Somewhat higher manure nitrogen 

inputs were assumed for the BRW modeling system as compared to the IDNR nutrient 

balance study. However, over 2 million kg more of nitrogen fertilizer was determined to be 

input to the watershed for the IDNR nutrient balance study as compared to the BRW 

modeling system.  

 
Soil Inputs 

 The previously described AVSWAT-X interface was developed to provide automated 

translation of various soil, topographic, land use and other required digital data into formats 

that are directly readable by SWAT. The original AVSWAT version of the interface was 

limited to only being able to directly process relatively coarse 1:250,000 scale U.S. General 

Soil Map (STATSGO) data (USDA-NRCS, 2007c) into compatible file structures readable 

by SWAT, although other soil data could be entered into SWAT by using alternative 

methods. However, the updated AVSWAT-X version of the interface supports both direct 

input of STATSGO and the much more refined Soil Survey Geographic (SSURGO) data 
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(Table 1), which can range in scale between 1:12,000 to 1:63,000 depending on the U.S. 

subregion. Several previous studies have been conducted (Chapter 2) which evaluated the 

impacts of differing soil resolution on SWAT predictions and found that the model was 

generally sensitive to the resolution of soil data inputs, and that predictions usually improved 

with finer soil data resolution. These findings underscore the need to use the most accurate 

soil data available for SWAT simulations designed to evaluate alternative land use and 

management practice scenarios for the BRW and other watersheds. 

 The BRW soil layer has been developed from SSURGO data available at a 1:15,860 

scale, which is the most refined soil data available for Iowa. The resulting soil map for the 

watershed is shown in Figure 15. Distinct lines can be seen in the map which reveal county 

boundaries associated with the county-level SSURGO soil data. This phenomena is an 

artifact of differences in soil ID labels used between the different counties; however, the 

processing of the soil data for input to SWAT is not hindered by this anomaly. Some distinct 

geological features can also be discerned in the soil map including the main Boone River 

alluvial channel and the glacial moraine in the southern and northeastern portions of the 

watershed, respectively. The dominant SSURGO soil type was determined for each CLU in 

order to establish the set of soil landscape characteristics and layer properties that should be 

used to represent the respective CLU.  

 
Topographic Data 

 Characterization of watershed topography with digital elevation model (DEM) data is 

another key input to SWAT. SWAT predictions usually improve with increasing DEM 

resolution as discussed in Chapter 2, similar to the previously discussed soil input data  
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Figure 15. SSURGO soil map for the Boone River watershed. 
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 effects. Several sources of DEM data were available to characterize the BRW topography. 

Both 10 and 30 m resolution National Elevation Data (NED) DEMs (Table 1) were initially 

assessed to determine the utility of using the two DEM layers in the modeling system. 

Attempts to process the 10 m DEM in AVSWAT-X failed, because the size of the data file 

overwhelmed the ArcView GIS software. At the same time, the accuracy of the 30 m DEM 

was inadequate in replicating the BRW topography and stream channel network. Thus a 30 m 

DEM that was resampled from a 10 m DEM was used instead (Table 1). 

 The resulting topographic surface developed with the resampled 30 m DEM is shown 

in Figure 16. A total relief of approximately 91 m (300 ft) occurs from the BRW upper 

stream reaches to it’s confluence with the Des Moines River. The changes in elevation are 

gradual across most of the watershed, underscoring the level terrain present in most of the 

region. Some relatively sharp relief occurs in the southern portion of the watershed near the 

Boone River channel and in the Moraine region in the northern part of the watershed.  

A comparison of the boundaries delineated for the 30 subwatersheds10 with standard 

12-digit boundaries (Table 1) shows that SWAT subwatershed boundaries coincide well with 

the 12-digit boundaries for much of the watershed, and that the main stream system channels 

were adequately delineated (Figure 17). However, some obvious disagreement also resulted, 

especially for the northern part of the watershed including portions of the watershed that 

“disappeared”. These discrepancies point to inadequacies in the resampled 30 m DEM to 

accurately capture all of the subtle terrain changes that occur across the predominantly flat 

subregions of the BRW, assuming the 12-digit boundary delineations are accurate. 
                                                 
10The delineation of the 30 swat subwatersheds was performed in AVSWAT-X in a manner to ensure as close 
an alignment with the 12-digit boundaries as possible. There are actually only 29 12-digit subwatersheds; an 
additional subwatershed was delineated in AVSWAT-X to allow a direct correspondence between the outlet of 
subwatershed 27 and the location of the USGS flow gauge (shown in Figure 1).   
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Figure 16. Overlay of SWAT subwatershed boundaries on the Boone River watershed 
topographic surface, which was created from the resampled 30 m DEM.  
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Figure 17. Comparison of delineated SWAT subwatershed boundaries (subbasins) with 12-
digit watershed boundaries. 
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The most promising option for improved characterization of the BRW topography is  

Light Detection and Ranging (LiDAR) data, which is currently being collected for the entire 

state of Iowa (IDNR, 2007a) and is projected for completion in 2009 (Giglierano, 2007). The 

completed LiDAR data will have a spatial resolution of approximately ± 1.5 m (± 5 ft) and 

provide elevation estimations within an accuracy of 0.2 m (8 in). Improvement in GIS 

software will be required in order to process such an intensive data layer, and aggregation of 

the LiDAR data (e.g., 5 m resolution) will likely be required for realistic processing in future 

GIS interface tools. At present, the recently released ArcGIS SWAT interface (Olivera, 

2006) appears to have the potential for processing aggregated LiDAR data. Further 

investigation of this option can be pursued when BRW LiDAR data becomes available.   

 
Tile Drainage Data 

 Extensive installation of tile drainage has occurred in the BRW over the past century 

or more, resulting in a drastically altered hydrologic landscape. Most of the pre-settlement 

wetland system has vanished, and seasonally wet soils can be managed much easier due to 

the presence of subsurface drainage. The exact extent of tile drainage in the watershed is not 

known. However, the fact that tile drainage districts have been established across most of the 

primary cropland areas (Figure 18) would indicate that subsurface tiles have been installed 

beneath the majority of cropland in the watershed. The 1992 NRI estimates that 50% of the 

BRW cropland was tile drained at that time, which was one of the most intensively tile 

drained 8-digit watersheds in the UMRB according to that NRI dataset. Never the less, it is 

likely that the 1992 NRI BRW tile drain estimate greatly underestimated the true extent of. 
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Figure 18. Tile drainage districts established in the Boone River Watershed. 
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tile drained cropland in the watershed, based on the alternative approach of estimating soils 

needing tile drainage that is described here.  

Two alternative approaches exist to estimate which soils would most likely require 

tile drainage in the BRW (and in other watersheds). These methods are both simple 

algorithms developed by Miller (2007) and Jaynes (2007) and are compared in Table 12. 

Data provided in the ISPAID database (Table 1) can be used in either the Jaynes or Miller  

methods, and SURRGO data (Table 1) can also be used for Jaynes method.  

 
Table 12. Comparison of Jaynes and Miller algorithms for estimating which soils require 
subsurface tile drainagea. 

 
Algorithm criteria Jaynes Method Miller Method 

Soil slope (%) ≤ 2 ≤ 5 

Drainage class Poor or very poor - 

Drainage class code - > 40 

Hydrologic group D - 

Subsoil group - 1 or 2 
aData provided in the ISPAID database (Table 1) can be used as inputs for both algorithms; 
the SSURGO database (Table 1) can also be used for the Jaynes method. 
 

 The results of applying the criteria in the two algorithms separately and in 

combination are presented in Figure 19. Both methods result in estimating extensive need for 

tile drainage across the BRW, with the Miller method resulting in a denser tile drainage 

coverage as compared to the Jaynes method. Both methods also point to tiles not being 

needed along the alluvial channels, especially in the southern portion of the watershed, and 

along the glacial moraine feature in the northern part of the BRW. The combined map closely 

resembles the Miller method map, due to its denser coverage, and is assumed to provide the 



 

Figure 19. Results of applying the Jaynes and Miller algorithms separately, and in combination, for estimating the extent of soils 
that require tile drainage in the Boone River watershed (colored areas are the soils indicated to need subsurface tile drains). 
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most accurate picture of tile drainage usage across the BRW. As a result, tile drainage is 

simulated in SWAT for virtually all cropland in the watershed. 

Tile drainage district records and other similar information could be researched with a 

goal of obtaining improved estimates of tile drainage distribution in the BRW. However, this 

would be an exacting process that may yield little additional useful data. Allred et al. (2004) 

report that ground penetrating radar was also found to have excellent potential to locate the 

presence of tile drains down to a depth of 1 m in different soil materials in Ohio. But the 

method did not work well at all sites and would likely be a very expensive and intensive 

procedure to use for a watershed the size of the BRW. Kalita et al. (2007) describe such 

geophysical and geotechnical approaches as “tedious” and found that aerial color infrared 

images taken following spring thaw can be used more effectively to identify locations of tile 

lines for Illinois. However, this again would likely be a very labor intensive process for a 

watershed the size of the BRW. In summary, the estimated tile drainage distribution 

determined using the combined Miller and Jaynes methods appears to be the most efficient 

available and also likely provides a reasonably accurate reflection of the extent of tile 

drainage in the watershed.  

 
Daily Climate Data Inputs 

 Daily climate inputs to SWAT include precipitation, maximum and minimum 

temperature, solar radiation, wind, and relative humidity. Wind and relative humidity are 

only required for specific evapotranspiration options in the model. Both measured and/or 

generated climate data can be used in SWAT; most applications rely on measured 

precipitation and temperature data, and generated data for the other climate inputs. 
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Inadequate coverage and/or spatial characterization of precipitation data for a watershed can 

result in poor hydrologic results. Further discussion of the climate data inputs and hydrologic 

calibration issues related to precipitation data input accuracy is presented in Chapter 2. 

 Daily precipitation and temperature data measured at every climate station in the 

watershed region (Figure 1) were obtained for the period of 1951-2006 from the IEM and 

NCDC sources listed in Table 1, for possible inclusion in the BRW SWAT simulations. The 

NCDC data obtained for Kanawha included only precipitation measurements. Thus, Clarion 

temperature measurements were incorporated into the Kanawha data to construct a complete 

climatic record. Annual precipitation and temperature statistics computed for each station are 

given in Tables 13 and 14. The precipitation statistics reveal a distinct gradient of increasing 

precipitation amounts going from north to south in the BRW region (see station locations in 

Figure 20), with the highest average annual precipitation occurring at Fort Dodge11.  The 

annual precipitation extremes ranged from a low of 135.6 mm at Britt in 1987 (a year of 

severe statewide drought) to 1,396.5 mm at Webster City in 1993 (a year of severe statewide 

flooding). A slight north to south temperature gradient is also indicated by the statistics in 

Table 14, with the highest average annual maximum and minimum temperatures recorded for 

Fort Dodge and Webster City.  

Figure 20 shows which subwatersheds the measured precipitation and temperature 

data were assigned to in AVSWAT-X, based on proximity of the climate station locations to 

the geographic centroids of the different subwatersheds. The majority of subwatersheds were 

assigned to three of the climate stations: Kanawha, Clarion, and Webster City. The Fort  

                                                 
11Climate normals reported by MRCC (2007) for 1971-2000 show nearly the same ranking of the seven climate 
stations based on average precipitation, ranging from 873.5 mm for Fort Dodge to 779.5 mm for Algona (only 
the order of Britt and Kanawha are reversed from what is shown in Table 12).  
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Table 13. Annual precipitation statistics (mm) computed over 1951-2006 for the climate 
stations in the BRW region 

Mean Maximum Minimum Standard 
Deviation Climate 

station Data sourcea 

-------------------------- (mm) -------------------------- 

Algona IEM 748.5 1158.5 357.1 182.1 

Britt IEM 758.3 1182.4 135.6 206.4 

Clarion IEM 805.3 1221.2 519.4 156.2 

Fort Dodge IEM 844.4 1200.7 556.3 163.8 

Humboldt IEM 790.8 1156.0 514.1 155.9 

Kanawha NCDC 773.2 1225.3 386.3 175.6 

Webster City IEM 815.0 1396.5 463.8 187.2 
aSee Table 1 for more information.  

 
Table 14. Temperature statistics computed over 1951-2006 for the climate stations in the 
BRW region. 

Maximum Temperature Minimum Temperature 

Mean Max. Min. St. 
Dev. Mean Max. Min. St. 

Dev. 
Climate 
station Data sourceb 

------------------------------- (°C) ----------------------------- 

Algona IEM 13.8 40.6 -27.2 13.3 2.1 27.2 -34.4 11.9 

Britt IEM 13.7 40.0 -26.7 13.2 2.2 30.0 -35.0 12.1 

Clarion IEM 13.8 39.4 -27.8 13.2 2.0 25.6 -35.6 12.1 

Fort Dodge IEM 14.6 41.1 -24.4 13.0 2.7 26.1 -34.4 11.8 

Humboldt IEM 14.1 40.0 -26.1 13.0 2.5 25.6 -36.1 11.9 

Kanawhaa NCDC 13.8 39.4 -27.8 13.2 2.0 25.6 -35.6 12.1 

Webster City IEM 14.6 40.6 -24.4 12.9 2.6 25.6 -35.6 11.8 
aClarion temperature data was also used for Kanawha. 
bSee Table 1 for more information.  
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Figure 20. Assignment of measured climate data to the subwatersheds used for the BRW 

SWAT simulations (Fort Dodge climate station data are not used). 
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Dodge climate station was too far from any of the subwatersheds to be used in the SWAT 

simulations. Generated weather is also configured in SWAT via automated functions 

provided in the AVSWAT-X interface. This includes assignment of climate station data, 

consisting of monthly climate normals, from a database that covers the entire U.S. Figure 21 

shows similar assignments for daily climate inputs generated internally in SWAT from the 

three climate stations that were closest to the BRW.  Solar radiation was the only generated 

climate data used for the BRW simulations.  

 
Nitrogen and Phosphorus Point Sources 

 Libra et al. (2004) report that nonpoint sources contributed 92% of the total nitrogen 

load and 80% of the phosphorus load to Iowa streams, based on their statewide nutrient 

 balance conducted for 2000-2002. The remaining 8 and 20% of the nitrogen and phosphorus 

loads were attributed to point sources. Specific point source nitrogen and phosphorus 

contributions to the BRW stream system were estimated by Libra et al. to be 8 and 9.4%, 

respectively. Point source nutrient contributions are currently not incorporated in the BRW 

SWAT simulations. However, incorporation of point sources into the modeling framework 

has been initiated, which will provide point source assessments to be performed in future 

BRW scenario simulations. Figure 22 shows the location of 14 different key point sources in 

the BRW, most of which are municipal waste treatment plants. Nitrogen and phosphorus 

inputs from these sources to the BRW stream system will be calculated using the 

assumptions developed by Libra et al. for municipal and industrial waste sources, and which 

were also used for the Raccoon River SWAT nitrogen TMDL study (Schilling and Wolter, 

2007).  
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Figure 21. Assignment of generated climate data (solar radiation) to the subwatersheds used 
for the BRW SWAT simulations. 
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Figure 22. Location of primary waste treatment plant and industry point sources in the Boone 
River watershed. 
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Monitoring Data 

In-stream pollutant monitoring data has been collected in the form of single monthly 

grab samples near the watershed outlet (Figure 1) since October of 1999. Nearly 80 different 

pollutant indicators have been measured for at least part of the sampling period. The primary 

indicators of interest for the BRW SWAT simulation study that have been collected near the 

watershed outlet are sediment, nitrate, organic nitrogen, inorganic (mineral) phosphorus, and 

total phosphorus. Figure 23 shows a time series of the nitrate concentrations measured 

between October 1991 and December 2006. The highest nitrate concentrations were usually 

recorded in the spring and early summer, although high concentrations were measured at 

times during the fall and winter seasons (e.g., November 2000 to January 2001). The 

concentrations often exceed the drinking water standard of 10 mg l-1 (USEPA, 2007) and 

exceed 15 mg l-1 at times.  These nitrate, and other nutrient and sediment concentrations, 

form the basis for estimating pollutant loads which are used for the model calibration and 

validation as discussed in Chapter 4.    

Additional collection of in-stream pollutant monitoring data was initiated at 30 sites 

(Figure 24) by the Iowa Soybean Association (Seeman, 2007) beginning in the 2007 growing 

season. These data are being collected at the outlets of the 29 12-digit BRW subwatersheds 

and also at the location of the USGS flow gauge shown in Figure 1 (site BR003 in Figure 

24). These data are not currently being collected with flow data, except for the data collected 

coincident with the USGS flow data and a second flow gauge located near the town of 

Goldfield12, and thus cannot be used to estimate pollutant loads. However, the measurements 

                                                 
12These streamflow measurements were initiated by the U.S. Army Corps of Engineers in 2004 and can be 
accessed at USACE (2007).  
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Figure 23. Time series of nitrate concentrations measured between October 1999 and 
December 2006 near the outlet of the Boone River watershed. 

 
 
will provide critical insights regarding pollutant trends at the subwatershed level. This is 

illustrated in Figure 25, which shows the average nitrate concentrations measured in each 12-

digit subwatershed over the 2007 growing season (spanning April 4 to October 15). The 2007 

trends clearly show greater nitrate concentrations for the subwatersheds located in the 

southeastern portion of the BRW. These trends can also be compared with other BRW data, 

such as the distribution of CAFO animal units that are overlayed on the subwatershed in 

Figure 25. Samples are currently being collected on a bi-weekly basis year round at 13 of the 

sites and only during the growing season at the other sites. Additional support has been 

announced to support future BRW monitoring efforts as reported by TNC (2007).    
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Figure 24. Location of Iowa Soybean Association 2007 growing season sampling sites in the 

Boone River watershed. 
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Figure 25. Distribution of confined animal feeding units (by animal units) overlayed on 
average nitrate concentrations determined for each 12-digit watershed during the 2007 

growing season in the Boone River watershed. 
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SWAT Application Issues 

 The BRW modeling system contains one of the most detailed data sets that has been 

assembled for a watershed at the 8-digit scale in Iowa (and possibly the U.S.). The design of 

the system allows for land use, tillage and conservation practices, fertilizer and manure 

applications, and soil data to be directly interfaced at the CLU level. Identification of tile 

drained soils can also be linked to the CLUs using Access database queries or other software 

tools. Other data layers are less detailed, including the 30 m resolution DEM data that has 

obvious weaknesses. The LiDAR data currently being collected by the IDNR will provide 

greatly refined topographic data for the system, once it becomes available.  

 Unfortunately, these data layer advancements cannot be fully utilized by SWAT at 

this time because the SWAT HRUs are currently not spatially referenced within the 

simulated subwatersheds, as previously discussed in the Modeling System Overview and in 

Chapter 2. At present, the model will simply recognized CLU-level HRUs as lumped land 

parcels within a subwatershed, instead of accounting for the explicit landscape position of 

each CLU. Thus a total of 2,212 HRUs are used in the current BRW SWAT simulations, 

which represent aggregations of CLUs with homogeneous land use, management, soil, and 

landscape characteristics. Output from these HRUs can be viewed at the subwatershed or 

other aggregated levels, or at a disaggregated level for individual CLUs. The CLU-level data 

does provide the foundation for performing more refined BRW simulations in the future, as 

improved spatial accounting is built into SWAT including simulation of explicit landscape 

positions as discussed in Chapter 2. The CLU data also provides the basis for developing the 

economic model component of the overall BRW modeling study, which will be interfaced 

with SWAT in the next phase of the broader project.  
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 Other limitations exist in SWAT that affect the accuracy of the model output besides 

the lack of spatially referenced HRUs. Several of these limitations are discussed in Chapter 2, 

including the Runoff Curve Number (RCN) approach which is investigated in more detail in 

Chapter 4. One additional limitation that is important to recognize for the BRW modeling 

system is the relatively simplistic subsurface tile drainage routine that is currently used in 

SWAT. This routine has been recently improved based primarily on testing of the model for 

the Walnut Creek watershed in Story County, Iowa (Du et al., 2005; 2006) and further 

refinements reported by Green et al. (2006). However, tile drainage effects are represented in 

the model only via tile drainage depth, depth to an impervious layer, and two other input 

variables related to subsurface flow dynamics, and no accounting of tile drain spacing or 

landscape position is provided. Therefore, pattern tile and irregular tile networks are 

simulated in an identical manner in the current approach used in SWAT. It can be expected 

that these simplifications misrepresent some aspects of BRW subsurface tile drainage flow 

dynamics. Development of an alternative tile drainage method in SWAT, which is based on 

the DRAINMOD approach (Singh et al., 2006), is being performed by Moriasi (2007) and 

will provide expanded options for simulating tile drainage systems in future BRW SWAT 

applications.  

 Other data limitations can hinder the accuracy of simulation results for the watershed. 

For example, the previously described set of available measured precipitation data may not 

accurately cover all the precipitation events that occurred in different parts of the watershed 

during the 1984-2006 baseline simulation period (see Chapter 4). Improved coverage could 

be obtained by the placement of additional rain gauges in the watershed, but this would 

obviously only benefit future applications of SWAT or other models. Another option would 
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be to use Next Generation Weather Radar (NEXRAD)13 precipitation data (Crum et al., 

1998) which has been successively used in previous SWAT applications as discussed in 

Chapter 2. However, modifications would be required for SWAT to input the data using a 

refined 4 x 4 km2 grid such as described by Cruse et al. (2006) for their Iowa modeling 

application, and this data would cover only a later portion of the baseline period used in this 

study. The testing of the model is also limited by the amount and accuracy of available in-

stream flow and pollutant monitoring data. Harmel et al. (2006) document occurrences of 

errors in both streamflow and pollutant measurements, which can exceeded over 100% for 

some nutrient samples. The fact that only single monthly grab samples at a single site are the 

only pollutant data available for testing the SWAT BRW simulations up through 2006 is a 

clear limitation of the current modeling system. Further discussion of monitoring data issues 

is provided in Chapter 4.  

 
Transferability of the Modeling System Approach 

 There are several challenges that arise when considering the transferability of the 

modeling system approach described here. The most obvious is the reliance on a field-level 

survey to gather land use, tillage practices, and conservation practice data at the CLU level. 

This can be feasible if adequate resources are available, particularly for smaller watersheds. 

For example, similar data sets have been developed for five watersheds as part of the Iowa 

State University USDA-funded Conservation Effects Assessment Project (CEAP), which 

included field-level surveys to develop CLU-based data in some of the watersheds14. In 

                                                 
13The precipitation and other weather data is collected with a network of 166 Weather Surveillance Radar-1988 
Doppler (WSR-88D) systems (Crum et al., 1998). 
14See Tomer et al. (2008) and Schilling et al. (2007) for descriptions of some of the watersheds and/or practices. 
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general, resource constraints will preclude such intensive survey data gathering approaches, 

especially for watersheds similar or larger in size to the BRW.  

 The development of remote sensing approaches as previously discussed are the only 

realistic land use and tillage practice data gathering approach for developing CLU-based 

datasets for a wide range of watersheds, and especially for large systems such as the UMRB. 

These approaches would overcome the significant labor requirements of field-surveys and 

could be updated on an annual basis, which overcomes the limitation of single-year surveys 

such as the 2005 data collected for the BRW. At present, no systematic approach seems 

available to collect other conservation practice data such as terraces, contouring, and grassed 

waterways. Field-level surveys focused on these data alone may be useful supplements to 

remote sensing data used to characterize land use and tillage practices.  

 Other key data such as SSURGO soil data, locations of CAFOs, and DEM data are 

readily available for any watershed in Iowa. Estimates of tile drained land have been 

generated for the entire state as well. LiDAR data should become available before the end of 

this decade, which will be a greatly improved topographic layer. Estimates of fertilizer 

application rates and some other management practices can be obtained on the basis of local 

expert opinion, or through surveys of producers or agribusinesses, or from groups such as the 

ISA who have or are working directly with producers in a watershed. However, some of 

these data, such as CAFO locations, may not be as easily accessible for watersheds in 

neighboring states or throughout the UMRB.  
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Conclusions 

 A SWAT CLU-based modeling system has been built for the Boone River watershed 

that will support a range of alternative land use and management practice scenario analyses. 

The modeling system contains very detailed land use, tillage practice, and conservation 

practice data that were obtained for each CLU during a field survey conducted in the spring 

of 2005. Crop rotation data was also generated as a part of the survey effort. Alternative 

USDA-NASS CDL remote sensing data has also been obtained that can be used to create 

crop rotations. Soil data and tile drainage practices can also be interfaced at the CLU-level. 

Limitations in the current SWAT structure preclude using the full potential of the CLU-based 

data at this time. However, aggregated CLU data used for creating the HRUs used in the 

SWAT simulations retain much of the CLU-level land use and management information. The 

modeling system can be updated as better data becomes available; e.g., LiDAR topographic 

data or tillage distributions based on remote sensing data. And enhancements in the modeling 

approach will also be realized as improved versions of SWAT become available in the future.     
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CHAPTER 4. SWAT BASELINE SIMULATION RESULTS FOR THE BOONE 
RIVER WATERSHED: ANALYSIS AND ISSUES REGARDING TWO 

HYDROLOGIC CALIBRATION APPROACHES 
 

A paper to be submitted to the Journal of Environmental Quality 

Philip W. Gassman1,2, Manoj Jha1, Steven K. Mickelson3, Michael R. Burkart4, Rameshwar 
S. Kanwar3, and Richard M. Cruse5. 

 

 

Abstract 

The Boone River Watershed (BRW) covers over 237,000 ha in north central Iowa. 

The watershed is dominated by corn and soybean production, which together account for 

over 85% of the land use. Fertilizer and livestock manure applications to cropland are key 

sources of nutrient loads to the watershed stream system. Nitrate losses are of particular 

concern, which escapes the cropland via multiple pathways including subsurface tiles that 

drain the predominantly flat landscapes that persist throughout the watershed. This study 

describes the application of the Soil and Water Assessment Tool (SWAT) model for the 

BRW, using two different hydrologic simulation approaches that were based on the standard 

runoff curve number (RCN) option versus a new alternative RCN option available in version 

2005 of SWAT. These two different approaches were used to reflect differing assumptions 

regarding the relative contributions of surface runoff and baseflow to the total BRW 

streamflow. Strong annual and monthly R2 and Nash-Sutcliffe modeling efficiency (E) 
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statistics were found for both the 1986-1996 calibration and 1996-2006 validation periods, 

which ranged from 0.74 to 0.99. The R2 and E statistics determined for the calibrated annual 

and monthly sediment, nitrate, organic nitrogen, and total phosphorus loads for the period of 

2000-2006 were also generally strong for the SWAT simulations that were performed with 

the standard RCN approach, ranging from 0.50 to 0.92 with the majority of the statistics 

exceeding 0.70. However, the accuracy of the predicted pollutant loads generally declined 

when the alternative RCN approach was used, especially for the organic nitrogen estimates. 

The results show that specific calibration is necessary for pollutant-related input parameters 

for the alternative RCN approach, in order to obtain improved results. The results also show 

weaknesses in the overall nitrogen balance predicted for the SWAT simulations, especially 

for the approach based on the standard RCN method.   

Introduction 
 
 Water quality degradation has emerged as a major issue within the Upper Mississippi 

River Basin (UMRB). The Mississippi River and tributary streams have been greatly 

impacted by excess nitrogen, phosphorus, and sediment loadings from cropland and other 

sources. The nutrient load discharged from the mouth of the Mississippi River has also been 

implicated as a key cause of the Gulf of Mexico seasonal oxygen-depleted hypoxic zone 

(USEPA, 2007), which has covered an extent equal to or greater than 20,000 km2 in recent 

years (Rabalais et al., 2002). Goolsby et al. (1999) estimated that the UMRB was the source 

of nearly 39% of the Mississippi nitrate load discharged to the Gulf between 1980 and 1996; 

35% of this load was attributed solely to Iowa and Illinois tributary rivers for average 

discharge years during the same time period (Goolsby et al., 2001). The UMRB was also 
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reported to contribute 39 and 26% of the total nitrogen and phosphorus loads to the Gulf of 

Mexico during 2001-2005 (USEPA, 2007). Libra et al. (2004) further estimated that Iowa 

streams contributed approximately 20% of the long-term nitrogen load to the Gulf of Mexico 

based on in-stream measurements performed during 2000-2002.  

The Boone River Watershed (BRW) is an intensively cropped region located in north 

central Iowa which was identified by Libra et al. as discharging some of the highest nitrogen 

loads during 2000-2002 among the 68 Iowa watersheds that were analyzed within their study. 

The Boone River Watershed has also been identified within the UMRB as both an area of 

freshwater biodiversity significance and a priority area for biodiversity conservation 

(Weitzell et al., 2003). The biodiversity conservation designation reflects the fact that the 

watershed has been identified as currently possessing a “relatively un-degraded stream 

ecosystem,” but that it is also very vulnerable to future increased degradation (Neugarten and 

Braun, 2005).  Potential biodiversity threats listed by Neugarten and Braun include 

consistently high in-stream nitrogen concentrations, farm production methods that may be 

ecologically harmful, and inadequate treatment of wastewater. Thus the mitigation of 

nitrogen losses to the BRW stream system is essential for maintaining the long-term viability 

of the stream ecosystem.  

A simulation project has been initiated in response to these issues that is designed to 

evaluate the potential economic and environmental impacts of alternative land use and 

management practices in the Boone River Watershed. The goal of the overall study is to 

identify strategies that can potentially mitigate loss of nitrates and other pollutants from 

agricultural cropland, which could lead to improved water quality in the Boone stream 

network as well as in downstream ecosystems such as the Gulf of Mexico. Insights gained 
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from the research may also be transferable to other watersheds that drain parts of the Des 

Moines Lobe, which are generally characterized as regions of high nitrogen export. 

Environmental impacts will be assessed within the study with the Soil and Water Assessment 

Tool (SWAT) model (Arnold and Forher, 2005), which has been used for a wide range of 

environmental conditions, watershed scales, and scenario analyses as described in Chapter 2.  

Calibration and validation of baseline SWAT streamflow and pollutant loss estimates 

are foundational for the subsequent scenario analyses that will be performed for the BRW. 

The relatively flat topography and intensely tile-drained landscapes that characterize the 

watershed as discussed in Chapter 3 pose challenges for calibrating the model. As discussed 

in Chapter 2, the vast majority of the SWAT studies reported in the peer-reviewed literature 

have relied on using the Runoff Curve Number (RCN) approach (USDA-NRCS, 2004) for 

partitioning precipitation between surface runoff and infiltration, as opposed to using the 

Green-Ampt method (Green and Ampt, 1911) which requires sub-daily precipitation inputs 

and other less readily available inputs. Successful applications of the standard RCN approach 

in SWAT have been reported for several previous Iowa studies (e.g., Jha et al., 2007; Secchi 

et al., 2007; Schilling and Wolter, 2007), which links the RCN runoff calculations with the 

available soil moisture capacity of the soil.  

Kannan et al. (2007) describe a modified RCN approach that relates the RCN runoff 

calculations to soil moisture depletion (computed as a function of evapotranspiration) rather 

than available moisture capacity, which has been added as an RCN option in SWAT version 

2005 (SWAT2005). They demonstrated that the modified RCN method can be calibrated by 

simply adjusting the “depletion coefficient,” and that better water yield prediction results 

were obtained with the alternative approach for watersheds representative of three U.S. 
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regions. Green et al. (2006) also used the modified RCN approach for a SWAT2005 

hydrologic calibration and validation study of the South Fork of the Iowa River watershed, 

which is located to the east of the BRW and is similarly characterized by intensive tile-

drained and cropped landscapes. They reported a 5:1 ratio of subsurface flow (mainly tile 

flow) to surface runoff, which according to Green (2007) was only attainable using the 

modified RCN approach. The implication of their results is that baseflow contributions to 

streamflow is much greater than what has been previously estimated with streamflow 

separation techniques or SWAT simulation studies for other watersheds in the region. This 

presents two interesting questions: (1) are their results correct?, and (2) what ratio of 

baseflow to surface runoff would be most representative of BRW hydrology, considering the 

flat topography, extensive tile drainage, and widespread depressional “pothole” features that 

characterize the majority of the watershed?      

Kannan et al. did not compare the two RCN methods for midwestern tile-drained soil 

conditions and also did not report the impacts of the two approaches on pollutant losses. 

Green et al. reported the overall hydrologic balance of the South Fork of the Iowa River 

watershed for SWAT simulations with and without tile drains, but did not compare the 

effects of the two RCN methods on the hydrologic balance of the simulated system. They 

also did not report pollutant loss impacts for the simulations they performed with the 

alternative RCN approach. Thus, there is a need to further investigate the effects of the two 

RCN methods on both the hydrologic balance and pollutant losses in an intensively tile-

drained watershed system. This research seeks to carry out this task in the context of a 

traditional RCN SWAT calibration/validation study for both BRW streamflow and pollutant 

losses, which includes comparisons with the results of applying the alternative RCN method. 
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Investigation of two specific nitrogen balance components is also performed: (1) the balance 

of predicted nitrate versus organic nitrogen loss at the landscape level, and (2) nitrogen  

fixation associated with soybean which was shown to be overpredicted in a recent SWAT 

study performed for Embarrass River watershed in Illinois (Hu et al., 2007). Hu et al. further 

point out that nitrogen balance assessments have rarely been performed in previously 

reported SWAT studies, underscoring the need for more research to ascertain the accuracy of 

nutrient cycling estimates provided by the model for different environmental conditions.       

Thus the specific objectives of this research are: (1) to calibrate and validate SWAT 

streamflow, sediment, nitrogen and phosphorus predictions for 2005 BRW baseline 

conditions (Chapter 3) using both the standard and alternative RCN methods, (2) to perform 

hydrologic sensitivity analyses for the alternative RCN approach, (3) to assess differences 

between the two RCN methods including implications for future SWAT applications in Iowa, 

and (4) to investigate predictions of nitrogen losses at the field level and also the amount of 

nitrogen fixation predicted for soybean.  

 
Watershed Description 
 

The BRW covers over 237,000 ha in six north central Iowa counties and is one of 131 

U.S. Geological Survey (USGS) 8-digit hydrologic unit code (HUC) watersheds (Seaber et 

al., 1987) that are located in the UMRB (Figure 1). It lies within the Des Moines Lobe 

geologic formation, which is the southern most portion of the central North American Prairie 

Pothole Region. An extensive network of subsurface tile drains and surface ditches have been 

installed throughout the watershed, resulting in the elimination of most wetland areas and an 

intensively cropped landscape. The watershed is dominated by corn and soybean production, 
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Figure 1. Location of the Boone River Watershed within the UMRB, and the subwatersheds, 
climate stations, and monitoring sites used for the SWAT simulations. 

 
 
which together account for almost 90% of the land use based on a field-level survey of the  

watershed performed in 2005 as described in Chapter 3. The survey also revealed that the use 

of mulch tillage is very extensive, that a limited number of terraces and other conservation 

practices are used on cropland with steeper slopes, and that field borders are used along some 

stream channels in flatter areas of the watershed. A total of 128 confined animal feeding 

operations (CAFOs) are also located in the BRW; 109 of these are swine operations with a 

total of about 480,000 head (Chapter 3). 
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The BRW has been subdivided into 30 subwatersheds for the SWAT simulations 

(Figure 1), which roughly align with 12-digit watersheds as discussed in Chapter 3. The 

location of available measured streamflow data, pollutant data, and climate data are also 

shown in Figure 1. An in-depth description of land use, conservation practices, and other 

BRW characteristics is provided in Chapter 3. 

 
Description of SWAT 

SWAT is a conceptual, physically based long-term continuous watershed scale 

simulation model that operates on a daily time step. In SWAT, a watershed is divided into 

multiple subwatersheds, which are then usually further subdivided into Hydrologic Response 

Units (HRUs) that consist of homogeneous land use, management, and soil characteristics 

that represent percentages of the respective subwatershed are (i.e., they are not spatially 

defined within the model). Flow generation, sediment yield, and non-point-source loadings 

from each HRU in a subwatershed are summed, and the resulting loads are routed through 

channels, ponds, and/or reservoirs to the watershed outlet. Key components of SWAT 

include hydrology, plant growth, erosion, nutrient transport and transformation, pesticide 

transport and management practices. Several enhancements have been built into SWAT2005 

including the alternative RCN approach and improved simulation of subsurface tile drain 

functions as described by Du et al. (2005; 2006). Further description of the model and 

summaries of a broad array of applications is provided in Chapter 2. The remaining 

discussion in this section focuses on the RCN approaches available in SWAT. 
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SWAT2005 RCN Options 

The RCN method was originally developed by Mockus (1969); recently updated 

documentation has been released by USDA-NRCS (2004) which includes a set of rainfall-

runoff tables for selected RCN values. The standard form of the RCN equation is: 

2( 0 2 )
( 0 8 )
P SQ
P S
− ⋅

=
+ ⋅

                                                        (1) 

where Q is the runoff depth (mm), P is the rainfall depth (mm), and S is the retention 

parameter (mm). The retention parameter is calculated as a function of the curve number: 

1000 10S
CN

= −                                                           (2) 

where CN is a dimensionless number ranging from 0 to 100 is referred to as the RCN in this 

discussion. The retention parameter S is related to watershed characteristics and antecedent 

moisture conditions (Kannan et al., 2007) and also represents the maximum difference that 

can occur between precipitation (P) and runoff (Q) for a specific storm and watershed 

conditions (Mishra and Singh, 2003).  

 Traditionally, S has been allowed to vary in SWAT (and many other models) as a 

function of the soil water content (Neitsch et al., 2005a) and is calculated as: 

( )max
1 2

1
exp

SWS S
SW w w SW

⎛ ⎞
= ⋅ −⎜ ⎟

⎜ ⎟⎡ ⎤+ − ⋅⎣ ⎦⎝ ⎠
                                     (3) 

where Smax is the maximum value that the retention parameter can reach on any given day 

(mm), SW is the soil water content (mm) of the entire soil profile (excluding the soil water 

amount that is held in the soil at wilting point), and w1 and w2 are shape coefficients that are 
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computed as function of field capacity (mm), soil water content for totally saturate conditions 

(mm), and other parameters. 

 The alternative RCN method uses a different retention parameter calculation 

approach first introduced by Williams and LaSeur (1976), in which S is varied as a function 

of accumulated evapotranspiration (ET). This is calculated in SWAT2005 (Neitsch et al., 

2005a) on a daily basis as: 

max

exp prev
prev o day surf

CNCOEF S
S S E R Q

S
− −⎛ ⎞

= + ∗ − −⎜ ⎟
⎝ ⎠

                             (4) 

where S is the retention parameter calculated for a specific day, Sprev is the retention 

parameter calculated for the previous day, Eo is the potential ET for the day, the CNCOEF is 

a weighting coefficient used in the calculations of the daily curve number based on the ET 

level (and is referred to as the “depletion coefficient” by Kannan et al.), and P and Q are the 

same as defined in equation 1. The basic effect of the alternative RCN approach is that S 

declines as the hydrologic system becomes more “ET dominated”, resulting in a lower CN 

and thus increased infiltration of rainfall. The reverse effect occurs as rainfall begins to 

dominate ET in the hydrologic regime. Williams (2007) points out that this approach tends to 

more realistically capture the water balance effects of gradual soil recharge processes, such 

as often happens over much of the U.S. during the transition from ET dominated summer 

periods into fall periods characterized by increased rainfall and subsequent soil water 

recharge.    

The effects of the S parameter calculations (equations 3 and 4) are updated in SWAT 

on a daily basis. Thus, the range of RCN values can vary widely over a long-term simulation 

such as the 21-year simulations reported in this study (as discussed below). 
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Previous Applications of the Alternative RCN Approach 

 Kannan et al. state the alternative RCN approach provides better results for shallow 

soils and soils that are characterized by low water storage. They demonstrated the effects of 

varying the CNCOEF in SWAT2005 over a theoretical range of 0.0 to 2.0 for two 8-digit 

watersheds located in the New England and Texas Gulf Major Water Resource Regions 

(MWRRs)6. They also stated that the “practical limits” of the CNCOEF were from 0.5 to 1.5, 

but did not further explain the reasons for these practical bounds7. Total water yield and ET 

remained relatively constant over the range of simulated CNCOEF values in both 8-digit 

watersheds. However, surface runoff and subsurface flow varied dramatically for the two 

simulated watersheds, but in different ways.  

Green et al. also used the alternative SWAT2005 RCN method to simulate the deeper 

tile-drained soils in the South Fork of the Iowa River watershed. Their calibrated 10-year 

hydrologic balance was split between 38.1 mm of surface flow and 154.3 mm of subsurface 

flow, with 136.4 mm being attributed to tile flow. They set CNCOEF to 0.2 for their 

calibrated simulations, which is outside the practical limits reported by Kannan et al. and the 

recommendations in the SWAT Users Manual (Neitsch et al., 2005b). They do not provide 

any further discussion regarding the theoretical implications of their choice of CNCOEF 

value. However, this does not appear to be a violation of any specific hydrologic principles 

based on insights provided by Williams (2007) as referenced above.   

 
 

                                                 
6See Figure 2 in Chapter 2 for a map of the 18 MWRRs that comprise the conterminous U.S.  
7Williams (2007) does not see any problem in applying the method outside the “practical bounds” or applying it 
to deeper soils; it was initially included in SWAT2005 to overcome problems of accurately simulating the water 
balance of soils characterized by low water storage in the Bosque River watershed in Texas.   
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Input Data 

The input data for the baseline BRW simulations are described in detail in Chapter 3 

and are briefly reviewed here. The baseline land use, tillage practice, and conservation 

practice data were collected via a field survey in 2005, which included estimates of crop 

rotation patterns as well as the growing season land use for that year. According to historical 

cropping patterns reported by USDA-NASS (2007), the BRW has been dominated by corn 

and soybean production since the early 1960s. Thus the 2005 land use is representative of the 

1986-2006 simulation period used for the baseline simulations. It is probable that 

conservation tillage increased during 1986-2006, but it is assumed for this study that the 

2005 tillage patterns are representative of the entire simulation period. It is not clear how the 

distribution of conservation practices has varied over time. However, the influence of these 

practices is relatively minor on both the baseline hydrologic and nonpoint source pollution 

estimates.  

The nutrient application rates are listed in Table 1, which were derived from 2005 

confined animal feeding operation (CAFO) information and fertilizer application rates 

reported during 2004 and 2005 as discussed in Chapter 3. These cropland nutrient inputs 

were applied as a function of crop rotation (Table 1) and are realistically consistent with the 

period in which in-stream nutrient measurements have been collected (October 1999 to the 

present). An additional key management input for the baseline simulations was that virtually 

all cropland was tile drained, following the methodology discussed in Chapter 3.   

Soil, topographic, climate and other required input data for the BRW SWAT baseline 

simulations are also discussed in detail in Chapter 3. The Hargreaves ET and the Variable 

Storage channel routing options were also used for the BRW simulations. 
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Table 1. Nutrient application rates on corn by nutrient source. 

Nutrient source Time of Year Crop rotation Application rate       
(kg ha-1)a,b 

Fertilizer (nitrogen) Fall Corn-soybean 183  

Fertilizer (nitrogen) Spring Corn-soybean 172 

Fertilizer (nitrogen) Spring Continuous corn 196 

Fertilizer (P2O5) Fall or spring Corn-soybean & 
continuous corn 49 

Manure nitrogen Spring Corn-soybean & 
continuous corn 190 

Manure phosphorus Spring Corn-soybean & 
continuous corn 69.8 

aMultiply these rates by 1.12 to obtain Equivalent application rates in lb/ac. 
bTotal nitrogen applied for each application rate. 

 
SWAT Calibration and Validation 

The SWAT calibration and validation approach used in this study is based on the 

approach described by Jha et al. (2007) for their study of the Raccoon River watershed in 

west central Iowa. A 21-year (1986-2006) simulation period was chosen to perform the BRW 

model testing, which was split into a 10-year (1986-1995) calibration period and an 11-year 

(1996-2006) validation period. The calibration period includes both the most extreme 

drought year (1987) and wet year (1993) of the past 56 years (1951-2006) as discussed 

further in Chapter 3.  

The calibration process was performed manually by adjusting key hydrologic, 

sediment, and nutrient related parameters (described below) including several suggested by 

Jha et al. (2007), Neitsch et al. (2005b), Santhi et al. (2001), and Green et al. (2006), and then 

comparing the model output with measured data. The initial focus of the calibration process 
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was on the overall watershed-level hydrologic balance and annual streamflows. Further 

hydrologic calibration was then performed by comparing the simulated monthly streamflows 

with corresponding measured values. The streamflow comparisons were performed by 

normalizing the predicted streamflows at the watershed outlet with the measured streamflows 

at the USGS flow gauge, which is located at the outlet of subwatershed 27 (Figure 2). This 

process was accomplished by converting both the predicted and measured streamflows from 

flow rates (m3 s-1) to equivalent depths (mm), which provides a consistent basis for 

comparisons between the two different locations.  

A fundamental question considered in the hydrologic calibration process was the 

partitioning of total flow between surface runoff and subsurface flow (baseflow) components. 

Schilling and Wolter (2005) reported that the total Boone River streamflow was comprised 

essentially of equal base flow and surface runoff contributions, based on assessment of long-

term streamflow records near the watershed outlet using an automated streamflow 

hydrograph separation program. This contrasts sharply with the results that Green et al. found 

for the neighboring South Fork of the Iowa River watershed, who reported that overall 

streamflow was comprised of 80% baseflow and 20% surface runoff. Further BRW 

streamflow analysis performed with an automated digital filter technique (Arnold and Allen, 

1999) for this study resulted in an estimated range of baseflow contribution between 40 and 

65%, with a mid-range estimate of 49% (which is generally the recommended estimate). 

Thus, an initial guide for the streamflow separation was to assume that 50% each was 

contributed from baseflow and surface runoff. However, specific investigation was also  



 213

 

Figure 2. Location of the USGS flow gauge at the outlet of subwatershed 27 relative to the 
watershed outlet (outlet of subwatershed 30), the location at which the predicted streamflows 

and pollutant loads results are reported for. 
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performed on the differing hydrologic balance responses of the two RCN methods, with a 

particular focus on differences in predicted relative contributions of surface runoff and 

baseflow to overall streamflow at the watershed outlet.   

Calibration of the sediment and nutrient outputs were performed following 

completion of the hydrologic calibration process. The pollutant calibration was performed on 

the basis of single monthly grab samples collected between January 2000 and December 

2006 at the watershed outlet (Figure 2), which are discussed further in Chapter 3. Validation 

of the pollutant estimates was not performed due to the limited number of measurements 

available for model testing. The water quality samples were extrapolated into equivalent 

monthly pollutant loads using the USGS Load Estimator (LOADEST) regression model 

(Runkel et al., 2004), which was developed from the predecessor LOADEST2 (Crawford, 

1996) and ESTIMATOR (Cohn et al., 1989) models. In-stream pollutant loads are estimated 

with LOADEST by developing a regression model as a function of streamflow, pollutant 

concentration, and other data inputs. The model is well documented and is accepted as a 

valid means of calculating annual solute load from a limited number of water quality 

measurements. However, the load estimation process of the model is complicated by the 

same problems experienced with other approaches; e.g., retransformation bias, data 

censoring, and non-normality. For example, Ferguson (1986) reported that the rating curve 

estimates of instantaneous load were biased and may have underestimated the true load by as 

much as 50 percent. 
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Calibrated Input Parameters 

The hydrologic calibration/validation process was carried out in what is best 

described as “parallel phases”, with the first phase centered on testing the traditional RCN 

method while the second phase focused on further testing of the alternative RCN method. 

The hydrologic-related calibration assumptions for the two SWAT simulation approaches are 

listed in Table 2. The key parameter adjustments for the standard RCN approach included 

reducing the CN values by 10%, the available water capacity (AWC) by .04 in the soil layer 

file, and the ESCO ET parameter to .82, and adjustment of the tile drainage parameters. The 

CN and AWC reductions resulted in less surface runoff, which was observed to be an initial 

problem due to overprediction of the total streamflow. A tile drainage depth of 1.2 m (4 ft) 

was assumed for all fields with subsurface drainage. The same depth was assumed for the 

“impervious soil layer”, which was added by Green et al. to SWAT2005 to further improve 

the simulated tile drainage response as reported. Green et al. assumed an impervious soil 

layer depth of 2.5 m for their SWAT simulation study. However, the model response was not 

adequate using deeper impervious depths such as 2.5 m for the BRW simulations, so 1.2 m 

was used. The time to drain soil to field capacity and drain tile lag time were set to 24 and 48 

hours, respectively. Several other parameters were also adjusted (Table 2) that had relatively 

minor effects on the hydrologic balance and streamflow results.  

The same values were used for the majority of the calibrated parameters for the BRW 

baseline based on the alternative RCN method (Table 2). A CNCOEF value of 0.6 was 

selected for the alternative method based on testing across the range of possible CNCOEF 

values, as discussed further in the Results and Discussion Section. No adjustments were 

made to the soil AWC inputs, because greater infiltration and subsurface flow occurred with  
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Table 2. Calibrated hydrologic parameters for the BRW baseline simulations  

Definition of adjusted SWAT parameter (or 
description of adjustment) 

SWAT 
parameter 
name 

Standard 
RCN 

approach 

Alternative 
RCN 

approach 

Curve number calculation method (0 versus 1) ICN 0 1 

Curve number reduction CN2 10% 10% 

Curve number coefficient (depletion 
coefficient) CNCOEF - 0.6 

Reduction in available water capacity  AWC -0.04 - 

Soil evaporation compensation factor ESCO 0.82 0.90 

Depth to subsurface drain (mm) DDRAIN 1200 1200 

Depth to impervious layer in soil profile (mm) DEP_IMP 1200 1200 

Time to drain soil to field capacity (hours) TDRAIN 24 24 

Drain tile lag time (hours) GDRAIN 48 48 

Surface runoff lag  SURLAG 0.5 0.5 

Delay time for aquifer recharge (days) GW_DELAY 30 30 

Baseflow recession constant ALPHA_BF 0.9 0.9 

Threshold water level in shallow aquifer for 
base flow (mm) GWQMN 0 0 

Revap coefficient GW_REVAP 0.02 0.02 

Threshold water level in shallow aquifer for 
revap (mm) REVAPMN 2 2 

Aquifer percolation coefficient RCHRG_DP 0 0 

 
 
the alternative RCN method. The ESCO ET parameter was set at 0.90 rather than 0.82 as 

used for the standard RCN method. All other values were held constant for the alternative 

RCN method simulations. The hydrologic calibration also formed the foundation for the 

calibration of the pollutant input parameters. Further calibration was then performed for the 

nutrient, sediment, and in-stream water quality parameters listed in Table 3. The exact  
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Table 3. Calibrated pollutant-related parameters for the BRW baseline simulations 

Definition of adjusted SWAT parameter (or 
description of adjustment) 

SWAT 
parameter 
name 

Standard 
RCN 

approach 

Alternative 
RCN 

approach 

Nutrient parameters    

Nitrate percolation coefficient NPERCO 0.8 0.8 

Organic N enrichment ratio for loading with 
sediment. ERORGN 4 4 

Organic P enrichment ratio for loading with 
sediment. ERORGP 2 2 

Initial concentration of nitrate in shallow 
aquifer (mg N L-1) SHALLST_N 10 10 

Concentration of soluble phosphorus in 
groundwater (mg P L-1) GWSOLP 0.05 0.05 

    

Sediment parameters    

Sediment re-entrainment parameter SPCON 0.0006 0.0006 

Sediment re-entrainment parameter SPEXP 2.2 2.2 

Channel erodibility factor CH_EROD 0.028 0.028 

Channel cover factor CH_COV 0.5 0.5 

    

In-stream parameters    

Rate coefficient for organic N settling RS4 0.001 0.001 

Rate constant for hydrolysis of organic N to 
NH4 

BC3 0.35 0.35 

Rate constant for biological oxidation of NO2 
to NO3 BC2 1.5 1.5 

Rate constant for biological oxidation of NH4 
to NO2 

BC1 2.5 2.5 

Organic phosphorus settling rate RS5 0.1 0.1 

Rate constant for mineralization of organic P 
to dissolved P BC4 0.02 0.02 
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same set of calibrated pollutant-related parameters was used for both the standard and 

alternative RCN method simulations. However, further adjustment of some of the calibrated 

input values would likely be necessary to obtain improved pollutant loss results with the 

alternative RCN method, as is discussed below in the Results and Discussion Section.  

 
Statistical Evaluation   

The predicted streamflows and pollutant loads were statistically evaluated with the 

regression correlation coefficient (R2) and the Nash-Sutcliffe model efficiency (E) coefficient 

(Nash and Sutcliffe, 1970). Both of these statistics have been used extensively to evaluate 

SWAT output in past studies as discussed in Chapter 2. The r2 is defined as: 
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where n is the number of observations, Oi and Pi are the individual corresponding observed 

and predicted values, and O and P are the arithmetic means of the observed and predicted 

values.  The R2 measures how well the simulated versus observed regression line approaches 

an ideal match and ranges from 0 to 1, with a value of 0 indicating no correlation and a value 

of 1 representing that the predicted dispersion equals the measured dispersion (Krause et al., 

2005). Krause et al. further point out that simulated predictions which systematically over- or 

under-predict observed values can still result in strong R2 values, which is an inherent 

weakness of the statistic and an important reason why it should not be the sole method used 

to evaluate model output. The E is defined as: 
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Krause et al. explain that the E ranges from -∞ to 1 and measures how well the simulated 

versus observed data match the 1:1 line (regression line with slope equal to 1). An E value of 

1 again reflects a perfect fit between the simulated and measured data. A value of 0 or less 

than 0 indicates that the mean of the observed data is a better predictor than the model output. 

Green et al. further state that the E can be used to judge the ability of a model to replicate 

individual observed values, which cannot be performed with the R2 statistic. The statistical 

results were judged to be acceptable if the R2 and E values exceeded 0.5, based on criterion 

proposed by Moriasi et al. (2007) as discussed in more detail in Chapter 2.  

 
Results and Discussion 

Table 4 presents the overall predicted 21-year hydrologic balances for the two 

different calibrated RCN approaches. The final calibrated results for the standard RCN 

approach result in a slightly higher total baseflow (tile flow plus groundwater and lateral 

subsurface flows) of 51.3% versus 48.7% of the total streamflow being attributed to surface 

runoff.  The average annual ET result of 572.7 mm was 68.5% of the total respective 

precipitation input, which is in the expected range of 60 to 70% as suggested by Hatfield 

(2006). Small in-stream transmission losses were also predicted.  

The results of the SWAT baseline that was based on the alternative RCN method 

(Table 4) were one of several hydrologic balances generated with the alternative RCN 

method (Table 5). The seven sets of output reported in Table 4 reveal that the predicted 

surface runoff and subsurface flow components were very sensitive to the choice of  
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Table 4. Predicted 21-year (1986-2006) average annual BRW water balances for the two 
SWAT baselines.  

Water balance component Standard RCN approach 
(mm) 

Alternative  RCN approach   
(mm)          

Precipitation 836.7 836.7 

Snowmelt 90.9 90.7 

Surface runoff 128.6 110.1 

Tile flow 110.1 121.3 

Groundwater flow 24.4 20.4 

Lateral subsurface flow 1.31 1.7 

Evapotranspiration (ET) 572.7 581.8 

Stream flow 264.2 253.3 

Transmission losses 3.1 2.4 
 

CNCOEF, with  the balances estimated with CNCOEF=0.2 and 1.5 being virtual opposites of 

each other.  At the same time, the estimated average annual ET and total streamflow  

remained almost constant across the range of CNCOEF values. Setting CNCOEF to 0.2 

resulted in baseflow being predicted as contributing 80% of the total streamflow, which was 

essentially identical to the results found by Green et al. The CNCOEF value of 0.6 resulted in 

relative predicted contributions of 43.5 and 56.6% for surface runoff and the combined 

baseflow components, which was the closest set of results as compared to the standard RCN 

method results while still maintaining a higher level of relative baseflow input. Thus, the 

alternative SWAT baseline was based on using a CNCOEF value of 0.6 (Table 3). This 

assumption reflects a position that a greater amount of overall streamflow could be 

contributed from baseflow sources, but not as great as the results reported by Green et al.  
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Table 5. Predicted 21-year (1986-2006) average annual BRW water balances for different 
CNCOEF values used in the SWAT simulations based on the alternative RCN method  

CNCOEF value 

 
.2 .5 .6 .8 1.0 1.2 1.5 

Precipitation 836.7 836.7 836.7 836.7 836.7 836.7 836.7 

Snowmelt 90.7 90.7 90.7 90.7 90.7 90.7 90.7 

Surface runoff 43.0 97.1 110.1 132.0 150.2 165.9 185.9 

Tile flow 180.1 132.8 121.3 102.3 86.4 72.8 55.8 

Groundwater flow 27.3 23.0 20.4 19.9 18.3 17.0 15.4 
Lateral subsurface 
flow 

2.1 1.8 1.7 1.6 1.5 1.4 1.2 

Evapotranspiration 583.8 582.0 581.8 580.8 580.0 579.0 577.3 

Stream flow 252.5 254.7 253.3 255.8 256.4 257.1 258.3 
Transmission 
losses 

1.3 2.2 2.4 2.7 2.9 3.1 3.3 

 
 

Comparisons between simulated and measured annual streamflows are shown for the 

two SWAT approaches in Figures 3 and 4, and corresponding monthly streamflow  

comparisons are shown in Figures 5 and 6. The results of both the annual and monthly 

comparisons were similar between the standard RCN method (Figures 3 and 5) and the 

alternative RCN method (Figures 4 and 6). Both approaches resulted in strong calibration and 

validation statistics that ranged from 0.74 to 0.99 for the annual streamflow comparisons and 

from 0.88 to 0.92 for the monthly comparisons. The overall annual average streamflow 

predicted with the alternative RCN method was virtually identical to the measured 

streamflow (Figure 4), while the long-term annual average was slightly overpredicted (3%) 

when the standard RCN method was used (Figure 3). The streamflows were generally 

underpredicted during the 1986-1995 calibration period and overpredicted during the  
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Figure 3. Simulated versus measured BRW annual streamflows during the 1986-1995 
calibration and 1996-2006 validation periods for the Boone River watershed using the 

standard RCN method. 
 
  

 
 

Figure 4. Simulated versus measured BRW annual streamflows during the 1986-1995 
calibration and 1996-2006 validation periods for the Boone River watershed using the 

alternative RCN method (CNCOEF=0.6). 
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Figure 5. Simulated versus measured BRW monthly streamflows during the 1986-1995 
calibration and 1996-2006 validation periods for the Boone River watershed using the  

standard RCN method. 
 

 

 
 
 

Figure 6. Simulated versus measured BRW monthly streamflows during the 1986-1995 
calibration and 1996-2006 validation periods for the Boone River watershed using the  

alternative RCN method (CNCOEF=0.6). 
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1996-2006 validation period. Using the alternative RCN method resulted in noticeable 

improvement of the computed statistics for the annual streamflow validation, with the R2 and 

NSE statistics shifting from 0.87 to 0.92 and 0.74 to 0.88 between Figures 3 and 4, 

respectively. This was due mainly to the increased overprediction of annual streamflows that 

occurred when the standard RCN method was used. However, the overpredictions shown 

between the two methods for the monthly streamflow comparisons (Figures 5 and 6) were 

very similar, which was reflected in the similar R2 and NSE statistics computed between the 

two baselines. It is also useful to note that any of the CNCOEF values (Table 4) would result 

in similar streamflow comparison results for the alternative RCN simulations reported here.   

 
Environmental Indicators 

 Comparisons between the predicted annual sediment loads and the measured 

sediment loads estimated with LOADEST are shown in Figures 7 and 8. Similar results are 

shown for monthly comparisons in Figures 9 and 10. The predicted annual sediment loads 

(and overall annual average sediment load) declined slightly between the SWAT baseline 

executed with the standard RCN method (Figure 7) and the alternative SWAT baseline 

(Figure 8), which would be expected due to the lower surface runoff that was predicted using 

the alternative RCN approach. The computed annual statistics were very similar between the 

two simulations, and the E statistic actually improved for SWAT baseline based on the 

alternative RCN method. The monthly statistics predicted for both approaches ranged from 

.67 to .79, and weakened slightly for the alternative SWAT baseline (Figure 10). Minor 

improvements could be obtained by performing additional calibration for the sediment loads 

estimated with the alternative RCN method. 
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Figure 7. Simulated versus measured BRW annual sediment loads during 2000-2006 for the 
Boone River watershed using the standard RCN method. 

 
 

 

 
 

Figure 8. Simulated versus measured BRW annual sediment loads during 2000-2006 for the 
Boone River watershed using the alternative RCN method (CNCOEF=0.6). 
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Figure 9. Simulated versus measured BRW monthly sediment loads during 2000-2006 for the 
Boone River watershed using the standard RCN method. 

 
 

 
 

Figure 10. Simulated versus measured BRW monthly sediment loads during 2000-2006 for 
the Boone River watershed using the alternative RCN method (CNCOEF=0.6). 
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 Comparisons of predicted versus measured annual total phosphorus loadings are 

shown in Figures 11 and 12. Counterpart comparisons on a monthly basis are shown in 

Figures 13 and 14. The total phosphorus loads were more accurately simulated using the 

standard RCN method as evidenced by the more accurate annual average load (Figure 11) 

and the stronger E statistic (0.66 versus 0.57 for the alternative approach). However, the 

estimated measured load was greatly underestimated in 2001 for the standard SWAT baseline 

(Figure 11), and the 2004 and 2005 annual total phosphorus loads were more accurately 

simulated when the alternative RCN method was used (Figure 12). 

 The R2 and E statistics computed for the monthly total phosphorus load comparisons 

in Figures 13 and 14 were generally stronger than those determined for the annual 

comparisons in Figures 11 and 12. The monthly statistics ranged from an E value of 0.66 for 

the alternative SWAT baseline to an R2 of 0.79 for the SWAT simulation based on the 

standard RCN method. However, several total phosphorus peaks were clearly more weakly 

predicted using the alternative RCN method including the peak loads estimated in 2000, 

2003, 2004, and 2006 (Figure 14). Overall, the relatively strong statistics generated for the 

monthly comparisons indicate that the model accurately tracked both the magnitudes and 

trends of the measured total phosphorus loads, for both of the baseline simulation 

approaches.  

 The weaker total phosphorus outputs that resulted from using the alternative RCN 

method further demonstrate the need to re-calibrate some of the parameters listed in Table 3 

that were specifically calibrated for the SWAT baseline using the standard RCN method. 

This recalibration issue is more acute for the nitrogen simulations as discussed below.  
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Figure 11. Simulated versus measured annual total phosphorus loads during 2000-2006 for 
the Boone River Watershed using the standard RCN method. 

 
 

 
 

Figure 12. Simulated versus measured annual total phosphorus loads during 2000-2006 for 
the Boone River Watershed using the alternative RCN method (CNCOEF=0.6). 
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Figure 13. Simulated versus measured monthly total phosphorus loads during 2000-2006 for 
the Boone River Watershed using the standard RCN method. 

 
 
 

 
 

Figure 14. Simulated versus measured monthly total phosphorus loads during 2000-2006 for 
the Boone River Watershed using the alternative RCN method (CNCOEF=0.6). 
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Figures 15 and 16 show comparisons of predicted and measured annual nitrate loads. 

Similar monthly comparisons are shown in Figures 17 and 18. The annual average nitrate 

loads predicted with the standard RCN method (Figure 15) and the alternative RCN method 

(Figure 16) were both slightly below the estimated measured load and also similar in 

magnitude to each other. The predicted annual nitrate loads for the alternative SWAT 

baseline were higher in some years, such as 2001 and 2004, as compared to the baseline 

based on the standard RCN method. The reverse was also true, with lower loads predicted in 

2000 and 2001 for the alternative RCN method relative to the corresponding loads predicted 

using the standard RCN method. These results can also be observed from the plots of 

monthly loads for the standard and alternative baselines in Figures 17 and 18, respectively.  

The computed statistics showed some degradation in the results when the alternative 

RCN method was used, especially for the E value which declined from 0.50 (Figure 15) to 

0.35 (Figure 16). Almost all of the r2 and E statistics exceeded 0.50 for both the annual and 

monthly comparisons; the monthly statistics showed the greatest accuracy, which ranged 

from 0.61 for the alternative SWAT baseline to 0.70 and 0.71 for the standard SWAT 

baseline. However, several of the monthly peaks were underpredicted by both approaches, as 

shown for 2002, 2003, and 2006 in Figures 17 and 18, which indicates some weakness in 

SWAT’s ability to capture all of the pertinent nitrate loss trends.  

 The comparisons of the predicted organic nitrogen loads with the corresponding 

estimated measured loads are shown on an annual basis in Figures 19 and 20 and for the 

monthly results in Figures 21 and 22. The graphical results and strong r2 and E statistics 

shown in Figure 19 confirm that the annual organic nitrogen loads were accurately simulated 

when the standard RCN method was used, both on an annual and annual average basis.  
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Figure 15. Simulated versus measured annual nitrate loads during 2000-2006 for the Boone 
River Watershed using the standard RCN method. 

 
 
 

 
 

Figure 16. Simulated versus measured annual nitrate loads during 2000-2006 for the Boone 
River Watershed using the alternative RCN method (CNCEOF=0.6). 
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Figure 17. Simulated versus measured monthly nitrate loads during 2000-2006 for the Boone 
River Watershed using the standard RCN method. 

 
 
 

 
 

Figure 18. Simulated versus measured monthly nitrate loads during 2000-2006 for the Boone 
River Watershed using the alternative RCN method (CNCOEF =0.6). 
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Figure 19. Simulated versus measured annual organic nitrogen loads during 2000-06 for the 
Boone River Watershed using the standard RCN method. 

 
 
 
 

 
 

Figure 20. Simulated versus measured annual organic nitrogen loads during 2000-06 for the 
Boone River Watershed using the alternative RCN method (CNCOEF=0.6). 
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Figure 21. Simulated versus measured monthly organic nitrogen loads during 2000-06 for the 
Boone River Watershed using the standard RCN method. 

 
 
 

 
 

Figure 22. Simulated versus measured monthly organic nitrogen loads during 2000-06 for the 
Boone River Watershed using the alternative RCN method. 
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However, the graphical comparisons shown in Figure 20 reveal immediately that the 

calibrated nutrient parameters failed for the annual organic nitrogen loads estimated with the 

alternative RCN method. A strong R2 value of 0.85 still resulted (Figure 20), indicating that 

the alternative SWAT approach captured the general trends in annual organic nitrogen loads. 

But the E value of -0.87 (Figure 20) that resulted when the alternative RCN method was used 

confirms that the model did not accurately simulate the annual organic nitrogen loads during 

the 2000 to 2006 time period.  

 The monthly R2 and E statistics of 0.51 listed in Figure 21 reveal that the monthly 

organic N load trends were not captured as accurately by SWAT as the corresponding annual 

organic nitrogen loads (Figure 19), when the standard RCN method was used. However, both 

the annual and monthly organic nitrogen load results shown in Figures 19 and 21 confirm 

that the model replicated the magnitude of organic nitrogen loads in an accurate manner. 

However, this positive outcome collapsed when the alternative RCN method was used, as 

already discussed for the annual organic N estimates and further shown by the weak monthly 

comparison results shown in Figure 22.  

 
Additional Nitrogen Loss and Cycling Investigations  

 Further investigation was performed regarding: (1) the effect of modifying the 

alternative RCN CNCOEF value on nitrogen losses, and (2) assessing other aspects of the 

predicted nitrogen cycling in these simulations. The additional testing of the alternative RCN 

method was performed using the same calibrated parameters listed in Tables 2 and 3, with 

the exception that the CNCOEF set equal to 0.2. The effect of this change on the annual and 

monthly nitrate loadings at the BRW outlet is shown in Figures 23 and 24. The average  
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Figure 23. Simulated versus measured annual nitrate loads during 2000-06 for the Boone 
River Watershed using the alternative RCN method (CNCEOF=0.2). 

 

 

Figure 24. Simulated versus measured monthly nitrate loads during 2000-06 for the Boone 
River Watershed using the alternative RCN method (CNCEOF=0.2). 
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annual load shown in Figure 23 was slightly below the corresponding measured value and 

was also similar to the previously discussed average annual nitrate loads shown in Figures 15 

and 16. However, the annual predicted nitrate loads in Figure 23 varied greatly from those 

shown in Figures 15 and 16, especially for 2000 and 2001 which were essentially the reverse 

of the estimated measured loads for those two years. The predicted monthly patterns of 

nitrate loss (Figure 24) also varied greatly from the monthly nitrate series predicted for the 

other two simulations (Figures 17 and 18). The weak R2 and E statistics shown in Figures 23 

and 24 further confirm the inadequacy of this third simulation option. Even worse results 

occurred for predictions of organic nitrogen loadings using this second version of the 

alternative RCN method (not shown); the organic N loads were essentially nonexistent due to 

a lack of simulated surface runoff and apparently inappropriate values for other parameters.       

 These results with the CNCOEF set equal to 0.2 for the alternative RCN method 

reinforce the need to recalibrate SWAT with more appropriate parameter values than those 

currently used as listed in Table 3, when using the alternative RCN method. The results also 

help frame issues regarding the relative amounts of organic nitrogen versus nitrate losses 

predicted by the model at the landscape level, and the subsequent effects of in-stream 

kinetics and transformation effects on the ultimate predicted levels of the nitrogen indicators 

at the watershed outlet.  

Table 6 lists the average watershed unit loadings for the three simulations described 

in this study. These loadings are generated in the standard SWAT output file and represent an 

average over all land use in the watershed, with cropland the obvious dominant influence. 

The average per hectare loadings predicted with the calibrated SWAT baseline that was 

based on the standard RCN method were nearly identical, at just under 17 kg ha-1 for both 
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Table 6. Average predicted nitrogen loadings per hectare over the entire BRW for the 
standard RCN method and two different versions of the alternative RCN method 

Simulation approach 
Organic nitrogen 

loadings 
(kg ha-1) 

Nitrate loadings 
(kg ha-1) 

Standard RCN method 16.9 16.7 

Alternative RCN method (CNCOEF=0.6) 14.4 20.4 

Alternative RCN method (CNCOEF=0.2) 5.6 27.1 
 

indicators. However, the predicted nitrate loadings at the watershed outlet were roughly an 

order of magnitude higher than the predicted organic nitrogen loadings (e.g., Figure 17 

versus 19), which was consistent with the estimated measured loads. This resulted from the 

application of the calibrated in-stream parameters listed in Table 3, which transformed much 

of the initial organic nitrogen loadings into nitrate and also generated smaller amounts of 

ammonia (NH4-N) and nitrite, as well as affecting the phosphorus loadings.  

In contrast, the amount of unit losses of nitrate increased relative to the organic 

loading levels as the CNCOEF was reduced for the alternative RCN method (Table 6), 

resulting in 59 and 82% of the total landscape-level nitrogen loadings being attributed to 

nitrate when the CNCOEF was set to 0.6 and 0.2, respectively. These increased amounts of 

landscape-level nitrate losses are intuitive for a system such as the BRW, which would be 

expected to export high loadings of nitrate via subsurface tile drains to the internal stream 

network. The weaker overall watershed nitrate and organic nitrogen loading results found 

with the alternative RCN method, especially when the CNCOEF was set to 0.2, are clearly 

due in part to calibrated in-stream and other parameters (Table 3) which are inconsistent with 

this approach. However, an interesting outcome of the model testing for this study is the fact 

that all three simulation approaches resulted in essentially the same overall annual average 
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nitrate loading at the watershed level. The reason for this result is not currently clear, but may 

be due to the effects of the in-stream parameters that needs to be further researched. 

One additional noteworthy outcome of this research is the fact that the SWAT results 

were very sensitive to the choice of in-stream parameter values. This result differs from 

previous research reported by Migliaccio et al. (2007) who found that SWAT was generally 

insensitive to the in-stream kinetic functions provided in the model in their study of the 60 

km2 War Eagle Creek watershed in northwest Arkansas. One reason for these differences 

may be the much larger size of the BRW as compared to the Arkansas watershed. These 

results echo the point made in Chapter 2 that additional research of the SWAT in-stream 

routines is needed, including for future BRW applications. 

 
Soil Nitrogen Fixation   

 Hu et al. report that soybean nitrogen fixation was predicted by SWAT to be in the 

range of 172 to 206 kg ha-1 in their study of the Embarras River in central Illinois, which was 

considerably higher than the commonly accepted range of 102 to 124 kg ha-1 for the region. 

The average soybean nitrogen fixation rate predicted for this study was 174 kg ha-1, which 

again is much higher than the soybean nitrogen fixation range of 0 to 100 kg ha-1 reported by 

Russelle and Birr (2007) for most of Iowa, and the specific rate of only 31 kg ha-1 estimated 

for the BRW as part of the overall study (Russelle, 2007). Assuming the approach used by 

Russelle and Birr is accurate, it can be concluded that SWAT is currently greatly 

overpredicting soybean nitrogen fixation. It is not totally clear what all the implications are 

of this weakness for policy scenario analyses with the model. However, it is clear that this 

problem should be addressed in future SWAT applications. Additional constraints have 
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already been incorporated in more recent versions of the code that appear to predict more 

accurate soybean nitrogen fixation estimates for the BRW, based on initial test simulations. 

Additional testing will be pursued of these modified routines in future BRW research. 

 
Conclusions 

This study reports a successful calibration and validation of SWAT version 2005 for 

the Boone River watershed (BRW) located in north central Iowa. The testing of the model 

using the standard runoff curve number (RCN) method resulted in strong hydrologic and 

pollutant loss estimates, as evidenced by the graphical and statistical results presented in the 

paper. The SWAT2005 simulation approach based on the standard RCN method will be used 

for current scenario simulations for the BRW. However, there is a need to further investigate 

issues regarding the relative amounts of organic nitrogen versus nitrate losses that were 

predicted to occur at the field level and also apparent overprediction of soybean nitrogen 

fixation. Improved simulation of these processes is likely needed to obtain the most accurate 

results possible for different scenarios of interest for the BRW, including scenarios depicting 

different levels of expanded corn acreage in response to increased ethanol production 

demands. Efforts have already been initiated by the SWAT developers to address these issues 

and improved accuracy can be expected in future versions of the model.   

An alternative hydrologic simulation approach was also investigated in this study that 

was based on a new RCN option available in SWAT2005. This alternative RCN method 

relates the daily curve number estimation in the model to water depletion caused by 

evapotranspiration (ET), rather than to available soil water as has been traditionally used with 

the RCN technique. The results of applying the alternative RCN method show that the 
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SWAT hydrologic response is very sensitive to the choice of curve number coefficient 

(CNCOEF), which is the depletion coefficient referred to by Kannan et al. Decreasing levels 

of CNCOEF result in increasing levels of baseflow, especially tileflow, and corresponding 

decreasing levels of surface runoff. A second set of SWAT calibration/validation results 

presented for the alternative RCN method with the CNCOEF set to 0.6 again showed that the 

model accurately replicated streamflows and also provided reasonably accurate sediment, 

total phosphorus, and nitrate results, although the accuracy was weaker than the results found 

for the standard RCN method. However, very inadequate predictions resulted for the organic 

nitrogen load predictions. The pollutant loss results using the alternative RCN method point 

to the clear need to recalibrate sediment- and nutrient-related calibration parameters as well 

as in-stream parameters used in the calibration process. This need was underscored even 

more when a CNCOEF value of 0.2 was used with the alternative RCN method, which 

resulted in very unsatisfactory nitrate and organic nitrogen predictions.         

The results of this study also raise questions as to which hydrologic simulation 

approach is the most appropriate for the BRW. The traditional approach using the standard 

RCN method results in an overall hydrologic balance that is consistent with hydrologic 

separation techniques applied to the watershed. However, a reduction in the available soil 

water capacity for the inputted soil layer data had to be used in order to obtain this balance. 

This step has negative effects on the estimation of corn yields as discussed in Chapter 5, 

while better corn yield estimates resulted from using the alternative RCN method. The 

alternative RCN method also results in a greater relative level of subsurface flow, and also 

increased amounts of nitrate losses from the BRW agricultural landscapes. These results may 

more accurately reflect the actual hydrologic and nitrogen loss processes occurring in the 
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BRW. An additional “pothole routine” option is available in SWAT2005 that was 

successfully used by Du et al. (2005; 2006) in their simulations of the Walnut Creek 

watershed. Invoking this option could more accurately capture depressional area processes 

occurring in the BRW and better simulate the hydrologic and nitrogen balances.  
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CHAPTER 5: AN IN-DEPTH ASSESSMENT OF CORN AND SOYBEAN 
YIELDS PREDICTED WITH SWAT FOR THE BOONE RIVER 

WATERSHED 
 

A paper to be submitted to the Environmental Modelling & Software 

Philip W. Gassman1,2, Richard M. Cruse3, Rameshwar S. Kanwar4, Steven K. Mickelson4, 
and Michael R. Burkart5 

 
 

Abstract 

The Soil and Water Assessment Tool (SWAT) has been extensively used for 

hydrologic and water quality analyses over a wide range of watershed scales and conditions. 

However, testing of the crop growth component in the model has rarely been reported. In this 

study, SWAT-predicted corn and soybean yields generated from two separate baseline 

simulations were compared with comparable historical yields for the Boone River watershed 

in north central Iowa. The two SWAT baselines represent applications of the standard runoff 

curve number (RCN) versus an alternative RCN method in the model. Corn and soybean 

yields estimated with the Environmental Policy Impact Climate (EPIC) model are also 

compared with the SWAT yields and measured yields, as an additional benchmark. The 

1986-2006 long-term average corn yields estimated with the standard and alternative SWAT 

baselines were 127.1 and 143.3 bu ac-1, respectively; these yields underestimated the 

historical average of 147.9 bu ac-1 as reported by USDA-NASS. The long-term average corn 

yield estimated by EPIC was 165.4 bu ac-1, which greatly exceeded the 1986-2006 average 
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historical yield but was close to the 1997-2006 average corn yield of 163.5 bu ac-1. In 

contrast, the 1986-2006 average soybean yields estimated for the standard and alternative 

SWAT baselines were 49.3 and 51.6 bu ac-1, which were considerably higher than the mean 

historical yield of 43.6 bu ac-1. The mean EPIC soybean yield was 41.6 bu ac-1 was slightly 

below the measured means and was again closer in magnitude to recent historical yields. 

Statistical analysis of annual yield comparisons indicates weak year-to-year replication of the 

historical yields by both models, except for the SWAT yields predicted in 1986-1997 (if 

1993 is ignored). The SWAT model greatly underpredicted corn yields for the 1998-2006 

time period, indicating a lack of accounting for recent genetic advances. Further analysis 

indicated that the SWAT corn yield predictions were sensitive to tillage, with higher yields 

predicted for corn managed with conventional tillage as compared to mulch and no till. The 

SWAT soybean yield predictions and the EPIC corn and soybean yield predictions were 

generally insensitive to tillage. Overall, the results indicate a need to update crop parameters 

in SWAT especially, to more accurately simulate current corn and soybean yields in the 

region. Modifications to the generic crop growth routine used in both models may also 

improve annual predictions of both crops. 

 
Introduction 

Field-, watershed-, and regional-scale models have emerged as key tools for 

evaluating water quality, climate change, soil carbon sequestration, and other environmental 

problems over a wide range of conditions. Models that are used for environmental 

assessments of agricultural production systems require the ability to depict a broad array of 

cropping systems and generate reliable estimates of crop biomass and yields. Models used for 
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agricultural-related water quality analyses also need to be able to estimate the impacts of 

different cropping and management systems on sediment, nutrient, and other nonpoint source 

losses from cropland at the scale the model is designed for.   

Two models that have been widely used for assessing the nonpoint source pollution 

impacts of different cropping and management systems are the Environmental Policy Impact 

Climate (EPIC) model (Williams, 1990; Izaurralde et al., 2006; Gassman et al., 2005) and the 

Soil and Water Assessment Tool (SWAT) model, which is described in Chapter 2. A generic 

crop growth routine is used in the EPIC model which has also been directly adapted in 

SWAT.  The generic crop growth modeling approach provides a very flexible platform in 

both models for simulating complex modeling systems consisting of both annual and 

perennial crops, as well as other vegetation. This approach also supports assessments of 

different tillage, nutrient application, and other management practices on water quality 

impacts. However, the generic approach also represents a trade-off in modeling flexibility 

versus accuracy of replicating crop growth and yields; in general, this approach is designed 

to replicate long-term average yields more accurately than interannual yield variability.   

A number of studies have been reported in the literature that describe comparisons 

between EPIC-predicted crop yields and measured crop yields, including several studies that 

focused only on EPIC’s ability to replicate measured yield data (Gassman et al., 2005) 

Gassman et al. report that several studies found that EPIC could replicate both long-term and 

annual yields while other studies concluded that EPIC could replicate measured mean or 

median yields but not observed yield variability. Some studies found that EPIC tended to 

underestimate peak crop yields and overestimate low crop yields (Bryant et al., 1992; Touré 

et al., 1994) while Warner et al. (1997) found that EPIC exhibited a bias toward 
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overprediction of corn yields. Overall, EPIC has been found to be able to replicate long-term 

mean yields for a variety of cropping systems, management practices, and environmental 

conditions (Gassman et al. 2005).   

In contrast, very few SWAT studies report comparisons with measured crop yields, 

which was highlighted as a future research need in Chapter 2. Kannan et al. (2007) reported 

the need to estimate heat units external to the model and then enter those for each simulated 

HRU, for a SWAT simulation of a 1.4 km2 watershed in the United Kingdom. They report 

using locally published values for some of the crop parameters including maximum leaf area 

index, canopy height, and root depth. They state that these changes resulted in much 

improved yields although they do not provide any actual comparisons between simulated and 

measured yields. Nelson et al. (2006) report using an iterative process for a SWAT 

simulation of the 3,000 km2 Delaware River watershed in Kansas, in which they adjusted 

selected SWAT crop growth parameters until the simulated yields were considered 

acceptable in comparison with U.S. Department of Agriculture (USDA) National 

Agricultural Statistics Service (NASS) historical yields (USDA-NASS, 2007) estimated for 

1991-94. However, they did not report which parameters they adjusted or show comparisons 

between the measured and simulated yields.  

Two SWAT studies report crop yields for the U.S. Corn Belt region. Hu et al. (2007) 

show graphical comparisons of predicted versus measured corn and soybean yields for a 

SWAT application of the Embarras River watershed in eastern Illinois. The average 

predicted yields were close to the corresponding measured yields in both the 1994-2002 

calibration and 1985-1993 validation periods as demonstrated by relative errors that ranged 

from -10 to +6%. The Nash-Sutcliffe modeling efficiencies (E) values (Nash and Sutcliffe, 
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1970; Chapters 2 and 4) were poor for the calibration period; the authors point out that the 

weak soybean E result was due in part to the fact that there was little variation in the 

measured soybean yields. No mention is made of the possible implications of increasing crop 

yields, which are discernible for the plotted measured corn yields. Jha et al. (2007) reported a 

SWAT-predicted average dry weight corn yield of 7.1 t ha-1 for the Raccoon River watershed 

in west central Iowa, which translates to an average yield of 128.5 bu ac-1. This corn yield 

result is well below measured corn yields reported by USDA-NASS (2007) for the Raccoon 

River region in recent years, which indicates a need to improve the SWAT corn yield 

predictions for that watershed area as well as Iowa in general.   

The goal of this study is to build on this previous research by further investigating the 

accuracy of SWAT-predicted corn and soybean yields versus corresponding measured yields 

for the Boone River watershed (BRW) in north central Iowa, which is briefly described here 

and is discussed in more detail in Chapter 3. Comparisons with EPIC yields are also reported 

as an additional benchmark and to provide more insight into possible ways to improve the 

SWAT yield predictions (and vice versa). Investigation of tillage effects on crop yields was 

also performed with both models. This is a relevant issue for the BRW and the U.S. Corn 

Belt region in general, due to expansion of corn-dominated crop rotations driven by 

increasing ethanol production. A concurrent shift into greater use of conventional tillage is 

also likely, to maintain higher yields in continuous corn sequences as discussed by Secchi et 

al. (2007). This shift into continuous corn managed with conventional tillage could also 

result in increased negative environmental externalities, due to the reduction of protective 

residue cover for agricultural landscapes.   
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The specific objectives of the study are: (1) to compare SWAT-predicted corn and 

soybean yields versus historical USDA-NASS yield data for the BRW region over 1986-

2006 (simulation period described in Chapter 4), (2) to compare EPIC-predicted yields for 

the same time period and region with the USDA-NASS yield data and SWAT yields, and (3) 

investigate the effects of tillage practices on SWAT- and EPIC- predicted yields.  

 
Watershed Description 

The BRW covers over 237,000 ha in six north central Iowa counties and is one of 131 

U.S. Geological Survey (USGS) 8-digit hydrologic unit code (HUC) watersheds (Seaber et 

al., 1987) that are located in the UMRB (Figure 1). It lies within the Des Moines Lobe 

geologic formation, which is the southern most portion of the central North American Prairie 

Pothole Region. An extensive network of subsurface tile drains and surface ditches have been 

installed throughout the watershed, resulting in the elimination of most wetland areas and an 

intensively cropped landscape. The watershed is dominated by corn and soybean production, 

which together account for almost 90% of the land use based on a field-level survey of the  

watershed performed in 2005 as described in Chapter 3. The survey also revealed that the use 

of mulch tillage is very extensive, that a limited number of terraces and other conservation 

practices are used on cropland with steeper slopes, and that field borders are used along some 

stream channels in flatter areas of the watershed. A total of 128 confined animal feeding 

operations (CAFOs) are also located in the BRW; 109 of these are swine operations with a 

total of about 480,000 head (Chapter 3). 

The locations of climate stations in the region, SWAT subwatershed boundaries, 

USGS flow gauge, and Iowa Department of Natural Resources (IDNR) in-stream pollutant  
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Figure 1. The location of the Boone River watershed within Iowa and the Upper Mississippi 

River Basin. 
 
 
monitoring are shown in Figure 1. The pollutant sampling at the watershed outlet reveals 

elevated levels of nitrates, especially during the spring runoff season. The BRW was 

identified by Libra et al. (2004) as discharging some of the highest nitrogen loads during 

2000-2002 among the 68 Iowa watersheds that were analyzed within their study; their study 

further concluded that 20% of the nitrogen load discharged via the Mississippi River to the 

Gulf of Mexico originated in Iowa during that three-year time period.  
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Methodology 

 The SWAT corn and soybean yields described in this study were generated as part of 

the baseline simulations reported in Chapter 4 and reflect averages calculated across the 

2,927 HRUs that were constructed for the baseline simulations. The baseline simulations 

were performed for 1986-2006 which were split into calibration (1986-1995) and validation 

(1996-2006) periods. Two sets of SWAT simulated yields are presented here that correspond 

to the two SWAT baselines described in Chapter 4, which were based on the standard runoff 

curve number (RCN) method (standard baseline) and the alternative RCN method 

(alternative baseline) in which the curve number coefficient was set to 0.6. These yields were 

then compared with historical crop yield data that were derived from USDA-NASS county 

level averages as described below, and with a single set of EPIC-predicted corn and soybean 

yields that were averaged across 18,325 BRW simulations performed at the Common Land 

Unit (CLU) level as discussed in Chapter 3.  

 
BRW Historical Crop Yields 

Historical corn and soybean yield estimates were obtained from USDA-NASS (2006) 

for 1951-2006 for the six counties shown in Figure 2. These yields were then averaged across 

the six counties to create a single annual historical yield dataset for 1951-2006 (Figure 3). 

The yield data in Figure 3 serve as the measured yields for assessing the accuracy of the 

SWAT and EPIC simulated yields during 1986-2006. These historical yields also illustrate 

the extraordinary yield increases that have occurred since the middle of the previous century, 

especially for corn. Strong linear relationships result when regressions are plotted for both 

crops for the entire 1951-2006 historical period, with r2 values of 0.83 and 0.76 for the long- 
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Figure 2.  The location of the BRW in reference to the six north central Iowa counties. 

 
 
term corn and soybean yield trends, respectively. Hart (2005) has advanced the theory that 

recent genetic advances have resulted in even greater accelerated yield gains for corn since 

approximately 1993; this idea warrants further exploration but is not pursued here.   

 Both SWAT and EPIC provide crop yield estimates on a dry-weight basis. These 

simulated yields were translated from a dry-weight basis to a wet-weight basis using the 

following equation (Atwood, 2005): 

 
yield  = model_yield * 0.4461 * 2000 * moisture factor / unit conversion factor                  (1) 
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Figure 3. Long-term average six-county average NASS corn and soybean yields which are 
assumed to be the Boone River watershed measured yields for the same time period. 

 
 
 
where yield is the translated crop yield (bu ac-1), model_yield is the SWAT or EPIC 

predicted yield (t ha-1), the moisture factor equals 1.13 for both corn and soybean (which 

assumes a 13% for the wet weight basis), and the unit conversion factor equal 55.7 for corn 

and 60 for soybean. A different moisture content assumption could be used in these 

conversions such as a moisture factor equal to 1.15 which would be equivalent to 15% 

moisture content for both crops. The simulated yields were evaluated graphically and with  

E and r2 statistics, which are described in detail in Chapters 2 and 4. 
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Results and Discussion 

The 1986-2006 predicted yields averaged across the two SWAT baselines and the 

EPIC simulations are plotted versus the long-term measured NASS yields for corn in Figure 

4 and soybean in Figure 5. Both plots show that the crop yields predicted with the alternative 

SWAT baseline were higher than the standard SWAT baseline; this was much more 

pronounced for predicted corn yields, where 145.7 bu ac-1 was predicted for the alternative 

baseline versus 127.1 bu ac-1 for the standard baseline. The previously discussed reduction of 

the available water capacity (AWC) was observed over iterative simulations to be a key 

factor in the lower yields predicted for the accepted SWAT baseline. The use of the 

alternative CN method may have also benefited the yield predictions for the alternative 

baseline, by routing more water through the soil subsurface.  

Both the standard and alternative SWAT baseline average corn yields underpredicted 

the 1986-2006 measured corn yield average of 147.9 bu ac-1, although the mean yield 

predicted for the alternative baseline was less than 2 bu ac-1 below the historical mean. The 

difference becomes more pronounced when considering the 1997-2006 measured average 

corn yield, which was 163.5 bu ac-1. In contrast, the average corn yield predicted by EPIC 

was 165.4 bu ac-1, which exceeded both the 1986-2006 and 1997-2006 measured averaged 

corn yields. It appears that the SWAT yield predictions need upward adjustment while the 

opposite could be considered for the EPIC corn yields, although the average is consistent 

with more recently measured yields and is closer to realistic yield predictions for future 

scenarios projecting from 2007 onward6.  

                                                 
6The USDA 2007 average corn yield estimate for Iowa is 175 bu ac-1 (Brasher, 2007); yields exceeding 180 bu 
ac-1 or even higher appear to be more realistic for future scenarios based on the 2007 Iowa average estimate and 
current measured corn yield trends for the BRW 
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Figure 4. Average simulated corn yields for 1986-2006 versus NASS average six-county 
corn yields for the Boone River Watershed. 
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Figure 5. Average simulated soybean yields for 1986-2006 versus NASS average six-county 
soybean yields for the Boone River Watershed. 
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An opposite result was found for the average soybean yields predicted with the two 

SWAT baselines (Figure 3), which were 49.3 and 51.6 bu ac-1 during 1986-2006 for the 

standard and alternative baselines; both average yields exceeded the measured average yield 

of 43.6 bu ac-1 for the same time period. Both the standard and alternative SWAT average 

soybean yield estimates were in the range of the most recent measured soybean yields 

reported in 2005-2006 and would be more realistic for future scenario projections than the 

previously discussed corn yields. However, these predicted SWAT yields are too high for the 

1986-2006 time period. The EPIC average yield (41.7 bu ac-1) was considerably lower than 

the two yields estimated with SWAT, which again is an opposite result of the predicted corn 

yields shown in Figure 2. However, the EPIC average yield was much closer to the measured 

average yield of 43.6 bu ac-1 for 1986-2006. These soybean yield results also point to the 

need for some parameter adjustments in both models. 

 
Annual yield comparisons 

Figures 6 and 7 show 1986-2006 annual comparisons between the SWAT- and EPIC- 

predicted corn and soybean yields, and the corresponding measured yields. The relative 

differences between the different simulated and measured yields reflect the previous 

discussion regarding average simulated yields.  

The standard SWAT baseline corn yields clearly underpredict most of the measured 

yields across the entire time period (Figure 6), except for 1993, 1994, and 1997; 1993 was an 

extreme flood year in which all 99 Iowa counties were declared disaster areas, so it is not 

surprising the models overpredicted the corn yields that year. Despite underpedicting the 

yields in most years, the standard SWAT baseline accurately mirrors the measured corn yield  
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Figure 6. Measured versus simulated corn yields for 1986-2006. 
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Figure 7. Measured versus simulated soybean yields for 1986-2006. 

  



 260

trends for virtually the entire 1986-1997 period, and particularly picks up well on the 1988 

and 1991 drought years. The standard SWAT baseline yields begin to diverge from the 

measured yields in noticeably greater magnitudes starting about 1998, and the 

underpredictions reach approximately 50-60 bu ac-1 by the end of the simulation period.  

The alternative SWAT baseline corn yields are consistently higher throughout the 

1986-2006 simulation period as compared to the standard baseline yields (Figure 6). The 

year-to-year corn yield estimates are also generally consistent with the measured yields, 

although the alternative corn yields do not appear as accurate as the standard baseline yield 

estimates (but there are several years in which the alternative baseline yields are, or are 

almost, identical to the measured yields). The same divergence from the measured corn 

yields begins again around 1998 (Figure 6), although the differences are not as extreme in 

most years. The weak predictions in the latter half of the simulation period for both SWAT 

approaches indicates that the current SWAT corn parameters need updating to capture the 

most recent scientific advances that have been incorporated into current corn hybrids, which 

are resulting in ever-increasing yield gains. 

The predicted EPIC corn yields overpredict the measured corn yields in most years, in 

contrast to the SWAT corn yield estimates (Figure 6). The 1991 EPIC prediction does not 

capture the drought impacts reflected in the measured data of that year, and 1992 is greatly 

overpredicted too. However, EPIC does capture more of the yield loss that occurred in 1993 

as compared to the SWAT predictions. The EPIC corn yield estimates track the annual 

measured yields reasonably well during much of the 1986-2006 simulation period. The 

undepredictions that occur during 2002-2006 may again reflect the need for crop parameter 

updates in order to capture the most recent genetic gains.  
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The soybean yield comparisons shown in Figure 7 further draw out the 

overpredictions of the SWAT simulations versus the lower predictions of the EPIC yields, 

that were discussed previously for the annual average soybean yield comparisons shown in 

Figure 5. The general soybean yield trends of the standard SWAT baseline again accurately 

reflect the measured yield trends across most of the 1986-2006 simulation period. The 

standard SWAT baseline clearly captures soybean yield declines in 1988 and 1991 that the 

alternative SWAT baseline totally misses, and also replicates the 2003 yield decline more 

accurately. This result is likely an artifact of the AWC reduction, in which the reduced soil 

AWC is better reflecting drought conditions that existed during these years. The yield trends 

of the two SWAT baselines are very similar apart from those three years and nearly identical 

in many of the years.  

The EPIC-predicted soybean yields are much closer to the measured yields 

throughout the entire simulation period and are essentially identical in some of the years 

(Figure 7). The 1988-1991 and 2003 soybean yields were overpredicted while the 1992, 

1994-1995, and 2004-2006 were underpredicted by EPIC. These results would suggest that 

crop parameter adjustments may improve the predictions of both models. However, it does 

not appear that the model parameters are out-of-sync with current soybean genetics, unless 

the EPIC underpredictions at the end of the simulation period reveal an ongoing trend.  

 

Effect of Harvest Index adjustment 

One suggested step to improve the SWAT corn yield predictions was an adjustment 

of the Harvest Index (HI) value from 0.50 to 0.55 (Kiniry, 2007), which is one of the inputs 

included in the crop parameter table. The resulting corn yield prediction shift for the standard 
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SWAT baseline is shown in Figure 8. This adjustment does bring the simulated yields closer 

to the measured yields for most of the years during the 1986-2000 period. However, the yield 

estimates degraded to some degree in a few of the years relative to the original predicted 

yields; e.g., in 1992 and 1997. The predicted yields in most of the last eight years (except 

2000) still greatly lag the measured yields, especially in 2003-2006. This would indicate that 

HI adjustments alone are not going to address recent genetic advances.  

Regression lines computed for the NASS measured yields and the SWAT accepted 

baseline yields (HI=0.50) reinforce the divergence that occurs between the simulated and 

measured yields as the simulation period progresses towards 2006, and that SWAT is not  

able to capture the upward technology trend corn hybrids. In fact, the SWAT yields decrease 

slightly over the simulation period, which may be climatically driven or a function of slightly 

increasing nitrogen stress over the duration of the simulations. 

 
Statistical Assessment 

Tables 1 and 2 list R2 and E statistics (described in Chapters 2 and 4) for three 

different time periods are presented (1986-1997, 1998-2006, and 1986-2006) for the 

previously described SWAT and EPIC simulations. The 1986-1997 time period reflects the 

early half of the simulation period in which the SWAT corn yields were closer to the 

measured yields, while 1998-2006 reflects the time period of increasing divergence between 

the SWAT and measured corn yields. Statistics for the entire time period are also presented. 

Additional statistics are also presented for 1986-1997 and 1986-2006 without 1993, which 

was the year corn yields were greatly overestimated in SWAT due to inability to account for 

extreme ponding in fields. The same time periods are used for the soybean yield estimates for  
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Figure 8. Measured versus simulated yields with two HI values for the SWAT accepted 
baseline yield estimates. 

 

consistency. However, additional statistics were generated without 1992 for the 1986-1997 

and 1986-2006 soybean statistics; the simulated soybean yield estimates greatly 

underpredicted the measured yields in 1992.  

The majority of the corn statistics are quite poor; the E statistics are dominated by 

negative values and most of the R2 values are very low. However, strong statistics were 

computed for the SWAT corn yields during 1986-1997, if 1993 was not included. The 

SWAT corn yield statistics were all poor for the 1986-2006 time period and for the entire 

simulation duration, reflecting the problems with the large yield underpredictions that 

occurred during most of 1998-2006.  The EPIC statistics were in general poor across all three  
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Table 1. Regression and Nash-Sutcliffe statistics computed for corn yield estimates 
1986-1997 1986-2006 

with 1993 without 1993 
1998-2006 

with 1993 Without 1993 Simulation run 
R2 E R2 E R2 E R2 E R2 E 

SWAT (standard 
baseline; HI=0.50) .22 -.06 .79 .60 .12 -7.5 .05 -2.8 .18 -.57 

SWAT (standard 
baseline; HI=0.55) .23 -.29 .79 .66 .12 -4.3 .05 -.48 .18 -.02 

SWAT (alternative 
baseline; HI=0.50) .10 -.59 .64 .65 .05 -3.4 .0 -.49 .05 .12 

EPIC .34 -.79 .12 -.39 .01 -.25 .39 -.08 .20 .12 

 
Table 2. Regression and Nash-Sutcliffe statistics computed for soybean yield estimates 

1986-1997 1986-2006 
with 1992 without 1992 

1998-2006 
with 1992 without 1992 Simulation run 

R2 E R2 E R2 E R2 E R2 E 

SWAT (standard 
baseline; HI=0.50) .25 -1.1 .64 -.69 .74 -.82 .41 -.54 .68 -.76 

SWAT (alternative 
baseline; HI=0.50) .09 -2.5 .29 -2.2 .55 -2.2 .21 -1.9 .38 -2.0 

EPIC .16 -.35 .36 .28 .11 -.07 .19 -.11 .31 .26 

 
 
time periods, although stronger than SWAT for the entire 1986-2006 simulation period. 

Removing 1993 weakens the EPIC R2 results for the corn statistics, but does provide some 

improvement in the E values. However, the 1993 EPIC corn yield was more accurate than the 

1993 corn yields estimated in the two SWAT simulations.  

The majority of the R2 and E statistics for the predicted soybean yields were again 

poor, and all but two of the E values were negative. The standard SWAT baseline yields were 

the most accurate in terms of replicating the yield trends, especially when 1992 was removed, 

as evidenced by the stronger R2 values. The SWAT alternative baseline also captured the 

1998-2006 soybean yield trends reasonably well. The EPIC predictions were generally 

weaker, although positive E values of .28 and .26 was computed for 1986-1997 and 1986-
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2006, if 1992 was excluded. The stronger E values found with EPIC reflect the overall more 

accurate magnitude of the EPIC soybean predictions.  

 
Sensitivity to tillage effects 

The sensitivity of SWAT and EPIC yield predictions to different tillage levels was 

also evaluated for the BRW. The baseline tillage levels were based on a field-level survey 

performed for the 2005 growing season as described in Chapter 3. Figure 9 shows the 

resultant distribution of tillage across the BRW, which are defined in terms of the following 

three tillage levels: conventional (< 30% residue cover), mulch (30% < residue<90% cover), 

and notill (> 90% residue cover); mulch tillage was by far the dominant tillage practice in the 

watershed.  

The yield estimations were split out by tillage for the SWAT simulations by: (1) 

defining a different crop number in the SWAT crop parameter table for each crop-tillage 

combination , (2) setting an appropriate minimum C factor for the crop-tillage combination in 

the SWAT crop parameter table, (3) simulating appropriate tillage passes for each crop-

tillage combination, and (4) retrieving the yield estimates using the “Output Yield Summary” 

reporting function available in the latest versions of the interactive SWAT (i_SWAT) 

software (CARD, 2007). This approach results in three different corn and soybean parameter 

lines being set up in the SWAT crop parameter table; the only difference between the three 

corn entries and between the three soybean entries are the different minimum C factor values. 

EPIC estimates the C factor internally on a daily basis, so there is no need to split out 

separate crop-tillage combinations in the EPIC crop parameter table.   
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Figure 9. Distribution of tillage in the BRW based on the 2005 field-level survey.  
 
 

The resultant yield estimations for the two SWAT baselines (HI=0.50) and the EPIC 

simulations are listed in Table 3 by crop and tillage level (conventional, mulch, or no-till). At 

present it is not clear if the choice of C factor has any effect on the predicted SWAT yields.  
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Table 3. BRW average yields by tillage level for the two SWAT baselines (HI=.50) and 
EPIC 

Simulation run Crop Tillage level Crop 
numbera 

USLE C 
factora 

Estimated 
average 

yield       
(t ha-1) 

Estimated 
average 

yield      
(bu ac-1) 

Area  
(km2) 

corn conventional 100 .3 7.88 142.5 54.3 SWAT 
(standard 
baseline)  Mulch 101 .15 6.99 126.5 1016.8 

  Notill 102 .04 6.66 120.5 27.3 

 soybean conventional 103 .3 2.84 47.7 40.0 

  Mulch 104 .15 2.94 49.4 940.1 

  Notill 105 .08 2.92 49.1 26.4 

corn conventional 100 .3 8.71 157.6 54.3 SWAT 
(alternative 
baseline)  Mulch 101 .15 7.89 142.8 1016.8 

  Notill 102 .04 7.46 135.0 27.3 

 soybean conventional 103 .3 3.00 50.5 40.0 

  Mulch 104 .15 3.07 51.6 940.1 

  Notill 105 .08 3.11 52.3 26.4 

EPICb corn conventional - - 9.05 163.2 37.5 

  Mulch - - 9.21 165.9 908.1 

  Notill - - 9.10 162.0 27.7 

 soybean conventional - - 2.56 43.0 53.5 

  Mulch - - 2.50 42.0 986.6 

  Notill - - 2.50 41.7 24.2 
aThe crop numbers and corresponding USLE minimum C factors are input to the SWAT 
simulations via the SWAT Crop Parameter table.  
bThe EPIC areas are preliminary and need to be further checked. 
 
 
However, it would be expected that the tillage passes are affecting soil properties which in 

turn could impact the estimated yields. It is also possible that the specific soils that were 

simulated within each tillage class could impact the overall average crop yield for the given 
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tillage category. The predicted yields clearly show that SWAT is favoring the conventional 

tilled corn over conservation tillage and that yields decrease as tillage decreases. The 

percentage differences in yields ranged from 9 to 15% less for mulch till and notill corn 

relative to conventionally tilled corn (Table 4). An opposite relationship was generally 

predicted for soybean, although the effects were generally minor (Tables 3 and 4). 

The tillage effects on EPIC corn and soybean predictions were minor (Tables 3 and 4). The 

highest corn yield predicted by EPIC was for mulch tillage rather than conventional, although 

the difference in yield estimates was only 2%. EPIC predicted higher yields for 

conventionally tilled soybean relative to soybean managed with mulch tillage or no till, but 

the maximum absolute percentage difference was only 3%. Overall, EPIC exhibited less 

sensitivity to tillage differences as compared to SWAT.   

Wilhelm and Wortman (2004) report that mean corn yields measured over 16 years 

near Lincoln, Nebraska were 19% less in continuous corn managed with no till versus a 

moldboard plow system used in continuous corn. Continuous corn managed with different 

mulch tillage systems (chisel plow, disk, or ridge till) resulted in mean yields in between the 

moldboard plow and no till yields. However, tillage effects were smaller for the 16-year 

mean corn yields measured in a rotation of corn and soybean, with the moldboard plow 

yields be only 5% higher than the no till yields. Wilhelm and Wortman also found that 

soybean yields were unaffected by tillage treatment. Vetsch and Randall (2002) report 

similar corn yield results in a four-year (1996-2000) study near Waseca, Minnesota, in which 

corn yields were significantly higher in coventionally tilled continuous corn versus two  

mulch tillage systems and no till (which had the lowest mean corn yields). They also found  
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Table 4. Percentage differences between tillage categories for the BRW SWAT baselines 
(HI=.50) and EPIC simulations. 

Simulation run Crop Tillage comparsion Percentage 
difference 

Corn mulch relative to conventional -11 SWAT (standard 
baseline) 

 notill relative to conventional -15 

  Notill relative to mulch -5 

 soybean mulch relative to conventional 4 

  notill relative to conventional 3 

  Notill relative to mulch -.5 

Corn Mulch relative to conventional -9 SWAT (alternative 
baseline) 

 notill relative to conventional -14 

  Notill relative to mulch -5 

 soybean Mulch relative to conventional 2 

  notill relative to conventional 4 

  Notill relative to mulch 1 

EPIC Corn Mulch relative to conventional 2 

  notill relative to conventional -.7 

  Notill relative to mulch -2 

 soybean Mulch relative to conventional -2 

  notill relative to conventional -3 

  Notill relative to mulch -.6 
 
 
that tillage effects did not signficantly impact corn yields for corn grown in rotation with 

soybean. However, Vetsch et al. (2007) report that greater corn yields and economic returns 

occurred within a corn-soybean rotation when the soybeans were managed with zone-tillage 

or 20-cm deep fall strip-tillage versus full-with tillage, for a second study conducted during 

2000-2004 near Waseca. Some effect of tillage was observed on soybean yields, but this did 
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not affect economic returns. Perez-Bidegan et al. (2007) also found that mean corn yields for 

corn grown in rotation with soybean and managed with a disk-chisel tillage system were 0.8 t 

ha-1 higher than corresponding corn yields produced with strip tillage and no till systems, in a 

three-year (2002-2004) experiment near Newton, Iowa.       

The tillage effects reported here for the SWAT and EPIC crop yields were dominated 

by a cropping sequence of corn grown in rotation with soybean. The lack of tillage impact on 

soybean yields are consistent with the field studies reviewed above. However, the same 

studies provide conflicting reports regarding the effect of tillage on corn yields within a corn-

soybean rotation. Further research is needed to confirm the reasons why the tillage effects on 

corn, within a corn-soybean cropping system, are occurring in SWAT and whether these 

effects are consistent with published research. Comparisons of tillage effects on corn yields 

simulated within continuous corn versus a corn-soybean cropping system are also needed for 

both models.  

 
Conclusions 

 
Corn and soybean yield predictions generated with SWAT and EPIC were compared 

with historical yields reported by USDA-NASS over a 21-year time period (1986-2006) for 

the Boone River watershed (BRW) that covers over 237,000 ha in north central Iowa. The 

SWAT yields were generated for two different baselines reported in Chapter 4, which 

represent applications of the standard runoff curve number (RCN) versus an alternative RCN 

method in the model. The 1986-2006 long-term average corn yields estimated with the 

standard and alternative SWAT baselines were 127.1 and 143.3 bu ac-1, respectively; these 

yields underestimated the historical average of 147.9 bu ac-1. The SWAT model greatly 
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underpredicted corn yields for the 1998-2006 time period, indicating a lack of accounting for 

recent genetic advances. The long-term average corn yield estimated by EPIC was 165.4 bu 

ac-1, which greatly exceeded the 1986-2006 average historical yield but was close to the 

1997-2006 average corn yield of 163.5 bu ac-1. In contrast, the 1986-2006 average soybean 

yields estimated for the standard and alternative SWAT baselines were 49.3 and 51.6 bu ac-1, 

which were considerably higher than the mean historical yield of 43.6 bu ac-1. The mean 

EPIC soybean yield was 41.6 bu ac-1 was slightly below the measured means and was again 

closer in magnitude to recent historical yields.  

Statistical analysis of annual yield comparisons indicated generally weak year-to-year 

replication of the historical yields by both models, except for the estimated SWAT yields 

predicted in the first half of the simulation period. The majority of the E statistics were 

negative and over half of the r2 statistics were below 0.3. However, the SWAT corn yield 

predictions resulted in r2 and E statistics ranging between .60 and .79 for 1986-1997, if 1993 

was ignored. The comparison of the simulated SWAT soybean yields with the historical 

yields also resulted in an r2 values of 0.74 and 0.55, respectively, for the overall 1986-2006 

time period. These statistics indicate that SWAT is tracking the year-to-year pattern of the 

measured soybean yields. However, the negative E statistics found for the same comparisons 

underscore that the magnitude of the yields were too high, and that the yield estimates need 

to be corrected in order to obtain overall reliable predictions. In general, the trends estimated 

with the EPIC were less accurate as compared to SWAT, which is an interesting result 

considering that the EPIC crop growth submodel is considered to be more refined and 

updated as compared to the SWAT counterpart. 
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Further analysis indicated that the SWAT corn yield predictions were sensitive to 

tillage, with higher yields predicted for corn managed with conventional tillage as compared 

to mulch and no till. The SWAT soybean yield predictions and the EPIC corn and soybean 

yield predictions were generally insensitive to tillage. An overview of several field studies 

reveals that corn yields are sensitive to tillage when grown in a monoculture corn rotation, 

with conventional tilled corn usually outyielding corn managed with mulch or no till systems. 

Similar results can result for corn yields in a corn-soybean rotation, although some studies 

show that the tillage effects are much less pronounced.  

Overall, the results indicate a need to update crop parameters, especially in SWAT, to 

more accurately simulate current corn and soybean yields in the region. Modifications to the 

generic crop growth routine used in both models may also improve annual predictions of 

both crops. There is also a need to further study the effects of tillage on crop yields in both 

SWAT and EPIC, to ascertain whether current simulated effects are logical, and to determine 

if modifications are needed in both models to improve their sensitivity to the effects of 

tillage. 
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CHAPTER 6. GENERAL CONCLUSIONS 
 

 The state of Iowa faces a complex set of agricultural production and environmental 

issues, which are being compounded due to emerging biofuel production trends. Concern is 

intensifying that corn-based ethanol production will result in greater nonpoint source 

pollution, in both Iowa waterways and further downstream including the Gulf of Mexico. 

Enhanced tools are needed to evaluate the ramifications of current biofuel production trends 

on water quality and other environmental indicators. Watershed-scale computer models are 

key tools that will likely be increasingly used to assess the impacts of biofuel production and 

other alternative management and cropping system scenarios on water quality. 

 The Soil and Water Assessment Tool (SWAT) model has emerged as a viable option 

for watershed-scale water quality assessments. The extensive review in Chapter 2 

underscores the fact that SWAT has been successfully used for a wide range of watershed 

sizes, environmental conditions, management practices, and cropping systems in many 

regions across the globe. However, the review also revealed that SWAT has performed 

inadequately for some conditions, that further testing is needed to strengthen the predictive 

accuracy of the model, and that code enhancements will be needed in future versions to 

expand the range of conditions and practices that the model can reliably be applied to.  

   The development of the Boone River watershed (BRW) data layers and modeling 

system (Chapter 3) provides an excellent framework for further testing of SWAT, especially 

in regards to conditions representative of the Des Moines Lobe ecological region which 

covers the north central region of Iowa including the BRW. The compilation of data at the 

Common Land Unit (CLU) level provides a very intensive set of land use, soil, conservation 
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practice, and management practice data at the field-scale level, which can be aggregated in 

different ways to create the SWAT hydrologic response units (HRUs). This framework 

supports both testing of SWAT for baseline conditions as well as applications of the model 

for alternative BRW biofuel simulations and other alternative management and cropping 

practice scenarios. The framework also supports execution of the field-scale models such as 

Century and the Environmental Policy Impact Climate (EPIC) model, which can be 

configured at the CLU level for evaluations of soil carbon sequestration and other 

environmental indicators in response to various BRW scenarios. 

  Two different methods were used for performing the SWAT BRW hydrologic 

calibration and validation that were described as the standard runoff curve number (RCN) 

approach and the alternative RCN approach (Chapter 4), in which the curve number 

coefficient (CNCOEF) value was set to 0.6. The simulated annual and monthly streamflows 

at the watershed outlet were similar for both approaches over the 1986 to 2006 simulation 

period, even though the surface runoff and subsurface runoff (including tile flow) 

components differed markedly between the two methods. Furthermore, it was found that 

varying the CNCOEF for the alternative approach resulted in tremendous differences 

between the relative balances of surface runoff and subsurface flow, but very little variation 

occurred in the overall predicted streamflow. Strong graphical and statistical agreement was 

found for both methods in evaluations of simulated annual and monthly streamflows versus 

measured streamflow values at the watershed outlet.  

 Additional calibration of SWAT for the BRW showed that simulations based on 

standard RCN approach adequately replicated measured annual and monthly loads of 

sediment, total phosphorus, nitrate, and organic nitrogen, based on graphical and statistical 
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evaluations (Chapter 4). Corresponding simulations using the alternative RCN approach 

revealed weaker predictions by the model, especially for organic nitrogen, which point to the 

need for additional or different calibration steps. However, further analyses showed that there 

may be fundamental problems underlying the environmental calibrations performed in this 

study, including overestimation of soybean nitrogen fixation and underestimation of nitrate 

levels predicted to escape cropped landscapes. The latter appears to be a particularly acute 

problem for the standard RCN approach, which resulted in equal levels of predicted nitrate 

and organic nitrogen losses from cropped HRUs. This result appears inconsistent with typical 

BRW nitrogen loss pathways (e.g., nitrate losses to streams via subsurface drainage tile) and 

nitrogen constituents measured in the BRW stream system. 

 Corn and soybean yields predicted with the two alternative SWAT hydrologic 

approaches and with the EPIC model were compared versus historical yields measured in the 

BRW region (Chapter 5). The average annual corn yield estimated with the standard RCN 

approach was over 20 bu ac-1 below the counterpart historical average annual corn yield for 

the 21-year simulation period of 1986 to 2006. The average annual corn yield estimated with 

the alternative RCN approach was only about 4.5 bu ac-1 below the historical average. Both 

SWAT approaches tracked the annual corn yield trends well for 1986 to 1997 (with the 

exception of 1993), but the corn yields for 1997 to 2006 were greatly underpredicted by both 

SWAT approaches. Corn yields were also found to be sensitive as a function of tillage level 

in SWAT, but not in EPIC. The EPIC model predicted a much higher average annual corn 

yield across the entire 21-year simulation period, which exceeded the historical average corn 

yield by over 17 bu ac-1 but which was close to the 1997-2006 historical average corn yield. 

The annual historical corn yields were not well predicted by EPIC. The average annual 
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predicted soybean yields for 1986 to 2006 were overpredicted by the two SWAT approaches 

by an average of almost 7 bu ac-1. The corresponding EPIC average annual soybean yield 

underpredicted the long-term historical soybean yield by 2 bu -1. Trends in annual historical 

soybean yields were generally accurately predicted by SWAT (i.e., high R2 values), 

especially using the standard RCN approach. The crop yield predictions reveal the need for 

further testing and refinement of the crop yield estimates in both SWAT and EPIC, the need 

to update the SWAT corn growth parameters to better reflect current hybrids, and the 

possible need to modify the code to better simulate annual and long-term average crop yields.  

 
Recommendations 

 The results of this study indicate that further testing of SWAT is needed for the BRW. 

Precise water balance, nitrate loss, and other measurements are lacking for the region, which 

interjects uncertainty regarding which SWAT hydrologic simulation approach is the most 

accurate option to use for the BRW. However, the flat, heavily-tiled cropped landscapes that 

dominant the watershed and the large proportion of nitrate found in in-stream nitrogen 

measurements intuitively suggest a streamflow system dominated by subsurface flow 

components (including tile drains) that carry large amounts of nitrate. Thus, the next testing 

phase should focus on using the alternative RCN approach, perhaps with a lower CNCOEF 

value than the value of 0.6 used for this study. This would result in more water being routed 

through subsurface pathways. In turn, this would result in greater nitrate fluxes being 

simulated via subsurface flows, especially tile drains, as compared to the lower nitrate 

amounts estimated using the standard RCN approach in this study. The second phase of 
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testing should also investigate more thoroughly other aspects of nutrient cycling, including 

estimates of soybean nitrogen fixation and corn nitrogen uptake.  

 There is also a need to improve crop yield estimates for the BRW SWAT simulations, 

especially the corn yield estimates. Initial progress should be obtainable through simple 

adjustments of both corn and soybean crop growth parameters, in consultation with model 

developers. However, more extensive adjustments will likely be required for corn, to obtain 

yield estimates that are more consistent with present day hybrids. Further investigation is also 

warranted regarding the apparent tillage effect on corn yields found for the SWAT 

simulations in this study.  

 Finally, it is recommended that a recently updated SWAT2005 model be used in 

future BRW testing, rather that the present code which is over two years old now. The 

SWAT code is continuously evolving and current 2005 versions contain a number of updates 

relative to older versions of the SWAT2005 model1. Some testing of a more recent 

SWAT2005 code has already been performed for the BRW, which showed more accurate 

predictions of crop yields as compared to the version of the model used for this study. The 

latest release of SWAT2005 will also support enhanced scenarios for the BRW and other 

watersheds, including newly introduced capabilities to simulate biomass removal of corn and 

other crops (an important biofuel scenario option) and more realistic depiction of grassed 

waterways.  

 
1It could be more straight forward to update the model version more frequently; e.g., to SWAT2007 or 
SWAT2005.1. However, the current reality is that the model name is being held static as SWAT2005, and 
several versions of that version now exist.  
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