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ABSTRACT 

Typical methods for determining ethanol production from biomass feedstocks involve 

the use of High Performance Liquid Chromatography (HPLC) or Gas Chromatography (GC). 

Such methods require expensive instruments and the time required to process a large number 

of samples can delay experimental campaigns and process development. The object of this 

study was to develop a simple, high-throughput, low-cost ethanol assay using CO2 as a 

surrogate for ethanol production during fermentation.  A chemi-visual sensor was developed 

based on visually measuring color change due to pH in a buffered indicator solution 

separated from the fermentation chamber by a CO2-permeable membrane.  

Carbon dioxide was introduced into the fermentation chamber of the chemi-visual 

sensor while the pH and red-green-blue (RGB) color values of the phenol red indicator 

solution were recorded.  A CCD camera (WebCam) and image analysis software package 

developed in Matlab® was used to record the RGB values of the chemi-visual solution at 

each CO2 loading.  Calibration curves were developed for the following relationships: CO2 

vs. pH, pH vs. RGB, and CO2 vs. RGB.   

The chemi-visual sensor solution was used to monitor CO2 production in a series of 

glucose fermentations.  The CCD camera recorded the RGB signal and samples of the 

fermentation broth were taken throughout the experiments.  The use of green signal change 

in the chemi-visual solution as a predictor for ethanol production can account for 

approximately 92% of the change in actual ethanol content for real-time ethanol production 

values.  Multiple fermentations were conducted in order to calibrate the chemi-visual sensor 

and to characterize the accuracy of ethanol predictions.  It was determined that it would be 

most appropriate to use this sensor as a predictor of final ethanol production values since 
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dynamic effects of fermentation kinetics, gas transfer, and green signal variability make 

predictions of real-time ethanol values less reliable.
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CHAPTER 1. 

GENERAL INTRODUCTION 

Objectives 

The primary objective of this research was to develop and characterize a low-cost 

system to measure carbon dioxide gas produced during fermentation as a surrogate for 

ethanol production.  A secondary objective was to evaluate the potential to miniaturize the 

sensing system to allow the monitoring of a large number of fermentations simultaneously.   

Literature Review 

The U.S. Renewable Fuel Mandate requires fuel producers to produce at least 36 

billion gallons of renewable fuel by the year 2022 (The White House, 2008).  Of those 36 

billion gallons, 16 billion gallons are required to originate from cellulosic feedstock sources 

such as switchgrass, wood wastes, or corn stover.  Screening of lignocellulosic feedstocks, 

cellulosic enzymes, new fermentation organisms, and their combinations for optimum 

fermentability is going to become increasingly important as the use of cellulosic feedstocks is 

developed in order to meet the mandated fuel production requirement set forth by the U.S. 

government.   

There have been many methods evaluated for determining the ethanol yields in 

fermentations.  High Performance Liquid Chromatography (HPLC) is one of the most 

commonly used methods for determining ethanol concentrations.  The use of HPLC is 

described in an article by Dien et al. (2002) where the fermentation of five different Bt 

hybrids of corn were evaluated for ethanol production.   
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In a different approach, Weimer et al. (2005) describe an ethanol yield assay that is 

based on measuring the pressure in the head space above an ethanol fermentation.   Ethanol 

yields were correlated with concurrent measurements of ethanol concentration by gas 

chromatography.  Masini et al. (1999) used a similar approach and described the 

measurement of carbon dioxide production as a means to analyze yeast cell metabolism.  The 

carbon dioxide production was sensed by measuring pressure above the fermentations.  

Ankom Technology (Macedon, NY) has developed a commercially available system with 

pressure sensor modules that are used to monitor gas production of microbial systems in a 

laboratory setting.  In another approach, Zor et al. (2007) describe a biosensor that is used for 

real-time monitoring of glucose and ethanol in fermentations.   

Duguid et al. (2007) screened different biomass physiological components to 

determine the sugar content and ethanol processing characteristics.  In the study, wheat 

stover was physically separated into chaff, leaves, nodes, and internodes.   The glucose and 

xylose concentrations were determined by HPLC.  All fractions were subjected to an alkaline 

pretreatment coupled with enzyme hydrolysis and an acid pretreatment with simultaneous 

saccharification and fermentation (SSF).  HPLC analysis was used to analyze the 

lignocellulosic sugars available after the acid pretreatment step.  The ethanol concentration 

was determined by use of the assay described by Weimer et al. (2005) where the head space 

gas pressure was used as a surrogate for ethanol production.  Other assays have been 

proposed to allow the rapid screening of biomass feedstock using correlations between easily 

measured compositional characteristics and ethanol yield or biochemically available 

carbohydrates (Isci et al. 2008, Murphy et al. 2007). 
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Previous research has also attempted to measure ethanol production by measuring 

carbon dioxide, a by-product of the fermentation reaction.  A relatively simple method is 

described by Varga et al. (2004) in which the carbon dioxide produced during fermentation is 

weighed in order to determine ethanol yield.  The results were well correlated with ethanol 

measurements obtained by HPLC.    

Herber et al. (2005) describe the concept of using a miniaturized sensor with a gas 

permeable membrane to detect partial pressure of carbon dioxide levels in stomachs. In 

another medical application, Severinghaus et al. (1958) describe a carbon dioxide sensor that 

uses a gas permeable membrane of Teflon to measure partial pressure of oxygen and carbon 

dioxide in blood. 

Digital imaging has been used in a wide range of biological research applications. 

The use of a charged-coupled device (CCD) camera for enumeration of marine viruses is 

described by Chen et al. (2000).  In the study, CCD images of fluorescently stained microbes 

are processed and used to asses the amount of microbes present in a marine environment.  

This is in substitution for transmission electron microscopy (TEM) measurements which are 

more expensive and time-consuming.  Although the microbial counts found by digital image 

analysis were higher than direct counts, Chen et al. state that the use of digital images can 

facilitate the counting of a higher number of viruses for a given amount of microscope time.   

Feng et al. (2007) utilize a CCD camera to monitor the fermentation of barley 

tempeh.  Barley tempeh is fermented by use of the fungus Rhizopus oligosporus.   As the 

barley tempeh fermentation was conducted, images were taken, and samples were taken and 

analyzed for ergosterol concentration with HPLC.  Image processing software was used to 

statistically analyze the image color (hue, saturation, and luminescence).  It was found that 
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the use of images allows for a rapid and non-intrusive method to monitor the status of the 

barley tempeh fermentation process.   

The use of Fourier transform infrared (FTIR) spectroscopy for monitoring ethanol 

fermentations is described by Veale et al. (2007).  In the study, a simple glucose fermentation 

was conducted while FTIR measurements of glucose and ethanol concentrations were 

correlated with ethanol and glucose concentrations measured by HPLC.  The FTIR 

measurements were made using a Bio-Rad FTS 6000 spectrophotometer (Cambridge, MA) 

and an ATR flow cell.  The researchers demonstrated the potential use of FTIR spectroscopy 

for on-line fermentation monitoring and/or process control.    

In an attempt to monitor titrations colorimetrically, Gaiao et al. (2006) developed a 

digital-image based titration. Gaiao et al. used a CCD digital camera as a detection device for 

titration by recording the RGB values of a titrated solution containing color-based pH 

indicators.  The webcam and the color-based sensing solution were placed in a white box in 

order to obtain uniform illumination.  A correlation was obtained between color (RGB) and 

titrant added.  

The purpose of the experiments described in this thesis is to develop a system to 

detect carbon dioxide from ethanol fermentations colorimetrically by use of a buffered 

indicator solution and CCD camera.  

Thesis Organization 

The information presented in this thesis is organized into five chapters.  The first 

chapter contains a statement of thesis organization, objectives, and review of the relevant 

literature.  Chapter 2 contains a paper titled “Development of a high-throughput fermentation 
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assay using colorimetric measurement of gas production” intended for journal publication. 

The third through fifth chapters provide supporting data and information. The third chapter 

describes the experiments conducted during the proof-of-concept of the chemi-visual sensor 

design.  The fourth chapter describes the selection of buffer concentration for glucose 

fermentation experiments.  Chapter 4 also contains results of an experiment to analyze the 

response of the camera system using alternating current (AC) and direct current (DC) light 

sources.  The fifth chapter presents the development of the system used to monitor pressure 

in the fermentation experiments.   The sixth chapter provides general conclusions of the 

experiments and suggestions for future work. 
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CHAPTER 2.   

DEVELOPMENT OF A HIGH-THROUGHPUT FERMENTATION ASSAY USI NG 

COLORIMETRIC MEASUREMENT OF GAS PRODUCTION 

 

A paper to be submitted to Bioresource Technology for publication 

S.T. Bly, R.P. Anex, D.R. Raman, B. Shanks 

Introduction 

There are several methods available to monitor ethanol production during 

fermentation.  One of the most commonly used methods is High Performance Liquid 

Chromatography (HPLC).  Other methods measure carbon dioxide evolution as a surrogate 

for ethanol.  A relatively simple method is described by Varga et al. (2004) in which the 

carbon dioxide (CO2) produced during fermentation is weighed in order to determine ethanol 

yield. Weimer et al. (2005) describe an ethanol yield assay based on estimating CO2 

evolution by measuring pressure in the head space above ethanol fermentations.    

In an attempt to monitor titrations colorimetrically, Gaiao et al. (2006) developed a 

digital-image based titration.   Gaiao et al. used a CCD digital camera as a detection device 

for titration by recording the RGB values of a titrated solution that was supplemented with 

color-based pH indicators.   

Since common methods of measuring ethanol such as HPLC are relatively slow 

andexpensive, there is a need for a simple, high-throughput, low-cost ethanol assay.  The 

sensor that is described could be useful for screening of lignocellulosic feedstocks, cellulosic 

enzymes, new fermentation organisms, and their combinations for optimum fermentability 
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that will become increasingly important as the use of cellulosic feedstocks is developed in 

order to meet the mandated cellulosic fuel production. 

Methods 

Concept 

 The basis for the design of the chemi-visual sensor relies on the stoichiometric 

relationship between ethanol and carbon dioxide production from the fermentation of sugars 

such as glucose and xylose which may be derived from starch or cellulosic material.  The 

functionality of the sensor relies on the ability to detect CO2 production as a surrogate for 

ethanol produced during sugar fermentation. For example, one mole of glucose is fermented 

by yeast to produce two moles of ethanol and two moles of carbon dioxide (Figure 2.1). 

 

Figure 2.1: Conversion of glucose into ethanol and carbon dioxide by yeast 
fermentation 

 

The chemi-visual sensor described here consists of a buffered indicator with color-

based pH indicator that absorbs the CO2 produced during fermentation.  A gas-permeable 

membrane supports the indicator solution above the fermentation headspace to allow 

separation between the indicator solution and fermentation broth while also allowing gas 

transfer into the indicator solution.  The CO2 causes a pH decrease in the indicator solution 
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that in turn causes a color change in the indicator solution.  The color change is sensed by a 

CCD camera, and quantified in software.   

A buffered indicator solution is used in the sensing system.  Equipment to validate the 

sensing system was designed and built.  An experiment was designed to develop calibrations 

for the interactions between: pH of indicator solution and volume CO2 added, color change 

and pH of indicator solution, color change and volume CO2 added.  Experiments were 

conducted to determine the effect of mass transfer limitations due to the membrane and 

diffusion of CO2 into the indicator solution on the responsiveness of the sensor.  The chemi-

visual sensor was used to predict ethanol production of glucose fermentations.  

Apparatus 

A 125 mL Erlenmeyer flask was modified for use in fermentation monitoring 

experiments.  A gas-permeable membrane, Fluorpore Membrane Filter – FGLP04700 was 

used to support a buffered indicator solution above the fermentation headspace.  A #15 glass 

o-ring joint (V.M. Glass Company) was fused to the top of the flask and the bottom of the 

indicator solution tube.  Initial fermentations indicated that a simple spring-loaded o-ring 

clamp was not adequate to hold the pressures generated during fermentations and leaking of 

the indicator solution was observed. A more robust clamp was designed and fabricated out of 

Delrin, a hard plastic, to hold the o-ring joints together (Figure 2.2). 
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Figure 2.2: Clamp used to hold glass o-ring joints together 

 

A stainless steel ball bearing with a diameter of 3/8” was placed in the solution on top 

of the membrane in order to break up the gaseous boundary layer at the membrane-liquid 

interface. 

A sampling port with valve was fused near the base of the flask to enable sampling of 

fermentation broth.  The valve was located below the level of the fermentation broth to 

ensure that no gas would escape due to sampling (Figure 2.3). 

A Logitech Webcam (Model: QuickCam Pro 4000) was positioned at a distance of 1 

inch from the pH-color indicator solution tube.  The webcam was interfaced with a personal 

computer and the Image Acquisition software in MATLAB was used to monitor the red, 

green, and blue (RGB) pixel values as a function of time.  RGB data were the average of all 

values within a specified viewing area (100 pixels x 100 pixels) at a constant location of the 

indicator solution.  The RGB values were measured at a frequency of 1 Hz and recorded data 

were the average computed every 60 seconds. 

Pressure transducers from MSI Sensors (Part No. 1210A-100D-3L) were used to 

measure the pressure above the fermentation headspace and above the headspace of the 
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indicator solution.  The pressure measurements were recorded at a frequency of 1Hz and 

averaged every 60 seconds.  

WC

Personal Computer with Data Acquisition Software

Shaker

DC PS

Color Indicator 

Solution

Fermentation 

Broth

PT

PT

 

Figure 2.3: Testing apparatus for fermentation monitoring (PT: pressure transducer, 
WC: webcam, DC PS: 12 V direct current power supply) 

 

The webcam and chemical indicator solution apparatus were supported on the table of 

a New Brunswick Scientific C1 Platform Shaker.  A box was built out of white foam poster 

board with a thickness of ¼”.  The box was designed to sit on the shaker table and surround 

the sensing apparatus to provide uniform illumination.  The dimensions of the box were 11” 

(l) x 13” (w) x 20” (h).  A 12 Volt /1.4 watt DC LED lamp (Sunlite Manufacturing, 

Brooklyn, NY) was used as the light source.  A lid was made out of the same material that 

was modified to allow the insertion of the 1.4 W LED lamp. The base of the shaker table was 
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also covered with a layer of white paper in order to reduce variation due to reflection from 

the moving metal surface of the shaker platform.   

Indicator Solution for First Calibration 

Triethanolamine (TEA) buffer solution was the first buffer chosen for use in the 

indicator solution.  Titration of the TEA buffer solution with CO2 gas showed that the pH 

changed from approximately 8.0 to 6.6 over the range of CO2 evolution expected from the 

planned glucose fermentation experiments.  Phenol red indicator was chosen because it 

changes from red to yellow between pH = 8.0 and pH =6.6.  The indicator solution was 

prepared at room temperature (25oC) and comprised of: 16.3 mM Triethanolamine Buffer 

Solution (Sigma-Aldrich, St. Louis, MO, U.S.),  30 µM phenol red, and de-ionized water.  A 

single batch of buffered indicator solution was used for all experiments using that buffer and 

was stored in a refrigerator at 8oC. 

Procedure 

Initial Calibration 

The chemi-visual sensing system was titrated with small amounts of CO2-rich gas in 

order to verify the assumed relationships behind the sensor concept.  CO2-rich gas was added 

to the headspace below the gas-permeable membrane and allowed to dissolve into the 

indicator solution.  The pH of the indicator solution and the corresponding RGB values were 

measured for each level of CO2 addition.  The green signal of the RGB value was found to 

have the largest response to the pH change and was chosen to be used as the color parameter 

of interest.  For small amounts of CO2, linear relationships were found between the 

following: pH and CO2 added, Green signal and pH, and green signal and CO2 added.   
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The results of the initial experiments suggest that the sensor can detect CO2 addition 

at small levels.  However, lab-scale glucose fermentations were estimated to produce about 

300 mL of CO2.  The sensor is required to detect these higher levels of CO2 that are observed 

during lab-scale fermentations. 

Glucose Fermentation 

A simple spreadsheet was designed to calculate the expected ethanol and CO2 

production for given substrate loadings.  The amount of CO2 used in the initial proof-of-

concept experiments was significantly lower than that observed in typical laboratory 

fermentation experiments.  An indicator solution with greater buffer capacity was prepared 

for sensor experiments with typical fermentation substrate loading. The indicator solution 

was prepared with 0.1 M TEA, 30 µM phenol red, and de-ionized water.  

Fermentation Broth 

 The fermentation medium contained 20 g/L peptone, 10 g/L yeast extract, 50 mM 

citric acid buffer.  Red Star baker’s yeast was the fermentation organism used in all 

fermentation experiments.  In order to evaluate the utility of the sensor for varied substrate 

loadings, two different glucose and yeast loadings were chosen to achieve differing 

fermentation kinetics.  These will be referred to as the “high” and “low” glucose loadings.  

The high glucose loading included 16.0 g/L glucose and 1.47 g/L yeast.  The low glucose 

loading included 8.0 g/L glucose and 4.0 g/L yeast.  These loadings were chosen through 

numerical simulation of ethanol fermentation using the model outlined in Chapter 5 of this 

thesis.  The “low glucose loading” transient was formulated with a high yeast loading to give 

a rapid transient response with lower final ethanol concentration. The “high glucose loading” 

conditions were selected to produce a slower transient with a higher final ethanol 
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concentration. These two cases allow a comparison of the chemi-visual sensor’s response to 

different fermentation kinetics and final ethanol production levels. The fermentations were 

conducted at 37oC while the broth was shaken.  The CCD camera was used to observe the 

color change in the solution while samples of fermentation broth were taken at time intervals 

appropriate to each glucose loading.  The fermentation samples were analyzed for ethanol 

content by HPLC and correlated with the change in green signal observed by the CCD 

camera.   

Results and discussion 

Glucose Fermentation  

 The change in green signal observed in the chemi-visual sensor tracked the ethanol 

transients of the high glucose loading fermentations as shown in Figure 2.4. Note that the 

change in green signal in RGB scale units corresponds to the left axis and the ethanol 

concentration in g/L corresponds the right axis in Figure 2.4.  
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Figure 2.4: Ethanol production and green signal response of high glucose loading 
fermentation (16 g/L Glucose) with TEA buffer indicator 

 

   The sensor response to the low glucose loading transient is shown in Figure 2.5. It is 

expected that the green signal response to a fermentation with higher ethanol production 

would be higher than the green signal response for a fermentation with lower ethanol 

production.  The average ethanol produced in the low substrate loading experiments was 

measured via HPLC as 54.6% of the ethanol produced in the high substrate loading 

experiments.  Therefore, it is expected that the green signal observed in the fermentation with 

low substrate loading would also be approximately 50% of the green signal response realized 

in the fermentation with high substrate loading.  However, the green signal realized in the 

low substrate loading experiments was 143% of the green signal observed during the with 

high substrate loading experiments.  A large amount of variation was also observed in the 

green signal during the lower substrate loading experiments.   
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Figure 2.5: Ethanol production and green signal response of low glucose loading 
fermentation (8.0 g/L Glucose) with TEA buffer indicator 

 

These counter-intuitive results lead us to investigate possible explanations for the 

highly non-linear sensor response to CO2 production.  One possible cause for the non-

linearity of green signal response is the nature of the TEA buffer. TEA is used industrially as 

a CO2 absorbent.  TEA buffer absorbs carbon dioxide forming stable carbamate through an 

exothermic reaction that is slow relative to the rapid acid-base reactions that involve 

relatively weak ionic bonding (Sotelo, et al., 2004, Hook, 1997, Danckwerts, et al., 1967 ). 

Absorption of CO2 by the TEA through several different pathways complicates the response 

of the sensor reducing the predictability and repeatability of the sensor response due to 

multiple types of reactions with varying time constants.   
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With this in mind, an indicator solution with a simple phosphate buffer system was 

developed.  A phosphate buffer was prepared with disodium phosphate (Na2HPO4 @ 0.0897 

M) and monosodium phosphate (NaH2PO4 @ 0.0103 M).  The pH was adjusted to 

approximately 8.0 by the addition of sodium hydroxide (0.005625 M).  

Glucose Fermentations with Phosphate Buffer Indicator 

Glucose fermentations were conducted using the same substrate, yeast, and nutrient 

loadings as described earlier for the “low” and “high” substrate loading experiments.  The 

indicator solution used was 18 mL phosphate buffer with 30 µM phenol red indicator.  The 

CCD camera was used to observe color change and samples of the fermentation broth were 

taken at regular time intervals and analyzed for ethanol concentration using HPLC.  

 The two fermentations were designed to achieve different levels of CO2 production.  

The fermentations were also designed to produce ethanol at different rates.  It was anticipated 

that observing the green signal response for fermentations with different kinetics would 

reveal any time-delay in the response due to limitations of gas transfer into the indicator 

solution.  It was also expected that differing levels of CO2 production would reveal 

differences in response due to saturation of CO2 in the indicator solution, or loading related 

mass transfer limitations .  The measured ethanol concentrations from two replications of 

each transient are shown in Figure 2.6.   
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Figure 2.6: Ethanol production vs. time for fermentations at different kinetics 

   

The observed green signal and ethanol concentration for the high substrate loading  

experiments are shown in Figure 2.7. The green signal response tracks ethanol production 

over time, but the maximum green signal is observed approximately sixty minutes before the 

maximum ethanol concentration. The observed ethanol concentrations in the two 

experiments diverge at just over 200 minutes. The corresponding green signals diverge 

approximately 60 minutes later.  The ethanol concentration transients converge to similar 

values approximately 270 minutes into the experiment, but the observed green signals to not 

converge. This indicates that there is a lag of approximately 60 minutes between the 

measured ethanol concentration and observed green signal and that after approximately 240 
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minutes, the chemi-visual sensor is no longer responsive to changes in CO2 production. This 

results in the green signal peak occurring before the measured peak in ethanol concentration 

and the green signals from the two replicates not converging at peak their peak levels as is 

observed in the ethanol concentration data. 
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Figure 2.7: Ethanol production and green signal response of high glucose loading 
fermentation (16 g/L Glucose) with phosphate buffer indicator 

 

 The observed green signal and ethanol concentration for the low substrate loading  

experiments are shown in Figure 2.8. Early in the transient the green signal is seen to lag 

behind the rising ethanol concentration measurements.  Again, the maximum green signal is 

observed prior to the ethanol concentration peak.  It is plausible that the green signal lags in 

the beginning of the fermentation due to mass transfer limitations of the CO2 moving through 
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the membrane and into the indicator solution.  The ethanol produced in the low substrate 

loading is 53.6% of the ethanol produced of that of the high substrate loading.  The green 

signal realized in the fermentation with low substrate loading is 67.3% of the green signal 

response in the fermentation with high substrate loading.   
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Figure 2.8: Ethanol production and green signal response of low glucose loading 
fermentation (8.0 g/L Glucose) with phosphate buffer indicator 

 

Measured ethanol production values are plotted against the change in green signal in 

Figure 2.9 for both sets of fermentation experiments.  A simple predictive model was 

developed by fitting a second-order polynomial to the data.  The resulting model fit the data 

well with a correlation coefficient of 0.92 as shown on Figure 2.9.  
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Figure 2.9: Ethanol production as a function of change in green signal (Phosphate 
buffer indicator) 

  

The regression equation and correlation coefficient indicates that 92% of the variation 

in the actual ethanol concentration can be explained by the model.    The equation shown in 

Figure 2.9 was used to predict ethanol concentration for the “low” and “high” substrate 

experiments. In Figure 2.10, predicted ethanol concentration for all four experiments is 

plotted against ethanol concentration measured by HPLC. 
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Figure 2.10: Measured ethanol production vs. ethanol predicted from calibration 
equation 



24 

 

The mean percentage error of the predictive equation was found to be 24.4%.  There 

are many possible sources of.  The CCD camera has a standard deviation of 0.38 green signal 

units at a static condition (Chapter 4).  This standard deviation translates into only 0.02 g/L 

ethanol when converted using the predictive model. There may also be dynamic effects 

related to mass transfer of CO2 across the membrane and absorption into the indicator 

solution.   These factors each contribute to the uncertainty in predicted ethanol concentration.   

The time lag observed and the fact that the green signal peaks before the ethanol 

peaks suggests that the sensor is not well suited for predicting real-time ethanol values, but 

may be better suited for steady-state conditions when the fermentation has completed and the 

ethanol concentration has stabilized.  The green signal may be peaking before ethanol 

production is complete because there isn’t a large enough pressure differential to drive the 

pH down as easily as when the ethanol production is lower.  The observed data indicate that 

the sensitivity of the sensor decreases with increased CO2 absorption.  It appears that at 

higher ethanol concentrations, a larger change in ethanol content is required for a smaller 

amount of green signal change.  

From Figures 2.7 & 2.8 it appeared that mass transfer of gas into the indicator 

solution may be affecting the performance of the sensor.  An experiment was conducted in 

which CO2 – rich gas was prepared and placed above the indicator solution in a sealed beaker 

with a pH probe used to measure pH. The objective of this experiment was simply to 

characterize the rate of CO2 diffusion into the buffered indicator solution at atmospheric 

pressure through a gas-liquid free surface without a membrane. It is assumed that the acid-

base chemistry associated with absorption of CO2 gas into phosphate buffer is fast relative to 

the mass transfer of CO2 into the solution. 
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CO2 absorption into buffer solution with free surface 

72 mL of phosphate buffer with phenol red indicator solution was placed in a beaker.  

The volume of the headspace above the buffer was determined to be 103 mL  The cross-

sectional area of the flask holding the indicator solution was 22.06 cm2.  

Dry ice was placed in a 250 ml beaker with approximately 10 ml of de-ionized water.  

Carbon dioxide (CO2) gas was generated by allowing the dry ice to sublimate and a syringe 

was filled with 60 mL of CO2 – rich gas.  The CO2 – rich gas was transferred to an empty 

125 mL flask and capped for approximately two hours to allow for equilibration.  60 mL of 

CO2 – rich gas was pulled from the equilibration flask and added to the headspace above the 

buffer solution (Figure 2.11).   
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Figure 2.11: Experimental set-up for CO2 absorption into open phosphate buffer system 

 

The flask containing the buffer solution and CO2 – rich gas in the headspace was 

capped with a rubber stopper and a pH meter was inserted into a hole in the rubber stopper to 

measure the pH of the buffer solution.  The solution was stirred moderately with a magnet on 
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a magnetic stir plate while pH measurements were recorded over time.  The pH was 

measured until the system pH leveled out and was assumed to be in equilibrium.   

 In order to assess the diffusion dynamics of CO2 into the buffer it was assumed that 

Fick’s Law for Diffusion would be applicable. 

According to Smith (2004), Fick’s law of diffusion for gases is defined: 

dx

dC
DJ =  

Where: 

J = Flux (mols-cm-2-s-1) 

D = Diffusivity (cm-s-1) 

dC/dx = Concentration gradient (mols/cm3) 

 To assess, the diffusivity, it is necessary to quantify the concentration gradient 

between the gas-liquid interface.  Since a convenient method to assess dissolved CO2 in the 

buffer was not available, a computer program, Visual MINTEQ was used to simulate system 

performance.  Visual MINTEQ is a chemical equilibrium model for the calculation of 

speciation of water chemistry systems.  It allows for the definition of a water chemistry 

system and solves for equilibrium conditions of ion speciation, pH, and partial pressures of 

gases at steady state equilibrium.   

 For our experiment, it was assumed that the buffer-gas system was in equilibrium at 

completion of the experiment.  The final pH that was reached was assumed to be the 

equilibrium pH of the system.  The prepared buffer solution was simulated in Visual 

MINTEQ by entering the molar concentrations of the phosphate buffer as described earlier.   
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For each pH data point that were recorded throughout the physical experiment, the amount of 

CO2 added to the buffer system to result in the same steady state pH was simulated in 

MINTEQ.  For each data point, Visual MINTEQ gave the outputs of the absorbed CO2 

concentration, pH and partial pressures of CO2 in the headspace.  Based on this information 

and the physical headspace volume, a mass balance on CO2 was performed to calculate the 

actual partial pressure of CO2 in the headspace of the system at each pH-time point.  Fick’s 

Law was then applied to determine the flux of CO2 which was numerically integrated in 

order to determine the amount of CO2 dissolved in the system.  A diffusivity constant, D 

(cm/s), was calculated based on Fick’s Law.   

The response of pH over time for the buffer solution open to CO2 gas is shown (Figure 2.12). 
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Figure 2.12: Response of pH over time for the buffer solution open to CO2-rich gas 

 

The response of pH over time appears to be very slow.  Since it is assumed that the 

acid-base chemistry is relatively quick, the limitation in response time is likely caused by 
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mass transfer limitation of diffusion of CO2 into the buffer solution.  The response of pH to 

CO2 addition in this sensor was modeled as a first-order system (Wheeler and Ganji, 2004).   

τ/1 t

e

e
y

y −−=  

Where: 

y = change in sensor output (pH) 

ye = equilibrium change in output of the system (pH) 

t = time elapsed (s) 

τ = time constant (s) 

The time constant for the sensor was calculated according to the first-order reaction 

described based on the pH-time data for CO2 diffusion into an open system (Figure 2.12).  

The time constant, τ (s), was calculated to be 18 minutes, the amount of time for the sensor to 

respond to 63.2% of its total response value.  While assuming a time constant of 18 minutes, 

the amount of time required for the sensor to realize 95% of it’s response was estimated to be 

approximately 54 minutes (~ 1 hour).  For fermentation kinetics that achieve maximum 

ethanol (and CO2 gas) production between 2 and 4 hours as shown previously, this sensor 

would not respond fast enough to characterize real-time ethanol production. Clearly this 

system is mass transfer limited.  The amounts of dissolved CO2 in the system were plotted 

and a diffusivity constant was computed (Figure 2.13). 
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Figure 2.13: CO2 absorption into phosphate buffer solution for open system 

 

The plot for dissolved CO2 that was the calculated estimate using Fick’s law as described 

above very nearly follows the plot for dissolved CO2 that was predicted from MINTEQ for a 

given pH at steady state.  The plot for the estimated amount of CO2 dissolved based on Fick’s 

law was done using a numerical integration which led to some lack of smoothness in the plot.  

 Since there is clearly a mass transfer limitation due to CO2 diffusion across the gas-

liquid interface, an additional experiment was conducted to assess the difference in 

diffusivity between an open system and a system including a membrane at the gas-liquid 

interface.  The objective of the described experiment was to assess any large decreases in 

mass transfer due the usage of the membrane. 

 

 

D = 6.128 x 10-5 cm/s 
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CO2 absorption into buffer solution with membrane present 

18 ml of the phosphate buffer solution with 30 µM phenol red was placed onto the 

membrane and capped (Figure 2.14).   

 

Figure 2.14: Experimental set-up for CO2 – rich gas absorption into phosphate buffer 
system with membrane 

 

A stainless steel ball bearing with a diameter of 3/8” was placed in the solution on top 

of the membrane in order to break up surface tension at the membrane-liquid interface.  The 

buffered indicator solution and apparatus were supported on the table of a New Brunswick 

Scientific C1 Platform Shaker.   

Dry ice was placed in a 250 ml beaker with approximately 10 ml of de-ionized water.  

Carbon dioxide (CO2) gas was generated and a syringe was filled with CO2 – rich gas.  The 

CO2 – rich gas was flushed through the length of the tubing connecting the syringe to the 

headspace directly below the membrane.  The volume of the tubing connecting the syringe 

and headspace below the membrane was 10 mL.  The volume of the headspace directly 
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below the membrane was determined to be 8 mL.  The cross-sectional area of the glass 

tubing holding the indicator solution was 1.767 cm2.  The shaker was turned on and operated 

at a speed of 25 rpm.  After selected time intervals, the rubber stopper above the headspace 

of the buffer solution was removed and the pH was recorded.  The pH wasn’t monitored 

continuously because of the errors that leakage might cause in the experiment.  This was 

conducted at six time intervals to obtain a small dataset for pH and time.   

 The same analysis using MINTEQ and Fick’s Law was used on the experiment with 

the membrane present as described earlier.  The response of pH over time for the buffer 

solution with membrane between CO2 gas and indicator solution is shown (Figure 2.15).  

7.6

7.7

7.8

7.9

8

8.1

0 50 100 150
t (min)

pH

 

Figure 2.15: Response of pH over time for the buffer solution open to CO2-rich gas with 
membrane present 

 

Fewer data points were obtained for the case with the membrane present since the pH 

wasn’t monitored continuously.  However, the pH response of the sensor is relatively slow.  
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The amount of time required for the sensor to realize 95% of its response was estimated to be 

approximately 102 minutes. 

 The amounts of dissolved CO2 in the system were plotted and a diffusivity constant 

was computed in order to compare with the open system (Figure 2.16). 
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Figure 2.16: CO2 absorption into buffer solution with membrane present 

 

The diffusion constants found for each case are too similar to be considered different.  

There is also possible inherent error in the usage of the pH meter for pH values and potential 

errors in volume measurement and preparation of buffer solution.   

If the diffusion constant for the system with the membrane was significantly lower 

than that of the open system, the conclusion could be made that the membrane has a 

significant effect on limiting gas transfer into the buffer solution.  However, that is not the 

case.  Since the diffusion constants are so similar, it can be assumed that the membrane does 

D = 5.896 x 10-5 cm2/s 
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not have a large effect on limiting the response time of the sensor.  The limiting factor 

appears to be the kinetics of the gas absorption into the buffer and the effected pH change.   

An additional experiment was conducted with the same design as shown in Figure 

2.13 where CO2-rich gas was placed in the headspace below the membrane and indicator 

solution while pH was monitored over time (Figure 2.17).  
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Figure 2.17: Response of pH over time for the buffer solution open to CO2-rich gas 
under pressure with membrane present 

   

The amount of time required for the sensor to realize 95% of its response was 

estimated to be approximately 90 minutes.   
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Fermentation Pressure Experiment 

The data from evaluating the pressures of the fermentation headspace and the 

headspace above the indicator solution (found in Chapter 5) also support the hypothesis that 

there is minimal limitation of gas transfer due to the membrane (Figure 2.18. 
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Figure 2.18: Pressure vs. time for fermentation with glucose loading of 8.0 g/L 
(Adjusted for volume increase due to sampling of fermentation broth) 

 

The pressures realized on both sides of the membrane are very similar.   

The similarities in the pressures realized in the fermentation headspace and the headspace 

above the indicator solution support the hypothesis that there is no significant limitation on 

mass transfer of gas due to the membrane.   
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Modeling limits of current system with MINTEQ 

MINTEQ was used to evaluate some basic limits of the existing fermentation 

monitoring apparatus (Figure 2.3) for sensing ethanol production from a lab-scale 

fermentation.  The effects on three variables were considered.  A realistic constraint for each 

value was assumed and held constant to determine the effect on the other two variables 

affected (Table 2.1).  

Table 2.1:Output of modeling existing parameters in fermentation sensor apparatus 
(Note: Values indicated with an asterisk were held constant and the corresponding 

values in each row are the appropriate outputs) 

Model Outputs 
Partial Pressure CO2 in 

Headspace 
Buffer 

pH 
CO2 Production 

Detected 
1.50 atm * 6.3 0.170 g 
0.58 atm 6.6 * 0.067 g 

0.13 atm 6.1 0.225 g * 
  

The MINTEQ model for the buffer system was used to evaluate the described in the above 

table and determine the effect on the related variables in the system.  This analysis was 

conducted to test the limits of pressure, pH response and level of CO2 detection of the current 

sensing system. 

A reasonable limit for partial pressure of CO2 realized in the fermentation headspace 

was chosen to be 1.5 atm.  It is assumed that it would be unsafe to operate a fermentation in 

glassware at pressures higher than 1.5 atm since the flask may burst.  It is also important to 

stay at a reasonable pressure to maintain a seal in the o-ring joints and prevent leakage of 

indicator solution and CO2 gas.  The buffer volume is fixed at 18 mL and the headspace 

volume is fixed at 50 mL to accurately represent the existing fermentation flask used for CO2 
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monitoring.  The terminal pH limit of 6.6 was fixed since the phenol red indicator ceases to 

change color below pH = 6.6 and CO2 levels would be difficult to detect colorimetrically. 

For the case when the maximum achievable partial pressure in the headspace is held 

constant at 1.5 atm, the buffer pH is driven to a pH of 6.3.  The phenol red indicator ceases to 

change color below 6.6, so it would be difficult to accurately detect CO2 absorbed 

colorimetrically.  The detected levels of CO2 production for the cases where headspace 

pressure and terminal pH of the buffer solution are fixed are 0.17 g and 0.067 g.   

In previous work by Isci, et al, (2008), corn stover was fermented in a total working 

volume of 10 ml.  The initial glucose concentration was analyzed and found to be 

approximately 3.0 g/L.  The values of glucose loadings that this sensor is capable of are 

somewhat lower, but are acceptable and meet experimental standards.    

The system was evaluated for fermentation with glucose loading of 3.0 g/L as in the 

small scale fermentations described by Isci, et al, (2008). For a glucose loading of 3.0 g/L 

and fermentation volume of 75 mL, the estimated CO2 production is 0.225 g.  The output of 

the model indicates that the pH of 6.1 would be below the minimum pH detectable by the 

phenol red indicator (pH of 6.6) although the partial pressure realized is small.  It is observed 

that the highest level of CO2 production that could be detected with the existing experimental 

set-up with 18 mL buffer and 50 mL of headspace is 0.067 g.  This CO2 production could be 

achieved with a fermentation that is within the reasonable limits of glucose loadings.  For 

example, a fermentation with a working volume of 30 mL and glucose loading of 4.2 g/L 

would yield approximately 0.06 g CO2 and could be detected by the sensor.   

The results of the model for a glucose loading of 3.0 g/L are promising for the 

potential of scaling the system down to enable screening of multiple fermentations 
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simultaneously.  The model output shows that a small-scale fermentation can be conducted 

and be detected by the sensor with a headspace volume of 50 mL and buffer volume of 18 

mL.  However, either the kinetics of the fermentation would have to be slower or the sensor 

would have to be modified to decrease the time required for pH response.  A slower 

fermentation that would take around 24 hours to complete would likely be able to be detected 

by this sensor.   The results indicate that it would be feasible to optimize this system for 

miniaturization by modifying both headspace volume and indicator solution volume.  

Change in Sensor Sensitivity  

The “high” and “low” substrate fermentation experiments using the phosphate buffer 

indicated that the sensor may be subject to mass transfer limitations.  MINTEQ was used to 

approximate the fractions of CO2 that are in the headspace above the fermentation and in the 

indicator solution. Three levels of CO2 addition were assumed, the high and middle levels are 

approximately the same amounts of CO2 evolved in the high and low substrate fermentations.  

The low CO2 level was chosen arbitrarily so as to represent CO2 production expected from a 

fermentation with even lower substrate loading. The results of these calculations are shown 

in Figure 2.19 as the number of moles of CO2 in each compartment and percentage that is in 

the headspace. 
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Figure 2.19: CO2 partitioning of fermentation and indicator solution system at varied 
CO2 production levels (Values are percentage of total CO2 in the fermentation 

headspace, modeled in MINTEQ) 

 

There is an increase in the fraction of total CO2 located in the fermentation headspace 

with increased total CO2.  This results in an increased partial pressure of CO2 at higher CO2 

levels.  As total CO2 production increases, an increasingly large fraction resides in the sensor 

headspace, which suggests that the sensor will become less sensitive to each successive mol 

of CO2 produced during a fermentation.  Coupled with mass transfer limitations, the response 

reflected by CO2 in the indicator solution lags CO2 levels is in the headspace and is 

insensitive to CO2 produced during the tail end of a fermentation transient. 
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Conclusions 

The use of TEA as a buffer for detecting absorption of CO2 from ethanol 

fermentations was found to be non-ideal because of the unwanted side reactions and non-

linearity in response to differing fermentation kinetics. 

Non-linearity in the performance of the TEA buffer over different fermentation 

kinetics prompted the investigation of the use of a phosphate buffer.  A simple phosphate 

buffer model coupled with experiments proved that mass transfer of CO2 gas across the gas-

liquid interface is the largest limiting factor on the response of the system.   

 The use of green signal change in the phosphate buffer solution as a predictor for 

ethanol production can account for approximately 92% of the change in actual ethanol 

content.  It was also determined that the usage of the membrane adds no resistance to gas 

transfer relative to the mass transfer of CO2 gas across the gas-liquid interface.  The use of 

green signal poorly predicts final ethanol production values.  The limitations of gas transfer 

into the indicator solution causes the sensor to perform poorly as a predictor for real-time 

ethanol values since the fermentation kinetics are dynamic and there is a significant time lag 

in the response of the green signal in the sensor.  The indicator solution also appears to have 

a dynamic response to ethanol production that is also likely due to limitations in gas transfer.   

 More precise control of the green signal noise would likely decrease the variability in 

the sensor’s response, and lead to more linearity in final ethanol production values with total 

green signal response.  The recommended use for this sensor would be for a predictor of final 

ethanol production values since dynamic effects of fermentation kinetics, gas transfer, and 

green signal variability make predictions of real-time ethanol values less reliable.  
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CHAPTER 3.   

PROOF OF CONCEPT FOR CHEMI-VISUAL SENSOR DESIGN 

Introduction 

A buffered indicator solution was developed to be used in the sensing system.  

Equipment to validate the sensing system was designed and built.  An experiment was 

designed to develop calibrations for the interactions between: pH of indicator solution and 

volume CO2 added, color change and pH of indicator solution, color change and volume CO2 

added.  The chemi-visual sensor was used to predict ethanol production of glucose 

fermentations.  

Methods 

Apparatus 

A gas-permeable membrane, Fluorpore Membrane Filter – FGLP04700 was used to 

support a buffered indicator solution above the gas headspace.  The membrane filters had a 

diameter of 45 mm.  Glass o-ring joints (size #15) from V.M. Glass Company were used to 

hold the membrane in place.  A simple clamp was used to hold the o-ring joints together.  

Since the inside diameter of the o-ring joints was 15 mm, the effective diameter of the 

membrane in contact with indicator solution and gaseous headspace was 15 mm.   

An Accumet Basic AB15/15+ pH meter was used to record the pH of the indicator 

solution at each carbon dioxide concentration.   The rubber stopper used to seal the top of the 

sensing apparatus was modified to allow the insertion of the pH meter’s electrode into the 

pH-color indicator solution.   
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A Logitech Webcam (Model: QuickCam Pro 4000) was positioned at a distance of 1 

inch from the ph-color indicator solution tube.  The webcam was interfaced with a personal 

computer and the Image Acquisition software in MATLAB was used to capture the red, 

green, and blue (RGB) pixel values as a function of time (Figures 3.1, 3.2). 

 

Figure 3.1: Testing apparatus for pH-color indicator solution 
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Figure 3.2: Photograph of testing apparatus for pH-color indicator solution 

 

The same shaker table and foam poster board enclosure box was used as described in 

Chapter 2.  However, a different light source was used.  A General Electric fluorescent flood 

light bulb with a power of 11 watts and light output of 380 lumens was used to illuminate the 

inside of the box and provide a consistent light source.   

A Harvard variable speed infusion/withdrawal pump (Model 600-900V) was used to 

propel the carbon-dioxide gas into the headspace below the indicator solution.  TYGON R-

3603 Laboratory tubing with an inside diameter of 3/8” was connected to a 10 ml syringe that 

was modified to fit in the carriage of the pump.  A two-way valve was installed directly 

below the gaseous headspace of the membrane.   

Indicator Solution 

Triethanolamine (TEA) buffer solution was chosen for use in the indicator solution.    

The phenol red indicator was chosen because it changes from red to yellow between pH = 8.0 
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and pH =6.6.  The indicator solution was prepared at room temperature (25oC) and comprised 

of: 16.3 mM Triethanolamine Buffer Solution (Sigma-Aldrich, St. Louis, MO, U.S.), 30 µM 

phenol red, and de-ionized water. 

Procedure 

Dry ice was placed in a 250 ml beaker with approximately 10 ml of de-ionized water.  

Carbon dioxide (CO2) gas was generated and the syringe was filled with CO2 – rich gas.  The 

syringe was connected to the tubing and CO2 – rich gas was purged through the tubing to 

eliminate any ambient air.  The end of the tubing was placed in the CO2 – rich gas, the 

syringe was filled, and the valve was closed to prevent any gas leakage.   

The tubing that was charged with CO2 – rich gas was connected to the bottom of the 

chemical sensing apparatus in order to feed the gaseous headspace below the membrane.  18 

ml of the pH-color indicator solution was placed onto the membrane.   A stainless steel ball 

bearing with a diameter of 3/8” was placed in the solution on top of the membrane in order to 

break up surface tension at the membrane-liquid interface.  The modified rubber stopper and 

pH meter were inserted into the pH-color indicator solution.  The MATLAB software was 

used to select an area on the color indicator solution.  A copy of the source code for the 

image acquisition software is attached in an appendix.  For the sake of consistency, an area of 

100 pixels x 100 pixels was selected each time.  The recorded RGB value was the average 

value of all the pixels in the selected region.  The value for red, green, and blue were 

recorded once every second.  The enclosure box was placed on to the shaker and the shaker 

was turned on at a speed of 25 rpm.  The system was allowed to equilibrate and the pH level 

was noted at the time that the MATLAB program began recording RGB values.   
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In order to add CO2 gas to the solution, the shaker was stopped and the enclosure box 

was removed.  The valve below the sensing apparatus was opened and 0.206 ml of CO2 – 

rich gas was added to the gaseous headspace.  The shaker was turned on while the CO2 – rich 

gas was added in order to facilitate gas diffusion across the membrane.  The valve was closed 

once CO2 addition was complete and the enclosure box was replaced.  The shaker was turned 

on and the pH was observed until it reached equilibrium.  Once the pH reached equilibrium, 

the pH and time was noted and CO2 – rich gas was added again.  The color signal values for 

each data point were obtained by calculating the average of the data points taken for one 

minute (60 data points) when the pH measurement was taken.  This procedure was repeated 

and replicated three times until ten data points (each with CO2, pH, and RGB) were 

generated.   

Results and discussion 

Signal Processing and Sensor Calibration 

The greatest change was seen in the green signal component of the RGB signal 

(Figure3.3).   
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Figure 3.3: Individual color components recorded by CCD camera as a function of pH 
of indicator solution 

 

The green signal was selected as the response signal to be used from the RGB values.  

The change in pH of the indicator solution was highly correlated with the addition of 

CO2 gas (R2 = 0.9521, Figure 3.4).   
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Figure 3.4: pH of indicator solution as a function of CO2 added 
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The change in green signal detected by the CCD camera was highly correlated with 

pH change (R2 = 0.968, Figure 3.5).   
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Figure 3.5: Green signal as a function of pH of indicator solution 

 

A linear correlation was found between green signal change and CO2 added (R2 = 

0.9418, Figure 3.6). 
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Figure 3.6: Green signal as a function of CO2 added 
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The data was further processed to place the initial green value at zero.  This is 

acceptable since the green signal change is relative to the initial detected value.  The revised 

calibration is shown (Figure 3.7).  
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Figure 3.7: Green signal as a function of CO2 added (Green signal values normalized to 
zero) 

Conclusions 

The addition of CO2 into a buffered indicator was detected by change in color signal 

acquired by use of a CCD camera.  The highest signal response was found to be in the green 

component of the RGB signal.  The green signal should be used as the predictive indicator 

for color change in the indicator solution.   

It also appears that the green signal is well correlated with CO2 addition to the 

indicator solution.  This is promising for developing the sensor for detecting CO2 production 

from ethanol fermentations.  It should be noted that the level of buffering capacity would 

likely need to be increased in order to be used on lab-scale fermentations since the level of 
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CO2 production is much higher.  These results indicate that the use of the described indicator 

solution, experimental apparatus, and CCD camera with data acquisition can be used to 

detect levels of CO2 production as a function of color change. 
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CHAPTER 4.   

Selection of Buffer Concentration for Glucose Fermentations 

  Introduction 

 The concept for the use of a chemi-visual sensor to detect CO2 colorimetrically was 

described in Chapter 3.  However, the CO2 loadings used to develop and validate the concept 

were much lower than the expected CO2 production from lab-scale fermentations.  This 

chapter describes how the buffer concentration for glucose fermentations was developed.   

  Methods 

A spreadsheet was designed to calculate the amount of expected ethanol and CO2 

production for given substrate loadings.  The amount of CO2 generated in the theory 

validation experiments was much lower than that for a typical glucose fermentation.  A 125 

mL Erlenmeyer flask was modified for use in fermentation monitoring experiments.  A #15 

glass o-ring joint was fused to the top of the flask and a sampling port with valve was fused 

near the base of the flask to enable sampling of fermentation broth while not allowing gas to 

escape.  The valve was located below the level of the fermentation broth to ensure that no gas 

would escape due to sampling.   
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A series of experiments were conducted in order to find a suitable indicator solution.  

The goal was to find an indicator that would optimize the green signal change while for a 

given CO2 loading.  Based on the following calculations,  

According to Varga, et al. (2004),  

EtOH g = 1.045 CO2 (g) 

An optimistic estimate of conversion of glucose to ethanol was used: 

0.50 g EtOH/g Glucose 

Assume: 

Ideal Gas Law: PV = nRT 

Glucose = 1 g 

Pressure = 1 atm 

Molecular Weight CO2 = 44.01 g/mol 

Gas Constant (R) = 0.08206 (L - atm) / (oK - mol) 

Temperature = 310 oK 

Then: 

EtOH Produced (g) = (0.50 g EtOH/g Glucose) * (1.0 g Glucose) 

EtOH Produced (g) = 0.50 g EtOH 

CO2 Produced (g) = 0.50 * 1.045 

CO2 Produced (g) = 0.52 g 

Volume of CO2 (mL) = ((0.52*0.08206*310)/(44.01*1)) * (1000 ml/L) 

= 302.01 ml CO2 produced 

The phenol red buffer is designed to change from red at pH = 8.0 to yellow at pH = 

6.6.  With this in mind, a new indicator solution was prepared. The indicator solution was 
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prepared with 0.1 M TEA, 30 µM phenol red, and de-ionized water.  The same experimental 

set-up was used as shown in Figure 3.1 as CO2 generated by dry ice was added to the 

indicator solution.   

The CO2 was added 15 ml at a time and allowed to equilibrate for 5 minutes before 

recording the pH of the solution.  RGB values were not recorded.  The calibration curve for 

G = f(pH) (Figure 3.7) was used to estimate the amount of green signal change that could be 

expected.   

Results and Discussion 

The amount of green signal change achieved by the addition of 300 mL of CO2-rich 

gas was near the lower detectable limits of the phenol red indicator range (Figure 4.1). A 

visual observation of the indicator solution confirmed that the solution appeared yellow at the 

end of the experiment and didn’t appear to be changing color anymore. 
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Figure 4.1: pH and green signal of indicator solution vs. CO2 added to indicator 
solution 
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Green Signal Noise Due to Light Source 

Introduction 

Initial observations of the RGB data indicated a large amount of inherent variation in 

the RGB signal.  A sinusoidal wave was detected in the RGB signal vs. time.  It was 

hypothesized that the variation was due to the alternating current supply powering the light 

bulb.  This section describes a series of experiments designed to ascertain and quantify the 

variation in the green signal.  

Methods 

An experiment was conducted to determine the effect of the light source on green 

signal variation.  The green signal was monitored for the indicator solution with no 

fermentation being conducted.  This was done in order to ascertain the inherent variation in 

the green signal due to the camera’s detection and/or light source.  The selected indicator 

solution (9 ml TEA, 7 ml D.I. H2O, 2 mL phenol red solution) was used.  The pH of the 

indicator solution was modified by addition of dilute sulfuric acid in order to read the green 

signal at low, middle, and high levels of the span of the green signal.  An incandescent bulb 

with an AC light source (110 V) and a DC LED headlamp (3 V) were compared.  
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Results and Discussion 

 There was a large variation in the green signal that was illuminated by the AC light 

source (Figure 4.2).  Much less inherent variation in the green signal was found with the DC 

LED light source.   

Green Signal vs. Time (Static Case, Incandescent Bulb)

100

110

120

130

140

150

160

170

180

190

200

0 1 2 3 4 5 6 7 8 9 10

Time (min.)

G
re

en
 S

ig
n

al

Low pH

Mid pH

High pH

           Average   S T DE V

High -  179.36       6.64

Mid -    128.33       4.97

L ow -   114.33       5.40

 

Figure 4.2: Green signal vs. time with a static indicator solution using the incandescent 
bulb as a light source 
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The variation seen in the green signal was significantly less for the case where the DC 

light source was used (Figure 4.3). 
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Figure 4.3: Green signal vs. time with a static indicator solution using the incandescent 
bulb as a light source 

 

The observed disparity in variation of green signal due to light source is quite large.  

One possibility for the variation in green signal illuminated by the incandescent bulb is that 

the power supply is alternating current.  The webcam is a very sensitive instrument and may 

be observing sinusoidal waves of the current source.   

A 12 Volt /1.4 watt DC LED lamp (Sunlite Manufacturing, Brooklyn, NY) was 

chosen as the light source for the glucose fermentation experiments.   
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CHAPTER 5. 

Fermentation Modeling 

In an effort to determine the appropriate yeast loading for achieving a fermentation 

with a faster rate of ethanol production, a model of ethanol production was generated with an 

Excel spreadsheet.  The model was based on previous work by Wang, et al. (2004) and used 

the following set of equations and parameters.   
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Where:  

X = Biomass (yeast) concentration (g/L) 

Xm = Maximum biomass (yeast) concentration (g/L) 

X0 = Initial biomass (yeast) concentration (g/L) 

P = Ethanol production (g/L) 

Yp/x = Yield coefficient of ethanol on biomass (g ethanol/g biomass) 

Yx/s = Yield coefficient of biomass on sugar (g biomass/g sugar) 
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S0 = Initial fermentable sugar concentration (g/L) 

µm = maximum specific growth rate (h-1) 

t = time (h) 

∆t = lag time (h) 

Ethanol fermentations were conducted at an initial yeast (X0) loading of 1.5 g/L and 

S0 of 15.3 g/L.  The fermentation was sampled over a five hour period and ethanol 

concentration was determined using HPLC.  Ethanol concentrations were determined as the 

average of three replicate samples.  Three replicate experiments were performed and ethanol 

concentration data at each time point from the three experiments were averaged. Model 

parameters were estimated using the Excel Solver add-in to minimize the sum-square-error 

between the experimental data and the ethanol concentration predicted by the model. 

Based on literature values, Yx/s  for glucose was taken to be 0.22 (Wang, et al., 2004).  

Upper and lower limits for Yp/x  (g/g) were taken to be 1.39 (Dantigny, 1995) and 5.57 

(Wang, et al., 2004).   

The values of µm, Xm, Yp/x , and ∆t were estimated by using an excel spreadsheet and 

using the solver add-in.  to minimize the SSE.  The upper and lower limits for Yp/x were used 

as a constraint as well.  Figure 5.1 illustrates the output of the model using estimated 

parameter values. 
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Figure 5.1: Response of ethanol production model 

 

The estimated ethanol concentration predicted by the model matches the measured data well. 

Table 5.2 outlines the estimated parameter values.   
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Table 5.2:Assumed and estimated values for ethanol production model 

Model parameters Value (units) Source 

Yx/s 0.22 (g/g) Wang et al. 2004 

X0 1.5 (g/L) measured 

Yp/x 

1.39 (g/g) - 5.57 (g/g) 

Dantigny, 1995 & 

Wang et al. 2004 

Estimated parameters   

Xm 7.388 (g/g) estimated 

Yp/x 1.641 (g/g) estimated 

µm  1.293 (h-1) estimated 

∆t 1.82 (h) estimated 

 

The estimated values were used as fixed parameters in the same model while the 

yeast and glucose loading was varied in order to determine the proper yeast and glucose 

loading for a desired ethanol production rate.   

 

Pressure Monitoring 

System Set-up and Calibration 

Pressure transducers from MSI Sensors (Part No. 1210A-100D-3L) were used to 

measure the pressure above the fermentation headspace and above the headspace of the 

indicator solution.  A signal conditioning circuit with operational amplifiers was built in 

order to amplify the voltage measured by the pressure transducers.  A detailed schematic is 

shown (Figure 5.2). 
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Figure 5.2: Schematic of signal conditioning circuit for pressure transducers used in 
pressure monitoring 

 

The pressure transducers were calibrated using the setup shown in Figure 5.3. 

 

 

 

Figure 5.3: Set-up for calibration of pressure transducers 
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A bicycle hand pump was plumbed to the pressure transducers and used to alter the 

pressure to the pressure transducers.  A dial pressure gauge (0-30 PSI) was used to observe 

the pressure applied to the pressure transducers.  The amplified voltage signal was observed 

for each pressure transducer with a multi-meter for a range of pressures between 0 – 30 PSI.  

A calibration curve was developed by plotting pressure as a function of voltage (Figure 5.4). 
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Figure 5.4: Calibration curve for MSI 1200D - 100L pressure transducers (PT1 = 
“Pressure Transducer 1” and PT2 = “Pressure Transducer 2”) 
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Processing of Pressure Measurements 

 The pressure transducers were used to measure the pressure above the fermentation 

headspace and the headspace above the fermentation.  A plot of pressure vs. time is shown 

(Figure 5.5). 
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Figure 5.5: Pressure vs. time for fermentation with glucose loading of 8.0 g/L (Periodic 
drops reflect fermentation broth sampling) 

 

The initial pressure shown for both the fermentation and indicator headspace locations are 

computed to be negative values based on the calibration equations.  The initial pressure 

biases were eliminated and the subsequent pressure measurements adjusted by the same 

value in order to generate the following plot (Figure 5.6). 
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Glucose Fermentation (8.0 g/L) Pressure vs. Time 
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Figure 5.6: Pressure vs. time for fermentation with glucose loading of 8.0 g/L (Adjusted 
to make initial pressure measurement equal to zero) 

 

There is an observed drop in pressure in the both pressure measurements at the time intervals 

when fermentation broth sampling occurs.  For the fermentation shown, 2 mL of 

fermentation broth were removed every 15 minutes.  Although the liberation of fermentation 

headspace gas was minimized by the location of the sample port, with each sample the broth 

volume was decreased increasing  headspace volume and consequently a drop in observed 

headspace pressure.  The pressure drop corresponding to the removed broth volume was 

computed and the data were corrected and the re-plotted in Figure 5.7. 
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Glucose Fermentation (8.0 g/L) Pressure vs. Time 
(Adjusted for Sample Removal) 
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Figure 5.7: Pressure vs. time for fermentation with glucose loading of 8.0 g/L (Adjusted 
for volume increase due to sampling of fermentation broth) 

 

The minimal difference in pressure between the fermentation headspace and indicator 

solution headspace can also be observed in Figure 5.8. 
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Glucose Fermentation (8.0 g/L) Pressure Difference 
vs. Time
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 Figure 5.8: Pressure difference vs. time for glucose fermentation. 
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CHAPTER 6. 

GENERAL CONCLUSIONS 

The purpose of this research was to develop and characterize a low-cost system to 

measure carbon dioxide gas produced during fermentation as a surrogate for ethanol 

production.  A secondary objective was to evaluate the potential to miniaturize the sensing 

system to allow the monitoring of a large number of fermentations simultaneously.   

The use of Triethanolamine (TEA) as a buffer to absorb CO2 gas produced during 

fermentation was evaluated.  Simple titrations with CO2-rich gas indicate that a color change 

in the buffer should respond linearly to the addition of CO2.  The performance of the buffer at 

different fermentation kinetics was evaluated and non-linear responses in the green signal 

were observed for different ethanol production amounts.   It was determined the TEA would 

not be an ideal choice for use as a buffer in sensing CO2 gas production because of the un-

wanted side reactions and non-linear responses for fermentations with different kinetics and 

substrate loadings.   

The use of a phosphate buffer was further evaluated.  A phosphate buffer was 

designed and the diffusivity of CO2-rich gas into an open buffer system was found to be quite 

similar to the diffusivity of CO2-rich gas into a buffer system with a membrane at the gas-

liquid interface.  It was calculated that the time required for the buffer to achieve 95% of full 

pH response for a given CO2 addition is approximately 1 hour.  The response of the sensor is 

greatly limited by the diffusion of CO2 gas into the buffer. 

The phosphate buffer system was evaluated for use in predicting ethanol production 

with observed green signal variations.  It was found that the use of green signal change in the 

phosphate buffer solution as a predictor for ethanol production can account for approximately 
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92% of the change in actual ethanol content.  The response of the green signal to ethanol 

production was slower for the fermentations with faster kinetics.  The use of this sensor for 

estimating total ethanol production at the completion of fermentations would be more 

appropriate than using the sensor for predicting real-time ethanol concentrations.   

The response of the sensor as it was tested is likely too slow to be accurate for 

monitoring fermentations that achieve full ethanol production at 2-4 hours like those 

evaluated in our experiments.  However, if the kinetics of the fermentation were slower 

where full ethanol production was realized after 24-48 hours, the CO2 evolution rate would 

be slower and the sensor would likely be more accurate in assessing real-time ethanol 

production.   

Future work to develop this sensor should evaluate the potential increase in mass 

transfer by greater surface area of gas-liquid interface.  A sensitivity analysis could be 

conducted to evaluate the interaction between buffer volume, fermentation headspace 

volume, and CO2 production in order to optimize the system for potential miniaturization to 

enable screening of multiple samples simultaneously.  
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