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ABSTRACT 

 

 Soybeans are one of the main sources of oil crops around the world. Soybean oil is the 

most common product of soybean refinery. It is a resource of edible oil and has other food and 

industrial applications. 

Techno-economic analysis (TEA) is applied to estimate the economic feasibility of the 

soybean oil extraction process. The mechanical extruding-expelling process, hexane 

extraction, and enzyme assisted aqueous extraction process (EAEP) are analyzed. Total capital 

investment, operating costs, and revenues are the three basic indices for evaluating gross profit 

and net profit; which are general indicators of economic feasibility of a manufacturing venture. 

Additionally, cash flow analysis and sensitivity analysis are used to evaluate profitability while 

considering the net present value (NPV) and the driving force of manufacturing individually.  

According to the analysis, the extruding-expelling process is a profitable and product-

leading process as the scale of oil production is over 12 million kg of annual soybean 

production. In addition to soybean oil, soybean meal provides over 70% of total revenues, due 

to its proper nutrient content for livestock feed applications. Hexane extraction is also a 

profitable process when the scale is over 173 million kg of annual soybean oil production. 

Before EAEP can start to earn profits, the capacity must be scaled up to over 40 million kg of 

annual soybean oil production. Additionally, the enzyme recycling and moderate strategy of 

co-product handling are required. The co-product handling includes selling aqueous fraction 

and insoluble fibers derived from EAEP, as these materials can be used for further corn-

soybean based bioethanol production. 
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Besides, environmental impact analysis is used to evaluate the potential environmental 

impact and greenhouse gas (GHG) emissions resulted from these three oil extraction processes. 

The environmental impacts are evaluated based on mass balance of the processing; and is used 

to calculate environmental indices. The potential GHG emissions are estimated according to 

the energy consumption of the process. Results show, the EAEP and extruding-expelling have 

similar general environmental impacts, while hexane extraction has the highest environmental 

impact because the organic solvent, hexane is used as medium to extract oil. GHG emission 

results show, the extruding-expelling process has the highest GHG emissions due to its lower 

oil recovery and high-energy requirements needed to squeeze oil out from soybeans. By 

contrast, hexane extraction has the lowest GHG emissions because of its high oil recovery. 

Though the pretreatment of EAEP requires high-energy consumption, higher oil recovery than 

extruding-expelling process results in lower GHG emissions than the mechanical process. 

In addition to the oil extraction process, co-product, distiller’s dried grain with solubles 

(DDGS), from the corn-soybean integrated bioethanol production is another main revenue 

source to increase profits for the whole refinery system. The combination of sieving and 

aspiration is used to fractionate DDGS based on the physical properties of nutrients, especially 

the density profile. Particle size of DDGS and the flowrate used in aspiration are the main 

variables for fractionation. The proper combination and interaction of variables for protein and 

oil separation are higher flowrate, smaller particle sizes, and heavy fraction. The best efficiency 

for protein and oil separation reaches about 29.7% and 68.15% respectively. For fiber 

separation, a mild condition results in higher fiber content approximately 7%.  
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CHAPTER 1 

INTRODUCTION 

 

The U.S. is the largest soybean producing country around the world, bringing over 34.5 

billion dollars of profit in 2015 (SoyStats, 2016).  Soybean refinery plays an important role in 

producing soybean-based products. 

Soybean oil and protein are major products for food, livestock feeds, and industrial 

applications. Soybean oil extraction is generally the first step for further applications. As the world 

population grows and the demands of food and energy increase, various techniques have been 

developed; mainly focusing on how to improve the efficiency of extraction and product yields, 

regardless of the economic feasibility and sustainability of the technique or approach. This study 

focuses on the sustainability analysis; including the techno-economic analysis (TEA), 

environmental impact analysis (EIA), and critical parameters for increasing crop meal values of 

the soybean oil extraction processes. The conventional mechanical expelling and solvent 

extraction process are compared to the enzymatic assisted aqueous extraction process (EAEP), 

which is nominated for a corn-soy integrated biorefining process to produce biofuel and value 

added coproducts. 

1. Soybean 

Soybeans, Glycine max L., are one of the major crops planted in America. Soybeans are a 

traditional food source in Asia, and are widely believed to be originated in China about 4000 to 

5000 years ago. Their early introduction to the U.S. can be traced back to the mid-eighteenth 

century, with the largest official introduction occurring in the early 1900s (Liu, 1997). 
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The word “soy” is derived from Japanese word “しょうゆ” pronunced as “shoyu”, and is 

generally used to make tofu, soy sauce, and miso in Asia. In the west, seed oil and meal are the 

two major products of soybeans due to its high oil and protein contents; which are about 18-23% 

and 35-45% individually (Hymowitz, 2008). Seed oil is not only a resource for cooking, but also 

for further food applications such as margarine, salad dressing, and mayonnaise. Soybean meal is 

mainly used in high protein feeds for livestock (Nelson et al., 1987). Soybean protein can also be 

extracted in the form of protein concentrates and isolates used for human consumption (Hymowitz 

& Newell, 1981). 

Botanically, a mature soybean seed consists of three basic parts: the seed coat, cotyledons, 

and germ, or hypocotyls (Fig. 1-1). The seed coat, also called hull, holds two cotyledons together. 

The cotyledons are known as embryos, which function as food reserve structures. Generally, the 

soybean seed contains about 8% hull, 90% cotyledons, and 2% germ by weight (Perkins, 1995, 

Liu, 1997). Within the cotyledons, it is filled with palisade-like cells, which consist of oil and 

protein in the form of oil and protein bodies (Smith & Circle, 1972). Therefore, the cotyledons are 

the major part of a soybean seed which are used for further applications. 

 

Fig. 1-1 Structure of soybean seed (Liu, 1997) 
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2. Soybean Refinery 

In soybean refinery, extracting seed oil and concentrating protein contents are the main 

purposes. According to seed structure, removing the soybean hull is required for most processes. 

However, oil extraction is regarded as the first step of soybean applications.  

Microscopically, oil is stored in spherosomes, also called oleosomes, which have a 

structure consisting of a triglycerol matrix core surrounded by a monolayer of phospholipids, and 

are embedded with oleosin-protein (Fig. 1-2). The portions of these three components are about 

94%, 2% and 4% by weight respectively (Huang, 1994, Huang, 1996, Kapchie et al., 2008). For 

extracting oil from oil bodies, pressure, heat, organic solvents, and enzymes are usually used. In 

this study, mechanical expelling, solvent extraction, and ezymatic assisted aqueous extractions are 

investigated. 

 

Fig. 1-2 Structure of oil body (Waschatko et al., 2012) 
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2.1 Mechanical Extruding-Expelling Process 

The mechanical process is the original technique used to extract oil from seeds by applying 

pressure and heat to disrupt oleosome structure. In the early 1940s, hydraulic pressing and 

continuous screw pressing were the main techniques for oil extraction used in the U.S. (Markley 

& Gross 1944, Nelson et al., 1987). This typical process is now mainly used to produce oil for 

food and industial applications. Also, the cake collected from the mechanical process is the main 

resource for animal feeds. 

However, the low efficiency of oil recovery is the main hurdle when using this process in 

the soybean industry. To improve oil recovery, higher cooking temperatures are required; which 

results in over-heating, darkening, and deterioration of oil. Nelson and his colleagues (1987) 

introduced an extruding-expelling approcah to reduce the disadvantages caused from excessive 

heating and increased the oil recovery rate to over 70%. According to the extruding-expelling 

process, an extrusion process replaces a heating process before expelling. The extrudate of coarsely 

ground whole soybean with 10-14% misture acts as a semi-fluid. Also, the short dwelling time in 

the extruder generates sufficient heat through the friction if soybean flakes (over 130oC), to break 

the oleosome structure.  

In the mechanical process, heat and pressure are the two main principles for extracting oil. 

Therefore, no chemical addition is an advantage of the expelling. However, high energy and 

facility maintenance requirements are still the problems of the mechanical pressing process.  

As the crude oil is extracted, degumming, alkaline refining, bleaching and deodorization 

are the additional processes to produce refined oil for further food applications.   
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2.2 Hexane Extraction 

Solvent extraction uses the solubility of oil and a nonpolar organic solvent to extract oil 

from soybean flakes. Compared to the mechanical expelling process, solvent extraction can 

remove about 0.5% of residual oil with less energy consumption and facility maintenance 

(Anderson, 2011). Due to its relatively higher oil recovery and energy efficiency, the development 

and application of solvent extraction has expanded since the 1940s along with the early expansion 

of U.S. soybean production (Woerfel, 1995). 

Hexane is the solvent most used for oil extraction, and it is the mix of isomers with similar 

properties which is also called extraction hexane or commercial hexane (Anderson, 2011). 

Compared to n-hexane, extraction hexane has similar molecular weight and specific gravity, higher 

ignition and flash temperature, lower melting point and boiling point Table 1-1 (NFPA-36 

standard, 2009). These properties increase the safety of operating. Additionally, the extraction 

hexane results in a slightly greater ability to extract efficiently than n-hexane, due to the presence 

of various isomers. 

Table 1-1 Physical properties of n-hexane and extraction hexane (NFPA-36 standard, 2009) 
Property n-hexane Extraction hexane 
Ignition temperature (oC) 225 264 
Flash point (oC) -26 -18 
Molecular weight 86.2 86.2 
Melting point (oC) -94 -154 
Boiling range at 1atm (oC) 67-69 56-60 
Specific gravity at 15.6 oC (kg/L) 0.68 0.66 
Vaporization at 1atm (kcal/kg) 79.6 N/A 
Vapor pressure at 37.8oC (kPa) 38.1 39.4 

 

In solvent extraction, it includes bean cleaning, drying, cracking, dehulling, flaking, solvent 

extraction, and meal handling (Fig. 1-3). Cleaning removes foreign matter and is important for 
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protecting equipment and producing high-quality products. After cleaning, beans are dried, leaving 

10% of the bean’s moisture for dehulling by an aspirator. Before dehulling, proper cracking is 

necessary. In the cracking and dehulling processes, moisture content plays an important role in 

determining the effiency of hull removal. If the beans are too dry (<10% moisture), they are easier 

to pulverize in the cracker and resultin excessive fines. The hulls are hard to be removed when the 

beans are too moist (>10% moist). The conditioning process is conducted after dehulling. In the 

conditioner, the cracked beans are heated to about 71oC, and the moisture content is adjusted to 

around 11% by steam or a water spray, making the beans plastic for flaking. Flaking mainly used 

increases the surface area of soybean flakes to obtain higher oil recovery. A flaking mill consists 

of a pair of smooth-surface rolls driven at different speeds. The desired flake thickness is generally 

0.2 mm to 0.5 mm. The processes above are seen as preparation steps for the following extraction 

process (Woerfel, 1995). 

During extraction, an immersion type extractor was first developed, and the ratio of solvent 

to beans are 5~10:1 typically. The large amounts of solvent lead to higher material costs and some 

safety issues. The percolation extractors reduce the ratio of amounts of hexane to beans in 

extraction to about 1:1, and increase the efficiency of oil extraction. The percolation refers that  

the solvent passes down through the porous bed of oil-bearing material, the oil is then dissolved in 

the solvent and carried alway (Woerfel, 1995, Pramparo et al., 2002). Generally, continuous loop 

extractors (Crown Iron Works, 2016), belt extractors (Extraction de Smet, 2016), and rotary 

Rotocel reactors (Becker, 1978) are the three major types of percolation extractors, which are 

applied in large scale, continuous operations. 

After extraction, solvent recycling is necessary to ensure oil is safe. The recycled solvent 

is reused for further ectraction. Steam and vacuums are used to remove hexane, with the 
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temperature determined by the flash point of crude oil, which is when the flame briefly appears 

over the crude oil. The temperature is generally set at 121oC for refined soybean oil corresponding 

to the 1000 ppm hexane in the oil (Anonymous, 1993, Proctor, 1997). The degumming process 

(Dijkstra, 2011) produces degummed crude oil, which is sold as a commodity. 

For soybean meal handling, a toaster is used to remove the remaining hexane. Steam is also 

used to evaporize hexane and to heats the protein to 100-105oC; enhancing the nutritional value 

by inactivating trypsin inhibitors and other toxicants. After the toasting, the hot air dries the meal 

reducing its moisture to about 10%. The defatted meal is ground and screened to a desired particle 

size for further applications (Hettiarachcy & Kalapathy, 1997). 

 

Fig. 1-3 Schematic flow of oil solvent extraction 
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2.3 Enzymatic Assisted Aqueous Extraction (EAEP) 

According to the convential processes, low oil recovery, environmental, and safety 

problems derived from organic solvents are the main disavantges of mechanical expelling and 

solvent extraction respectively. Aqueous extraction was introduced as an alternative in the 1950s 

(Rosenthal et al., 1996). Water is used as the solvent in the process, which reduces cost and 

improves safety issues. 

Based on the structure of oil bodies stored in the cotyledons (Fig. 1-1), they are stabilized 

by proteins called oleosins. The structure of olesins cosist of three basic domains: (1) the 

amphipathic domain present at the amino terminus, associated with oil body surface; (2) the central 

hydrophoic domain, which interacts with the triglycerides matrix of oil bodies; and (3) the 

amphipathic domain at or near to carboxyl terminus, which interacts with the phospholipid surface 

(Murphy, 1993, Beisson et al., 2001). Therefore, proteases are commonly used in the aqueous 

process to improve oil yield (Zhang et al., 2013). This improved aqueous extraction process is 

defined as enzymatic assisted aqueous extraction process (EAEP). 

In EAEP, the preparation of soybean flakes is similar to solvent extraction and the 

schematic flow is illustrated in Fig. 1-4. Adequate pretreatment, which not only disrupts the 

soybean tissue but increases the porosity of flakes, is used to increase oil yields to over 80% 

(Domiguez et al., 1996, Rosenthal et al., 1996). Extrusion (Jung & Mahfuz, 2009), ultrasonication 

(Shah et al., 2005), microwave heating (Valentova et al., 2000), ohmic heating (Pare et al.,2014), 

pulsed electric fields (Guderjan et al., 2007) etc. have been introduced to combine with aqueous 

extraction to improve oil recovery. 
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In the aqueous extraction process, enzymes are added to assist the release of oil bodies. 

After the extraction, the system forms two fractions: cream and skim. Centrifuge is used to separate 

cream phase and aqua phase (Skim I). When the oil is extracted, it forms a stable emulsion in the 

cream phase due to the presence of proteins, which act as emulsifiers (Nylander et al., 1997). Thus, 

the protease is also used in the demulsifying process to hydrolyze the interfacial proteins (de Moura 

et al., 2011, Yusoff et al., 2015). The protease functions to reduce protein molecular size, rigidity 

of oil droplet surfaces, and remove high molecular weight polypeptides to release free oil. Free oil  

can be separated by the centrifuge, and the protein collected from skim II (Chabrand et al., 

2008,Chabrand and Glatz, 2009).  
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Fig. 1-4 Schematic flow of enzymatic assisted aqueous extraction process 

 

The EAEP technique uses the isolubility of water and oil rather than the principle of solvent 

extraction. Additionally, the proteins are extracted simultaneously, resulting in low phospholipid 

content. Also, the further refinery processes, such as degumming, can be eliminated (Jung et al., 

2009). Thus, the EAEP is regarded as a chemical free approach for oil extraction; which not only 

improves oil recovery compared to the expelling process, but prevents environmental and safety 

problems resulting from solvent extraction process.
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3. Sustainability Analysis 

As new technology is invented and developed, sustainability is important for making the 

new processes practical in operation. The concept of sustainability has been widely dicussed since 

the mid 1980s, according to the Brundtland Commision (1987). The main spirit of the discussion 

is “development that meets the needs for the present without compromising the ability of future 

generations to meet their own needs.”. Generally, sustainability control is driven by economic, 

environmental and social development. In the enginnering fields and the production lines, the 

economic feasibility and environmental impacts are main concerns. 

3.1 Techno-Economic Analysis (TEA) 

Economic feasibility is the index which reflects whether the process applies in the industry 

directly. The techno-economic analysis (TEA) is used to evaluate the potential profits of a process. 

For soybean processing, the TEA estimates the profitibility of soybean-based fuels (Haas et 

al.,2006, Marchetti et al., 2008, Apostolakou et al., 2009) and chemicals (Ngo et al., 2014). Capital 

investment, operating costs and revenues are the major parameters to estimate the profit of the 

processing (Fig. 1-5). 

Capital investment indicates facility related costs; which are the capital necessary for the 

installed process equipment with all components for complete process operation (Peters et al., 

2003). That includes direct, indirect, contractor and contingency, working capital, and startup 

costs. The equipment purchasing fees are the basis for the estimation of capital investment. Direct 

cost is the fees assessed when installing purchased equipment, including installation, piping, 

instrumentation, insulation, electrical systems, building, yard improvement, and auxiliary facilites. 

These costs cover the expenses for labor, materials, and supplies used to connect each operating 



12 

 

unit, power wiring, construction, utility system, and even the transportation system within the plant 

(Peters et al., 2003, Heinzle et al., 2006). 

 

Fig. 1-5 Parameters for profit estimation 

Indirect cost includes engineering and construction fees. These expenses are mainly 

projects, equipment, control systems, computation designs, and the temporary construction and 

operation at the construction site. Contractor’s fees and contingency are also included in capital 

investment; with the contingency covering expenses for unexpected events such as storm, floods, 

small design changes, errors in estimation, and other unforseen events and expenses (Peters et 

al.,2003). Before a plant starts to operate, startup capital is the additional cost to validate the 

facilities and production line. Finally, working capital is invested to make sure material supplies, 

product storage and handling, account recievable and payable, cash for payments, and taxes 
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payable are available. These costs are estimated by multiplying the total machine purchasing cost 

with the multiplier. Multipliers used in typical chemical and enzymatic processes are shown in 

Table 1-2 (Peters et al., 2003, Heinzle et al., 2006).  

Table 1-2 The multiplier for estimating capital investment for chemical and enzymatic process 

(Heinzle et al., 2006) 

  Mulitpliers 
Costs Categories Minimum Maximum 

Total Plant Direct Cost 
(TPDC) 

Purchase cost (PC)    
Installation 0.25×PC 0.55×PC 

Process piping 0.30×PC 0.80×PC 
Instrumentation 0.08×PC 0.50×PC 

Insulation 0.08×PC 0.09×PC 
Electrical 0.10×PC 0.40×PC 
Buildings 0.10×PC 0.70×PC 

Yard improvement 0.10×PC 0.20×PC 
Auxiliary facilities 0.40×PC 0.10×PC 

TPDC 1.40×PC 4.20×PC 
Total Plant Indirect 

Cost 
(TPIC) 

Engineering 0.05×TPDC 0.30×TPDC 
Construction 0.30×TPDC 0.55×TPDC 

TPIC     
Total Plant Cost (TPC) TPDC+TPIC     

Contractor’s fee and 
Contingency (CFC) 

Contractor’s fee 0.03×TPC 0.08×TPC 
Contingency 0.05×DFC 0.15×DFC 

Direct Fixed Cost 
(DFC) 

TPC+CFC     

Working Capital (WC) 0.10×DFC 0.20×DFC 
Startup Capital (SC) 0.03×DFC 0.08×DFC 

Total Capital TPC+CFC+WC+SC    
 

Operating costs consist of material, labor, utility, and facility related costs. These costs 

change with the fluctuation of market and economic conditions. Also, operating costs can be 

estimated by plant capacity, efficiency of processing, and operating conditions. The raw material 
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cost is seen as the major cost in production and refers to materials directly consumed in making 

the final products, and chemicals or enzymes used to improve productivity. Besides market and 

economic conditions, raw material costs change proportionally with the capacity of the plant 

(Ulrich, 1984, Peters et al., 2003). Utility cost, including elctricity, steam, cooling water, natural 

gas, and other heat exchange agents are other critical resources for operating costs. Operating cost 

also depends on the amount of material handling and product yields, and varies based on different 

plant locations. However, it generally takes about 10-20% of total product cost in a chemical 

process (Peters et al., 2003). 

The facility related costs refer to the expenses for machine maintenance. Labor cost can be 

divided into labor-dependent cost and laboratory quality control and assurance cost (Heinzle et al., 

2006). Operating labor is then divided into skilled and unskilled labor. The expense for laborers is 

estimated by hourly wage rates; however, it also varies based on different industries and plant 

locations. Laboratory quality control and assurance cost is generally estimated by taking 10-20% 

of the total labor-dependent costs in a chemical plant (Peters et al., 2003, Heinzle et al., 2006). 

Compared to total capital investments and operating costs, revenues obtained from 

processes are easier to estimate; which is the product of produced amounts and selling prices. 

According to total capital investments, operating costs, and revenues, the gross profit and net profit 

can be calculated. Those calculations are indexed and used for evaluating the profitability of the 

process. 
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3.2 Environmental Impact Assessment 

Environmental issues have been attracting many concerns because the concept of global 

warming and energy conservation is advocated by many groups. The life-cycle assessment (LCA) 

is the method used to assess the environmental impact for a product; including material generation, 

processing, energy supply and consumption, product end-use, and waste handling. Therefore, it is 

also regarded as a “cradle-to-grave” assessment methodology. The development of LCA can be 

traced back to the 1970s (Guinée et al., 2011). 

To have a well-rounded LCA study, a lot of data is needed for the analysis. However, there 

are still difficulties to collect detailed data for a well-rounded LCA. Therefore, a proper screening 

and streamlined method is needed for LCA studies (Bretz & Frankhauser, 1996, Weidenhaupt & 

Hungerbühler, 1997). Other research uses different methods for environmental assessment such as 

the waste reduction algorithm (Young et al., 2000) and the quantitaive environmental impact 

analysis (Elliot et al., 1996, Heinzle et al., 1998). The following environmental quotient was 

introduced by Sheldon (1994): (EQ)=E×Q, where E indicates the environmental factor of the 

amount of waste, and Q represents the environmental unfriendness of the produced waste. This 

concept innovates the way main origins of waste are indentified and how they result in the plant’s 

environmental impact. 

Heinzle’s research group introduced a quantitative method in 1998 to assess the 

environmental impact caused by processing plants. Mass flow is the basis for the calculation of 

environmental indices. The whole process is divided into input and output components. The input 

component indicates every material used for making products; while the output component 

represents the products and wastes derived from operations. According to mass balance in 

processing, the mass flow is converted into the mass index. Also, each component is classified into 
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different categories (A, B, and C) based on their toxicity, polution, and global warming potentials. 

The environmental impact of the process is assessed by these two main parameters; which also 

correspond to the environmental quotient “E” and “Q” respectively (Fig. 1-6). 

 

Fig. 1-6 The framework of environmental indices for environmental impact analysis (Heinzle et 

al., 2006) 

When the environmental indice of each component is combined, the general environmental 

impact of the total process can be evaluated. Because the environmental indices of each component 

are calculated separately, the “hot spot” operating unit and component of the processing are able 

to be observed. However, unlike the complete LCA, this quantitative method for environmental 

impact assessment does not include energy consumption. Therefore, the GHG emissions resulting 

from energy consumption in processing such as electricity, steam, natural gas are evaluated 

separately (Heinzle et al., 2006). 
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CHAPTER 2 

OBJECTIVES 

 

The corn-soybean integrated biorefinery is a developing system, which could increase the 

biofuel yields and improve the economic values from products. The overall objective of this study 

focuses on the sustainability analysis of soybean oil extraction processes, including economic 

feasibility and environmental impact analysis. Additionally, the effectiveness of the DDGS 

fractionation from the bioethanol production is investigated as well. 

More specifically, the sub-objectives of this study were: 

1. Building up a techno-economic analysis (TEA) model to evaluate the economic feasibility 

of mechanical expelling technique: The extruding-expelling process. 

2. Building up a TEA model to evaluate the economic feasibility of typical solvent extraction 

technique: The hexane extraction. 

3. Building up a TEA model to evaluate the economic feasibility of a solvent free technique: 

The enzyme assisted aqueous extraction process (EAEP). 

4. Using Cash flow analysis to evaluate the profitability of these three soybean oil extraction 

processes. 

5. Performing sensitivity analysis to test the driving force of these three soybean oil extraction 

processes. 

6. Conducting the environmental impact analysis (EIA) to evaluate the potential 

environmental impacts and greenhouse gas (GHG) emissions of these three soybean oil 

extraction processes. 
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7. Testing the efficiency of distilled dried grains with solubles (DDGS) fractionation by 

sieving and aspiration. 

(Ho: Combination of sieving and aspiration could improve the DDGS nutrient 

fractionation).  
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CHAPTER 3 

TECHNO-ECONOMIC ANALYSIS OF SOYBEAN OIL EXTRUDING-EXPELLING 

PROCESS 

 

Modified from a paper to be submitted to Industrial Crops and Products 

 

Abstract 

Mechanical expelling is a conventional technique used to extract soybean oil; but because 

of its lower oil recovery, solvent extraction is applied more in industry. However, there are some 

plants using extrusion before the expelling process to improve final oil recovery. Additionally, the 

mechanical process is still used due to specific purposes such as livestock feeds applications. 

SuperPro Designer was used to perform a techno-economic analysis (TEA) of the extruding-

expelling process. Soybean oil is the main product being sourced from processing, despite soybean 

meal contributing over 75% of total revenues. Compared to the general solvent extracted meal, 

expelled meal has a higher selling price due to its higher oil content of about 10%. Through 

fluctuation of economic conditions, soybean meal still plays an important role in earning profits, 

making the whole mechanical profitable, especially when the capacity is scaled up to 12 million 

kg of annual soybean oil production. Therefore, soybean meal has been regarded as the driving 

force for the mechanical expelling process. 

 

Keywords: Techno-economic analysis, Extrusion-expelling process, Soybean oil, Soybean meal, 

Profits  
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1. Introduction 

Soybean (Glycine max L.) is the main oil crop in America, and production has increased 

over 50% to about 3.93 billion bushels since the 1980s (SoyStats, 2016a). Iowa is one of the major 

states producing soybeans (SoyStat, 2016b). The value of soybeans include good quality oil and 

digestible proteins and minerals (Lynch et al., 1987, Corley et al., 1999, Sawada et al., 2014).  

Soybean oil is the main product of soybean processing. It is also the main oil used for 

applications in the food industry and industrial applications, such as biodiesel and biolubricant 

conversion (Ma & Hanna, 1999, Erhan & Asadauskas, 2000). Soybean meal is also an important 

product from the oil extraction process, and is used as a protein source in livestock feed due to its 

well-balanced amino acid profile, relatively high crude protein level, and variety of minerals and 

vitamins (Cheng and Hardy, 2003). 

Mechanical and solvent extractions are two major approaches used in the soybean 

processing industry and use expeller and extraction hexane. The mechanical process, with 

hydraulic pressing and continuous screw pressing techniques, was used before the development of 

solvent extraction (Nelson et al., 1987). Since higher oil recovery efficiency derived from solvent 

extraction, mechanical expelling has been mostly replaced by the solvent extraction technique. 

However, the organic solvents used in extraction causes saftey and environmental related issues 

(Li et al., 2004, Oliveira et al., 2013). Therefore, a chemical free process, known as the expelling 

approach is still applied when producing oil for food and industrial purposes. Also, soybean meal 

produced from the expelling process is still used predominantly for animal feeds (Nelson et al., 

1987). 

Typically, cracking and cooking are used to reduce crop size and disrupt spherosomes 

tissues first, before pressure is applied to squeeze oil out of the matrix (Erickson, 1995). For 
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increasing oil recovery, several passes of pressing are needed. However, multiple passes lead to 

excessive heating, resulting in darkening and deterioration of oil. Nelson et al. (1987) introduced 

an extruding-expelling process (Fig. 3-1), where an extrusion is performed before the expelling 

process. The cooking process is also exempt from processing beacuse the heat is generated from 

the friction among beans within extruders. This technique not only simplifies the tissue rupturing 

and heating processes, but increases the oil recovey to over 70%.  This approach is also used in 

the soybean oil expelling industry. 

 

Fig. 3-1 Flow diagram of extruding-expelling process 

Researchers perform different pretreatments and parameters to expelling to try  and 

improve oil recovery from the expelling process (Bargela et al., 1999; Patil and Ali, 2006; Subroto 

et al., 2015). However, economic parameters are critical factors for the mechanical expelling 

technique due to industrial and commercial applications. The study of oil extraction economic 

analysis is generally included in biodiesel production techno-economic analysis, because oil 

extraction is regarded as a part of the pretreatment of biodiesel conversion (Nelson et al., 1994; 

Haas et al., 2006; Marchetti et al., 2008). Also, the different methodologies of economic modeling 

are conducted for vegetable oil use in biodiesel conversion (Bender, 1999; Zhang et al., 2003; 
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Mlay et al., 2014). However, few studies’ main focuses are economic parameters and feasibility 

of oil extraction, especially for mechincal expelling. 

This study focuses on the extruding-expelling process for degummed crude soybean oil 

production. Capital investment, operating costs, revenues, and profits are the main economic 

parameters for the analysis. Addtionally, historical data is collected and used to perform economic 

feasibility comparisons for different time periods from the 1980s to the recent year. Due to the 

increasing demand for energy and food, many processing plants are planning to scale up the 

capacity of their product lines. Therefore, the effects of different scales, from pilot scales to 

commercial scales, on the extruding-expelling process were also performed. The goal of this study 

is to build an economic model to estimate the potential capital investment, operating costs, and 

profits, and trying to project the relationship between the unit production cost and different 

operating capacities. 

2. Materials and Methods 

2.1 Extruding-Expelling Process 

The extruding-expelling process is divided into crop handling, pre-extruding, expelling, 

degumming and oil recovery, and soybean meal handling (Fig. 3-2). In crop handling, soybean 

cleaning, drying, and grinding are included and the moisture content of soybeans are controlled to 

stay between 10-12%.  
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Fig. 3-2 Soybean oil extruding-expelling  process 
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The pre-extruding follows crop handling. Different from typical conventional expelling 

processes, there is no need for cooking before expelling in the extruding-expelling process. During 

the extruding process, heat is generated during extrusion because of friction among beans. The 

short retention time for beans staying in the extruder is sufficient to break spherosome tissue, and 

the output temperature of the extruder is over 130oC (Nelson et al., 1987). After the pre-extruding, 

the extrudate of coarse ground whole soybean is at 10% to 14% moisture lecel, has the semi-fluid 

like property needed, and is transported to the expeller continuously. 

In the expelling process, pressure is used to squeeze oil out of the matrix.  The cake and oil 

are collected for further meal handling and degumming processeses respectively. Water 

degumming is applied to remove most parts of phospholipids. The amount of water used in the 

degumming process corresponds to the content of phospholipids with a 1:1 ratio by weight 

(Dijkstra, 2017). Also, phosphoric acid is used to remove small amounts of remaining water 

insoluble phospholipids. An 85% phosphoric acid solution is used, and the amount is 0.1-0.3% of 

phospholipid content (Deffense, 2017). After the degumming process, the oil is separated by a 

centrifuge and the oil is degummed crude oil. 

The cake separated during the expelling process is collected and its moisture is kept below 

10% for the convenience of storage. The cake is as well as called as soybean meal, which is the 

co-product of oil extraction and sold as livestock feeds. 

2.2  Computer Modeling 

The economic model of the extruding-expelling process for soybean oil production was 

performed by SuperPro Designer v9.0 (Intelligen, Inc., Scotch Plains, NJ). The simulation was 

conducted based on mass balance. Economic parameters including capital investment, operating 

costs, gross profit and net profit were evaluated according to model simulation (Ngo et al., 2014). 
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Based on the economic model of soybean oil based biodiesel production performed by 

Haas’ et al., (2006), the capacity of 192.28 million kg annual soybean input was set as the referred 

scale for the simulations of different operating capacities, which are 30.77, 96.14, 672.99, 1257.53 

and 2991.93 million kg of annual soybean inputs. The oil recovery efficiency is 72%, which results 

in the annual soybean oil productivity corresponding to these six scales as 4.10, 12.81, 25.62, 

89.67, 175.56 and 398.67 million kg individually. Additionally, the different economic conditions 

from the 1980s to the recent year were also performed according to the referred scale. Historical 

data of operating costs were used as inputs for economic parameter estimations. 

Fifteen years of plant life time, 30 months of construction, four months of startup period, 

35% income tax ,and a ten year depreciation period with 5% salvage value of directed capital 

investment were set as general assumptions for the producing stream (Haas et al., 2006). 

2.3 Assumption and Data Collection 

2.3.1 Fixed Costs  

The facility for each operating unit is the main resource of fixed costs. There are three main 

parts for fixed costs: total plant direct cost (TPDC), total plant indirect cost (TPIC), and 

contractor’s fees and contingency (CFC). TPDC comes from the facility directly, including 

machine installation, piping connection, and electrical; TPIC is fees associated with engineering 

and construction, making the producing stream function. The basic total plant cost (TPC) is the 

summation of TPDC and TPIC. Additionally, the CFC is estimated by TPC; and the total direct 

fixed cost (DFC) is the summation of TPC and CFC. Howerver, the working capital (WC) and 

startup costs (SC) are fees to make sure the producing stream produces the product properly. 

Therefore, the total capital investment is the summation of DFC, WC, and SC. These costs are 
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estimated by the facility purchasing fee with certain multipliers shown in Table 3-1 (Heinzle et al., 

2006). 

Table 3-1 Multiplier for directed cost and total capital investment estimation 
Costs Categories Multipliers* 

Total Plant Direct Cost 
(TPDC) 

Purchase cost (PC)  
Installation 0.47×PC 

Process piping 0.68×PC 
Instrumentation 0.26×PC 

Insulation 0.08×PC 
Electrical 0.11×PC 
Buildings 0.18×PC 

Yard improvement 0.10×PC 
Auxiliary facilities 0.55×PC 

TPDC 2.43×PC 
Total Plant Indirect Cost 

(TPIC) 
Engineering 0.30×TPDC 
Construction 0.35×TPDC 

TPIC  
Total Plant Cost (TPC) TPDC+TPIC  

Contractor’s fee and Contingency 
(CFC) 

Contractor’s fee 0.06×TPC 
Contingency 0.08×DFC 

Direct Fixed Cost (DFC) TPC+CFC  
Working Capital (WC) 0.15×DFC 

Startup Capital (SC) 0.05×DFC 
Total Capital TPC+CFC+WC+SC  

 

The purchasing cost (PC) of each operating unit used for evaluating different investment 

years and plant capacities were adjusted and estimated by the inflation index (Eq. 1) (BLS, 2016a) 

and the six-tenths rule (Eq. 2) (Ulrich, 1984, Peters et al., 2011) individually. Pc is the inflation-

adjusted price of equipment in the current year, Pp indicates the cost of equipment in the previous 

year, and Ic and Ip are inflation index factors of current and previous years separately. For the six-

tenths rule (n=0.6), PCp and PCc are facillities’ purchasing cost of predicted and basis scales; qp 

and qc indicate the facilities’ capacity of predicted and basis scales respectively as well. However, 

the power (n) is varied from 0.4-0.8 depending on different types of machines used.  
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𝑃𝑃𝑐𝑐 = 𝑃𝑃𝑝𝑝 × �
𝐼𝐼𝑐𝑐
𝐼𝐼𝑝𝑝
�                                                𝐸𝐸𝐸𝐸. 1 

 
𝑃𝑃𝑃𝑃𝑝𝑝 =  𝑃𝑃𝑃𝑃𝑐𝑐  ×  (

𝐸𝐸𝑝𝑝
𝐸𝐸𝑐𝑐

 )𝑛𝑛                                     𝐸𝐸𝐸𝐸. 2 

The PC was collected from the SuperPro Designer database, inventory record of Center for 

Crops Utilization, Iowa State University, and the Haas’ study (2006).  The PC and the power use 

in this model are listed Table 3-2. 

Table 3-2 Facility prices and power (n) used for PC estimation of different capacities (2015 price) 
 Power (n) PC of referred scale (thousands dollar) 
Conveyor* 0.6 9 
Storage bin* 0.6 1400 
Drum dryer+ 0.4 68 
Grinder+ 0.6   171 
Extruder● 0.6 275 
Expller+ 0.6 1410 
Degumming tank● 0.49 67 
Centrifuge● 0.49 468 
Dryer for oil recovery+ 0.4 28 
Meal grinder+ 0.6 89 
Meal processer+ 0.49 2590 

Date adjusted according to SuperPro Designer database (*), Haas’ research (+) and Iowa State 
University CCUR pilot inventory record (●). 
 

2.3.2 Operating Costs 

Operating costs include material, utility, labor, and facility related costs. In the extruding-

expelling process, the material cost is from soybeans, water, and phosphoric acid. Utility costs 

include electricty for operating machines, cooling water, and steam used as heating exchange 

agents. Agricultural machine operators and extraction workers are the main souces of labor costs. 

The operating costs inputs are presented as an average price of each 10 years and listed in Table 

3-3. Additionally, the energy consumption inputs are listed in Appendix Table A-1. 
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Table 3-3 Operating costs inputs 
  Unit 1980s 1990s 2000s 2010s Citation 
Materials Soybean $/kg 0.228 0.217 0.255 0.438 USDA ERS, 2016 
 Phosphoric acid $/kg 0.6 0.6 0.6 0.6 SuperPro Database  
 Water $/L 0.001 0.001 0.001 0.001 City of Ames, 2016 
Utility Electricity $/kwh 0.047 0.047 0.057 0.066 US EIA, 2016 
 Steam  $/MT 12 12 12 12 SuperPro Database 
Labor  Ag. machine operator $/hr 6.36 8.77 10.19 13.12 BLS, 2016b 

 Extraction worker $/hr 9.30 13.72 17.69 20.86 
 

For estimating labor costs, an agricultural machine worker was assigned to crop and meal 

handling; while extractor workers mainly dealt with the extruding-expelling process, degumming, 

and oil recovery processes. The labor requirement for each machine was set between 0.1-1 

(workers/unit/ shift) for the referred scale, which is listed in Table 3-4. A shift presents 8 hours 

working time. Additionally, a 0.2-0.25 power relationship was applied to estimate the labor 

requirement for different operating capacities, and the expression is similar to Eq. 2 (Peters et al., 

2011). Besides, the laboratory quality control and assurance cost were also considered and 

estimated by 15% of total labor cost (TLC) (Heinzle et al., 2006). 

Table 3-4 Labor requirement for each operating facility (workers/unit/shift) 
 Soybean Annual Input (million kg) 
 30.77 96.14 192.28 672.99 1527.53 2991.93 
Conveyor 0.22 0.23 0.25 0.30 0.3 0.35 
Storage bin 0.08 0.08 0.1 0.12 0.14 0.17 
Drum dryer 1 1 1 1.26 1.46 1.82 
Grinder 0.5 0.7 1 1.1 1.28 1.6 
Extruder 0.88 0.95 1 1.1 1.16 1.24 
Expeller 0.63 0.84 1 1.37 1.59 1.97 
Degumming tank 0.64 0.84 1 1.35 1.6 1.96 
Centrifuge 0.64 0.85 1 1.38 1.63 1.97 
Dryer for oil recovery 0.8 0.8 0.8 0.8 0.8 0.8 
Meal grinder 0.5 0.67 0.8 1.07 1.25 1.5 
Meal processer 0.22 0.3 0.35 0.47 0.55 0.66 
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2.3.3 Revenues 

Soybean oil and soybean meal are the products of the production stream. The selling prices 

from the 1980s to the recent year are also presented in the average price of each 10 years (Table 

3-5). Additionally, the selling price of expelled meal is higher than the selling price of solvent 

extracted meal about $0.17/kg based on commodity price (USDA ERS, 2016, Quote from the 

Brekke’s Town & Country Pet Supply, Ames, IA).  

         Table 3-5 Selling prices of products from soybean oil hexane extraction process 
 Unit 1980s 1990s 2000s 2010s Citation 
Soybean oil $/kg 0.49 0.50 0.62 0.94 USDA ERS, 2016 
Soybean meal $/kg 0.40 0.39 0.44 0.62  

 

After total capital investment is calculated, operating costs and total revenues, gross profit, 

gross margin, net profit, and return on investment (ROI) are calculated following Eq. 3 to Eq. 6. 

These parameters are critical indices for evaluating the economic feasibility of the whole 

extruding-expelling process. 

 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑃𝑃𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝐺𝐺𝑃𝑃𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − (𝑇𝑇𝐺𝐺𝑃𝑃𝑇𝑇𝑇𝑇 𝐺𝐺𝑜𝑜𝑅𝑅𝐺𝐺𝑇𝑇𝑃𝑃𝑃𝑃𝑅𝑅𝑜𝑜 𝑐𝑐𝐺𝐺𝐺𝐺𝑃𝑃 − 𝑐𝑐𝐺𝐺𝑅𝑅𝑐𝑐𝑃𝑃𝑃𝑃𝐺𝐺)                    𝐸𝐸𝐸𝐸. 3 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑀𝑀𝑇𝑇𝐺𝐺𝑜𝑜𝑃𝑃𝑅𝑅 (%) =
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑜𝑜𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

× 100%                         𝐸𝐸𝐸𝐸. 4 

𝑁𝑁𝑅𝑅𝑃𝑃 𝑃𝑃𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑜𝑜𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝐺𝐺 + 𝐷𝐷𝑅𝑅𝑜𝑜𝐺𝐺𝑅𝑅𝑐𝑐𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝐺𝐺𝑅𝑅                    𝐸𝐸𝐸𝐸. 5 

𝑅𝑅𝑅𝑅𝑃𝑃𝑅𝑅𝐺𝐺𝑅𝑅 𝐺𝐺𝑅𝑅 𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅𝐺𝐺𝑃𝑃𝐼𝐼𝑅𝑅𝑅𝑅𝑃𝑃 (%) =
𝑁𝑁𝑅𝑅𝑃𝑃 𝑜𝑜𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝐺𝐺𝑃𝑃𝑇𝑇𝑇𝑇 𝑐𝑐𝑇𝑇𝑜𝑜𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝐺𝐺𝑃𝑃𝐼𝐼𝑅𝑅𝑅𝑅𝑃𝑃
× 100%                    𝐸𝐸𝐸𝐸. 6 
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3. Results and Discussions 

3.1 Total Capital Investment 

The purchasing cost is the basis for fixed cost estimation. This indicates the required capital 

which is paid to establish the production stream for producing the products at the begining of the 

investment. Also, the capital investment will not change with plant service time. In addition to the 

hardware of the producing stream, WC and SC are necessary to verify the whole process; 

producing the products that meet required quality. Based on the assumptions of total capital 

investment, the results of total capital investment for different investment years and handling 

capacities are shown in Table 3-6. 

In different investment years, the total capital investments increased from the 1980s to the 

2010s with the growth of the economy and the inflation index. Because of the increasing demands 

for food applications, the success of RFS (renewable fuel standard program), and the properity of 

RIN (renewable identification number) markets, many companies began expansion plans in recent 

years (Biodiesel Magazine, 2015). The capacity increased in scale in six scenarios. Additionally, 

the largest scale is 2991.93 million kg of annual soybean input; which is also simailar to real oil 

productivity from the Landus Cooperation soybean expelling plant in Ralston, IA. The relationship 

between total capital investment and different scales is illustrated in Fig. 3-3. 
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Fig. 3-3 Power relationship between total capital investment and different scales of soybean 
inputs 

 

A powerful relationship of 0.42 between total capital investment and different annual 

soybean inputs exsists from the results. This relationship is expressed in Eq. 7, where ‘x’ is the 

annual soybean input in million kg and y’ is the estimated total capital investment..  

𝑦𝑦 = 10186.01𝑋𝑋0.42                    𝐸𝐸𝐸𝐸. 7 
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Table 3-6 Capital investment estimation for extrusion-expelling soybean oil extraction (1000 $ based on 2015 price) 
  Scenarios 

Costs Categories 1980s 1990s 2000s 2010s 30.77M 96.14M 672.28M 1257.53M 2991.93M 
Total Plant Direct Cost 

(TPDC) 
Purchase cost (PC) 3,714 5,326 6,896 8,218 3,516 5,406 14,445 20,284 21,322 

Installation 1,506 2,161 2,807 3,342 1,366 2,296 6,044 8,371 8,700 
Process piping 2,525 3,622 4,689 5,588 2,391 3,676 9,823 13,793 14,499 
Instrumentation 996 1,385 1,793 2,137 914 1,406 3,756 5,274 5,544 

Insulation 297 426 552 657 281 433 1,156 1,623 1,706 
Electrical 409 586 759 904 387 595 1,589 2,231 2,345 
Buildings 668 959 1,241 1,479 633 973 2,600 3,651 3,838 

Yard improvement 371 533 690 822 352 541 1,445 2,028 2,132 
Auxiliary facilities 2,043 2,929 3,793 4,520 1,934 2,973 7,945 11,156 11,727 

TPDC 14,499 17,927 23,220 27,669 11,772 18,298 48,801 68,411 70,912 
Total Plant Indirect Cost 

(TPIC) 
Engineering 3,750 5,378 6,966 8,301 3,532 5,489 14,640 20,523 21,274 
Construction 4,375 6,274 8,127 9,684 4,120 6,404 17,080 23,944 24,819 

TPIC 8,124 11,652 15,093 17,985 7,652 11,894 31,721 44,467 46,093 
Total Plant Cost (TPC) TPDC+TPIC 20,624 29,579 38,313 45,653 19,423 20,192 80,522 112,877 117,005 

Contractor’s fee and 
Contingency (CFC) 

Contractor’s fee 1,237 1,775 2,299 2,739 1,165 1,812 4,831 6,773 7,020 
Contingency 1,650 2,366 3,065 3,652 1,554 2,415 6,442 9,030 9,360 

Direct Fixed Cost (DFC) TPC+CFC 23,551 33,720 43,676 52,044 22,143 34,419 91,795 128,680 133,385 
Working Capital (WC) 3,527 5,508 6,551 7,807 3,321 5,163 13,769 19,302 20,008 

Startup Capital (SC) 1,176 1,686 2,184 2,602 1,107 1,721 4,590 6,434 6,669 
Total Capital TPC+CFC+WC+SC 28,213 40,464 52,412 62,453 26,571 41,602 110,154 154,416 160,062 

The capacity of 192.28 Million kg of annual soybean input is the basis for estimating different investment years and scales.  
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3.2 Operating Costs 

Operating costs are the basic index for estimating the profit of the whole extruding-

expelling process. Operating costs change with the fluctuation of economic conditions, therefore, 

the percentage changes of materials, utility, labor, and facility related costs in total operating cost 

are illustrated in Fig. 3-4. 

3.2.1 Material Costs 

Soybean, water, and phosphoric acid are the sources of material costs, and soybeans take 

over 98% of the total material cost. In contrast, water and phosphoric acid are only used in the 

degumming process, and need small amounts for operation. Therefore, they produce less than 1% 

of the total material costs. 

From Fig. 3-4a, the majority of total operating costs increased over 70% from the 1980s to 

the 2010s. The fluctuation of the cost of materials illustrates the changes of market conditions. 

From the 1980s to the 2010s, material costs increased about 91%, which caused a portion of 

material costs to reach about 78% of total costs in the 2010s. 

From Fig. 3-4b, the portion of material cost in total operating costs has increased when the 

plant processing capacity increases in scale. Materials take about 64% of the total operating costs 

of a facility producing 4.10 million kg of annual oil production; and takes over 85% on the largest 

scale facilities. This result also indicates the extruding-expelling process is a material intense 

process because material costs make up the majority of all costs in all scales. 
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(a)                                                                    

 
                           (b) 

                            
 
Fig. 3-4 Breakdown of operating costs. (a) 1980-2015 data; (b) Different scales of oil extraction 

based on 2010s data inputs 
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3.2.2 Utility Costs 

Utility costs includes the electricity, used to operate machines and steam and cooling water, 

used as heat exchange agents. From Fig. 3-4a, utility costs take over 10% of total operating costs 

from the 1980s to the 2010s. However, utility cost increased about 40% during that time, which is 

much less than material costs increasing over 90% from the 1980s to the 2010s. This result causes 

the portion of utility costs decreased from the 1980s to the 2010s. 

According to Fig. 3-4b, when the scale of plant capacity increases, the percentage of utility 

costs increase. This result also indicates more energy demands are needed to operate large amounts 

of soybeans. Additionally, the utility cost derived from electricity makes up 90% of all utility costs 

in all scenarios. This result shows the extruding-expelling process is a high, electricity demand 

technique in an oil production process.   

3.2.3 Facility and Labor Related Costs 

Facility related costs mainly come from machine maintenance fee. Labor costs include 

labor dependent and laboratory QA/QC costs.  

From Fig. 3-4a, shows facility related costs take up 9-15% of total operating costs. Based 

on the inflation index, facility related costs increased from the 1980s to the 2000s by about 20%; 

which means the percentage of facility related costs increased over 14% in the 1990s and 2000s. 

However, it decreased to about 10% in the 2010s because material cost increased over 55% from 

the 2000s to recent years. Facility related costs have only increased around 20% from the 2000s. 

Based on Fig. 3-4b, the percentages of facility and labor related costs decreased when plant 

capacity scale increases. This is because more materials and higher utility costs are required in 

larger scales operations. Though a larger scale facility leads to higher maintenance fees, they still 

make up a small portion of the total operating cost. 
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Labor costs take up the smallest percentage of the total operating costs. The breakdown of 

labor costs is shown in Fig. 3-5. According to Fig. 3-5a, results demonstrate the wage of an 

extraction worker has increased more than an agricultural machine worker for the last three 

decades. For different plant capacities (Fig. 3-5b), the cost of an agricultural machine worker 

increases when the capacity increases in scale. This also indicates more agricultural machine 

workers are needed for dealing with the crop-handling process. These results indicate the 

extruding-expelling process is an agricultural machine intense technique, and shows the 

characteristics of the mechanical process.  

 

              (a)                                                                                                           
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                           (b) 

                             
 
 
Fig. 3-5 Breakdown of labor costs. (a) 1980-2015 data; (b) Different scales of oil production 

based on 2010s data inputs 
 
 
3.2.4 Unit Producing Cost 

The unit producing cost is calculated by dividing total annual operating cost with annual 

soybean oil productivity. Based on the referred scale, between the 1980s to the 2010s the unit 

producing cost of soybean oil production has increased from $2.26 to $4.23 per kg because of the 

change and increasing value of economic and market conditions.  

The effects of different plant capacities are shown in Fig. 3-6. From these results, the unit 

producing cost has decreased from $5.12 to $3.80 per kg of soybean oil when the facility capacity 

is increased in scale. Additionally observed is a power relationship of -0.07 between unit producing 

cost and soybean oil output.  
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The unit operating cost is also calculated by dividing total annual operating cost with 

annual soybean input. A similar trend was observed, with unit producing cost (Fig. 3-7) and a -

0.07 power relationship between unit operating cost and different plant capacity. The unit 

operating cost decreased from $0.68 to $0.51 per kg of annual soybean input when the capacity 

increases in scales.. 

 

 
Fig. 3-6 Power relationship between net unit producing cost and different scales of soybean oil 

production 
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Fig. 3-7 Power relationship between net unit operating cost and different scales of soybean 
inputs 

 

3.3 Revenues and Profits 

Degumming crude soybean oil and soybean meal are products of the extruding-expelling 

process. The annual revenues, gross profit and net profit are illustrated in Fig. 3-8. 

Based on the productivities of soybean oil and soybean meal, revenues from soybean oil 

and meal are 23% and 77% respectively. Though the oil expelling process is used to produce oil, 

the meal might be the driving force for the whole producing stream. 
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                         (a)                                                                 

 
                            (b) 

 
Fig. 3-8 Capital investment, gross and net profits of soybean oil extruding-expelling process. (a) 

1980-2015 data; (b) Different scales of oil production 
 

From Fig. 3-8a, the increasing economic and markets can be also observed. The extruding-

expelling process has positive gross and net profits, indicating this process could be profitable. 

The effect of different plant capacities (Fig. 3-8b) shows, all parameters increase when the capacity 
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is scaled up. A plant producing 4.10 million kg of soybean oil annually, with a negative gross 

profit, can have a positive net profit when depreciation is considered. Additionally, a positive gross 

profit can be obtained when the capacity is larger than 12.81 million kg of annual soybean oil 

output, which indicates the break-even point of the extrusion-expelling process is between the 

capacity of 30.77 and 96.14 million annual soybean input. 

According to the ROI, payback time can be calculated by following the Eq. 8. The 

economic feasibility of the process is determined by gross margin and payback time. The results 

are shown in Table 3-7. From gross margin results, positive values are observed when the capacity 

is larger than 12.81 million kg of annual soybean oil output. Though the capacity of the 12.81 

million kg of annual soybean output has a positive ROI, which shows there is the potential for the 

process to earn profit back; however, the payback time is longer than fifteen years, which is set as 

the service time of this project.  Therefore, this scale cannot be regarded as a profitable and 

economically feasible process. Conclusively, a process with a positive gross margin and a payback 

time shorter than service time is considered a profitable process. Thus, when the capacity of the 

extrusion-expelling process has a capacity larger than 30.77 million kg of annual soybean input, it 

can be a profitable and economically feasible process.  

Payback Time =  
100
ROI

                      Eq. 7 

 
Table 3-7 Gross margin, ROI and payback time of different scales of soybean oil production 

 Soybean  Annual Output (million kg) 
 4.10 12.81 25.62 89.67 167.56 398.67 
Gross Margin (%) -7.62 7.42 11.09 16.09 17.30 20.13 
ROI (%) 2.32 15.04 21.99 48.45 66.01 163.04 
Payback Time (yr) 43.14 6.65 4.55 2.06 1.52 0.61 
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4 Conclusions 

Mechanical expelling is the typical technique used to extract oil from crops by using heat 

and pressure. The extruding-expelling process simplifies and increases the efficiency of the whole 

process. Not only does it lower the total capital investment, but also saves operating cost compared 

to the typical expelling process. Results show the extruding-expelling process is an economically 

feasible technique when the plant capacity is larger than 30.77 million kg of annual soybean input. 

Moreover, soybean meal might be the driving force of the whole process because it provides over 

70% of the total revenue.  Additionally, higher values of expelled meal are the main reasons of 

higher revenue due to its higher oil content; which results in higher energy content. This is also 

the reason why the mechanical expelling process still exists for specific applications. The high 

electricity intense process demonstrates the properties of the mechanical expelling process. 
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CHAPTER 4 

 TECHNO-ECONOMIC ANALYSIS OF SOYBEAN OIL HEXANE EXTRACTION 

PROCESS 

 

Modified from a paper to be submitted to Industrial Crops and Products 

 

Abstract 

Hexane extraction is the most common method used in the industry to produce soybean oil 

due to its high oil recovery and lower producing cost. With the demands of soybean oil increasing, 

either in food or industrial applications, expansion plans are being considered by many companies 

to increase production capacity. Techno-economic analysis (TEA) is performed to evaluate the 

economic feasibility of soybean oil production by hexane extraction based on historical scenarios 

from 1980 to 2015. Capital investment, operating costs, revenues, and profits are main parameters 

to consider when estimating profits, gross margin, return on investment (ROI), and payback time 

and are the indices used to evaluate the profitability of the process. As the plant capacity increases 

in scale to over 34.64 million kg of annual soybean oil production, the break-even is met and the 

production stream is able to earn profits. Comparing to the extruding-expelling process, higher 

capital investments are needed for the hexane extraction process at the similar operation capacities. 

In revenues, soybean meal provides about 60% of total revenues. Thus, soybean meal might be the 

driving force for solvent extraction process as well.   

 

Keywords: Hexane extraction, Soybean oil, Techno-economic analysis, Profits, Soybean meal 
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1. Introduction 

Soybeans, the main oil crop in the world, make up 56% of world oil seed production; and 

the U.S. is the major producer with 33% (SoyStats, 2016a). Soybean oil is the major source of 

American vegetable oil consumption, and takes around 57% of all vegetable oil resources 

(SoyStats, 2016b). Typically, vegetable oil is obtained using the mechanical process, expelling or 

hot pressing, or a chemical process such as solvent extraction. Organic solvent extraction is the 

most common and efficient method for oil production; and can be applied to seeds with oil content 

lower than 20% and higher oil content (Anderson, 2016).  

Hexane extraction is used in the vegetable oil production industry because of its low cost 

and high solubility (Hammond et al., 2005, Sawada et al., 2014). However, pure n-hexane is not 

used for extraction, instead a mix of isomers with similar properties is used. It is called extraction 

grade hexane or commercial hexane, with n-hexane take about 50%-90% in extraction grade 

hexane by volume (Woerfel, 1995). Extraction grade hexane has lower boiling and melting points 

(-154oC and 56-60oC) than n-hexane; moreover, it has a higher ignition point 264oC compared to 

225 oC of n-hexane (NFPA, 2009). In addition to these properties, its similar density, molecular 

weight of n-hexane, and the presence of various isomers give extraction grade hexane a greater 

ability to extract oil from oilseeds (Anderson, 2011). 

In hexane extraction, the process includes crop cleaning, cracking, dehulling, conditioning, 

flaking, extracting, solvent recovery, and desolvenization. For soybean oil production, soybean 

hulls recovered from the dehulling process, and soybean meal generated after desolvenization are 

co-products sold as animal feeds. For improving yield and profits of the solvent extraction process, 

plants work to increase energy efficiency, cost reduction, and quality control of products as the 
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solvent extraction process initially expanded in industrial application in the 1930s (Langhurst, 

1951). 

Recently, soybean production and its refinery products such as soybean oil, and soybean 

meal, significantly increased due to their nutritional values and wide utilizations in the food 

industry and non-food applications (Do et al.,2014). For conventional food and animal feed usage, 

soybeans are a good resource of oil, protein, fiber (Bader et al., 1999), and minerals and vitamins 

(Corley et al., 1999). In the U.S., the area for soybean plantation increased around 30% from the 

1980’s to 2015 (SoyStats, 2016c) because the need for soybean products increased with population 

growth. Soybean meal, one resource for animal feeds due to its high protein and fiber content, 

increased over 45% from the 1980s; with annual production in the U.S. reaching 44 million short 

ton in 2015 (SoyStats, 2016d). In other applications, soybeans are suppliers of industrial raw 

materials and used in the production of many products like plastics, detergents, and lubricants. 

(Perez and Nolasco, 2010).  

To obtain high oil yield and good quality, a well-designed process is necessary. The 

physical properties of grain and diffusivity are two major issues in the solvent extraction process 

(Perez et al., 2011). Though a proper hexane extraction approach could minimize these problems, 

it still has some defects such as non-renewable fossil origin, leading to environmental pollution 

and public health issues (Rosenthal et al., 1996, Oliveira et al.,2013, Tabtabaei & Diosady, 2013). 

Many researchers have been using different solvents (Bhagya & Srinivas, 1992, Myint et al., 1996, 

Do et al., 2014, Sawada et al., 2014) and different techniques (Domínguez et al., 1995, Ribeiro et 

al.,2006, Eikani et al., 2012) to improve oil yield and reduce solvent consumption, which causing 

environmental impact and safety issues. 
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The first mathematic model to predict the oil extraction yield based on experimental data 

was established by Karnofsky in 1949; and mainly focused on soybean, cottonseed and peanuts.  

For vegetable oil production, other than techniques used to improve oil yield and quality, economic 

feasibility is another critical factor. Oil extraction is the first step of oil applications. Some studies 

on the economics of vegetable oil utilizations, include the oil extraction step in their economic 

analysis models. Nelson et al. (1994) conducted economic analysis of 100,000 ton/year biodiesel 

with beef tallow and methanol by acid catalysis. A similar study was performed by Noordam and 

Withers (1996) using canola seeds as the material for biodiesel production. Haas et al. (2006) 

performed the operation cost estimation of soybean-based biodiesel production. Additionally, 

there are still different economic modeling analyses used for biodiesel production with different 

software (Bender, 1999, Zhang et al., 2003, Marchetti et al., 2008, Mlay et al., 2014). However, 

few studies about economic feasibility and cost effects focusing on soybean oil extraction process 

have been completed. 

According to prior studies on oil conversion, previous models are regarded as a proper 

reference for economic analysis of the hexane extraction process. The targets of pilot and 

commercial scale productions try to lower the capital investment and operating cost while 

increasing the yield and quality to earn more profits. However, each process unit could affect not 

only cost, but also yield and final profits. The soybean oil and meal co-products are another critical 

factor that increase total profits. The high protein and fiber contents of soybean meal and soybean 

hulls are also valuable merchandise for other industries and markets. 

This study focuses on the typical hexane extraction process for degummed crude soybean 

oil production. The goal of this study is to build up an economic model of hexane oil extraction in 

several industrial scales to estimate production cost, economic feasibility, and the effects on profits 
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from operating costs and revenues. This model can be used not only in the vegetable oil industry, 

but expanded to further bio-refinery applications and other relative applications. 

2. Materials and Methods 

2.1 Hexane Extraction Process 

Crop preparation (handling), solvent extraction, degumming, desolvenization and meal 

processing are main processes of the soybean oil hexane extraction process (Fig. 4-1). Crop 

preparation includes oil seed cleaning, cracking, dehulling, conditioning, and flaking. The purpose 

of crop handing and preparation is to remove foreign impurities, separate soybean hulls from seeds, 

and increase the accessibility for oil release. In the conditioning process, heat makes the soybean 

meal plastic and breaks down the linkage between proteins and oil bodies. The following flaking 

process increases surface area and makes soybean flakes more porous; which improve the 

efficiency of further oil recovery. 

In the extraction process, solubility of oil in organic solvent is used as the principle source 

of solvent extraction, and continuous countercurrent percolation is applied to reduce hexane usage. 

Also, hexane is recycled and reused to reduce material cost and minimize environmental and safety 

issues. Heat evaporates hexane from the oil and solvent solution. The hexane vapor is condensed 

by cooling water to be recycled and reused. After extraction, a water degumming process removes 

most parts of the phospholipids, which is water soluble, and can be separated by centrifugation. 

The amount of water used in the degumming process corresponds to phospholipid content in 

soybean oil with a 1:1 ratio by weight (Dijkstra, 2016). Once the phospholipid is removed, soybean 

oil is sold as degummed crude soybean oil in commodity. 
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Fig. 4-1 Soybean oil hexane extraction TEA model 
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The desolvenization process follows the extraction process, using steam to evaporate 

hexane remaining in soybean meal. Typically, desolvenization is conducted by a toaster, and steam 

flow runs countercurrent to meal flow to improve efficiency. Hexane vapor generated from 

desolvenization is also collected to prevent potential safety risks. However, the soybean meal and 

hulls produced and collected from oil extraction are regarded as co-products; which are sold as 

materials for animal feed applications. 

2.2 Computer Modeling 

The economic model of soybean oil hexane extraction was performed by SuperPro 

Designer v9.0 (Intelligen, Inc., Scotch Plains, NJ). The simulation followed mass balance. 

Additionally, equipment, facility and economic parameters of production stream were evaluated 

in the model (Ngo et al., 2014). 

According to the TEA model of soybean based biodiesel production established by Hass 

et al., (2005), 192.28 million kg/year of soybean input was set as the referred scenario and scale 

for time-piece and different capacities studies. Additionally, this capacity is a common scale used 

in the industry (U.S. EPA, 2001). Historical economic parameters (1980s~2010s) and different oil 

production capacities (4.04, 12.12, 34.64, 86.61, 173.22 and 415.73 million kg of annual soybean 

oil production which correspond to 22.43, 67.30, 192.28, 480.71, 961.42, and 2307.40 million kg 

of annual soybean handling) were analyzed in this study. The model was built for 15 years of plant 

life time, 30 months of construction, four months of startup time, 35% income tax, and a ten year 

depreciation period with 5% salvage value of directed costs (Haas et al., 2006). 
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2.3 Assumption and Data Collection 

2.3.1 Fixed Costs 

Fixed costs mainly come from facility and hardware costs. They are divided into total plant 

direct cost (TPDC), total plant indirect cost (TPIC), and contractor fees and contingency (CFC). 

TPDC includes items like facility installation, processing pipe connections, and instrumentation; 

and TPIC includes engineering and construction fees. Total plant cost (TPC) is estimated by total 

TPDC and TPIC. Additionally, the summation of TPC, CFC, startup costs and working capital is 

total capital investment for the whole producing line. The fee to purchase the facility is used as the 

base to estimate fixed costs and is calculated using different multipliers (Table 4-1) (Heinzle et al., 

2006). 

Table 4-1 Multiplier for directed cost and total capital investment estimation 
Costs Categories Multipliers* 

Total Plant Direct Cost 
(TPDC) 

Purchase cost (PC)  
Installation 0.47×PC 

Process piping 0.68×PC 
Instrumentation 0.26×PC 

Insulation 0.08×PC 
Electrical 0.11×PC 
Buildings 0.18×PC 

Yard improvement 0.10×PC 
Auxiliary facilities 0.55×PC 

TPDC 2.43×PC 
Total Plant Indirect Cost 

(TPIC) 
Engineering 0.30×TPDC 
Construction 0.35×TPDC 

TPIC  
Total Plant Cost (TPC) TPDC+TPIC  

Contractor’s fee and Contingency 
(CFC) 

Contractor’s fee 0.06×TPC 
Contingency 0.08×DFC 

Direct Fixed Cost (DFC) TPC+CFC  
Working Capital (WC) 0.15×DFC 

Startup Capital (SC) 0.05×DFC 
Total Capital TPC+CFC+WC+SC  
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The purchasing cost (PC) of each machine is collected from Haas’ research (2006), the 

SuperPro designer v9.0 database, and the inventory record of Iowa State University Center for 

Crops Utilization Research (CCUR) pilot. Inflation index (BLSa, 2016) is used to estimate machine 

purchase price from 1980 to 2015 following Eq. 1; where, Pc is the inflation-adjusted price of 

equipment in a current year, Pp indicates the cost of equipment in the previous year, and Ic and Ip 

are inflation index factors of current and previous year respectively. Additionally, the six-tenths 

rule (n=0.6) is used to estimate machine PC for different production capacities (Ulrich, 1984; 

Peters et al., 2011) following Eq. 2. In Eq. 2, PCp and PCc are facility purchasing costs of predicted 

and base scales and qp and qc indicate the capacity of the facilicty of predicted and base scales 

respectively. However, the power (n) varies based on different types of machine, and is listed in 

Table 4-2. 

𝑃𝑃𝑐𝑐 = 𝑃𝑃𝑝𝑝 × �
𝐼𝐼𝑐𝑐
𝐼𝐼𝑝𝑝
�                                                𝐸𝐸𝐸𝐸. 1 

𝑃𝑃𝑃𝑃𝑝𝑝 =  𝑃𝑃𝑃𝑃𝑐𝑐  ×  (
𝐸𝐸𝑝𝑝
𝐸𝐸𝑐𝑐

 )𝑛𝑛                                     𝐸𝐸𝐸𝐸. 2 
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Table 4-2 Facility prices and power (n) used for PC estimation of different capacities (2015 price) 
 Power (n) PC of referred scale (1000$) 
Conveyor* 0.6 9 
Storage bin* 0.6 1400 
Drum dryer+ 0.4 91 
Grinder+ 0.6 113 
Aspirator● 0.6 13 
Conditioner+ 0.4 91 
Flaking miller● 0.6 822 
Extractor and toaster+ 0.6 2150 
Degumming tank● 0.49 67 
Centrifuge● 0.49 589 
Dryer for oil recovery+ 0.4 28 
Hexane receiving tank* 0.54 248 
Hexane storage tank* 0.49 125 
Meal grinder+ 0.6 42 
Hull grinder+ 0.6 22 
Meal processer+ 0.49 2590 

Date adjusted according to SuperPro Designer database (*), Haas’ research (+) and Iowa State 
University CCUR pilot inventory record (●). 

2.3.2 Operating Costs 

Material, labor, facility maintenance, and utility costs are the main sources of operating 

costs. Soybeans, hexane, and water used in the extraction and degumming processes are some 

material costs. Electricity is the main energy used to operate a facility; while steam and natural gas 

are used as heat transfer agents in the process.  Labor costs are divided into agricultural machine 

operators, extraction workers, and hazardous material workers. Operating costs from 1980 to 2015 

are presented as average prices for each 10-year period and are listed in Table 4-3.  

Table 4-3 Operating costs inputs 
  Unit 1980s 1990s 2000s 2010s Citation 
Materials Soybean $/kg 0.228 0.217 0.255 0.438 USDA ERS, 2016 
 Hexane $/kg 0.89 0.89 0.89 0.89 SuperPro Database  
 Water $/L 0.001 0.001 0.001 0.001 Ames, 2016 
Utility Electricity $/kwh 0.047 0.047 0.057 0.066 EIA, 2016 
 Steam  $/MT 12 12 12 12 SuperPro Database 
Labor  Ag. machine operator $/hr 6.36 8.77 10.19 13.12 BLSb, 2016 
 Extraction worker $/hr 9.30 13.72 17.69 20.86 
 Hazardous material worker $/hr 9.13 13.26 17.78 20.11 
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To estimate labor costs, agricultural machine workers are assigned to cope with crop 

preparation and co-product handling; extractor workers handle extraction and degumming 

processes, and hexane recycling and desolvenization are operated by hazardous material workers. 

The labor requirements for each machine are set between 0.1-1 (workers/unit/shift) and a shift is 

typically 8 hours for basis scale, which are listed in Table 4-4. However, the relationship between 

labor requirements and the capacity of production is not a linear relationship. A 0.2-0.25 power of 

the capacity ratio is typically applied in plant scale-up (Peters et al., 2011). In this study, a 0.25 

power is used for optimal estimation. Additionally, the laboratory quality control and assurance 

costs are considered and estimated by 15% of total labor cost (TLC) (Heinzle et al., 2006). 

Additionally, the energy consumption inputs are listed in Appendix Table A-2. 

Table 4 Labor requirement for each operating facility (workers/unit/shift) 
 Soybean Oil Annual Input (million kg) 
 22.43 67.30 192.28 480.71 961.42 2307.40 
Conveyor 0.21 0.22 0.25 0.30 0.30 0.33 
Storage bin 0.08 0.08 0.10 0.11 0.13 0.16 
Drum dryer 0.65 0.76 1 1.16 1.38 1.70 
Grinder 0.85 1 1 1.2 1.42 1.78 
Aspirator 0.20 0.30 0.30 0.35 0.40 0.47 
Conditioner 0.65 0.76 1 1.26 1.50 1.85 
Flaking miller 0.72 0.76 1 1.20 1.40 1.73 
Extractor and toaster 2.39 2.52 3 3 3.17 3.95 
Degumming tank 0.60 0.78 1 1.45 1.78 1.88 
Centrifuge 0.75 0.75 1 1.20 1.40 1.78 
Dryer for oil recovery 1 1 1 1 1 1 
Hexane receiving tank 0.67 0.74 1 1.20 1.40 1.76 
Hexane storage tank 0.67 0.74 1 1.20 1.40 1.76 
Meal grinder 0.80 0.84 1 1.32 1.50 1.82 
Hull grinder 1 1 1 1.19 1.41 1.72 
Meal processer 0.20 0.22 0.35 0.35 0.40 0.47 

Labor requirements are adjusted according to different production scales of each operating facility. 
These inputs are collected based on Ulrich’s (1984) and Peters’ (2011) studies. 
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2.3.3 Revenues 

Soybean oil, meal, and hull are products of the whole producing line. The selling prices 

from 1980 to 2015 are presented as average prices for each 10-year period and listed in Table 4-5.  

Operating costs and total capital investment, gross profit, gross margin, net profit and return on 

investment (ROI) are calculated following Equations 3 to 6. 

Table 4-5 Selling prices of products from soybean oil hexane extraction process 
 Unit 1980s 1990s 2000s 2010s Citation 
Soybean oil $/kg 0.49 0.50 0.62 0.94 USDA ERS, 2016 
Soybean meal $/kg 0.22 0.22 0.26 0.45 USDA ERS, 2016 
Soybean hull $/kg 0.06 0.06 0.12 0.21 Feedstuffs Magazine, 1980-2015 

 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑃𝑃𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝐺𝐺𝑃𝑃𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − (𝑇𝑇𝐺𝐺𝑃𝑃𝑇𝑇𝑇𝑇 𝐺𝐺𝑜𝑜𝑅𝑅𝐺𝐺𝑇𝑇𝑃𝑃𝑃𝑃𝑅𝑅𝑜𝑜 𝑐𝑐𝐺𝐺𝐺𝐺𝑃𝑃 − 𝑐𝑐𝐺𝐺𝑅𝑅𝑐𝑐𝑃𝑃𝑃𝑃𝐺𝐺)                    𝐸𝐸𝐸𝐸. 3 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑀𝑀𝑇𝑇𝐺𝐺𝑜𝑜𝑃𝑃𝑅𝑅 (%) =
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑜𝑜𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

× 100%                         𝐸𝐸𝐸𝐸. 4 

𝑁𝑁𝑅𝑅𝑃𝑃 𝑃𝑃𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑜𝑜𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝐺𝐺 + 𝐷𝐷𝑅𝑅𝑜𝑜𝐺𝐺𝑅𝑅𝑐𝑐𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝐺𝐺𝑅𝑅                    𝐸𝐸𝐸𝐸. 5 

𝑅𝑅𝑅𝑅𝑃𝑃𝑅𝑅𝐺𝐺𝑅𝑅 𝐺𝐺𝑅𝑅 𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅𝐺𝐺𝑃𝑃𝐼𝐼𝑅𝑅𝑅𝑅𝑃𝑃 (%) =
𝑁𝑁𝑅𝑅𝑃𝑃 𝑜𝑜𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝐺𝐺𝑃𝑃𝑇𝑇𝑇𝑇 𝑐𝑐𝑇𝑇𝑜𝑜𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝐺𝐺𝑃𝑃𝐼𝐼𝑅𝑅𝑅𝑅𝑃𝑃
× 100%                    𝐸𝐸𝐸𝐸. 6 
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3. Results and Discussions 

3.1 Total Capital Investment 

Facilities machines for processing are a major part of the total investment.  These costs are 

necessary before the process is operational, and are defined as fixed cost.  Working capital and 

startup costs are also considered in fixed cost, which is defined as additional costs used for 

validation and start-up of a facility before a plant starts producing products. This additional cost 

includes installation and operational and process qualifications; which assures the plant meets 

required quality and safety standards (Heinzle et al., 2006). The results of the total investment are 

shown in Table 4-6. 

According to the estimation of fixed cost, investment increased from 1980s to 2010s with 

growth of the economy, and is observed in the inflation index as well. Due to many expansion 

plans implemented by companies since 2010 (Biodiesel Magazine, 2015), the 2010 model of 

192.28 million kg of annual soybean annual input (Haas et al., 2006) is the basis for estimation of 

different scales. The result of relationships between capital investment and different scales of 

annual soybean input is illustrated in Fig. 4-2. 
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Fig. 4-2 Power relationship between total capital investment and different scales of soybean oil 
extraction 

 
Results show there is a power relationship of 0.34 between capital investment and different 

scales of soybean annual input. However, the total capital investments of hexane extraction are 

higher about 8%-110% than the extruding-expelling process depending on different operating 

scales.  Equation 7 is used to estimate the potential capital investment based on ratios used for 

facilities scaling up; where, ‘x’ indicates the ratio of scaling up based on 192.28 million kg of 

soybean input, and ‘y’ is the estimated capital investment in thousands of dollars. 

𝑦𝑦 = 77.05𝑋𝑋0.34                    𝐸𝐸𝐸𝐸. 7 
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Table 4-6 Capital investment estimation for hexane soybean oil extraction (1000 $ based on 2015 price) 
  Scenarios 

Costs Categories 1980s 1990s 2000s 2010s 22.43M 67.30M 480.71M 961.42M 2307.4M 
Total Plant Direct Cost 

(TPDC) 
Purchase cost (PC) 5,464 7,830 10,080 10,886 5,419 6,107 12,961 16,869 26,139 

Installation 2,255 3,231 4,164 4,443 2,126 2,456 5,159 6,646 10,179 
Process piping 3,715 5,324 6,854 7,403 3,685 4,153 8,814 11,471 17,774 
Instrumentation 1,421 2,036 2,621 2,830 1,409 1,588 3,370 4,386 6,796 

Insulation 437 626 806 871 434 489 1,037 1,350 2,091 
Electrical 601 861 1,109 1,198 596 672 1,426 1,856 2,875 
Buildings 983 1,409 1,814 1,960 975 1,099 2,333 3,036 4,705 

Yard improvement 546 783 1,008 1,089 542 611 1,296 1,687 2,614 
Auxiliary facilities 3,005 4,306 5,544 5,988 2,980 3,359 7,129 9,278 14,376 

TPDC 18,428 26,407 34,000 36,667 18,166 20,534 43,524 56,578 87,549 
Total Plant Indirect Cost 

(TPIC) 
Engineering 5,528 7,922 10,200 11,000 5,450 6,160 13,057 16,973 26,265 
Construction 6,450 9,243 11,900 12,833 6,358 7,187 15,233 19,802 30,642 

TPIC 11,978 17,165 22,100 23,833 11,808 13,347 28,291 36,775 56,907 
Total Plant Cost (TPC) TPDC+TPIC 30,406 43,572 56,100 60,500 29,974 33,881 71,814 93,353 144,457 

Contractor’s fee and 
Contingency (CFC) 

Contractor’s fee 1,824 2,614 3,366 3,630 1,798 2,033 4,309 5,601 8,667 
Contingency 2,433 3,486 4,488 4,840 2,398 2,710 5,745 7,468 11,557 

Direct Fixed Cost (DFC) TPC+CFC 4,257 6,100 7,854 8,470 4,196 4,743 10,054 13,069 20,224 
Working Capital (WC) 5199 7,451 9,593 10,346 5,126 5,794 12,280 15,963 24,702 

Startup Capital (SC) 1,733 2,484 3,198 3,449 1,708 1,931 4,093 5,321 8,234 
Total Capital TPC+CFC+WC+SC 41,596 59,607 76,745 82,764 41,004 46,349 98,242 127,707 197,617 

The capacity of 192.28 Million kg of annual soybean oil input from 1980s to 2010s is the basis for estimation of different scales.  
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3.2 Operating Costs 

Operating costs are a critical index for estimating profits of the producing stream based on 

Equation 3. Unlike fixed cost, operating costs change annually depending on economic and market 

conditions. Materials, utility, labor, and facility related costs are the main sources of operating 

costs (Fig. 4-3).  

Fig. 4-3a shows material cost make up the majority of operating costs for the reference 

scale of a facility producing 192.28 million kg of soybean annual input. Results also indicate a 

change of operating costs from fluctuating economic and market conditions, especially for material 

and utility costs. Additionally, the facility related cost is another critical source of operating costs, 

and is mainly from facility maintenance fees. Therefore, results show hexane extraction is a 

material and facility intense process, especially for plants with the handling scale of 192.28 million 

kg soybean annual input. 

3.2.1 Material Costs 

Soybean, hexane and water are the sources of materials costs; with soybeans taking up 99% 

of total material cost. Because hexane is recyclable and runs counter-current with the percolation 

process applied in extraction, the cost of hexane is remarkably low. 

Fig. 4-3b shows a portion of materials in operating costs increases when the capacity of the 

facility increases.  Material cost takes up about 44% of total operating costs in a facility producing 

4 million kg of soybean oil and increases to over 90% of total operating costs in 173.22 and 415.73 

million kg of soybean oil production facilities. Therefore, the soybean price is concluded as a 

critical factor for the hexane extraction process. 
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                        (a)                                                                      

 
                         (b) 

             
 

Fig. 4-3 Breakdown of operating costs. (a) 1980-2015 data; (b) Different scales of soybean oil 
extraction 
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3.2.2 Utility Costs 

Electricity and steam are main energy inputs for the extraction process. Electricity powers 

the facilities and steam heats the resources for the process. The breakdown of utility costs is shown 

in Fig. 4-4. After the year 2000, steam prices increased remarkably. Therefore, the obvious 

increment increases of electricity costs can be observed in the 2010s. 

According to Fig. 4-3b, the percentage of utility costs decreases when the capacity 

increases.  Producing 4 million kg of soybean oil means utility costs take up about 17% of total 

operating costs; but only take up about 2% in larger scales. Though more energy inputs and utility 

fees are required for larger scale operations of soybean oil production, material costs play a critical 

role in the whole process, especially for soybean cost. Material costs exceed other operating costs 

resulting in a lower percentage of utility costs in all operating costs. 

As shown in Figure 4-4b, there is an obvious trend of increasing steam cost. More energy 

inputs are needed in larger scales of production for soybean drying, conditioning process, and 

desolvenization process. The amounts of steam required increases from 4568 MT in the 22.43 

million kg of annual soybean input to over 35000 MT in the largest scale which results in an over 

six times increments of steam cost. 
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                        (a)                                                                       

 
                        (b)  

               
 
 

Fig. 4-4 Breakdown of utility costs. (a) 1980-2015 data; (b) Different scales of soybean oil 
extraction 
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3.2.3 Facility and Labor Related Costs 

Facility related cost is mainly from routine maintenance and repair fees, which is estimated 

as 7% of total direct fixed cost (Heinzle et al., 2006, Peters et al., 2011).  Labor costs include 

independent labor cost and labor QA/QC cost. Independent labor cost indicates workers who 

operate the facility, and are divided into agricultural machine workers, extraction workers, and 

hazardous material handling workers. The breakdown of independent labor cost is shown in Fig. 

4-5.  

The distribution of agricultural machine workers, extraction workers, and hazardous 

material handling workers are about 35%, 45%, and 20% respectively (Fig. 4-5a). These results 

also reflect the laborer’s wages. The general labor wage has doubled since the 1980s, with the 

wage of an extraction worker increasing the highest increment to over 125% than an agricultural 

machine worker (about 106%). Therefore, the expense of an extraction worker takes up the 

majority of labor costs.  As capacity is scaled up, the cost of hazardous material workers and 

agricultural machine workers increase, and the cost of extraction workers decrease (Fig. 4-5b). 

Based on the importance of desolvenization and solvent recycle for hexane extraction, more 

hazardous workers are required to assure product quality and safety of operating. Additionally, in 

the larger scale operations, more agricultural workers are needed to cope with larger amounts of 

raw materials. The decrease of extraction worker cost demonstrates the high efficiency of the 

solvent extraction process.   

The labor QA/QC cost is estimated as 15% of total independent labor cost. Labor QA/QC 

is mainly from work, which is required to assure quality of products and is needed for the 

production stream to prevent revenue deductions from flawed products. According to Fig. 4-3b, as 

capacity is scaled up the percentage of labor related costs decreases, and becomes the smallest 
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percentage of total operating costs. Fig. 4-3b also indicates the larger capacity process is more 

material handling intense than labor intense. 

               (a) 

 
                (b) 

         
 

Fig. 4-5 Breakdown of labor costs. (a) 1980-2015 data; (b) Different scales of soybean oil 
extraction 
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In the past 30 years, total facility maintenance and repair costs increased due to the increase 

of fixed cost. In the 2010s, because of higher material costs, the percentage of facility related cost 

decreased. Otherwise, in different scales of soybean oil production, as the capacity is scaled up, 

the percentage of facility related costs decrease because higher material and utility costs are needed 

for larger scale productions of soybean oil. 

Considering the relationship between total operating costs and different operating 

capacities, the operating cost per 1 kg of soybean handling can be calculated. In the hexane 

extraction process, the unit operating cost is between $0.46 and $1 based on operating capacities. 

Also, there is a -0.15 power relationship between the unit operating cost and different operating 

scales (Fig. 4-6).  

 

Fig. 4-6 Power relationship between unit operating cost and different operating capacities 
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3.2.4 Unit Producing Cost 

The unit producing cost is calculated by dividing total soybean oil productivity from total 

operating costs. From 1980s to 2010s, based on the reference scale, the unit producing cost 

increased from $1.60 to $3.04 per 1 kg of soybean oil production due to the changing and 

increasing value of economic and market conditions. 

From the total operating cost results of different scales estimated based on the 2010s market 

conditions, the unit producing cost is estimated by a power relationship of -0.15 between 

production scales and cost (Fig. 4-7). As the capacity is scaled up from 4 million kg to 415 million 

kg of annual soybean oil production, the unit production decreases from $5.57 to $2.61 per 1 kg 

of soybean oil production which are lower than the extruding-expelling process about 23%-33% 

at similar operating scales. 

 

Fig. 4-7 Power relationship between net unit producing cost and different scales of soybean oil 
extraction  
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3.3 Revenues 

3.3.1 Main Product and Co-Products 

Degummed crude soybean oil is the main product of the extraction process. Soybean hulls, 

obtained from cracking and aspiration, and soybean meal, derived from desolvenization after 

extraction, are the two co-products of the producing stream.  

According to the results, revenue from soybean oil makes up about 39% of total revenues; 

however, soybean meal and hulls contribute to over 60% of total revenues, with meal taking the 

largest portion of over 59% of total revenue. Additionally, meal also has the largest portion of total 

product yields based on weight (over 70%) followed by oil (22-25%) and hulls (3-4%). These 

results are predicted by the nutrient contents of soybean. Therefore, soybean meal could be 

regarded as an important driving force for soybean oil production. 

3.3.2 Profits 

Profits of the operation are estimated based on total revenues and operating costs. The 

results are shown in Fig. 4-8. 

Fig. 4-8a shows the increments of economic and market values. Though there are no 

positive gross profits and net profits from the 1980s to 2010s in 34.64 million kg of soybean oil 

production, the lower gross profits and net profits are due to the increase of product selling prices.  

The increments of gross and net profits also reflect the values of products increased much more 

than operating costs.  

 

 

 



73 

 

                              (a)                                                                  

 
                              (b) 

 
 
Fig. 4-8 Capital investment, gross and net profits of soybean oil hexane extraction. (a) 1980-

2015 data; (b) Different scales of oil extraction 
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For different scales based on 2010s market estimations, a positive net profit is observed 

when the capacity is larger than 34.64 million kg of soybean oil production. Positive profits can 

be obtained when the capacity is scaled up to 86.61 million kg of soybean oil production. These 

results also indicate the break-even point for hexane oil extraction is over 34.64 million kg annual 

oil production capacity because the total revenues are close to operating costs. 

Additionally, based on gross margin and ROI, the payback time is evaluated (Eq. 8) which 

indicates how many years are required to earn investments back. The gross margin, ROI, and 

payback time of different scales of soybean production are presented in Table 4-7. From the ROI, 

the 34.64 million kg of soybean oil production is close to 0%, which indicates this capacity is close 

to break-even point to earn profits for paying back the total investment. This also indicates when 

the capacity is larger than the scale, the production stream starts to earn profits. When the capacity 

is scaled up to over 34.64 million kg of annual soybean oil production, payback time is allocated 

within 15 years. This demonstrates the process can earn profits within the plant life time, which is 

the assumption in this study. Therefore, capacities over 34.64 million kg of annual soybean oil 

productions are economically feasible operating scales.  

Payback Time =  
100
ROI

                      Eq. 7 

Table 4-7 Gross margin, ROI and payback time of different scales of soybean oil production 
 Soybean Oil Annual Production (million kg) 
 4.04 12.12 34.64 86.61 173.22 415.73 
Gross Margin (%) -96.09 -19.32 -6.88 2.93 6.15 8.19 
ROI (%) -18.98 -6.44 -0.27 12.69 23.32 39.74 
Payback Time (yr) N/A N/A N/A 7.88 4.29 2.52 
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4. Conclusions 

Hexane extraction is the most common approach used in the soybean oil production 

industry. Development of economic, higher capital investments, and operating costs are needed. 

The changes of capital investment are estimated based on inflation index; while the fluctuation of 

economic conditions are reflected in the operating costs. As demands of soybean oil have 

increased, either in food, industry, or bio-fuel applications, many companies plan to expand their 

production capacity. A profitable producing stream is met when the production capacity increases 

over 34.64 million kg of soybean oil annually. Additionally, soybean price and material cost play 

a critical role when determining the profit of the whole production line. Moreover, large amounts 

of soybean meal production is the main driving force for the soybean oil industry; which 

contributes over 60% of total revenues even though soybean oil is regarded as the main product of 

the oil extraction process. 
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CHAPTER 5 

TECHNO-ECONOMIC ANALYSIS OF SOYBEAN OIL ENZYMATIC ASSISTED 

AQUEOUS EXTRACTION PROCESS 

 Modified from a paper to be submitted to Journal of the American Oil Chemists’ Society 

Abstract 

Aqueous oil extraction is an approach that could replace organic solvent extraction with 

water. Compared to typical solvent extraction and expelling processes, aqueous extraction has 

higher oil yield (over 80%) than the expelling process, and resolve issues resulting from chemical 

loading and remaining. Proteases improve the breakdown of oil bodies and release free oil. The 

resulting enzyme-assisted aqueous extraction process (EAEP) includes dehulling, flaking, 

extrusion, enzymatic extraction, and enzymatic demulsification processes. SuperPro Designer 

conducted a techno-economic analysis (TEA) of the extraction process. The total capital 

investment, operation cost, and profits were evaluated. During EAEP, insolubility of water and oil 

allows the simultaneous extraction of protein and oil. This decreases operation costs, especially 

the oil purification process, and therefore increases profits made from the main product (soybean 

oil). This simultaneous extraction also increases the profit towards the co-product, i.e. protein in 

skim. Additionally, the absence of chemical and enzyme recycling contribute to the better 

economic value of EAEP. Despite the increase in facility costs due to extraction and 

demulsification units, the value-added co-product extraction and high free oil yield contribute to 

the economic feasibility of EAEP in industrial and commercial scale productions. 

 

Keywords: Enzyme-assisted aqueous extraction, Techno-economic analysis, Soybean oil, Skim, 

Operating costs, Economic feasibility. 



80 

 

1. Introduction 

In the soybean industry, oil extraction from oilseeds typically applies an organic solvent 

extraction, such as hexane, due to its cost-effectiveness and high yield over 95% [1, 2]. However, 

use of an organic solvent leads to environmental and operational safety issues. Hence, a well-

handled facility is required for the process and the higher investment and operating costs are 

required as well. Unfortunately, there is still the possibility solvents could remain in the process 

causing food safety and public health problems.   

To address these substantial environmental and public health issues, the aqueous extraction 

process (AEP), a solvent-free extraction process using water as an extraction medium, has been 

investigated, and applied in various oilseeds [3, 4]. This AEP method is based on the insolubility 

of oil in the extraction medium rather than its dissolubility, as it is in the hexane extraction process; 

obtaining the low free oil yield [5, 6]. In soybean oil extraction, the presence of protein (oleosin) 

interacts with oil bodies in seed cotyledons, resulting in the formation of a stable emulsion, which 

is responsible for the low amount (60%) of free oil recovery in AEP [4]. In addition, mass 

transferring is another critical factor in AEP.  

The flaking and extruding processes are used as a pretreatment to rupture the cell wall, 

reduce particle size, and make materials porous increase oil extraction to around 71%. However, 

that is still far lower than hexane extraction [6, 7]. There are other techniques have been used to 

disrupt soybean tissue and improve the final oil recovery such as microwave heating [8], ohmic 

heating [9], and ultrasonication [10]. 

The enzyme-assisted aqueous extraction process (EAEP) applies an additional step of 

demulsification to increase the final yield to as much as 90% by denaturing proteins and 

destabilizing emulsion fraction to release oil [11, 12]. The enzymes can be used depending on the 



81 

 

oilseeds and extraction conditions [13]. Generally, protease and lipase are used to break down the 

structure of cotyledon cell walls and oil body membranes to relase oil. Therefore, the EAEP could 

extract desired products (oil) and co-products (fiber, protein) simultaneously, requiring no need 

for post-processing, such as the degumming process in hexane extraction, to recover oil [3]. There 

are four stages of EAEP, developed by de Moura et al. in 2011 [14], that apply to soybean oil 

extraction. The stages include (1) mechanical pretreatment (dehulling and soybean flaking by 

extrusion), (2) enzyme assisted aqueous extraction, (3) separation of cream and co-products (3-

way centrifugation) and (4) demulsification of the cream fraction to release free oil. The skim 

fraction, containing the enzyme, is recycled and reused in the extraction process to increase yields 

of oil and value-added coproducts. 

Soybeans are the main oil crop used in the world, and takes up around 90% of U.S. oilseed 

production, especially in Illinois and Iowa [15]. Advantages of EAEP includes the environmental 

friendly process, no additional post processes for oil recovering, simultaneous extraction of co-

products; and the process has the potential to reduce environmental impacts and lower capital 

investment when compared to typical hexane extraction [16]. However, the techno-economic 

analysis of EAEP is seldom and not well determined. Based on the two stages integrated EAEP of 

soybean oil extraction, material costs, operation costs, total capital investment are included in this 

TEA study. Additionally, the feasibility of up scaling EAEP is evaluated in this study according 

to the assessment of various economic factors. As the TEA model for EAEP is built up, it could 

provide useful information for food or bioenergy production in the soybean biorefinery. 
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2. Materials and Methods 

2.1 EAEP Process 

The EAEP process includes dehulling, flaking, extrusion, aqueous extraction, and 

demulsification. In this study, a two stage aqueous extraction process was used to improve the oil 

yield, and the liquid phase from the second stage aqueous extraction was integrated back into the 

first stage of extraction. 

During the process, soybean hulls were separated by aspiration due to their light density 

and sold as animal feed. Before the extraction process, flaking breaks the cell wall of soybeans to 

make a substrate porous, improving water and enzymes contact with oil bodies [17]. Additionally, 

soybean flakes were extruded to enhance the action of enzyme on cell components. The extrusion 

increases surface area, increases susceptibility of proteins to enzymes, and reduces the stability of 

the difficult-to-break oil rich emulsions [12]. In the extraction process, the ratio of solid to liquid 

is 1:6 [14]. After aqueous extraction, the oil-in-water emulsion is formed, and the demulsification 

is achieved by using proteases to degrade olesion (lipophilic protein surrounding lipid globules) 

and facilitate oil release [3]. The skim from the first extraction and the final insoluble are regarded 

as co-products, and are used in corn-soybean integrated ethanol productions [2]. 

2.2 Computer Modeling 

SuperPro Designer v9.0 was used to perform the EAEP for soybean oil production. With 

this software, processing characteristics, equipment, and economic parameters are defined along 

with conditions, capacity, and characteristics of each production stream [18, 19]. 

Based on de Moura’s research [14], 75 kg/hour of soybean input (pilot scale) is used as the 

base scale with 113.1 thousands kg of annual soybean oil production used for scaling up in 7 scales 
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(5, 15, 25, 45, 75, 150, 450 scale-up ratios). The model is shown in Figure 5-1. The model was 

built for 15 years of service time, 30 months of construction, 4 months of startup time, 35% income 

tax, and a 10-year depreciation period with 5% salvage value of directed cost [20]. 

 

Fig. 5-1 TEA model of EAEP for soybean oil extraction 

2.3 Assumption and Data Collection 

2.3.1 Fixed Costs 

Fixed cost is considered the facility installed for the producing stream.  This includes total 

plant direct cost (TPDC), total plant indirect cost (TPIC), contractor and contingency fees (CFC), 

startup cost, and working capital, which also depends on the machine’s purchase cost (PC). The 

2015 purchasing cost of each machine is collected from the inventory record of the Center for 

Crops Utilization Research (CCUR) pilot, Iowa State University, and SuperPro designer v9.0 

database [21].  
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The machine PC estimation for increased capacities is calculated using Eq. 1 following the 

power relationship, where PCp is the machine PC for the predicted capacity, and PCc is the machine 

PC of known capacity (basis scale); n is the power used in estimation, generally known as the six-

tenths rule (n=0.6) [22]. However, the power (n) varies based on different types of machine, and 

the estimations of each operating machine are listed in Table 5-1. Additionally, the machine PC is 

also the basis for estimating the CFC of the total producing stream. The TPDC, TPIC, and CFC 

are estimated by multiplying the total machine-purchasing price with different multipliers, which 

are the statistic numbers from chemical and enzymatic processes [23]. 

𝑃𝑃𝑃𝑃𝑝𝑝 =  𝑃𝑃𝑃𝑃𝑐𝑐  ×  (
𝐸𝐸𝑝𝑝
𝐸𝐸𝑐𝑐

 )𝑛𝑛                                     𝐸𝐸𝐸𝐸. 1 
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Table 5-1 Estimation of facility price for scaling up based on the scale of 0.113 million kg annual soybean oil production (1000 $ based 
on 2015 price) 

 Power Soybean Oil Annual Production (million Kg)  
n 0.113 0.565 1.695 2.825 5.085 8.475 17 51 

Screw Conveyor* 0.60 5 5 5 5 7 7 9 12 
Silo/Bin* 0.60 77 77 77 77 77 77 5 5 
Grinder● N/A 10 10 10 10 10 10 10 10 
Flake miller● N/A 6 6 6 6 6 6 6 6 
Aspirator N/A 13 13 13 13 13 13 13 13 
Extruder (drive feeder+ extruder)● 0.60 197 197 197 197 242 242 242 308 
Blending Tank I● 0.49 26 63 88 123 152 195 268 443 
Blending Tank II●+ 13 26 26 35 48 62 87 148 
Blending Tank III●+ 16 40 62 78 107 125 181 292 
3-phase Decanter I● 0.49 130 130 183 223 313 369 564 901 
3-phase Decanter II●+ 83 83 130 134 223 256 402 590 
Disc-stack centrifuge I* 0.60 91 91 91 104 185 185 290 550 
Disc-stack centrifuge II*+ 104 104 201 273 415 528 800 1,452 
Storage Tank* 0.49 26 26 51 57 80 98 126 201 
Receiving Tank* 0.54 55 152 221 292 424 617 768 1,390 
Unlisted equipment* 0.60 193 282 340 407 575 697 961 1,475 

●: Data collected from CCUR pilot inventory, Iowa State University; *: Data collected from SuperPro v9.0 data base [21]; +: 
Estimated by power relationship (Eq.2) based on pilot scale; and powers (n) were collected from the research of Peters et al., (2011) 
[22]. 
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2.3.2 Operating Costs 

In this model, operating costs include raw material cost, labor cost, facility maintenance 

cost, and utilities. Soybeans and water are the main sources of material cost for EAEP oil 

extraction. Additional material costs include sodium hydroxide (NaOH) and protease (Protex 6L) 

which are used in the extraction and demulsification processes. Electricity is the main energy 

source, while steam and cooling water are heat transfer agents. Additionally, labor costs are also 

considered in the modeling. The unit cost input of materials, utilities, and labor are listed in Table 

5-2. The energy consumption inputs are listed in Appendix Table A-3. 

Table 5-2 Operating costs inputs (All inputs are 2015 prices) 
  Cost Unit Citation 
Materials Soybean 0.351 $/kg [15] 
 Water 0.00079 $/L [24] 
 Sodium hydroxide 20 $/kg [25] 
 Protex 6L 19.42 $/kg Quote from DuPont Pioneer 
Utility Electricity 50.5 cents/kwh [26] 
 Steam  12 $/MT [21] 
 Cooling water 0.05 $/MT [21] 
Labor Agricultural machine 

operator 
14.9 $/hr [27] 

 Extraction worker 22.49 $/hr [27] 
 

Labor costs include the cracking, aspiration, tempering, flaking, and extrusion of the 

soybean handling processes and are operated by agricultural machine operators. Water extraction, 

demulsification, and oil separation, including centrifuging and decanting, are operated by 

extraction workers.  The labor requirements for each processes equipment is between 0.1-1 

(workers/unit/shift) for an eight hour shift as a basis scale listed in Table 5-3. However, the 

relationship between labor requirements and the capacity of production is not linear, and a 0.2-

0.25 power of the capacity ratio is applied in plant scale-up estimates [22]. In this study, a 0.25 
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power is used for optimal estimation. Additionally, the laboratory quality control and assurance 

cost are also considered and set as 15% of total labor cost (TLC) [23]. 

Table 5-3 Labor requirements for each operating unit (workers/unit/shift) 

 Soybean Oil Annual Production (million kg) 
Operating units 0.113 0.565 1.695 2.825 5.085 8.475 17 51 
Conveyor 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 
Silo 1 1 1 1 1 1 1 1 
Cracking 1 1 1 1 1 1 1 1 
Aspirating 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
Flaking 1 1 1 1 1 1 1 1 
Extrusion 1 1 1 1 3 3 3.48 4.57 
1st stage extraction 1 2 2.24 2.24 2.72 2.8 3.29 4.26 
1st Centrifuging 0.2 0.4 0.4 0.4 0.56 0.56 0.66 0.85 
Demusification 1 1.6 1.68 1.68 2.24 2.4 2.66 3.34 
1st Decanting 0.2 0.2 0.24 0.24 0.24 0.24 0.36 0.44 
2nd stage extraction 1 2 2.24 2.24 2.88 3.04 3.50 4.47 
2nd Centrifuging 0.2 0.4 0.4 0.4 0.56 0.56 0.69 0.84 
2nd Decanting 0.2 0.4 0.4 0.4 0.4 0.4 0.47 0.62 
Storage (sewage) 1 2 2.4 2.4 3.04 3.2 3.56 4.16 
Storage ( skim recycle) 1 2 2.4 2.4 3.28 3.36 3.98 4.39 

Labor requirement indexes were set based on different machine [22, 28] 
 

Besides materials, utilities, and labor costs; machine maintenance, insurance, and local tax 

are also included. However, these costs all depend on DFC, and are estimated as 7%, 1% and 2% 

of DFC respectively for the chemical and enzymatic processes [23]. 

2.3.3 Revenues 

Soybean oil is the main product of the EAEP process and soybean hulls, separated during 

aspiration, are one of the co-products. Additionally, skim, generated from centrifugation after the 

water extraction, is used as a water supply for integrated cellulose ethanol production, and its 

selling price is evaluated by water price. The final insoluble fractions from the EAEP, has high 
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fiber (CHO) and can be used as the fiber resources for cellulose ethanol production. The Protex 

6L was recycled to reduce material cost, and is regarded as a saving credit. Therefore, skim and 

final insoluble fractions are considered potential co-products, which increase the revenues of the 

whole process. Their selling prices are: soybean oil (0.81 $/kg, [15]); soybean hulls (0.21 $/kg, 

[29]); skim (0.0079 $/L, [24]); insoluble fiber (0.6 $/kg, [30]); Protex 6L (19.42$/kg, quote from 

DuPont Pioneer). 

According to annual operating costs and revenues, the total profit is considered and the gross 

profit and gross margin percentages are calculated based on Eq. 2 and Eq. 3. Also, the net profit, 

including taxes and depreciation (Eq. 4) is calculated.  Return on investment (ROI) is also 

calculated based on net profit and total capital investment (Eq. 5). 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑃𝑃𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝐺𝐺𝑃𝑃𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − (𝑇𝑇𝐺𝐺𝑃𝑃𝑇𝑇𝑇𝑇 𝐺𝐺𝑜𝑜𝑅𝑅𝐺𝐺𝑇𝑇𝑃𝑃𝑃𝑃𝑅𝑅𝑜𝑜 𝑐𝑐𝐺𝐺𝐺𝐺𝑃𝑃 − 𝑐𝑐𝐺𝐺𝑅𝑅𝑐𝑐𝑃𝑃𝑃𝑃𝐺𝐺)                    𝐸𝐸𝐸𝐸. 2 

 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑀𝑀𝑇𝑇𝐺𝐺𝑜𝑜𝑃𝑃𝑅𝑅 (%) =
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑜𝑜𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

× 100%                         𝐸𝐸𝐸𝐸. 3 

 

𝑁𝑁𝑅𝑅𝑃𝑃 𝑃𝑃𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑜𝑜𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑅𝑅𝐺𝐺 + 𝐷𝐷𝑅𝑅𝑜𝑜𝐺𝐺𝑅𝑅𝑐𝑐𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝐺𝐺𝑅𝑅                    𝐸𝐸𝐸𝐸. 4 

 

𝑅𝑅𝑅𝑅𝑃𝑃𝑅𝑅𝐺𝐺𝑅𝑅 𝐺𝐺𝑅𝑅 𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅𝐺𝐺𝑃𝑃𝐼𝐼𝑅𝑅𝑅𝑅𝑃𝑃 (%) =
𝑁𝑁𝑅𝑅𝑃𝑃 𝑜𝑜𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝐺𝐺𝑃𝑃𝑇𝑇𝑇𝑇 𝑐𝑐𝑇𝑇𝑜𝑜𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝐺𝐺𝑃𝑃𝐼𝐼𝑅𝑅𝑅𝑅𝑃𝑃
× 100%                    𝐸𝐸𝐸𝐸. 5 
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3. Results and Discussions 

3.1 Total Capital Investment 

Total capital investment is divided into direct fixed capital (DFC), working capital (WC) 

and start-up capital (SC). The facility purchasing cost (PC) is the basis for total capital investment 

estimation; and consists of main machines and unlisted machines, as well as motors, pumps, and 

other auxiliary components [22]. 

Table 5-4 shows the estimation of total capital investment of eight scales using EAEP in 

soybean oil production. The total plan direct cost (TPDC) includes installation, processing piping, 

instrumentation, and insulation; and are all estimated using machine purchase price (PC). Indirect 

cost covers plant planning, construction, and organization; which indicate engineering and 

construction costs are estimated based on TPDC. Besides direct and indirect costs, contractor and 

contingency fees are also included in DFC, which allow for additional costs resulting from 

unexpected events during the lifetime of the project [23]. 

Before the production line starts to work making products, a validation process is essential 

for all facilities, and covers process, operation, and installation qualification. The validation 

process is considered a start-up cost; however, during the start-up period, consumption of raw 

materials, energy, and consumables are counted as working capital. These detailed costs are all 

covered in the total capital investment estimation as well. 
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Table 5-4 Total capital investment breakdown of three scales of EAEP (1000 $) 
   Soybean Oil Annual Production (million kg) 

Costs Categories Multipliers* 0.113  0.565 1.695 2.825 5.085 8.475 17  51  
Total Plant Direct Cost 

(TPDC) 
Purchase cost (PC)  971 1,261 1,701 2,033 2,877 3,487 4,803 7,373 

Installation 0.47×PC 456 593 799 956 1,352 1,639 2,258 3,465 
Process piping 0.68×PC 660 857 1,157 1,383 1,956 2,397 3,266 5,013 
Instrumentation 0.26×PC 252 328 442 529 748 907 1,244 1,917 

Insulation 0.08×PC 78 101 136 163 230 279 384 590 
Electrical 0.11×PC 107 139 187 224 316 384 528 811 
Buildings 0.18×PC 175 227 306 366 518 628 865 1,327 

Yard improvement 0.10×PC 97 126 170 203 288 349 480 737 
Auxiliary facilities 0.55×PC 534 693 935 1,118 1582 1918 2,642 4,055 

TPDC 2.43×PC 3,329 4,324 5,834 6,974 9,867 11,960 16,476 25,288 
Total Plant Indirect Cost 

(TPIC) 
Engineering 0.30×TPDC 999 1,297 1,750 2,092 2,960 3,588 4,943 7,586 
Construction 0.35×TPDC 1,165 1,514 2,042 2,441 3,454 4,186 5,766 8,851 

TPIC  2,164 2,811 3,792 4,533 6,414 7,774 10,709 16,437 
Total Plant Cost (TPC) TPDC+TPIC  5,493 7,135 9,625 11,507 16,281 19,735 27,185 41,725 

Contractor’s fee and 
Contingency (CFC) 

Contractor’s fee 0.06×TPC 330 428 578 690 977 1,184 1,631 2,503 
Contingency 0.08×DFC 494 642 866 1,036 1,465 1,776 2,175 3,755 

Direct Fixed Cost (DFC) TPC+CFC  6,316 8,205 11,069 13,233 18,723 22,695 30,991 47,983 
Working Capital (WC) 0.15×DFC 947 1,231 1,660 1,985 2,808 3,404 4,649 7,197 

Startup Capital (SC) 0.05×DFC 316 410 553 662 936 1,135 1,550 2,399 
Total Capital TPC+CFC+WC+SC  7,580 9,847 13,283 15,880 22,468 27,234 37,189 57,580 
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According to the results of total capital investment estimation for eight scales, TPDC takes 

up a majority of total investment with around 45%; TPIC, CFC, WC, and SC take around 29%, 

11%, 13% and 4% of total capital investment individually.  Comparing the total capital investment 

among these eight scales, the capacities were 113,000; 565,000; 1,695,000; 2,852,000; 5,085,000; 

8,475,000; 17,000,000 and 51,000,000 kg of soybean oil production with the total capital 

investment of $7,580,000; $9,847,000; $13,283,000; $15,880,000; $22,468,000; $27,234,000; 

$37,189,000; and $57,580,000 respectively which are lower than the extruding-expelling process 

and hexane extraction process. Additionally, the total capital investment has a power relationship 

of 0.35 (R2=0.96) with annual soybean oil productivity (Fig. 5-2), and the equation for scaling can 

be expressed in Eq. 6; where CI and CP indicate capital investment and capacity of the producing 

line. The footnotes of i and p represent basis (initial) and predicted scales of the producing line. 

𝑃𝑃𝐼𝐼𝑝𝑝 = 𝑃𝑃𝐼𝐼𝑖𝑖 × 0.82 �
𝑃𝑃𝑃𝑃𝑝𝑝
𝑃𝑃𝑃𝑃𝑖𝑖

�
0.35

                   𝐸𝐸𝐸𝐸. 6 

 

Fig. 5-2 Power relationship between total capital investment and different scales of soybean oil 
production 
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3.2 Operating Costs 

Material, utility, labor related (labor independent, labor QA/QC), and facility related 

(maintenance) costs are considered operating costs. However, their distribution proportions to 

operating costs change as the production line is scaled up. Fig. 5-3 shows the breakdown of 

operating costs. In the basis scale (0.113 million kg of soybean oil annual production), facility 

costs take up over 60% of all operating costs; which mainly consist of facility maintenance fees. 

Labor related costs are another major source of operating expenses; achieving over 20% of total 

operating cost. By contrast, as the processing capacity is scaled up, the material cost becomes the 

major component of operating costs; totaling over 80% of all expenses while all others are below 

10%. This result indicates small capacity processing is much more facility and labor intense, is 

producing less efficiently, and the same amount of laborers could handle more duties in a larger 

capacity.  

 

Fig. 5-3 Breakdown of operating costs 
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3.2.1 Material Costs 

Soybeans and water are the main materials in EAEP for soybean oil production, with the 

enzyme, Protex 6L, used to assist oil release. Without Protex 6L, sodium hydroxide is used in pH 

adjustment during the extraction and demulsification processes. The breakdown of each material 

in the whole production stream are: sodium hydroxide (10N): 8.17%, Protex 6L: 30.68%, 

soybeans: 60.45%, and water: 0.7%. However, among these materials, Protex 6L, which has the 

highest purchase price of $19.42/kg, took over 30% of total material cost. As the capacity increase, 

more materials are required for the producing line. Thus, the material cost is a critical factor in 

large -scale production lines. 

3.2.2 Utility and Labor Related Costs 

Utility costs consist of electricity, steam, and water. Electricity is the main energy resource 

to power machines used in the producing stream. Steam and cooling water are heat transfer agents, 

especially in the evaporation and cooling processes. In EAEP, labor costs can be divided into two 

main processes: crops handling and extraction. Crops handling is also regarded as material 

preparation for the further extraction, including crop cleaning, drying, flaking, tempering, and 

extrusion.  Extraction includes water extraction, demulsification, and oil separation. Based on the 

assumption of this TEA model, agricultural machine workers are assigned to the crops handling 

process, and extraction workers operate extraction, demulsification, and oil separation. Fig. 5-4 

shows the breakdown of utility and labor costs of EAEP soybean oil production. 
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                    (a)                                                                                
 

                     (b) 

 

Fig. 5-4 Breakdown of utility costs (a) and labor costs (b) 
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Fig. 5-4a represents the breakdown of utility costs for eight scales. The percentage of 

electricity consumption decreases as the capacity is scaled up, though the increase was not obvious. 

For steam usage, as the capacity increases, more steam is required during processing. However, 

the electricity consumption follows closely to the linear relationship as the ratio of capacity scaling 

up between electricity usage and a ration of capacity scaling up.  

Fig. 5-4b illustrates the percentage of labor costs in different scales of soybean oil 

production. From the results, the agricultural machine workers take over 50% of total labor costs 

in the small (basis) scale but the extraction workers take the majority of labor costs in larger scale 

productions. This result indicates that as the capacity is scaled up, more extraction workers are 

required. This corresponds to the larger amounts of oil/water emulsion, which are handled in larger 

amounts of oil production. It also reflects the enzyme assisted extraction requires a skilled 

extraction worker. 

For labor QA/QC cost, it was estimated by the total labor cost (TLC) to be 15%, and there 

were $65,000; $90,000; $96,000; $96,000; $117,000; $122,000; $134,000; and $158,000 for 

0.113, 17, and 51 millions kg of annual soybean oil productions. Facility cost, mainly from 

machine maintenance fees, were $1,584,000; $2,010,000; $2,712,000; $3,242,000; $4,587,000; 

$5,560,000; $7,539,000; and $11,756,000 for 0.113, 0.565, 1.695, 2.825, 5.085, 8.475, 17, and 51 

million kg of annual soybean oil productions respectively. 

3.2.3 Unit Net Producing Cost 

Based on fixed, operating costs and main product (soybean oil) annual production, the unit 

net production costs of several scales are calculated (Figure 5-5). According to the results, the unit 

cost decreases with a power of -0.51 when more soybean oil is produced. In 51 million kg of annual 
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soybean oil production, the unit net production cost decreases from $20.6/kg to $2.6 per kg 

soybean oil production. 

 

Fig. 5-5 Power relationship between net unit producing cost and soybean oil production 

3.3 Revenues and Profits 

3.3.1 Revenues 

Soybean oil is the main product of EAEP, and coproducts include soybean hulls, skim and 

insoluble fiber. For soybean hulls, it is generated from aspiration process, and it could be sold as 

animal feeds. For skim and insoluble fiber, based on the assumption of this model, the oil 

extraction is a part of integrated soybean/corn based ethanol production process. Thus, skim is 

used as water supply, and the protein content could help the further fermentable sugar fermentation 

[2]. Also, the insoluble fiber is reused in the ethanol production. Therefore, these two materials 

are considered as the coproducts of the EAEP. However, Protex 6L are recycled during the 
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extraction and demulsification processes to reduce operating cost. Hence, recycled Protex 6L is 

regarded as the saving of whole producing line. 

From the results, soybean oil takes around 27% of total revenues; the revenue from 

insoluble fiber takes over 70% due to its large amounts produced from the process. Additionally, 

the coproducts for further integrated soybean/corn based ethanol production take around 74%. 

Therefore, it is obvious to see the oil production process especially using enzyme assisted process 

can not totally rely on the revenue from oil product. In other words, these co-products make 

themselves as the incentive for the oil extraction process. However, the saving from enzyme 

recycled also reflects the high cost of enzymatic process again. If the enzyme is not recycled and 

reused, it would lead to high operating cost and it is difficult to earn profits from producing line.   

3.3.2 Profits 

Profits of the EAEP process are divided into gross profit and net based in Eq. 2 and Eq. 4. 

From the results are shown in Fig. 5-6, the scales below 8.475 million kg of annual oil production 

have negative gross profit, indicating the producing stream is unable to earn profits back to 

investment.  However, capacity over 17 million kg of annual oil production is able to earn profits 

with recycling enzymes used in the extraction and demulsification processes. Therefore, the 

smaller scale operations of oil production using the enzyme-assisted method are economically 

unfeasible. Although the scale of 8.475 million kg oil production has negative gross profits, it is 

still profitable when its net profit is considered by adding depreciation fees. Additionally, this scale 

is close to the breakeven point, having both positive gross and net profits. Comparing to the 

extruding-expelling process, the net profit is lower about 37%-55% at the similar operating scales. 
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Fig. 5-6 Capital investment, gross profit and net profit of EAEP 

When comparing capital cost to operating cost in each scale, operating cost starts to 

overpass capital cost in scales over 5.085 million kg of annual soybean oil production. As stated 

in previous discussion, large-scale capacities require higher operating costs; especially material 

cost, which take up over 80% of total operating costs. Operating cost fluctuates with different 

process designs and economic condition changes, which have a direct influence on gross and net 

profits of a producing line. Therefore, operating cost is always a critical issue for industrial and 

commercial scale productions. 

The gross margin and ROI is calculated according to profit, capital investment, and total 

revenues. The gross margin is the ratio between the gross profit and revenue, and ROI represents 

how the plant earns the investment back. According to the ROI, payback time is estimated using 

Eq. 7, and indicates how many years it takes to earn profit back. The gross margin, ROI, and 
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payback time of these eight scales of oil producing lines are shown in Table 5-5. Results indicate 

scales below 5.085 million kg of annual oil production are still losing money on the investment 

due to negative values of gross margin and ROI. A scale of 8.475 million kg of annual oil 

production has 21.52 years of payback time, which is still too long to earn money back even though 

it has a positive ROI. As the scale expands to 17 and 51 million kg of annual oil production, both 

gross margin and ROI are positive; and the payback time is shorter than assumed service time. 

These results indicate larger production scales have a profitable potential, and the production line 

starts to earn profits at the 8th and the 3rd year. 

Payback Time =  
100
ROI

                      Eq. 7 

Table 5-5 Gross margin, ROI and payback time of different scales of EAEP used in soybean oil 
production 
 Soybean Oil Annual Production (million kg) 
 0.113 0.565 1.695 2.825 5.085 8.475 17 51 
Gross Margin (%) -579.8 -137.29 -46.05 -25.08 -13.93 -3.46 5.50 14.06 
ROI (%) -18.31 -15.98 -9.91 -5.62 -1.65 4.65 12.86 32.40 
Payback Time (yr) N/A N/A N/A N/A N/A 21.52 7.78 3.09 

 

4. Conclusions 

EAEP is an innovative process for oil extraction. However, the operating costs are still the 

main problem stopping EAEP from becoming a practical production stream. If only the main 

product, soybean oil, is relied on for profits, it could merely provide 27% of total revenues. To 

improve the economic feasibility of EAEP, the pretreatment of integrated soybean/corn based 

ethanol production and co-products from the oil extraction processes are considered. Skim and 

insoluble fibers generated from the process are sold as materials for further ethanol production to 

improve overall revenue. The application of Protex 6L is another critical issue for EAEP because 
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it contributes to a large proportion of operating costs. Therefore, recycling Protex 6L with skim is 

an essential process and is seen as another saving credit of operating costs, making EAEP more 

feasible in a commercial scale. Results show small scale production is unfeasible to be applied in 

the industry; however, EAEP has the potential to combine with further integrated ethanol 

productions in a commercial scale setting. 
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CHAPTER 6 

CASH FLOW ANALYSIS 

Modified from a short communication to be submitted to the Journal of the American Oil 

Chemists’ Society 

 

Abstract 

Soybean oil production is the main process used for in soybean applications. Cash flow 

analysis estimates the profitability of a manufacturing venture. Besides capital investments, 

operating costs, and revenues, the interest rate estimates the net present value (NPV), break-even 

point, and payback time; which are benchmarks for profitability evaluation. The positive NPV and 

reasonable payback time represent a profitable process, and is an acceptable projection for real 

operating. The capacity of the process is also another critical factor. The extruding-expelling 

process and hexane extraction are the two typical approaches used in the industry. When the 

capacities of annual oil production are larger than 4.1 and 173 million kg respectively, these two 

processes are profitable. The solvent free approach, known as enzyme assisted aqueous extraction, 

is profitable when the capacity is larger than 17 million kg of annual oil production. 

 

Keywords: Soybean oil, Profitability, Cash Flow Analysis, Interest rate, Net Present Value, 
Payback Time 
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1. Introduction 

For a manufacturing venture, the capital investment, operating costs, revenues, ROI and 

other indicators shown in Chapter 3-5 are used to evaluate the general profitability. The money 

sink throughout the service time of the project is another critical factor when estimating the profit 

of the process. The cash flow analysis performs money sink and costs of various resources of 

capital; which are also able to predict the total profit at the end of plant lifetime.  

The concept of cash flow is illustrated in Fig. 6-1. This project can be divided into four 

periods: construction, validation, manufacturing, and shutdown. The cash inflow in the 

construction period is mainly from capital investment (direct fixed cost). In the validation period, 

working capital, startup cost, and the rest of capital investment are cash inputs. As the process 

starts to operate, the operating costs are the cash inflow; while revenues and depreciation are 

defined as the cash output. In the shutdown period, operating costs and revenues are the cash input 

and output respectively.  Additionally, the salvage of the capital investment and the working 

capital are compensated in the last year of the service time (Ulrich, 1984).  

 

Fig. 6-1 Schematic flow of cash flow analysis 
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Time-value of money (TVM) is another critical factor for profit estimation. TMV means 

the value of money is not fixed but fluctuates with time and economic conditions; therefore, it 

should be thought of as a commodity, and has time-depending value (Ulrich, 1984). In other words, 

a dollar earned today has a higher value than a dollar earned in 15 years of the plant’s life time. 

The estimation of TVM is based on the interest rate (Ulrich, 1984; Heinzle et al., 2006), and the 

calculation is shown in Eq. 1. Ct and C0 are the capital in the investment year (t) and the current 

year respectively; i represents the interest rate. 

𝑃𝑃𝑡𝑡 = 𝑃𝑃0(1 + 𝑃𝑃)𝑡𝑡                  𝐸𝐸𝐸𝐸. 1 

Based on the revenues and profits earned during the process, the TVM also converts to a 

recent value for the profitability prediction. It is interpreted as “How much money must be invested 

today to have the equal capital in the ‘t’ years?”  TVM is calculate by reversing Eq. 1 to solve the 

C0, and is also expressed by a discount factor (fd) (Eq. 2). 

𝑃𝑃0 =
𝑃𝑃𝑡𝑡

(1 + 𝑃𝑃)𝑡𝑡
= 𝑃𝑃𝑡𝑡 ×

1
(1 + 𝑃𝑃)𝑡𝑡

= 𝑃𝑃𝑡𝑡 × 𝑃𝑃𝑑𝑑                𝐸𝐸𝐸𝐸. 2 

 

The TVM is used to estimate the “net present value” (NPV), which also estimates the 

profitability of the process. NPV is the difference between the accumulative discounted cash flow 

and total investment expressed in Eq. 3 (Peters et al., 2011). Positive NPV means the process is 

profitable and vice versa. Therefore, a process with a positive NPV should be expected to operate. 

𝑁𝑁𝑃𝑃𝑁𝑁 = �𝑃𝑃𝑡𝑡𝑃𝑃𝑑𝑑 − 𝑃𝑃𝑇𝑇𝑜𝑜𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅𝐺𝐺𝑃𝑃𝐼𝐼𝑅𝑅𝑅𝑅𝑃𝑃              𝐸𝐸𝐸𝐸. 3
𝑡𝑡

1

 

A similar concept is used for the internal rate of return (IRR) estimation. IRR is the 

indicator used to describe the interest rate at which the NPV is equal to 0. In other words, when 
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the IRR of the process is larger than the interest rate (i) used for the profitability estimation, the 

process is profitable. Equation 3 is also used for the IRR calculation. In the calculation of IRR, 

NPV is replaced by 0, and the interest (i) can be solved as the IRR. 

The TEA results shown in Chapter 3-5 are based on basic profit estimation without 

considering interest rate effects. The cash flow analysis is used to show the profitability of 

extruding-expelling, hexane extraction, and EAEP for soybean oil extraction. 

2. Analysis Methods 

2.1 Assumptions 

The assumptions are based on the TEA model built for extruding-expelling, hexane 

extraction, and EAEP as shown in Chapter 3-5. The construction period is 30 months, with annual 

investments of 30%, 40%, and 30% of DFC in the first three years respectively. The startup period 

is 4 months; depreciation (DE) is 10 years with a straight-line method; and, salvage (SV) is 5% of 

DFC. The interest rate (i) is 7%. These assumptions are based on general chemical and bioprocess 

operating (Heinzle et al., 2006). 

2.2 Cash Flow Calculation 

Based on the total capital investments, operating costs, and revenue estimations from 

Chapter 3-5, cash flow is estimated following Table 6-1.  Gross profit (GP) and net profit (NP) are 

calculated first; with the net cash flow (NCF) obtained by adding capital investment (CI), GP, and 

NP. The cumulative cash flow (CCF) is the sum of the NCF from each year. CCF in the last year 

of plant service also represents the NPV without considering the interest (i). 

When the interest is considered, the discounted cash flow (DCF) is calculated by 

multiplying NCF with fd. The cumulative discounted cash flow (CDC) is obtained using the same 
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methods as CCF calculations. The last year of CDC is the NPV of operating. Also, the IRR is 

obtained from SuperPro Designer model simulation. 

 
Table 6-1 The calculation of cash flow for soybean oil extraction investment 

 
 
Table 6-1 Continued  

 
Investment 

year 

 
Net cash 

flow 

 
Cumulative 
cash flow 

 
Discount 

factor 

 
Discounted 
cash flow 

 
Cumulative 

discounted cash flow 
 NCF CCF fd DFC CDC 

1 CI+NP ∑NCF (1/1.07)^t NCF×fd ∑DFC 
2 . . . . . 
3 . . . . . 
4 . . . . . 
5 . . . . . 
. . . . . . 

13 . . . . . 
14 . . . . . 
15 . . . . NPV 

The estimations of CI, OC, RS, GP, T, and NP are based on the results derived from Chapter 3-5. 
 

 

 

 
Investment 

year 

 
Capital 

investment 
 

 
Operating 

costs 
 

 
Revenues 

 

 
Gross 
profit 

 

 
Tax 

 

 
Depreciation 
 

 
Net profit 

 

 CI OC RS GP T DE NP 
1 30% DFC 0 0 OC-RS 0 0 GP-T+DE 
2 40% DFC 0 0 . 0 0 . 
3 30% DFC+ 

WC+SC 
2 months 

OC 
2 months 

RS 
. 35% 

GP 
95% DFC/10 . 

4 0 OC RS . . . . 
5 . . . . . . . 
. . . . . . . . 

13 . . . . . 0 . 
14 . . . . . 0 . 
15 WC+SV . . . . 0 . 
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3. Results and Discussions 

3.1 Extruding-Expelling Process 

The cash flow of the extruding-expelling process investment is shown in Fig. 6-2. Results 

show the extruding-expelling process is profitable when the capacity is scaled up to 12.81 million 

kg of annual soybean oil production. This result is observed when interest is considered as well. 

From the results, the payback time and break-even point of the investment is also observed. 

The scale of 12.81 million kg of annual soybean oil production is used for further discussion (Fig. 

6-3). From Fig. 6-3, the cash outflow before the first three years indicates investments for total 

capital mainly come from DFC. After the third year, the cash inflow shows the process starts to 

earn revenues from products. The peak point demonstrates the startup time of the plant. When the 

net cash flow meets 0, the point is defined as a break-even point. Therefore, the distance between 

startup time and break-even point is the payback time of the process. The NPV is the net cash flow 

of the last year of plant life time.  

                     (a) 
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                       (b) 

 
Fig. 6-2 Cash flow of extruding-expelling process. (a) interest rate is not considered; (b) 7% 

interest rate included. (S.O. indicates the annual soybean oil production) 
 

 
Fig. 6-3 The profile of cash flow 

From Fig. 6-2 and Fig. 6-3, the longer payback time and lower NPV is observed when the 

interest rate is considered. The longer payback time and lower NPV is expected when larger 
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interest is applied.  In addition to the effect of the interest rate, the larger capacity plants result in 

shorter payback time and higher NPV.  

According to the assumed 7% interest rate, the NPV of these six scales are -18319, 6307, 

38263, 260420, 544552, and 1597494 thousand dollars. The IRR of each capacity larger than 4.1 

million kg of annual soybean oil production is predicted as larger than 7%. Based on the results of 

the simulation, the IRRs of 12.81, 25.62, 89.76, 167.56, and 398.67 million kg of annual soybean 

oil production are 8.83%, 22.27%, 36.80%, 48.05%, and 93.83% respectively. Conclusively, 

capacity scales larger than 4.1 million kg of annual soybean oil production are profitable. 

3.2 Hexane Extraction 

According to the results from Chapter 4, the capacity with positive net profit was chosen 

for the cash flow analysis, and the result is shown in Fig. 6-4.  Fig. 6-4 shows the trends of interest 

rate and capacity effects are similar to those of the expelling process. The larger capacity plants, 

without considering interest rate, result in higher NPV and shorter payback time. For the capacities 

of 173.22 and 415.73 million kg of annual soybean oil production, positive NPVs are observed 

when the interest rate is included, and are 83229 and 353252 thousand dollars individually. The 

IRRs are 17.27% and 30.55% with payback times of about 2.5 and 3.5 years respectively after the 

plant is started up. Therefore, these two scales are accepted for the real operation projections. 
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Fig. 6-4 Cash flow of hexane extraction. (S.O. indicates the annual soybean oil production) 

The production scale of 86.61 million kg of annual soybean oil production is estimated as 

a profitable process, with a positive net profit and NPV based on results from Chapter 4. However, 

when the interest rate is considered, the NPV is -$283,000. It is risky to take this scale into 

operation. Based on the results of the simulation, the NPV of this scale is close to 0, indicating its 

IRR is pretty close to 7% at 6.48%. 

3.3 EAEP 

Based on the results in Chapter 5, scales with positive net profits were chosen for the cash 

flow analysis. The results in Fig. 6-5 show similar trends are observed. Although the scale of 8.48 

million kg of annual soybean oil production has a positive profit, negative NPVs are observed for 

both cases, with and without considering interest rate. This scale is not profitable in real operation. 

For scales of 17 and 51 million kg of annual soybean oil productions, positive NPVs are 

obtained. They are 20808 and 169114 thousand dollars when no interest rate is included; and 307 
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and 74957 thousand dollars when the interest rate is considered.  Additionally, these two scales 

have reasonable payback times, which are about 3.5 and 12 years after the plant starts to produce 

products.  

 
Fig. 6-5 Cash flow of EAEP. (S.O. indicates the annual soybean oil production) 

About 11% of the IRR is achieved for the 51 million kg of annual soybean oil production 

scale. In the scale of 17 million kg of annual soybean oil production, the IRR is little bit larger 

than 7% because the NPV is close to 0. Fig. 6-6 illustrates how to predict the IRR for the EAEP 

process. The positive NPV indicates the IRR is larger than 7. The 7.5% interest rate was tried and 

applied to the analysis, and a negative NPV was obtained. Therefore, the IRR of this scale is 

between 7-7.5%. 
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Fig. 6-6 IRR prediction for EAEP  

4. Conclusions 

From the results of cash flow analysis, the effect of interest rate and the flow of cash banks 

are observed. The payback time and the break-even point are also illustrated. The extruding-

expelling process is profitable when the scale is over 4.1 million kg of annual soybean oil 

production. In the hexane extraction, the scales of 173.22 and 415.73 million kg of annual soybean 

oil productions are profitable in real operations due to positive NPV at a 7% interest rate. Though 

the positive net profit and NPV without considering interest rate is obtained in the scale of 86.61 

million kg of annual soybean oil production, the NPV turns negative when the interest rate is 

included. This indicates this process cannot be profitable in real operations. As to EAEP, similar 

trends to the hexane extraction are observed. The scales of 17 and 51 million kg of annual soybean 

oil productions are profitable in real manufacturing. In addition to the net profit and ROI used for 
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estimating the profitability of the process, cash flow analysis is another critical indicator for 

predicting the profitability of a manufacturing venture based on the flow of annual capital banks. 
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CHAPTER 7 

SENSITIVITY ANALYSIS 

Modified from papers of extruding-expelling process, hexane extraction, and EAEP to be 

submitted to the Industrial Crops and Products and Journal of the American Oil Chemists’ 

Society 

 

1. Introduction 

In the soybean oil extraction process, further applications of soybean oil bring other 

economic values. Therefore, oil extraction is seen as the first step of the soybean refinery process. 

However, the co-product of the extraction process, soybean meal, contributes over 50% of total 

revenues (refer to the results of extrusion-expelling and hexane extraction) because its high protein 

content is a resource for animal feeds. 

To estimate the economic feasibility of soybean oil extraction processes, the operating 

costs and retail price of products are the main factors according to profit calculations discussed in 

chapter 3-5. However, operating costs and selling prices fluctuate with economic and market 

conditions; especially soybeans, soybean oil, and soybean meal prices. Fig. 7-1 illustrates the 

annual production of soybeans and the prices of beans, meal, and oil from 1980 to 2015. 

The economics of soybeans, soybean meal, and soybean oil closely relate to supply and 

demand. Fig. 7-1 shows the following trend: more soybeans produced equals lower prices of beans, 

meal, and oil. Motivations causing soybean production changes are shifting demand drivers, new 

competition, and high oil and meal prices. Shifting demand drivers are the end use or related 

industry demand changes, such as changing food products, biodiesel, livestock productions, and 
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export demand. New competition refers to the application of other oil crops; and the high oil and 

meal prices drive more crop productions (Biodiesel.org, 2011). 

 
Fig. 7-1 The annual production of soybean and the prices of soybean, soybean meal and soybean 

oil (USDA ERS, 2016) 

In addition to the supply and demand of soybeans, interactions between products and co-

products also influence the prices of meal and oil. The basic rule of thumb is as follows: when 

demand for one co-product decreases, the price of the other co-product increases with everything 

else remaining equal (Biodiesel.org, 2011). 

Besides material costs and revenues obtained from products, other operating costs play a 

critical role in the profits of an oil extractiom operation. Some research focuses on the effect of 

energy consumption patterns for soybean production (Ramedani et al., 2011), the optimization of 

energy consumption for soybean production (Mousavi-Avval et al., 2011; Zhang et al., 2015), and 

the economic and environmental effects of soybean farming (Kamali et al., 2017). However, there 

is no research focusing on the operating cost and product effects on the oil extraction process. 
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The sensitivity analysis is used to perform operating costs and product effects on all three 

extraction processes. The driving factor and force of the process is also examined. 

2. Analysis Methods 

Referring to the TEA models used for oil extractions (Chapter 3-5), sensitivity analysis is 

performed to examine the factor that has the most significant effect on changing net profits of a 

process with fluctuating economic conditions. Table 7-1 illustrates ±5%, ±15% and ±25% changes 

in operating costs; including material, labor, utility, facility related costs, and revenues from the 

operation. The sensitivty analysis is based on the 2010s economic conditions. 

As the net profit is obtained, three different scales of oil production with positive net profits 

were chosen for analysis. The net profit change is presented in percentages, which are calculated 

according to Eq. 1.  

𝑁𝑁𝑅𝑅𝑃𝑃 𝑃𝑃𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃ℎ𝑅𝑅𝑇𝑇𝑜𝑜𝑅𝑅 (%) =
𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝐺𝐺𝑅𝑅𝑅𝑅𝑐𝑐𝑅𝑅 𝐺𝐺𝑃𝑃 𝑁𝑁𝑅𝑅𝑃𝑃 𝑃𝑃𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 

𝑂𝑂𝐺𝐺𝑃𝑃𝑜𝑜𝑃𝑃𝑅𝑅𝑇𝑇𝑇𝑇 𝑁𝑁𝑅𝑅𝑃𝑃 𝑃𝑃𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃
× 100%              𝐸𝐸𝐸𝐸. 1 

Table 7-1 Operating cost and product factors for oil extraction sensitivity analysis 

 Extrusion-Expelling Hexane Extraction EAEP 
Operating Costs Raw materials Raw materials Raw materials 
 Utility Utility Utility 
 Labor Labor Labor 
 Facility related Facility related Facility related 
Renvenues Soybean oil Soybean oil Soybean oil  
 Soybean meal Soybean meal Soybean hull 
  Soybean hull Skim 
   Insoluble fiber 
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3. Results and Discussions 

3.1 Extruding-Expelling Process 

According to the results of net profit and payback time, the extruding-expelling process 

has high potential to be economically feasible. The annual soybean inputs of 96.14, 672.99 and 

2991.93 million kg, which have 12.81, 89.67, and 398.67 million kg of annual soybean oil outputs, 

are chosen for the sensitivity analysis. Sensitivity analysis examines which factor included in 

operating costs and revenues has the most significant effect on net profit when the cost and selling 

price fluctuate with economic and market conditions. The results are shown in Fig. 7-2. When 

operating costs (including material, labor, and utilities) increases, the net profit decreases; which 

is shown in the negative bar (yellow bar) and vice versa. 

The larger range of change in operating costs and selling prices leads to larger changes in 

net profits. In these three scales, soybean meal has the most remarkable effect on the net profit in 

all levels of price changes, followed by soybeans and then soybean oil. This indicates soybean 

meal plays an important role in the process, and is seen as the driving force for the extrusion-

expelling technique used in the industry. Additionally, as the scale of capacity increases, the level 

changes of net profit caused by price changes decreases. 

In the aspect of operating costs, soybeans and electricity are the two factors that have the 

most obvious effect on net profit changes. This also demonstrates the property of a mechanical 

process. However, as the capacity is scaled up, more energy demands are required for the 

producing stream; especially when cooling water, which cools down the system after heat is 

generated from extrusion. Therefore, the effect of cooling water exceeds the labor cost, and follows 

electricity cost when the capacity is scaled up. Additionally, higher amounts of phosphoric acid 

are required in the degumming process for a larger plant capacity. The effect of phosphoric acid 
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cost exceeds the labor cost at the largest operating scale. This result corresponds to the previous 

discussion about the portions of each operating cost. 

Overall, extruding-expelling is a product leading process; especially the revenue from 

soybean meal. However, the material cost from soybeans still plays a critical role in determining 

the profit of the whole process. These results show the uniqueness of the extrusion-expelling 

process; which still exists in the industry even though solvent extraction is applied more recently 

due to its high efficiency. 

3.2 Hexane Extraction 

Since positive net profits are obtained from scales of 86.61, 173.22 and 415.73 million kg 

of annual soybean oil production, a sensitivity analysis is used to examine which factor affects the 

net profit the most. The results are shown in Fig. 7-3. As operating costs, including materials, 

utilities, and labor increase, the net profit decreases; which is shown in a negative bar (yellow bar) 

and vice versa. 

From the results shown, the more changes applied for operating costs and products selling 

prices, more changes of net profit are observed. For 86.61 million kg of annual soybean oil 

production, soybeans have the most significant effect on the net profit, followed by soybean meal 

and oil. This indicates material cost is more important than products in net profit estimation. In 

products, soybean meal has a more significant effect than soybean oil in all levels of selling price 

changes. Also, as the changes increase from 5% to 25%, the differences in net profit derived from 

meal and oil effects increase. For 173.22 and 415.73 million kg of annual soybean oil productions, 

similar trends are observed. 

Comparing net profit changes among different capacities, larger scales have less change 

for net profit as operating costs and products’ selling prices fluctuate. Additionally, the order of 
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effects derived from operating costs and products’ selling prices are almost the same for these 

three scales. In material cost, soybean prices are followed by products, utility costs, and labor 

costs. However, in the largest scale of 415.73 million kg of annual soybean oil production, the 

labor cost becomes the factor with the least effect. This indicates a relatively less labor intense 

process with more energy inputs required for larger scales of a producing stream. Additionally, 

though steam is an important agent in the drying and desolvenization processes, electricity is used 

to function all machines. Therefore, electricity has a higher effect on cost than processing and 

using steam. 

Conclusively, soybean cost, soybean meal, and soybean oil selling prices are critical factors 

for the soybean oil extraction process. Lower soybean prices and higher meal and oil selling prices 

are desired. Though soybean oil is the main product of the producing stream, soybean meal is 

regarded as the driving force for the soybean oil production industry due to its higher productivity 

and higher revenues than soybean oil. 

3.3 EAEP 

Based on the results of net profit, scales of 8.475, 17, and 51 million kg of annual soybean 

production are chosen for sensitivity analysis, and the results shown in Fig. 7-4. Operating costs 

and revenues are compared and included in tornado figures. However, operating costs shown in 

increase (red) bars mean the costs were lowered 5%, 15%, and 25% and vice versa. 

Fig. 7-4 shows changes of net profit increase when a portion of each operating cost and 

revenue rise; however, as the capacity of operation is increased, the effects from operating costs 

and revenues are decreased. In 8.475 million kg of annual soybean oil production, all 11 factors 

have the same order of ±5%, ±15%, and ±25% for operating costs and revenues changes.  Insoluble 
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fiber has the most significant effects of all factors; the net profit decreases about 356% as the 

retailed price is 25% lower than the 2015 price. The effects of products on net profit change show 

insoluble fiber has the highest impact, followed by soybean hull and soybean oil; with the revenue 

from skim having the least effect on net profit change. This result indicates the main product, 

soybean oil, is not the main driving force of the whole process; and co-products provide more 

profits than main product. As to operating costs, soybeans have the largest effect on net profit 

change; followed by insoluble fiber, and soybean oil. This result reflects the operating scale relies 

more on revenues, especially profits from co-products. 

For 17 million kg of annual soybean oil production, insoluble fiber is still the most 

important factor for net profit change. As the capacity of a producing line is scaled up, the effect 

of soybean oil follows insoluble fiber in product factors.  Soybeans still have the main effect on 

net profit change for operating costs. When the capacity of a producing line is scaled up, more 

material and energy are required; causing higher operating costs. Therefore, chemical cost, sodium 

hydroxide, and electricity cost have more effect than soybean hull on net profit change. Similar 

results are observed in 51 million kg of annual soybean oil production. However, larger amounts 

of skim generated from the extraction process contribute to higher revenues than smaller scales of 

producing lines; and, therefore, it has more effect than labor cost.  

Additionally, though the cost of the protease (Protex 6L) takes up about 30% of the total 

material cost, it is recycled with skim to reuse in the extraction and demulsification processes. 

Thus, there is no effect in net profit changes as enzyme costs change. Conclusively, results reflect 

the driving force of EAEP used for soybean oil production is not dependent on the main product, 

but co-products; especially insoluble fiber due to its high retail price. Results also show EAEP has 
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the potential to earn profits when it provides insoluble fiber as a resource for further ethanol 

conversion processes. 

4. Conclusions 

In oil extractions, soybean cost and revenues from co-products have significant effects on 

profits. For the extrusion-expelling process, soybean meal has the most obvious effect on net profit 

change. This result indicates the expelled soybean is the main driving force of the operation, and 

also demonstrates the specific application of expelled meal for livestock feeds (Nelson et al., 

1987). For hexane extraction, soybean cost is the leading factor of the process. However, soybean 

meal has a higher effect than soybean oil on the net profit. Therefore, soybean meal produced from 

mechanical expelling and hexane extraction contribute more profits than soybean oil; and is mainly 

used for animal feed applications due to high protein content and other nutrition advantages 

(Lawrence et al., 2003; Wang et al., 2004).  

Though there is no meal produced from the EAEP operation, insouble fiber, used as a 

carbohydrate resorce for corn-soybean integrated bioethanol refinery (Sekhon et al., 2015), is the 

major factor affecting net profits. Otherwise, EAEP has similar trends as the extruding-expelling 

process which are product leading processes. Conclusively, though soybean oil is regarded as the 

main product of oil extraction operations, co-products contribute the major revenues. Therefore,  

co-products and their further applications are the driving forces of oil extraction processes. 
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(a) 12.81 million kg of annual soybean oil production 

 
(b) 89.67 million kg of annual soybean oil production 

 
(c) 398.67 million kg of annual soybean oil production 

 
 
Fig. 7-2 Net profit changes with ±5%, ±15% and ±25% changes of operating costs and retailed 

prices of expelling process. The increase of operating costs shown in figure leads net 
profit to decrease and vice versa 
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(a) 86.61 million kg of annual soybean oil production 

 
(b) 173.22 million kg of annual soybean oil production 

 
(c) 415.73 million kg of annual soybean oil production 

 
Fig. 7-3 Net profit changes with ±5%, ±15% and ±25% changes of operating costs and retailed 

prices of hexane extraction. The increase of operating costs shown in figure leads net 
profit to decrease and vice versa 
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(a) 8.475 million kg of annual soybean oil production 

 
(b) 17 million kg of annual soybean oil production 

 
(c) 51million kg of annual soybean oil production 

 

Fig. 7-4 Net profit changes with ±5%, ±15% and ±25% changes of operating costs and retailed 
prices of EAEP. The increase of operating costs shown in figure lead net profit decrease 
and vice versa 

 
 
 



126 

 

5. References 

Biodiesel.org. (2011). Soybean oil and meal economics: How livestock producers benefit from 
biodiesel production. Retrieved from biodiesel.org: 
http://biodiesel.org/reports/20110201_gen-424.pdf 

Kamali, F., Meuwissen, M., de Boer, I., van Middelaar, C., Moreira, A., & Oude Lansink, A. 
(2017). Evaluation of the environmental, economic, and social performance of soybean 
farming systems in southern Brazil. Journal of Cleaner Production, 142, 385-394. 

Lawrence, K., Goodband, R., Tokach, M., Dritz, S., Nelssen, J., DeRouchey, J., . . . Groesbeck, 
C. (2003). Effects of extruded-expelled soybean meal and solvent extracted soybean meal 
level of growth performance of weanling pigs. Swine Day, 90-96. 

Mousavi-Avval, S., Rafiee, S., Jafari, A., & Mohammadi, A. (2011). Optimization of energy 
consumption for soybean production using data analysis approach. Applied Energy, 88, 
3765-3772. 

Nelson, A., Wijeratne, W., Yeh, S., Wei, T., & Wei, L. (1987). Dry extrusion as an aid to 
mechanical expelling of oil from soybeans. Journal of the American Oil Chemists' 
Society, 64, 1341-1347. 

Ramedani, Z., Rafiee, S., & Heidari, M. (2011). An investigation on enrgy consumption and 
sensitivity analysis of soybean production farms. Energy, 36, 6340-6344. 

Sekhon, J., Jung, S., Wang, T., Rosentrater, K., & Johnson, L. (2015). Effect of co-products of 
enzyme-assisted aqueous extraction of soybeans on ethanol production in dry-grind corn 
fermentation. Bioresource Technology, 192, 451-460. 

USDA ERS. (2016). Oil Crops Yearbook. Retrieved from United States Department of 
Agriculture Economic Research Service: https://www.ers.usda.gov/data-products/oil-
crops-yearbook/ 

Wang, T., Lawrence, A., & Myers, D. (2004). Value-added products from extruding-expelling of 
soybeans. In K. Liu, Soybeans as functional foods and ingredients (pp. 185-200). 
Champaign, IL: AOCS Press. 

Zhang, L., Feike, T., Holst, J., Hoffmann, C., & Doluschitz, R. (2015). Comparison of energy 
consumption and economic performance of organic and conventional soybean 
production: A case study from Jilin Province, China. Journal of Integrative Agriculture, 
14, 1561-1572. 

 
 

 



127 

 

CHAPTER 8 

ENVIRONMENTAL IMPACT ASSESSMENT OF SOYBEAN OIL EXTRACTION 

PROCESSES 

Modified from a paper to be submitted to the Bioresource Technology 

 

Abstract  

Expelling and hexane extraction are two typical processes for soybean oil production used 

in industry. The main issues for these two processes are the low efficiency and hazardous chemical 

problems respectively. Enzyme assisted aqueous extraction process (EAEP) was proposed to 

increase the efficiency without using organic solvent, which is replaced by water. The 

environmental impact analysis of these three processes are based on their mass flows, energy 

consumption and global warming potential. For mass flows, the environmental impact indices 

were calculated based on material flow of input and output components. Energy consumption was 

used to evaluate the carbon dioxide and other greenhouse gas (GHG) and criteria pollutants 

emissions by GREET models. According to the results, hexane extraction has the highest 

environmental impact due to the application of organic solvent. Expelling has the highest GHG 

and criteria pollutants emissions because of the high energy requirement for heat pressing 

processes. EAEP has similar environmental impacts to the expelling process, but it also lowers 

GHG and criteria pollutants emissions. EAEP has the potential to be a green process adopted by 

industry although a high energy intense pretreatment to produce finer soybean flakes for increasing 

oil recovery is still a challenge.  

Keywords: Environmental impact, GHG emissions, Criteria pollutants, Expelling, Hexane 

extraction, Enzyme assisted aqueous extraction process (EAEP) 
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1. Introduction 

The U.S. is the largest soybean producer in the world; around 33% of soybean production 

takes place in the America (SoyStats, 2015). Due to its high oil content (Bernardini, 1983), soybean 

is the main oilseed used in edible oil production. In industry, the mechanical pressing, expelling, 

and hexane extraction are two typically used processes. However, lower oil recovery from 

expelling, and safety and environmental issues (Li et al., 2004, Oliveira et al., 2013) resulted from 

hexane extraction are the main flaws in the soybean oil industry. For improving the oil yield and 

mitigating the safety and environment related problems caused by expelling and hexane extraction, 

the enzyme assisted aqueous extraction process (EAEP) has been developed and might be a proper 

method for industrial application (Rosenthal et al., 1996). 

Before oil pressing and extraction, a series of pretreatment including cleaning, cracking, 

dehulling and conditioning is required (Fig. 8-1). These treatments are mainly used to clean crops 

and reduce particle size to increase the oil recovery (Lamsal et al., 2006). During the extraction 

step (Fig. 1), heat and pressing are applied in the expelling process to denature the oleosins and to 

break the structure of oil body to release oil. The solubility of hexane and oil is the principle for 

the solvent extraction to extract oil from crushed meal, and the desolvenization is applied to 

recover free oil and soybean meal. Further degumming and refining processes are needed for both 

expelling and hexane extraction to remove phospholipids and other impurities. 
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Fig. 8-1 Diagram of expelling process, solvent extraction and aqueous extraction of soybean oil 
production 

 

As to aqueous extraction (Fig. 8-1), contrary to solvent hexane extraction, water is used as 

the solvent and the insolubility of water oil is applied. During the process, the oil in water emulsion 

is formed. Consequently, the demulsification is conducted to separate the oil from emulsion. The 

protein is extracted and dissolved in aqueous fraction as well; therefore, the further degumming 

process can be exempted (Johnson & Lucas, 1983, Jung et al., 2009, Sekhon et al., 2015). Thus, 

the safety and environmental related problems derived from chemical usages can be avoided. 

Additionally, this leads to a higher oil recovery than the mechanical pressing process. 
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In addition to technical improvement and feasibility, the environmental sustainability is 

another critical factor to evaluate the feasibility of the process. As to oil extraction, electricity is 

the main energy used in facility operations; steam is the heating resource which is mainly generated 

from a natural gas boiler built in the plant (Li et al., 2006). Besides energy consumption of the 

operation, the fossil-derived chemical addition is another critical issue for environmental impact 

evaluation especially for hexane extraction. For EAEP, water is used as the solvent which could 

mitigate the environmental impact when compared to solvent extraction. However, the 

demulsification has been regarded as a critical step for oil recovery in aqueous extraction due to 

its high energy requirement especially on physical (Hagenmaier et al., 1972, Harada & Yokomizi, 

2000, McClements, 2005) and chemical methods (Menon & Wasan, 1985). 

The environmental impact assessment (EIA) has been used to investigate the potential 

environmental impact resulted from the manufacturing. The mass balance, mass flow, and energy 

consumption are the main items used to evaluate the energy efficiency, and the greenhouse gas 

and pollutants emissions from the processes (Salomone & Ioppolo, 2012). Heinzle et al., (1998) 

proposed the quntifiying approach to evaluate the environmental impacts derived from chemical 

processing by calculating all input and outout components. Also, the Organization for Economic 

Co-operating and Development (OECD) proposed the environmental indicator to assess the 

sustainability of industrial processing in 2001. 

There are many computation models which can be used for GHG and air pollutants 

emissions such as Aspen Plus (Morais et al., 2010) and Simapro (Kiwjaroun et al., 2009).  The 

GREET model (the greenhouse gases, regulated emissions, and energy use in transportation model, 

Argonne National Laboratory) was introduced to evaluate the GHG and criteria air pollutants 

emissions. Although the GREET model has the restriction for only investigating biofuels used in 
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transportation sector, the soybean oil has been regarded as a critical resource for biodiesel 

production. Therefore, the GHG and air pollutants emissions of soybean oil production can be 

extracted from the soy-based biodiesel GREET model (Huo et al., 2008). However, there were few 

studies manily focused on soybean oil production especially comparing different processes and 

the alternative extraction methodology. 

This study mainly focuses on the comparison among these three extraction processes. The 

EIA is divided into two sections including environmental impacts derived from material flows of 

the process and the GHG and air pollutants emissions of oil extraction processes. Additionally, the 

environmental impacts will be quantified based on material balance of whole process especially 

for input and output components. The total energy consumption, heating agent and mass flow were 

used to build up an oil extraction pathway via the GREET model. The GHG and criteria air 

pollutants emissions were investigated by the GREET model. According to these criteria, the 

environmental feasibility among these three processes could be obtained and compared. 

2. Materials and Methods 

2.1 Boundary Definition 

The boundary of soybean oil extraction includes oilseed pretreatment, extracting processes, 

oil refining and coproducts handling. The transportation however, was not considered (Fig. 8-2). 

Additionally, the land use and the generations of primary energies were not considered in this EIA. 

Steam (assumed to be produced by the boiler within the plant) and natural gas were used as the 

primary source for heat energy. Therefore, the whole boundary can be seen as the producing plant.  
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Fig. 8-2 Boundary of soybean oil extraction environmental impact assessment 

 

2.2 Environmental Impact 

Material flow is the main factor for evaluating the environmental impact. The material flow 

is separated into input and output components. The data of expelling and hexane extraction were 

collected according to the biodiesel simulation model built by Haas et al., (2006); and the EAEP 

was evaluated based on de Moura’s research (2011). The mass flow of input components, output 

components and the mainproduct are shown in Table 8-1, and they are the basis for the further 

environmental indices calculations. 
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Table 8-1 The mass flow of input and output components 
  Mass flow (kg/hr) by each process 
 Components Input/Output (I/O) Expelling Hexane EAEP 
Soybean I 24278.18 24278.18 12423.54 
Hexane I N/A 21755.69 N/A 
Water I 1787 3068.63 59895 
NaOH I N/A N/A 67 
H3PO4 I 8 17.50 N/A 
Protex 6L I N/A N/A 106.5 
Solid Wasted O 72.84 72.49 1644.23 
Water O 2156.31 1944.96 N/A 
Sewage O 412.70 1347.34 N/A 
Hexane O N/A 22291.84 N/A 
NaOH(aq) O N/A N/A 4818.28 
H3PO4(aq) O 193.22 188.01 N/A 
Soybean Hulls O N/A 801.39 733.55 
Soybean Meal O 20003.09 18100.22 N/A 
Skim O N/A N/A 54689.17 
Insoluble Fiber O N/A N/A 8358.32 
Protex 6L O N/A N/A 106.5 
Soybean Oil Main Product 3235.02 4374.24 2141.99 

 

2.2.1 Component Classification 

For the environmental impacts, the material flow was divided into input and output 

components, and there are four impact groups for each component individually. Also, there are 

several categories which are set up for each impact group (Heinzle et al., 2006). The hierarchical 

diagram of EIA is shown in Fig. 8-3. 
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Fig. 8-3 Hierarchy of environmental components and impacts 
 

As the hierarchy of environmental components shows, impact groups and categories are 

built and the impcat categories are allocated into three classifications (A, B and C) based on the 

level of potential risk and toxicity of a component in the process (Table 8-2). The highest class in 

the referred impcat cataegories defines the classsification of the impact category for each impact 

group.  
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Table 8-2 Criteria for impact category classification  

Impact Category Class A Class B Class C 
Raw Material 
Availability 

Fossil derived, 
exhaustion with 30 
years 

Fossil derived, 
exhaustion with 30-
100 years 

Exclusively 
renewable or long 
term supply 

Critical Material Used Heavy metal, AOX, 
PCB used or produced 
in stoichiometric 
amounts 

Involved in sub-
stoichiometric 
amounts 

No critical 
components 
involved 

Complexity of Process >10 stages 3-10 stages <3 stages 
Thermal Risk R 1-4, 9, 12, 15-17, 

44; EU: F+, E; NFPA 
F+R: 3, 4. 

R 5-8, 10, 11, 14, 
18, 19, 30; EU: F, 
O; NFPA F+R: 2 

NFPA F+R: 0, 1 

Acute Toxicity EU: T+; R 26-28, 32; 
CH-poison class: 1, 2; 
NFPA H:4; WGK 3; 
ERPG: <100 mg/m3 ; 
IDLH : <100 mg/m3 

EU: T, Xn, Xi, C; R 
20-25, 29, 31, 34-
39, 41-43, 65-67; 
CH-poison class: 3, 
4; NFPA H: 2, 3; 
WGK 2, ERPG: 
100-1000 mg/m3 ; 
IDLH: 100-1000 
mg/m3 

CH-poison class: 
5; NFPA H: 0, 1; 
WGK 1; ERPG: 
>1000 mg/m3; 
IDLH: >1000 
mg/m3 

Chronic Toxicity MAK: <1 mg/m3; 
IARC: 1, 2A; R 45-
49, 60-61, 64 

MAK : 1-10 
mg/m3 ; IARC : 2B, 
3 ; R 33, 40, 62, 63 ; 
EU : T, T+, Xn ; CH-
poison class : 1, 2 

MAK : >10 
mg/m3; IARC: 4; 
CH-poison class: 
3, 4, 5 

Ecotoxicity EU: N; R 50; WGK 3  R 51-58; WGK 2 WGK 1 or no 
water hazard 

GWP >20 <20 N/A 
ODP >0.5 <0.5 N/A 
AP >0.5 <0.5 N/A 
POCP >30 or NOx 2-30 <2 or no effect 
Odor  Threshold < 300 

mg/m3 
Threshold >300 
mg/m3 

EP N-content>0.2 or P-
content>0.05 

N-content < 0.2and 
P-content < 0.05 

No N and P 

OCPP  ThOD>0.2g O2/g 
substrate 

ThOD<0.2 g O2/g 
substrate or no 
organic compound 

GWP: global warming potential; ODP: ozone depletion potential; AP: acidification potential; 
POCP: photochemical ozone creation potential; EP: eutrophication potential; OCPP: organic 
carbon pollution potential 
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In impact category classification, critical chemical and complexity were evaluated based 

on Ullmann’s Encyclopedia of Industrial Chemistry (Ullmann, 1985); thermal risk and acute 

toxicity are reffered to the study of Budavaris et al., (1989). And these categories are also evaluated 

according to R-phrase, EU classification, standard system for the identification of the hazards of 

materials for emergency respond established by National Fire Protection Association (NFPA), CH-

poison classification, German water hazard class (WGK), emergency response planning guideline 

(ERGP) and immediately dangerous to life or health  value (IDHL) established by US National 

institute for Occupational Safety and Health (NIOSH). 

Additionally, the air and water/soil impact groups were evaluated based on their 

eutrophication potential and organic carbon pollution potential (Houghton, et al., 2001, UNEP, 

2000, Derwent et al., 1998, Heijungs et al.,1992). 

2.2.2 Environmental Impact Indices 

According to the material flow and mass balance, the mass index (mi) of each input and 

output component are calculated first which is defined as the ratio of input/output component to 

the main product (soybean oil, mp). After obtaining the mi of each component, the mass index of 

total input (MIp, in) and output components (MIp, out) of the process can be calculated by following 

Eq. 1 and Eq. 2. The MIp, out was less than MIp, in by 1 because the main product was not considered 

in the total MI of output process. 

𝑀𝑀𝐼𝐼𝑝𝑝, 𝑃𝑃𝑅𝑅 = �
𝐼𝐼𝑖𝑖

𝐼𝐼𝑝𝑝

𝑖𝑖

1

                    𝐸𝐸𝐸𝐸. 1 

𝑀𝑀𝐼𝐼𝑝𝑝, 𝐺𝐺𝑅𝑅𝑃𝑃 = �
𝐼𝐼𝑖𝑖

𝐼𝐼𝑝𝑝

𝑖𝑖

1

− 1           𝐸𝐸𝐸𝐸. 2 
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Based on the classification of each impact category derived from the input/output 

components, there are two quantifying systems, multiplying and averaging, used for the 

assessment. First of all, these three classifications are converted into the values which are the 

multipliers for the environmental indices calculation. For the multiplying system (Eq. 3), classes 

A, B and C are referred to values of 4, 1.3, and 1 individually. The values of 1, 0.3, and 0 are used 

in the averaging system (Eq. 4) for these three classes respectively. These values were the basis 

for the calculation of environmental factors (EF). Due to the 4 impact groups of input and output 

components, the EF for these components are 1-256 and 0-4 for EFmulti and EFmv respectively 

(Heinzle et al., 2006). 

𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑖𝑖 = � 𝐺𝐺𝑗𝑗  
𝑗𝑗

1
                𝐸𝐸𝐸𝐸. 3 

𝐸𝐸𝐸𝐸𝑚𝑚𝑚𝑚 =
𝐺𝐺1 + 𝐺𝐺2 + 𝐺𝐺3 + 𝐺𝐺4

𝑗𝑗
           𝐸𝐸𝐸𝐸. 4 

Furthermore, the environmental impact (EI) is defined as the multiplication of EF and mi 

for each component (Eq. 5), and the summation of each component EI is defined as the total 

process environmental index denoted as EIp (Eq. 6). Consequently, the general effect impact (GEI) 

was calculated as the ratio of EIp to MIp (Eq. 7) (Heinzle, et al., 1998). 

𝐸𝐸𝐼𝐼𝑖𝑖 = 𝐸𝐸𝐸𝐸𝑖𝑖 × 𝐼𝐼𝑖𝑖             𝐸𝐸𝐸𝐸. 5 

𝐸𝐸𝐼𝐼𝑝𝑝 = �𝐸𝐸𝐼𝐼𝑖𝑖 
𝑖𝑖

1

                𝐸𝐸𝐸𝐸. 6 

𝐺𝐺𝐸𝐸𝐼𝐼 =
𝐸𝐸𝐼𝐼𝑝𝑝
𝑀𝑀𝐼𝐼𝑝𝑝

                     𝐸𝐸𝐸𝐸. 7 
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2.3 GHG and Criteria Air Pollutants Emissions 

Based on the expelling, hexane extraction, and EAEP (refers to Chapter 3-5), electricity 

was the main energy resource for powering the facility and steam was used as the heating agent in 

the process. The total energy consumption was simulated and calculated by SuperPro Designer 

v9.0 (Intelligen, Inc., Scotch Plains, NJ). 

The GHG emissions, including CO2, N2O, CH4, and other criteria air pollutants emissions 

such as  CO, volatile organic compound (VOC), nitrogen oxide (NOx), sulfur oxide (SOx), PM10, 

PM2.5, and black carbon (BC) are estimated via the GREET model (Argonne National Lab, 2015). 

The electricity is set according to Iowa’s electric profile (Iowa Utilities Board, 2015). It is 

generated from coal (52.61%), wind (31.57%), natural gas (4.23%), petroleum (0.19%), nuclear 

(9.25%), hydropower (1.69%), and other renewables (0.46%). The steam is produced by a natural 

gas boiler built in the plant. The electricity and steam consumption for producing 1 kg soybean oil 

are listed in Table 8-3.  

Table 8-3 Energy requirements for 1kg soybean oil production 
Processes Steam (t) Electricity (kwh) 
Expelling 0.01 6.22 
Hexane 1.82 1.02 
EAEP 1.00 4.44 
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3. Results and Discussions 

3.1 Input Components 

 3.1.1 Classification of Impact Groups and Categories 

The results according to the classification of the impact groups and categories for input 

components are shown in Table 8-4. In the resource group, these three processes are allocated to 

class B due to the addition of chemicals, namely the hexane which is used in solvent extraction. 

Though only small amounts of phosphoric acid were used in the degumming process for expelling 

and hexane extraction it still is seemed as a critical chemical input for the process. NaOH was used 

in EAEP for pH adjustment which is the critical material input for EAEP. For grey input, all 

processes were undergoing oilseeds pretreatment, extraction, degumming/demulsification and 

coproducts handling at least 3 steps. Therefore, they all belonged to class B.  

Table 8-4 Classification of impact groups and categories for input components 
Impact Group Impact Category Expelling Hexane EAEP 
Resources Raw materials C C C  

Critical materials B B B 
Grey input Complexity B B B 
Component risk Thermal risk C B C 
Organism Acute toxicity B B B  

Chronic toxicity C A C  
Ecotoxicity C B C 

 

In regards to risk, hexane was used for solvent extraction which is allocated to class B. 

Based on hazard profile, hexane has thermal risk, hence it was assigned to Class B and expelling 

and EAEP were in Class C. As to the organisms group, hexane also has acute toxicity and 

ecotoxicity due to its R-phrase of 11, 20, 51, 53, 65 and 67, and NFPA F:3 which were allocated 

to class B. However, it also has class A of chronical toxicity due to the R-phrase of 48 (Hexane, 
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2016), therefore the organisms group of hexane extraction was assinged to Class A. As for EAEP, 

owing to the application of NaOH, which was used to adjust the pH during the extraction, it led to 

acute toxicity and was allocated to Class B due to its R-phrase of 35 (Sodium Hydroxide, 2016). 

For the expelling process, phosphoric acid is the only chemical used in the operation, however it 

also has Class B of acute toxicity due to the R-phrase of 34 (Phosphoric acid, 2016). Therefore, 

expelling and EAEP were assigned to Class B for the organisms group. 

3.1.2 Environmental Impact Indices of Input Components 

According to the mass index of each component, the results (Fig. 8-4) reflect the material 

flow of each process. Again, expelling only used small amounts of phosphoric acid in the 

dugumming process; hexane was used in the extraction and EAEP used large amounts of water as 

the solvent for the extraction. Hence, EAEP has the highest mass index among these three 

processes. Additionally, hexane has the highest oil recovery which can be observed from the MI 

results below (specifically the Soybean measurements). 

 

Figure 8-4. Mass index of input components 
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Based on the calculations of EFs and MIs, two systems (multiplying and averaging) were 

conducted (Fig. 5).  From the results, hexane extraction has the highest EI in both assessment 

systems, and the EI is mainly from hexane due to its high environmental risk potential. Thus, 

hexane is seen as the “Hot Spot” of the hexane extraction. However, as these two assessment 

systems were compared, the components without environmental impacts were also considered for 

the multiplying system. For averaging system, it only calculated the components with thermal and 

organism risks. These conditions can be observed from the quantification of the different classes 

of impact categories. Thus, from the results of EI of the averaging system, the components with 

environmental impact potential are more easily observed. As for the expelling process and EAEP, 

H3PO4 and NaOH have environmental risk potential. Therefore, they are the “Hot Spots” of these 

two processes individually. In the aspect of enzyme (P6L) used in EAEP, the bio-derived enzyme 

also gives to EI due to its producing processes and nitrogen and sulfur contents.  

                               (a) 

 
 
 
 



142 

 

                               (b) 

 

Fig. 8-5 Environmental impact of input components. (a) multiplying system; (b) averaging 
system 

GEI can be estimated by EIp, in and MIp, in, and that is the general index for evaluating the 

environmental impact potential for the whole process. According to the results (Fig. 8-6), the 

hexane extraction process has the highest general impact potential because hexane gives the 

highest score of the environmental indices among all input components. For EAEP, it has almost 

the same impact potential as expelling, however, the significant difference can be observed from 

the averaging system. In the averaging system, the expelling process has the lowest GEI because 

H3PO4 is the only component giving the environmental impact for the process. Additionally, this 

trend can be also observed from the results of EIp, in. 
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Fig. 8-6 General environmental impacts of input components 

 

3.2 Output Components  

3.2.1Classification of Impact Groups and Categories 

The classification of impact categories for output components is shown in Table 8-5. In the 

component risk and organisms groups, the results are similar to the input components. The hexane 

emitted from the solvent extraction and evaporated from desolvenization leading the organisms 

group of hexane extraction to be assigned to Class A. The organisms group of the expelling process 

and EAEP was allocated to Class B because there was wasted NaOH present in EAEP and the 

wasted H3PO4 from the expelling process.  
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Table 8-5 Classification of impact groups and categories for output components 
Impact Group  Impact Category Expelling Hexane EAEP 
Component risk Thermal risks C B C 
Organisms Acute toxicity B B B 
  Chronic toxicity C A C 
  Ecotoxicity C B C 
Air Global warming potential C C C 
  Ozone depletion potential C C C 
  Acidification potential C C C 
  Photochemical potential C C C 
  Odor C C C 
Water/Soil Eutrophication potential B B B 
  Organic carbon pollution  B B B 

 
Hexane however, has no GWP, ODP, AP, or POCP (TRACI 2.1, 2014). Also, the NaOH 

solution used in EAEP and H3PO4 applied for degumming in the expelling and hexane extraction 

had the same results as solvent extraction for the air impact group. In the water/soil group, all 

processes produced solid wastes; sewage which consists of protein, carbohydrates, and lipids. 

Therefore, they all had environmental impacts potential and were allocated into class B. 

3.2.2 Environmental Impact Indices of Output Components 

According to the products, co-products and wastes produced from each process, the mass 

index of the output components are shown in Fig. 8-7. Soybean meal is the main co-product of the 

expelling and hexane extraction, however, the hexane is still the critical factor for solvent 

extraction even though the countercurrent and continuous system was used to reduce the total 

amount. 
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Fig. 8-7. Mass index of output components 

For EAEP, the skim was produced from the extraction, and the highest mi of the skim 

indicated that large amounts of water were needed for the aqueous extraction to form the oil in 

water emulsion. Additionally, the insoluble fiber and NaOH were two other critical components 

for EAEP. These results also indicate the proper strategy for the co-product and waste handling 

that is essential for EAEP to decrease its final environmental impacts due to its high MIp, out. 

Therefore, the skim and insoluble fiber were proposed to be applied as another material for corn-

based ethanol production in the corn-soybean integrated biorefinery system. Otherwise, these co-

products were claimed to increase the ethanol yield in corn-based bioethanol production with 

synergetic effect, and that would also increase the potent application of EAEP in industry (Sekhon 

et al., 2015). 

The results of EIp, out from the multiplying and averaging systems are illustrated in Fig. 8.  

From the results, the EAEP has the highest EI in both systems, and the skim is the “Hot Spot” for 



146 

 

the output components because large amounts of water were applied during extraction which 

resulted in plenty of skim fraction being collected from the centrifugation. Hexane is still the Hot 

Spot of hexane extraction output components which remained in sewage and was collected from 

vapor during the desolvenization. For the expelling process, the co-products, soybean meal is main 

resources of EI. Additionally, the H3PO4 remained in the wasted water after degumming process 

also played a critical role in environmental impact which can be observed from averaging system 

(Fig. 8b).     

 

                            (a) 

 
                            \ 
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                           (b) 

 
Fig. 8-8. Environmental impact of output components. (a) multiplying system; (b) averaging 

system  

From the perspective of general environmental impact (Fig. 8-9), hexane extraction still 

gives the highest general impact potential although it has the lower EI. The presence of hexane in 

the extraction process has higher component and organism risks, and these factors lead to the 

higher final scores in the GEI. For the EAEP and the expelling processes, the result trend is similar 

to input components. The results from both the multiplying and averaging systems are much closer 

than input components because the co-product was included in the assessment. Therefore, from 

the results of input and output components, the expelling process has the lowest environmental 

impact potential because of the least amounts of chemical additives in the degumming process; the 

EAEP could mitigate the environmental impact potential by substituting hexane with water as the 

extracting agent. 
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Fig. 8-9. General environmental impacts of output components 

3.3 Energy Consumptions 

According to the soybean oil annual production, electricity and steam were the main energy 

resources for the operation. Electricity was used to power the facilities in the plant; and, steam was 

the heating agent mainly used in drying and the desolvenization processes.  

The whole extraction process was divided into three main steps including pretreatment, 

extraction, and post handling. The electricity allocation of these three main steps are illustrated in 

Fig. 8-10. According to the results, extraction takes over 95% for the expelling process whereas 

pretreatment and extraction take about 65% and 27% for hexane extraction individually. EAEP 

has over 90% of electricity consumption for the pretreatment. These results indicate that extruding 

and heat pressing cost a lot of energy for the expelling process, however, hexane extraction 

requires sufficient pretreatment to increase soy meal surface area for achieving high efficiency 

during the extraction step. EAEP has a higher pretreatment requirement than hexane extraction 
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because cracking, flaking, and extrusion were used to break down the cell wall structure to improve 

the formation of oil in water emulsion (Jung et al., 2009). Therefore, the higher electricity 

requirement for pretreatment can be observed. Otherwise, the hexane process has the highest 

electricity consumption in posthandling among these three processes because desolvenization is a 

critical step to revome residual hexane in the soybean oil and meal.  

 

Fig. 8-10. Electricity consumption for oil extraction processes 
 

 These results also reflect that expelling has lower oil extraction efficiency and the solvent 

extraction needs more energy for post handling indicating the requirement for desolvenization. On 

the contrary, the EAEP has the lowest electricity in post handling because it’s able to separate oil 

and protein simultaneously and there is no meal production during the process. 
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3.4 GHG and Criteria Air Pollutants Emissions 

According to the primary energy consumptions of these three oil extraction processes, the 

GHG emission were evaluated based on 1 kg of soybean oil production by the GREET model, and 

the results are shown in Fig. 8-11. 

GHG includes CO2, CH4 and N2O mainly, and they are emitted via burning fossil fuels. 

Additionally, agricultural and industrial activities are able to emit GHG, especially CH4 and N2O 

from burning biomass and municipal solid wastes, landfills, and fertilizer handling (EPA, 2014). 

Besides GHG emissions, other criteria pollutants which result in global warming effects indirectly 

such as CO and NOx. Otherwise, some pollutants cause impact to human health such as SOx, 

particulate matters (PM10, PM2.5), volatile organic compounds (VOC), precursor organic 

compounds (POC), and black carbon (BC) which are also generated from the combustion of fossil 

fuel for electricity generation and industrial activities. 

From the results, CO2 is the major GHG emission followed by CH4. SOx is the main criteria 

air pollutant emitted from the soybean oil extraction. In this study, Iowa’s electricity generation 

mix was applied, and around 58% of electricity is generated from fossil fuels (about 53% from 

burning coal). Therefore, CO2, CH4 and SOx take the major GHG and pollutants emissions. 
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                    (a) 

 
                     (b) 

 

 

Fig. 8-11. GHG and criteria pollutants emissions of oil extraction processes. (a) GHG emissions; 
(b) criteria pollutants emissions 
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Among these three oil extraction processes, hexane extraction has the lowest GHG 

emissions about 0.31kg CO2 and 0.47g CH4 emitted per 1 kg of soybean oil production (Fig. 8-

11a). This indicates that hexane extraction is the most energy efficient approach for oil extraction 

although large amounts of steam are required for desolvenization. Therefore, that could be the 

reason to explain why solvent extraction is the most common method used in industry. For the 

expelling process, the intense energy requirement for the pressing is the main reason to have the 

highest GHG emissions (3.52kg CO2 and 5.27g CH4 per 1kg of soybean oil production). 

Additionally, the results reflect that expelling has lower oil recovery than solvent extraction, and 

that is the main disadvantage of the mechanical process (Li et al., 2004). As to EAEP, the 

electricity consumption in pretreatments is the driving force to lead to the higher GHG emssions 

than from hexane extraction. The finer the soybean flakes were produced, the more oil recovery 

efficiecy was obtained. Although the enzyme was used to assist the demulsification which could 

reduce the energy consumption at some level (Lamsal et al., 2006, Jung et al., 2009), the amount 

of energy consumption reduced by applying enzyme has limited ability to leverage the energy 

consumptions in pretreatment. However, it has lower GHG emissions (2.35kg CO2, 3.52g CH4 and 

0.04g N2O per 1kg of soybean oil production) than the expelling process. This result indicates 

EAEP still has the potential to be applied in industry which could increase oil recovery and mitigate 

GHG emissions by about 33% compared to the typical expelling process. 

In criteria air pollutants emissions, the trend is similar to GHG emissions. The expelling 

process still has the highest criteria pollutants emissions among these three processes. Hexane 

extraction has the lowest criteria pollutants emissions (Fig. 8-11b). For EAEP, the criteria 

pollutants emissions is reduced by about 34% compared to the expelling process. Hence, we could 

conclude that the hexane extraction is the highest energy effcient process and EAEP could be the 
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alternative process used in industry because it increases oil recovery and mitigates GHG and 

criteria pollutants emissions better than the typical expelling process. 

4. Conclusions 

From the results of environmental impacts, energy consumptions, GHG and criteria 

pollutants emissions, this proves that expelling is a clean approach for oil extraction with the lowest 

environmental impacts, but it generates the highest GHG and criteria pollutants emissions due to 

high energy intense heat pressing process. However, although hexane extraction is the most energy 

efficient and has the lowest GHG and criteria pollutants emissions, it has the highest environmental 

impact potential due to the application of organic solvent. For EAEP, it has been seen as an 

alternative to reduce the environmental impacts and also to maintain the high oil recovery. 

Obviously, the EAEP has the lower environmental impacts and the GEI values than hexane 

extraction which are quite close to the expelling process. Also, it has lower GHG and criteria 

pollutants emissions than the expelling process though higher energy consumption is required to 

produce finer soybean flakes to improve oil recovery. Conclusively, EAEP has the potential to be 

a green process because it could have a lower environmental impact than hexane extraction and 

reduce total energy consumption leading to lower GHG and criteria pollutants emissions than the 

expelling process. Additionally, there is still a challenge for EAEP to lower energy requirements 

in pretreatment to meet lower GHG and criteria pollutants emissions. 
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CHAPTER 9 

FRACTIONATION OF DISTILLERS DRIED GRAINS WITH SOLUBLES (DDGS) BY 

COMBINATION OF SIEVING AND ASPIRATION 

Modified from a paper published in the Food and Bioproduct Processing 

Abstract 

Distiller’s dried grains with solubles (DDGS) is a coproduct of corn-based ethanol industry 

and it is a good resource of protein and oil for animal feeds. High protein and oil content DDGS 

is desired because of its high nutritional and economic values. Physical separation is an easy 

approach to increase oil and fat content based on profiles of components. Protein and oil rich 

DDGS tends to exist in finer particle; fibers rich DDGS is observed in large particle fraction. A 

primary sieving connected with aspiration fraction is used to condense protein and oil contents for 

DDGS. Particle size, air flowrate and different fractions derived by aspiration are independent 

variables. The proper combination and interaction of variables for protein and oil separation are 

higher flowrate, smaller particle sizes, and the heavy fraction. And, the best efficiency for protein 

and oil separation reaches about 29.7 and 68.15% respectively. For fiber separation, a mild 

condition results in higher fiber content approximately 7%. Additionally, the relationship between 

nutrient separation and independent variables can be expressed by a linear model. The combination 

of primary sieving and aspiration with specific air flowrate used in fractionation process can 

increase value to corn-based ethanol industry. 

 

Keywords: DDGS, Fractionation, Sieving, Aspiration, Nutrients 
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1. Introduction 

Distillers dried grains with solubles (DDGS) is the coproduct of bioethanol production, 

derived from various cereal grains (corn, wheat, sorghum, rye, etc.) (Singh et al., 2002). Corn is 

the major material for ethanol production in the US. Corn contains 60-70% starch, 30-40% non-

starch components such as protein, fiber, oil and ash. For DDGS production, a dry-grind process 

is the typical method due to low cost and simple equipment (Belyea et al., 2004). During the 

process, grains are ground and mixed with water to form a slurry. The slurry is cooked to liquefy 

the starch and saccharified with enzymes. Finally, yeasts are utilized to ferment sugars to produce 

ethanol. As ethanol is separated by distillation, the remaining unfermented residues (protein, oil, 

fiber and ash) are centrifuged, dried and mixed to produce the co-product known as DDGS 

(Bothast and Schlicher 2005, Liu 2009). The development in DDGS supply due to the growth in 

US fuel ethanol production has resulted in the need for continued market (Rosentrater, 2008). 

Currently, DDGS is mainly used as feed for ruminants such as cattle and is applied at low 

level in poultry and swine diets because of high fiber content (Srinivasan et al., 2009). For 

improving the values of DDGS, separation of fiber, protein and fat may increase the utilization of 

DDGS. The fiber enriched fraction could be utilized for production of cellulosic ethanol, fiber oil, 

fiber gum, phytosterols, oligosaccharides and so on (Doner et al., 1998, Crittenden and Playne, 

1996, Buhner and Agblevor, 1994); the dried fraction of non-fiber not only enhances the nutritional 

values but expands the market share (Buchana, 2002, Srinivasan et al., 2007, Liu 2009). Ruminants 

also need high fiber in their diet, so this new shift will increase the value of DDGS in the cattle 

industry. 

Based on the physical properties of DDGS (Rosentrater, 2006; Ganesan et al., 2007), 

various fractionation processes have been investigated in looking for the efficient separation. Wu 
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and Stringfellow (1986) used simple dry sieving fractionation of corn DDGS. Singh et al., (2002) 

investigated air aspiration to separate fiber from DDGS, limited success had been shown and the 

fiber fraction was mainly from pericarp fiber. Srinivasan et al., (2005) applied sieving and 

elutriation in fractionation process. First, DDGS was sieved into various particle size categories 

then elutriation was used to separate the fiber based fraction.  Elutriation is defined as the 

separation of particles by an upward flowing stream of fluid; however, aspiration is defined as the 

act or result of removing or drawing by suction. Sieving and elutriation separate the fractions based 

on the combined effect of particle density, shape and size. Srinivasan and Singh (2008) researched 

fiber separation from DDGS using sieving and air classification. They found that density, shape, 

spherical properties had a direct effect on the terminal velocity of DDGS particles. This terminal 

velocity determines our ability to achieve an effective separation of the DDGS fractions. 

In DDGS, fiber possesses a lower density than the non-fiber components. As air flows 

through DDGS, fiber as well as some small non-fiber components are carried away. Because fiber 

has long and needle-like shape, and it is easy to agglomerate with protein and oil to form particle 

with various particle sizes. Generally, a fiber-rich fraction has larger particle size and light density; 

by contrary, protein and oil rich fraction has small particle with high density profile due to their 

molecular structure property. For obtaining a valuable protein and oil rich DDGS fraction, different 

velocities of airflow are used to remove fiber selectively depending on their physical properties. 

At higher air velocity, air would carry all sizes of fiber, but the carryover of non-fiber components 

would be high (Srinivasan et al., 2005). Hence it is effective to sieve DDGS into different particle 

sizes first and aspiration is applied in each size category at proper velocities for gaining the better 

yields of DDGS fractionation with higher protein and oil contents. However, these researches 

mainly focused on particle size effect of DDGS and not indicated other factors which could 
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influence the fractionation efficiency. The different air flow velocities and fractions collected from 

aspiration process could also give the effects on the final fractionation efficiency. Additionally, an 

estimating model which includes possible variables for fractionation could be a tool for a more 

comprehensive investigation of DDGS fractionation process. 

In this study, sieving and aspiration were used to fractionate DDGS for obtaining high 

protein and oil contents, which could increase value of coproduct from corn-based ethanol 

industry. Also, different variables, air flow velocities, particle sizes and fraction factors, are 

considered in the fractionation including single variable effect and the effect derived from 

interactions of each variables. Otherwise, the terminal air flow velocity was determined by Iowa 

blower which was used as the references for different air flow velocity settings, and the 

relationships of protein and oil contents among different operating variables and the estimating 

models were also investigated by multivariate linear regression. 

2. Materials and Methods 

2.1 Materials 

DDGS samples were collected from Lincoln Way Energy in Nevada IA, and stored at room 

temperature until further processing was done. 

2.2 Methods 

2.2.1 Sieving 

For obtaining the particle size distribution, a sieving procedure was conducted based on 

the ASAE standard method (ASAE Standard, 2003). Air dried DDGS was sent through a machine 

sieve with 10, 20, 40, and 60 mesh. The mass of material remaining on each pan was collected and 
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measured for individual weight. The distributions of four sieved fractions were calculated 

following Eq.1 

𝑃𝑃𝑇𝑇𝐺𝐺𝑃𝑃𝑃𝑃𝑐𝑐𝑇𝑇𝑅𝑅 𝐺𝐺𝑃𝑃𝑧𝑧𝑅𝑅 𝑐𝑐𝑃𝑃𝐺𝐺𝑃𝑃𝐺𝐺𝑃𝑃𝑑𝑑𝑅𝑅𝑃𝑃𝑃𝑃𝐺𝐺𝑅𝑅 =
𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑟𝑟𝑟𝑟𝑚𝑚𝑟𝑟𝑖𝑖𝑛𝑛𝑟𝑟𝑑𝑑 𝑜𝑜𝑛𝑛 𝑟𝑟𝑟𝑟𝑐𝑐ℎ 𝑠𝑠𝑖𝑖𝑟𝑟𝑚𝑚𝑟𝑟

𝑊𝑊𝑡𝑡𝑜𝑜𝑡𝑡𝑟𝑟𝑚𝑚 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
× 100%                      Eq. 1 

2.2.2 Terminal Air Flow Velocity 

For determining the terminal velocity of airflow applied in aspiration, we first used an Iowa 

Blower, which is developed by Seed Science Center, Iowa State University. The Iowa Blower 

(Fig. 9-1) is a small scale aspirator which separates sample into 

two fractions. There are five indexes of airflow forIowa 

blower,20, 40, 60, 80 and 100, which correspond to flow rates 

of 0.32, 1.54, 2.42, 2.85 and 3.06 MPS (m/sec) respectively. The 

distributions of two fractions are shown in Table 9-1. According 

the results, the terminal velocities for light and heavy weight 

fraction of 10-20 mesh and 20-40 mesh DDGS were between 

0.32 and 1.54, and 3.06 MPS individually.                             Fig. 9-1 Configuration of Iowa blower 

Table 9-1 Mass distribution of DDGS through the Iowa blower 
  10-20 mesh 20-40 mesh 

Airflow 
index 

Flowrate 
(m/sec) 

Light (%) Heavy 
(%) 

Light (%) Heavy 
(%) 

20 0.32 0 100 0 100 
40 1.54 5 95 18.51 81.49 
60 2.42 49 51 89.24 10.76 
80 2.85 83.4 16.6 99.20 0.80 
100 3.06 84 16 99.60 0.40 
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2.2.3 Aspiration  

Aspiration was performed using a Carter Day lab-scale aspirator (Fig. 9-2).  The equipment 

consisted of an electric fan, air-intake control, air separation chamber, rolling feeder and four 

fraction pans. During operation, the fan forced air into air separation chamber. DDGS was fed by 

rolling feeder with a constant rate of 100 g/min. The airflow delivered lighter DDGS to exit from 

the separation chamber, the heavier part of DDGS remained in the first fraction. The aspirator 

breaks the sample into 4 fractions based upon density, weight, and particle size.   

 

Fig. 9-2 Configuration of aspirator 

According to the results of terminal airflow test by Iowa Blower and different profiles of 

DDGS, four levels 1.22, 1.83, 2.44, and 3.05 MPS of flow rates were applied for sieved fractions 

(original, 10-20mesh and 20-40 mesh).  In this study, the particle sizes and air flow velocity are 

two main variables. The treatments are shown in Table 9-2. Each treatment was done by triplicate. 
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Table 9-2 Treatments used for DDGS aspiration 
Treatment Particle size Air flow velocity (m/sec) 

1 Original 1.22 
2 Original 1.83 
3 Original  2.44 
4 Original 3.05 
5 10-20 mesh 1.22 
6 10-20 mesh 1.83 
7 10-20 mesh 2.44 
8 10-20 mesh 3.05 
9 20-40 mesh 1.22 
10 20-40 mesh 1.83 
11 20-40 mesh 2.44 
12 20-40 mesh 3.05 

2.3 Analysis 

2.3.1 Nutrient Content 

The original and all fractions of DDGS through sieving and aspiration processes were 

analyzes for contents of moisture, fiber, protein, oil (fat) and ash. Ash content was determined 

based on AOAC official method 942.05 (Thiex and Novotny, 2012). Moisture, protein, fiber and 

oil contents were determined by NIR (Near Infrared Spectroscopy) (Dickey-John Instalab 800).  

2.3.2 Efficiency of Nutrient Concentration 

After combining sieving and aspiration processes, the nutrient contents were altered 

especially in protein, fiber and oil. These changes correspond to the different density profiles of 

each fraction. The efficiency of fractionation was calculated by Eq. 2. When the efficiency was 

positive, that indicates the nutrient (protein and oil) was condensed; otherwise, a negative value 

indicates the composition of nutrients had decreased. The calculation was performed based on the 

mean nutrient content of triplicate measurements. 

𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐𝑃𝑃𝑅𝑅𝑅𝑅𝑐𝑐𝑦𝑦 =
𝑊𝑊𝑟𝑟𝑎𝑎𝑡𝑡𝑟𝑟𝑟𝑟 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑚𝑚𝑟𝑟𝑛𝑛𝑡𝑡 −𝑊𝑊𝑜𝑜𝑟𝑟𝑖𝑖𝑜𝑜𝑖𝑖𝑛𝑛𝑟𝑟𝑚𝑚 𝑛𝑛𝑚𝑚𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛𝑡𝑡

𝑊𝑊𝑜𝑜𝑟𝑟𝑖𝑖𝑜𝑜𝑖𝑖𝑛𝑛𝑟𝑟𝑚𝑚 𝑛𝑛𝑚𝑚𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟𝑛𝑛𝑡𝑡
× 100%                      Eq. 2 
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2.3.3 Statistical Analysis 

Data are analyzed by JMP v.10 (JMP, Cary NC, USA). Mean and standard deviation are 

determined. Particle size, air flowrate and different DDGS fraction after aspiration are set as 

independent variable to perform the analysis of variance (ANOVA) and linear regression which 

were altered during the treatments. Tukey’s HSD (honesty significant difference) was applied for 

conducting mean separation tests. Also, the response surface methodology (RSM) was conducted 

by TableCurve 3D (Systat Inc., CA, USA) to exam the trend and DDGS nutrient content changes 

caused by independent variables. 

3. Results and Discussions 

3.1 Mass and Nutrient Distribution 

DDGS was divided into four fractions (above 10 mesh, 10-20 mesh, 20-40 mesh, and 

through 40mesh) by sieving primarily; the particle sizes with 0.85-2mm had the greatest 

occurrence about 61% followed by the particle sizes with 0.425-0.85mm of about 30% occurrence 

The average particle size of the original DDGS was about 0.75mm.  

According to results of mass distribution, particle sizes with 0.85-2 mm, 0.425-0.85 mm 

and original DDGS (0.75mm) were chosen for the nutrients composition analysis by NIR (Table 

9-3) and further aspiration separation test. According to the nutrient analysis, smaller particle sizes 

has higher protein content about 32%; additionally, DDGS with larger particle size has higher oil 

content about 10.8%. These results are relating to the particle densities of different nutrients 

(Barbosa-Canovas et al., 2005, Liu 2008). Fiber tends to agglomerate with other components to 

form a matrix. Thus, during the primary sieving, fiber doesn’t show the obvious differences 

comparing to the original DDGS. 
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Table 9-3 Nutrient distribution and components of DDGS due to primary sieving 
  

Particle Size 
(mm) 

 
Density  
(kg/m3) 

 
Moisture 

(%) 

 
Ash 

(db %) 

Nutrient Distribution  
(db %) 

Protein Oil Fiber 
10-20 mesh 0.85-2 96.99 9.30 4.83 29.23 10.82 6.54 
Original  0.75 113.38 8.90 4.85 31.47 10.58 6.74 
20-40 mesh 0.425-0.85 117.05 8.32 4.79 32.21 10.49 6.71 

 

3.2 Aspiration Fractionation 

Two different particle sizes of DDGS obtained from primary sieving, and the original 

DDGS were then fractionated by the aspirator.  During aspiration, the DDGS was separated into 4 

fractions, and the nutrient composition of these fractions shifted because the aspiration process 

separates the nutrients depending on their different densities. The various independent variables 

including flowrate, particle sizes and different fractions play a critical role for the final results. 

However, these factors have interactions which also affected the changes in protein, fiber and oil 

content of each DDGS fraction as well. 

    The effects on protein, fiber and oil content of DDGS which were treated by sieving and 

aspiration are shown in Table 9-4.  Results include individual and multiple interactions. The means 

and standard deviations of protein, fiber and oil contents after the treatments are shown in Table 

9-5. The number of fraction 1 to 4 represents the density of DDGS collected from these fractions 

from high to low. For protein and oil, they were concentrated in the first fraction, especially with 

the highest level of air flowrate (3.05 m/sec). That indicates these two nutrients have the higher 

mass density. However, in the aspect of different particle sizes, the smallest particle sizes with 

0.425-0.85 mm have remarkably higher content of protein and oil in the first fraction with 40.81% 

and 17.64%, respectively. This result also indicates these two nutrients possess smaller particle 

size generally.  
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Table 9-4 Individual factor and interaction results for nutrients content of fractionated DDGS 
 

Sources 
 

DF 
Protein Fiber Oil 

F ratio P value F ratio P value F ratio P value 
Flowrate 3 123.34 <0.0001 29.893 <0.0001 353.69 <0.0001 
Particle sizes 2 1096.88 <0.0001 20.512 <0.0001 218.35 <0.0001 
Fraction # 3 1070.79 <0.0001 21.52 <0.0001 3971.65 <0.0001 
Flowrate*Particle sizes 6 13.53 <0.0001 38.97 <0.0001 4.44 <0.0001 
Flowrate*Fraction # 9 5.86 <0.0001 32.84 <0.0001 63.90 <0.0001 
Particle sizes*Fraction # 6 44.83 <0.0001 103.36 <0.0001 11.88 <0.0001 
Flowrate*Particle sizes 
*Fraction# 

18 2.34 0.0043 15.36 <0.0001 4.44 <0.0001 

Each treatment combination of statistical analysis is based on α=0.5  

As for fiber, it is easy to agglomerate with other constituents because of structure and 

physical properties. The effects on fiber content are influenced by different combinations of 

factors. 

Table 9-5 Sieving and aspiration treatment effects on nutrient composition of fractionated DDGS 

Flowrate 
(m/sec) 

Fraction 
# 

Protein (%) Fiber (%) Oil (%) 
0.85-2 

mm 
0.75 
mm 

0.425-
0.85 
mm 

0.85-2 
mm 

0.75 
mm 

0.425-
0.85 
mm 

0.85-2 
mm 

0.75 
mm 

0.425-
0.85 
mm 

3.05 1 37.91 
(0.70) 

38.48 
(1.07) 

40.81 
(0.20) 

6.83 
(0.01) 

6.76 
(0.09) 

5.66 
(0.13) 

15.51 
(0.40) 

16.63 
(0.22) 

17.64 
(0.47) 

2 30.50 
(0.81) 

32.97 
(0.34) 

34.66 
(0.71) 

6.71 
(0.05) 

6.77 
(0.05) 

6.79 
(0.03) 

11.08 
(0.47) 

11.16 
(0.24) 

11.00 
(0.14) 

3 28.69 
(0.11) 

31.94 
(0.57) 

34.20 
(0.31 

6.64 
(0.05) 

6.71 
(0.05) 

6.76 
(0.01) 

9.87 
(0.27) 

10.03 
(0.18) 

10.31 
(0.31) 

4 25.57 
(0.38) 

32.02 
(0.34) 

32.30 
(0.25) 

6.53 
(0.04) 

6.78 
(0.05) 

6.82 
(0.02) 

8.89 
(0.06) 

9.38 
(0.06) 

9.77 
(0.13) 

2.44 1 36.39 
(0.79) 

37.97 
(1.32) 

39.33 
(0.86) 

6.90 
(0.03) 

6.84 
(0.01) 

6.44 
(0.26) 

14.77 
(0.48) 

15.31 
(0.25) 

16.98 
(0.63) 

2 29.33 
(0.26) 

32.57 
(0.28) 

34.50 
(0.73) 

6.74 
(0.03) 

6.80 
(0.03) 

6.80 
(0.01) 

10.49 
(0.26) 

10.44 
(0.15) 

10.58 
(0.27) 

3 27.79 
(0.51) 

32.29 
(0.12) 

32.95 
(0.33) 

6.66 
(0.04) 

6.79 
(0.03) 

6.79 
(0.03) 

9.56 
(0.22) 

9.66 
(0.10) 

10.04 
(0.12) 

4 25.70 
(0.46) 

31.65 
(0.74) 

31.5 
(0.14) 

6.61 
(0.07) 

6.81 
(0.01) 

6.81 
(0.02) 

8.71 
(0.10) 

9.12 
(0.04) 

9.71 
(0.03) 

4 24.58 
(0.33) 

30.74 
(0.42) 

32.00 
(0.68) 

6.46 
(0.04) 

6.79 
(0.05) 

6.84 
(0.01) 

8.70 
(0.09) 

9.12 
(0.06) 

9.62 
(0.05) 

Values in parentheses are standard deviations 
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Table 9-5 Continued 

Flowrate 
(m/sec) 

Fraction 
# 

Protein (%) Fiber (%) Oil (%) 
0.85-2 

mm 
0.75 
mm 

0.425-
0.85 
mm 

0.85-2 
mm 

0.75 
mm 

0.425-
0.85 
mm 

0.85-2 
mm 

0.75 
mm 

0.425-
0.85 
mm 

1.83 1 35.18 
(0.53) 

37.60 
(0.41) 

39.34 
(1.75) 

6.89 
(0.04) 

6.84 
(0.04) 

6.59 
(0.09) 

13.82 
(0.36) 

14.42 
(0.40) 

15.88 
(0.34) 

2 28.95 
(0.31) 

32.57 
(0.80) 

34.16 
(0.50) 

6.70 
(0.03) 

6.82 
(0.05) 

6.90 
(0.01) 

9.73 
(0.27) 

9.94 
(0.19) 

10.38 
(0.17) 

3 26.47 
(0.30) 

31.88 
(0.39) 

32.69 
(0.26) 

6.60 
(0.04) 

6.78 
(0.03) 

6.81 
(0.06) 

9.04 
(0.11) 

9.48 
(0.14) 

9.67 
(0.11) 

4 24.58 
(0.33) 

30.74 
(0.42) 

32.00 
(0.68) 

6.46 
(0.04) 

6.79 
(0.05) 

6.84 
(0.01) 

8.70 
(0.09) 

9.12 
(0.06) 

9.62 
(0.05) 

1.22 
 

1 32.66 
(0.42) 

35.22 
(0.12) 

38.20 
(1.57) 

6.82 
(0.01) 

6.78 
(0.03) 

6.87 
(0.02) 

11.76 
(0.39) 

11.59 
(0.16) 

13.56 
(0.17) 

2 25.54 
(1.06) 

30.52 
(0.49) 

33.23 
(0.17) 

6.63 
(0.04) 

6.70 
(0.02) 

6.86 
(0.04) 

8.74 
(0.26) 

9.37 
(0.14) 

9.91 
(0.05) 

3 23.60 
(0.66) 

30.66 
(1.38) 

31.17 
(0.34) 

6.47 
(0.04) 

6.57 
(0.09) 

6.79 
(0.05) 

8.39 
(0.06) 

8.96 
(0.23) 

9.45 
(0.04) 

4 24.65 
(0.54) 

30.70 
(0.11) 

31.38 
(0.35) 

6.36 
(0.15) 

6.33 
(0.02) 

6.74 
(0.05) 

9.41 
(0.33) 

8.88 
(0.13) 

6.59 
(0.08) 

Values in parentheses are standard deviations 

As for fiber, it is easy to agglomerate with other constituents because of structure and 

physical properties. The effects on fiber content are influenced by different combinations of 

factors. 

3.2.1 Protein Content 

For DDGS, protein content is a critical issue for further utilization. According to the 

statistical analyses (Table 9-4), the individual factors, two factor interactions and all three factor 

interactions all have significant evidence that indicate these factors cause different effects on the 

protein content after sieving and aspiration treatment. 

In single factors, higher flowrate and the fraction with higher density result in better ability 

to concentrate the protein content; also, the smaller particle size fraction is consisted of higher 

protein content. For binary variable combinations, when the DDGS with smaller particles was 

treated with higher flowrate, the protein content can be raised significantly. This result indicates 
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protein has higher density than other components, which are easily carried away by air. In other 

words, the DDGS with higher protein content is able to withstand the high air flowrate and 

remained in the heavy fraction which is also attributed to high density property derived from 

protein. 

According to response surface analysis (Fig. 9-3), as combining these three independent 

variables, as DDGS with 0.425-0.85mm was treated by flowrate of 3.05 m/sec; the optimal protein 

content collected in the first fraction could reach about 41%. By contrary, the DDGS with the 

largest particle size 0.85-2mm treated by flowrate of 1.22 m/sec has the lowest protein content 

about 23.6% from the fourth fraction. These results indicate that different combinations of 

variables can efficiently increase the protein content of DDGS fractions.  

 

Fig. 9-3. Response surface of protein content and variables 

Also, the relationship between protein content and all independent variables can be 

expressed as Eq. 3 with R2 of 0.8. In the equation, Z dependent variable represents the prediction 

of protein content which can be estimated by x and y which are different fractions after aspiration 
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process and the ratio of flowrate to particle size individually. Also, the protein content of DDGS 

after fractionation could be estimate based on this equation. 

𝑍𝑍 = 35.50 +
10.69
𝑋𝑋

−
15.27
𝑌𝑌0.5                      Eq. 3 

3.2.2 Oil Content 

Oil (fat) is another critical nutrient of DDGS, and it can be utilized in animal feed as well. 

According to the results shown in Table 9-4, there is evidence to indicate that single, binary and 

triple factors all have effects and interactions on the final oil content after sieving and aspiration 

fractionation. 

    From the results, in the single variable, the trend is similar to protein content. Higher flowrate, 

smaller particle and the fraction with higher density has higher oil content which were 11.46%, 

11.25% and 14.7%, respectively. Compared to the original DDGS, the oil content is increased 

about 1-4%. For the binary factor interactions, the combination of any two independent variables, 

higher flowrate, smaller particle size and higher density fraction, remarkably has the higher oil 

content especially flowrate of 3.05 m/sec for the first fraction where 16.57% oil content was 

achieved. This demonstrates that oil exists with smaller particles and larger density. Hence, oil rich 

DDGS can be obtained from the fraction with higher density. 

As to interactions among these three variables shown in the result of response surface 

analysis (Fig. 9-4), the combination of 3.05 m/sec flowrate, smallest particles (0.425-0.85mm) and 

the fraction with the highest density increased the oil content to 17.63%. The result also indicates 

that there is the positive effect on concentrating oil content in DDGS by these three factors for 

sieving and aspiration gractionation. The relationship between oil content and variables can be 

expressed as Eq. 4 with R2 of 0.97 as well, where Z-axis represents protein content; x- and y-axis 
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indicate different fractions after fractionation processes and the ratio of flowrate to particle size 

respectively. 

 

Fig. 9-4. Response surface of oil content and variables 

1
𝑍𝑍

= 0.09 −
0.06
𝑋𝑋

+
0.05
𝑌𝑌0.5                               Eq. 4 

3.2.3 Fiber Content 

Fiber in DDGS is from the unfermented grain residues especially from corn hulls. Hence, 

the hull content is not as high as oil and protein. In the single factor effect, the mild flowrate, 1.83 

and 2.44 m/sec, and the middle fraction lead to higher fiber contents, which were 6.75% and 6.77% 

individually. Generally, fiber has larger particles and lower density. From the results, it could be 

explained as agglomeration among fiber, protein and oil. Therefore, a mild condition used in 

fractionation is able to keep more fiber remained in DDGS which is opposite to obtain oil- and 

protein-rich DDGS requiring extreme condition for fractionation. 
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In binary independent variable effects, the higher fiber content does not show the expected 

result, which can be obtained from the fraction with lowest density. However, the highest was 

6.8% in the lowest flowrate-highest density fraction, lowest flowrate-smallest particle sizes, and 

lowest density fraction-and smallest particle size group. This situation might reflect the 

interactions between fiber and other nutrients in the DDGS. Because fiber forms matrix-like 

particles with protein and oil, and it is possible to concentrate protein and oil during aspirating to 

cause this result.  

As all variables were combined together as shown in Fig. 9-5, a mild flowrate had the 

highest fiber content about 6.9% no matter which fraction and particle size were used. And, the 

relationship between fiber content and variables can be expressed as Eq. 5 with R2 of 0.8, where 

Z-axis represents protein content; x- and y-axis indicate different fractions after fractionation 

processes and the ratio of flowrate to particle size respectively. 

 

Fig. 9-5. Response surface of fiber content and variable 
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𝑍𝑍 = 5.45 +
2.23
𝑋𝑋

+ 0.40𝑌𝑌 −
0.82
𝑋𝑋2

− 0.03𝑌𝑌2 − 0.34
𝑌𝑌
𝑋𝑋

                   𝐄𝐄𝐄𝐄.𝟓𝟓 

From these results, it can be concluded briefly that fiber is easy to agglomerate with other 

constituents and thus becomes difficult to separate by physical treatment for concentrating fiber. 

3.2.4 Other Components 

The results of other components including moisture and ash contents are shown in Table 

9-6. The moisture content varied during the aspiration process. Higher flowrate resulted in the 

lower moisture content. However, in different fractions after aspiration, the fourth fraction 

(lightest) had the lowest moisture content. An explanation could be the lighter DDGS was blown 

further, and the time DDGS contacted with air was longer than others. From these results, 

aspiration can be regarded as a partial drying process. Additionally, each single factor and the 

interactions between or among all independent variables had effects on the moisture content of 

DDGS during the fractionation process (Table 9-7). 

Table 9-6 Sieving and aspiration treatments on other components of fractionated DDGS 
 

Flowrate 
(m/sec) 

 
Fraction 

# 

Moisture Content (%) Ash (db %) 
0.85-2 

mm 
0.75 
mm 

0.425-0.85 
mm 

0.85-2 
mm 

0.75 
mm 

0.425-0.85 
mm 

3.05 1 7.29 
(0.04) 

7.62 
(0.44) 

7.59 
(0.40) 

4.47 
(0.21) 

4.70 
(0.21) 

4.63 
(0.21) 

2 9.24 
(0.37) 

8.64 
(0.48) 

8.01 
(0.57) 

4.43 
(0.15) 

4.67 
(0.23) 

4.33 
(0.06) 

3 9.81 
(0.06) 

8.32 
(0.23) 

7.71 
(0.06) 

4.67 
(0.32) 

4.63 
(0.15) 

4.57 
(0.06) 

4 10.78 
(0.16) 

8.62 
(0.10) 

8.72 
(0.06) 

4.57 
(0.21) 

4.63 
(0.06) 

4.57 
(0.21) 

2.44 1 8.05 
(0.17) 

7.29 
(0.26) 

7.56 
(0.32) 

4.37 
(0.31) 

4.93 
(0.29) 

4.33 
(0.25) 

2 9.86 
(0.13) 

8.57 
(0.09) 

7.94 
(0.29) 

4.40 
(0.35) 

5.03 
(0.21) 

4.37 
(0.15) 

3 10.30 
(0.17) 

8.58 
(0.22) 

8.27 
(0.12) 

4.60 
(0.10) 

4.87 
(0.21) 

4.37 
(0.21) 

4 10.99 
(0.20) 

8.73 
(0.60) 

9.14 
(0.06) 

4.60 
(0.10) 

4.90 
(0.46 

4.73 
(0.31) 

            Values in parentheses are standard deviations. 
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      Table 9-6 Continued 
 

Flowrate 
(m/sec) 

 
Fraction 

# 

Moisture Content (%) Ash (db %) 
0.85-2 

mm 
0.75 
mm 

0.425-0.85 
mm 

0.85-2 
mm 

0.75 
mm 

0.425-0.85 
mm 

1.83 1 8.25 
(0.19) 

7.57 
(0.15) 

7.56 
(0.21) 

4.33 
(0.25) 

4.93 
(0.15) 

4.67 
(0.32) 

2 9.92 
(0.20) 

8.73 
(0.54) 

8.49 
(0.20) 

4.50 
(0.20) 

4.80 
(0.36) 

4.30 
(0.26) 

3 10.59 
(0.10) 

8.72 
(0.05) 

8.60 
(0.24) 

4.53 
(0.25) 

5.03 
(0.38) 

4.37 
(0.12) 

4 11.07 
(0.22) 

9.23 
(0.12) 

9.04 
(0.29) 

4.47 
(0.21) 

5.10 
(0.30) 

4.63 
(0.25) 

1.22 1 9.03 
(0.07) 

7.66 
(0.06) 

6.87 
(0.42) 

4.37 
(0.29) 

4.93 
(0.32) 

4.67 
(0.06) 

2 11.12 
(0.25) 

8.88 
(0.19) 

8.64 
(0.17) 

4.80 
(0.70) 

5.03 
(0.31) 

4.57 
(0.15) 

3 11.36 
(0.33) 

7.96 
(0.33) 

9.04 
(0.20) 

4.47 
(0.12) 

4.87 
(0.21 

4.53 
(0.06) 

4 11.16 
(0.83) 

7.02 
(0.60) 

8.83 
(0.28) 

4.50 
(0.20) 

4.73 
(0.23) 

4.67 
(0.06) 

            Values in parentheses are standard deviations. 

Table 9-7 Individual factor and interaction results for other components of fractionated DDGS 

Sources DF Moisture Ash 
F ratio P value F ratio P value 

Flowrate 3 12.21 <0.0001 1.69 0.17 
Particle sizes 2 236.84 <0.0001 32.57 <0.0001 
Fraction # 3 128.15 <0.0001 0.24 0.87 
Flowrate*Particle sizes 6 5.43 <0.0001 1.64 0.15 
Flowrate*Fraction # 9 2.49 0.0132 1.15 0.33 
Particle sizes*Fraction # 6 11.31 <0.0001 1.32 0.25 
Flowrate*Particle sizes *Fraction# 18 1.8 0.036 0.63 0.87 

Each treatment combination of statistical analysis is based on α=0

The ash content varied among DDGS samples from 4% to 5%. From Table 9-6 and Table 

9-7, there were mixed trends of ash content depending on each factors except particle size. 

Generally, the original DDGS without primary sieving had slightly higher ash content. For the 

largest and the finest particle sizes, ash content decreased with sieving. From this point, the primary 

sieving process could concentrate the ash in the fraction with larger particle sizes. As for ash 

content, only particle size had a significant effect on DDGS with smaller the particle size had more 
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ash content. This might be relative to the higher oil and protein contents in fractions with smaller 

particle size. 

3.3 Efficiency of Sieving and Aspiration Fractionation 

3.3.1 Protein 

In addition to 3D response surface analysis used to estimate nutrients content after DDGS 

fractionation, a linear regression is used to express the relationship between the efficiency of 

fractionation and independent variables as well. The result of concentrating protein from DDGS is 

shown in Fig. 9-6. A positive efficiency indicates the fractionation process can concentrate and 

increase protein content, and vice versa. 
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Fig. 9-6. Efficiency of sieving and aspiration for concentrating protein. Fraction 1: Heavy  
              fraction; Fraction 2: Mid-heavy fraction; Fraction 3: Mid-light fraction; Fraction 4:  
              light fraction. 
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The highest efficiency was about 30% from the first fraction treated with 3.05 m/sec 

flowrate. As the flowrate and the density of fraction decreased, the efficiency got lower. According 

to the results, a simple linear relationship between flowrate and the efficiency can be observed for 

each fraction. Comparing these four fractions, the higher efficiency has the better linear trend with 

higher R squares; however, in fraction 4, a linear relationship is not well performed might be 

resulted from lower protein content and concentrating efficiency in the fourth fraction. 

Due to linear relationships existing between fractionation efficiency and 4 fractions and all 

particle sizes, the fraction is considered to be a variable for a linear regression considering all 

variables to have a new expression shown in Eq. 6, and it has a R2 of 0.98. All variables have 

effects on the estimated efficiency which is corresponding to the previous results of variances 

analysis. Additionally, the explanatory Xs for particle size and fraction are regarded as dummy 

variables, which are substituted by 0 or 1 depending on the conditions of analysis. As predicting 

the efficiency of DDGS with 0.85-2mm from fraction 4, the Xs for particle and fractions are 

substituted by 0, and the estimated efficiency at any flowrate can be obtained. Therefore, the 

DDGS with 0.85-2mm from fraction 4 is the foundation of this combined expression. Through this 

equation, it is accessible to predict the efficiency of protein condensation by sieving and aspiration 

processes. 

𝑦𝑦𝑝𝑝𝑟𝑟𝑜𝑜𝑡𝑡𝑟𝑟𝑖𝑖𝑛𝑛
= −24.09 + 4.7𝑋𝑋𝑎𝑎𝑚𝑚𝑜𝑜𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 + 12.76𝑋𝑋𝑝𝑝𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑚𝑚𝑟𝑟 0.425~0.85 + 13.43𝑋𝑋𝑝𝑝𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑚𝑚𝑟𝑟 0.75 + 35.62𝑋𝑋𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛1
+ 11.82𝑋𝑋𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛2 + 5.18𝑋𝑋𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛3 − 4.33 �𝑋𝑋𝑎𝑎𝑚𝑚𝑜𝑜𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 − 2.135�𝑋𝑋𝑝𝑝𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑚𝑚𝑟𝑟 0.425~0.85
− 3.92�𝑋𝑋𝑎𝑎𝑚𝑚𝑜𝑜𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 − 2.135�𝑋𝑋𝑝𝑝𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑚𝑚𝑟𝑟0.75 + 4.3�𝑋𝑋𝑎𝑎𝑚𝑚𝑜𝑜𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 − 2.135�𝑋𝑋𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛1
+ 2.964.3�𝑋𝑋𝑎𝑎𝑚𝑚𝑜𝑜𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 − 2.135�𝑋𝑋𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛2 + 3.474.3�𝑋𝑋𝑎𝑎𝑚𝑚𝑜𝑜𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 − 2.135�𝑋𝑋𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛3
− 11.94 𝑋𝑋𝑝𝑝𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑚𝑚𝑟𝑟 0.425~0.85𝑋𝑋𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛1 − 4.55 𝑋𝑋𝑝𝑝𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑚𝑚𝑟𝑟 0.425~0.85𝑋𝑋𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛2
− 2.21 𝑋𝑋𝑝𝑝𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑚𝑚𝑟𝑟 0.425~0.85𝑋𝑋𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛3 − 16.43 𝑋𝑋𝑝𝑝𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑚𝑚𝑟𝑟0.75𝑋𝑋𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛1
− 9.03𝑋𝑋𝑝𝑝𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑚𝑚𝑟𝑟0.75𝑋𝑋𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛2
− 3.86𝑋𝑋𝑝𝑝𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑚𝑚𝑟𝑟0.75𝑋𝑋𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛3                                                                                                   Eq. 6 
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Xflowrate: Any flowrate 
Xparticle 0.425-0.85: 1 for 0.425-0.85 mm particle size; 0 for others. 
Xparticle 0.75: 1 for 0.75 mm particle size; 0 for others. 
Xfraction 1: 1 for fraction 1; 0 for others. 
Xfraction 2: 1 for fraction 2; 0 for others. 
Xfraction 3: 1 for fraction 3; 0 for others. 
 

3.3.2 Oil 

The efficiency of oil separation (Fig. 9-7) had similar trends to protein because of their 

similar density profile trends. The best efficiency, about 70%, were obtained from the first fraction 

and the finer particle DDGS treated with 3.05 m/sec flowrate. The finer particles also has higher 

efficiencies to increase oil content. The result indicates DDGS with finer particle size tends to have 

higher oil content. From the results of protein and oil fractionation efficiency, particle size plays 

an important role for increasing oil and protein content in DDGS. Therefore, a primary sieving 

process is essential to increase the efficiency for concentrating oil and distinguishing the nutrients 

contribution of different fractions of DDGS. 

From Fig. 9-7, linear trends between efficiency and flowrate are more obvious to be 

observed. A higher flowrate and is preferred to have higher efficiency. However, a negative slope 

and the lowest fitting performance of linear relationship is observed in the largest particle sized 

collected from the fourth fraction. This result also reflect trend discussed previously, oil tends to 

existing in small particle, and fiber is agglomerated with other nutrient to form as large particle 

with light density which would be easily carried away by air with high flowrate.   
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Fig. 9-7. Efficiency of sieving and aspiration for concentrating oil. Fraction 1: Heavy fraction;  
               Fraction 2: Mid-heavy fraction; Fraction 3: Mid-light fraction; Fraction 4: Light 

fraction. 
 

A linear combination of all variables including fractions was conducted and the R2 of the 

expression is 0.97 (Eq. 7). These three variables all have significant effect on the efficiency which 

is similar to the previous variances analysis. Dummy variables, 0 and 1, are applied to substitute 

explanatory Xs of particle sizes and fractions as protein separation as well. The basic condition of 

oil separation at any flowrate is the DDGS collected from fraction 4 with 0.85mm particle size as 

the explained Xs are all substituted by 0.  Otherwise, the expression also indicates that the highest 

efficiency at the certain flowrate were obtained from the finest particle size and the fraction with 

the highest density. 
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𝑦𝑦𝑜𝑜𝑖𝑖𝑚𝑚
= −19.59 + 0.32𝑋𝑋𝑎𝑎𝑚𝑚𝑜𝑜𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟 + 12.53𝑋𝑋𝑝𝑝𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑚𝑚𝑟𝑟 0.425~0.85 + 5.17𝑋𝑋𝑝𝑝𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑐𝑐𝑚𝑚𝑟𝑟 0.75 + 7.61𝑋𝑋𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛1
− 8.79𝑋𝑋𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛2 − 8.9𝑋𝑋𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛3 + 21.06𝑋𝑋𝑎𝑎𝑚𝑚𝑜𝑜𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑋𝑋𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛1 + 8.59𝑋𝑋𝑎𝑎𝑚𝑚𝑜𝑜𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑋𝑋𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛2
+ 5.47𝑋𝑋𝑎𝑎𝑚𝑚𝑜𝑜𝑓𝑓𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟𝑋𝑋𝑎𝑎𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛3                                                                                                        Eq. 7 

 
Xflowrate: Any flowrate 
Xparticle 0.425-0.85: 1 for 0.425-0.85 mm particle size; 0 for others. 
Xparticle 0.75: 1 for 0.75 mm particle size; 0 for others. 
Xfraction 1: 1 for fraction 1; 0 for others. 
Xfraction 2: 1 for fraction 2; 0 for others. 
Xfraction 3: 1 for fraction 3; 0 for others. 
 

3.3.3 Fiber 

For fiber separation efficiency (Fig. 9-8), the trend is not uniform for each flowrate 

condition. The lowest efficiency was obtained from the first fraction of 0.425-0.85mm DDGS 

treated with 3.05 m/sec. That indicates the fiber is easy to blown away because of light mass 

weight. However, the trend of efficiency does not show the fraction with the lowest density that 

can achieve higher efficiency as expected. 

From the Fig. 8, the linear relationships between efficiency and flowrate were fairly poor 

for every fraction. This indicates that flowrate had a limited effect on the efficiency of fiber 

separation. Because of the lack of linearity, it was hard to have a reliable linear combination 

expression for estimating the efficiency of fiber separation at any reasonable condition. As the 

result of previous experimentation, fiber is easy to agglomerate with other constituents. Hence, 

that might be the reason which results in this situation. This also demonstrates that the physical 

fractionation treatment is not a suitable approach for separating fiber. When protein and oil were 

concentrated during the aspiration, the fiber which formed matrixes with protein and oil at the 

same time. That will be the problem as using the physical separation treatment. 
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Fig. 9-8. Efficiency of sieving and aspiration for concentrating fiber. Fraction 1: Heavy fraction; 
Fraction 2: Mid-heavy fraction; Fraction 3: Mid-light fraction; Fraction 4: Light 
fraction. 

4. Conclusions 

In sieving and aspiration fractionation process, air flowrate, particle sizes and densities 

play a critical role in the final efficiency of nutrient separation. The effects of these variables highly 

correspond to the properties of these nutrients. For protein and oil, fractions with higher density, 

higher air flowrate and smaller particle sizes improve the efficiency of separation. However, there 

is a limitation for concentrating fiber content by physical fractionation treatment because fiber is 

easy to agglomerate with other nutrients. Additionally, the linear combination is able to estimate 

the efficiency of protein and oil separation at reasonable operation conditions. 
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CHAPTER 10 

CONCLUSIONS AND FUTURE WORK 

1. Conclusions 

Soybean extraction is the process which is used in the food and related industries. It can be 

regarded as a pretreatment for other applications. According to the TEA and EIA of these three 

extraction techniques, the results can be concluded in economic feasibility and environmental 

aspects as the following.  

In the economic feasibility aspect: 

(a) Extruding-expelling process is profitable when the capacity of soybean oil annual production 

is scaled up over 12.81million kg. 

(b) Hexane extraction is a profitable process when the scale is larger than 173.22 million kg of 

annual soybean oil production. 

(c) EAEP is profitable when the scale is larger than 17 million kg of annual soybean oil 

production. 

(d) Soybean meal is the driving force for the extruding-expelling process due to its high 

productivity, nutrient values and selling price. 

(e) Soybean meal is also the driving force for hexane extraction process due to its high 

productivity.  

(f) The value of co-product has the major effect on EAEP profitability. Skim and insoluble fiber 

contribute over 70% of total revenue when they are sold as the source for soy-corn integrated 

ethanol production. 
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(g) Co-products, skim and insoluble fiber, are the driving force for EAEP. This result also 

indicates that EAEP is potential to have economic feasibility when connected to corn-based 

ethanol production as an integrated biorefinery system. 

(h) Operating cost, especially the material cost, has the highest effect on profitability of the oil 

extraction processes. 

In the environmental impact aspect: 

(a) Hexane extraction has the highest environmental impact because the organic solvent is applied 

for the extraction. 

(b) EAEP and extruding-expelling process have the similar environmental impact scores, and they 

are lower than the hexane extraction because there is no organic solvent applying in the 

process. 

(c) Hexane has the lowest GHG and air pollutant emissions due to its high energy efficiency. 

(d) Extruding-Expelling process has the higher GHG and air pollutant emissions because higher 

energy consumption is required during the extruding and pressing processes. 

(e) EAEP also has the higher GHG emission than the hexane extraction because more energy 

consumptions are needed in the pretreatment process, especially for crop particle size 

reduction, and flake extruding. 

(f) The main challenge for applying EAEP in the industry is how to make pretreatment processes 

more efficient. 

In addition to the analyses of soybean oil extractions, the DDGS is another important co-

product from the soy-corn integrated biorefinery system. Based on the sieving and aspiration 

technique, the efficiency of nutrient fractionation can be concluded as: 

(a) Higher air flowrate used for finer DDGS particle can concentrate the oil and protein contents. 
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(b) Lower air flowrate used for larger DDGS particle can increase the fiber content. 

(c) A proper combination of DDGS particle size and air flow rate is recommended to have DDGS 

with higher nutrient values and selling price. 

2. Future Work 

According to the results of this study, the EAEP has the potential to be applied in the 

industry which is profitable in the large scale operation and has lower environmental impacts than 

the conventional hexane extraction. In future work, the EAEP will be connected to corn-based 

ethanol refinery in the real operation. Also, the overall TEA and EIA of the soy-corn integrated 

biorefinery with soybean EAEP are investigated. The sensitivity analysis of GHG and air pollutant 

emissions will be investigated according to the changes of primary energy used for electricity 

generation. 

Additionally, the social impacts including health and safety, quality of working condition, 

impact of employment, education training, innovative potential, societal product benefit etc., will 

be included as well. As the TEA, EIA, and the social aspects are used for soy-corn integrated 

biorefinery system with EAEP, then a well-rounded sustainability analysis of this developing 

system can be performed. 
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APPENDIX   

ENERGY CONSUMPTION INPUTS 

Table A-1 Energy Consumption of Extruding-Expelling Process 

 Unit Energy Consumption Citation 
Conveyor kW/(m3/h)m 0.08 Haas et al., 2006 
Storage bin kW/m3 0.03 Haas et al., 2006 
Drum dryer kW/m2 0.99 Haas et al., 2006 
Grinder kW/(kg/h) 0.01 Haas et al., 2006 
Extruder kW/(kg/h) 0.31 CCUR ISU 
Expeller kW/(kg/h) 0.31 Haas et al., 2006 
Degumming tank kW/m3 2.00 CCUR ISU 
Centrifuge kW/(kg/h) 0.02 CCUR ISU 
Dryer for oil recovery kW/m2 0.06 Haas et al., 2006 
Meal grinder kW/(kg/h) 0.01 Haas et al., 2006 
Meal processer kW/(kg/h) 0.01 Haas et al., 2006 

 

Table A-2 Energy Consumption of Hexane Extraction Process 

 Unit Energy Consumption Citation 
Conveyor kW/(m3/h)m 0.08 Haas et al., 2006 
Storage bin kW/m3 0.03 Haas et al., 2006 
Drum dryer kW/m2 2.3 Haas et al., 2006 
Grinder kW/(kg/h) 0.01 Haas et al., 2006 
Aspirator kW/(kg/h) 0.05 CCUR ISU 
Conditioner kW/m2 2.3 Haas et al., 2006 
Flaking miller kW/(kg/h) 0.01 Haas et al., 2006 
Extractor  kW/(kg/h) 0.04 Haas et al., 2006 
Toaster kW/m2 2.00 Haas et al., 2006 
Degumming tank kW/m3 2.00 CCUR ISU 
Centrifuge kW/(kg/h) 0.01 CCUR ISU 
Dryer for oil recovery kW/m2 0.06 Haas et al., 2006 
Hexane receiving tank kW/m3 2.00 Haas et al., 2006 
Hexane storage tank kW/m3 2.00 Haas et al., 2006 
Meal grinder kW/(kg/h) 0.01 Haas et al., 2006 
Hull grinder kW/(kg/h) 0.01 Haas et al., 2006 
Meal processer kW/(kg/h) 0.01 Haas et al., 2006 
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Table A-3 Energy Consumption of Enzyme Assisted Aqueous Extraction Process (Collected   

                 from CCUR, ISU) 
 

Unit Energy Consumption 
Screw conveyor kW/(m3/h)m 3.60 
Silo/Bin kW/m3 0.03 
Grinder kW/(kg/h) 0.05 
Flake miller kW/(kg/h) 0.11 
Aspirator kW/(kg/h) 0.05 
Extruder  kW/(kg/h) 0.31 
Blending tank I kW/m3 2.03 
Blending tank II 

Blending tank III 

3-phase decanter I kW/(kg/h) 0.02 
3-phase decanter II 

Disc-stack centrifuge I kW 6.5 
Disc-stack centrifuge II 

Storage tank kW/m3 2.00 
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