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ABSTRACT 
   
 

Most of color vision tests require that the participant is aware of and actively takes 

part in the test. While this might seem like a minor requirement, it presents the possibility 

that, when motivated, participants can engage in subterfuge in order to pass the test. This 

study introduces the use of eye movements as a covert test to detect the presence of a color 

deficiency without requiring explicit input. An experiment was conducted in which the 

results suggest that the observed differences in eye movements alone can be used as an 

efficient metric for detecting colorblindness using the Ishihara images. To reduce the 

possibility that participants may realize they are being tested, a method to select new 

complex scenes for screening color vision status was developed. Another eye movement 

experiment was performed using selected scenes to validate the usefulness of the proposed 

method. The results show that this approach can be used to screen colorblind individuals 

without their knowledge or active participation, making the test less sensitive to subterfuge. 
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CHAPTER 1. GENERAL INTRODUCTION 

 

1.1 Statement of Problem 

The ability to perceive colors is one of the most important functions of human vision. 

Color vision not only enhances human perceptual capabilities but also serves as a visual cue 

for daily life activities. In fact, many professional activities depend on color discrimination 

ability for both job performance and safety. However, colorblind individuals lack the ability 

to discriminate certain colors. Hence, colorblind individuals will tend to confuse the meaning 

of information that use those colors. Worse, some colorblind individuals do not realize that 

they have a color deficiency until required to perform tasks or undertake occupations that 

require color judgments [1]. Such a risk is illustrated by the following example. 

In July 2002, a Federal Express Boeing 727 plane struck trees and crashed short of an 

airport runway at Tallahassee, Florida. The National Transportation Safety Board 

investigated the accident and found that the pilot’s inability to identify the correct colors of 

the path indicator was one of the major causes of the accident. Surprisingly, it was reported 

that the pilot had passed the color vision battery test required by the Federal Aviation 

Administration (FAA) regulation. The board made a suggestion to the FAA that existing 

color vision tests may not provide adequate detection of color vision deficiencies in some 

situations where the speed and accuracy of color recognition is critical to work function [2]. 

This example demonstrates two points. First, color vision deficiencies can adversely affect 

job performance. Second, conventional color vision testing protocols may be of limited use 

for certain critical tasks in particular professions, due either to lack of sensitivity or the 

potential that individuals may engage in subterfuge to pass the test. 
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The evidence from several studies suggests that career choice and job performance 

can be adversely affected by color vision deficiencies [1, 3-7]. Individuals with severe color 

vision defects are slower and make more errors recognizing signals, including maritime, 

aviation, rail, and road signals as compared to normal observers [8-12]. They also have 

problems discriminating natural surface colors (e.g., fluids, tissues, body skin, foliage) [4, 

13] as well as man-made surface colors (e.g., wires, color display, chemical substances, art 

prints) [14-16]. Individuals with color vision deficiencies also report difficulties with 

everyday color related activities [17]. These include, for example, selecting colors of clothing 

or paint, identifying colors of flowers or ripeness of fruit, and recognizing colors on a 

television or computer screen. 

Occupational organizations have issued color vision requirements for some 

professional groups due mainly to the high importance of color vision in their work activities, 

and the fact that the social, environmental and economic cost of job related mistakes and 

accidents can be very high [1, 6]. Some voluntary guidelines have clearly emphasized normal 

color vision as a necessary condition to perform essential job functions safely. For example, 

the FAA has required airmen to provide a medical certification for airline employment, 

including color vision test results [2]. A consensus standard of the American Society of 

Mechanical Engineers requires that operators of crane machines be able to distinguish 

between colors. Although the Occupational Safety & Health Administration (OSHA) does 

not require normal color vision to perform any particular job function, many occupational 

associations have standardized their own specifications in relation to the relevant visual tasks 

[18]. It is recommended by the Committee on Vision, National Research Council, that 

individuals performing occupations that require color discrimination be screened for color 
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deficiencies in order to assure occupational safety [19]. These include, but are not limited to, 

careers in the fields of marine navigation, civil aviation, railway operation, hospital 

laboratory, construction, armed services, transportation, fire services, textile manufacture, 

photography and fine art industries [1, 20-22]. 

Several diagnostic tests have been developed to detect deficiencies in color vision. 

The most widely used test is the Ishihara color vision test as it has a high degree of sensitivity 

and specificity [23]. The Ishihara test consists of a series of images that depict numerals 

using arrays of small colored dots. The dots in the array that make up the numeral itself are 

all of similar color (e.g., red). The remaining dots that make up the background and are all of 

a similar color (e.g., green) that is different from the color of the numeral. Individuals with 

normal color vision perceive these colors differently and can thus detect the numerals that are 

portrayed by the pattern of dots. On the other hand, individuals with color deficiencies can 

have trouble differentiating these colors and often fail to detect the numerals. The Ishihara 

test exploits this fact and asks participants to view a series of such images and to guess the 

identity of the numerals that are present in the images. Although this test can detect the 

presence of a color deficiency, it does not indicate the type of deficiency [24]. Moreover, 

since the test mainly uses numerals, it is not a viable test for young children and people who 

cannot understand or read numerals [25]. 

Another color vision test is the Farnsworth-Munsell 100-hue test (FM-100). This test 

utilizes a set of 85 colored caps. The caps are arranged in four cases. For each case, 

participants are asked to arrange these caps next to reference caps so that the colors are 

sequentially ordered in a circle. The total number of ordering errors can be used to detect the 

presence of a color deficiency. However, the FM-100 test is significantly more time 
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consuming to conduct than the Ishihara test. This test can take as long as 20 minutes while 

the Ishihara test can be completed in 3 minutes [26, 27]. 

A modification of the FM-100 test which involves the arrangement of 15 colored caps 

is called the Farnsworth Panel D-15 Test. This test classifies participants into two groups: 

those with normal color vision and those with strong/medium color defects. Although the D-

15 is a quick screening test that allows 2 minutes to arrange the caps, many practitioners 

reported that the D-15 is extremely difficult to administer to small children and elderly 

people [19, 28]. 

A clinical instrument that can be used to diagnose all types of color vision 

deficiencies is the anomaloscope. The anomaloscope diagnoses red-green defects by 

assessing the observer’s ability to match a pair of red and green wavelengths. The participant 

is asked to look down a viewfinder and adjust the proportions of red and green in a mixture 

field until the mixture appears identical to a yellow color in a test field. However, this test is 

quite expensive, complicated to implement, time consuming, and requires specialized 

training [27, 29]. 

All of these tests can reliably detect the presence of a color deficiency, but they 

require that the participant is aware of and actively takes part in the test. While this might 

seem like a minor requirement, it presents the possibility that, when motivated, participants 

can engage in deception in order to pass the test [12]. For example, the introduction of color 

vision screening into the workplace for occupational safety reasons may lead colorblind 

individuals to memorize the correct responses to the test in order to keep their jobs [4]. It is 

already established that performance on two of the most prevalent color vision tests, the 
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Ishihara and the Farnsworth-Munsell 100-hue test, can be improved with familiarity or 

training [4, 12].  

While modification to the most prevalent color vision tests may help limit subterfuge, 

most of these increase the amount of participation required in form of verbal communication 

or manual input. Therefore, these tests can only be applied with difficulty to some groups 

such as elderly adults or individuals with disabilities. Some participants realize that the 

testing procedure is difficult and become embarrassed or impatient with the test [19]. Some 

variants of the arrangement test are difficult to administer unless the participant fully 

understands the task [24]. Color vision tests that require complicated tasks or instructions can 

easily confuse participants [19]. An alternative method that covertly screens for color 

deficiencies by not depending on the explicit response of the participants would limit 

subterfuge, embarrassment, and frustration. A covert test would not require the participants 

to understand the task to screen their color vision successfully. Therefore, this technique 

would be useful for the diagnosis of color vision defects in people who might have difficulty 

understanding and following an explicit testing procedure.  

An alternative to explicit responses required in the color vision tests would be to use 

automatic behavioral responses associated with visual recognition. For example, the galvanic 

skin response (GSR) is used as one of a number of metrics for determining if a subject is 

lying during a polygraph test [30]. The GSR is an autonomic system response that is not 

directly under individual control, but can be indirectly manipulated given that it is related to 

emotional arousal. Unfortunately, GSR requires physical contact with the participant in order 

to make a recording, making it less than ideal for covert testing applications. 
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Another method to diagnose visual disorders without the use of explicit responses of 

the participant is photoscreening. The American Academy of Pediatrics has proposed the use 

of photoscreening as an alternative to conventional vision screening tools given that 

conventional tools can be difficult to administer with individuals that are nonverbal or have 

developmental delays [31]. Photoscreening uses a camera or video system to obtain images 

of the pupillary reflexes to diagnose amblyopia and strabismus in young children. 

Photoscreening cannot currently be used for detecting color vision deficiencies however. 

A covert color vision test utilizing eye movements with the preferential looking 

paradigm has been administered to young children [32]. In this test, various color cards are 

simultaneous shown to a child from a distance. The administrator covertly observes the child 

through a peephole in the cards to estimate how reliably a child stares at any given stimulus. 

The child’s behavior is assessed based on the administrator’s observation of where the child 

is looking as determined by considering both head and eye movements. While the procedure 

is convenient, it’s accuracy and reliability depend heavily on the administrator’s skill at 

judging head and eye movements.  

 An alternative explored in this dissertation is the use of precise eye movement 

measurement with eye-tracking technology in order to diagnose color vision deficits. This 

approach minimizes the possibility of human errors possible with the preferential looking 

technique and eliminates the need for participants to make explicit responses on the test. 

Under natural viewing conditions, the guidance of eye movements is automatically 

influenced by visual stimulus properties. For example, it has been repeatedly demonstrated 

that in well-controlled visual search tasks, display items defined by a single unique feature 

can attract and even capture attention [33, 34]. Attention and eye movements are strongly 
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correlated as attention is required to program saccadic eye movements [35]. Furthermore, the 

eye movements of individuals freely viewing complex natural scenes are also stimulus driven 

[36, 37]. With addition of eye movement measurement, color vision testing can be indirectly 

manipulated to evaluate observer’s visual performance without requiring explicit responses 

(i.e., verbal communication) or even the understanding of test instruction from the 

participants, making the test less sensitive to subterfuge 

 

1.2 Research Objectives 

This dissertation focuses on exploring the use of precise eye movement measurement 

obtained with eye-tracking technology in order to diagnose color vision deficits. The first 

objective in the study was to extend the Ishihara testing method by using eye movements so 

that no explicit input is required. This approach facilitates an alternative color vision test that 

covertly screens for color vision deficiencies. To expand the option of using stimuli other 

than the Ishihara images, the second objective was to create a method for detecting color 

vision deficiencies using photographs to make the technique more covert. A technique to 

select photographs that can be used as stimuli for differentiating viewing behavior of normal 

and colorblind individuals will be developed. The third objective was to validate the 

described method by conducting an eye movement experiment in which normal and 

colorblind individuals were used as participants.   

 

1.3 Dissertation Organization 

 This dissertation is organized into five chapters. Chapter 1 contains a statement of the 

problem, research objectives, dissertation organization, and literature review. Chapter 2 

presents an experiment that used digital Ishihara images as stimuli to investigate the 
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differences of eye movements between two groups of participants. Chapter 3 introduces a 

method to select photographs likely to be perceived differently by normal and colorblind 

individuals as well as a guideline to identify diagnostic regions of interest from these images. 

Chapter 4 presents the second eye movement experiments to validate the method. General 

conclusions and implications of this work are provided in Chapter 5. 

 

1.4 Literature Review 

1.4.1 Visual Perception 

The processes of visual perception are complex and involve aspects of the physics of 

light, physiology, and cognitive psychology. In other words, seeing as we know it from 

everyday experience is the result of interaction between the object, light, the eye, and the 

brain. The eye acts as the medium for the light to pass through before reaching the decoders 

that finally transform visual input into electrical signals for the brain. Initially, when light 

reflects from an object, it travels through the cornea of the eye, and then reaches the pupil 

that regulates the amount of incoming light by way of contraction of the iris [38]. Then, light 

reaches the lens where it is focused onto the back of the eye, the retina (see Figure 1.1). The 

retina consists of light sensitive photoreceptors that transduce the image falling upon it. The 

retina passively selects which information is vital and which information should be 

disregarded by sampling the image with a resolution that varies across its surface [39].  

The central visual field is sampled by the area of the retina called the fovea [40]. This 

area provides the highest resolution of visual information but processes only the central five 

degrees of the visual field [40, 41]. The remaining visual information falls on peripheral 

areas of the retina providing a lower resolution of visual information. Each area is specialized 
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for a different purpose. Foveal vision provides a way to acquire highly detailed visual 

information whereas peripheral vision allows human to perceive the entire scene in order to 

collect contextual information [41].  

 

Figure 1.1. Cross-section of the human eye. This image is from the website 
http://www.wikipedia.org and is permitted to copy, distribute and modify under the terms of 
GNU Free Documentation License. 
 

1.4.2 Color Vision 

The photoreceptors in the retina consist of rods and cones. Rods are responsible for 

nighttime vision (dim lighting conditions) whereas cones are responsible for daytime vision 

(bright lighting conditions) [38]. Cones convert light energy into electrical signals that are 

sent through the visual pathway for the brain to produce color sensation [42]. In a normal 

human eye, there are three types of cones. Each type is sensitive to different wavelengths of 

light [43-45]. These types of cones have generally been referred as “red”, “green”, and 
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“blue” cones. They show approximate maximum absorption in the spectral region of 566, 

543, and 445 nm respectively. However, wavelength sensitivities are broad and partially 

overlapping. For example, the red cones are also somewhat sensitive in the yellow and green 

parts of the spectrum. Therefore, it is more appropriate to refer these three types of cones as 

long wave (L) cones, medium wave (M) cones, and short wave (S) cones [40, 46].  

Cones are distributed across the retina [47]. However, the probability of absorption of 

light of a particular wavelength varies across the retina and depends on the cone distribution. 

The relative mean density of L:M:S cones in the retina of a normal individual is 40:20:1 [48, 

49]. The cone distribution can vary among individuals [50]. The fovea contains only cones. 

Therefore, the fovea provides both color and high resolution visual information. Color vision 

is limited outside the central 40º of the visual field. Rods are densely packed in the parts of 

the retina responsible for processing the incoming light from the peripheral visual field. The 

visual periphery is used primarily for movement detection [51].  

1.4.3 Trichromatic Color Theory  

Prior to the 19th century, color was believed to be a property of the light rays 

themselves, not a human response to the wavelength of light. It was Thomas Young who in 

1802 introduced the trichromatic theory of color. He hypothesized that human color vision is 

based upon three types of photoreceptors, sensitive to red, green, and blue primary light. All 

colors in the visible spectrum can be matched by mixing of three primary colors [52]. This 

theory was supported by Helmholtz [53] who proposed the existence of three overlapping 

spectral sensitivity curves corresponding to the three kinds of nervous fibers in the eye. He 

proposed that light excites these three nervous fibers in various degrees to provide spectral 

color sensations [38].    
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Later, Wright [54] and Guild [55] separately conducted experiments to investigate 

how colors can be matched by mixing the three primaries. Participants observed a circular 

field that was split in two halves in a darken room. One half was a test field illuminated by a 

test color while the other half was the mixture field illuminated by three adjustable primary 

lights (red, green and blue lights). Participants were asked to adjust red, green and blue lights 

in the mixture field so that they appeared identical to a light in the test field. In the other 

words, three primaries need to be mixed to match a visible light. However, it was found that 

not all visible test colors could be matched using this technique. One primary needed to be 

added to the test color to match with the remaining two primaries. With this procedure, 

Wright and Guide argued that a whole visible spectrum of colors could be generated by 

varying the light intensity of three primaries and confirmed the validity of the trichromatic 

theory.   

However, this theory attributes the perception of color to specific light combinations.  

Therefore, it cannot explain some important color vision phenomena [51]. For example, it 

cannot describe the simultaneous color contrast phenomenon in which the color appearance 

of a stimulus is affected by other colors surrounding it. It also cannot account for the 

metamerism effect when two objects with different spectral properties appear identical in a 

certain lighting conditions but different in other lighting conditions.  

1.4.4 Opponent Color Theory  

The opponent color theory originated from visual phenomena that some colors are 

never seen simultaneously. For example, it can be visualized that a reddish yellow is orange; 

a reddish blue is purple; a greenish yellow is light green. However, there seems to be no such 

colors as reddish green or yellowish blue. Proposed by Hering [56], the opponent color 
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theory proposed that color is processed by bipolar color channels referred to as red-green and 

blue-yellow channels. The red-green channel responds to either red or green but not both 

colors at the same time. Similarly, the blue-yellow responds to either blue or yellow. The 

opponent color theory explains that color appearance depends on the bipolarity of each 

process. The red and green for example is opponent, they are thus never seen at the same 

time. 

The validity of this theory was verified by DeValois [57] who demonstrated the 

existence of color opponent neurons by using electrodes connected to the optical nerve of a 

monkey and argued that the color information is encoded in an opponent fashion.  For 

example, green and red cones oppose each other to produce red-green opponent neurons. The 

results of this experiment suggested that the three types of receptors exists but the responses 

of these receptors are converted between the eye and the optical nerve into three other 

opposed pairs which are red-green, yellow-blue, and white-black opponent cells. Later, 

Hurvich [51] reported quantitative data in support of the opponent color theory that color 

perception can be explained by the relative activity in the black-white, red-green channel, 

and yellow-blue channels. In this experiment, participants were required to adjust the amount 

of red or green and blue or yellow to a mixture field until it turned white. The data were used 

to create opponent color functions which show the sensitivity of these three opponent 

channels.  

The studies of color vision theories, in summary, have established two facts. First, 

color vision is trichromatic. The trichromacy indicates that three types of receptors (cones) 

handle the color matching information. Second, considered as a post-receptor stage, the 
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opponent color theory described at the neural level how cones interact with each other. Three 

types of cones oppose each other when providing input to color opponent cells [39].     

1.4.5 Description of Color 

Color can be described using three perceptual values. These values are hue, lightness, 

and saturation [51]. In this way, a three dimensional system can be created to represent all 

perceivable colors. Hue is the attribute of the visual sensation closely associated with the 

dominant wavelength. For example, a hue of green is psychologically equivalent to a 

stimulus of 540 nm while a hue of yellow is equivalent to a stimulus of 570 nm. Normally 

sighted individuals can distinguish about 150-200 hues in the visible spectrum (380 to 780 

nm). Lightness is used to refer to the degree of more or less light. Saturation is the attribute 

of visual sensation used to assess purity of color by varying degree of white content in that 

hue. Saturation scale can vary from saturated color (no white content at all) to completely 

unsaturated color (no hue content at all). 

Although each color can be characterized by these three values, the relationship 

between colors is difficult to describe. To provide a convenient way to classify and determine 

the relationship between colors, the concept of using CIE chromaticity diagram was 

introduced to specify colors. 

1.4.6 CIE Chromaticity Diagram 

 The CIE chromaticity diagram was proposed with the objective to describe all visible 

colors mathematically by using three additive imaginary primaries. Under this system, color 

stimuli can be matched by combination of three imaginary primaries. Imaginary primaries 

are theoretical positive numbers; therefore, each value does not represent actual visible 
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colors.  Several CIE diagrams have been developed but two of the most commonly used 

diagrams in color research studies are the CIE XYZ and the CIE LUV. 

For CIE XYZ, the amounts of the primaries, given by the upper case letter, are known 

as the stimulus values [58]. The chromaticity coordinates are given in lower case letters.  The 

relationship of these values is shown in the following equations: 

x = X/(X+Y+Z)    (1.1) 

y = Y/(X+Y+Z)               (1.2) 

                                             z = Z/(X+Y+Z)                                      (1.3) 

and                                        x + y + z = 1.                                                (1.4) 

 A two dimensional plot formed by using two of the chromaticity coordinates to 

represent colors is called the CIE chromaticity diagram (see Figure 1.2). The horseshoe 

shaped boundary, referred as the spectral locus, represents the pure colors (monochromatic 

hues in nanometers). The white point falls in the center of the diagram and is indicated by W. 

All colors which are perceivable by the human eyes fall within the boundary. When three 

colors are represented by three points on the diagram and lines are projected between the 

points to form a triangle, all possible colors produced by the addition of those three colors are 

found within the triangle. 
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Figure 1.2. CIE XYZ chromaticity diagram. Dominant wavelengths are located on the 
perimeter and white light (W) is located in the center. This image is from the website 
http://www.wikipedia.org and is permitted to copy, distribute and modify under the terms of 
GNU Free Documentation License. 
 
 In spite of all the useful properties of the CIE XYZ diagram, it lacks perceptual 

characteristics. The distance between two points (two colors) is not proportional to the 

perceived color difference [40]. In order to correct this, the International Commission on 

Illumination proposed another color space called CIE LUV which better represents uniform 

color spaces [59]. For example, if color A and B are twice as far as color C and D, then the 

perceived difference between A and B is about twice the perceived difference between C and 

D. This diagram is a linear transformation of CIE XYZ, plotting hues on a pair of axes, u’ 

and v’, with the lightness on the L* scale [59]. The u’ and v’ provide chromaticity 

information whereas the L* encodes the luminance of a given color. The formulae for 

computing CIE LUV coordinates from the CIE XYZ are given as follows. 
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                L* = 116 (Y/Yn)

1/3 - 16    if Y/Yn  > 0.008856                             (1.6) 

                L* = 903.3 (Y/Yn)            if Y/Yn  ≤ 0.008856  

where Yn is luminance value of a standard white.  

1.4.7 Color Vision Deficiencies  

Normally sighted individuals can perceive a wide range of colors by using all three 

types of cones (L, M, and S cone) in the retina. They are referred to as trichromats (three 

colors). Colorblindness is a condition where a person cannot differentiate between certain 

colors or shades of color because particular cone pigments are missing. 

Most commonly, colorblindness is inherited and does not change over time [61]. 

Approximately 8% of men and 0.5% of women in the North American population are 

affected by color blindness [19]. Three types of colorblindness are classified according to the 

cone pigment that is missing or displaced [39].  

Monochromats are those individuals who have no color discrimination because two 

or all three types of normal cone photoreceptor pigments are missing. These individuals are 

totally colorblind. They only can see light ranging from black to white. A monochromat 

cannot distinguish objects on the basis of hue or colors alone. However, they may detect 

differences on the basis of brightness [1]. 

Dichromats are those individuals who lack one type of cone photopigments. They use 

only two types of cones photopigments to perceive color. Dichromats include protanopes and 

deuteranopes, who lack the L and M photopigments respectively. The lack of L or M 
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photopigments results in a red-green confusion. Since protanopes are less sensitive to red 

light, reds appear dark brown to them whereas deuteranopes see reds as yellowish brown 

[39]. Tritanopes lack the S photopigment, incurring blue-yellow confusion, which is a rare 

acquired defect.  

Anomalous trichromats have three types of photopigments but one of the 

photopigments has a shifted spectral sensitivity. The displaced photopigment results in an 

altered color discrimination ability. Protanomalous, deuteranomalous, tritanomalous 

trichromats are those individuals who have abnormal L, M, and S photopigments 

respectively [1]. The prevalence of deuteranomalous defect is the highest among all types of 

colorblindness, accounting for about 4.9% of men. On the other hand, tritanope and 

tritanomalous trichromat (i.e., blue-yellow defects) are very rare forms of color vision 

deficiencies (see Table 1.1). 

Table 1.1. Classification of colorblindness, occurrence, and color confusion (adapted from 
Birch [62]). 
 

Occurrence in North 
American population 

(%) 

 
Type 

 
Number 
of cones 
available 

 
Classification 

Men Women 

 
Color confusion 

Monochromat One Monochromat Very rare Very rare No color discrimination 
Dichromat Two Protanope 

 
Deuteranope 
 
Tritanope 

0.74 
 
1.1 
 
0.002 

0.02 
 
0.01 
 
0.001 

Bright red/orange/yellow/green, 
Green/brown, Red/dark gray 
Bright red/orange/yellow/green, 
Green/brown, Green/dark gray 
Violet/yellow-green, 
Yellow/white, Blue/black 

Anomalous  
trichromat 

Three Protanomalous 
 
Deuteranomalous 
 
Tritanomalous 

1 
 
4.9 
 
Rare 

0.02 
 
0.38 
 
Rare 

Red/orange/yellow/green, 
Red/dark gray/brown 
Red/orange/yellow/green 
Green/dark gray/brown 
Violet/yellow-green, 
Yellow/white 
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As seen in Figure 1.3b for anomalous trichromat, the wavelength of peak sensitivity 

for L cone is different in a protanomalous and a normal individual (555 nm vs. 566 nm), 

resulting in a reduction in sensitivity for red-green shades. For a dichromat as seen in Figure 

1.3c, the absence of the L photopigments means that the spectral sensitivity is based on the 

absorption capability of just the S and M cones. This leads to a huge reduction in sensitivity 

to longer wavelengths. In this case, bright red will be perceived as dull brown. Therefore, 

protanopes, deuteranopes, protanomalous, and deuteranomalous trichormats have a similar 

reduction in red-green discrimination ability, varied only in magnitude. 

1.4.8 Red-Green Colorblindness 

Red-green colorblindness is generally a collective term referred to those who have 

problem with discriminating the range of red-orange-yellow-green. The term includes both 

dichromatic and anomalous trichromatic groups. People with severe red-green colorblindness 

(dichromats and severe anomalous trichromats) typically share a problem of distinguishing 

saturated reds from greens while those with mild red-green colorblindness (mild anomalous 

trichromats) are confused with de-saturated red-greens. In this dissertation, the term 

“colorblindness” was used to refer to red-green color deficiencies including protanopia, 

deuteranopia, protanomalous trichromacy, and deuteranomalous trichormacy. As can be seen 

in Table1.1, these conditions make up the vast majority of color vision deficiencies in the 

population. 
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(a) 

 

 

 

 

(b) 

 

 

 

 

(c) 

 

Figure 1.3. Sensitivity of human cone as a function wavelength. (a) Normal 
observers whose eyes contain three types of cones (b) Anomalous trichromats whose 
L cones abnormally shift (i.e., protanomalous) (c) Dichromats whose L cones are 
absent (i.e., protanope). Both groups have trouble distinguishing reds and greens. 
Adapted from [63] with permission of Bruno Dubuc. 
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1.4.9 Visual Attention 

To better understand what draws observer’s attention, and how they divert their 

attention to a particular location when a stimulus is presented, the mechanisms of visual 

attention are explored in this section. The main concept of visual attention involves selection. 

This means that human visual system selects only some parts, not all, of visual input to 

process [36, 64, 65]. 

Two distinct mechanisms of visual attention are bottom-up and top-down 

mechanisms of selection. The bottom-up selection is automatic and stimulus driven. Stimulus 

properties of an object can attract attention in a compulsory manner [64, 66, 67]. In the other 

words, visual attention is directed to a particular object in a scene due to obvious feature of 

colors, shape, brightness, motion, or orientation of the object. For example, a green circle is 

easily noticed at a distance among red circles (see Figure 1.4). This target exhibits a pop-out 

effect due to its distinguishable color.  

 
Figure 1.4. An example of a pop-out effect. (a) target is absent in red circles (b) 
target is detected preattentively due to its green color. 
 

On the other hand, the top-down selection is task dependent or goal oriented [64, 66, 

67]. The observer’s eyes are focused only on the locations related to that task. This type of 

(a) (b) 
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visual attention is usually slower and independent of stimulus features. For example, looking 

for a flight schedule on an airport monitor screen, observers will seek for the flight number 

information, overlooking nearby colorful airline logos. 

The concept of selectivity can be usually used to explain such phenomena as the 

ability to filter out unimportant information [68]. When a target of attention is different from 

the rest of the surroundings, the rest of the information has little effect on visual attention. In 

this case, the target quickly captures attention via bottom-up mechanisms. In some cases, 

even given top down mechanisms where an observer’s attentional guidance is goal-directed, 

the bottom-up stimulus factors still play an important role the guidance of visual attention 

[68].  

However, the argument of which mechanism (top-down vs. bottom-up) has more 

influence on attention is still unresolved. Bacon and Egeth [64] proposed a concept of search 

modes that postulates that when observers utilize a “singleton detection mode”, the location 

with the largest feature contrast will attract attention. The notion of singleton means a visual 

attribute (e.g., color, orientation, or intensity) that differ from background. In this mode, 

relevant or irrelevant singletons can capture attention, depending on which location provides 

the greatest feature contrast. On the other hand, if observers are engaged in a “feature search 

mode”, only the location that matches the task-related feature is getting attention. In this 

mode, irrelevant singletons will not distract visual search for a singleton target under top-

down influence.  The degree to which of these two modes assumes priority is described by 

the target-distractors similarity [69]. If the target is not similar to the distrators, singleton 

detection mode tends to be used. If the target and distractors are highly similar, feature search 
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mode will likely be engaged. These findings indicate that visual attentional priority depends 

on task requirements [70, 71].  

Nevertheless, the singleton detection mode is assumed to be a default visual search 

behavior [64, 70]. A similar concept was used by Koch to develop a saliency model of 

bottom-up attention. This model predicts the areas where normal observers will attend in 

photographs [72]. In this model, a highly salient feature will draw attention [73]. Parkhurst et 

al. [36] investigated the validity of this saliency model and found a correlation between the 

stimulus salience predicted by the model and observed human eye fixations under natural 

viewing conditions. The saliency model has become a dominant theoretical view as it has 

been cited by several literatures [36, 71, 74] and studies of eye movements in both cognitive 

psychology and computer vision fields. 

1.4.10 Computational Model of Saliency  

Described in this section is a computational model of saliency that takes as input an 

image of a scene and produces as output a prediction of locations in the scene where 

observers will attend. The saliency model is based on the findings that salience is determined 

rapidly by the low-level visual system [75]. Low-level features include color, intensity and 

orientation, each competes to be the highest salient feature. The most salient features will be 

represented as locations where attention should be directed [72, 75]. The processing in the 

saliency model is as follows. 

First, the input image is decomposed in parallel in three feature pathways, which are 

color, intensity, and orientation (see Figure 1.5). Each pathway is filtered at eight spatial 

scales using a Gaussian pyramid scheme. The scale ranges of the pyramid ranges from 1:1 to 

1:256, reducing the image resolution by a factor of 2 [36]. This enables assessment of salient 
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regions at different sizes. For the color pathway, it generates pyramids of red, green, blue, 

and yellow. For the intensity pathway, it generates a pyramid of average luminance from all 

color components. Finally, for the orientation pathway, it provides 4 pyramids corresponding 

to 0˚, 45˚, 90˚, and 135˚. These orientations are used because they simulate the receptive field 

structure present in the human visual system [73]. 

Second, for each feature within each pyramid, the differences between a fine and a 

coarse scale are calculated to simulate the center-surround mechanism of the neural receptive 

field of the human vision system [73]. If light falls on the center of the receptive field, it has 

a stimulating effect. However, if light falls on the surround, it will have an inhibitory effect 

[42]. The calculated differences between pixels corresponding to the center of the receptive 

field in a fine scale and pixels corresponding to the surrounding of the receptive field in a 

coarser scale generate opponent features that centrally stand out from their surroundings. 

From this process, the color channel provides two center-surround pyramids as 

representatives of the opponent color system: 1) center-surround differences in red and green 

and 2) center-surround differences in blue and yellow. The intensity channel provides one 

pyramid by determining the center-surround difference of intensity within the pyramid. The 

orientation channel provides four pyramids, each is calculated by the center-surround 

difference of intensity within its pyramid.  

Third, each center-surround map is normalized by the maximum saliency value 

obtained at that center-surround pyramid. Pyramids within each channel are then linearly 

summed to create one pyramid (i.e., several feature maps on different scales). Next, these 

maps of single channel are summed up into a feature map to a resolution of 40x30, each for 

color, intensity, and orientation. The feature maps are later normalized to replicate 
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competition for salience within each feature map (i.e., within-feature competition) across the 

scales and finally are combined to create the saliency map [36].  

 
 
Figure 1.5. Saliency model diagram [75]. Original image is decomposed into 3 features with 
linear filtering at 8 spatial scales. The center-surround difference mechanism is implemented 
by subtracting center at a fine scale with the surround at a coarse scale. Maps of single 
features are then summed up across scales to create a single feature saliency map (color, 
intensity, orientation). Three feature saliency maps are then combined and normalized to 
create the final saliency map.  
 
1.4.11 Eye Movement and Visual Attention  

Several studies have extensively investigated the relationship between visual attention 

and eye movements and found that eye movements can be used to explain visual search 

behaviors [76-78]. As the activities of the visual muscular system, eye movements can 

Final saliency map 

Feature saliency map 

Input image 

intensity orientation
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color 

Center surround differences and normalization 

Across scale combination and normalization 
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provide insight on the human attentional processes [79, 80]. Although there are several types 

of eye movements, of most interest to cognitive science studies are saccades and fixations. 

Saccades are rapid eye movements that move the point of gaze from one target to the next. 

Saccades can be made as quickly as 500 degrees of visual angle per second [81]. Humans 

therefore do not obtain new information during a saccade given the presence of blur [82]. 

Typically, researchers measure the movement between each saccade in terms of saccade 

length or degree of visual angle. Their pattern of locations is called the scanpath. A fixation 

is a relatively steady period of gaze which lasts about 200-300 milliseconds at a particular 

location [81]. It is during this moment that high-resolution visual information can be 

collected. Researchers generally measure a fixation in terms of its location, dwelling time, 

and frequency on targets as a metric to assess visual attention.  

As partly discussed in the previous section, the visual field can be separated into 

foveal, parafoveal, and peripheral based on visual acuity [39]. Although visual acuity is sharp 

in the fovea, it is poor in the parafovea (about five degrees from either side of fixation), and it 

is the poorest in the periphery (area beyond the parafovea). Therefore, humans need to 

execute saccades to fixate on different parts of the stimulus in order to see them clearly. 

There are also other types of eye movements such as pursuit, vergence, and vestibular 

eye movements [81]. Pursuit eye movements maintain a point of gaze on a moving target. 

During pursuit, visual details of the object can be made out but the background is blurred. 

Vergence occurs when eyes move inward to fixate on an object close to the viewer. 

Vestibular eye movements occur when the eyes rotate to compensate for head or body 

movements. Although pursuit, vergence, and vestibular are essential to human perception, 
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saccadic eye movements and fixations are of primary concern in the research presented in 

this thesis. 

1.4.12 Eye Tracking 

Eye tracking can be used to determine locations of gaze. Eye tracking has been 

gaining in popularity over the past decade as a method to study cognitive behavior in such 

domains as image viewing, reading, and driving situations [76]. There are a variety of eye 

movement measures that can be used depending on the purpose of the study.  Some of the 

most commonly used measures include fixation location, fixation duration, number of 

fixations, saccade length, and scanpath [78].    

Eye tracking techniques can be categorized into analog and video based methods 

[83]. The analog methods use several techniques. For example, electro-oculography 

measures eye movements by placing electrodes near the eyes. When the eye muscles move, 

changes in electrical activity can be detected. Contact-lens based eye coil systems tracks eye 

movements via affixed objects in contact lens. This contact lens contains an affixed 

mechanical lever or magnetic coils used to detect movement. These techniques however have 

not been prevalently used as compared to the video based eye tracking methods.    

Video based methods generally utilize visible or infrared imaging, and are either 

remotely located or head-mounted. Visible spectrum imaging captures ambient light reflected 

from the eye. This technique tracks the contour between the iris and the sclera known as the 

limbus. The disadvantage of this method is it depends on the uncontrolled ambient light of 

the source. Infrared imaging uses a uniform infrared light to illuminate the eye. This 

technique tracks the contour of the pupil in the image. Tracking the pupil contour is 



 

 

27 
 

preferable because of its smaller size, shaper contour as compared to the limbus, and greater 

visibility under infrared illumination.    

Infrared imaging methods commonly use a bright pupil technique. The retina of the 

eye is very reflective to infra-red light, enabling a bright-pupil image of the eye to be 

detected on a sensor when the eye is illuminated with a light source in the same or a close 

optical path as the camera. The specular reflection of the illuminating light off the front 

surface of the cornea is known as the corneal reflection. The corneal reflection and the 

bright-lit pupil together are used to determine the point of gaze [84]. On the other hand, the 

dark-pupil technique illuminates the eye with an off-axis light source so that the pupil 

appears as the darkest spot in the image, while the sclera, iris, and eye lids reflect the 

illumination. The corneal reflection can also be detected with this technique. The corneal 

reflection and the dark spot pupil are used to determine the point of gaze.  

Eye tracking systems are either remotely located or head-mounted. The remote 

system is an unobtrusive system in which the participant’s eye movements can be tracked via 

a pan/tilt camera. This camera contains an eye illuminator and moves automatically to track 

the participant’s head. The eye is illuminated by the beam from near infrared LED’s on the 

pan/tilt camera. The remote system uses a control unit to process the eye image and extract 

the location of pupil and specular reflection of the light source. The unit computes both pupil 

diameter and line of gaze. The head-mounted system uses the head-mounted optic module to 

limit the tracking error from head movements. It usually has greater accuracy than the remote 

system because it measures the line of gaze with respect to the head. 

To accurately track eye movements, a calibration process of setting up the eye tracker 

to associate screen positions with pupil and corneal reflection positions is needed. The 
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purpose of calibration is to provide data that will allow the eye tracker processor to account 

for individual differences [85]. If calibration is not performed correctly, eye tracking errors 

will be generated. This process requires two necessary steps. First, the eye tracker defines the 

nine calibration points with respect to the monitor image. Then it records the participant’s 

fixation for each point to compare with the calibration target. The relation between these two 

will be used to adjust to individual differences [86]. Generally, the nine point calibration grid 

is used as calibration target points. These points cover about 80 percent of the scene monitor 

screen area and are separated by 15-20 degrees visual angle horizontally, and 10-15 degrees 

vertically. The accuracy of the tracking is assessed by plotting the fixation coordinates with 

respect to the actual calibration image.   
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CHAPTER 2.  EXTENDING THE ISHIHARA TEST USING EYE MOVEMENTS 

 

The interpretations of color vision status of the Ishihara test primarily depends on 

verbal input for which it is possible to learn the correct response to pass the test [12]. In this 

typical test paradigm, the observer takes the visual information as input and provides verbal 

information as output, thereby providing a leeway to subterfuge. The motivation for 

conducting this experiment is to explore an extended paradigm that takes eye movements as a 

measure and directly uses this measure for interpreting color vision status as an effective 

means at limiting subterfuge.   

When administering the Ishihara color vision test, those with defective color vision 

will not perceive the same numerals as those with normal color vision [87]. The colors of the 

numeral and background are confused by the colorblind observer. In this task, colorblind 

observers cannot find the visual cues that are important for reading the numerals. Figure 2.1 

demonstrates the Ishihara images and a color simulation that shows the image as would be 

seen by colorblind individuals.   

Given that stimulus properties influence the guidance of eye movements, and that 

normal individuals and individuals with color deficiencies sense colors differently, it was 

predicted that there will be observable differences in the eye movements of these groups even 

when identical stimuli are observed. Such differences could provide a metric for a covert 

color vision test. To test this possibility, a study was designed where the eye movements of 

individuals with red-green colorblindness and individuals with normal color vision were 

measured.   
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Figure 2.1. Ishihara images as perceived by colorblind individuals. On the first row of 
images, both normal and colorblind observers can perceive number 12. On the second row, 
normal observers can see number “5” while observers with red and green defects cannot. The 
images in the second row were simulated as they would be seen by red and green colorblind 
observers using Meyer and Greenberg’s dichromatic reproduction [88].         
 

Eye movements were recorded in the first block of an experiment where participants 

freely viewed a series of 15 Ishihara color vision test images. Eye movements were also 

recorded in the second block of the experiment where participants freely viewed the images 

again, but were required to identify the numerals in the images, as is required in the Ishihara 

test. The use of these two tasks allowed investigating not only if eye movements can be used 

to diagnose colorblindness during the standard Ishihara test, but also outside of an explicit 

color vision test, during free viewing of the Ishihara images. 

 

 

 

Normal vision Green defect  
(deuteranopia) 

Default Ishihara plate 

Test Ishihara plate 

Red defect  
(protanopia) 
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2.1 Experimental Methods 

2.1.1 Participants  

Twenty male students from Iowa State University participated in the experiment. A 

statement of informed human consent was obtained from all the participants. Each participant 

was paid $10 for participation. Ten participants were selected on the basis of having been 

clinically diagnosed as colorblind at some point in their life. The term colorblind was used to 

describe this group of individuals. Note however that the type of color deficiency (e.g., 

dichromacy or anomalous trichromacy) for each participant has not been determined. The 

remaining ten participants were selected as a comparison control group based on a self-report 

of normal color vision. To confirm their color vision status, all participants were 

administered the computerized Ishihara test [89] during the second block of the experiment. 

The interpretations of color vision status from the computerized Ishihara test results were all 

in accordance with the self-report of the participants. 

2.1.2 Stimuli  

The digital versions of images in the Ishihara test were acquired from a digital image 

archive dedicated to visually impaired people (http://www.agingeye.com) and used as 

stimuli. The fifteen images from the 24-plate edition were used. All of the selected plates 

displayed the numerals that can be seen by a normal observer but seen differently or cannot 

be seen by most observers with red-green colorblindness according to the Ishihara test 

manual [87]. To confirm that the acquired images provide the designed effects where only 

participants with normal color vision could discern numerals correctly, Meyer & Greenberg’s 

color defective simulation [88] was implemented to synthesize how they were perceived by 

the colorblind individual. The simulation transformed the hues distinct only to normally 
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sighted individuals into the hues perceived by color defectives. The results of simulation 

verified that the correct numerals on each image were disguised or could not be discerned 

either by the outline or by the tonal changes. Representative images are shown in Figure 2.2. 

 
(b) Red-green defect simulation 

 
(a) Normal trichromat 
 Protanope Deuteranope 

 
(c) Numeral displayed 

    

    

    

    

    
 

Figure 2.2. (a) Examples of the Ishihara images used in the experiment. (b) Red-green defect 
simulation of Ishihara images as would be seen by colorblind observers. (c) Numerals on 
each image as would be seen by normal observers. 
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2.1.3 Apparatus 

The first image of the series is the only image designed to present a numeral that both 

normal and colorblind participants can report (Figure 2.2; first row). The image size was 

digitally adjusted to display full screen at a resolution of 1024 x 768 pixels in the 32-bit color 

mode. Each Ishihara image was presented on a 19-inch monitor (SyncMaster, Samsung, CA). 

The center of the display was aligned at the participant’s eye level at a distance of 75 

centimeters. This provided an optical image subtending 27˚ horizontally and 24˚ vertically 

that facilitate the tracking of eye movements. 

The established procedure for utilizing the Ishihara color vision test on a computer 

screen was adopted[89, 90]. This procedure has been validated despite the differences 

between the spectral emission of the monitor and the reflected daylight of the Ishihara plates. 

The computerized method is capable of detecting red-green defects for occupational health 

purposes, and has a sensitivity comparable to the conventional printed Ishihara test [89-91].  

A colorimeter (ColorCAL, Cambridge Research Systems, Kent, U.K.) was used to 

calibrate the monitor by adjusting the values of luminance, CIELUV-coordinates of D65 

white, red, green, and blue colors of the monitor as close as possible to the suggested 

values[91, 92] (see Table 2.1). Five positions on the monitor (center, top right, top left, 

bottom right, and bottom left) were repeatedly calibrated and measured to obtain average 

values for each color. The screen calibration process was performed as an iterative 

measurement to obtain accurate screen specification appropriate for a color display 

experiment [93].   
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Table 2.1. Suggested values of luminance, CIELUV-coordinates of the RGB primary colors 
of the monitor recommended by Hoffmann & Menozzi (1998) and measured values used in 
the study. 
 

Color Luminance (cd/m2) u' v' 
 Suggested Achieved Suggested Achieved Suggested Achieved 
 

Red 
 

25.9 
 

26.1 
 

0.428 
 

0.437 
 

0.527 0.535 
Green 76.2 78.3 0.122 0.112 0.562 0.547 
Blue 9.14 9.65 0.168 0.155 0.189 0.175 

D65 White 101.7 102.8 0.198 0.186 0.475 0.446 

 

An eye tracker (ASL 504, Applied Science Laboratories, MA) was used to remotely 

track eye movements by using a pan/tilt camera located between the computer screen and the 

participant. The eye movements were recorded at a sampling rate of 60Hz. Eye tracking 

software (ET6, Applied Science Laboratories, MA) was customized and used to record eye 

movement data files while the software (EyeNal 2.18, Applied Science Laboratories, MA) 

was used to extract fixation locations and fixation durations. According to the ASL 

instructional documentation, a fixation is defined as the mean coordinates of gaze position 

lasting at least 100 milliseconds during which gaze point remains within 1˚ of visual angle. A 

chin rest was used to limit head movements, for the purpose of eye tracking. Figure 2.3 

shows the experimental setup. The participants sat in front of the computer screen and fixed 

their head with the chin rest to minimize eye tracking error.  
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      Figure 2.3. Eye tracking experimental setup. 

2.1.4 Procedures 

The experiment contained two ten-minute blocks separated by a five minute break. 

For both blocks, participants were seated in front of the computer screen with their head 

resting on a chin rest. At the beginning and the end of each block of the experiment, 

participants were required to sequentially fixate nine fixation crosses on a full-screen grid. 

These measurements were required in order to calibrate the eye tracker and determine the 

average accuracy of the eye movement measurements. Since eye tracker system suffers from 

non-linearity and noise (e.g., a compression of signals as fixation deviates from the axis of 

the camera), the calibration method provides a means of linearizing the system, thereby 

providing a metric for associating fixation with screen positions [36]. The average eye 

tracking error at the beginning of the block was 0.93˚ while average error at the end was 

1.05˚. There were no significant differences in average error between groups with the 

exception that one participant repeatedly failed to follow instructions, and was thus omitted 

from all data analyses due to a complete failure of the system to track eye movements. 

Chin rest 
   Pan/tilt camera 

     Monitor display 
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During the experiment, each of the Ishihara images was presented for a period of ten 

seconds.  Between each image presentation, a black dot at the center of the screen was 

presented for one second to be fixated prior to each trial. In the first block of the experiment, 

participants were instructed to freely look around at the images. In the second block, the 

same set of the Ishihara images were presented again. Participants were asked to read and 

identify the number that they perceived on each Ishihara image. To prevent head movements 

from affecting the eye movement recordings, participants were required to wait until each 

image disappeared, and then, respond verbally. Their answers were recorded by the 

experimenter.   

 

2.2 Data Analysis 

To study the locations where the participants tended to fixate, each Ishihara image 

was divided into two regions: the foreground and the background. The foreground (f) was 

defined as the area where the pattern of colored dots formed one or more numerals. The 

background (b) was defined as the remaining area of the Ishihara image that contained 

colored dots. To quantify the proportion of fixations that a participant made on the 

foreground, the ratio (f*) of the number of fixations on the foreground (f) relative to those on 

the total area (f + b) was calculated for each image as: 

)(
*

bf

f
f

+
=                                                   (2.1) 

To estimate the proportion of fixations on the foreground expected by chance factors 

alone (fc*), the proportion of pixels on the foreground area to pixels in the total area was 

calculated (see Figure 2.4). The average fc* across all images was 0.188.  
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Figure 2.4. Proportion of fixations on the foreground expected by chance factors alone (fc*) 
was estimated from the average proportions of foreground in the total area across 15 images.  
 

Given that participants naturally tend to fixate in central regions of the images (see 

Figure 2.5), a more conservative method of estimating chance performance that accounts for 

this central bias can be had by using an image shuffling technique [36, 37]. This technique 

randomly shuffles participants’ observed scan paths onto different images prior to calculating 

f* in order to disassociate fixation locations and image content while retaining the 

distributional properties of the fixations (i.e., centrally biased). If this more conservative 

chance performance baseline and the f* differ, it suggests that participants’ fixations are 

indeed guided by image properties, and are not due solely to the chance of fixating centrally. 

 

 

 

 

foreground 

background 
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Figure 2.5. Frequency distribution of all horizontal fixation positions on 
the display screen. Note that the highest frequency is in center of the screen. 

 
Practically, the image-shuffled estimate of the proportion of fixations on the 

foreground expected by chance factor alone (fs*) can be calculated by overlaying each 

participant’s observed fixation locations for any given image onto all other images. Thus, a 

total of 13 fs* values for each of 14 images were calculated for each block of each 

participant. Note that the first trial is not included in the analysis because it is a catch trial 

that portrays a numeral detectable by both normal and colorblind individuals. The average fs* 

was calculated separately for normal and colorblind participants given that the distributions 

of fixations significantly differed between these two groups (see the Results section). The 

average fs* across the normal participants was 0.430 while the average fs* across the 

colorblind participants was 0.342. Note that these values are much higher and thus more 

conservative estimates of chance performance than fc* = 0.188. 

Three other eye-movement measures were also analyzed, the total number of 

fixations per trial, the average fixation duration, and the average saccade length. Each 

dependent measure was analyzed using a repeated-measures ANOVA with task (free-view 
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vs. read) as a within-participant factor and vision (normal vs. colorblind) as a between-

participant factor.   

 

2.3 Results 

Numeral Identification. The criteria to assess a color vision defect is a minimum of 

four incorrect readings for images 2-15. All numerals were identified correctly by all 10 

normally sighted participants. As expected, performance on the numeral identification task 

for images 2-15 was poor for the colorblind group, with an average accuracy of just 17 

percent. Also as expected, all participants correctly identified the numeral in the first image, 

a default plate which was designed to be perceived as “12” by both groups. The summary of 

the reading results is shown in Table 2.2. 

Proportion of Fixations on the Foreground (f*). As shown in Figure 2.6, the 

average f* of the normal group was 0.584 (SD = 0.098) when free viewing and 0.625 (SD = 

0.082) when reading whereas for the colorblind group it was 0.412 (SD = 0.105) when free 

viewing and 0.421 (SD = 0.106) when reading. Significantly fewer fixations were made on 

the numerals by the colorblind group as compared to the normal controls (F(1, 17) = 390.57, 

p < .05). A significant interaction was observed between task and vision (F(1, 17) = 9.72, p < 

.05). A post-hoc, pairwise comparison using the Bonferroni adjustment (α = 0.05) indicated a 

significant increase in the proportion of fixations on the foreground for the normal group 

when reading as compared to free viewing. No significant difference across task was 

observed for colorblind group. Finally, the marginal means of both groups were significantly 

higher than that expected by chance factors alone, considering either fc* or fs*. 

 



 

 

40 
 

      Table 2.2. Results of Ishihara reading.  
 

 
 

Ishihara image no. 

 
Number of normal 
participants who read 
correctly (out of 10) 
 

 
Number of colorblind 
participants who read 
correctly (out of 9) 

   
1 10 9 
2 10 0 
3 10 1 
4 10 0 
5 10 4 
6 10 1 
7 10 2 
8 10 0 
9 10 0 

10 10 0 
11 10 2 
12 10 0 
13 10 0 
14 10 5 
15 10 6 

   
 
Number of correct reading (images 2 – 14) 
 

 
140 

 
21 

 
Percent of correct reading (images 2 – 14) 
 

 
100% 

 
17% 
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Figure 2.6. The proportion of fixations on the foreground was significantly lower for 
colorblind participants than normal controls. The proportion of fixations on the foreground 
expected by chance factors alone are shown as a dashed lines with error bars indicating plus 
and minus one standard error of the mean.   
 

Fixation Duration.  The average fixation duration of the normal group was 0.36 

seconds (SD = 0.26 seconds) when free viewing and 0.33 seconds (SD = 0.24 seconds) when 

reading whereas for the colorblind group it was 0.30 seconds (SD = 0.28 seconds) when free 

viewing and 0.25 seconds (SD = 0.27 seconds) when reading. The average fixation duration 

for the colorblind group was significantly less than that for the normal controls (F(1, 17) = 

28.10, p < .05). The average fixation duration in the reading task was significantly less than 

in the free viewing task (F(1, 17) = 17.24, p < .05).  

Number of Fixations. The average number of fixations of the normal group was 

28.17 (SD = 7.35) when free viewing and 31.53 (SD = 9.03) when reading whereas for the 

colorblind group it was 35.07 (SD = 11.08) when free viewing and 37.24 (SD = 13.29) when 

reading. The average number of fixations for the colorblind group was significantly higher 

fs* normal 

fs* colorblind 

fc* 

Free View  Read  
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than that for the normal controls (F(1, 17) = 37.56, p < .05). The average number of fixations 

in the reading task was significantly higher than in the free viewing task (F(1, 17) = 17.41, p 

< .05).   

Saccade Length. The average saccade length of the normal group was 2.65 degrees 

(SD = 1.26 degrees) when free viewing and 2.60 degrees (SD = 1.02 degrees) when reading 

whereas for the colorblind group it was 3.23 degrees (SD = 1.44 degrees) when free viewing 

and 3.19 degrees (SD = 1.32 degrees) when reading. The average saccade length for the 

colorblind group was significantly higher than that for the normal controls (F(1, 17) = 83.58, 

p < .05).   

 

2.4 Discussion 

The goal of this study was to test the prediction that there would be observable 

differences in the eye movements of normal and colorblind individuals even when identical 

stimuli are observed by both groups. The proportion of fixations on the numerals, the average 

fixation duration, the total number of fixations, and the average saccade length were 

measured. Consistent with this prediction, there were significant differences for each of these 

measures. 

The proportion of fixations made on the numerals by the colorblind group was 

significantly lower than that made by the normal controls. This result, together with the fact 

that numeral identification performance was much lower for the colorblind group, supports 

the assumption that these participants have difficulty sensing particular colors and thus also 

have difficulty perceiving the numerals. Figure 2.7 demonstrates an example of overlaid 

fixations made by a normal and a colorblind individual.  
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(a) 

   
 
 
 

(b) 

   
 
Figure 2.7. Example of fixation patterns (a) from a normal participant (b) from a colorblind 
participant. Note that fewer fixations were made on the numerals by a colorblind as 
compared to a normal individual. 
 

Interestingly, the proportion of fixations made on the numerals by the colorblind 

group was significantly higher than either of the chance estimates. To investigate this result 

more, the proportion of colorblind participants who answered correctly on any given image 

as a function of the average proportion of fixations on the numeral for that image was 

plotted. As can be seen in Figure 2.8, identification performance was indistinguishable from 

chance levels for the large majority of the images. However, for some images, a higher 

proportion of fixations on the numeral was associated with better identification performance. 

This result is consistent with anecdotal reports from participants that for some images, a 

small portion of the numeral contour was visible and that this visual information aided in 

guessing the numeral’s identity. This implies that some of our colorblind participants could 

have a mild form of color deficiency. In particular, it is reasonable to suspect that some of the 

participants are anomalous trichromats. 
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Figure 2.8. The proportion of colorblind participants that answered correctly was positively 
related to the proportion of fixations made on the foreground. The proportion of fixations on 
the foreground expected by chance factors alone are shown as a dashed lines with error bars 
indicating plus and minus one standard error of the mean.   
 

It was found that the normal group fixated more frequently on the numerals when the 

task was to read them. Given that the images were displayed for 10 seconds each and that the 

numeral identification task is quite easy, it is possible that rather than rehearsing the numeral 

identity in short-term memory after the initial identification, participants continuously 

inspected the numeral as an active maintenance strategy. Consistent with this hypothesis, 

there was no significant increase in the proportion of fixations on the numeral for the 

colorblind group, as the colorblind participants had difficulty even identifying the numerals.  

It is also reasonable to expect that the colorblind group would tend to search the 

images for visual cues that would aid in identification of the numeral, whereas normal 

controls would immediately identify the numeral and engage in detailed inspection 

behaviors. Consistent with this expectation, the colorblind group made more fixations, spent 
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less time fixating each location, and tended to make longer saccadic eye movements than the 

normal controls. These behaviors are indicative of visual search behavior. 

2.4.1 Predicting Color Vision Status using Eye Movement Behavior 

Given that there are observable differences in the eye movements of colorblind and 

normal individuals, these differences can be used as a metric for a color vision test. The 

differences are observable even when the participants are not explicitly instructed to identify 

the numerals as prescribed by the Ishihara test. This indicates that eye movements can be 

used as a covert metric to classify color vision status. To determine the effectiveness of this 

metric, the classification performance achievable was examined by considering the 

proportion of fixations made on the numerals. Of practical importance is that the 

classification performance was constructed without taking into account the other eye 

movement measures (e.g., fixation duration, saccade length) due to their wide range of 

observed values and relatively high variance in data. The wide range of observed values from 

these variables makes them less than ideal candidates for classifiers because they are prone to 

misclassification.  

To calculate the classification performance curve on the basis of f*, the Bayesian 

decision theory was applied using the first N fixations observed in the experiment, where N 

ranged from 4 to 300 fixations. First, f* was calculated for each participant. Then, it was 

assumed that the population of f* would be normally distributed with mean µ and standard 

deviation σ in order that population distributions could be estimated from the observed f* of 

the normal group (n) and the colorblind group (c). The unbiased classification thresholds 

were then determined as the intersection between probability density functions of normal and 

colorblind group at each level of fixations (N) used in the analysis. 



 

 

46 
 

2.4.1.1 Optimum Statistical Classifier 

This section explains how an unbiased classification threshold for normal and 

colorblind group was derived. From the Bayes rule (see [60]), the probability of an individual 

being in vision class wi given that his proportion of fixation on the foreground, x, has been 

measured can be defined as:  

=)x|P( iw  
)

 )()
xp(

P.|xp( ii ww
                                            (2.2) 

where x is the continuous random variable that represents observed proportion of fixation on 

the foreground of an individuals, iw  represents vision class,  and )( iwP  represents the 

probability that class iw  will occur out of a population. The expression )iw|xp(  represents 

the probability density function for x given that we are measuring x from an individual 

whose vision class is iw . 

The Bayes classifier has decision function, di(x), of the form  

di(x) = )() ii ww P.|xp(                                                     (2.3) 

Because the probability density function )iw|xp(  are assumed to be Gaussian, the 

optimum decision function can be stated as  

di(x) = 
( )

)(
−

i

i

we i

i

P.
2

1 2

2

2

-x

σ
µ

πσ
                                         (2.4) 

where σi is the population standard deviation and µi is the population mean of x from class 

iw . 

Accordingly, to calculated optimal classification threshold, or x, between normal (n) 

and colorblind (c) classes, the equation can be formulated as  
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     dn(x) = dc(x)                                                        (2.5) 

or    )() nn ww P.|xp(  = )() cc ww P.|xp(  

For simplicity of the analysis, the classification for this experiment was assumed that 

there is an equal likelihood that normal and colorblind classes occurring out of male 

population, yielding the equation  

     )nwP(  = )P( cw                                                    (2.6) 

where  )nwP(  and )P( cw  represents the probability of normal and colorblind 

individuals in male population respectively. Therefore, the unbiased decision boundary 

equation can defined as  

)() nn ww P.|xp(  = )() cc ww P.|xp(                                    

or    
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where x is the classification threshold, sn and sc are the standard deviation, and mn and mc are 

the mean of normal and colorblind group respectively. 

By assuming that )nwP(  = )P( cw , the optimal classification threshold, x, is the 

intersection of two probability density functions between normal and colorblind group can  

solved using the equation: 
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by applying a natural log, ln, for both sides of equation,  
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with ln(a*b) = ln a + ln b, and ln(e) = 1, 
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by multiplying 2 on both sides of equation, 
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From a quadratic equation 02 =++ cbxax , x can be calculated from: 
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where mn  and mc are means, and sn  and sc are standard deviations of the observed f* 

of the normal and colorblind group as they made N fixations. Figure 2.9 demonstrates 

optimal classification threshold, x, used to construct a classification performance that was 

quantified as the percent correct using the unbiased classification criteria. At each level of N 

fixations, an intersection of two distributions of the observed f* of the normal and colorblind 
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group, xN, was used as optimal unbiased classification threshold. True Positive (TP or Hit) 

was the curve area of colorblind participants whose f* < xN, thus correctly classified as color 

defective. False Negative (FN or Miss) was the area of colorblind participants whose f* > xN. 

True Negative (TN or Correct rejection) was the area of normal participants whose f* > xN, 

thus correctly classified as normal. False Positive (FP or False alarm) was the area of normal 

participants whose f* < xN. Both FN and FP were areas of classification errors. 

The percent correct at each level of N fixations was calculated from:  

Percent Correct = (True Positives + True Negatives).(100)                (2.10) 
                                             All population 

 
 where True Positives were the number of colorblind participants whose f* < xN, and True 

Negatives were the number of normal participants whose f* > xN. 

To construct the classification performance curve, first, at each level of fixations (N), 

the mean and standard deviation f* of each normal and colorblind individuals were 

calculated. These f* values represent corresponding distributions of f* of colorblind and 

normal group respectively at that level. The intersection, xN, between the distribution of f* of 

normal and colorblind group was calculated using equation (2.9). Then true positives and 

true negatives were acquired by comparing the average value of f* for each individual with 

xN at each level of fixations to calculate the percent correct by applying equation (2.10). 

 Figure 2.10 displays the classification performance curve that plots percent correct as 

a function of the total number of fixations used in the analysis. As can be seen in Figure 2.10, 

only 95 fixations are required to make a correct classification of color vision status in 95 

percent of the cases. Given that the average number of fixations for each image was 33, 95 

percent correct classification performance is achievable with the use of just three images. 
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(a) 

 

 

 

 

 

 

(b) 

 

 
 

 

 

 

(c) 

 
 

 
Figure 2.9. The normal distribution of f* of colorblind and normal group with mean mc and 
mn respectively as they made N fixations. N ranged from 4 to 300 fixations. At each level of 
N, the intersection, xN, was used as an optimal unbiased classification threshold to calculate 
the percent correct. (a) N = 4 fixations; xN = 0.59. (b) N = 5 fixations; xN = 0.61. (c) N = 300 
fixations; xN = 0.52. 
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Note that each image was presented for ten seconds in the experiment. It is speculated 

that the efficiency of this metric could be further improved by presenting more images within 

the same period of time. Considering the time needed to administer this test, this approach 

requires less than one minute of eye tracking and the viewing of only three Ishihara images. 

The images do not necessary have to be viewed contiguously. This makes the test a very 

efficient method to detect color vision status. 
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Figure 2.10. The classification performance curve indicates that only 95 fixations are 
required to obtain 95 percent correct color vision status classification accuracy.  
 

Figure 2.11 shows the distribution of classification threshold (xN) as a function of 

number of fixations taken from the experiment. As the number of fixations (N) increases, the 

amplitude of the classification threshold begins to decrease. The classification threshold 

appears approximately constant with respect to the number of fixations at around 190 
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fixations. The classification threshold eventually approaches the value of 0.52. On the basis 

of f* and N for the extended Ishihara test, this result implies that if an individual fixates on 

the foreground of the Ishihara images with average f* lower than 0.52, that individual will be 

classified as a colorblind. On the other hand, if such an average f* is higher than 0.52, that 

individual will be classified as a normal. 

It should be noted that this result was based on the assumption that an equal 

probability of normal and colorblind vision status would occur in a population or )nwP(  = 

)P( cw  = 0.50 (see Equation 2.6). While this assumption was valid for the experiment, it is 

not for the population at large. Due to the fact that approximately 8.5% of the population 

(male and female combined) is colorblind, it would be practical to assume that 8.5% of the 

participants in any administration are colorblind when applying this test to a test population. 

However, a somewhat greater false positive (FP) rate and correspondingly smaller false 

negative (FN) rate for the screening test may occur due to this biased classification. 
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Figure 2.11. Relation between classification threshold (xN) and number of fixations (N). As 
number of fixations increases, the classification threshold appears approximately constant, 
approaching the value of 0.52. The error bar represents varying amplitude of xN at each 
interval between fixations. 
 
2.4.2 Validation Test 

    To determine the qualitative diagnostic validity of this eye movement metric, color 

vision classification performance using f* was compared with that of the computerized 

Ishihara test [19]. The Cohen’s Kappa (K) of agreement was used to establish the validity of 

the test. K was calculated as follows:  

                                                               
)1(
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−=                                                 (2.5) 

where OP is the relative observed proportion of agreement between two tests and CP is the 

proportion of agreement predicted by chance. 

This statistics has a value between –1 and 1 where K = 1 means perfect agreement, K 

= 0 means that agreement is due to chance, and K = –1 means perfect disagreement. Good 
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agreement between tests can be indicated if K is > 0.80 [94]. For an image of the Ishihara 

test, if an individual responded correctly, such a response was categorized as a normal (N) 

classification. Otherwise it was categorized as a colorblind (C) classification. Fixations 

drawn from the same image were used to calculate f*. If the f* was higher than the unbiased 

classification threshold (xN), such an event was categorized as a normal (N) classification. 

Otherwise it was categorized as a colorblind (C) classification. It was found that the K 

coefficient of agreement between the response categories of the Ishihara test and the eye 

movement metric reached as high as 0.89 using as few as 5 images. Figure 2.12 shows the 

average K coefficient plotted as a function of the number of images used to calculate K. 
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Figure 2.12. The average coefficient of agreement (K) was plotted as a function of 
the number of images used to calculate K. The agreement reached 0.8 using only 3 
Ishihara images. Note that the level of agreement increased, approaching 0.89 when 5 
images were used. 

 

 

Number of Ishihara images 

K
 c

oe
ffi

ci
en

t 



 

 

55 
 

2.4.3 Sensitivity and Specificity of the Test 

Another approach to validate the test is the analysis of sensitivity and specificity [61, 

89]. Sensitivity is the ratio of true positives divided by the quantity of true positives and false 

negatives. Specificity is the ratio of true negatives divided by the quantity of true negatives 

and false positives [95]. A true positive occurs if a colorblind individual is classified as 

colorblind. A false negative is a case when a colorblind individual is classified as normal. 

Similarly, a true negative occurs if a normal individual is classified as normal whereas a false 

positive is a case when a normal individual is classified as colorblind (see Figure 2.9). For 

the Ishihara test, the sensitivity was calculated from the responses of the colorblind group, 

and specificity from the responses of the normal group. For example, it was counted as a true 

positive if a colorblind participant read an image incorrectly. Table 2.3 shows the sensitivity 

of the Ishihara test from 9 colorblind participants and the specificity from 10 normal 

participants from images 2-14. 

For the eye movement metric, the sensitivity was calculated from the f* of the 

colorblind group, and specificity from the f* of the normal group. As shown in figure 2.9, at 

any N fixations, if the f* of a colorblind participant was lower than the unbiased 

classification threshold (xN), such an event was categorized as a true positive. Otherwise it 

was categorized as a false negative. Table 2.3 demonstrates the sensitivity of the eye 

movement metric from nine colorblind participants and the specificity from ten normal 

participants as number of fixations increased. As the number of fixation reached 95 fixations, 

the sensitivity and the specificity of the eye movement metric was 0.88 and 1.0 respectively 

whereas percent of correct classification reached 95% (see Figure 2.10). 



 

 

56 
 

Table 2.3. Comparative results analysis of computerized Ishihara test vs. eye movement 
metric  
 

Computerized Ishihara test 
(14 images) 

Eye movement metric 
(3 images or 95 fixations) 

f* 

 
 

Group Response 
incorrectly 

Response 
correctly 

  All  
responses   Participants  

with f* < x 
 Participants  

with f* > x 

  Total    
  
participants 

  Colorblind 105 (TP)a 21 (FN)b 126 8 (TP) 1 (FN) 9 
  Sensitivity 0.83 (105/126) 0.88 (8/9) 
  Normal 0 (FP)c 140 (TN)d 140 0 (FP) 10 (TN) 10 
  Specificity 1.00 (140/140) 1.00 (10/10) 
  Percent correct   
  classificatione 

 95% 

a TP = True positive 
b FN = False negative 
c FP  = False positive 
d TN = True negative 
e Percent correct classification = (TP+TN)/All participants = (10+8)/19 
 

The screening efficiency of this test may vary depending on levels of defect severity. 

Similar to the Ishihara test, this test can more easily detect severe red-green color vision 

defects and does not attempt to classify the type of color-vision deficiency. A mild 

anomalous trichromat who experiences a minimal alteration of color perception might be 

able to pass this test.  

In conclusion, this study revealed that there are differences in the eye movements of 

normally sighted individuals and individuals with color deficiencies. Given that stimulus 

properties are known to influence the guidance of eye movements, and that normal and 

colorblind individuals sense colors differently, it was predicted that these differences would 

be observed when participants viewed Ishihara test stimuli. These results and subsequent 

examination of the use of eye movements as a classification metric demonstrates the 

feasibility of extending the Ishihara test using eye movements. 
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CHAPTER 3. A METHOD FOR IMAGE AND REGIONS OF INTEREST 

SELECTION USEFUL FOR DIAGNOSING COLOR VISION DEFICIENCIES 

 

The findings from the experiment in Chapter 2 suggested that as the Ishihara images 

were presented, colorblind individuals perceive numerals differently from those with normal 

color vision, and these differences can be detectable using an the eye movement metric. This 

metric also provides a novel approach to screen red-green color vision defects without 

relying on verbal communication. However, the Ishihara images are not the ideal candidate 

to be used as stimuli for covert screening application. As one of the most recognizable color 

vision tests, the Ishihara has been reprinted in numerous editions for over 90 years and has 

been used worldwide [24]. Using Ishihara images might allow participants to realize that 

their color vision is being tested. A problem exists when colorblind individuals who have 

seen the Ishihara images before may recognize the locations or correct shapes of the 

numerals [12]. The viewing strategy shifts from bottom-up to top-down control mechanisms, 

in which the participants’ expectations influence visual attention.  

A potential solution is to use photographs of complex scenes that are likely to be 

perceived differently by normal and colorblind observers as stimuli for a covert test. 

Complex scenes such as those with ordinary contents or everyday objects can be displayed 

without allowing the observers to realize the purpose of the test. The goal of this chapter is to 

describe a method to select photographs of complex scenes that are likely to be perceived 

differently by normal and colorblind observers. These images, when used as stimuli, should 

provide different visual influences between normal and colorblind observers. The logic is as 

follows. 



 

 

58 
 

Under natural viewing conditions, visual attention of normal observers is guided to 

regions with salient color contrast. Colorblind individuals have reduced sensitivity to red-

green color contrast. Therefore, their attention should not be drawn to these regions. The 

focus of visual attention can be identified by direction of gaze [35, 80, 96]. Thus, observable 

differences in eye movements should be detectable for images with identifiable regions of 

red-green color contrast.  

A method for selecting images with identifiable regions of red-green color contrast 

likely to lead to different patterns of gaze for normal and colorblind individuals is introduced. 

The regions of interest (ROIs) are regions where normal and colorblind individuals have 

different probability of fixating on each image.  

Photographs of complex scenes have reportedly been used by optometrists and other 

professionals to better understand visual problems of colorblind patients. Spalding and Arden 

[97] published 22 color photographs of complex scenes in which red-green colorblind 

individuals could have problems perceiving the color objects. These images consist of both 

natural and architectural landscapes. Cold and Lain [13] later conducted an experiment using 

these photographs as stimuli and asking 79 colorblind and 20 color normal participants to 

identify color objects (i.e., berries and flowers) in natural settings. They found that all 

colorblind participants could locate fewer color objects than color normal participants. 

Unfortunately, the criteria on how to select these photographs were not publicly addressed 

[98]. Several studies have referred to the digital images with low red-green contrast that 

could cause colorblind individuals to misread the representation of visual information, but as 

well did not discuss how to determine which scenes would be perceived differently by people 

with normal and red-green colorblindness (i.e., see [99],[100]).    
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  Some color images will be seen the same by everyone whereas some color images 

will be seen differently given that people with color vision deficiencies have diminished 

capacity to discriminate some colors in complex surroundings [10]. For example, colorblind 

individuals, regardless of type and severity of their defects, generally perform worse locating 

colored flowers and foliage in natural scenes than normally sighted people [13]. As shown on 

the left in Figure 3.1 are a pair of pictures that consist of blue sky and gray and brown 

structures. Individuals with red-green colorblindness are able to distinguish these colors. As a 

result, both normally sighted and colorblind individuals should share similar color 

experiences. On the other hand, the pictures on the right show green leaves and red berries. 

The red berries pop out and attract attention for normal individuals. Individuals with a 

moderate to severe red-green deficiency will perceive the red berries as brown because they 

are unable to distinguish between colors in the red-green section of the spectrum [101]. Thus 

the berries will blend into the background and fail to grab attention. The research described 

in this chapter was aimed at the development of a method to select digital images likely to be 

perceived differently by both groups, such as the one in this example.  

 Prior to the development of this method, there was no known way to rigorously 

determine which scenes would be perceived differently by people with normal and red-green 

colorblindness. The developed method establishes criteria to decide which images contain 

regions that could attract visual attention differently.  
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Figure 3.1. Simulation of color defective vision. On the left pairs of images, normal 
people should be able to perceive red hue on the berries while colorblind individuals 
would perceive red berries as dark brown berries.  On the right pairs of images, both 
groups should share similar color experiences as colorblind individuals are not 
confused by blue, white, and greenish brown colors. The images in the second row 
were simulated as they would be seen by red-green colorblind observers using Meyer 
and Greenberg’s dichromatic reproduction [88].         

 

3.1 Overview of Method of Selecting Images and Identifying Regions of Interest 

This method takes a random set of images as input and generates as output a subset of 

images with regions of interest. This method is designed to select photographs that are likely 

to be perceived differently by normal and colorblind observers. The method consists of six 

stages as diagramed in Figure 3.2.  

Stage 1 takes a set of acquired images as input and generates a subset of color images 

that contain no people, text, or numerals as output. This filtering is implemented because 

images with people, text, or numerals are likely to attract visual attention in a way that is not 

purely stimulus driven. Stage 2 takes images acquired from Stage 1 as input and generates 

Images perceived differently 

Normal 
Participants 

 
Red-green 
Colorblind 
Participants 

Images perceived similarly 
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colorblind version of input images as output using a dichromatic simulation technique. Stage 

3 takes the normal images and colorblind images as input and generates four saliency maps 

(color saliency map, intensity saliency map, orientation saliency map, and final saliency 

map) for each image as output. The saliency model [75] is used to generate these saliency 

maps. This stage is implemented in order to predicted areas where normal and colorblind 

individual are likely to attend. Stage 4 takes the color saliency maps of the normal images 

and color saliency maps of its colorblind image as input and generates a color saliency 

difference map as output. This stage is processed by subtracting the color saliency maps of 

normal and colorblind image to obtain color saliency difference values. The positive salience 

values represent visible areas that are more attractive to normal than to colorblind 

individuals. The negative values represent visible areas more attractive to colorblind than to 

normal individuals. Stage 5 takes all normal images as input and generates a subset of images 

likely to be perceived differently by normal and colorblind individuals. In this stage, skew of 

color saliency difference is used as an index to rank the images with the most detectable 

areas of interest. Stage 6 takes color saliency difference maps of images from Stage 5 as 

input and generates corresponding +ROI maps and –ROI maps as output. The deviation from 

the mean of color saliency difference is used as thresholds to define regions of interest. If a 

value from color saliency difference map is higher (or lower) than threshold, its 

corresponding location of image is considered a +ROI (or –ROI). In this stage, the +ROI map 

displays regions of interest (ROIs) predicting areas where normal individuals are more likely 

to fixate than colorblind individuals. The –ROI map displays regions of interest predicting 

areas where colorblind individuals are more likely to fixate than normal individuals. 
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Figure 3.2. The method of selecting complex scene images and identifying ROIs. 
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3.2 Method 

3.2.1 Stage 1: Manual Image Screening 

This stage takes a set of acquired images as input and generates a subset of color 

images that contain no people, text, or numerals as output. In this stage, images that 

contained people, faces, skins, organs, text, or numerals are manually removed because these 

objects are likely to attract visual attention due to top down mechanisms, not driven by 

stimulus features [102, 103]. Monochrome images or images that contain only two colors, 

such as black-and-white, green-and-white or green-and-black are also removed so that digital 

images with a natural color depth can be used. 

3.2.2 Stage 2: Simulation of Color Vision Defects 

This stage takes color images acquired from Stage 1 as input and generates colorblind 

version of input images as output. Meyer and Greenberg’s dichromatic algorithm [88] is used 

to simulate the colors as would be seen by red-green colorblind individuals. The input images 

from this stage are referred as “normal images” whereas the simulation images are referred to 

as “colorblind images” (See Figure 3.3). 

  
(a) (b) 

 Figure 3.3. Example of (a) normal and (b) its colorblind image 
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To understand how color vision defect is simulated, the chromaticity diagram is 

useful. In the CIE XYZ diagram, there is a single point for each type of color deficiency, 

called co-punctual point. Confusion lines are straight lines radiating from co-punctual point 

[39]. Colors which are on confusion lines are those that people with red-green colorblindness 

get confused (see Figure 3.3). These colors along a confusion line look the same as all the 

other colors along that line.  

Based on empirical studies, Meyer and Greenberg [88] assumed that color space of 

dichromats collapses to a line called “major axis” on the uniform chromaticity diagram (CIE 

LUV) for each of type of disorder (see Figure 3.4).  For protanopes this axis connects 473nm 

and 574nm on the spectral locus with the white point (D65); for deuteranopes the line is very 

similar, connecting 477nm and 579nm. The point where the axis intersects the confusion line 

represents the perceived color for that confusion line (see Figure 3.5). As the perceived 

colors are inferable, the simulated image as would be perceived by red-green colorblind 

individuals can be constructed. Dichromatic deficiencies are considered a more severe form 

of defective color vision. Thus, color transformation designed to aid dichromats is also useful 

for deuteranomalous trichromats [101].       

In this stage, the deuteranope model of colorblind simulation is used due to two 

reasons. First, those who have defective M photopigments (deuteranopes and 

deuteranomalous trichromats) constitute the largest group of colorblind individuals. Second, 

the protanopes suffer similar hue discrimination problems as the deuteranopes [1]. 
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                                  (a)                                                                    (b) 

Figure 3.4. Confusion lines for (a) a protanope and (b) a deuteranope. Adapted from 
Schwartz (1999) [39]. 
 
 

 
                                       (a)                                                               (b) 
Figure 3.5. Axes of colors actually seen by dichromats on the CIE LUV color space. For 
example, the intersection between the confusion line (PA) and the major axis (473-574nm) 
represents color seen (Ap) by protanopes. Chromaticity points such as point A on the 
confusion line (PA) will be seen as chromaticity point Ap for protanopes. Adapted from 
Meyer and Greenberg (1988) [88]. 
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3.2.3 Stage 3: Saliency Map  

 This stage takes each normal image acquired from Stage 3 as input and generates four 

saliency maps (color saliency map, intensity saliency map, orientation saliency map, and 

final saliency map) for each image as output. Then it does the same for each colorblind 

image. This stage takes an image as input and processes it through the saliency model [75] by 

decomposing it into 3 parallel features at different spatial scales. The output consists of four 

maps: three feature maps that encode areas which are found to be salient due to color, 

intensity, and orientation of the image and one final saliency map. The final saliency map is 

constructed by combining and normalizing the three feature maps. The map is plotted as a 

linear grayscale colormap with dimension of 40x30. This is an established scale similar to the 

resolution of visual attention in human observers [36]. The saliency map displays areas in the 

image that are most visually important. It is used to predict the focus of visual attention on an 

image. This stage is necessary because it provides the color saliency map predicting areas 

where normal and colorblind individuals are likely to fixate due to color feature of the image. 

The color saliency map of a normal image predicts where normal individuals tend to attend 

whereas that of a colorblind image predicts where colorblind individuals tend to attend.  

3.2.4 Stage 4: Color Saliency Difference Map  

This stage takes color saliency maps of a normal image and color saliency maps of its 

colorblind image as input and generates a color saliency difference map for each image as 

output. In this stage, the color saliency map of a colorblind image is subtracted from that of a 

normal image to generate a color saliency difference map. In this stage, the color saliency 

map is used as input because it accounts for the color contrast in the image. The predicted 

areas of color saliency difference (∆S) were calculated as follows, 
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                       Color saliency difference (∆S) = Snm – Scb                          (3.1) 

where Snm is the matrix of color saliency values of a normal image, and Scb is the matrix of 

color saliency values of a corresponding colorblind image. Brighter regions on the color 

saliency difference map represent regions that normal individuals are more likely to attend 

than colorblind individuals. On the other hand, darker regions represent regions that 

colorblind individuals are more likely to attend than normal individuals. The gray areas 

represent the regions that both groups could attend with equal opportunity.  

As demonstrate in Figure 3.6, the color saliency difference map of an image outlines 

the predicted salient areas. In this image, the engine of the train (dark region) is predicted as 

more salient to colorblind observers whereas the caboose (bright) is predicted as more salient 

to normally sighted observers. 

 

 

 

 

 

 

 

 

 



 

 

68 
 

  

  

(a) Normal image and its color saliency 
map 

(b) Colorblind image and its color saliency 
map 

 

                                      (c) Color saliency difference map (∆S) 

Figure 3.6. Color saliency difference map between a normal and colorblind image pair 
displays predicted salient areas. Bright areas represent predicted areas salient to normal 
observers whereas dark areas represent predicted areas salient to colorblind observers. 
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3.1.5 Stage 5: Selecting images using skew of color saliency difference 

This stage takes all normal images as input and generates a subset of images with 

perceivable area of interest as output. In this stage, the skew of color saliency difference is 

used as an index to rank the images with visible clustered areas of interest. In an attempt to 

select images that best are represented as stimuli from all images, some color index is used 

for ranking images. More specifically, the index should help identify which image could 

provide clustered areas of interest that are perceptually as compact and as well separated as 

possible. The skew describes the deviation of the distribution of the saliency value from a 

Gaussian distribution. The absolute values of the difference between the normal and 

colorblind saliency map of each image is first calculated. The skew for each image is then 

obtained using the equation [59]: 
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where S and σ representing the mean and the standard deviation of the saliency 

values S(x,y), and W and H representing the width (W=40) and the height (H=30) of the map 

in pixels, respectively. 

The higher value of the skew of color saliency difference, the better the clusters can 

be visibly identified from the surroundings. Demonstrated as an example in Figure 3.7, an 

image with higher skew of salience shows less scattering of bright area (e.g., clustered area 

obvious to normal observers) and dark areas (e.g., clustered area obvious to colorblind 

observers) than those with lower skew (see Figure 3.8). A possible explanation is that, in case 

of highly positive skew, the color saliency difference values were not normally distributed, 

demonstrating the asymmetry of those differences of an image. These high values rendered 
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visible clusters due to either positive difference (bright area) or negative difference (dark 

area) of salience values.  

  

  

  

  
(a) (b) 

 
Figure 3.7. (a) Example images with high skew of color saliency difference (value of 4.47, 
4.52, 4.86, and 5.22 respectively). (b) Detectable areas of interest from color saliency 
difference map. 
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(a) (b) 

Figure 3.8. (a) Example images with low skew of color saliency difference (value of 1.24, 
1.40, 2.27, and 2.41 respectively). (b) Areas of interest from color saliency difference map 
are difficult to detect. 
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3.2.6 Stage 6: Identifying regions of interest 

This stage takes color saliency difference maps of images selected from Stage 5 as 

input and generates regions of interest as output. In this stage, the +ROI map displays regions 

of interest to predict areas where normal individuals have higher chance to fixate more than 

colorblind individuals. The –ROI map displays regions of interest to predict areas where 

colorblind individuals have higher chance to fixate more than normal individuals. 

Regions of interest (ROI) are defined as areas with a large difference in the predicted 

eye movements between normal and colorblind individuals. The deviation from the mean 

color saliency difference (∆S) is used to define upper and lower thresholds. It is assumed that 

the regions defined by extreme values would best distinguish between normal and colorblind 

individuals. The predicted ROIs are calculated from the input color map pair as follows, 

S(i,j) = +ROI  if S(i,j)  > +δSD(∆S)             

S(i,j)  = –ROI  if S(i,j)  < –δSD(∆S)               (3.2) 

where S(i,j) is the saliency value of pixel (i,j) from the difference of color map between the 

normal and colorblind image (∆S), and an δ is a threshold of deviation. The +ROIs are the 

pixels that contained saliency values higher than δ standard deviations, and the –ROIs are the 

pixels with saliency values less than negative δ standard deviations from the areas of saliency 

difference (∆S). Figure 3.9 demonstrates the ROIs determined from a threshold value of δ = 

3. 
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                                                           (a) 

  

                                (b)                                  (c)  

  

                                (d)                                 (e)  
 

Figure 3.9. Example of image whose ROI defined as ± δ SD from ∆S (δ = 3). (a) Color 
saliency difference map (∆S). (b) Regions of interest for normal individuals (+ROIs). (c) 
Regions of interest for colorblind individuals (–ROIs). (d) +ROIs (i.e., red caboose and 
door). (e) –ROIs (i.e., yellow train engine). 
 

+ROIs 
--ROIs 
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Since predicted ROIs are derived from the difference of color channel from a normal 

and colorblind image, such a difference has influence on the color of the ROIs. As previously 

discussed, the Meyer and Greenberg’s dichromatic conversion computes color seen by 

colorblind individuals by replacing confusing colors (e.g.. shades of red and green) with the 

intersection between the confusion line and the major axis (e.g., shades of yellow). 

Therefore, red and green shades are basically removed out of the colorblind image.  

The color saliency map of the colorblind image would contain no saliency values due to 

contrast of red or green. The difference between the normal and colorblind map (∆S) could 

yield positive values representing saliency due to color contrast most obvious to normal 

individuals, zero value representing saliency due to color contrast obvious to both groups, 

and negative values representing saliency due to color contrast most obvious to colorblind 

individuals.  

 

3.3 Results 

From an unbiased sample of approximately 23,000 digital images randomly and 

automatically downloaded from the Internet, 100 images were selected by using the 

described method (Appendix B). The regions of interest were defined with δ = 3 (3SD). As 

the images were selected, the highest skew value was 6.48 while the lowest skew value was 

3.96. The average size of +ROIs was 1.60% of the total image area with the standard 

deviation of 0.78. The average size of the –ROIs was 0.87% of total image area with the 

standard deviation of 0.65. Examples of the selected images are demonstrated in Figure 3.10 

with colorblind image and the +ROIs and –ROIs plotted on the same map. 
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(a) (b) (c) 

Figure 3.10. Example of selected images with high skew values. (a) normal image (b) 
colorblind image (c) +ROIs (bright regions or regions that normal individuals are likely to 
attend) and –ROIs (dark regions or regions that colorblind individuals are likely to attend). 
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3.4 Summary 
 

This chapter outlined a method of selecting digital photographs that predict different 

patterns of visual attention for normal and colorblind observers. In addition, a method to 

identify specific regions of interest which compete for visual attention from normal and 

colorblind individuals was described. This process can be summarized in 6 stages. First, 

images with humans, text, and numerals are filtered out. Second, the remaining images are 

processed with color dichromatic conversion. This stage generates colorblind images from 

the original input. Third, the difference of color contrast between the normal and the 

colorblind image is taken into account by the saliency model whose color feature map is used 

to present influence of saliency due to color contrast. Fourth, the skew index is a suggested 

index used to rank the images with visible clustered areas. Finally, a guideline to define the 

region of interest for normal and colorblind individuals is described. The +ROIs are regions 

where normal individuals have higher chance to fixate more often than colorblind 

individuals. The –ROI map displays regions where colorblind individuals have higher chance 

to fixate more often than normal individuals. 

More than 23,000 digital images were randomly downloaded from the Internet and 

100 images were selected by using the described method. From the selected images, the 

highest skew value was 6.48 while the lowest skew value was 3.96. The average size of 

+ROIs was 1.60% of the total image area while that of the –ROIs was 0.87% of total image 

area. 

 

 



 

 

77 
 

CHAPTER 4. EXPERIMENTAL VALIDATION OF THE IMAGE AND REGION OF 

INTEREST SELECTION METHOD 

 

The goal of the research presented in this chapter is to validate the method to select 

photographs of complex scenes that are likely to be perceived differently by normal and 

colorblind individuals. It was revealed in Chapter 2 that there are differences in the eye 

movements of normal and colorblind individuals when viewing the Ishihara images. The 

findings suggested that the Ishihara images can influence the allocation of attention of 

normal and colorblind individuals differently. Given that the selected photographs can 

influence the allocation of attention as well, it was predicted that the differences of visual 

attention would be observed when normal and colorblind individuals view these photographs. 

In this experiment, eye movements were used to quantitatively assess visual attention for the 

selected images. The predicted regions of interest (ROI) on each image were defined as 

target areas that attract visual attention from participants. The logical assumptions 

underlining the experiment are addressed as follows. 

Under natural viewing conditions, visual attention of the observers is guided to 

regions with highest saliency. Normal and colorblind individuals are visually attracted to 

different regions of interest because their ability to detect color contrast is different. The 

focus of visual attention can be identified by direction of gaze [35, 80, 96]. Thus, observable 

differences in eye movements as measured by fixations between groups should be detectable 

in both the +ROIs and –ROIs. The +ROIs are predicted to be fixated more by the normal 

individuals whereas the –ROIs are predicted to be fixated more by the colorblind individuals. 
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4.2 Methods 

4.2.1 Stimulus 

To obtain an unbiased sample of the images, approximately 23,000 digital images 

were randomly and automatically downloaded from Yahoo.com basing on keyword search. 

The programming script written with Perl was executed on a computer server for 48 hours 

where it randomly selected keywords from a dictionary and obtain large size images related 

to those keywords from the web site. The acquired images were in the JPEG format with the 

smallest resolution of 640x480.  

Images that contained people, faces, skin, organs, texts, and numbers were removed 

with a MATLAB algorithm since these objects are more likely to attract visual attention from 

humans regardless of the images’ surroundings [102, 103]. Monochrome images were also 

screened out during this process so that only color images were used. These processes 

reduced the number of images from approximately 23,000 to 5,639 images. These images 

were manually checked to ensure that they provided adequate detail when displayed full 

screen on the monitor.  

Then, the remaining images were processed with the method for selecting images and 

ROIs (see Chapter 3). First, they were processed with colorblind simulation algorithm to 

generate normal and colorblind images. Then each image was processed with the saliency 

model. Third, the color saliency maps of a normal and its corresponding image were 

subtracted to obtain the color saliency difference map. Fourth, total of 100 images with the 

highest skew of the color saliency difference were selected as stimuli in this experiment. 

Finally, the ROIs were defined for target areas for each image. In this experiment, the δ = 3 

(3SD) was selected as deviation factor from the color saliency difference map. This was 
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based on an empirical rule that extreme values generally are values higher than 3 standard 

deviations in the normal distribution.  

4.2.2 Participants 

Twenty male students from Iowa State University participated in the experiment. A 

statement of informed human consent was obtained from all the participants. Each participant 

was paid $10 for participation. Ten participants were selected on the basis of having reported 

that they were clinically diagnosed as red-green colorblind in the past. The remaining ten 

participants were selected as a comparison control group based on a self-report of normal 

color vision. To confirm their color vision status, all participants were administered with the 

computerized Ishihara test after the eye movement experiment. The interpretations for 

participants’ color vision status from the Ishihara test results were all in accordance with the 

self-report of the participants. 

4.2.3 Apparatus 

Similar to the first study, all selected images were digitally adjusted to display full 

screen at a resolution of 1024 x 768 pixels in the 32-bit color mode and presented on a 19-

inch monitor. The center of the display was aligned at the participant’s eye level at a distance 

of 75 centimeters. This provided an optical image subtending 27˚ horizontally and 24˚ 

vertically that facilitate the tracking of eye movements. The established procedure for 

utilizing the Ishihara color vision test on a computer screen as well as the monitor calibration 

for the experiment were the same as the first study. 
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4.2.4 Procedures 

The experiment contained two five minute blocks separated by a three minute break. 

Each block presented a series of 50 selected images. For both blocks, participants were 

seated in front of the computer screen with their head resting on a chin rest. At the beginning 

and the end of each block of the experiment, participants were required to fixate nine points 

on a full-screen grid. These measurements were required in order to calibrate the eye tracker 

and determine the average accuracy of the eye movement measurements. The average eye 

tracking error at the beginning of the block was 1.15˚ while average error at the end was 

1.21˚. A t-test comparison indicated that there was no significant difference in average error 

of eye tracking between groups (t(18) = 1.07, p =0.291). 

During the experiment, each image was presented for a period of five seconds. 

Between each image presentation, a black dot at the center of the screen was presented for 

one second to be fixated prior to each trial. For both blocks of the experiment, participants 

were instructed to freely look around at the images. After the eye tracking process was 

completed, each participant was administered with the computerized Ishihara color vision 

test [89] to confirm color vision status. The results of this test confirmed the self-reported 

color vision status in all cases. 

 

4.3 Data Analysis 

 ROI (–ROI, +ROI) and vision (normal, colorblind) were independent variables in 

this study. To quantify the number of fixations a participant made in the +ROIs, the 

percentage (f*+ROI) of the number of fixations in every +ROI (f+ROI) relative to those on the 
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total image area (∑f ) was calculated for each image as f*+ROI = f +ROI / ∑f. Similarly, the 

percentage of the number of fixations in every –ROI was defined as f*-ROI = f-ROI / ∑f. 

 To estimate the percentage of fixations on the +ROIs expected by chance alone 

(fc*+ROI), the percentage of areas of all +ROIs to the total area was calculated. The same 

notion was applied to the percentage of fixations on the –ROIs expected by chance alone  

(fc*-ROI). The fc*+ROI across all images was 1.60% whereas the fc*-ROI across all images was 

0.87%.  

Since participants tend to fixate in central regions of the images by nature, an image 

shuffling technique was used to estimate chance performance that accounts for this central 

bias [36, 37]. This technique randomly shuffles participants’ observed fixation pattern onto 

different images in order to disassociate fixation locations and image content while retaining 

the distributional properties of the fixations (i.e., centrally biased). If this more conservative 

chance performance baseline and the f*ROI differ, it suggests that participants’ fixations are 

indeed guided by image properties, and are not due solely to the greater chance of central 

fixation. 

Accordingly, the conservative estimate of the f*ROI expected by chance alone (fs*ROI) 

can be calculated by overlaying each participant’s observed fixation locations of an image 

onto the other images. This was achieved by a MATLAB script which overlaid each fixation 

pattern on each of the other 99 images, and calculated the average of fs*ROI . For example, the 

fixation pattern of the first image was overlaid on the second image, third image, and so on. 

Then the fixation pattern of the second images was overlaid on the first image, third image, 

and so on. This shuffling process continued until the fixation pattern of the one hundredth 
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images was overlaid on the first image, second image, and so on. For each shuffle, a new 

value of fs*ROI for both +ROIs and –ROIs was calculated.    

 With this technique, the average fs* in +ROIs across all participants (fs*+ROI) was 

1.98% while the average fs* in –ROIs across all participants (fs*-ROI) was 1.10%. These 

values are higher and more conservative than fc*ROI, therefore, they were used to estimate the 

chance performance in this study. Four eye movement measures: the percentage of fixations 

on the ROIs (f*ROI), the average fixation duration, the average number of fixations per image, 

and the average saccade length were analyzed in this study. Each dependent measure was 

analyzed using a repeated-measures ANOVA with ROI (+ROI vs. –ROI) as a within-

participant factor and vision (normal vs. colorblind) as a between-participant factor.  

 

4.4 Results 

Percentage of fixation on ROIs (f*ROI) The average f*+ROI of the normal group was 

5.95% (SD = 1.90%) whereas for the colorblind group it was 2.45% (SD = 0.65%). On the 

other hand, the average f*-ROI of the normal group was 1.18% (SD = 0.38%) whereas for the 

colorblind group it was 1.95% (SD= 0.83%). This is shown in Figure 4.1. Both main effects 

of vision and the ROI were found significant. A significant interaction effect (F(1, 18) = 

45.80, p < .05) revealed that effect of ROI depended upon the vision status. A post-hoc test 

using a Bonferroni adjustment (α = 0.05) revealed that when the images were presented, the 

normal group made more fixations on the +ROIs than the colorblind group did. In contrast, 

the colorblind group made more fixations on the –ROIs than the normal group did. 

A t-test comparison indicated that the average f*ROI on the –ROIs of colorblind 

groups (f*-ROI = 1.95) were significantly higher than that expected by chance factor alone 
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(fs*-ROI = 1.10), (t(9) = 3.21, p < .05). This was not the case for the normal group (f*-ROI = 

1.18) as their percentage of fixations on the –ROIs did not differ from the chance level. 

However, the average f*ROI on the +ROIs of both the normal group (f*+ROI = 5.95) and the 

colorblind group (f*+ROI = 2.45) were significantly higher than that expected by chance 

factors alone (fs*+ROI = 1.98). 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1. The percentage of fixations in the +ROIs was significantly lower for 
colorblind participants than normal controls. However, their percentage of fixations in 
the –ROIs was significantly higher than normal controls. The percentage of fixations 
on the foreground expected by chance factors alone (fs*ROI) are shown as a dashed 
lines.   

 

Fixation Duration The average fixation duration of the normal group was 0.31 

seconds (SD = 0.20 seconds) on +ROIs and 0.24 seconds (SD = 0.23 seconds) on –ROIs 

whereas for the colorblind group it was 0.27 seconds (SD = 0.22 seconds) on +ROIs and 0.29 

seconds (SD = 0.19 seconds) on –ROIs. There was no significant main effect for either vision 
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or ROI. There was a significant interaction between vision and ROI (F(1, 18) = 12.495, p = 

0.002) as shown in Figure 4.2. A post-hoc test using a Bonferroni adjustment suggested that 

the normal group spent more time fixating on the +ROIs but less time when fixating on the –

ROIs as well as on the remaining areas (p<0.05). However, there was no significant 

difference among the amount of time the colorblind group spent on +ROIs , –ROIs, or the 

remaining areas. 
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Figure 4.2. Average fixation duration in the ROIs. The significant interaction between 
vision and ROIs indicates that ROIs had an effect on participants, but its effect depended 
on their visual conditions. 

 

Number of Fixations The average number of fixations per image of the normal 

group was 14.75 (SD = 1.75) whereas for the colorblind group it was 14.29 (SD = 1.55). No 

significant difference in the average number of fixations per image between groups was 

found. The average number of fixations of the normal group was 8.7 on +ROIs, 1.8 on –

ROIs, and 13.7 on the rest whereas for the colorblind group it was only 3.5 on +ROIs, 2.8 on 

–ROIs, and 13.6 on the rest. It was found that normal participants landed more fixations on 
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+ROIs than colorblind participants on almost every image, with the exception of image no.1 

and 23 where both groups made the same total number of fixations, and image 

nos.11,35,41,43,66,67,70,77, and 93 where both groups made no fixation on +ROIs. 

Consistent with the ANOVA results of the percentage of fixation, a post-hoc test using a 

Bonferroni adjustment revealed that the normally sighted group fixated more on the +ROIs 

than did the colorblind group (p<0.05).  

Saccade Length The average saccade length of the normal group was 5.13 degrees 

(SD = 1.62 degrees) whereas for the colorblind group it was 4.98 degrees (SD = 1.24 

degrees). No significant difference in the average saccade length between groups was found.  

 

4.5 Discussion 

The purpose of this study was to test the hypothesis that differences in eye 

movements during complex scene viewing of normal and colorblind individuals could be 

observed. The ultimate goal was to use the eye movements to covertly detect red-green color 

vision defects using complex scenes. Regions of interest (ROIs) were defined as salient areas 

derived from the method described in Chapter 3. The +ROIs and –ROIs were predicted areas 

of potential fixation targets for normal and colorblind individuals respectively. It was 

hypothesized that normal individuals would have a higher chance to fixate on the +ROIs than 

colorblind individuals. In contrast, it was also predicted that colorblind individuals would 

have a higher chance to fixate on the –ROIs than normal individuals. To test the eye 

movement hypotheses, the percentage of fixations on the ROIs, average fixation duration, the 

total number of fixations, and the average saccade length were measured.  
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Consistent with the prediction, normal individuals looked more often at the +ROIs 

and spent more dwelling time on the +ROIs than did the colorblind individuals. The 

percentage of fixations made on the +ROIs by the normal group was significantly higher than 

the chance estimates and higher than that made by the colorblind group. This result suggested 

that normal participants had higher tendencies to fixate at the red-green salient regions as 

compared to the colorblind individuals. Longer average fixation duration on the +ROIs of the 

normal participants means they spent more time than colorblind participants processing the 

same visual information in these areas. It can be explained that the +ROIs were more obvious 

to the normal participants than to the colorblind ones. The color feature of saliency model 

could identify color regions (e.g., +ROIs) from complex scenes that capture normal 

individual’s attention better than colorblind individuals. 

This result also supported several studies’ argument that colorblind individuals have 

lower ability than normal individuals to identify some colored objects in complex 

surroundings [10, 13, 24, 97]. Figure 4.3 demonstrates examples of fixation patterns for 

normally sighted and a colorblind individuals. The example shows the variety of fixation 

patterns that are possible.  

 The colorblind participants gazed more often on the –ROIs than just by chance alone 

and more often than the normal participants. It is likely that the –ROIs attracted more 

attention from the colorblind individuals than from the normal individuals. However, their 

visual attention was not entirely dominated by the influence of the –ROIs. As they fixated on 

the –ROIs, it was found that their dwelling time on these regions was not longer than on the 

+ROIs. Interestingly, they also spent some time fixating on the +ROIs as indicated by their 

percentage of fixations on these areas which was higher than the chance factor. It appears 



 

 

87 
 

that, although the –ROIs were more obvious to the colorblind participants than to the normal 

participants, the –ROIs might not be the only factors that capture colorblind individuals’ 

attention from complex scenes. Other factors such as intensity and contrast also guide 

attention. 

(a) (b) 
Figure 4.3. Example of fixation patterns (a) from a normal participant (b) from a colorblind 
participant. The +ROIs are represented with white circles. 
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4.5.1 Color, Intensity, and Orientation Channel Correlation  

As discussed in last section, it was surprising to find that colorblind individuals 

fixated +ROIs at greater than chance levels. Colorblind individuals have less visual ability to 

see the red-green contrast regions as represented by the +ROIs when compared to the 

normally sighted individuals [13, 24]. Their observed fixations on the +ROIs could possibly 

be explained by two reasons.  

First, it was suspected that some colorblind participants in the study might have mild 

red-green colorblindness. Those who have mild red-green deficiencies such as the anomalous 

trichromacy will perceive contrast due to the bright shades between red and green. In such 

cases, their visual search behavior may not differ greatly from normal individuals because of 

the influence of +ROIs on their visual attention. Second, color contrast of the +ROIs might 

be correlated with other feature contrast in the image. Colorblind participants who could not 

distinguish shades of red and green might be attracted by intensity or orientation contrast 

presented in the +ROIs. To further probe the correlation of image features, the saliency 

values from color, intensity, and orientation maps were investigated 

Feature correlation was defined as the correlation between the saliency values of two 

features (e.g., color vs. intensity or color vs. orientation) for each image. This was measured 

by correlating saliency values of each pixel from one feature map with those in the 

corresponding pixel from the second feature map.  The correlation r between two features of 

all images is calculated from 
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where xi and yi are the saliency values of corresponding pixels in the two feature maps, and 

x  and y are the mean saliency values of pixels in the two feature maps.  

It was found that correlation between color and intensity contrast was significant (r = 

0.32, p = 0.038). On the other hand, correlation between color and orientation contrast was 

not significant (r = 0.20, p = 0.142). 

This result implies that some colorblind participants might be attracted to +ROIs not 

by color contrast but by intensity contrast as compared to the adjacent areas of the image. 

Intensity contrast should contribute to fixation point selection made by colorblind observers. 

When the color is less salient due to defective cone response in colorblind individuals, color 

is no longer a main factor for determining attention [67]. Visual attention of some colorblind 

individuals could be captured involuntarily by other salient features, which could be, in this 

case, the intensity of the ROIs [1]. On the other hand, weak association between the +ROIs 

derived by color and orientation features implies that colorblind participants were not likely 

to fixate the +ROIs of complex scenes on the basis of image orientation.  

4.5.2 Color as Visual Attractor 

 The aim of this section was to quantify observed fixations on the ROIs by shades of 

colors. By matching observed fixations on ROIs and then identifying colors, this would 

provide some quantitative evidence on which color the ROIs tend to be. Some studies 

suggested that red attracts more visual attention from normal people more than other colors 

[104, 105] whereas yellow is the most distinctive color to the majority of red-green 

colorblind individuals [3]. Accordingly, from 100 random selected photographs, it was 

predicted that the ROIs frequently viewed by normal individuals would be in shades of red 
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color. On the other hand, the ROIs frequently viewed by colorblind individuals would be in 

shades of yellow color. 

To acquire colors of fixation location on the ROIs, first, observed fixation locations 

on the ROIs were overlaid on the current image to determine pixel coordinates. The matrix of 

RGB coordinates of corresponding pixels was then extracted. After the RGB data for all 

pixels of fixation locations on the ROIs was acquired, each RGB dataset was matched with 

the X11 color name dictionary (see [106]) to identify color name. Then the color name was 

classified into shades using color name mapping guideline (see [107]) to represent shades of 

color at each fixation location. For example, a fixation located on a +ROI contained the RGB 

values of 170;45,93. From X11 color lookup, this dataset was approximately close to maroon 

(178;46;96), which is under shade of reds according to color name mapping guideline. 

Therefore, this fixation location was classified as red. Figure 4.4 displays a sample of color 

name mapping with shades of green, red, and yellow colors. 

With the use of RGB to color name mapping guideline, colors of all 1,129 fixation 

locations on +ROIs from 20 participants could be quantified into shades of reds, oranges, and 

greens whereas all 460 fixations on –ROIs were quantified into shades of yellows, browns, 

and blues. Figure 4.5 demonstrates the observed fixations on the ROIs classified by colors. 

Red shades were matched most often by the fixation on ROIs by normal participants. Yellow 

shades were matched most often by the fixation on ROIs by colorblind participants. 

Consistent with the prediction, it was found that in this study, the ROIs of normal individuals 

tended to be in red shades whereas the ROIs of colorblind individuals tended to be in yellow 

shades. 

 



 

 

91 
 

Color Name RGB RGB Hex Shades of Green 

Dark Green 47;79;47 2F4F2F ### SAMPLE ### 

DarkGreen 0;100;0 006400 ### SAMPLE ### 

dark green copper 74;118;110 4A766E ### SAMPLE ### 

DarkOliveGreen1 202;255;112 CAFF70 ### SAMPLE ### 

DarkOliveGreen2 188;238;104 BCEE68 ### SAMPLE ### 

green 0;128;0 008000 ### SAMPLE ### 

lime 0;255;0 00FF00 ### SAMPLE ### 

green2 0;238;0 00EE00 ### SAMPLE ### 

 

Color Name RGB RGB Hex Shades of Red 

DeepPink 255;20;147 FF1493 ### SAMPLE ### 

IndianRed1 255;106;106 FF6A6A ### SAMPLE ### 

IndianRed2 238;99;99 EE6363 ### SAMPLE ### 

firebrick 178;34;34 B22222 ### SAMPLE ### 

firebrick1 255;48;48 FF3030 ### SAMPLE ### 

firebrick2 238;44;44 EE2C2C ### SAMPLE ### 

firebrick3 205;38;38 CD2626 ### SAMPLE ### 

firebrick4 139;26;26 8B1A1A ### SAMPLE ### 

 

Color Name RGB RGB Hex Shades of Yellow 

BlanchedAlmond 255;235;205 FFEBCD ### SAMPLE ### 

DarkGoldenrod1 255;185;15 FFB90F ### SAMPLE ### 

DarkGoldenrod2 238;173;14 EEAD0E ### SAMPLE ### 

DarkGoldenrod3 205;149;12 CD950C ### SAMPLE ### 

LightGoldenrod 238;221;130 EEDD82 ### SAMPLE ### 

yellow 255;255;0 FFFF00 ### SAMPLE ### 

yellow2 238;238;0 EEEE00 ### SAMPLE ### 

yellow3 205;205;0 CDCD00 ### SAMPLE ### 

Figure 4.4. Example of RGB to color name mapping ([107]). RGB values of fixation 
locations were classified into corresponding shades of colors. 
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Figure 4.5. The number of fixations on ROIs of 100 images classified by shades of 
color.  
 

4.5.3 Classification Performance 

  Because differences in the eye movements of the colorblind and normal individuals 

were observed when they viewed the selected complex images, the usefulness of this 

information as a performance metric for covert screening red-green color vision defects was 

considered. A similar approach as implemented in Chapter 2 was adopted to determine the 

efficacy of this metric. As an indication of the clustering success, the classification 

performance was developed by considering the percentage of fixations made on the +ROIs. 

The other eye movement measures (e.g., fixation duration, saccade length) were excluded 

from the classification performance analysis due to their wide range of observed values or 

relatively high variance in data. The wide range of observed values makes these eye 

movement variables more prone to misclassification.      
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Figure 4.6 displays the classification performance curve that plots percent correct as a 

function of the total number of fixations used in the analysis. To calculate the classification 

performance curve, it was assumed that there is an equal likelihood that normal and 

colorblind vision classes occurring out of male population (see Chapter 2; section 2.4.1.1). 

Every sequence of N fixations observed in the experiment was taken into account, where N 

ranged from 5 to 1125 fixations. First, f*+ROI was calculated for each participant. Then, it was 

assumed that the population of f*+ROI would be normally distributed N(x|µ,σ) with mean µ 

and standard deviation σ in order that population distributions could be estimated from the 

observed f*+ROI of the normal group (n) and the colorblind group (c). The unbiased 

classification threshold (x) was then determined as the intersection of two distributions where 

N(x|µ n,σ n) = N(x|µ c,σ c). Classification performance was quantified as the percent of correct 

classifications using the unbiased classification threshold. 

As can be seen in this figure 4.6, it requires 435 fixations to make a correct 

classification of color vision status in 95 percent of the cases. Given that the average number 

of fixations for each image was 15 fixations, 95 percent correct classification performance is 

achievable with the use of 29 images.  
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Figure 4.6. The classification performance curve indicates that approximately 435 fixations 
on selected scenes are required to obtain 95 percent correct color vision status classification 
accuracy. 

 

Figure 4.7 shows the distribution of classification threshold (x) as a function of 

number of fixations taken from the experiment. As the number of fixations (N) increases, the 

classification threshold appears approximately constant, approaching the value of 3.51. On 

the basis of average f*+ROI and N for selected digital images, this result implies that if an 

individual’s average f*+ROI is lower than 3.51, that individual will be classified as a 

colorblind. On the other hand, if such an average f*+ROI is higher than 3.51, that individual 

will be classified as a normal. 

However, similar to Chapter 2’s study, the fact that approximately 8.5% of the 

population is colorblind should be considered when applying this classification analysis to a 

test population. As the probability that normal and colorblind vision classes occurring out of 
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a population is not equal, the classification performance would result in a higher false 

positive rate and a lower false negative rate for the screening test. 
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Figure 4.7. Relation between classification threshold (x) and number of fixations (N) on 
selected digital images. As number of fixations increases, the classification threshold appears 
approximately constant, approaching the value of 3.51. The error bar represents varying 
amplitude of the classification threshold at each interval between fixations. 
 

4.5.4 Classification Performance Optimization  

The +ROIs for each image were originally defined as the pixels that contained color 

saliency difference higher than 3 standard deviations (δ = 3). However, δ = 3 was selected 

based on an empirical rule that extreme values are generally higher than 3 standard 

deviations in the normal distribution. To achieve the rational balance of the classification, the 

amount of δ was adjusted to optimize the +ROIs, and the performance metric at each level of 

δ was considered.  
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When the +ROIs are redefined by adjusting an amount of deviation, the number and 

area of the ROIs could be changed. If the δ is set too low, the size of +ROIs will be larger. 

Colorblind participants may fixate on these +ROIs although they are not really attracted by 

the +ROIs, per se. Colorblind participants would be classified as normal. This would increase 

the “miss” trials or failure to detect colorblind cases when in fact they were present (Type II 

error) . 

On the other hand, if the δ is set too high, the size of +ROIs will be smaller. Normal 

participants’ fixations may fall out of +ROIs, when in fact, they are influence by saliency in 

these regions. Normal participants would be classified as colorblind. Thus, this increases the 

risk of “false alarm” or overstating colorblind conditions (Type I error). In this case, it 

would take more fixations than usual to achieve any level of classification. 

Figure 4.8 demonstrates the classification performance curve at different level of δ, 

using observed fixation from this study. When δ =1.5, a correct classification of color vision 

status could achieve only in 85 percent of the cases. A perfect classification was not possible 

with this data. In this case, the areas of +ROIs were considered large. Percentage of fixation 

on +ROIs of colorblind participants could be overestimated, thus inflating the miss cases.  

When δ =2, the correct classification can achieve as high as 95 percent of the case 

with fewer number of fixations. When the δ =3, only 435 fixations were required to make a 

95 percent correct classification of color vision status. However, as δ =3.5, approximately 

1,050 fixations were required to make a 95 percent correct classification. In this case, the size 

of the +ROIs were small so that it took more fixations than usual to land on any +ROIs. 

Therefore, as δ is increased to a certain point, it requires more fixations than it should be to 

achieve the same level of correct classification. 
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Figure 4.8. The classification performance curve optimization is shown with successive 
number of the fixations. (a) The optimal classifying performance with δ =3, requiring around 
435 fixations to achieve 95%. (b) Five separate classification runs with different δ are shown 
from the same fixation data. Note that the required number of fixations to obtain a highest 
level of percent correct differs as the threshold for defining +ROIs changes from δ = 1.5 to 
3.5. The optimal threshold value (δ =3) was used as representative curves for classifying 
color vision status. 
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CHAPTER 5. GENERAL CONCLUSION 

 

5.1 Summary 

This thesis was conducted to investigate the use of movement measurements to 

diagnose color vision deficiencies with three main objectives. The first objective was to 

extend the Ishihara testing method by using eye movements so that no active participation is 

required. The second objective was to develop a metric for screening color vision 

deficiencies using photographs to make the technique more covert. A method to select 

photographs and the region of interest useful for distinguishing eye movements of normal 

and colorblind individuals was developed. The third objective was to validate the proposed 

method by conducting an eye movement experiment in which normal and colorblind 

individuals were used as participants. 

Known as color plates perceived differently by normal and colorblind observers, the 

Ishihara images were used in the first experiment. This study hypothesized that differences of 

eye movements between two groups should be observed. Ten normal and nine colorblind 

participants, first freely viewed the numerals represented in a series of 15 digital Ishihara 

images. In a second block of the experiment, participants were required to freely view and 

verbally report the numerals in each image. The results indicated that the eye movements of 

colorblind participants were characterized by significantly fewer fixations on the numerals, 

shorter fixation durations, and longer saccade lengths as compared to those of normal 

participants. As expected, correct identification rates for the numerals by the colorblind 

participants was low, but performance on individual images was positively related to the 

number of fixations made on the numerals during viewing.  
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To construct a classification metric for discriminating color vision status, all observed 

fixations on the numerals were used. It is noteworthy that 95 fixations were required to make 

a correct classification of color vision status in 95 percent of the cases. With the eye tracking 

implementation, only 3 Ishihara images are needed to present to participants to determine if 

they are classified into color normal or red-green colorblind group. To establish the validity 

of the test, the Cohen’s Kappa coefficient of agreement (K) was used to account for the 

agreement of diagnostic results between the two tests. It was found that the agreement 

between the classification results of the computerized Ishihara test and the eye movement 

metric reached as high as 0.89 using as few as 5 images. In addition, the sensitivity and the 

specificity of the eye movement metric were comparable to those of the computerized 

Ishihara test. With approximately 95 fixations or 3 Ishihara images as classification criteria, 

the sensitivity and the specificity of the eye movement metric reached 0.88 and 1.0 

respectively. It was shown that that the approach using eye movement metric on the Ishihara 

images in the first experiment fulfills the initial requirements of the objective to provide an 

alternative for a new color vision test.  

One advantage of this test is that it is less susceptible to subterfuge due to the fact that 

it can be treated as a covert test. The individual being tested need not even be aware that they 

are being tested. This is an important advantage because participants might engage in 

subterfuge in order to pass the test for occupational reasons. While there exists only 

anecdotal evidence of subterfuge in color vision testing, with the introduction of color vision 

screening into the workplace for occupational safety reasons, professional organizations have 

become concerned with its possibility [4, 12].   



 

 

100 
 

While other color vision tests such as the arrangement test and the anomaloscope are 

difficult or impossible to cheat, such tests are more time consuming and require active 

participation on the part of the participant. This covert version of the Ishihara test is both 

shorter and easier than these other tests, and thus also applicable in mass testing scenarios. 

Mass testing could increase the numbers of individual screened, increase the number of 

deficiencies detected and could push the age of first diagnosis much earlier. Therefore, unlike 

other techniques, this covert color vision test can be uniformly applied to screen professional 

groups, elderly adults, children, or people with disabilities.  

However, since the viewers can realize that they are being tested from viewing the 

Ishihara-like images, the second objective was established with the goal of using the selected 

complex scenes as stimuli with the objective to investigate the plausibility of covert color 

vision test. A method was developed to select photographs by applying the colorblind 

simulation model and the saliency model. This method takes random images as input and 

generates a subset of images that can distinguish visual attention of normal and color blind 

observers as output.  

To summarize this method, after a random set of images with a predefined resolution 

is obtained, images with people, text, and numerals are manually filtered out. Images with no 

color are also removed. The Meyer and Greenberg’s dichromatic algorithm then took the 

remaining images (e.g. normal images) as input and generate as output images with 

colorblindness simulation (e.g. colorblind images) to simulate perceived red-green color 

difference of colorblind observers. To acquire stimuli’s color salience, both normal and the 

colorblind image pairs were processed with the saliency model to generate saliency maps 

[75]. The color feature saliency map of each image is used to emphasize color contrast, 
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marking the areas that normal and colorblind individuals tend to fixate. The subtraction of 

color saliency maps between the normal and colorblind image is calculated to acquire the 

color saliency difference. Skew of the color saliency difference is used as index to estimate 

the presence of clusters to attract visual attention differently from normally sighted and 

colorblind viewers. Images with the highest ranked skew are selected as stimuli. From the 

color saliency difference, the regions of interest for normal individuals (+ROIs) can be 

identified by the pixels that contained color saliency difference higher than δ standard 

deviations (+δSD) from the mean whereas the regions of interest for colorblind individuals (–

ROI) are identified by the pixels that contained color saliency difference higher than δ 

standard deviations (–δSD) from the mean.  

To validate this image selection method, the second experiment was hypothesized 

that the selected images could capture difference of eye movements between normal and 

colorblind participants. Normal participants were predicted to fixate more on the +ROIs 

while colorblind participants were predicted to fixate more on the –ROIs. Ten color normal 

and ten colorblind participants were instructed to freely view a series of 100 selected digital 

images. The results indicated that the eye movements of colorblind participants were 

characterized by significantly fewer fixations and shorter fixation durations on the +ROIs 

compared to those of normal participants. Colorblind individuals fixated on the –ROIs more 

often than normal participants.  

To construct a classification performance metric, all observed fixations on the +ROIs 

were used, indicating that approximately 435 fixations or 29 selected scenes are required to 

obtain 95 percent correct of classification accuracy. In addition, the optimization analysis 



 

 

102 
 

suggests that defining the +ROI as δ = 3 (e.g., 3 standard deviations from the color saliency 

difference) provided the rational balance for classifying color vision status. 

In summary, the results from the studies show that observable differences in eye 

movements can be used as an efficient metric for detecting red-green defects with either the 

Ishihara images or the selected photographs. However, because individuals may become 

familiar with the Ishihara stimuli, photographs selected by the proposed method are 

suggested to be used as stimuli for a covert test rather than artificially constructed test images 

such as the Ishihara images.  

 

5.2 Future Research 

The purposes for future research on color vision test using eye movements are 

encouraging. As a new approach to screen individuals without their knowledge or active 

participation, it is expected that this covert color vision test could be applied to a wide range 

of situations. For example, this technique can be implemented as an enhanced forced-choice 

preferential looking paradigm on a computer screen.  In this scenario, the position of correct 

response is randomly alternated by the computer, thereby reducing the possibility of 

observer’s cheating or learning responses [12]. The eye movements are automatically 

recorded, thus minimizing human errors from the tester’s judgment and eliminating 

requirements for user manual input.  

With regards to the airplane accident previously discussed in Chapter 1, the scenario 

to apply this procedure for continually and timely testing pilot color vision without active 

participation could be researched. Using aforementioned forced-choice preferential looking 

paradigm implemented with an eye tracker, the instrument similar to an automated driver’s 
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license vision screening system may be developed. In this case, it requires a pilot to look into 

the viewfinder at the correct color targets similar to the way the Department of Motor 

Vehicles (DMV) requires an applicant to read a series of numbers. The eye tracker then 

automatically analyzes the gaze movements and identifies the result. As a quick screening 

color vision test, this instrument might be used as a regular or random check point before a 

pilot enters the aircraft for higher aviation safety. 

The covert test could also be used as a color vision screening at the point of a 

workstation with reference to visual perception inside the workplace. For example, a 

machinery station could automatically screen operators for colorblindness and halt operation 

upon detection of color vision abnormalities. For example, in a textile mill where color 

judgment in dyeing is critical, a computerized control system presents a random series of 

digital photographs of color fabrics. Simply by looking at these complex scenes displayed on 

a computer screen, the operator could be diagnosed with red-green color deficiency.  

Another example of future research is the use of automatic testing in computer 

displays so that the graphical user interface can be adjusted if necessary for individuals with 

color deficits. In today’s development of display systems and instruments, more color 

systems have been implemented since it provides more visual information as well as 

aesthetic attraction [108]. A few applications unfortunately have addressed the difficulties of 

colorblind users who may use these instruments on a regular basis or users who do not realize 

that they are colorblind. Eye movement measurement can be applied in this scenario as well. 

For example, a remote eye tracker can record eye movements while a user views a 

background image on a computer desktop or on the screensaver. This could be sufficient to 

covertly diagnose a color vision deficiency. The application could then generate a warning 
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with regards to color vision status or even provide a color adaptation mechanism (see [109]) 

on the color display to improve visual accessibility for colorblind users. 

One drawback of this test is that the quality of eye tracking required necessitates 

either very expensive eye tracking hardware or a testing setup that restricts the movements of 

participant for the duration of the test. However, there is a significant amount of ongoing 

research aimed at lowering the intrusiveness and cost of eye tracking for the purposes of 

using eye movements in human computer interaction applications [110]. Furthermore, eye 

tracking technology is advancing rapidly. There is already technology to covertly track eye 

movements from over 10 meters away [111]. An eye tracker can be integrated into most 

computers and computer kiosks that are capable of recording user behaviors in the same way 

as digital cameras already are. Given recent advances, it is expected that within the next five 

years, these issues will be resolved, making widespread application of covert color vision 

testing a reality.  
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APPENDIX A.  MATLAB CODE FOR DICHROMATIC SIMULATION 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Based on algorithm from "Gary W. Meyer and Donald G. Greenberg,   
%Color-Defective Vision and Computer Graphics Displays,  
%IEEE Computer Graphics and Applications, Volume 8 ,  Issue 5   
%(September 1988), pp. 28-40" 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
function dichromat(fname); 
I = im2double(imread(strcat(fname,'.bmp'))); 
 
[m n r]=size(I); 
 
XYZtoRGB=[3.2405 -1.5372 -0.4985; -0.9693 1.8760 0.0416; 0.0556 -0.2040 
1.0573]; 
%XYZtolms=[0.3897 0.6890 -0.0787; -0.2298 1.1834 0.0464; 0.0000 0.0000 
1.0000]; 
XYZtoSML=[0.0000 0.0000 0.5609; -0.4227 1.1723 0.0911; 0.1150 0.9364 -
0.0203]; 
 
RGBtoXYZ=inv(XYZtoRGB); 
 
%RGBtoSML=RGBtoXYZ*XYZtoSML; 
 
SMLtoXYZ=inv(XYZtoSML); 
pcp=[0;0;1];    %protanopic confusion point in SML space 
dcp=[0;1;0];    %deuteranopic confusion point in SML space 
tcp=[1;0;0]; 
 
for i=1:m 
    for j=1:n 
                 
        RGB= [I(i,j,1);I(i,j,2);I(i,j,3)]; 
 
        XYZ= RGBtoXYZ*RGB; 
        %[Ixyz,Y]=XYZtoxyz(RGB); 
        l=XYZ(2);%luminance 
        [ua,va]=xyztouv(XYZ); 
         
        %White Point D65 CIE1931 
        w(1)=0.31271; 
        w(2)=0.32902; 
        w(3)=1-w(1)-w(2); 
        [uw,vw]=xyztouv(w); 
  
                                 
        %Transform for colorblind vision represented by deuteranopia 
                DCPXYZ=SMLtoXYZ*dcp;    %deuteranopic confusion point in 
XYZ space                
                 
                [up,vp]=xyztouv(DCPXYZ);%confusion point's u v value 
                 
                I477(1)=0.10278; 
                I477(2)=0.10286; 
                I477(3)=0.79436; 
                [u477,v477]=xyztouv(I477); 
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                I578(1)=0.49915; 
                I578(2)=0.49989; 
                I578(3)=0.00096; 
                [u578,v578]=xyztouv(I578); 
                 
                 
                if (vp-va)*uw-(up-ua)*vw-(vp-va)*ua+(up-ua)*va<=0 
                         
                     
                     u=((vw-va)*(u578-uw)-uw*(v578-vw)+ua*(vp-va)*(u578-
uw)/(up-ua))/((u578-uw)*(vp-va)/(up-ua)-(v578-vw)); 
                else 
          
                     u=((v477-va)*(uw-u477)-u477*(vw-v477)+ua*(vp-va)*(uw-
u477)/(up-ua))/((uw-u477)*(vp-va)/(up-ua)-(vw-v477)); 
                      
                end 
                
                v=vp+(va-vp)*(u-up)/(ua-up);                 
   
         
        tempXYZ=[0;0;0]; 
        tempXYZ(2)=l; 
        tempXYZ(1)=9.*u*l/(4.*v); 
        tempXYZ(3)=((4./u-1.)*tempXYZ(1)-15.*l)/3.; 
        
        tempRGB=XYZtoRGB*tempXYZ; 
    
           while ((tempRGB(1)>1.)||(tempRGB(2)>1.)||(tempRGB(3)>1.))%hold 
chromaticity and adjust luminance 
 
                      tempXYZ=tempXYZ*0.99; 
 
                   tempRGB=XYZtoRGB*tempXYZ; 
           end 
 
        for k=1:3 
            I2(i,j,k)=clamp(tempRGB(k),0.,1.); 
            %I2(i,j,k)=tempRGB(k); 
        end     
                 
    end     
end 
 
%Create dichromatic image 
imwrite(I2,strcat(fname,'_','d','.bmp'),'bmp'); 
 
function [u,v] = xyztouv(Iv); 
        u=4.*Iv(1)/(Iv(1)+15.*Iv(2)+3.*Iv(3)); 
        v=9.*Iv(2)/(Iv(1)+15.*Iv(2)+3.*Iv(3)); 
     
function I=xyztoXYZ(Iv,l); 
         I(1)=l/Iv(2)*Iv(1); 
         I(2)=l; 
         I(3)=l/Iv(2)*Iv(3); 
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function [I,l]=XYZtoxyz(Iv); 
         l=Iv(2);      
         I(1)=Iv(1)/sum(Iv); 
         I(2)=Iv(2)/sum(Iv); 
         I(3)=Iv(3)/sum(Iv);               
          
function y=clamp(x,low,high); 
        if x>high 
            y=high; 
        elseif x<low 
            y=low; 
        else 
            y=x; 
        end 
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APPENDIX B.  100 SELECTED DIGITAL IMAGES USED IN THE EXPERIMENT 
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