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ABSTRACT 

 
Biocybernetic systems are physiological software systems that explicitly utilize 

physiological signals to control or adapt software functionality (Pope et al., 1995.)  These 

systems have tremendous potential for innovation in human computer interaction by using 

physiological signals to infer a user’s emotional and mental states (Allanson & Fairclough, 

2004; Fairclough, 2008). Nevertheless, development of these systems has been ultimately 

hindered by two fundamental challenges. First, these systems make generalizations about 

physiological indicators of cognitive states across populations when, in fact, relationships 

between physiological responses and cognitive states are specific to each individual 

(Andreassi, 2006). Second, they often employ largely inconsistent retrospective techniques to 

subjectively infer user’s mental state (Fairclough, 2008).  

An individualized biocybernetic system was developed to address the fundamental 

challenges of biocybernetic research. This system was used to adapt video game difficulty 

through real-time classifications of physiological responses to subjective appraisals.   A study 

was conducted to determine the system’s ability to improve player’s performance.  The 

results provide evidence of significant task performance increase and higher attained task 

difficulty when players interacted with the game using the system than without. This work 

offers researchers with an alternative method for software adaptation by conforming to the 

individual characteristics of each user.  
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DEFINITIONS 

 The following terms were defined for use in this study:  

Affect Module:  A mental model defining the relationships between different cognitive or 

emotional states. 

Biocybernetic systems: A term coined by Alan Pope to describe systems which explicitly 

utilize physiological signals to control or adapt software functionality (Pope et al., 1995). 

Individual response specificity:   The individualized characteristics of physiological 

responses to stimuli (Andreassi, 2006). 

Physiological computing: The use of physiological signals for computer input (Allanson & 

Fairclough, 2004; Fairclough, 2008). It extends upon psychophysiological research by 

directly interfacing human physiology and computer technology to create expressive 

communication between humans and computers (Allanson & Fairclough, 2004). 

Psychophysiology: “…the study of relations between psychological manipulations and 

resulting physiological responses, measured in the living organism, to promote understanding 

of the relations between mental and bodily processes” (Andreassi, 2006, p. 2). 

Psychophysiological classifications: Categorization of specific psychophysiological 

relationships between particular physiological signals and specific cognitive states. 

Psychophysiological validity: Concerned with the correct interpretations of psychological 

states from physiological signals (Andreassi, 2006). 

 



 
 

CHAPTER 1.  INTRODUCTION 

 
Background 

Physiological computing is the domain of computer systems that use physiological 

signals for computer input (Allanson & Fairclough, 2004; Fairclough, 2008). Biocybernetic 

systems are physiological software systems that explicitly utilize physiological signals to 

control or adapt software functionality (Pope et al., 1995.)  These systems have tremendous 

potential for innovation in human computer interaction by using physiological signals to infer 

a user’s emotional and mental states (Allanson & Fairclough, 2004; Fairclough, 2008). 

Nevertheless, development of these systems has been ultimately hindered by two 

fundamental challenges. First, these systems make generalizations about psychophysiological 

patterns across populations when, in fact, relationships between physiological responses and 

cognitive states are specific to each individual (Andreassi, 2006). Second, they often employ 

largely inaccurate retrospective techniques to infer user’s mental state (Fairclough, 2008).  

An alternative approach can be developed to address these problems. This 

individualized approach should make no presumptions on how an individual’s physiology 

translates to mental state; rather, it should develop knowledge about each individual while 

they engage in the task at hand. A system using this approach would adjust task features 

specifically to each individual without making generalized assumptions about a person’s 

physiology and without relying on retrospective evaluations. Accomplishing this requires a 

system to perform two activities concurrently while individuals interact with the system.  

First, establish psychophysiological classifications, and second, adapt task features.  



2 
 

Performing these activities in real-time requires alternative techniques to that of generalized 

systems which collect subjective input and establish psychophysiological relationships after a 

task has been completed. 

Problems of the Study 

 There are three problems examined in this study.  (1) Subjective appraisals must be 

gathered at time of experience in order to circumvent the faults of retrospective evaluations. 

However subjective appraisals are difficult to gather in real time (Ikehara & Crosby, 2005); 

(2) The inherent variability between different individuals’ physiologies requires specific 

psychophysiological classifications for each individual, task and situation. 

Psychophysiological classifications are categorizations of physiological patterns established 

for particular cognitive states. (3) Appropriate task parameters must be selected and 

appropriately adapted, within an application, to allow for the possibility of enhancing a user’s 

performance, 

 
Need and Rationale for the Study 

There are three reasons that this current study was conducted:  (1) 

Psychophysiological patterns are different between all individuals. True, personalized 

adaptation through physiological computing is not possible using current, generalized 

methods. (2) Different situations can affect how well physiological data are collected and 

how users interact with a software system.  Establishing psychophysiological classifications 

while users interact with the system would accommodate these possible variances by 

building classifications specifically for each situation. (3) The current pre-requisites for 

research and development of biocybernetic systems are quite high.  Aside from requiring 
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specific knowledge of signal processing, software development, machine learning, 

psychology and physiology, there are few software implementations available to persuade 

new researchers to experiment with biocybernetic systems. This is unfortunate as both 

physiological computing and biocybernetic systems have potential to innovate many domains 

of software applications. This research can serve as an architecture / framework prototype for 

developing a more generalized set of software libraries to help lower the learning curve of 

biocybernetic development and research.  

 
Scope 

 The study was limited to an initial proof-of-concept of individualized biocybernetic 

systems. Evaluations presented here consider performance only against a control group and 

not against generalized physiological computing systems.  Additionally, this study only 

considers a small set of physiological signals, one type of classification method (artificial 

neural network), and task adaptations specific to a single video game application. However, 

the software and methodologies developed here can be applicable to other physiological 

signals, classification methods, and system adaptations.   
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CHAPTER 2.  LITERATURE REVIEW 

 
Physiological computing is the domain of computer systems that use physiological 

signals for computer input (Allanson & Fairclough, 2004; Fairclough, 2008). Biocybernetic 

systems are physiological software systems that explicitly utilize physiological signals to 

control or adapt software functionality (Pope et al., 1995.)  These systems have tremendous 

potential for innovation in human computer interaction by using physiological signals to infer 

a user’s emotional and mental states (Allanson & Fairclough, 2004; Fairclough, 2008). 

Nevertheless, development of these systems has been ultimately hindered by two 

fundamental challenges. First, these systems make generalizations about psychophysiological 

patterns across populations when, in fact, relationships between physiological responses and 

cognitive states are specific to each individual (Andreassi, 2006). Second, they often employ 

largely inaccurate retrospective techniques to infer user’s mental state (Fairclough, 2008).  

An alternative approach can be developed to address these problems. This 

individualized, approach should make no presumptions on how an individual’s physiology 

translates to mental state; rather, it should develop knowledge about each individual while 

they engage in the task at hand. A system using this approach would adjust task features 

specifically to each individual without making generalized assumptions about a person’s 

physiology and without relying on retrospective evaluations. Accomplishing this requires a 

system to perform two activities concurrently while individuals interact with the system.  

First, establish psychophysiological classifications, and second, adapt task features.  

Performing these activities in real-time requires alternative techniques to that of generalized 

systems which collect subjective input and establish psychophysiological relationships after a 
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task has been completed. Before elaborating on the design of individualized systems, an 

overview is provided on the different phases of physiological computing leading up to 

biocybernetic systems.  Also provided is an elaboration on current challenges.  

 
Physiological Computing Research Hierarchy 

Physiological computing has been developed from studies relating physiological 

changes to mental states. The research has progressed from experiments establishing patterns 

between various physiological signals and mental states, through the use of software 

programs to learn these patterns and finally, to systems utilizing these algorithms to adapt 

software appropriately to user’s mental state. 

 

Psychophysiology 

Psychophysiology is defined as “…the study of relations between psychological 

manipulations and resulting physiological responses, measured in the living organism, to 

promote understanding of the relations between mental and bodily processes” (Andreassi, 

2006, p. 2). The human body is a chemical, electrical, mechanical, thermal and magnetic 

system with a multitude of signals, all with possible psychophysiological ramifications 

(Allanson & Fairclough, 2004). The concept of psychophysiology stems from the 

physiological responses to psychological manipulations on three areas of the human nervous 

system—the central nervous system (CNS), the somatic nervous system (SNS), and the 

autonomic nervous system (ANS)—which then map to the cortical, somatic and autonomic 

systems, respectively (Andreassi, 2006). The CNS includes the brain and spinal cord; the 

SNS controls muscles; and the ANS controls and coordinates the major glands and organs. 
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A plethora of research studies have been conducted to understand the nature of a wide 

variety of physiological signals and their relationships to various mental states. Typical 

physiological signals investigating the ANS include: electrodermal activity (EDA) (Chanel, 

Rebetez, BÈtrancourt, & Pun, 2008; Mandryk & Atkins, 2007; Rani, Sarkar, & Liu, 2005; 

Yannakakis & Hallam, 2008); blood pressure (Chanel et al., 2008); heart hate (HR) (Chanel 

et al., 2008; Mandryk & Atkins, 2007; Yannakakis & Hallam, 2008), heart rate variability 

(HRV) (Mandryk & Atkins, 2007; Rani et al., 2005; Rowe, Sibert, & Irwin, 1998); 

impedance cardiography (ICG) (Rani et al., 2005), blood volume (Rani et al., 2005; 

Yannakakis & Hallam, 2008), Respiration (Chanel et al., 2008); and temperature (Chanel et 

al., 2008; Rani et al., 2005). Investigations in the SNS include electromyography (EMG) 

(Mandryk & Atkins, 2007; Rani et al., 2005), and extraocular muscles (EOM) (Ikehara & 

Crosby, 2005). Finally research into the CNS includes electroencephalography (EEG) (Pope, 

Bogart, & Bartolome, 1995) and event related potentials (ERP) (Andreassi, 2006).  

In basic psychophysiological experiments, subjects are introduced to psychological 

manipulations while specific physiological signals are monitored for significant changes 

(Andreassi, 2006). Typically, mental states are evaluated through retrospective investigations 

such as interviews or surveys.  The results are often connected to affect models to describe 

how changes in physiological responses correspond to changing mental states.   

These affect models are as varied as much as the different physiological signals that 

have been investigated. However, these models are mainly derivatives of the initial work on 

stress coping (Lazarus & Folkman, 1984) and positive psychology’s Flow model 

(Csikszentmilhalyi, 1975). Both works develop models for describing the effects of different 

mental loads on working memory. Examples of these studies include: task challenge by 
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subject skill level, (Chanel et al., 2008; Csikszentmihalyi & Csikzentmihaly, 1990; Rani et 

al., 2005); valence by arousal (Lang, 1995; Mandryk, Atkins, & Inkpen, 2006); regulation of 

arousal through stress quality (Blascovich & Tomaka, 1996); challenge / curiosity / fantasy 

(Yannakakis & Hallam, 2007); non-specific models of fun (Yannakakis & Hallam, 2008; 

Mandryk & Inkpen, 2004); and arousal by pleasure (Mandryk & Atkins, 2007; Russell, 

Weiss, & Mendelsohn, 1989). Unfortunately, no standardized affect model is used in 

physiological computing research.  

Using an affect model, the physiological signals are statistically mapped to the mental 

states. Basic psychophysiological research employs a variety of correlational and regression 

techniques. However, machine learning techniques are predominate in physiological 

computing research. The basic procedure for evaluating an effective technique is a two stage 

process: First, a psychophysiological experiment is conducted to gather both physiological 

signal data and mental states. If significant patterns are found, a learning algorithm is 

selected whose properties appropriately fit the characteristics of the discovered pattern. This 

algorithm is trained on the initial experiment’s data. In the second stage, a follow-up 

experiment is conducted similar to the initial experiment.   Upon completion, the subject’s 

mental states are both recorded retrospectively through subjective evaluations and predicted 

with the training algorithm.  The results of the retrospective evaluations and algorithm’s 

predictions are then compared to evaluate the success of the trained algorithm. Various 

predictive techniques used to classify physiology, including fuzzy logic (Graesser, 1999; 

Mandryk, 2007); neural networks (Petrushin, 2000; Pope et al., 1995; Yannakakis & Hallam, 

2008); k-nearest neighbors algorithm (Petrushin, 2000; Scherer, 1993); linear and nonlinear 

regression analysis (Moriyama & Ozawa, 2001; Rani et al., 2005); discriminate function 
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analysis (Ark, Dryer, & Lu, 1999); combinations of sequential floating forward search and 

fisher projection methods (Vyzas & Picard,1998); Bayesian classification (Qi &Picard,2002); 

naive bayes (Sebe, Lew, Cohen, Garg, & Huang, 2002); hidden Markov models (Cohen, 

Garg, & Huang, 2000); and support vector machines (Chanel et al., 2008).  

 
Physiological Computing  

Physiological computing extends upon psychophysiological research by directly 

interfacing human physiology and computer technology to create expressive communication 

between humans and computers (Allanson & Fairclough, 2004). There are many attributes of 

human physiology that are beneficial for computer input. Physiological signals provide 

continuous input from the user without explicit user interaction.  The signals can be 

measured systematically regardless of task, and can be collected in real-time without 

affecting user’s performance (Ikehara & Crosby, 2005). When combined with the results of 

psychophysiological research, the attributes of physiological signals allow for physiological 

computing systems to continually communicate the user’s mental state to a computer. This is 

highly valuable in situations in which full attention to a crucial, but perhaps, tedious task is 

essential (Girouard, 2009; Pope et al., 1995). For example, boredom, inattention, and stress 

have large impacts on task performance and are mental states sought after in physiological 

computing research.  

The procedure for physiological computing research is similar to that of 

psychophysiological research and is also evaluated by retrospective appraisals of mental 

states. However, a key difference between them is that physiological computing research 
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tasks participants with interacting with software, where in psychophysiological research 

participants are tasked with psychological tests. 

There are three main uses for physiological computing systems. 1) evaluation of 

software. 2) software adaptation, and 3) biofeedback therapy.  However therapeutic 

biofeedback systems are not relevant in this discussion. 

 
Evaluation of Software 

Physiological computing systems have been used for a variety of evaluations such as 

software effectiveness (Chanel et al., 2008; Mandryk et al., 2006; Yannakakis & Hallam, 

2008), improved artificial intelligence (Yannakakis & Hallam, 2007, 2008), computer-based 

collaboration (Mandryk & Inkpen, 2004), user engagement (Chanel et al., 2008; Pope et al., 

1995; Rani et al., 2005), and intelligent tutoring systems (Graesser, Wiemer-Hastings, 

Wiemer-Hastings, & Kreuz, 1999; Karamouzis & Vrettos, 2007). Software evaluations that 

incorporate physiological systems have many benefits over other procedures. Most notably, 

physiological data are covert and abstract of the subject’s conscious evaluation, allowing for 

more objective evaluations (Ikehara & Crosby, 2005). This is important as the differences 

between subjective and objective reports of software usability are significant (Wilson & 

Sasse, 2000). Other benefits of objective assessments include less susceptibility to effects of 

reappraisal, discounting, and self-representation biases (Chalabaev, Major, Cury, & Sarrazin, 

2009; Chanel et al., 2008; Mandryk & Inkpen, 2004). 
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Software Adaptation 

The second use for physiological computing is software adaptation or biocybernetic 

adaptation. The term biocybernetic was coined by Alan Pope to describe systems which 

explicitly utilize physiological signals to control or adapt software functionality (Pope et al., 

1995). For example, if a user’s physiological index of negative stress continues to increase, 

an adaptive controller can assume the user is stressed and proceed to automate system tasks. 

In theory, the reduction of a user’s responsibility should eventually cause a reduction in his 

or her stress level to a normal level where system tasks can then return to the user’s control. 

This feedback control loop between human and computer is at the heart of biocybernetic 

adaptation. Benefits of these systems include improved task performance, increased task 

engagement when used for sustained task performance periods (Freeman, Mikulka, Scerbo, 

Prinzel, & Clouatre, 2000), and reduction of subjectively assessed mental workload 

(Allanson & Fairclough, 2004). 

Software adaptation from physiological signals is researched across multiple 

disciplines; no single term is used to encompass its entirety. Three terms have emerged to 

describe most of the current research. Along with the term biocybernetic systems, adaptive 

automation and affective adaptation are used to describe adaptation that can use 

physiological signals with slight differences. Automated adaptation is strictly interested in 

automating tasks to control the user’s cognitive memory load (Freeman, Mikulka, Prinzel, & 

Scerbo, 1999). These systems can use physiological indicators as well as behavioral 

indicators for assessing the user’s mental state. Affective adaptation systems (Picard, 2000), 

a sub-set of affective computing, strictly focuses on adapting software to emotional states of 
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users. These systems, like automated adaptation, use either behavioral or physiological 

indicators. 

 
Challenges of Current Research 

There are multiple challenges with current biocybernetic systems. A comprehensive 

discussion of these can be found in recent reviews of physiological computing (Allanson & 

Fairclough, 2004; Fairclough, 2009). However, two main themes emerge from the review: 1) 

the lack of control on validating psychophysiology, and 2) the challenge of objectively 

evaluating mental state. 

 
Psychophysiological Validity 

Andreassi (2006) noted that Psychophysiological validity is concerned with the 

correct interpretations of psychological states from physiological signalsPhysiological signals 

gathered from bodily functions have unique characteristics that are specific to each individual 

and situational context. These situational and individualized responses stem from the fact that 

most physiological signals are influenced by two or more underlying nervous systems. 

Therefore, it is troublesome for research to develop general models of physiological 

behavior.  

 
Response Specificity 

Individual response specificity is the individualized characterization of physiological 

responses to stimuli (Andreassi, 2006). Small changes in physical makeup (e.g., height, stress 

level, family history, etc.) have implications on the characteristics of an individual’s 

physiological responses. For example, under everyday stress, patients with chronic anxiety 
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disorders tend to react with less physiological response than patients without chronic anxiety. 

However, they overreact, both subjectively and physiologically, to stimuli that are anxiety-

provoking (Hoehn-Saric & McLeod, 2000). Due to this specificity, individual characteristics 

can alter the relationship between physiological signals and mental states. One individual’s 

physiological relationship to mental states cannot be assumed to be relevant to that of other 

individuals.  

To compound the issue, an individual’s pattern of physiological responses may be 

similar only within a given situation, and that pattern may be different if the situation is 

different. Physiological responses cannot be assumed to be consistent across varying tasks or 

if the task is approached with a different state of mind. For example, a change of focus can 

alter one’s physiological response to a task. During an experiment visualizing phobias, 

speech-anxious participants exhibited significantly decreased heart rate when asked to worry 

about how they would react to a phobic situation compared to participants who were engaged 

in relaxing thoughts prior to the task (Borkovec & Hu, 1990; Hoehn-Saric & McLeod, 2000). 

Thus, the sequence of mental states affects physiological responses. Conversely, numerous 

studies have been conducted producing different physiological patterns for similar emotions. 

There is also the effect of directional fractionation wherein one physiological system 

might exhibit an increase in activation while others may show a decrease. An example of this 

is when an individual notices an item is missing, muscle tension and skin conductance might 

increase but heart rate may decrease (Andreassi, 2006). These effects add to the lack of 

extendibility of generalized psychophysiological patterns across physiological signals.  

In summary, physiology is specific to the individual, the task, and the conditions 

when performing a task. Any generalization across a population will be fundamentally 
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restricted to at a least one of three areas. Only two options have been evaluated in the past: 

(a) create a psychophysiological pattern that is restricted to one or all three areas of 

specificity, and in doing so, ultimately restrict the pattern’s applicability; or (b) generalize 

over the areas of specificity and reduce the pattern’s ability to predict individual’s mental 

states. However, a third option does exist. Psychophysiological patterns could be established 

as users interact with the system.  Doing so will conform to all levels of specificity; 

individual, task, and context of operation. 

 
Objective Appraisals of Mental State 

There is considerable debate on whether subjective reporting corresponds to actual 

experience (Mandryk & Inkpen, 2004; Marshall & Rossman, 2006; Pagulayan, Keeker, 

Wixon, Romero, & Fuller, 2002; Wilson & Sasse, 2000).  There is also a long research 

history of disassociation between subjective and objective measures (Kahneman, 

Fredrickson, Schreiber, & Redelmeier, 1993). In one example that evaluates subjective 

appraisals of physiological states, patients with chronic anxiety disorders exhibit increased 

muscle tension but not autonomic arousal when at rest. This is contrary to their self-reports 

(Hoehn-Saric & McLeod, 2000). This inconsistency between self-reporting and physiological 

recordings could be explained by a variety of factors such as alterations of body sensations 

through psychological factors, mental expectations, or attention to bodily states that can lead 

to perceptual distortions (Hoehn-Saric & McLeod, 2000). Additionally, when anxiety 

disorder patients are asked to rate themselves on severity of symptoms, they report increased 

heart rate, sweatiness, and muscle tension upon performing a stressful task. However, they 

also show a blunted physiological reaction to laboratory stressors. Thus, their subjective 
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perception of bodily states is not congruent with their physical state (Hoehn-Saric & 

McLeod, 2000). 

The detriments of self-reporting are not limited to subjective perceptions of 

physiology. There is a large discrepancy between subjective appraisals close to experience 

time and appraisals after a time delay on a variety of cognitive states (Fredrickson & 

Kahneman, 1993; Kahneman, 2000; Schwarz, 2000). Most notable is research on the 

discrepancy of immediate and retrospective appraisals of pain. Retrospective appraisals of 

pain are significantly different than the appraisals taken in realtime and tend to be 

significantly correlated to the last pain rating given (Kahneman et al., 1993; Kahneman, 

Wakker, & Sarin, May 1997; Redelmeier & Kahneman, 1996). Two retrospective evaluation 

heuristics have been established from this research: the peak-end rule and duration neglect. 

The peak-end rule indicates subjective appraisals tend to be heavily influenced by the ending 

state of an experience and has shown to account for between 86% and 98% of the variance of 

retrospective pain ratings (Kahneman, 2000). Duration neglect is the decrease in memory 

clarity of events over time. It also has a large effect on retrospective evaluations (Kahneman, 

2000; Redelmeier & Kahneman, 1996). Both duration neglect and the peak-end rule are not 

surprising given the limitations of memory capacity (Kahneman et al., 1997). 

Dual-process models of cognition are psychological models that describe human 

behavior resulting from interplay between controlled and automatic processing.  These 

models indicate that there are limited amounts of resources available for attention and that 

different cognitive processes must compete for resources (Barrett, Tugade, & Engle, 2004). 

Within an experiment, both the cognitive processing for the primary experiment task and the 

subjective evaluation processing must compete against one another. As task engagement can 
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be considered as the level of cognitive resources directed toward a task, higher engagement 

on the primary experiment task would allow allocating less resources for reflection or self-

assessment. This is in tune with the concept of Flow, where heightened involvement in 

activities have been correlated with subjective time loss (Csikszentmihalyi & 

Csikzentmihaly, 1990; Sackett, Meyvis, & Sackett, 2010) and research indicating subjective 

appraisals perform poorly at assessing subject’s behavior (Mandryk & Inkpen, 2004). The 

limited cognitive resources for primary task engagement explicitly reduce the viability of 

subjective appraisal for evaluation of mental states. Along with duration neglect and peak-

end rule, this adds a doubt into the validity of any evaluation of mental states evaluated using 

retrospective assessment. 

 
Alternative Approach 

As the review of literature has indicated, creating an individualized system must tread 

a fine line between the limitations of subjective appraisals and the complexities of 

psychophysiology. The individualized adaptation system gathers subjective data in real time 

using incremental subjective interpretations rather than retrospective analysis. Doing so 

should reduce or remove both the detrimental effects caused by physiological response 

specificity and retrospective evaluations. However, care must be taken as real-time subjective 

evaluation is difficult (Ikehara & Crosby, 2005). 

Because subjective appraisals are gathered as users operate the system, the 

relationship of subjective appraisals to physiology will be initially weak but should grow 

stronger overtime.  The value of the individualized adaptation system should then be greater 
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than generalized systems if the performance loss during initial use is replaced by later 

performance gains that are greater than that of the generalized systems. 

In order to develop such an individualized system several unknowns must be 

investigated. First, it is still unknown whether real-time subjective appraisal can 

appropriately capture mental state. Second, can a software program learn the physiological 

patterns of mental states gathered from real-time subjective appraisals? Finally, can 

adaptations performed through this system improve task performance over systems without 

adaptation?  

Research Questions 

Three research questions guided this study: 

1. Can real-time subjective appraisal appropriately capture mental state? 

2. Can psychophysiological classifications be established in real time using 

subjective appraisal gathered at time of experience? 

3. Can individual’s task performance be improved through task adaptations 

controlled by real-time psychophysiological classifications? 
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CHAPTER 3.  METHODOLOGY  

 
The purpose of the study is to develop an individualized biocybernetic system for 

facilitating real-time task adaptation using psychophysiological patterns that are established 

from subjective appraisals taken at time of experience.   Two systems were created for this 

study: 1) A video game application to be adapted. 2) A set of software libraries implementing 

an individualized biocybernetic system.   

 
Development of Video Game 

An interactive video game was developed to test the viability of an individualized 

biocybernetic system to enhance user performance. A video game application was chosen for 

testing as it has multiple attributes that are beneficial for investigating individualized 

adaptation systems. Video games can be highly interactive, allowing for constant user 

interaction, as well as provide continuous challenge. Both of these attributes are 

advantageous for providing rapid subjective assessments and adaptation of difficulty. With a 

video game, it is possible to collect a large amount of subjective inputs within a short time 

frame.  This high input frequency enables each subjective input to be mapped against a 

relatively small set of physiological data, thus, increasing the probability of stronger 

relationships between the physiological signals and subjective inputs. 

The game: The game developed was similar to the popular top-down shooter series 

“Geometry Wars.”  This type of game is highly interactive, requires constant player feedback 

and typically has constant, increasing difficulty. Top down shooters typically employ a two-

joystick control scheme.  A similar control scheme was implemented for the game—one 

joystick for movement direction; the other, for firing direction (Figure 1).  Additional 
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controls were implemented for navigating game menus and providing subjective appraisals 

of game difficulty. 

 Game difficulty was adjusted by increasing the amount, frequency, and type of 

enemy’s introduced to the game. Three types of enemies were used which vary in the amount 

of effort required to destroy them. These enemy ships spawned in random locations within 

the game. Table 1 illustrates the player’s ship and attributes of the three types of enemies 

used. 

 

Figure 1.  Game controls 
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 Table 1 Player and Enemy Ships  
   

Ship type Description Strength 

 

Ship controlled by the player can move in both x and y axis. 1 hit 

 

Easiest enemy ship to kill and moves linearly across the screen 
in the direction of the player’s ship location.   1 hit 

 

Second easiest enemy ship to kill and moves across the screen 
in a wave pattern in the direction of the player’s ship location. 5 hits 

 

Hardest enemy ship to kill. This ship follows the player’s ship 
until it is destroyed. 10 hits 



20 
 

The game difficulty ranged from 0 to 100, where a difficulty of 0 had no enemies and a 

difficulty of 100 introduced 10 new enemies every 0.25 seconds. Players were awarded 

points for every enemy ship they destroyed. The amount of points awarded for each ship kill 

increased linearly based on the amount of enemies destroyed without a player death.  

The objective of the game was to score as many points are possible while staying alive.  

Figures 2 and 3 illustrate games of high and low difficulties, respectively. 

To facilitate subjective assessment of difficulty, players could have indicated desire to 

change the difficulty level during the game via a quick press of two buttons on the 

controller—the left trigger for decreasing the difficulty, the right trigger for increasing the 

difficulty. This appraisal of difficulty was used to classify the player’s physiology for 

eventual automated adaptation.  The Boolean scheme for changing difficulty was chosen in 

order to limit the effort required for players to enter information. Dual mode cognitive 

models indicate that limited resources are available for active cognitive processing (Barrett et 

al., 2004). As such, complex subjective appraisals have an increased risk of being ignored or 

becoming too distracting—interfering with the primary task. A limited input strategy should 

have provided the best possible mechanism for allowing real-time subjective appraisal. 

Players could adjust the difficulty at a frequency of 5 times a second.  

Two changes to the gameplay were made from preliminary tests. First, an area bomb 

destroying nearby enemies was added when the decrease difficulty button was selected 

(Figure 4).  
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Figure 2. Game with high difficulty 

Figure 3. Game with low difficulty 
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The area bomb was added to address a problem found in preliminary trials showing players 

often died shortly after making the game too difficult.  This situation had to be addressed as it 

removed the only game state that required users to reduce difficulty. The second adjustment 

was an addition of a slow but consistent increase of one difficulty point every 5 seconds. 

Preliminary tests showed that this feature help players understand the concept of changing 

difficulty.  

Figure 4. Reduce difficulty bomb 
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Affect Model 

A mental model similar to Flow—task challenge verses skill level—was used in this 

experiment to articulate player’s mental state from their physiological responses. The model 

describes the fundamental, non-linear relationship between physiological states and task 

performance known as physiological activation (Andreassi, 2006). Here, the level of task 

performance rises with an increase in physiological activity up to a certain point that is 

optimal for a given task; any further increases in activity would degrade performance 

(Andreassi, 2006; Kahneman et al., 1993; Portas et al., 1998). This non-linear relationship is 

similar to the connection between arousal and task engagement. Arousal is the intensity of 

physiological activation or level of generalized stress in an individual (Andreassi, 2006). 

Boredom or calmness is considered to exist during low arousal levels and anxiety or 

challenge during high levels of arousal. However, arousal itself cannot decipher whether or 

not an individual is highly engaged (flow) or frustrated. For example, if the player’s 

assessment of difficulty was only classified by arousal, then the affect model would be 

unable to distinguish between the mental states of frustration and flow since the optimal 

arousal level for the task is unknown and both mental states exist in elevated levels of 

arousal. This was an important distinction to make since players in the frustration state 

should the game’s difficulty but during flow, increased the difficulty. 

 Task engagememnt was used to address this issue. Task engagement is the level of 

cognitive resources allocated to a task. It improves with moderate increase of arousal, but 

drops dramatically when a state of high excitement is reached (Kahneman et al., 1993). As 

such, it is not related directly to mental effort (Vicente, Thornton, & Moray, 1987). If only 

task engagement data were collected, the mental model would not be able to distinguish 
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between boredom and frustration, as both occur during low task engagement. Game difficulty 

should be increased during boredom, and decreased during frustration. Gathering 

physiological indicators of both arousal and task engagement should have allowed plotting of 

player’s assessment of game difficulty correctly to the user’s mental states of boredom, 

frustration or flow. 

 

Figure 5. Relationship of task engagement and arousal to affect 
 

Arousal 

For this experiment, arousal data were gathered through participant’s electrodermal 

activity (EDA) and heart rate (HR). EDA responds to emotional stimuli such as music, 

observed violence, and erotic stimuli (Allanson & Fairclough, 2004). HR has been 

incorporated previously into computer games that alter the level of challenge in real time 

(Allanson & Fairclough, 2004; Gilleade & Allanson, 2003). Both, EDA and HR are linear 

indicators to arousal (Andreassi, 2006; Mendes, 2009). The EDA signal was gathered 

through two electrodes placed on the skin. A small constant current was driven through them 

and the skin then behaved as a variable resistor. A voltage develops across the electrodes and 

application of Ohm’s law was used to calculate the effective resistance of the skin. (Allanson 
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& Fairclough, 2004). HR was gathered through electrocardiograms (ECG) which are 

readings of electrical activity of specific fibers controlling the contractions of the heart and 

can be used to infer the body’s autonomic system (Andreassi, 2006). The signal is a series of 

waveforms consisting of 5 waves (P, Q, R, S, T) which are characteristic of specific events of 

the heart (Andreassi, 2006). The QRS complex within the ECG signal is the depolarization 

just prior to ventricular contraction, which leads to a heart beat. The frequency of successive 

QRS complexes is the heart rate (Andreassi, 2006). 

 
Task Engagement 

Task engagement was collected through heart rate variability (HRV). HRV is 

correlated with task engagement (Rowe et al., 1998) and has been shown to respond within 

seconds to cognitive workload (Aasman, Mulder, & Mulder, 1987; Coles & Sirevaag, 1987; 

Rowe et al., 1998). It is also one of the most common transformations of ECG data for 

inferring cognitive state (Mendes, 2009).  HRV can be analyzed using the root mean square 

of successive heart beats (Mendes, 2009). Underlying HRV are the parasympathetic nervous 

system (PNS) and the sympathetic nervous system (SNS) (Berntson et al., 1997; Coles & 

Sirevaag, 1987; Rowe et al., 1998). 

 
Classification Technique 

An online classifier was used to establish relationships between player’s incremental 

difficulty appraisals and their physiological data. The classifier was incrementally trained 

whenever difficulty information was provided though users requests to increase/decrease 

difficulty.  Therefore, performance was assumed to gradually improve overtime as the player 

entered additional data. This was different than using the typical two experiment procedure 
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for machine learning—training a classifier on one experiment’s data until an acceptable error 

rate was achieved, and then test its performance on another dataset. Because the 

psychophysiological classification is initially weak, five data points were required before the 

adaptation system began influencing the game’s difficulty. Once this occurred, the 

automation continually adjusted the game’s difficulty every 2 seconds. 

 
Learning Algorithm 

An artificial neural network architecture ( derived from  an open source neural 

network package  byChhabra, 2010), was used to classify player’s physiology to their 

assessments of game difficulty. Neural networks are effective approaches to distinguish 

between different levels of task difficulty (Allanson & Fairclough, 2004; Gevins et al., 1998; 

Laine, Bauer, Lanning, Russell, & G.F, 2002; Wilson & Russell, 2003). Neural networks also 

have superior predictive capability in comparison to multiple linear regression models 

(Killough, Crumpton, Calvert, & Bowden, 1995; Zurada, Karwowski, & Marras, 1997), and 

make minimal assumptions concerning the statistical nature of the data (ie, linearity, 

normality, homogeneity of variance) (Chen, Kaber, & Dempsey, 2000). 

 
Pre-processing and Discretization of Physiological Input 

A two-stage approach was implemented to classify physiological input. The first 

stage preprocessed the analog physiological signals to discrete classes. The second stage sent 

the discrete states into a back-propagating multi-layered perceptron neural network. The pre-

processing stage was used to first, reduce the risk of under-fitting of the neural network from 

low numbers of subjective input training data, and  second, to filter out possible artifacts 

collected from the physiological collection device. Each physiological signal was divided 
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into moving averages and moving deltas of the previous 2 seconds of collected data. 

Physiological activation indicates that there are different psychophysiological interpretations 

for different points within a signal’s range. A moving average was used as an input to the 

neural network to provide the current level of physiological signals within each individual’s 

signals range. Current changes within signals (deltas) were used to indicate each signal’s 

variability to the neural network. Each physiological signal’s mean and delta were discretized 

into eight equally sized states within the current known range of a signal. Each signal range 

was updated continually as data was collected. 

 
Network Organization  

The artificial neural network organization had 6 inputs and 1 output. It used 2 layers: 

1 hidden layer of 6 sigmoid neurons and 1 output neuron. Preliminary trials suggested a 

single layer of each input signal is sufficient for classification of physiological patterns. 

Training of the network was performed through back-propagation of network weights using 

player’s difficulty appraisals as training data. This information was provided as either a 0—

user requested decreased difficulty or 1—user requested increased difficulty. The inputs to 

the network were the discrete 2-second moving means and deltas of player’s HR, EDA, and 

HRV. 

 
Adaptation Software Libraries 

A generalized architecture was created for the adaptation’s software structure. The 

flexible system allowed for multiple types of signals, classification techniques, and updating 

techniques. The system was organized into three distinct libraries. The Signal library was a 

modular organization of different inputs into the system. The Classifiers library was a set of 
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multiple classification algorithms to categorize data collected through the Signals library. 

The Agent library manages the integration of the classifiers with the data signals. Figure 6 

indicates the organization of structures within the software to capture the data. 

 
Sensors and Signals 

The Signal library provides the interfaces and implementations of various signals to 

be used within an adaptive system. This library is split into two distinct functionality groups, 

Sensors and Signals.  

The Sensors provided actual collection of data and are organized into three groups; 

device sensors, dynamic sensors, and simulated sensors. The difference between sensor types 

is based on how the actual signal data are generated. Device sensors, as the name would 

indicate, collect data from specific devices such as specific physiological data collection 

equipment. Dynamic sensors provide a mechanism for collecting data generated in other 

software, such as specific application button presses or avatar movement. Simulated sensors 

allow for signal data to be predefined and generated from within the sensor. These sensors 

are useful for creating test sensors or loading data collected from previous experiments. All 

sensor classes were adopted from similar C++ virtual interfaces so all sensors can be 

interchanged with one another. 

The second group, Signals, is a set of stackable algorithms which can be applied on 

top of the different sensor types. The signals are stackable in the sense that all signals can be 

used as inputs to all other signals. This allows construction of a basic set of filters and 

transformations to be combined for complex processing on a single input sensor. As an 

example, a device sensor gathering ECG data for interpretation of HR had two basic signals 
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stacked. The first was a QRS-detection and feature extraction algorithm. The second signal 

stacked on top gathered basic frequency data transforming the output of the QRS detection 

signal into frequency information. Some signals such as the QRS detection signal were for 

specific use but others, such as moving average signals or spectrum analysis signals could be 

applied in various ways. Signal transformations could become much more complex including 

Fast Fourier Transformations signals, auto regressive analysis signals, and geometric 

matrices transformations run on dedicated graphic hardware. As with the sensors, all signals 

conform to similar interfaces and were interchangeable. 

 
Classifiers and Agents 

The Classifiers library provides interfaces and implementations of multiple 

classification algorithms to classify data collected through the Signal library. The artificial 

neural network used for this study was implemented through this interface.  

The Agent library manages the updating and integration of classifiers with 

asynchronous data signals. Signals are collected from multiple sensors at sampling rates 

different than the application and the classifiers which use them. In the most basic form, 

agents established a schedule for updating the classifiers on the signal data by resolving the 

different timings between the sensors and classifiers. This could have drastic implications on 

the nature of the signal classification. For example, physiological sensors could be provided 

at a much higher rate of data sampling than classification algorithms can process. If a 

classifier requires a single input data set for each training data set, then the agent must 

resolve the timing differences between the training signal data and the input signal data. It 
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was possible for training data sets to be ignored in the event no input signals occurred within 

a relative timeframe.  

 

Figure 6. Signal transformations within the adaptation engine 
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Hypotheses 

The following task-related parameters were used in this study: (1) task performance, 

which is the highest score a player gains; (2) task challenge, which is the highest difficulty 

attained; (3) subjective input frequency, which is the amount of difficulty adjustments made 

by the player, and (4) task engagement, which is the level of user’s focus or attention 

attributed to a task evaluated through HRV. 

H1. The individualized biocybernetic system will not lead to an increase in 

maximum task performance. 

H2. The individualized biocybernetic system will not lead to an increase in 

maximum task challenge. 

H3. The individualized biocybernetic system will not lead to a decrease in the 

frequency of subjective inputs. 

H4. The individualized biocybernetic system will not lead to an increase in task 

engagement. 

 
Experimental Procedure 

A repeated measures within-group study was used to evaluate the performance of the 

individualized biocybernetic system. The Institutional Review Board (IRB) at Iowa State 

University approved this experiment prior to working with human subjects.  Pre-test setup 

involved participants signing an informed consent form, completing a demographic survey, 

and then allowing baseline physiological reading to be taken. 

The experiments included two settings of video game trials:  1) The adapt 

(experiment) group: here the video game difficulty was adapted by the neural network 
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classifier. 2) The non-adapt group: Here the neural network classifier did not adapt the game 

difficulty.  It should be noted that while only the adapt group had the game difficulty adapted 

by the software, participants during both types of trials manually provided difficulty 

appraisals. 

Participants were tasked with 5 trials of 6 minutes each with a 3 minutes break 

between trials.  Each subsequent trial was rotated between the adapt group and the non-adapt 

group. As such, all participants participated in at least two trials adapted by the 

individualized biocybernetic system.  Participants were given 5 lives at the beginning of each 

trial. If players lost all lives within the 6 minutes, 5 new lives were given, the game score was 

reset to 0, and the remaining time was played. After completion of the five trials, each 

participant completed  a post survey related to the games’ events.  Figure 7 depicts a 

participant playing the game while connected to the physiological equipment. 

 

 

Figure 7. Participant playing the game 
 

 



33 
 

Apparatus  

All trials were run on a 42-inch LCD display located three to four feet from the 

participant’s viewing position. The ECG and EDA input data were gathered with a 

FlexComp physiological sensor (Thought Technology: Montreal, Canada) at a sampling rate 

of 2048 Hz. Updating of the adaptation software occurred at a frequency of 10 Hz. ECG data 

was collected from three electrodes—positive, negative, and ground—which were placed on 

the chest of the participants, so the positive and negative electrodes spanned the heart. EDA 

data were gathered through two sensors that were placed on the subject’s left middle and ring 

fingers. An Xbox360 controller was used for the game controls. All processing of the game 

and the adaptation software were run on a 3 ghz Core 2 Duo with a NVidia Quadro 1800 

graphics card. Game sounds and music were provided from a 5.1 Logitech speaker system. 

 
Software Dependencies 

The modular engine was developed in C++ with Visual Studio 2005 and exported as 

a python library using the SWIG library.  A modified version of a single scan algorithm for 

QRS- detection and feature extraction algorithm was used to detect R-R intervals from the 

ECG data (Engelse, 1979). Software developed to access physiological data from the 

Flexcomp device used Thought Technology’s C++ TTAPI. The video game was written in 

Python 2.5.2 using Panda3D 1.6.2. The PyGame library was used for interfacing the xbox360 

controller to Panda3D.  

Demographic Analysis 

Demographic data was collected at the onset of experimentation; instrumentation of 

classifier and gameplay variables were collected during each participant’s interaction with 
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the software and a post questionnaire was given to assess the participants’ experience after 

the experiment. 

Data in the demographic survey captured general demographical information, 

perceived life stress and general video game experience. The perceived stress questions were 

taken from the perceived stress scale (PSS) (Cohen, Kamarck, & Mermelstein, 1983). Its use 

was to investigate the relationship of the subjective appraisals entered with a participant’s 

general psychological tendencies. The questionnaire itself does not have a scale classifying 

level of stress, however a national poll of 2,387 respondents provided  national means and 

standard deviations on which to rate subject’s stress levels (Cohen & Williamson, 1988). 

Participants were classified into groups of low, medium and high stress. Low was one 

standard deviation or below the national mean for participant’s age group. The medium 

group consisted of participants within one standard deviation of the mean for their age group. 

The high stress group was one standard deviation or above.  However, no participant in this 

study fit into the low stress group. 

 
Evaluation Procedures 

Classifier performance 

Instrumentation of the artificial neural network captured the difficulty appraisals 

provided by participants, the discrete physiological inputs, and the network’s mean squared 

error (MSE) for every back-propagation performed. The MSE is a functional assessment of 

the artificial neural network predictions. Since the adaptation occurred after 5 subjective 

inputs, most of the back-propagations used to learn the new subjective inputs occurred at the 

same time as the adaptations that used them. So, both the average of all MSE and all final 
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MSEs are accessed. The final MSE provides indication of the general performance of the 

classifier while the total average will indicates the actual error rates of the predictions made 

during adaptation.  

 
System Performance 

The methods used to evaluate the individualized biocybernetic systems were related 

directly to the four hypotheses under examination. Data collected include the raw ECG, 

EDA, HR and HRV.  All data were captured at their respective collection rates. The actual 

game data captured consisted of game difficulty, game score, and subjective appraisals. 

Game difficulty was the rating of 0 to 100 of the level of task challenge that the participants 

can endure. Game score is the general task performance variable in the video game task. 

The subjective inputs reflect the amount of effort participants applied to the task 

difficulty. This metric provided a general assessment of the participant’s attention to the 

difficulty of the game.  This data was compared to the perceived life stress groups gathered 

in the pre-experiment survey to evaluate whether the subjective inputs reflected the general 

perceived stress of participants.  Through  intuition it was believed that higher stressed 

participants would decrease difficulty  more often than lower stressed participants .  

Additionally, it was assumed that lower amounts of total subjective inputs indicated the 

player’s approval of the game difficulty either through conscious appraisal or high 

engagement with the game.  It was believed that success of the adaptation system occurred if 

participants were engaged enough with the game to forget providing subjective input.  

Pair-wise comparisons of adapted trials with non-adapted trials were used to evaluate 

the experiment data.  One-tailed pairwise t-tests were implemented to evaluate significant 
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differences. For non pair-wise tests such as comparisons between stress groups, the 

significance of the differences was calculated through t-tests using homeostatic variances. 

Differences in experiment data comparing the 2nd and 3rd trials with the 4th and 5th 

trials were also evaluated to determine the change of performance over successive trials. 

Results from the participants’ first trial were not used, Since the first trial was only used for 

training and user adjustment. To ensure all equal distribution of adapt and non-adapted trials,  

all participants in the 2nd and 3rd trials received one trial with game difficulty adapted by 

individualized biocybernetic system and one trial without.  Half of the participants received 

the adapted trial on the 2nd trial and the other half for the 3rd trial.  The 4th and 5th trials 

followed the same procedure.  A significance criterion of p=0.05 was used throughout the 

discussion of results. 

 



37 
 

CHAPTER 4.  RESULTS 

 
Inferential Statistics 

A total of 25 people (7 female, 18 male, ages=19 to 46, mean=24 years; standard 

deviation=6.6 years) participated in the study. Records for three participants were omitted: 

two due to a software bug, and the third after discovering that a “bomb hack” in the 

gameplay enabled the participant to bypass the game’s challenge and score maximum points 

without “dying”. 

The results of the analysis are provided in the following tables: Table 2 provides level 

of stress and general game experience. Table 3 provides the error rates for the artificial neural 

network used to classify physiological patterns to subjective appraisals.   

Tables 4 and 5 provide differences in performance across experiment groups and 

sequential trials. Top score indicates the maximum score attained and is the variable 

evaluated for H1. Top difficulty is the maximum difficulty attained and is the variable 

evaluated in H2. Subjective input frequency is the mean rate of inputs provided per second.  

It is the major data point referenced for H3. Table 6 provides game performance differences 

between 2nd and 3rd trials and the 4th and 5th trials. This table provides information on how 

participant’s learning of the game influences the performance rate of the adaptation system. 

Tables 7 and 8 summarize physiological signal differences between trials 2 and 3 and trials 4 

and 5, respectively. Both the average and maximum statistics are provided.   

Figures 8 through 13 present the differences between participant’s performances 

during adapted and non-adapted trials.  Figure 8 and 9 provide differences of top score for 

different trials.  Figures 10 and 11 provide group differences on the top difficulty attained by 
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participants.  Figures 12 and 13 provide differences on frequency of subjective inputs as 

entered by participants.  The X-Axis for all graphs are the subject ID’s used in the 

experiment (E01, E02, etc.).  

Tables 9 to 13 summarize the relationship between subjective inputs and the stress 

groups. These tables provide insights into the relationship between subject’s general 

perceived stress and use of the adaptation system. Table 9 shows the difference in total 

subjective input in trials 2 and 3 compared against total subjective inputs in trials 4 and 5.  

Results within table 9 augment the subjective input frequencies collected between experiment 

groups found in tables 4 and 5 to show the change in total subjective inputs between 

successive trials. Table 10 shows the differences in subjective inputs types between 

experiment groups.  Table 10 indicates how the adaptation system changes the type of 

difficulty inputs provided by participants.  

Tables 11 and 12 expand the results of tables 9 and 10 into differences between stress 

groups.  Table 11 indicates total subjective input differences between stress groups.  Table 12 

provides the composition of subjective input types between medium and high stress groups.  

Table 12 indicates the differences in the amount of subjective inputs types entered between 

perceived stress groups.  Table 13 provides general ratios of different types of subjective 

inputs against stress levels and experiment groups. 
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Table 2. Participants’ stress and game experience (n=25) 
 

 Low Medium High 
Perceived Stress 0 16 9 

Game Experience 9 11 5 
 

Table 3. Error rates of the neural network 
 

 Total During Adapt Trials During Non-Adapt Trials 
Average Mean Squared Error 0.16 0.16 0.16 

Final Mean Squared Error 0.13 0.14 0.14 
 

Table 4. Performance results of trials 2 & 3 (n=25) 
 

Trials 2&3 Adapt Group  Non-Adapt Group 
 Mean Stdev Mean Stdev 

Top Score 435902 629425 298234 290404 
Subjective Input Frequency 0.52 0.85 0.25 0.32 

Top Difficulty 47.44 13.62 41.48 11.93 
     
 Difference Percent Stdev p-Value 

Top Score 137667 46.16 523024.81 0.10 
Subjective Input Frequency 0.27 105.58 0.80 0.05 

Top Difficulty 5.96 14.37 11.90 0.01 
 

Table 5. Performance results of trials 4 & 5 (n=25) 
 

Trials 4&5 Adapt Group  Non-Adapt Group 
 Mean Stdev Mean Stdev 

Top Score 633625 663393 540336 596701 
Subjective Input Frequency 0.65 0.94 0.46 0.69 

Top Difficulty 56.31 19.15 45.36 16.03 
     
 Difference Percent Stdev p-Value 

Top Score 93288 17.27 292781 0.06 
Subjective Input Frequency 0.18 38.84 0.47 0.03 

Top Difficulty 10.95 24.15 21.55 0.01 
 

Table 6. Performance difference between trials (2-3 & 4-5) (n=25) 
 

 Difference Percent Stdev p-Value 
Adapt Top Score 197723 45.36 515181 0.03 

Non-Adapt Top Score 242102 81.18 444537 0.01 
Adapt Top Difficulty 8.87 20.67 14.00 0.00 

Non-Adapt Top Difficulty 3.88 10.30 10.06 0.03 
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Figure 8. Trials 4&5 Top Scores Differences 
 

 

Figure 9. Top Score Differences between Trials 2&3 and Trials 4&5 
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Figure 10. Trials 2&3 Top Difficulty Differences 

 

 

Figure 11. Trials 4&5 Top Difficulty Differences 
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Figure 12. Trials 2&3 Input Frequency Differences 
 

 

Figure 13. Trials 4&5 Input Frequency Differences 
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Table 7. Physiological results of trials 2 & 3 (n=25) 
 

Trials 2&3 Adapt Group  Non-Adapt Group 
 Mean Stdev Mean Stdev 

Heart Rate Average (beats per minute)  6.18 13.65 6.88 15.46 
Heart Rate Max (beats per minute) 43.21 34.467 37.591 33.72 

Skin Conductance Average 343 410 305 366 
Skin Conductance Max 499 532 438 477 

Heart Rate Variability Average 0.029 0.0001 0.030 0.0005 
Heart Rate Variability Max 0.032 0.0021 0.031 0.0018 

     
     
 Difference Percent p-Value 

Heart Rate Average (beats per minute) -0.7 -10.15 0.06 
Heart Rate Max (beats per minute) 5.61 14.93 0.19 

Skin Conductance Average 38.58 12.65 0.03 
Skin Conductance Max 61.34 14.00 0.05 

Heart Rate Variability Average -0.0007 -2.34 0.00 
Heart Rate Variability Max 0.0005 1.67 0.08 

    
NOTE:  differences are changes from baseline physiological data gathered before game deployment 

 

Table 8. Physiological results of trials 4 & 5 (n=25) 
 

Trials 2&3 Adapt Group  Non-Adapt Group 
 Mean Stdev Mean Stdev 

Heart Rate Average (beats per minute)  4.52 17.13 5.57 18.50 
Heart Rate Max (beats per minute) 42.78 38.845 30.942 27.18 

Skin Conductance Average 391 412 400 439 
Skin Conductance Max 564 526 558 539 

Heart Rate Variability Average 0.030 0.0007 0.030 0.0005 
Heart Rate Variability Max 0.032 0.0019 0.032 0.0019 

     
     
 Difference Percent p-Value 

Heart Rate Average (beats per minute) --1.06 -18.95 0.61 
Heart Rate Max (beats per minute) 11.84 38.25 0.06 

Skin Conductance Average -9.11 -2.28 0.31 
Skin Conductance Max 5.85 1.05 0.42 

Heart Rate Variability Average -0.0008 -2.67 0.00 
Heart Rate Variability Max -0.0001 -0.20 0.44 

    
NOTE:  differences are changes from baseline physiological data gathered before game deployment 
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Table 9. Total subjective input differences between trials (2-3 & 4-5) (n=25) 
 

 Difference Percent p-Value 
Adapt -62 -27.84 0.22 

Noon-Adapt -23 -18.02 0.34 
 

Table 10. Difference between Decrease Difficulty &  Increase Difficulty  inputs (n=25) 
 

 Difference Percent p-Value 
All -9.88 -6.18 0.23 

Adapt -9.90 -9.82 0.16 
Non-Adapt 0.02 0.03 0.50 

 

Table 11. Total subjective inputs differences between stress groups (High – Medium) (n=25) 
 

 Difference Percent p-Value 
Adapt -55 -26 0.26 

Non-Adapt -20 -16 0.35 
 

Table 12. Difference of (Decrease Difficulty -  Increase Difficulty) inputs between high and 
medium stress groups (n=25) 

 
 Difference Percent p-Value 

All 41 15.46 0.07 
Adapt 31 10.33 0.07 

Non-Adapt 10 6.12 0.19 
 

Table 13. Subjective input ratios of Decrease Difficulty /  Increase Difficulty (n=25) 
 

 High Stress Medium Stress 
Adapt 0.50 0.39 

Non-Adapt 0.60 0.54 
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CHAPTER 5.  FINDINGS, CONCLUSIONS AND RECOMMENDATIONS 

 
 This research was conducted to establish the viability of a possible alternative to 

system adaptations conducted with generalized psychophysiological relationships. The 

results indicate that there are significant task performance increases when using the 

individualized biocybernetic system.  The results also demonstrate significant potential for 

future research.  

Findings 

Relationship of Subjective Input to Perceived Stress 

 Perceived stress had a moderately significant effect on the type of subjective inputs 

provided by participants.  Table 12 indicates participants that were classified with high 

perceived stress had a significant increase in amount of "decrease difficulty" subjective 

inputs in comparison to the medium stress participant group.  High perceived stress 

participants had, on average, 31 additional “decrease difficulty” inputs (a 10% increase, 

p=0.07) than “increase difficulty” inputs during adapt trials and an insignificant change 

during non-adapt trials. This suggests that high stress individuals are more likely to decrease 

the game difficulty than less stressed individuals.  This result is consistent with intuition that 

high perceived stress should relate to more decreased difficulty adjustment. It also indicates 

the difficulty inputs were entered as intended for the experiment and not for other techniques 

to increase points scored.   

 
Performance of the Artificial Neural Network 

 Table 3 indicates that the overall neural network error rate was 0.17.  There was no 

significant change between the adapt and non-adapt trials. So, on average the neural network 
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predictions contained a variance of 0.17 from actual subjective appraisals. Compared to error 

rates of generalized learning algorithms, this error rate is considerably high. Preliminary 

trials had suggested error rates near 0.001, which is several magnitudes of order lower than 

was actually achieved. However, the results of increased performance when using the 

biocybernetic system suggest the predictions were effective, but not optimal.  

 This error tolerance was possibly due to the way the biocybernetic system adjusts the 

difficulty by small increments.  A single prediction only changed the game difficulty by 1 

point which was out of a range of 100.  So a single change in difficulty had a limited effect 

on the gameplay.  Only the sum of multiple predictions would have a significant influence on 

the difficulty level.  Since the error rate shows the classifier was correct more often than not, 

the total effect of the predictions was more likely to be correct.  In addition, participants 

could provide quick and incremental feedback whenever a prediction was wrong, thus 

nullifying any incorrect predictions from adding together.  Further research should 

investigate the effectiveness of different adaptation parameters using varying prediction error 

rates. 

 
Performance of the Individualized Biocybernetic System 

Table 5 show significant differences in both game performance and task difficulty 

measures between experiment groups (adapt and non-adapt).  The 4th and 5th trials showed a 

moderately significant increase in top scores (17 %, p=0.06, Figure 8) and a significant 

increase in top difficulty (24%, p= 0.01, Figure 11) attained in trials using the adaptation over 

non-adapted trials. Therefore, hypotheses H1 and H2 are rejected. 



47 
 

 Tables 6 reveal that the top score increased in trials 4 and 5 over trials 2 and 3 for both 

adapted (45%, p=0.03, Figure 9-red) and non-adapted (81%, p=0.01, Figure 9-blue) groups.  

However, the differences between these groups in earlier trials (46%, p=0.10, Table 4, Figure 

8) were reduced in trials 4 and 5 (17%, p=0.06, Table 5). This difference indicates that while 

the adaptation system enhanced performance for all trials, the performance gain based on the 

adaptation system decreases in subsequent trials. One possible conclusion is that the 

adaptation system has a greater value as an augmentation for increasing learning speed rather 

than a general tool for increasing user performance. However, the reasoning and the extent of 

the individualized biocybernetic system as a learning device are beyond the scope of this 

research. 

 Another potential explanation arises from task difficulty data in tables 4 and 5. The 

decrease in the separation of performance between the adapt and non-adapt groups over 

sequential trials may be caused by participants’ play strategies, where the participants 

became more risk-seeking. Table 4 indicates that the 2nd and 3rd trials had an increase of max 

difficulty (5.96 points p=0.01, Figure 10), which increased further in trials 4 and 5 (10.95 

points, p=0.01, Figure 11). This increased change in max difficulty may indicate that later 

trials exceeded an optimal difficulty threshold for scoring points. The increased difficulty 

may indicate that subjects became over-confident in setting the difficulty which ultimately 

affected their performance. It is quite possible that subjects viewed the adaptation 

adjustments as conservative, even though the results show that the performance significantly 

increased with the adaptation system. Additional research on participant’s decision behavior 

is needed to evaluate the cause for participants’ change in motivations in later trials. 
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Physiological Differences 

There was an insignificant change in HR average between the adapted and non-

adapted group (-1.056 beats per minute, p=0.26, Table 8). Interesting though is the 

moderately significant increase in max HR during adapted trials over non-adapted trials 

(11.86 beats per minute p=0.06, table 8). This is an increase over earlier trials when the max 

HR difference between groups was insignificant (5 beats per minute; p=0.18). These data 

further support the potential explanation that subject’s risk seeking caused additional stress 

by over extending their difficulty level in later adapted trials.  This should be further 

validated with an appropriate instrument for risk seeking propensity.  

 Table 8 indicates a sustained reduction of HRV for trials 2 and 3 (2.3%, p=0.00) and 

trials 4 and 5 (2.6% p=0.00).  This suggests an increase in task engagement in the adapted 

trials. However, the moderate percentage change does not allow for rejection of the 

hypothesis H4 for task engagement. 

 
Subjective Input Characteristics 

A significant increase of subjective input was provided for adapted trials during trials 

2 and 3 (105%; p=0.05, table 4, Figure 12) and trials 4 and 5 (38.8%; p=0.03, table 5, Figure 

13). This was unexpected as the intended effect of the adaptation system was to reduce 

subjective input. It was expected that an effective adaptation system will reduce the cognitive 

demand (or attention) of appraising the difficulty of the game.  This type of behavior was not 

observed. Therefore, the results failed to reject H3. There are multiple possible explanations 

for this behavior. First, it is possible that the perceived conservative nature of the system’s 

adaptations affected subject’s input behavior, leading to an increase in subjective input.  It is 
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also possible that the adapted trials acquired an increase of cognitive resources for both the 

primary game task and the subjective assessment. So, subjects were more aware of their 

ability to enter subjective inputs during adapted trials.  This explanation is more appropriate 

considering that both game task performance and the subjective input increased in adapt 

trials.  Further research evaluating cognitive demand may provide more appropriate results in 

this area. 

 
Limitations 

The overall data suggest that individualized biocybernetic adaptation leads to a 

reduction in perceived difficulty. However this conclusion cannot be extended beyond this 

experiment’s task parameters. Adjustments to the game’s parameters can possibly alter the 

way the adaptation system affects players’ performance.   It is possible that the game’s 

difficulty progression was set too high.  There may also have been complications resulting 

from the characteristics of the gameplay such as the bomb to reduce game difficulty. 

Summary 

This research provides a proof of concept for the individualized biocybernetic system 

design. The general framework has been established and a set of extendable software 

libraries have been adopted and implemented. The system requires no earlier knowledge 

about individual’s physiological relationships to mental states in order to provide adaptation. 

The system takes into account the individualized nature of physiological signals and 

eliminates the possibility that physiological specificity will compromise adaptation. 

Additionally, all physiological patterns are trained on subjective data gathered at time of 
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experience. Because of this, the possibility of duration neglect or the peak-end rule affecting 

the subjective appraisal entered is not an issue. 

A within-group study was conducted on the performance of the system.  The study 

confirmed the viability of the individualized biocybernetic systems for improving a player’s 

performance when adapting video game difficulty. The results provide evidence of 

significant task performance increase and higher attained task difficulty when players 

interacted with the game using the adaptation system. The results also demonstrate that the 

subjective appraisals used directly related to the participants’ perceived state of stress. The 

hypothesis of reduced subjective input when using the individualized biocybernetic system 

was rejected, potentially due to player’s implementation of risk seeking strategies. 

 
Recommendations for Further Research 

The results of this initial study establish the viability of an individualized 

biocybernetic system as a possible alternative to system adaptations conducted with 

generalized psychophysiological relationships. The results indicate multiple positive effects 

when using the system. However, further research is needed on alternative input signals, 

subjective inputs, and classification mechanisms. As such, it is recommended that the main 

output of this study, the adaptation software libraries, be employed across various 

applications that require individualized adaptation and tests be performed to evaluate the 

system’s performance in these alternative contexts. 

Alternative signals in both the behavioral and physiological arenas should be 

evaluated. In general, physiological signals have attributes that are beneficial for adaptation, 

but the hardware required is far from ubiquitous. This hardware limitation reduces the 
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number of applications in which physiological signals may be used.  Behavior inputs such as 

traditional inputs entered to computers through mouse and keyboards contain a larger user 

base.  Further evaluations are needed on performance differences between adaptations from 

physiological signals to adaptations using behavioral signals. 

Similarly, additional studies should be conducted to evaluate multiple classification 

strategies to improve the prediction rate of subjective input. The results of the present study 

indicate that the two-layered, pre-processed neural network had a considerably large error 

rate when predicting Boolean subjective appraisals from six different physiological signals. 

Evaluation of the neural network organization, as well as analysis of alternative learning 

mechanisms, could provide increased viability of this individualized adaptation. The data 

collected from this experiment should be used for preliminary studies in this area. 

Interesting future research might investigate the dynamics between classifier 

prediction rates and various task adaptations.  Interesting questions include: what task 

adaptations are more fault tolerant? Is there a possible function establishing a required 

minimum classification error rate for different task adaptations in order to avoid perception 

by users?  For instance, it appears that smaller, more incremental changes in tasks such as the 

adaptations performed in this study are more tolerant of prediction errors than are more 

significant adaptations which have greater effect on the task. 

Another possible research question that stems from this investigation is what effects 

do task adaptations from different machine learning algorithms have on the overall 

performance of the algorithm’s learning rate. This study’s results show an insignificant 

difference in error rates between adapted trials and non-adapted trials. However, a 

mechanism with lower prediction error may show a more noticeable improvement in the 
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algorithm’s learning rates through task adaptation than without. Such a metric might be 

effective at establishing the level of synergy, or communication level, of human computer 

interaction from the computer’s perspective. 

A benefit of the individualized biocybernetic system is its ability to adapt to changes 

in psychophysiology. Future research should investigate the use of these systems for 

applications in which psychophysiological patterns can change.  These applications include: 

adaptive software for populations with non-typical psychophysiological patterns such as 

individuals with chronic stress disorders; and high stress applications where 

psychophysiological patterns changes occur due to traumatic physiological events.  The 

system could possibility adapt to traumatic events and provide sustained task performance 

when such events occur. Applications such as this would tend to revolve around highly 

stressful and high risk tasks such those of military personnel and first responders. 
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APPENDIX A : PRE-EXPERIMENT QUESTIONNAIRE 

Note: Survey will be administered via an online survey application (Qualtrics) 
 

Demographic Survey 
1. Age: 

2. Sex: 
__ Male   
__ Female  

3. What is the highest level of education you have completed? 

a. High School 

b. Associate degree 

c. Bachelors 

d. Masters 

e. PhD 

f. Other: __________________  

4. Do you play with any type of the computer/video games listed below? (check all 
that apply) 

  ____ Console first person shooters (Halo, Console Left 4 Dead, etc ) 
  
  ____ Computer first person shooters (Team Fortress, Computer Left 4 Dead, 
etc) 
  ____ Role-playing games (World of Warcraft, Farmville, etc) 
  ____ Arcade shooters (Asteroids, Geometry Wars, etc) 
  ____ Third person perspective games (Uncharted, Grand Theft Auto 4, etc) 
  ____ Fighting games  (Street Fighter, Tekken, etc) 
  ____ Puzzle games (Tetris, Snood, Bust-a-Move, etc) 
  ____ Racing games (Need for Speed, FZero, etc)     
  ____Other: 

5. How many hours do you spend playing games: 

  ____I do not play games 
 Daily: 

   ____ Console first person shooters   
   ____ Computer first person shooters  
   ____ Role-playing games  
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   ____ Arcade shooters 
   ____ Third person perspective games  
   ____ Fighting games   
   ____ Puzzle games  
   ____ Racing games    
   ____Other: 

 Weekly: 
   ____ Console first person shooters   
   ____ Computer first person shooters  
   ____ Role-playing games  
   ____ Arcade shooters 
   ____ Third person perspective games  
   ____ Fighting games   
   ____ Puzzle games  
   ____ Racing games    
   ____Other: 

 Monthly: 
   ____ Console first person shooters   
   ____ Computer first person shooters  
   ____ Role-playing games  
   ____ Arcade shooters 
   ____ Third person perspective games  
   ____ Fighting games   
   ____ Puzzle games  
   ____ Racing games    
   ____Other: 

6. Are you affected emotionally when playing video games? 

a. 1-7 (1 – not at all, 7 – I cry when my character dies) 

7. How engaged are you with games while playing? 

a. 1-7 (1- not at all, 7 – I forget to eat meals )  

8. Are you maintaining an aerobic exercise routine of 30 minutes or longer? 

a. Yes 

b. No 

9.  If yes, how often? 

a. more than 3 times a week 

b. 1-3 times a week 
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c. once every other week 

d. once a month 

e. Less than once a month 

 
1. In the last month, how often have you been upset because of something that 

happened unexpectedly? 

 ___0=never ___1=almost never ___2=sometimes ___3=fairly often ___4=very often  
2.  In the last month, how often have you felt that you were unable to control the 

important things in your life?  

___0=never ___1=almost never ___2=sometimes ___3=fairly often ___4=very often  
3. In the last month, how often have you felt nervous and "stressed"?  

___0=never ___1=almost never ___2=sometimes ___3=fairly often ___4=very often  
4. In the last month, how often have you felt confident about your ability to handle 

your personal problems?  

___0=never ___1=almost never ___2=sometimes ___3=fairly often ___4=very often  
5. In the last month, how often have you felt that things were going your way?  

___0=never ___1=almost never ___2=sometimes ___3=fairly often ___4=very often  
6. In the last month, how often have you found that you could not cope with all the 

things that you had to do?  

___0=never ___1=almost never ___2=sometimes ___3=fairly often ___4=very often  
7. In the last month, how often have you been able to control irritations in your life?  

___0=never ___1=almost never ___2=sometimes ___3=fairly often ___4=very often  
8. In the last month, how often have you felt that you were on top of things?  

___0=never ___1=almost never ___2=sometimes ___3=fairly often ___4=very often  
9. In the last month, how often have you been angered because of things that were 

outside of your control?  

___0=never ___1=almost never ___2=sometimes ___3=fairly often ___4=very often  
10. In the last month, how often have you felt difficulties were piling up so high that 

you could not overcome them?  

___0=never ___1=almost never ___2=sometimes ___3=fairly often ___4=very often 
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