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Abstract 

 

Pesticide application is a vital, integrated component of 21
st
 century agriculture. 

Pesticides allow more produce to be generated from fewer acres, increasing the world‘s 

capacity and improving quality of life.  Pesticide use however, is not independent of 

concerns. Pesticides by nature are destroyers. When applied to target pests, their destructive 

nature can be advantageously utilized, however when misapplication unites pesticides and 

susceptible non-target organisms, resulting effects can be catastrophic.  

The airborne movement of pesticides, spray drift, can result in up to 36.6% of the 

applied pesticide volume transporting outside of the intended swath to non-target organisms 

under high drift potential conditions (Grover et al., 1997). Studies have shown that through 

the implementation of best management principles, namely spraying with large droplet sizes, 

drift is reduced to less than 1% of the applied volume (SDTF, 1997; Grover et al., 1997). 

State-of-the-art drift reduction technologies inform applicators of real-time, site-specific 

dangers of drift, prompting applicators to implement best management practices. These 

technologies rely on the applicator for the decision making and implementation processes, 

adding subjectivity to the system and consequently, suboptimal performance. Objective, 

scientific decision making avenues are required for the future development of automated 

nozzle selection controllers to reduce spray drift. 

A basis for automated nozzle control was developed, implemented, and tested in the 

form of a tier 1 nozzle controller. Decision making processes rely on an on-board, real-time 

risk assessment; the comparison of mapped predicted depositions to established acceptable 

levels of depositions in sensitive areas. In-field testing results indicated the critical roles of a 

high-resolution representation of the nozzle spectrum (specifically for droplets < 150 µm), 

and a regression model maintaining specificity within overall predictive accuracy. The nozzle 

controller was found to theoretically protect sensitive areas from excessive drift however 

significant differences between the predicted and actual drift phenomenon led to depositions 

measured in sensitive areas exceeding acceptable levels. Attempting to account for real-time 

operating conditions was found to significantly reduce the predictive accuracy of the 

controller, largely due to insufficient representation of highly variable wind speeds and 



xiv 

 

direction vectors acting on droplets after release. Further development of predictive 

capabilities in representing wind speed and direction for durations up to 30 seconds after a 

droplet is released are required for micro-scale nozzle control.  
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Chapter 1. Introduction 

Spray drift, the off-target movement of pesticides, reduces application rates, damages 

non-target organisms, and creates environmental concerns. Each year thousands of spray drift 

violations are reported in the United States, with many more going unrecognized (EPA, 

1999). An Environmental Protection Agency (EPA) sponsored spray drift research 

organization, the Spray Drift Task Force (SDTF), has determined that the single most 

influential factor affecting the magnitude of drift is droplet size (SDTF, 1997). In the past 

decade, the agriculture industry has been working to develop nozzles which produce larger 

droplet sizes in order to combat drift. 

Recently the US EPA, which governs the use of pesticides in the United States, began 

revising their approach to mitigating drift (EPA, 2009a). Proposed revisions would require 

specific wording on pesticide labels concerning required application techniques to reduce 

drift, increasing the EPA‘s ability to identify and enforce drift infractions. With these 

increasing regulatory measures comes a heightened motivation to apply pesticides at low 

boom heights, under low wind speeds, and most importantly, with large droplets. Reducing 

drift however does not come without a cost. Research has shown that increasing droplet size 

often reduces efficacy (depending on the type of pesticide and pest), resulting in a negative 

economic impact on farmers and applicators.  

The state-of-the-art in drift reduction technology systems aims to optimize the 

balance between drift and efficacy. These systems formulate a site specific real-time drift 

assessment, informing the applicator of the potential for drift. Reduction technologies can 

then be implemented on an ―as-needed‖ basis rather than being broadcasted for a field as a 

whole. Sprayer position and weather conditions, which are constantly changing for a 

spraying event, drive the need for implementation of drift reduction techniques. When drift is 

not a concern, spraying techniques can be shifted to increase efficacy.  

Currently, the decision maker and instigator for balancing drift and efficacy is the 

applicator himself. While computer programs have been developed to aid in this decision 

making process, ultimately changes in application are left in the subjective mind and hands 

of the applicator. With highly variable in-field conditions and the complex nature of drift, 

few applicators are able to judge the potential for drift, let alone modify application 
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techniques on the go. This project aims to develop a scientific basis for automated, real-time 

nozzle selection to optimize the balance between drift and efficacy. Accompanying this 

development is the design, implementation, and testing of a prototype nozzle selection 

controller founded upon the derived scientific principles. 
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Chapter 2. Literature Review 

2.1.  Pesticide and Spray Drift Regulation 

 In the first century, the Romans doused captured enemy cities and fields with salt to 

both symbolically and literally curse the inhabitants and prevent future agricultural 

endeavors.  From these humble beginnings, the pesticide industry has grown into a highly 

specialized, multi-billion dollar production, with a reported $4 billion of pesticides sold 

annually in the United States alone (Cooper and Dobson, 2007). The widespread use of 

pesticides in the United States began shortly after World War II, both a cause and effect of a 

post-war agricultural boom. In 1959, one farmer could feed 50 persons, in 2000, 120 people 

could be fed by a single farmer, partly due to the increased use of pesticides (Stone, 2008). 

Today more than 550,000 tons of pesticides are used each year as they have become a vital 

component of agriculture, with benefits ranging from economic returns when used in crops, 

as much as four-fold or $16 billion (Pimentel et al., 1992), to increased aesthetic appeal in 

lawns and gardens (Cooper and Dobson, 2007). 

While the use of pesticides is vital to modern agriculture, their use does not come 

without concern. The agriculture industry fights a constant battle in working to maintain a 

balance between the benefits and risks of pesticides. Pesticide regulation has played a critical 

role in the development of pesticides, and the way in which they are applied, over time. Early 

regulation can be traced back to the founding of the Federal Insecticide Act in 1910. This act 

was administered by the United States Department of Agriculture (USDA) to establish 

standardized pesticides which would protect farmers from purchasing a fraudulent or altered 

pesticide. At this time very little was known concerning the impact of pesticide on humans or 

the environment, largely due to an inability to detect trace levels of residue and to link these 

levels back to the effects. Not until 1938 did the USDA first issue an act (The Federal Food 

Drug and Cosmetic Act) to protect humans from pesticides. The installment of this act came 

on the eve of the development of the first synthetic, organic pesticide which greatly increased 

pesticide production and use. In 1947, the Federal Insecticide, Fungicide, and Rodenticide 

Act (FIFRA) was established, creating a new, specific federal law to oversee pesticide 

regulation. Most notably, FIFRA initiated and controlled the labeling process of pesticides 

which includes everything from registering a pesticide to required methods of application.  
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After the development of synthetic alternatives, pesticide use continued to increase 

without much concern until in 1962, Rachel Carson, a scientist, published Silent Spring 

which began an anti-pesticide environmentalist movement. Carson‘s book laid out the 

dangers of pesticide misuse and the potentially dire outlook if current trends continued, and 

called for a reform in the methods used to regulate pesticides (Delaplane, 1996). In 1964 

FIFRA was amended requiring more extensive testing of pesticides prior to registration as 

well as increased pesticide manufacturer responsibilities to prove the safety of their products.  

In 1970, the United States Environmental Protection Agency (US EPA) was created 

by President Nixon as a single agency to handle all environmental related regulatory topics. 

Control of FIFRA was handed over from the USDA to the EPA, bringing about more 

revisions and stricter regulations. During this time, the EPA changed the control of pesticides 

from being a more reactive stance to more proactive in reduction of unreasonable risks. 

Labeling became more specific in regards to methods used for pesticide application. 

Applicator education programs were also established to train farmers how to safely apply 

pesticides.  The most recent major revision in pesticide regulation was in 1996 to make the 

registration process include proof that pesticides do not harm vulnerable organisms (Collins, 

2005). 

Spray drift regulation falls under the methods of proper use of a pesticide contained 

within FIFRA which is today managed and enforced by the EPA. The methods of proper use 

for each specific pesticide are determined by the manufacturer, approved by the EPA, and 

stated on the labeling of the pesticide. Methods are established to prevent ―unreasonable 

adverse effects on the environment‖ (EPA, 1999) resulting from application. Specific spray 

drift labeling for each pesticide is handled on a case by case basis. Pesticide toxicity (risk 

assessment), potential benefits, driftability, typical application methods, and environmental 

fate are all taken into account in determining the drift specific labeling. Applying pesticide in 

a way inconsistent with its labeling is a violation of federal law and is the means by which 

the EPA enforces the implementation of drift reduction methods. An example of specific drift 

labeling is ―do not apply when wind speeds exceed 10 mi/hr‖, or ―only apply using a coarse 

droplet size‖. Many labels include the general language ―off-target drift is to be avoided or 

prohibited‖. The EPA recognizes that with any application some drift will occur, however 
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applicators are responsible for implementing all available drift prevention measures to 

maintain ―unreasonable risks‖ in consistency with the labeling. The EPA handles drift 

violations on a case by case basis taking into account its magnitude, effect, and the measures 

employed by the applicator in controlling drift. 

In 2005, in response to a request from the EPA, the Pesticide Program Dialog 

Committee (PPDC), a Federal Advisory Committee made up of pesticide stakeholders, 

reviewed EPA‘s current methods for mitigating drift. The PPDC found the currently used 

labeling methods ―wordy, unenforceable, confusing, impractical, and/or contradictory‖ 

(Spray Drift Workgroup, 2007).  In response to these negative reviews, the EPA initiated a 

proposed revision to their current labeling methods in 2009. The revision aimed to create 

more standardized, concise, and enforceable statements directly related to reducing drift 

(example of revised drift label in Figure 1).  In addition to providing more pesticide specific 

drift reduction language, the EPA has proposed adding the statement:  

―Do not apply this product in a manner that will contact workers or other persons, 

either directly or through drift. In addition, do not apply this product in a manner that 

results in spray [or dust] drift that could cause an adverse effect to people or any other 

non-target organism or site‖. (EPA, 2009a) 

It is anticipated that the addition of this language to pesticide labels will give the EPA greater 

jurisdiction over pesticide drift infractions.  
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Figure 1. EPA proposed drift-specific label displaying required buffer zones based on weather 

and application conditions. 

 

2.2.  Prevalence of Drift 

2.2.1. Drift Statistics 

 The Association of American Pesticide Control Officials (AAPCO) conducted a 

survey in 2005 to access the extent of drift violations and their handling. State pesticide 

bureaus are the first line of investigation and enforcement in drift infraction cases, therefore 

the subjects of the survey were members of State Pesticide Regulatory Lead Agencies. 

Results of the survey show 1,705 drift complaints were reported in 2004.  Figure 2 displays 

the distributions of parties cited as responsible, methods of application causing drift, and the 

repercussions in the reported drift cases.   
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A summary of the determined causes of drift in insurance claims, compiled by 

Farmland Insurance (Shaw, 1996) is shown in Figure 3. As can be seen within this figure, the 

majority of drift damage instances are due to applicators neglecting to sufficiently implement 

measures to reduce drift. Poor or improper nozzle selection caused drift damage in 26% of 

the cases. Physical causes of drift pertain to weather conditions such as high wind speeds.  

Responsible Party Application Source 

Enforcement 

Figure 2. Responsible party, source of drift, and enforcement of drift complaints distributions 

(AAPCO, 2005) 
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Figure 3. Causes of drift cited in insurance claims (Shaw, 1996) 

 

2.2.2. Magnitude of Drift 

In an effort to better understand and quantify the amount of spray drift occurring in 

everyday ground-spraying applications, the EPA formed the Spray Drift Task Force (SDTF) 

in 1990 to perform extensive in-field testing. The SDTF is made up of a variety of chemical 

companies with interests in determining the impacts of their products on the environment. 

Ten field studies with over 300 applications were made in developing a large, experimentally 

determined drift database. Results of the testing show the high impact of weather conditions, 

droplet size, and field configuration on the amount of drift which leaves the boundaries of the 

field.  Drift leaving the boundary of test fields was found to be around 0.5% of the applied 

volume when best management principles (low boom height, large droplet size, and low 

wind speeds) were maintained throughout testing.  As expected, increasing field size 

decreased the percentage of the volume leaving the field, as the perimeter to area ratio 

decreased causing a greater percentage of the drift to deposit within the field. While drift 

which deposits within the field is also of concern to applicators in terms of its impact on 

efficacy, the off-field drift is generally thought of as having the greatest negative impact on 

the environment and is the subject of most regulatory action. 

38% 
Applicator 

26% 
Nozzle 

23% 
Physical 

13% 
Other 
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Many independent researchers have also studied the magnitude of drift occurring for 

typical in-field spraying events. Grover et al. (1997) performed in-field trials using a 

SpraCoupe® (AGCO, Duluth, GA) sprayer with three different tips under varying wind 

speeds to determine the impact of droplet sizes and wind speed on drift. Drift was quantified 

as the percent of the applied volume drifting beyond the boom edge for a single swath, with a 

perpendicular wind direction thus giving one an idea of drift within a field as well as beyond 

the edge of a field. For an extended range flat fan nozzle (Teejet XR 11002, Spraying 

Systems, Wheaton, IL) at low wind speeds (7.7 km/hr), 8.23% of the applied volume drifted 

beyond the boom edge. Intermediate wind speeds (14.9 km/hr) using the same nozzle 

increased drift to 12.7%. High wind speed (28 km/hr) resulted in 35.6% of the applied 

volume drifting beyond the edge of the boom.  

Bateans et al. (2007) measured drift at varying distances from the boom edge with 

wind directions perpendicular to the sprayer path, to derive a profile of drift deposition. 

Depositions expressed as a percentage of the application rate were found to be 10%, 1.8%, 

and 1% at distances of 0.5, 5, and 10 m from the boom edge respectively under low wind 

speeds (2.2 m/sec).  In terms of applied volume, under the same conditions 10.45% of the 

applied volume drifted outside of the swath, while under high wind speeds (3.9 m/sec), 

31.4% of the applied volume left the swath. 

2.3. Drift Reduction Technologies 

Ever increasing regulation of spray drift has created a large market for drift reduction 

technologies. The fundamental approach of most reduction techniques is to modify variables 

which influence a droplet‘s travel path as it leaves the nozzle until it deposits on the ground. 

Droplet size, wind speed, and release height each have a high impact on drift distances and 

are thus common targets of alteration.  

A study by the SDTF showed that droplet size is the single most influential variable 

effecting drift (SDTF, 1997); therefore it is no surprise that the droplet generation process is 

the target of many drift reduction technologies. Drift reduction nozzles aim to decrease the 

percentage of volume made up of droplets smaller than 150 µm (i.e. high drift prone 

droplets). Nearly every nozzle manufacturer now has a form of drift reducing nozzle, which 

utilize either a pre-orifice or method for drawing in air to increase droplet sizes. Pre-orifice 
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nozzles increase droplet size by decreasing turbulence at the nozzle exit through a reduction 

in exit velocity. Air induction nozzles draw in air which is mixed with the liquid, producing 

droplets with air-liquid volume ratios from 0.22 to 0.29 (Lafferty, 2001) which in turn have 

larger diameters than non-filled droplets. Derksen et al. (1999) found that two of the most 

popular drift reduction nozzles, the Turbo Teejet produced by Spraying Systems and the 

TurboDrop nozzle produced by Greenleaf Technologies (Covington, La), reduced the 

percentage of volume dispensed as droplets classified as very fine (<150 µm) from 52% (in a 

standard flat fan nozzle) to 31.15% and 8.63% respectively for the same nozzle size and flow 

rate. The larger droplet sizes for both drift reduction nozzles resulted in significantly less 

downwind deposition. 

A less direct method to alter droplet size than changing nozzles is through the use of 

drift retardant surfactants. Shear stresses generated at the exit of the nozzle are responsible 

for droplet production. Greater fluid viscosities result in less shearing of the liquid thus a 

more continuous fluid and overall larger droplets. Ozkan et al. (1995) evaluated the ability of 

five different drift surfactants to increase droplet sizes and reduce drift when compared to 

water. Droplet sizes for the five commercially available products: Nalco-trol, Target, Direct, 

Driftgard, and Formula 358, reduced the portion of droplets sizes in the very fine category by 

62.6%, 61.4%, 55.8%, 34.5%, and 23.1% respectively. A reduction in downwind drift 

depositions was seen for four of the five drift retardants as well when compared to that of 

water (shown in Figure 4.) 
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Figure 4. Comparison of downwind drift depositions for 5 drift retardants compared to water 

(Ozkan et al., 1995) 

 

While drift retardants have performed well in lab testing, their impact on increasing 

droplets sizes and reducing drift in the field is still relatively uncertain. Zhu et al. (1997) 

found that subjecting liquids containing drift retardants to stress magnitudes which would be 

seen in a typical field-sprayer pump reduces the impact of the retardant on the droplet size.  

After several circulations within a pump most of the 12 polymers observed provided little 

difference in droplet size when compared to water (see Figure 5 for four of the polymers 

tested). 
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Figure 5. Median droplet sizes of four surfactant laden mixtures compared to water after 

subjection to shearing 

 

Spray shields attempt to reduce the impact of wind speed on droplets thereby 

reducing drift. This shielding technique can be performed for a sprayer boom as a whole or 

individual nozzle shields.  Wolf et al. (1993) found both methods of shielding to be 

significantly beneficial in reducing drift. Individual nozzle shields reduced drift (percentage 

of sprayed volume leaving the swath boundary) by 33% while using a sheet metal shield to 

cover the full boom and lowering the boom reduced drift by 85%. Additionally, increasing 

wind speeds were found to have less of an impact on drift from the shielded boom 

applications than the unshielded instances. 

Air assist and electrostatic spraying systems have become increasingly popular for 

applicators desiring to reduce drift while producing better leaf coverage for increased 

efficacy. Air assist systems introduce a generated air stream into the spray liquid stream at 

the outlet of the nozzle to create a controlled region of air entrained with droplets between 

the nozzle and plant canopy. The entrained region is made up of high speed airflows 

perpendicular to the ground which reduce the influence of wind acting on the droplets. 

Electrostatic sprayers apply a positive charge to the liquid exiting the nozzle so that it is 

attracted to negatively charged plants. It is commonly believed that each of these systems 
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also reduce drift however little testing has been performed to quantify such impacts. A 

limited study performed by Storozynsky (1997) found electrostatic sprayers to reduce 

airborne drift (compared to a standard system) by 50% whereas a tested air-assist system 

actually increased drift by 5%. 

2.4. Advanced Drift Controllers 

Increased drift regulations combined with an influx of new technologies to agriculture 

has led to the recent development of intelligent drift management systems. These systems are 

founded on implementing drift reduction methods only when needed and not for a spraying 

event as a whole. Such systems are becoming increasingly popular in Europe where buffer 

zone requirements can be reduced if applicators implore drift reduction technologies 

(Rautmann, 2003). 

Hewitt et al. (2002) describe a drift management system under development in New 

Zealand for orchard spraying which accounts for real-time site specific conditions in 

presenting an applicator with necessary information to determine the effects of spraying. 

Meteorological conditions are monitored by an on-site weather station and input into a drift 

model to predict real-time drift. GIS information concerning the sensitivity of surrounding 

sensitive areas is overlaid with the predicted deposition allowing the operator to gauge the 

impact of spraying under current conditions. 

A more complex 2-D mapping prediction model was developed by Lebeau et al. 

(2009) in Belgium. A sprayer was equipped with a GPS unit and sensors to measure real-time 

operating condition including wind speed, direction, temperature, humidity, and boom height 

and store operating conditions with field position in a data acquisition system programmed in 

LabVIEW. Operating conditions recorded during spraying can then be uploaded by the 

operator into a Matlab program which produces a 2-D map of the predicted drift for the 

application.  The motivation for the development of Lebeau et al.‘s system is to evaluate the 

ability of a prediction model to be later used as the basis of real-time prediction in a drift 

controller. 

2.5. Conclusion 

Drift regulations in the United States are becoming more restrictive, with proposals in 

place which once passed will implement regulations similar to those seen in Europe. 
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Increased regulatory control will bring with it new challenges to create advanced drift 

reduction systems similar to those beginning to be developed in New Zealand and Europe. 

The most popular, straightforward approach to drift reduction is through the selection of 

larger droplet producing nozzles. State-of-the-art in spray drift reduction systems monitor 

real-time weather conditions and present predicted drift levels to the operator allowing for 

adjustment of operating parameters or to determine go/no- go decisions. While these systems 

are excellent management tools, their endpoints are merely raw decision making inputs, thus 

their desired goal is left in the pre-occupied, subjective minds of applicators. A logical next 

step in drift control is the development of an automated system which predicts drift real-time 

and changes nozzles according to scientifically based criteria. For the development of such a 

system, research is needed to generate a basis for the nozzle selection process, specifically 

the underlying real-time prediction model and method of protecting sensitive areas.  

Research into the basis for such decision making processes would provide a significant step 

in drift control methods in the United States in preparation of inevitable, increased 

regulation. 

2.6. Research Questions  

The following questions form the motivation for this work: 

1. What modifications to existing drift prediction models are necessary for real-time 

nozzle control? 

2. How can sensitive areas be protected by a nozzle controller? 

3. How does droplet size influence efficacy? Can this relationship be incorporated 

within a controller to increase efficacy during instances of low drift potential? 

4. Is controller based real-time drift prediction sufficiently accurate for protecting 

sensitive areas? 

2.7. Research Objectives 

The overall goal of this research is to develop the required critical information 

requirements for automated nozzle selection control on self-propelled sprayers, specifically a 

real-time prediction model and logic for nozzle selection to protect sensitive areas. The scope 

of this research includes the design of a controller based on these generated nozzle selection 

procedures and in-field testing to provide proof-of-concept and to quantify the predictive 
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abilities of the system. This research will further the development of innovative technologies 

to reduce spray drift though the application of state-of-the-art technologies. Specific 

objectives to be met in achieving the overall goal are as follows:  

1. Determine required modifications to existing drift prediction models for 

application to real-time nozzle control. 

2. Conclude criteria and measures for protecting sensitive areas from drift. 

3. Establish a relationship between droplet size and efficacy for herbicides, 

insecticides, and fungicides. 

4. Evaluate the feasibility of a nozzle control system employed to protect 

sensitive areas. 

5. Statistically evaluate the ability of a developed model to predict drift through 

in-field testing. 

 

The open ended nature of the preceding objectives requires a multi-dimensional 

approach to fully satisfy each of the defined learning-based objectives. Literature review, 

conceptual development, system development, and testing are all components necessary for 

crafting a basis for real-time nozzle control and understanding its potential use in agricultural 

production. 
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Chapter 3. Development of a Real-time Spray Drift Prediction and 

Mapping System 

Real-time drift prediction is the basis for decision making within Lebeau et al.‘s 

(2009) drift reduction system. Outputs from this model are analyzed by the applicator in 

determining whether to adjust nozzle selection, boom height, or abstain from spraying 

altogether. In the same manner, drift prediction is the heart of an automated drift reduction 

system with nozzle selection being the single object of control.  

The use of drift prediction for real-time nozzle control presents new challenges 

nonexistent in static drift prediction. With the overall goal to protect sensitive areas from 

drift, the decision making process, in addition to being based on an accurate relationship 

between application and weather conditions and drift, takes on both spatial and temporal 

aspects absent within present drift prediction techniques. The development of a real-time 

prediction and mapping algorithm is the first step in forming a basis for real-time nozzle 

selection. Specific objectives within this development are as follows: 

 Selection of a verified ground based drift prediction model based on findings from an 

in-depth literature review. 

 Formulate an algorithm for prediction of drift from a ground sprayer. 

 Establishment of an algorithm to map real-time predicted drift based on simulated in-

field spraying events. 

 Verify algorithm performance through simulations of influential drift variables. 

 

 

  



17 

 

3.1. Drift Prediction Literature Review 

3.1.1. Variables Influencing Drift 

The search for a model which accurately predicts drift is a quest with a long history 

influenced by researchers around the world. Understanding the complex physical 

phenomenon of drift is the first step in developing methods to reduce it. Drift prediction 

research includes determining the factors which influence drift, the degree of influence of 

each factor, and the development of techniques to represent the relationships between these 

influences and the magnitude of drift. While each have a different motivation, regulatory 

agencies, agricultural equipment companies, pesticide manufacturers, and environmentalists 

all share a common goal in continuously working to develop a better understanding of drift. 

The sheer number of variables which influence drift is one of the largest hurdles to 

overcome in generating methods for prediction. In-field and wind tunnel testing have both 

sought to reduce the scope of the drift phenomenon to include only the more influential 

factors. Smith et al. (2000b) found that distance downwind, wind speed, and boom height 

have the greatest impact on drift depositions through in-field testing. Surprisingly droplet 

size was found to be insignificant in describing the drift depositions. Through in-field testing 

Nuttyens et al. (2007) also found drift depositions to be highly correlated to distance 

downwind and boom height, however concluded droplet size, nozzle pressure, temperature, 

and humidity were also significant variables impacting drift. The SDTF (1997) conducted a 

large study over two years to determine what factors greatest impact drift, concluding that 

droplet size was overall the most influential, with wind speed and boom height also having a 

significant impact on deposition downwind. Wind tunnel testing by Taylor et al. (2004) 

showed increases in droplet size to result in a non-linear decrease in downwind depositions. 

Wind speed and boom height were also found to have a high impact on drift depositions.   

The time and cost inputs required for extensive experimental testing to evaluate a 

wide range of values for each variable are limited, thus in-field tests are often conducted with 

reduced scope. Additionally, weather conditions cannot be controlled or held constant during 

in-field testing therefore it is difficult to determine cause-and-effect relationships. These 

complexities are largely responsible for the various conclusions drawn concerning what 

factors greatest influence drift. As a whole, the drift research community sees distance as a 
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spatial measure of drift, therefore it is not mentioned as an independent variable affecting 

drift. Droplet size is generally thought to be the most influential independent variable, 

followed by boom height and wind speed. Temperature and humidity are considered to have 

significant influence; however their impact is a tier below the previously mentioned 

variables, therefore they are often excluded from drift studies. 

3.1.2. Drift Prediction Models 

Both regression and analytical models have been proposed by researchers to represent 

the relationships between drift and the variables which greatest influence it. Variability 

between models is derived from variables of expression, datasets serving as the basis for 

regression (within regression models), scope of the model, representation of drift, and mode 

of prediction (within analytical models). 

3.1.2.1. Regression Models 

Regression models are generated through data collected during wind tunnel or in-field 

testing. Statistical methods establish the numerical relationships seen in the data typically 

through a regression type analysis. 

Smith et al. (1982) conducted 99 in-field tests over three years with a goal to derive 

an accurate regression equation to predict drift. In this study, 18 independent variables were 

recorded (nine weather-related variables and nine application method variables) while drift 

deposits were collected up to 27.5 m (90 ft) from the boom edge. Eight multiple regression 

equations were developed relating the most significant three input variables to an output drift 

characteristic variable. The eight different equations each contained a different output 

variable characterizing drift. Output variables ranged from the absolute drift at a given 

distance (for example, 2 meters from the boom edge) to the distance at which 95% of the 

total measured drift had been collected from the edge of the boom. Smith et al.‘s derived 

regression models had high coefficients of determination (R
2
) in relation to his collected 

dataset, ranging from 65.6% to 90.2%. A related discovery based on Smith‘s data is that 

68%-90% of drift is directly influenced by applicator controlled variables (such as droplet 

size, pressure, etc.). 
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Threadgill and Smith (1975) performed in-field testing in order to develop a single 

regression equation for use in predicting drift. Drift deposits were collected up to 8 m (26 ft) 

downwind of a sprayer and multiple linear regression was used to relate total collected drift 

to weather, spray, and application variables. Specifically, the air stability ratio (calculated 

based on temperature variability over height and wind velocity), droplet size, wind speed, 

and the coefficient of variation of droplet size (for a nozzle) were used in developing the 

regression model which had a correlation coefficient of 0.58.  

Bode et al. (1976) similarly generated a regression model based on in-field data 

collections. Nine independent variables were measured through testing to relate to total spray 

drift deposition measured (out to 312 m, or 1,023 ft), deposits beyond 2.4 m (8 ft), and total 

spray lost as drift (calculated from a mass balance analysis). Wind speed, temperature, 

atmospheric pressure, relative humidity, Richardson‘s number (a measure of atmospheric 

instability), boom height, application rate, nozzle pressure, and the concentration of drift 

retardant comprised the monitored independent variables. Statistical regression produced a 

maximum coefficient of determination of 0.53 with significant independent variables of 

application rate, wind speed, Richardson‘s number, temperature, and relative humidity, as 

well as combinations of these variables (as linear regression was used).  

3.1.2.2. Mechanistic Analytical Models 

Analytical drift prediction models differ from regression models in that the 

relationships between variables describe mechanistic, physical phenomenon rather than 

numerical relationships. The complex nature of drift can lead analytical models to become 

quite extensive. Typically only the more important variables, determined from past in-field 

testing, are used in developing analytical models in order to reduce their complexity. Most 

analytically derived models can be classified as either plume or random-walk, which differ in 

the mode of action for tracking liquid volume leaving the sprayer.  

Plume models treat the volume of liquid leaving the sprayer as a single cloud, of 

which portions settle out as deposition based on Gaussian diffusion principles. Plume models 

for drift prediction originated out of the modeling of chimney smoke and air pollutants from 

factories which were first developed in the 1930‘s (Bosanquet, 1936). Concentration 

differences between the cloud and surrounding air, atmospheric turbulence, and statistical 
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parameters combine in determining the dispersion of the cloud. Gaussian dispersion models 

describe movement from tall stacks and point sources, therefore in parallel application to 

describing spay drift, such models perform well for aerial applications where spray is 

released from a high, concentrated sources (which can be treated as a point source).  The 

diffusion principles accounted for by the Gaussian dispersion models tend to predict drift 

better for long distances (up to 10 km), however since they are not focused on initial release 

conditions, their short range drift prediction accuracy is limited.  

While plume models are generally more applicable to aerial applications, they are still 

occasionally used for ground-application drift prediction. A recent real-time prediction 

method relied on a Gaussian dispersion model due to its computational simplicity and thus 

attractiveness for continuously updating predictions (Lebeau et al., 2009). The model was 

found to overpredict near distance drift as expected, while underpredicting far-field drift. 

Lebeau et al. concluded that the model produced ―realistic‖ visual descriptions of drift 

however further research is needed to develop more representative wind speeds which act on 

the cloud.  

Random-walk prediction models are much more commonly used in ground 

application situations. These models track individual droplets from the point at which they 

exit the nozzle until the water within the droplet completely evaporates or the droplet 

deposits within the field. Air drag and gravity comprise the simplified force profile acting on 

the droplets. The ―random‖ nature of the model is derived from a random number pulled 

from a Gaussian, or normal, distribution which is factored into determining the trajectory of 

each individual droplet. Droplet trajectories are tracked in a numerical, Lagrangian fashion, 

meaning the change of the droplets position and velocity is tracked during small time steps 

during which the droplet is acted upon by the wind drag, gravity, and statistical parameter 

influences. The change in velocity and change in position are added incrementally to the 

initial conditions to determine absolute droplet velocity and position at an instance in time. 

Like plume prediction models, random-walk models were not initially derived to 

describe spray drift. Fluid flow in a channel and wind fluctuations were two of the earliest 

phenomenon modeled by random-walk models (Sullivan, 1971; Daniels and Jones, 1970). 

Hall (1975) proposed the first application of random-walk models for drift prediction and 
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performed experiments to determine if observed behavior of a spray agreed with the model. 

Under stable atmospheric conditions, the random-walk model performed well in predicting 

the heights of droplets at distances downwind from their release point. There were large 

discrepancies however between the model and observations when a large time step was used 

and when there was high atmospheric turbulence.  

Thompson and Lay (1983) built upon Hall‘s random-walk model by adding the 

effects of evaporation on drift. Evaporation reduces a droplet‘s diameter throughout its travel 

trajectory. This effect is taken into account during each time step of the random-walk 

process. Under high evaporation conditions (low humidity, high temperature, high wind 

speeds), liquid within initially small diameter droplets can completely evaporate before 

deposition, leaving the particulate (solid pesticide component) highly susceptible to in-air 

suspension. Particulate pesticides do not impact evaporation rates (Elliott and Wilson, 1983), 

therefore only the properties of water need to be considered in the evaporation process. Drift 

retardants however do impact the liquid properties and can greatly reduce evaporation and 

overall drift by maintaining a larger droplet size. According to Elliott, in the evaporation 

process droplets smaller than 50 microns can completely evaporate leaving only their 

particulate core suspended in the air. The core, which is not retained in the modeling process, 

remains suspended in the air during turbulent conditions, depositing typically at night when 

the atmosphere stabilizes. 

Miller and Hadfield (1989) further improved the predictive capabilities of the 

random-walk model by adding in effects of air-entrainment near the nozzle, which is 

generated from the vertical exit velocities of droplets. Droplet trajectories are modeled in two 

distinct phases, near the nozzle where the droplets initial conditions and generated air-

entrainment have the greatest influence on the trajectory, and at a distance from the nozzle 

where the trajectory is dominated by atmospheric conditions. In-lab testing was performed to 

determine the predictive ability of the modified model with air-entrainment, specifically in 

comparison to Thompson and Lay‘s more simplified approach. In-air drift was measured and 

compared to the predicted in-air spray volumes from both models. Results showed that the 

air-entrainment model qualitatively improved predictive ability when compared to the more 

simplified model.  
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Holtermann et al. (1997) and Baetens et al. (2007) incorporated 3-dimensional (3-D) 

analysis into the random-walk model approach to drift prediction. Holtermann‘s IDEFICS 

(IMAG Program for Drift Evaluation for Field Sprayers by Computer Simulation) uses a 3-D 

analysis of the more complex air-entrainment region then converts to a 2-D approach for the 

atmospheric dominated region to reduce computing requirements. Baetens et al. modeled 

drift entirely in 3-D in an effort to describe the high variability seen in field testing, which is 

believed to be caused by complex wind turbulences which cannot be fully described by 2-D 

analysis.  In-field testing was performed to compare Baetens et al.‘s model, evaluated using 

ANSYS, to experimental data. Simulations in ANSYS required 18 hours each to establish 

predicted drift levels for comparison. Figure 6 shows a physical representation of the 

trajectory of each droplet as it leaves the boom. The model was found to accurately predict 

drift for distances less than 5 m (where there was only a 13% difference between the average 

predicted and experimental depositions for a wind speed of 3.1 m/sec) however at greater 

distances the model under-predicted by around 60%. This reduction in accuracy was 

attributed to additional complexities related to wind speed and wind direction variability. 

 

Figure 6. Physical representation of predicted drift from Baetens et al.'s (2007) model 

displaying trajectories of each individual droplet 

 

For regulatory purposes and to aid in management decisions, several software 

programs have been developed which provide easy interfacing with the inputs and outputs of 

prediction models. AgDRIFT®, developed through the joint effort of the US EPA, USDA, 
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and SDTF, primarily predicts drift for aerial applications. The US EPA currently uses 

AgDRIFT® within their risk assessment process for product registration and establishing 

drift specific labeling. Within this program, both plume and random-walk drift modeling 

techniques are incorporated into the drift prediction process. Unique to AgDRIFT® is the 

inclusion of aircraft wake influences on drift (Bilanin et al., 1989).  AgDRIFT® contains a 

tier 1 (a developed regression model) model for ground applications; however Woodward et 

al. (2008) found through in-field testing that AgDRIFT® overpredicted out-of-swath 

deposition by a factor from 3.5-100. Developments to revise the tier 1 prediction model with 

a more analytical approach to provide greater accuracy are ongoing (Teske et al. 2001, Teske 

et al., 2004).  

Zhu et al. (1995) developed DRIFTSIM specifically for ground application drift 

prediction based on a random-walk model. DRIFTSIM has become a highly recognized and 

applied tool for the management of drift by extension personnel and regulatory agencies 

(White, 2006). The model accounts for the impact of evaporation on drift however takes a 

more simplified approach to handling near-nozzle conditions when compared to Bateans et 

al.‘s random-walk model. Trajectories of droplets are tracked in 2-D and the entrainment 

effects near the nozzle are ignored. The specific random-walk model used for drift prediction 

was developed by Fluent Inc., now ANSYS Fluent (Canonsburg, PA), for use within their 

computational fluid dynamics (CFD) program, which models the movement of droplets 

within a gas under the influence of evaporation. Independent model variables within 

DRIFTSIM are temperature, humidity, wind speed, droplet size, and boom height. To reduce 

DRIFTSIM‘s computing time requirements, over 2 million simulations within Fluent were 

performed using a wide range in each independent variable. The output dependent variable 

within these simulations was the drift distance of a single droplet. Drift distances, along with 

the independent variables producing each distance, were stored within text files which are 

used as lookup tables within DRIFTSIM for reduced computational and time requirements 

(Zhu et al., 1995). 

Reichard et al. (1992) performed wind tunnel testing to evaluate the accuracy of 

Fluent, which contains the underlying random-walk model used by DRIFTSIM, in predicting 

the drift distances of droplets. Fluent was found to be highly accurate for drift distances 
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tested, with correlations between the measured and calculated data above 0.95. The greatest 

difference between the experimental and predicted drift distances of a single droplet was 

found to be only 5.4%, however the furthest distance evaluated within this testing was 

slightly less than 2 m.  Reichard et al. concluded that while additional testing is required for 

long distance drift, Fluent is an excellent tool for predicting short distance spray drift. 

3.1.3. Conclusion 

Regression and analytical models have both been developed for drift prediction. 

Regression models provide highly accurate prediction when determining drift under 

conditions similar to those for which the model was developed. Additionally, regression 

models are generally simplistic relationships between independent variables and drift, 

reducing time and computing requirements for a prediction. The limitation in regression 

models is the overly specific relationship which results from limited datasets used to derive 

the model. The complexities of in-field testing and data collection reduce the ranges in 

operating and weather conditions for which data are collected. Relationships derived are then 

only representative of the collected dataset and not for drift as a whole. It is then difficult to 

obtain a general expression for drift for a wide range in operating conditions, leading to high 

inaccuracies when trying to predict drift for conditions outside the scope of the model 

(Thompson and Ley, 1983). 

Analytical models for drift prediction have increased in popularity over the last 

several decades as technology has advanced to the point where simulations can be performed 

on personal computers. In contrast to regression models, analytical models have a much 

wider range of application as they are derived from mechanistic relationships. The major 

limitation of analytical models is the computing time requirements for simulation.  

Real-time spray drift prediction requires both minimal computing time as well as 

accuracy for a wide range in operating and weather conditions. The system in development 

by Lebeau et al. (2009) attempts to satisfy these requirements using the plume modeling 

approach to drift prediction. Plume models are not as computationally expensive as random-

walk models and are not limited in scope, however such models are much better suited for 

aerial applications. Developments made within the random-walk model approach to account 

for evaporation have made such models the frontrunners in ground application drift 
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prediction. The approach of Zhu et al. (1995) to overcome the computing time hurdle opens 

the door for the use of random-walk models for real-time spray drift prediction.  Further 

development however is needed to go from the droplet-by-droplet prediction basis of the 

random-walk model to a system which predicts drift for an entire boom application. 

Additionally, development of a mapping algorithm is required to satisfy the spatial nature of 

in-field drift prediction. 

3.2. Methods and Materials  

3.2.1. Drift Prediction Model 

 DRIFTSIM was selected as the base drift model for nozzle control due to its highly 

recognized practical use, high predictive accuracy at short drift distances, and pre-compiled 

data tables. An obvious uncertainty of DRIFTSIM is its unevaluated long-distance predictive 

accuracy. The basis of prediction within DRIFTSIM is similar to that of Thompson and 

Ley‘s model; therefore it is assumed that the models produce similar predictive accuracies. 

More complex models considering air-entrainment effects have been shown to produce 

greater predictive accuracy for the tested conditions. In selecting the more simplistic 

approach to prediction of DRIFTSIM when compared to models such as Bateans et al.‘s, an 

expected tradeoff between accuracy and computing time was made. The intended use of 

DRIFTSIM within the nozzle selection controller was approved by its original developer, Dr. 

Heping Zhu.  

DRIFTSIM‘s method of prediction is through the use of an extensive set of lookup 

tables derived from over 2 million simulations performed in Fluent by Zhu et al. (1995). An 

average drift distance was determined for each possible combination of temperature, 

humidity, wind speed, droplet size, boom height, and initial droplet velocity shown in Table 

1. The average was calculated from 100 simulated drift distances for each set of conditions, 

which varied based on the random component within the time steps of each droplets 

trajectory. 
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Table 1. DRIFTSIM simulation variables and conditions (Zhu et al., 1995). 

 

Variable Units Range Increment 

Temp °C 10-30 5 

Nozzle Height m 0-2 0.25 

Initial Velocity m/sec 0-20  5 

  20-50 10 

Relative 

Humidity 

% 10-100 10 

Wind Velocity m/sec 0-10 0.5 

Droplet size µm 10-100 10 

  120-300 20 

  350-1000 50 

    1100-2000 100 

 

The use of lookup tables allows DRIFTSIM to run as a standalone program without 

Fluent, and significantly reduces computing time requirements. This development makes 

DRIFTSIM much more appealing as an end user tool, however it is of note that the random 

component of drift distance introduced through Fluent, a random-walk model, is potentially 

lost as the drift distance represents an average of 100 simulations.   

While the lookup table method is sufficiently fast for the purposes of DRIFTSIM, 

there are several drawbacks to using the same method within a real-time nozzle selection 

controller. First, the lookup tables contain over 2 million drift cases, or more than 28 Mb 

worth of data. Limited hard drive space on in-cab controllers, the target computers for 

housing the nozzle controller, places a premium on smaller, more memory efficient 

programs. Secondly, nozzles produce a variety of droplet sizes therefore multiple lookup 

calls would be required to determine the drift profile from a single nozzle. Running a lookup 

sequence for each droplet size would require excessive amounts of computing time. 

Computing time, which is directly related to the system update rate, is critical to the accuracy 

of drift mapping. Fast update rates allow the system to represent the sprayer path with greater 

confidence, and thus more accurately map drift depositions. A table of the travel distance 

between update rates based on a 32 km/hr (20 mi/hr) sprayer speed is shown in Table 2. An 
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update rate goal of 2 Hz was selected for the nozzle controller as it provides a balance 

between mapping accuracy and computing time. 

 

Table 2. Travel distance between updates based on 32 km/hr (20 mi/hr) speed emphasizing 

impact of update rate on positioning accuracy 

Update Rate 

[Hz] 

Distance Between Updates  

[m, (ft)] 

0.5 17.8(58.7) 

1 8.9 (29.3) 

2 4.5 (14.7) 

4 2.2 (7.3) 

 

An alternative approach to the lookup table method is a mathematical description of 

the relationships seen within the data, i.e. the development of a regression model. The 

purpose of the regression model is to relate the independent weather and application 

variables accounted for by DRIFTSIM to the predicted drift distances obtained from the 

random-walk model, as shown by Equation 1. A regression model derived from DRIFTSIM 

data would possess the computational speed of experimentally derived regression models 

while having the scope and fidelity of a mechanistic model. 

 

Equation 1. Desired regression model form 

                                                                                            

 

The complex nature of drift and the high degree of interaction of the independent 

variables due to the effect of evaporation suggests that this relationship is non-linear in 

nature. Statistical Analysis Software, SAS (Cary, N.C.), contains a multiple nonlinear 

regression application which evaluates parameter values given a regression equation structure 

and a set of initial parameter conditions. An internal algorithm incrementally adjusts each 

parameter until sum-of-squares error reaches a local minimum. Choosing suggested 

parameters which are truly representative of the relationships seen in the data is key to 

deriving an equation which converges to a local minimum sum-of-squares error which is also 

a global minimum. An analytical analysis was performed in order to gain a general 



28 

 

understanding of the relationships between these variables in the context of the methods used 

by random-walk models for drift prediction. 

A physical representation of the drift process, based on Fluent‘s predictive approach, 

and influential variables is shown in Figure 7.  

 

  

where (units listed are specific to regression equations) 

D=droplet diameter (µm) 

Drift distance=droplet displacement in the x-direction (m) 

grav=gravity  

H=boom height (m) 

Hum=relative humidity (%) 

m=droplet mass 

Temp=temperature (°C) 

Vd=droplet horizontal velocity (m/sec) 

Vi=initial vertical nozzle exit velocity (m/sec) 

Ws_x=wind speed in x direction (m/sec) 

Ws_y=wind speed in y direction (m/sec) 

Ws_x D 

Vi 

m*grav H 

Nozzle 

Temp, Hum 

Vd 

x 

y 
Ws_y 

Figure 7. Droplet weight, wind (air drag), evaporation, and inertia in the drift process 

Drift distance 
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x=horizontal coordinate 

y=vertical coordinate  

 

Applying Newton‘s second law of motion gives  

Equation 2. Forces acting on droplet 

 ⃗                ⃗           
  ⃗⃗       

  
 

In the x-direction only the drag force is present while in the y-direction, both the drag force 

and gravity influence acceleration. The drag force is described by Reichard et al. (1992) as 

Equation 3. Drag force acting on droplet 

 ⃗     [
            

           
]     ⃗⃗⃗⃗⃗⃗⃗   ⃗⃗  

where 

     = dynamic viscosity of air 

   = drag coefficient of the droplet  

       =density of water 

Re = Reynold‘s Number (function of drop velocity) 

 ⃗⃗=droplet velocity  

 

Drag forces drive droplets to terminal velocities in both the horizontal (x) and vertical 

(y) directions. The relationship between terminal velocity in the y-direction assuming a 

vertical wind speed of zero is shown in Equation 4. Small droplets, specifically those smaller 

than 150 µm, have high surface area to volume ratios making them more vulnerable to air 

drag forces (Yates, 1985).  Although droplets can exit the nozzle at high velocities (~20 

m/sec), the high impact of drag forces causes these droplets to reach terminal velocities both 

in the x and y-directions, nearly instantaneously (a 50 µm droplet reaches a vertical terminal 

velocity of 0.538 m/sec in 0.019 seconds). Figure 8 displays a comparison of the time 

required to reach terminal velocity in the vertical direction and the total time to travel (i.e. 

fall) the distance of the boom height (H, which was assumed 2 m in the analysis) for varying 

droplet sizes. The intersection of the two series at a droplet diameter of around 4000 µm is 

representative of the minimum droplet diameter at which deposits occur prior to reaching 
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terminal velocity. A droplet‘s terminal velocity in the x-direction is equal to the wind speed, 

therefore horizontal droplet displacement is dominated by atmospheric conditions.  

Equation 4. Terminal velocity as a function of droplet diameter 

                  √
             

         
 

 

 

Figure 8. Time required to reach terminal velocity and to travel the boom height (time to 

deposit) for varying droplet sizes 

 

Evaporation causes the droplet diameter to decrease during flight. Bird et al. (1966) 

represented this relationship as  

Equation 5. Droplet Evaporation 

  

  
 

                        

           
 

where        

       = mass transfer coefficient 
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          = vapor pressure at the surface of the droplet 

    = atmospheric pressure 

 

Random-walk models track the droplet trajectory over small time steps assuming 

constant velocities and accelerations over these steps, i.e. through an Euler approach. The 

random component, derived from a random number generator within Fluent, is added to the 

wind velocity over each step, both in the x and y directions. Turbulence in the y-direction is 

responsible for suspending small droplets for long durations, resulting in large horizontal 

displacements. The trajectory of each droplet is extended until the droplet evaporates, the 

diameter becomes 0 based on equation 5, or the change in the vertical height is equal to H. 

From the above relationships, and method of calculating the droplet trajectory, it can be seen 

that drift distance is directly related to the horizontal wind speed (Ws_x) and boom height 

(H), and inversely related to the droplet diameter (D). When looking at evaporation, the 

vapor pressure increases with temperature, therefore evaporation rate is directly related to 

temperature. At a given temperature, increasing the humidity results in an increase in the air 

pressure, as the added humidity increases the partial vapor pressure of the air, therefore 

evaporation rate is inversely related to humidity. Evaporation rate is directly related to drift 

distance, concluding that temperature is directly related to drift distance and humidity is 

inversely related to drift distance. 

A limitation in developing a regression model from the random-walk approach is the 

inability to directly represent the effects of vertical wind speeds. Wind speeds in the vertical 

(y) direction are introduced entirely as a random component within Fluent. The parameters 

defining the normal distribution of the vertical wind speed (mean and standard deviation) are 

a function of turbulence intensity (which was held constant for all Fluent simulations at 20%) 

and the horizontal wind velocity. Capturing the impacts of the vertical wind speed 

component is therefore performed entirely by the horizontal wind speed component in a 

regression model. As the DRIFTSIM data is an average of 100 simulations (for a single set of 

conditions acting on a droplet), much of the ―randomness‖ inherent within the Fluent model 

is lost. For this reason, it is anticipated that little of the turbulent influences on drift are 

included within the regression model. 
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The drift distances represented in DRIFTSIM‘s lookup tables are positive if the 

corresponding droplet deposits before evaporating and negative if the droplet evaporates 

before depositing, with the negative distance being the distance at evaporation. Prior to 

regression analysis in SAS, the negative and positive value were separated into two datasets 

to derive two different regression equations. The first regression equation was derived using 

the positive dataset and presents the drift distance as a function of weather and application 

variables. The second regression equation was derived using the absolute values of the 

negative dataset. Drift distances within the second equation represent the distance a droplet 

can travel before evaporation as a function of application and weather variables. It is of note 

that both the first and second regression equations are biased to the non-evaporating and 

evaporating cases respectively since each were derived for exclusive cases. In application 

however it is assumed that the relationships derived are representative of each respective 

phenomenon. From this point of view, the first prediction equation is assumed to accurately 

predict the drift distance of any droplet regardless of whether it evaporates or not, while still 

considering the effects of evaporation on drift distance. In the same manner the second 

regression equation represents the distance any droplet can travel before it evaporates. 

The regression procedure was performed using SAS‘s multi-nonlinear regression 

application with initial parameter values and structures based on the general relationships 

previously described. Two different models were explored to provide relative comparison 

and selection. The first model, shown as Equation 6, represents simplified dynamics of a 

falling droplet being acted upon by wind drag in the x-direction, and wind drag and gravity in 

the y-direction. A derived variable, T, is defined as the time duration of a droplet trajectory. 

Assuming the wind direction in the y-direction is zero and that a droplet reaches terminal 

velocity in the y-direction instantaneously after release, T can be expressed as the boom 

height, H, divided by the terminal velocity. As noted in the analysis of Equation 4, small 

droplets reach terminal velocities very quickly, however for large droplets this assumption 

will induce error. It is anticipated that the multiplication of T by the horizontal wind speed, 

Ws_x, within Equation 6 (and the SAS derived parameters) allows the regression equation to 

account for effects of vertical wind speed (turbulence). The effects of evaporation are ignored 

in this simplified representation of the droplet travel distance.  



33 

 

Equation 6. Regression structure #1 based on simplified dynamics 
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  a ,b, c, and e are parameters to be estimated by SAS 

The goal of the second regression structure was to give SAS more control in deriving 

the relationships seen within the dataset through the use of flexible exponents on each 

independent variable. General relationships concluded from the analytical analysis were 

relied upon to develop the basic structure. Variables are combined for an overall interaction 

term as shown in Equation 7. 

Equation 7. Regression structure #2 with flexible exponents 

                 
              

           
          

Coefficients of determination of each of these equations were calculated to compare 

the ability of the respective equation to account for the variability seen within the input data 

sets. The coefficients of determination for Equation 6 and Equation 7 were 0.55 and 0.65 

respectively, therefore Equation 7 was chosen as the drift prediction model for use within the 

real-time nozzle selection controller.  

The final prediction equation with parameters determined by SAS is shown as 

Equation 8. 

Equation 8. SAS derived drift prediction equation 

                     
                        

                     
      

Somewhat surprisingly the powers of both temperature and humidity are negative, 

corresponding to temperature being inversely related to drift distance and humidity being 

directly related to drift distance which is contrary to what was determined from the analytical 

analysis. Examination of the dataset used for derivation revealed these relationships to also 

be contradictory of those within the data concluding they are a product of the regression 

procedure. The un-exemplary relationships are likely due to correlations between variables 

both in the dataset and the regression equation which compromises the perceived 
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independent effect of each variable. Additional forms of regression equations were 

considered with modified variables, however the coefficient‘s of determination of these 

alternatives offered no improvement in representation of the dataset. 

A single form of the evaporation model was derived using SAS and is shown in 

Equation 9. The same flexible regression model form was provided with initial parameters 

based on the analytical analysis. 

Equation 9. SAS derived evaporation drift distance 

                    
                            

              
      

The evaporation drift distance regression equation establishes a basis to determine if a 

droplet evaporates prior to deposition. Evaporated droplets, according to Elliot and Wilson 

(1983), do not impact drift deposition levels in close proximity to the spraying event, as the 

liquid completely evaporates and the solid particle can travel great distances in turbulent 

wind. While this evaporative transport is still an environment concern, it is not included 

within the scope of the nozzle controller thus fully evaporated droplets are excluded from the 

prediction procedure. 

The coefficient of determination of 0.65 represents the variability in the data which is 

accounted for by regression model. Use of the regression model rather than the lookup table 

method trades predictive accuracy for reduced computing time. In an attempt to justify the 

lost accuracy, a simple program was written within Microsoft Visual Basic Application 

(VBA) to perform and time a drift prediction using the lookup table method and the 

regression equation method respectively. The lookup table method took slightly more than 

five minutes to perform prediction (and mapping described in the following Mapping 

Algorithm section) of drift for an entire nozzle, while the regression prediction method took 

two minutes. From this simple exercise several conclusions were drawn. First, the lost 

accuracy due to the use of the regression method was justified due the savings in computing 

time. Secondly, it was determined that the high level operation methods (and its dependence 

on Windows functions) within VBA require excessive computing times, far in access of the 

desired 2 Hz update rate. An alternative programming language is required for more in depth 

program development.  
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3.2.2. Mapping Algorithm  

3.2.2.1. Mapping Algorithm Objectives 

The overall goal of a nozzle selection controller is to protect sensitive areas from 

excessive amounts of drift. Deposition, volume per unit area, is the acting physical variable 

that leads to effects in sensitive areas, thus its magnitude is the fundamental decision making 

input for nozzle control. Drift deposition prediction for in-field spraying is both a temporal 

and spatial concept. In the context of nozzle selection control, the required endpoints of drift 

prediction are then depositions at locations within the field for a given instance in time.  

The random-walk drift prediction models of Thompson and Ley (1983), Miller and 

Hadfield (1989), Holtermann et al. (1998), Teske et al. (2004) and Zhu et al. (1995) approach 

drift 2-dimensionally (2-D, i.e. along the x and y axes shown in Figure 7). Outputs from these 

models are either the depositions along a one dimensional axis, or the drift distances of 

individual drops. The model developed by Bateans et al. (2007) is innovative in its 3-D 

approach to drift, however the complexity of the model and computing requirements limits 

its application to merely an in-lab tool. Each of these models requires significant 

modification for real-time drift prediction and mapping, as desired by a nozzle selection 

controller. 

DRIFTSIM‘s raw form of prediction, the vertical drift distance of a single droplet, 

provides an ideal flexible platform on which to build an overall drift prediction and mapping 

algorithm.  Necessary modifications defined as specific objectives for the development of a 

nozzle selection controller include the following: 

 Establishment of an algorithm to determine deposition levels based on drift 

distances for multiple droplets and nozzles 

 Inclusion of the impact of wind direction on deposition location 

 Location of drift deposition expressed in absolute coordinates 

 Continuous updating of spatial deposition 

 Storage of all predicted values for future references 
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3.2.2.2. Mapping Algorithm Development 

Establishment of the drift mapping algorithm was done in the context of the 

development of a real-time spray drift prediction software program. The program is a tier 1 

(i.e. base prediction model which will be further expanded upon for full-scale nozzle control) 

design in the overall development of an automated nozzle selection controller, as it is merely 

the drift prediction component in the overall control system. In an effort to simulate in-field 

operations, assumed inputs to the program are temperature, humidity, wind speed, wind 

direction, initial droplet velocity, boom height, and vehicle position. C++ was chosen as a 

programming language for the further development of the spray drift mapping algorithm due 

to the limitations in processing time experienced through preliminary trials. When compared 

to Visual Basic, C++ is more independent of Windows with lower level functionality 

resulting in faster run time.  

Predicting drift depositions at locations in the field is a large scale evaluation of the 

continuous drift prediction equation developed from the DRIFTSIM data. Multiple 

evaluations of a continuous function are analogous to a discrete representation of a 

continuous process. Based on the desired end form of drift, deposition levels, a discrete 

representation of two physical entities, field area and nozzle spectrum, was required. 

A gridding approach was taken in discretely representing field area (Figure 9). This 

approach maps an n x n cell grid onto the field of spraying. Each grid cell corresponds to a 

cell of memory within the computer processor which stores the level of predicted drift 

deposition at that in-field grid position. Upon the initiation of a program, C++ requires all 

variable dimensions to be defined (and hard-coded, i.e. non-variable), therefore the grid 

dimensions must be pre-established regardless of the field area which is actually sprayed. 

The algorithm is limited to mapping drift only within the pre-defined field extents, as 

memory is not allocated to represent locations outside the field grid. Latitudes and longitudes 

define the absolute position of the lower left hand corner of each of the grid cells. The 

centermost grid cell is given the initial set of coordinates, read serially into the algorithm 

program, allowing for travel to be mapped in any initial direction. Absolute locations of all 

grid cells are calculated using this initial set of coordinates and the grid cell spacing 

according to the haversine relationship (Equation 10). 
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                 Figure 9. Field boundary (in red) overlaid on drift mapping grid 

 

Equation 10. Haversine equation 

       (
 

  
)      (

         

 
)                       

 (
          

 
) 

where 

d= distance between two geographical coordinates 

R=radius of sphere (average of 6367 km for earth) 

 

  The output of the prediction equation (Equation 8) is the drift distance of an 

individual droplet. Deriving deposition levels, volume per unit area, at positions within the 

field grid requires an algorithm which adds the volume contribution of each droplet size to 

the volume of drift at each grid cell. Performing this operation requires information 

concerning the nozzle droplet spectrum, the application rate, the grid spacing, nozzle spacing, 

and boom length. Nozzle droplet spectrums characterize the droplet producing capabilities of 

the nozzle, giving the portion of the volume as a continuous function of the droplet size. For 
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evaluation of depositions at each distance, conversion from continuous to a discrete 

representation is necessary. ASABE S.572.1 (2009) specifies using three nozzle spectrum 

characteristics to classify a nozzle, the 10%, 50%, and 90% threshold diameters of which the 

respective percentage of the volume produced by the nozzle is contained in smaller droplets. 

Ten droplet sizes were chosen to characterize the nozzle spectrum within the prediction and 

mapping algorithm, as the increased spectrum resolution leads to a more continuous drift 

deposition representation. Droplet producing characteristics of three different size nozzles, 

classified according to ASABE S.572.1, were hardcoded into the program. Droplet sizes 

were chosen in 10% cumulative volume increments as shown in Table 3.  

 

Table 3. Fine, medium, and coarse nozzle spectrums defined in 10% cumulative volume 

increments as hardcoded within the prediction program 

Fine Medium Coarse 

Droplet Size Droplet Size Droplet Size 

100 180 250 

150 250 320 

175 300 380 

220 340 425 

250 370 475 

280 400 525 

310 475 610 

350 530 700 

400 650 800 

550 800 900 

 

A drift profile for each nozzle is established by applying the drift prediction equation 

to each droplet size category defining the nozzle spectrum. Incorporating the percentage of 

the released volume in each size category gives the percentage of the applied volume drifting 

to each distance. Deriving the volume deposited within each cell is based on the general drift 

case seen in Figure 10. 
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Figure 10. General drift mapping case 

 

The grid cell which contains each category of droplets is determined based on the 

drift distance. An ―if‖ statement routine, modeled after a successive approximation A/D 

converter to reduce computing time, selects the specific grid cell which contains the 

respective drift distance. Deposition within the grid cell based on the singular droplet size is 

calculated as  

Equation 11. Deposition within each grid cell 

           
                                                

         
 

The mapping sequence is iterated for each of the 10 droplet sizes characterizing the 

volume expelled by the nozzle. Depositions at each grid cell are cumulated by adding each 

calculated deposition to the previously existing deposition at the respective grid cell. 

  As noted previously, DRIFTSIM contains only an average drift distance for a certain 

droplet diameter, thus removing the ―randomness‖ of the random-walk model. Randomness 

in the drift distance is due to the turbulent nature of wind. Wind turbulence is created by 

either wind flowing over uneven elements or by a temperature gradient within the 

atmosphere and is most often described as turbulence intensity. Turbulence intensity is 

defined as the standard deviation divided by the average of wind speed measurements made 

over a duration (Leung and Lui, 1995). In the data generation state of DRIFTSIM, a 

turbulence intensity of 20% was used for the Fluent simulations (Zhu et al., 1995). The 

specified turbulence intensity defined the distribution from which the random wind velocity 

component is formulated. In an attempt to reintroduce this random component back into the 

drift distance predictions, the 20% turbulence intensity was incorporated into the drift 

mapping algorithm through the use of wind speed statistics. Over short time periods (1 

minute), wind speed follows a Gaussian distribution (Cochran, 2002). Based on a 20% 

turbulence intensity, 16% of wind speeds measured over a duration would be in excess of 1.2 
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times the average wind speed, while another 16% would be less than 0.8 times the average 

wind speed.  Assuming each droplet to be acted upon by a single wind speed over its entire 

trajectory and the rate of release of each droplet size category to be constant over time, 16% 

of the volume released over a duration is acted upon by high wind speed cases and 16% of 

the volume is acted upon by the low wind speed cases. In the same discrete fashion 68% of 

the volume is acted upon by the average wind speed over the duration. This logic was applied 

within the drift prediction algorithm by applying the high, low and assumed average wind 

speeds to 16%, 16% and 68% of the volume in each droplet size class, thus generating a total 

of 30 drift predictions for each nozzle. While the motivation of these methods was to 

incorporate variability into the drift prediction model, increasing the number of discrete 

predictions also led to a more continuous, intuitive representation of drift deposition.  

The drift profile for a single nozzle is represented by a ―straight line‖ vector of 

elements. Elements are stored within processor memory such that each succeeding element 

corresponds to an adjacent downwind grid cell (Figure 11).  The magnitude of each element 

is the level of deposition within a corresponding grid cell. Drift vectors are the fundamental 

method of deriving and mapping drift deposition within the drift prediction program. 

 

 

Figure 11. Drift vector elements with colors representing varying deposition levels 

 

Mapping resolution is determined by the grid cell size. Large grid cell sizes mesh the 

volumes at discrete distances together, generating a smoother drift deposition gradient within 

the drift vector. Smaller grid cell sizes give better mapping resolution; however with the 

limited number of deposition levels mapped to the grids (30), it is possible to have 

intermediate cells which contain zero or counterintuitive depositions due to the limited range 

in distances contained within the cell. In addition to resolution, grid cell size affects the total 

mappable area. With a constant sized matrix representing the field (hardcoded at 1000 x 1000 

cells), larger grid cells increase mappable area while smaller cells decrease mappable area. A 
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grid cell size of 2 m by 2 m was selected for use within the mapping algorithm as it provided 

optimal balance between mapping resolution (2 m length and width) and total mappable area 

(400 ha or 988 ac). 

An overall drift vector is derived to describe drift from all nozzles on the sprayer.  

The initial element within the total deposition vector corresponds to the furthest upwind grid 

impacted by drift within the field. Drift distances from each nozzle are offset based on the 

nozzles position relative to the overall drift vector. Depositions within each grid cell are 

based on the summation of depositions from each droplet class size and nozzle. Handling 

drift in this manner results in an overall deposition vector which accounts for the total 

volume applied by the sprayer, both within and outside of the sprayer swath. 

Sprayer position and wind direction determine the placement of the overall deposition 

vector elements within the grid-represented field. To provide a consistent deposition 

gradient, wind directions are handled by the algorithm in 45° increments, with 0° 

corresponding to due east (wind directions out of the west). Incrementing wind directions by 

45° maintains wind direction vector slopes of 0, ∞, 1, and  -1 (see slope of 1 case in Figure 

12). Drift distances are modified based on the wind direction such that placement within the 

deposition vector corresponds to angular placement in the field.   

 

Figure 12. 45° deposition vector mapped to field grid displaying continuous drift vector 
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Incrementing the wind direction by 45° simplifies the mapping algorithm 

considerably. Figure 13 considers a mapped deposition vector with a wind direction vector of 

63° or a slope of 2 in terms of grid cells. The continuous nature of the drift deposition vector 

is lost when mapping to the field grid due to the discrete nature of the gridding technique. A 

more complex mapping algorithm would be required to adjust drift distance and place drift 

deposition in a continuous fashion for wind directions which are not truncated to 45° 

increments. 

 

Figure 13. Lost continuity of deposition vector with 63° wind direction displaying discontinuous 

drift vector 

 

The mapping algorithm thus far described provides a single instantaneous 

representation of drift. As previously stated, real-time drift prediction and mapping for in-

field spraying contains both spatial and temporal aspects. Drift prediction is dynamic in that 

operating and weather conditions, as well as the sprayer position within the field, are 

constantly changing. The drift prediction equation accounts for the changing operating and 

weather conditions; responsibility to account for changing position falls on the mapping 

algorithm. A continuous looping procedure of the single drift prediction defines the 

prediction update rate as the computing time required for a single prediction instance. 
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Location of the mapped deposition vector for each prediction instance is based on both the 

position of the sprayer in the field at the time of the prediction and the wind direction. Figure 

14 displays the mapped drift from these multiple predictions.  

 

Figure 14. Iteration of single vector predictions with “unknown” gaps between vectors 

 

For real-time nozzle selection control with a goal of protecting sensitive areas from 

drift, several additional algorithm components are necessary. The high speeds of in-field 

spraying can result in the distance between predictions being 5-10 m (16 to 32 ft) or more as 

shown in Table 2. Even with a fast update rate of the program, there always remains an area 

between predictions which must be accounted for in terms of both predicted drift and 

locating sensitive areas. The algorithm handles this ―unknown‖ area by assuming straight 

line travel and constant application and weather conditions between two predications. 

Deposition levels are then ―filled in‖ between known points as shown in Figure 15. 
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Figure 15. "Filled-in" depositions within unknown regions 

 

The drift prediction and write back scheme described provides a representation of 

drift after it is applied. For nozzle selection to protect sensitive areas, drift must be predicted 

prior to true application due to inherent system delays both within the prediction algorithm 

and the electrical and mechanical components of the system. A ―look-ahead‖ or offset 

distance applied within the algorithm shifts the sprayer location and thus the location of the 

predicted deposition so that decisions concerning the nozzle can be made prior to actually 

applying pesticide over an area. The defined ―look-ahead‖ distance within the algorithm is a 

variable equal to twice the distance traveled by the sprayer within one update cycle. A look-

ahead distance of twice the travel distance rather than just one travel distance accounts for 

the filling in procedure (which is writing drift ―back‖). This method assumes that the 

electrical and mechanical actions required to physically change the nozzle are small relative 

to the computing time. With a 32 km/hr (20 mi/hr) spraying speed and an update rate of 2 Hz, 

a look-ahead distance of 9 m (29 ft) would be applied by the program. The constant travel 
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direction assumption (angle of travel) can induce large systematic errors in irregular shaped 

fields or when spraying along the field boundary. Additionally weather and application 

conditions are displaced in both time and space with this method, placing upmost importance 

on fast program update rates to reduce error. 

Record keeping capabilities of the controller have potential importance in both the 

regulatory and educational sectors.  For this reason, the mapping algorithm records two text 

files of the predicted deposition and operating (weather and sprayer application) conditions at 

positions within the field. An example of the predicted deposition file is shown in Table 4 

while the weather conditions are shown in Table 5. It is of note that wind direction is stored 

as measured by the sensor not in the truncated form used in placing the depositions. Each of 

these files can be easily uploaded into special imaging software for more in-depth analysis by 

either the applicator or regulatory personnel. 

 

Table 4. Recorded drift deposition .txt file with geographic location 

Predicted Dep. [L/ha] Latitude [dec. deg.] Longitude [dec. deg.] 

0 42.01931 
 

-93.641667 
0 42.01933 

 
-93.641667 

0 42.01934 
 

-93.641667 
4.19 42.01936 

 
-93.641667 

5.59 42.01938 
 

-93.641667 
5.59 42.0194 

 
-93.641667 

4.19 42.01942 
 

-93.641667 
5.59 42.01943 

 
-93.641667 

5.59 42.01945 
 

-93.641667 
5.59 42.01947 

 
-93.641667 

4.19 42.01949 
 

-93.641667 
5.59 42.01951 

 
-93.641667 

5.59 42.01952 
 

-93.641667 
5.59 42.01954 

 
-93.641667 

4.19 42.01956 
 

-93.641667 
1.39 42.01958 

 
-93.641667 

 

  



 

 

4
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Table 5. Operating conditions .txt file stored with time and position of measurement 

 

Hour Min. Sec. Latitude Longitude  
Temp. 

[C] Hum.   [%] 
Wind speed 

[m/sec] 
Wind direction 

[deg.] 

Boom 
Height 

[m] 
Pressure 

[kPa] 

10 11 1 42.0226 93.7588 9.85 67.44 5.68 231.85 1.16 222.94 

10 11 3 42.0226 93.7588 9.85 67.44 4.33 333.50 1.16 222.94 
10 11 5 42.0226 93.7588 9.65 67.44 4.47 190.67 1.16 222.94 
10 11 7 42.0226 93.7588 9.65 67.44 5.74 276.52 1.16 222.94 
10 11 9 42.0226 93.7588 9.65 67.44 5.74 276.52 1.16 222.94 
10 11 11 42.0226 93.7588 9.65 67.44 5.74 276.52 1.16 222.94 
10 11 13 42.0226 93.7588 10.25 67.44 3.25 39.59 1.16 222.94 
10 11 16 42.0226 93.7588 10.66 67.44 4.34 228.24 1.16 224.09 
10 11 18 42.0226 93.7588 8.50 68.46 4.57 150.38 1.16 224.09 
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3.3. Results 

The performance of the drift prediction and mapping algorithm was analyzed in the 

lab by simulating spaying events under different operating conditions.  Application and 

weather conditions were varied during simulation to verify the ability of the prediction 

program to account for constantly changing in-field conditions. A GPS simulator provided 

the sprayer position inputs to the prediction program, while an accompanying user interface 

was added to the prediction program to allow for soft coded application and operating 

conditions (Figure 16).  

 

Figure 16. User interface for Tier 1 program with weather and application conditions input 

through text boxes by user 

 

Wind speed, boom height, nozzle type, and wind direction were each varied 

individually throughout the test and the resulting drift prediction text file was uploaded into 

Spatial Management Systems (SMS; Ag Leader, Ames, IA) software for analysis. 

Application and weather variables, when not the subject of testing, were held constant 

throughout each of the tests. These parameters were as follows: 
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 Application rate: 100 L/ha (10.7 gal/ac) 

 Temperature: 26 °C (79 °F) 

 Relative humidity: 60% 

 Wind speed: 4.4 m/sec (9.8 mi/h) 

 Nozzle velocity: 20 m/sec (44 mi/hr) 

 Wind direction: 0° (Due East from the West) 

 Direction of travel: 90° (Due North) 

 Nozzle type: Medium 

 Nozzle (boom) height: 0.6 m (2 ft) 

 

Predicted deposition maps were generated based on the spatial data within the text 

files. Although depositions are maintained with a 2 m by 2 m resolution, lumped depositions 

are displayed within the maps to simplify viewing. Deposition ranges are represented by 

eleven color bands within the maps. Analysis was also conducted based on the higher 

resolution data within the text files.  

Wind speeds were varied from 0.44 m/sec to 8.8 m/sec in five increments. Figure 17 

displays the resulting drift from this application. Depositions are shown from the center of 

the boom and beyond. A boom width of 30 m was used throughout testing, therefore 

deposition within the first 15 m is in-swath deposition.  
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  For the 0.44 m/sec wind speed, drift occurs up to 10 m, where there is 5 L/ha of 

deposition. For the 8.80 m/sec wind speed, deposition at 10 m is 40 L/ha and occurs up to 25 

m from the boom edge. Deposition near the center of the boom is around 95 L/ha, with the 

rate increasing to above 100 L/ha as position moves toward the end of the boom. This 

increasing rate within the boom width is due to the compiling drift levels from each 

individual nozzle. 

 

0.44 m/sec 

1.10 m/sec 

2.20 m/sec 

4.40 m/sec 

8.80 m/sec 

6.60 m/sec 

Direction 

of Travel 

Figure 17. Program predicted depositions for varying wind speeds 
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The influence of boom height on drift deposition, as determined by the drift 

prediction algorithm, is shown in Figure 18. Boom heights of 0.30 m, 0.61 m 0.91 m and 

1.21 m were tested in this simulation. The 1.21 m boom height results in measurable drift 10 

m beyond the furthest extent of drift deposition for the lowest boom height. At a distance of 

10 m from the boom edge, 61 L/ha drift depositions are seen for the 1.21 m boom height 

while for the lowest boom height (0.3 m) depositions at 10 m are only 7 L/ha.  

 

 

 

 

0.30 m 

0.61 m 

1.21 m 

0.91 m 

Figure 18. Predicted depositions for varying boom heights 
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Results for nozzle type testing are shown in Figure 19. Fine, medium, and coarse 

nozzles droplet spectrums measured according to ASABE S572.1 (2009) were stored within 

the program allowing for this analysis. At 7 m from the end of the boom, the fine nozzle 

produces 40 L/ha of deposition, while the medium produces 15 L/ha, and the coarse 6 L/ha. 

For the deposition as a whole, there is little difference between the coarse and medium 

nozzles; however there is a large difference for the fine. 

 

 

Fine 

Medium 

Coarse 

Figure 19. Predicted depositions for three different nozzle types 
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Depositions resulting from a wind direction of 135° relative to due east is shown in 

Figure 20. This figure represents spraying around a sensitive area within a field, such as a 

pond, and was created by changing the sprayer path within the GPS simulator. The sprayer 

approaches the pond from the lower edge of Figure 20 and drives counter-clockwise around 

the pond. The pond has an area of 0.73 ha, however spraying with the boom next to the edge 

of the pond reduces the unsprayed area to only 0.6 ha due to drift. The bottom left turn 

around the pond results in 96 L/ha being applied within the pond. Such practice could cause 

considerable harm to the sensitive area. Also noticeable from Figure 20 are several very high 

application rates that result from turning within the field as well as the wind direction. The 

application rate is doubled in some areas due to compiling drift. 
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3.4. Conclusions 

The following conclusions were drawn from the review, development, and testing of a drift 

prediction and mapping algorithm: 

 Current drift prediction models were primarily developed for academic uses. In such 

a form, these models do not possess the timing or spatial capabilities required for real 

time nozzle control. 

Pond 

Wind 

direction 

Figure 20. Depositions for simulated spraying around a sensitive area 
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 DRIFTSIM, selected as the base drift prediction model for the nozzle controller, is a 

recognized predictive model with readily available data tables for reference. In 

addition to the development of a regression equation from the DRIFTSIM data tables, 

accompanying algorithms to transform prediction of drift distances to depositions and 

to map drift on a gridded field were required for future nozzle control capabilities. 

 Development of discrete field areas and partitioning the nozzle spectrum are inherent 

processes required in the evaluation approach of drift representation. Each of these 

processes influences overall drift resolution and predictive accuracy. 

 The developed prediction and mapping program displayed successful in-lab 

performance, evaluated qualitatively through the ability to capture the impacts of 

highly influential variables on drift deposition. 
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Chapter 4. Acceptable Drift to Sensitive Areas 

Spray drift can never be completely eliminated, however through the implementation 

of best application principles and the use of drift reduction technologies, applicators can 

reduce it to acceptable levels. The decision making process of when to change application 

techniques or even whether to spray or not is rooted in the fundamental question, ―Is the 

potential for drift greater than the acceptable level of drift?‖. While predicting drift is highly 

complex, it is only half of the information required to answer this question. Determining 

levels of acceptable drift are equally complex and important. With the overall goal of 

developing a basis for acceptable levels of drift for use within a nozzle selection controller, 

specific objectives are as follows: 

 Review current U.S. and foreign methods for protecting sensitive areas from drift. 

 Formulate a methodology for handling sensitive area information in the context of the 

nozzle selection controller. 

 Determine levels of acceptable drift based on this methodology. 

 Incorporate acceptable levels of drift into the drift prediction and mapping algorithm. 

4.1. Current Practices Literature Review 

The EPA governs and regulates pesticide drift in the United States. The goal of the 

EPA is to manage pesticides so that they can provide benefits to agriculture while not 

producing ―unreasonable adverse effects‖ on the environment (EPA, 2009b). Restrictions and 

labeling requirements for a certain pesticide are determined though an ecological risk 

assessment, which involves combining the pesticides exposure risk and toxicity to gauge the 

pesticides potential negative impact on the environment (Anon, 1983).  Information 

concerning the toxicity level of the pesticide is required by the EPA from the manufacturer 

for registration. Testing is typically performed by commercial laboratories and involves 

determining the impact of various levels of the pesticide on non-target organisms. A list of 

standard use non-target organisms is shown below (Office of Pesticide Programs, 2004): 

 Fish 

 Birds (e.g. ducks and quail) 

 Mammals (e.g. rats) 
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 Terrestrial plants (e.g. oats, soybeans, and corn) 

 Aquatic plants (e.g. algae) 

 Freshwater invertebrates 

 

This list of target species can be expanded based on the specific intended use of a pesticide. 

For these organisms, endpoint measurements such as the dose at which the active 

ingredient causes death in 25% of a species of organisms (LD25) value or the maximum dose 

of the active ingredient which produces no significant negative effects on the sensitive 

organism (No observable effects limit, NOEL) serve as toxicity endpoints.  Endpoints are 

defined as ―explicit expressions of the actual environmental value or its attribute that is to be 

protected‖ (Risk Assessment Forum, 1998).  Typically either the organism‘s survival 

characteristics or reproductive impairment are the functional targets of the endpoints. Within 

the toxicity study, the most sensitive species for which data can be obtained is considered the 

critical toxicity level. The EPA maintains a running database, termed ECOTOX, of toxicity 

levels for reference and use in future registration or re-registration (Office of Pesticide 

Programs, 2004).  

The exposure risk of the pesticide is evaluated based on anticipated frequency of use 

of the pesticide, potential for transport (both through drift and runoff), and locations of use 

relative to sensitive areas. In determining potential drift, both field collected data and drift 

modeling are consulted. The modeling procedure is often simplified by assuming 1% drift for 

ground applications and 5% for aerial application. From this information estimated 

environmental concentrations (EEC‘S) are calculated.  

The risk quotient (RQ) is defined as ―the likelihood of adverse ecological effects on 

non-target species‖ (Office of Pesticide Programs, 2004) and expressed as 

Equation 12. Risk quotient 

   
   

        
 

where  

EEC = estimated environmental concentration  

             Toxicity = the most critical endpoint of non-target organisms 
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Risk quotients are compared to EPA predefined levels of concern to determine what 

regulatory actions are required to reduce the risk quotient. Currently, very general labeling 

language is instituted to reduce drift based on these risk quotients; however with the 

implementation of the more scientifically based labeling revisions, buffer zones, droplet size 

restrictions, and wind speed restrictions would all be specified on the label to reduce drift and 

protect sensitive areas.  

The Pest Management and Regulatory Agency (PMRA) is the governing body of 

spray drift in Canada. Similar to the EPA approach, PMRA tackles the protection of sensitive 

areas through a risk assessment. Buffer zones are the primary regulatory measure instigated 

to protect these areas of drift with the size of the buffer zone based on the toxicity of the 

pesticide and the determined level of exposure (Kuchnicki et al., 2004). PMRA uses both no-

observable-effects-concentrations (NOEC) for aquatic organisms and 25% effective 

concentration levels (EC25, level where a 25 % reduction is seen in properties such as plant 

weight or emergence) in terrestrial plants to quantify the toxicity of a pesticide through 

testing similar that that performed for the EPA studies.  Buffer zones are only required by 

PMRA when the sensitive areas are downwind from the point of spraying. Labels of each 

pesticide contain the buffer zone requirements. A recent buffer zone revision proposal has 

suggested including a table of factors on the label by which the linear distance of the buffer 

zone can be reduced if drift reduction practices, such as spraying with larger droplet sizes or 

using specialty equipment, are incorporated into the spraying process (shown in Figure 21) 

(Kuchnicki et al., 2004).  
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Figure 21. Example buffer zone distance multipliers for the implementation of drift reduction 

methods (Kuchnicki, 2004) 

In the United Kingdom, the local environmental risk assessment for pesticides 

(LERAP) procedure is used for protecting sensitive areas, specifically aquatic areas, from 

drift. A standard buffer zone width of 5 m is required for all product applications. LERAP 

allows for a reduction in the zone based on the pesticide application rate, the size of the 

waterway, and the drift reduction potential of the sprayer (which is rated as 1, 2, or 3 stars) 

(DEFRA, 2001). Any instance which requires a buffer zone, i.e., whenever spraying in close 

proximity to an aquatic area, must be documented along with any reductions made in the 
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buffer zone width. This document is subject to inspection by local authorities and must be 

maintained by the applicator. 

Of all current sensitive area protection methods, Germany‘s is the most extensive. 

The German Regulatory Authority sets buffer zone widths based on toxicity information for 

each pesticide. A points system is then calculated by the applicator to determine reductions to 

this width. The points system takes into account if a waterway is flowing, the size of the 

waterway, drift reduction properties of the sprayer, and the presence of riparian vegetation 

between the sprayer and the waterway (Rautmann, 2003). 

4.2. Summary of Current Methods to Define Sensitive Areas 

Regulatory agencies in the US, Canada, and Europe rely on risk assessments to 

determine required measures to protect sensitive areas. Risk assessments consider both the 

toxicity of the pesticide and its potential to cause harm in assessing its overall impact on the 

environment. Toxicity data typically pertains to the endpoints of concentration in the 

environment which cause very little noticeable damage, such as the NOEL or EC25 levels. 

Buffer zones are the consensus first approach to reducing the impact of the pesticide on the 

environment. Most countries offer buffer zone reduction if drift reduction technologies are 

implemented.  

 

4.3. Acceptable Drift to Sensitive Areas within the Nozzle Controller 

A real-time nozzle selection controller functions as a regulatory instrument. In this 

role, the decision making processes should have the same scientific basis as a risk 

assessment.  The first component of that assessment, the potential to cause damage, is 

handled by the drift prediction and mapping algorithm previously described. The second 

component, the pesticide toxicity information, is a more static variable yet is just as crucial to 

the controller decision making processes.  

The toxicity endpoints used within EPA‘s risk assessment analysis represent levels of 

deposition in sensitive areas which the EPA deems ―acceptable‖ in a regulatory sense, as 

they do not cause significant observable effects in the environment. To maintain regulatory 

stability as well as to instill authority in acceptable levels of drift, these levels were selected 

to serve as the basis for levels of acceptable drift within the drift controller. While these 
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levels are publically available, they do not exist in a format which can be readily used by the 

nozzle selection controller. EPA‘s risk assessments are on a pesticide by pesticide basis, as 

pesticides vary in toxicity.  In the United States alone there are over 1,055 registered 

pesticide active ingredients, and more than 16,000 different pesticide products (Center for 

Disease Control, 2010). Additionally the toxicity studies for each pesticide exist for many 

different ―sensitive areas‖. The size of the dataset required to house this information as well 

as the accompanying ―lookup‖ algorithms would detract from the overall goal of the nozzle 

selection controller. It is anticipated that in future development of a nozzle selection 

controller, a more inclusive, in-depth approach to acceptable levels of drift would be 

explored. The following approach to levels of acceptable drift is thus a first approach, proof-

of-concept method. 

With the limited ability of the nozzle selection controller to account for all possible 

pesticides, the scope of toxicity analysis, as it pertains to the controller, was reduced to more 

common instances. In the Midwest United States, the most common pesticides are those 

applied in the production of corn and soybeans. A summary of the most commonly used 

herbicides, insecticides, and fungicides in corn and soybeans are shown in Table 6 (USDA, 

2006). 

Table 6. Most commonly used pesticides in corn and soybean production in 2005 (USDA, 2006) 

 
Herbicide 

Acres [% of 
crop total] Insecticide 

Acres [% of 
crop total] Fungicide 

Acres [% of 
crop total] 

Corn Atrazine 66 Cyfluthrin 7 NA <1% 

Soybeans Glyphosate 88 
L. 

Cyhalothrin 6 Azoxystrobin 1% 
 

 

Herbicides, specifically atrazine and glyphosate, are the predominate pesticides 

sprayed on both corn and soybeans.  A survey by the Association of American Pesticide 

Control Officials (AAPCO, 1999) showed that gyphososate, atrazine, and 2, 4-D alone were 

responsible for over 35% of all drift complaints reported in 1998. Insecticides and fungicides 

have neither a pre-dominant active ingredient sprayed nor are they used as extensively as 

herbicides, however they are generally thought to be more toxic to aquatic species and thus 

cannot be entirely ignored within the scope of the nozzle controller. 
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In addition to the active ingredients within a pesticide, the non-target organism 

characteristics also have an impact on the toxicity of a pesticide and thus acceptable drift 

endpoints. In reality, any organism other than the targeted pest can be considered a sensitive 

or non-target organism. As with pesticide types, it was concluded that the scope of the 

controller should account for the more common, in terms of violations, sensitive area types. 

The AAPCO survey concerning drift complaints queried which areas were the subject of 

most drift complaints.  Results of this study are shown in Figure 22. 

 

Figure 22. AAPCO reported drift complaint distribution 

 

Agriculture crops are the target of the majority of complaints due to their typical close 

proximity to sprayed areas as well as increased concern of economic impacts. Surprisingly, 

aquatic areas have a very low percentage of complaints possibly due to difficulty in 

determining the source of contamination.   

EPA ECOTOX database was consulted to evaluate toxicity endpoints of the common 

pesticide/sensitive area pairings. Both NOEL and EC25 levels were recorded when available.  

ECOTOX contains thousands of pesticide categories and is an excellent source for toxicity 

information however it is not an all inclusive database. Additional sources were also 
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consulted to try to obtain a more complete database of toxicity endpoints of 

pesticide/sensitive area pairings. 

Parallel to its use within risk assessments, toxicity endpoints provide levels of drift 

deposition which are acceptable in sensitive areas. The nozzle decision making process is 

then a comparison of the predicted drift to the acceptable drift and a modification of the 

nozzle selection to maintain an acceptable amount of drift. This method of operation requires 

the acceptable level of deposition to either be a constant, hard-coded value or for the 

applicator to enter acceptable levels of deposition in some form.  In the development of the 

drift controller, it was determined the most flexible, user-friendly method of handling 

sensitive area information is an operator entered, sensitivity category approach. High, 

medium, and low sensitivity levels were derived from the dataset and pertain to the action of 

the pesticide within a sensitive area, combining the characteristics of both the pesticide active 

ingredients and sensitive area.  Pesticide-sensitive area combinations were separated into 

high, medium, and low sensitivity groups based on their similar toxicity endpoints as 

follows: 
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High Sensitivity 

 

Herbicide/ Human    

Herbicide/Aquatic  

Herbicide/Adjacent crops 

Insecticide/Aquatic  

Insecticide / Human  

Fungicide/Aquatic  

Herbicide/Organic crops 

Herbicide/Bees 

Insecticide/Organic crops 

Insecticide/Bees  

Fungicide / Human  

Fungicide /Organic crops 

Medium Sensitivity 

 

Herbicide/Livestock 

Insecticide /Livestock 

Herbicide/Pasture and hay 

grasses 

Herbicide/Conservation areas 

Fungicide /Livestock 

 

 

 

 

 

 

Low Sensitivity 

 

Insecticide /Adjacent crops 

Insecticide /Pasture and hay 

grasses 

Insecticide /Conservation 

areas 

Fungicide /Pasture and hay 

grasses 

Fungicide /Conservation 

areas 

Fungicide /Adjacent crops 

Fungicide /Bees 

 

For nozzle selection, the controller requires definitive levels of acceptable deposition 

corresponding to the high, medium, and low sensitivity categories. Levels for these 

respective categories were derived generally from the most sensitive or lowest deposition 

levels within each group and were 0.29 
  

  , 29 
  

   and  72.5 
  

   of active ingredient for the 

high, medium, and low categories respectively.  In terms of concentration levels, which are a 

more conventional representation of toxicity endpoints, a conversion factor assuming a 0.3 m 

deep water body can be multiplied through resulting in mass concentrations of 1 ppb, 100 

ppb, and 250 ppb respectively. A third form of acceptable deposition specifically applicable 

to the pesticide regulatory sector is representation of concentration derived from swabbing a 

small area (10    ) and diluting the resulting mass within 100 ml of water. Corresponding 

thresholds to the high, medium, and low sensitivity categories in this form are 2.9 ppb, 290 

ppb, and 725 ppb respectively.  

The location and sensitivity category are required by the nozzle controller for 

decision making and ultimately protection of a sensitive area. Pesticide concentration is 
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needed to determine the actual volumetric deposition (
 

  
) which corresponds to an acceptable 

level of deposition of the active ingredient (
  

  ). A user interface was developed to run in 

conjunction with the drift prediction and mapping algorithm, allowing for inputs of the 

sensitivity classification (through three ―radio‖ buttons) and four corners of a quadrilateral 

enclosing the sensitive area. Corners are defined in terms of latitude and longitudes as shown 

in Figure 23.  

  

 

 

A second mapping algorithm, in addition to the predicted deposition mapping 

scheme, generates an acceptable deposition grid. Grid cells within the acceptable deposition 

grid are assigned identical spatial coordinates to corresponding grid cells within the predicted 

deposition grid, producing two grids representing the same field. Acceptable deposition 

levels are written to all grid cells recognized as being contained within a respective sensitive 

area. Multiple sensitive areas can be entered through the user interface. With the mapped 

acceptable deposition levels, the controller contains a magnitude and position of areas to 

protect from excessive amounts of drift.  

Figure 23. Definition of sensitive areas (location and sensitivity) through user interface 
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Chapter 5. Nozzle Selection Basis 

Droplet size is the most influential variable effecting drift; therefore it is the subject 

of action in reducing drift within the context of the nozzle selection controller. Implementing 

larger droplet sizes however, has consequences. It often believed that increasing droplet size 

reduces efficacy, thus the motivation to spray a smaller droplet size.  

The overall goal of the nozzle selection controller is to protect sensitive area from 

drift. When drift is of a concern, based on weather conditions and the location of the sprayer 

in the field, the controller selects the nozzle which reduces predicted levels of drift to less 

than the acceptable levels of deposition in sensitive areas. In instances where potential for 

drift damage is reduced, spraying large droplets could needlessly reduce efficacy. In order to 

incorporate efficacy conservation into the drift controller the following objectives were 

pursued: 

 Determine the impact of droplet size on efficacy, summarized by a droplet 

size range for maximum efficacy, through a literature review  

 Generate a control algorithm within the nozzle controller to optimize efficacy 

while maintaining acceptable levels of drift. 

5.1. Literature Review 

Increasing use of drift reduction nozzles has led to increased research concerning the 

impacts of droplet size on efficacy. It is generally believed that the influence of droplet size 

is specific to pesticide type and mode of action (contact or systemic). Contact pesticides 

destroy pests based on modes of action occurring, as the names suggest, at the contact point. 

Systemic pesticides translocate from the point of contact to other parts of the pest, or host 

organism, where they cause inhibitory effects. Pesticide classes were divided into contact 

herbicides, systemic herbicides, insecticides, and fungicides to determine the relationship 

between droplet size and efficacy within each class. 

McKinlay et al. (1974) studied the impact of droplet size on the toxicity of a contact 

herbicide, paraquat, within sunflowers. Droplet sizes were varied from 100m to 350m and 

the effects observed on individual sunflower plants. Toxicity, as measured by the amount of 

visible leaf damage, decreased as the droplet size increased. Contrary to these findings, 
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Douglas (1968) found that both paraquat and diquat had increased activity as the droplet size 

was increased from 250 m to 450 m however further increasing the droplet size to 

1000m decreased activity. Douglas defined activity as the area of necrosis per gram of 

active ingredient applied. Prokop and Veverka (2003) and Shaw et al. (2000) did not find 

droplet size to have a significant impact on efficacy for bentazon and acifluorfen 

respectively. In both cases droplet size ranges subjected to testing were from about 200 m 

to 450 m. 

McKinlay et al. (1972) determined that a common systemic herbicide, 2, 4-D, was 

much more efficacious in the form of small droplets (100 m) when compared to large 

droplets (400 m) as evidenced by the seedling quantity and stem curvature of sunflowers. 

Medium size droplets (200 m) required three times the pesticide concentration while large 

droplets (400 m) took six times the concentration of small droplets to produce the same 

negative effects on the sunflower.  Wolf et al. (1992) specifically analyzed the impacts of 

droplet size on adsorption and translocation of 2, 4-D in oriental mustard. Increasing the 

droplet size from 198 m to 2760 m did not impact adsorption however translocation 

decreased as the droplet size increased. Overall effects on the plant itself were not recorded. 

Feng et al. (2003) also found retention of glyphosate to decrease with increasing droplet size; 

however, adsorption increased leading to an overall greater translocation of the active 

ingredient to the roots of corn. Prasad and Beresford (1992) observed the same efficacy for 

glyphosate, hexazinone, and triclopyl as droplets sizes were increased from 155 m to 435 

m; however, further increasing droplet size significantly reduced efficacy as measured by 

the change in weight of plants after spraying. Jones et al. (2002) performed in-field spaying 

with three droplet spectrums during glyphosate application ranging from 99 m to 582 m 

and saw no significant change in efficacy. Wolf (2000) tested the impact of drift reduction 

nozzles on efficacy and found that only 16% of the 19 herbicides applied to 27 different 

weeds (513 total cases) displayed significant relationship between droplet size (nozzle 

selection) and efficacy. The significant cases were all for herbicides within the same 

subclass, which is seldom used in the Midwest. 
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Very little research has been done on the relationship between droplet size and the 

efficacy of insecticides. Sumner et al. (2007) found through in-field testing that the control of 

stinkbugs in cotton is significantly better for drift reduction nozzles when compared to 

hollow cone nozzles due to their larger produced droplet sizes. Sumner suggest that the 

smaller droplets, while having better coverage ability (Smith et al., 2000), do not possess 

enough energy to sufficiently penetrate the dense canopy of the cotton to provide efficacy to 

the lower leaves of the plants. 

Sumner‘s claims are further supported by testing aimed at determining the impacts of 

droplet sizes on fungicide efficacy. Ozkan et al. (2006) found medium droplet sizes resulted 

in greater coverage in the lower and middle portions of dense canopies of soybeans when 

compared to fine and coarse droplets.  Bretthauer et al. (2008) similarly observed greater 

control of soybean rust with very course droplet sizes.  Hanna et al. (2006), Prokop and 

Veverka (2006), and Derksen et al. (2001) did not find droplet size to be a significant factor 

influencing efficacy of fungicides. 

5.2. Conclusions 

The optimum droplet size for contact herbicide efficacy balances the need for droplets 

small enough to provide coverage of the target yet large enough to prevent complete 

evaporation prior to adsorption of the active ingredient into the plant. Review of literature 

suggests a range of droplet sizes from 150-350 m where efficacy is maintained however 

there are certainly exceptions to this range (specifically for paraquat and diquat).  

While several cases exist where small smaller droplets (down to 100 m) produce 

greater efficacy (McKinlay et al., 1972) and greater translocation (Wolf et al., 1992), the 

majority of researchers agree that systemic herbicide efficacy is independent of droplet size 

until a threshold level is reached. This threshold level is determined by the plant-chemical 

combination.  Systemic herbicides rely on the retention, adsorption, and translocation 

processes to function.  Adsorption increases as the droplet size increases due to an increased 

amount of active ingredient per unit area of the leaf (thus a greater transfer gradient).  

Translocation decreases when cell lysis occurs at a threshold value of pesticide 

concentration, and thus a threshold droplet size.  This lysis causes the active ingredient to be 

barred from other cells. The minimum droplet size producing lysis for common application 
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conditions (glyphosate to weeds), is around 400 m, as determined by Prasad and Beresford 

(1992) and Feng et al. (2003). Numerous other studies have found that the adsorption 

increase and translocation decrease balance each other out in terms of efficacy impact, 

resulting in no significant effect on efficacy for a wide range of droplet sizes (Wolf, 2000; 

Jones et al., 2002; Wolf et al., 1992).  A suggested droplet size from these findings for 

acceptable efficacy is 100 m-400m. 

Limited insecticide relation to efficacy studies agree that a medium size droplet (200 

m-350 m) maintains acceptable efficacy for contact applications where deposition into the 

lower canopy is important (as for fungicides). Insecticide function relies on coverage of the 

plant for protection against pests.  While coverage is higher in the upper canopy for smaller 

droplet sizes, penetration into the lower portions of the canopy is minimal (Bretthauer et al., 

2008; Ozkan et al., 2006).  A balance between small droplets for increased coverage and 

large droplets for increased penetration is achieved at the medium droplet size. 

Research concludes that contact fungicide efficacy, similar to insecticide efficacy, is 

optimized when medium droplets (200 m-350 m) are applied (Bretthauer et al., 2008; 

Ozkan et al., 2006).  These droplets have the ideal size to produce coverage in all sections of 

the canopy. 

Figure 24 summarizes the resulting ranges of droplets sizes derived from the literature 

review where maximum efficacy is achieved and maintained for systemic herbicides, contact 

herbicides, insecticides, and fungicides. 
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Figure 24. Ranges in droplet sizes where efficacy is maintained for four pesticide classes derived 

through a literature review 

 

5.3. Incorporation of Efficacy Information into Controller 

Protecting sensitive areas from drift is the primary objective of the nozzle controller. 

Maximizing efficacy is a secondary motivation in nozzle selection. The preceding literature 

review revealed that optimizing efficacy is at a minimum pesticide class specific (herbicide, 

insecticide, fungicide),; however true optimization is dependent on the specific active 

ingredient being applied. As is the case with acceptable drift to sensitive areas, it is outside 

the scope of a prototype controller to include optimal nozzles for the over 16,000 US 

registered pesticides. To provide maximum flexibility and reduce the overall complexity of 

the controller, a series of radio buttons was added to the user interface to allow applicator 

input of a default nozzle which is assumed by the controller to produce maximum efficacy. A 

flowchart of the nozzle selection process based on predicted deposition, acceptable 

deposition, and optimal efficacy nozzle (default nozzle) is shown in Figure 25, highlighting 

the primary importance of protecting sensitive areas. 
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Four states of the nozzles are shown in Figure 25: fine, medium, coarse, or all nozzles 

off. As is indicated by the ―looping‖ structure of the decision making process, nozzles are 

updated after each drift prediction. The approach assumes a linear decreasing efficacy with 

increasing droplet size.  
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Figure 25. Flowchart of nozzle selection process based on maximizing efficacy while maintaining acceptable drift deposition 
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Chapter 6. Drift Controller Implementation 

In-field nozzle selection control revolves around the central question, ―Is the 

predicted drift greater than the acceptable level of deposition in an identified sensitive area?‖. 

The drift model and mapping algorithm is the foundation for drift prediction, while the 

categorized toxicity endpoints derived from EPA and independent studies comprise the levels 

of acceptable deposition. With a scientific basis for these two components in place and a tier 

1 simulator program established, the stage is set for the development of a real-time nozzle 

selection controller. Specific tasks in the controller development are as follows: 

 Establish controller input/output requirements 

 Integrate sensitive area protection into prediction and mapping algorithm 

 Generate an interface for user inputs and displaying of outputs 

 Select and implement required sensors 

 

6.1. Input/Output Requirements 

Inputs to the nozzle selection controller are composed of all pieces of information 

necessary for the nozzle selection process. Nozzle selection is made up of four functions: 

drift prediction, drift mapping, toxicity evaluation, and efficacy optimization. Drift prediction 

inputs are composed of all variables within the prediction equation: temperature, humidity, 

wind speed, boom height, initial droplet velocity, and droplet size.  Deriving deposition 

levels from the drift distances relies on the flow rate, boom width, nozzle spacing, vehicle 

speed, grid width, and grid length. Mapping of the drift is dependent on wind direction, and 

sprayer position in the field. Toxicity evaluation requires acceptable deposition levels and a 

location of the sensitive area. The simplified approach of efficacy optimization described in 

the nozzle selection process is reliant on only a single additional input, the default or highest 

efficacy nozzle. 

The output from the controller is a physical changing of nozzles on the sprayer. The 

target vehicle for implementation (SpraCoupe® model 7650, AGCO, Duluth, GA) was pre-

outfitted with three nozzle types, fine, coarse, and very coarse nozzles (Figure 26). While a 

fine, medium, coarse configuration would have provided a more linear drift reduction scheme 
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with changing nozzles, the expense necessary to refit the 42 nozzle groups on the boom made 

this option unviable. The prior method of nozzle selection on the targeted vehicle was 

through a three-way switch in the cab which actuated individual electrical solenoid valves via 

a relay corresponding to each nozzle type. For compatibility with the existing system, electric 

solenoids were maintained as the method for nozzle selection. Mirroring the manual nozzle 

selection process, the required controller output is an electronic actuation signal to the 

appropriate nozzle selection relay. Two secondary outputs, based on the project objectives, 

are the test files of both the predicted deposition levels and the conditions (weather and 

sprayer application) measured during application. 

 

Figure 26. Very coarse, coarse, and fine nozzle bodies with activating solenoids on test  machine 

 

6.2. Controller Components 

6.2.1. Program 

The drift prediction and mapping portion of the nozzle selection controller is the heart 

of the control process. As previously described, nozzle selection is based on the fundamental 

question, ―Is the predicted drift deposition greater than the acceptable levels of deposition to 

a sensitive area?‖.  The predicted deposition grid and the acceptable deposition grid provide a 

definitive, scientific basis by which to answer this question.  
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Tier 1 program prediction and mapping is performed on a continuous basis. Each 

prediction iteration represents a unique calculation of nozzle/boom deposition at a discrete 

point in space and time and thus a unique nozzle control sequence. The area-of-interest in the 

control sequence includes all grid cells for which predicted deposition levels are updated. 

Sprayer position, wind direction, and drift distances predicted by the program dictate the grid 

cells which are updated and thus the area-of-interest within the control iteration. In addition 

to grid cells updated based on the sprayers look-ahead distance, the ―fill-in‖ region is also a 

subset of the area-of-interest (as shown in Figure 27). A sequence was added to the tier 1 

program to evaluate ―Is the predicted drift deposition greater than the acceptable 

deposition?‖,,for each grid cell within the iteration‘s area-of-interest.  

Drift is predicted for all nozzles on-board the sprayer. Based on the target test vehicle, 

fine, coarse, and very coarse predictions are made and compared to acceptable depositions 

for each iteration. If the predicted deposition within any the grid cells in the area-of-interest 

is greater than the acceptable deposition in the corresponding sensitive area grid cell, a 

nozzle specific flag is raised signaling that if the corresponding nozzle is selected for 

application, in theory the sensitive area will be contaminated. 

The logic shown in Figure 25 was added to the program to perform nozzle selection. 

Flag values are the basis for answering each of the questions within the flowchart and 

ultimately nozzle selection. Upon determining the correct nozzle for application, the program 

relays a nozzle selection message to a controller board (described in section 6.2.5). Through 

the implementation of the look-ahead distance, the control board is able to make changes to 

nozzle selection prior to application within the area of interest. 
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Figure 27. Area-of-interest between true sprayer position and look-ahead position with an 

encountered sensitive area 

 

The nozzle selection controller was programmed in C++. To optimize computing 

time a total of three threads were implemented. The first thread handles the drift prediction 

and mapping algorithm. Thread number two maintains a user interface described in Section 

6.2.4.  The third thread maintains an updated text file with as-applied operating conditions. 

The program was installed on a 1.69 GHz computer for implementation. On this operating 

platform, the update rate was slightly faster than 0.5 Hz, falling short of the desired 2 Hz 

goal. Simulation in the lab on a higher performance computer (2.83 GHz) resulted in an 

update rate of 1.8 Hz. With the high dependency of update rate on operating systems and the 

rapid development of field computers, this shortcoming was seen as temporary.  The program 

itself was formatted as a header file, with the anticipation of its incorporation into additional 



76 

 

 

programs, and is 414 Kb in size. Predicted deposition text files maintained by the program 

are 31 Mb in size and are stored within the electronic folder housing the programs executable 

file. 

6.2.2. Sensors 

To reduce operator interaction, it was desirable to automate inputs to the nozzle 

selection controller when feasible. Specific targets of automated or system inputs are all 

variables which rapidly change in the field during spraying. Weather and application 

variables are the two general classes of variables which are both rapidly changing and are 

also highly influential to the nozzle selection process. As with most processor based control 

systems, the most direct approach to automating inputs is through the use of electronic 

sensors.  

Weather variables include the temperature, humidity, wind speed, and wind direction. 

The first three of these variables are independent variables in the drift prediction equation, 

while the wind direction is applied in the mapping algorithm to place deposition within the 

field. Multiple sensors are readily available to measure weather conditions, including 

integrated systems which act as complete weather stations. A Maretron® (Phoenix, AZ) 

WSO100 weather station (Figure 28) was selected to sense weather conditions and interface 

with the nozzle selection controller. 

 

Figure 28. Maretron weather station (Maretron Inc.) providing measure of temperature, 

humidity, wind speed, and wind direction 

 

The WSO100 is specifically intended for use in marine environments such as on ships 

or sail boats, however as it is designed to be mounted on a moving vehicles, its uses are 
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readily extended to agricultural purposes. The weather station contains sensors to measure 

wind speed, wind direction, relative humidity, temperature, and barometric pressure within a 

waterproof enclosure.  Wind speed and direction are measured through the use of ultrasonic 

sensors, providing accurate wind parameters at fast update rates when compared to the more 

traditional anemometer weather stations. Table 7 displays the resolutions and ranges of 

measure for each of the weather station sensors. 

Table 7. Weather station sensor accuracies, ranges, and resolutions 

 
Accuracy Range  Output Resolution 

Wind Speed ± 2% 0-51 m/sec 0.01 m/sec 
Wind Direction ±  3° 0-360° 0.0001 rad 

Temperature ±  1°C –25 - 50°C 0.01°C 
Humidity ± 5%  0-100% 0.004% 

 

An internal processor on the WSO100 performs the measurement and communication 

of sensor readings. The measurement rate of each sensor is programmable. Default update 

rates of the temperature and humidity sensors are 2 Hz while the update rate of the more 

variable wind speed and wind direction measurements is 10 Hz. Due to the variable nature of 

the wind measurements, the WSO100 internally dampens the changes in speed and direction 

using a programmable dampening period.  

The WSO100 is set up for Controller Area Network (CAN) bus interfacing. As its 

intended use is in the marine sector, the NMEA 2000 standard protocol is the basis of 

operation.  The NMEA 2000 protocol is build on top of the J1939 automotive industry 

standard with slight modifications to message identifiers and cabling requirements. Two 

different messages are sent from the WSO100 containing the wind data and the atmosphere 

data at each respective update rate. A definition and layout of the two messages are shown in 

Table 8. 
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Table 8. Weather station CAN message definition and layout 

 

PGN Description       Data Bytes         

  
0 1 2 3 4 5 6 7 

130306 Wind Data Field Id. 
Wind speed 

low 
Wind speed 

high 
Wind direction 

low 
Wind direction 

high Wind ref. 
Not 
used 

Not 
used 

130311 Environment Data Field id. Temp. ref. Temp low Temp high Humidity low Humidity high Pressure Pressure 
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Wind speed and wind direction measurements were taken over a 2 minute time 

interval in the field when wind was ―light and variable‖ to determine if the default 

dampening of the wind measurements required adjustment. A Vector (Stuttgart, Germany) 

CANcaseXL data logger was used to collect both wind speed and wind direction data and 

write the collected data to a text file. The position of the weather station was held stationary 

through the duration as to not induce artificial directions and velocity.  Plots of wind speed 

and wind direction are shown in Figure 29 and Figure 30, respectively.  

 

 

 

Figure 29. Wind speeds (measured from a stationary position) over two minute duration  
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Figure 30. Wind direction (measured from a stationary position) over two minute duration 

 

Wind speed fluctuations throughout the time duration of measurement are gradual 

and supported by several data points of measurements. This behavior suggests that the 

dampening of the wind speeds sufficiently reduces both noise and un-sustained wind gusts. 

The wind direction plot displays wind position in cylindrical coordinates with the time 

duration as the radial magnitude. The constant increase in radial magnitude represents the 

passing of time. Points are connected in measurement sequence therefore perceived breaking 

of the circular patter represents large wind direction fluctuations. Overall, as with wind 

speeds, the wind direction maintains continuous increases and decreases therefore it was 

concluded that the default dampening resulted in a sufficient representation of wind speed 

and wind direction for use within the nozzle selection controller. 

Mounting the weather station onboard a vehicle results in wind measurements which 

are relative to the vehicle. Wind speed in the context of the drift prediction equation derived 

from DRIFTSIM, is absolute (or relative to a stationary point within the field), as DRIFTSIM 
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assumes droplets are released from stationary nozzles. While the vehicle speed will induce an 

additional initial droplet speed vector, the droplet‘s trajectory is dominated by terminal 

velocities which in the horizontal plane are equal to the absolute wind speed with a heading 

equal to the absolute wind direction. An algorithm was added to the controller to return 

absolute wind speed and direction from relative wind speed, direction, vehicle speed, and 

vehicle travel direction (derived from successive GPS coordinates).  

Like the weather variables, boom height is an application variable which is used in 

the drift prediction equation. Recently developed boom self-leveling systems, such as the 

Norac® (Fridley, MN) AutoBoom system, use ultrasonic sensors to determine boom height 

above either the crop or the ground based on desired performance. With the perceived 

eventual incorporation of a self-leveling system into the nozzle selection controller, a stand-

alone ultrasonic sensor (model PING))), Parallax, Rocklin, CA) was selected to measure 

boom height. The sensor package includes both an ultrasonic transmitter and receiver in a 

single package. A 40 KHz sonar pulse is emitted by the ultrasonic transmitter, travels until it 

reaches an obstruction, reflects off the obstruction, and is ultimately received back by the 

ultrasonic receiver. The PING))) sensor is designed to easily interface with microcontrollers, 

and accurately measures proximities up to 3 m.  A single input/output pin receives a 5 volt 

input pulse from the microcontroller, emits a sonar pulse when the pin goes from high to low, 

then holds the pin high until the emitted pulse is received back by the senor. The travel 

distance of the pulse can be calculated based on the speed of sound and the time duration for 

which the pin is held high. 

 

Figure 31. Ping))) ultrasonic sensor (Parallax Inc.) instrumented to measure boom height 

 

The accuracy of the ultrasonic sensor is predominately attributed to the reflective 

ability of the target-distance measurement objective, and the speed of sound assumption. In 
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the context of drift prediction, the target measurement is the distance between the nozzle and 

the plane on which the droplet ultimately deposits. When spraying in a vegetated area, the 

deposition plane is highly variable as droplets can deposit within the vegetation or on the 

ground. When considering the ground as the plane of deposition, additional complexities of 

consideration are variable wind speeds and directions generated by the canopy near the 

ground. Due to the uncertain nature of accounting for these complexities, the raw ultrasonic 

distance measurement of the irregular vegetated surface was assumed true ―boom height‖ 

within the context of drift prediction.  

The speed of sound is a function of the air stiffness (the air bulk modulus) and the air 

density. Bohn (1988) expressed the speed of sound as a function of the air temperate and 

molecular mass as  

Equation 13. Speed of sound as a function of air temperature 

               √
     

 
 

where  

γ=heat capacity ratio 

R=universal gas constant 

T=temperature 

M=molecular mass of air 

 

Varying temperature from 10 °C to 30 °C corresponds to a change in speed of sound 

of 12.77 m/sec. A maximum speed-of-sound estimate error over this temperature range 

results in less than a 5% error in boom height measurement. Within the context of the nozzle 

selection controller, a boom height error of 5% is negligible relative to the highly variable 

ground surface and canopy over the area for which each drift prediction is applied and the 

0.65 coefficient of determination of the prediction equation. A constant speed-of-sound at 20 

°C (332 m/sec) is applied within the nozzle controller for calculating boom height.  

Existing sprayer sensors were utilized to obtain the droplet initial velocity, the flow 

rate, and the vehicle speed. Most late model self-propelled sprayers are equipped with rate 

controllers which require sensors for measuring each of these variables. The nozzle selection 
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controller was implemented on a SpraCoupe 7650 sprayer which uses radar for speed 

sensing, and electronic pressure and flow sensors for measuring fluid dynamic variables. 

Interfacing with the rate controller on this machine is done via the sprayer CAN bus. In all, 

the sprayer contains three busses: the engine bus, the proprietary bus, and the virtual terminal 

bus. The virtual terminal bus contains all information displayed to the operator and the 

variables required for the rate controller therefore tapping into this bus was used to access the 

outputs from these sensors. Reverse engineering techniques were implemented to identify 

which messages on the bus contained data corresponding to each of the three sensors, as well 

as correlating the data within each message to sensor outputs.  

The CANcaseXL data logger was the primary tool used to analyze and record CAN 

messages within the reverse engineering procedures. For each sensor of interest, operating 

conditions were varied over a typical operating range. The virtual terminal displayed each of 

the variables of interest and was used as the true value for each variable. CAN outputs were 

stored in a text file via the CANcaseXL. The data cells within the CAN messages were 

observed during testing to identify which message corresponded to each variable. After 

testing, the text file was uploaded into Microsoft® (Redmond, WA) Excel to determine the 

resolution and offset of the appropriate message bytes. A summary of all CAN messages 

used within the nozzle controller are shown in Table 9. 

 

Table 9. Definition of CAN messages incorporated within the nozzle selection controller 

Variable PGN Resolution Offset 

Pressure 59008 0.575 KPa 0 
Flow rate 59008 0.0014 L/sec 0 
Vehicle speed 61474 0.001 m/sec 0 

Temperature 130311 0.01C -273.15 
Humidity 130311 0.004% 0 

Wind speed 130306 0.01 m/sec 0 

Wind direction 130306 0.0001 rad 0 
 

For use within the drift prediction equation, the droplet initial velocity was calculated 

from the pressure. The pressure sensor is located on the sprayer boom, near the nozzles; 

therefore it is assumed that the pressure at the sensor is equal to that at the nozzles (internal). 
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An energy balance based on Bernoulli‘s equation allows the droplet velocity to be calculated 

as 

Equation 14. Initial exit velocity of the droplet as a function of inlet pressure and flow rate 

              √
   

 
 (

   

    
)
 

  

where  

P = pressure at the sensor 

ρ  = density of water 

Q = volumetric flow rate of fluid to a single nozzle 

D = diameter of the tube carrying volume to the nozzle 

 

The pressure is obtained from the pressure sensor. Volumetric flow rate is determined 

from the flow rate sensor and knowledge of the number of nozzles on the boom, as the flow 

rate measured by the sensor is for the entire boom. The diameter of the tube was determined 

from tube specifications. 

6.2.3.  GPS Inputs 

Mapping of the predicted drift in the field is dependent an accurate measure of the 

sprayer position. While this position is only critical relative to sensitive areas, the 

commonplace existence of GPS systems on commercial sprayers provides a reliable source 

of absolute sprayer position within the field and was therefore chosen as the input of sprayer 

position within the nozzle selection controller. Latitude and longitude positions are input 

serially to the controller through National Marine Electronics Association (NMEA) strings, 

specifically the GGA data string. Within the controller, latitude and longitude coordinates are 

converted over to sprayer location on the field grid as described by Equation 10 in Section 

3.2.2.2. Position accuracy is dependent on both the gridding resolution and the GPS 

accuracy. An RTK GPS system was selected to reduce GPS pass-to-pass accuracy to less 

than 1 cm. GPS update rate was set to 4 Hz to provide GPS inputs to the controller at a faster 

rate than the controller update rate, thereby not limiting the system performance by the GPS 

inputs.  
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6.2.4. User Interface Development 

In addition to the rapidly updated inputs to the drift prediction model, nozzle selection 

requires inputs more readily defined by the applicator. User inputs include area sensitivity 

classification (high, medium, or low), sensitive area location, pesticide concentration, default 

acceptable drift to ―non-sensitive‖ areas, default nozzle, and grid length. A user interface was 

developed to handle each of these inputs through text boxes and radio buttons as shown in 

Figure 32. As previously mentioned, one of the three program threads monitors user inputs 

during operation of the nozzle selection controller; therefore changes which are made during 

spraying to any of the textboxes results in a real-time change within the nozzle selection 

controller. 

 

Figure 32. Developed user interface for applicator inputs 

 

The user interface was further developed to provide informative outputs to the 

applicator. All sensor based inputs are displayed on the user interface as shown in Figure 34. 

Through the use of colored picture boxes, predicted drift is displayed to scale on a 

representative field layout. A legend is shown in the far right-hand side of the interface to 

provide reference values to the deposition colors. The user interface thread handles real-time 

mapping to the user interface thereby not impacting the update rate of the program. While the 
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goal of the nozzle selection controller is to automate sprayer operating parameters, 

specifically the nozzles, the purpose of the user interface display is to encourage the manual 

implementation of best spraying practices through a visual representation of the extent of 

drift.  A close-up of the mapping region is shown in Figure 33, while the entire user interface 

is shown in Figure 34.  

 

 

Figure 33. Real-time updated mapped deposition on user interface 
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Figure 34. Full user interface for automated nozzle controller 

 

Buttons were added in the lower left hand of the user interface for user instigated 

operations. The ―Start‖ button initializes automated nozzle control to protect sensitive areas. 

The ―Stop‖ button is the antithesis of the start button, whereby nozzle control reverts back to 

manual selection through the three way toggle switch in the cab. ―Write Data to File‖ will 

write out the predicted deposition levels to a text file for recordkeeping purposes for in-depth 

analysis (.txt file shown in Table 4). The ―Save Sensitive Area Information Button‖ 

integrates information input by the applicator into the sensitive area information text boxes 

and radio button into the nozzle selection process. An unlimited number of sensitive areas 

can be input by the applicator. Once areas are input, they are drawn within the user interface 

represented field for visual recall during spraying. 

 

 

 



88 

  

 

6.2.5. Hardware and Interfacing 

 

With the serial input/output limitations of the nozzle selection controller program run 

on the laptop, a hardware bridge was required to interface with the sensor inputs and nozzle 

selection outputs. A control board developed at Iowa State by Dr. Matt Darr was selected to 

serve as this bridge. The board contains a PIC18F processor along with four MOSFETS, a 

serial communication chip, CAN transceiver, and four H-bridges making it a highly flexible 

for control uses (see Figure 35).  

 

Figure 35. Controller board implemented to record CAN data, serially communicate with 

laptop (running prediction algorithm), and transition nozzles 

 

The control board serves as the hub of communication for the nozzle selection 

system. Application variables (vehicle speed, flow rate, and pressure) are all readily available 

on the sprayer CAN bus along with weather variables, as the weather station was added as a 
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node to the existing sprayer bus. The control board was added as a second node to the sprayer 

bus to receive each application and weather message and relay the messages serially to the 

software program running on a laptop in the sprayer cab. Control of the boom height sensor 

is also maintained by the control board, which administers a boom height measurement after 

all other weather and application variables have been updated on the CAN bus. A single 

serial message is output at 2 Hz (based on the most limiting sensor update rate) and contains 

18 bytes of data. As each of the measured variables exists as a word data type, two bytes 

were required for each weather or application variable, plus an additional two bytes to mark 

the beginning and end of the message for recognition by the nozzle selection program. 

Oscillator limitations of the control board limited the baud rate of the serial message to 9600 

however based on the low amount of data transferred this low baud rate did not inhibit the 

control process.  The prediction and mapping algorithm program run on the laptop receives 

serial data from the control board and stores all data within a buffer. As the control board 

update rate may be faster than the prediction algorithm update rate (based on the computer 

operating system), only the most recent set of weather and application conditions present 

within the buffer are applied to prediction. 

Serial communication between the control board and nozzle selection program 

provides the data required for electronic nozzle selection. The nozzle selection program 

determines which nozzle, if any, should be used for application. After each serial message 

containing the new sensor variables is input to selection program, an output is sent back to 

the control board with a single byte corresponding to which nozzle to select. A 

―49‖corresponds to the fine nozzle, a ―50‖ to the coarse nozzle, and ―51‖ to the very coarse 

nozzle. Any other value received by the control board results in a ―no spray‖ condition. The 

control board processor deciphers the serial input message and provides a path to ground 

through the appropriate MOSFET corresponding to the desired nozzle selection. A wiring 

schematic of the nozzle solenoid valve interface with the control board is shown in Figure 36. 
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Figure 36. Circuit schematic of interfacing between nozzle solenoid valves and control board 

 

A visual description of the interfacing of all components within the nozzle selection 

controller is shown in Figure 37. 
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Figure 37. Interfacing of nozzle controller (run on the laptop), with sensors, control board, and 

nozzles 
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Chapter 7. Testing  

In-field testing of the developed nozzle selection controller was performed to evaluate 

performance in a practical setting. Specific objectives of the in-field testing were as follows: 

 Generate a proof-of-concept dataset, evaluating both the controller‘s theoretical and 

experimental capabilities to protect sensitive areas from drift. 

 Qualitatively and statistically evaluate the predictive accuracy of the model and 

mapping sequence within the controller through comparison of predicted depositions 

to experimentally measured in-field depositions. 

 Conclude sources of errors based on in-field weather measurements and 

experimentally measured depositions. 

7.1. Test Equipment 

The physical components described in the implementation section were installed on a 

SpraCoupe 7650 self-propelled sprayer (Figure 38) for testing. A bracket was mounted 

within the sprayer cab to secure a laptop running the developed nozzle selection software 

program. The bracket positioned the computer keyboard within arm‘s reach of the operator 

for easy interfacing (Figure 39).  

 

Figure 38. Spra-Coupe 7650 test vehicle 
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Figure 39. Laptop mounted in cab under rate controller 

The boom height sensor was mounted on the underside of the center boom section, 

adjacent to the nozzles such that boom components did not interfere with proximity readings. 

Figure 40 displays the mounting of the weather station such that horizontal wind speed and 

wind direction vectors were not induced by sprayer geometry. While more representative 

wind variable measurements, in terms of effect on droplet trajectories, are at the release 

height of the droplets (the boom height), placement at this height would have resulted in 

disturbances from turbulence around the vehicle. 

A Trimble® (Sunnyvale, CA) EZ-Guide 500 receiver provided uncorrected GPS 

inputs. To further increase the GPS accuracy, a Raven® (Sioux Falls, SD) Slingshot™ RTK 

modem was used to provide GPS correction through the Iowa CORS network. Mounting of 

GPS and RTK cellular antennae‘ are shown in Figure 40 with the EZGuide 500 mounted 

display and Slingshot modem shown in Figure 41. 
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Figure 40. Weather station, RTK cellular and GPS antennas 

 

Figure 41. EZGuide 500 and Slingshot modem 

 

The control board was mounted within the sprayer cab for easy interfacing with both 

the virtual terminal CAN bus and the software program run on the laptop. As previously 

mentioned, the test sprayer was wired for manual nozzle selection through the use of a three 
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way toggle switch in the sprayer cab.  Rewiring of the nozzle selection was performed per 

the wiring diagram in Figure 36, to transfer nozzle control to the control board.  

The test sprayer was equipped with fine, coarse, and very coarse classified Delevan 

(Mendota Heights, MN) Varitarget nozzles (Figure 42), which maintain a relatively constant 

droplet size as the flow rate through the nozzle is varied.  A variable area pre-orifice plunger 

(component 1 in Figure 43) and variable area nozzle orifice cap (component 2) adjust based 

on the flow rate and developed pressure. The plunger position establishes both the orifice 

area and the pre-orifice area. Pressure applied by the plunger to the diaphragm-like nozzle 

cap creates the orifice opening, while the varying diameter of the plunger generates control 

over the pre-orifice area.  At low flow rates and thus low operating pressures, a compressed 

spring (component 3) within the nozzle body applies a large force to the plunger which in 

turn presses against the nozzle cap creating a very small opening. Greater pressures are 

generated in the nozzle from increased flow through the nozzle. As pressure increases, forces 

exerted on the plunger compress the spring within the nozzle body. Compression of the 

spring causes the plunger to travel away from the nozzle cap, increasing the orifice size, 

while at the same time increasing the pre-office area. The combination of varying pre-orifice 

and orifice maintains a constant droplet size as well as spray angle (Bui, 2005). Duggupati 

(2007) evaluated the nozzle spectrum characteristics of the Varitarget nozzle and found 

constant nozzle classification for droplet size as indicated by spray quality based on ASABE 

572.1 over nozzle pressures from 10-50 psi. Varitarget nozzles have become increasingly 

popular in the variable rate agriculture sector due to these capabilities. Nozzle spectrums of 

each of the three nozzles on the test vehicle were determined from lab testing and hard-coded 

within the nozzle selection controller (in place of those used for the fine, medium, and coarse 

nozzles in the simulator testing, Section 3). Spectrums were defined in terms of 10 droplet 

sizes, consistent with the tier 1 controller approach. 
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Figure 42. Delevan Varitarget nozzle 

 

Figure 43. Components of the Varitarget Nozzle 

 

2 

1 

3 
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7.2. Proof-of-Concept Testing Procedures 

Motivation for proof-of-concept testing was to evaluate the nozzle controller‘s ability 

to protect sensitive areas through the transitioning of nozzles when sensitive areas are 

encountered during spraying. On a theoretical protection and performance basis, the key 

measurements for proof-of-concept testing are mapped predicted drift and mapped acceptable 

levels of drift. Proof-of-performance is then a comparison of the ―as-applied‖ predicted drift 

to the acceptable levels of drift for a true in-field spraying event.  On a practical performance 

evaluation basis, experimentally determined depositions in sensitive areas resulting from 

spraying with an activated nozzle selection controller are compared to acceptable 

depositions.  

Proof-of-concept testing was conducted in a tilled 2.8 hectare field located on the 

Iowa State University Agricultural Engineering and Agronomy farm. A single sprayed swath 

along the ―AB‘‖ line shown in Figure 44 constituted a ―spraying event‖ used to evaluate the 

performance of the automated nozzle selection system.  

 

 

Throughout spraying, the nozzle selection program was relied upon to record both the 

mapped predicted depositions, mapped acceptable levels of deposition, and the operating 

A 
B 

Figure 44. Test field layout and “AB” line 
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conditions including the nozzle in use at each point within the field. Measurement of 

experimental deposition levels was performed according to the ASABE standard for 

measuring drift deposits from ground sprayers, ASBAE S561.1 (2009). White Kromekote 

paper cut into 2 cm by 3 cm sections served as experimental drift collectors within the 

testing.  The sprayed volume was water with a 0.275% concentration of Tracer Hot pink Dye 

(Precision Laboratories, Waukegan, IL.), as was used by Hanna et al. (2006). The dye-

Kromekote paper (Figure 45) method produces a droplet stain with a sharp, distinct edge, and 

is a popular approach to high volume in-field drift measurements (Barry et al., 1978, 

Maksymiuk and Moore, 1962).  

 

 

Figure 45. Dyed Kromekote card  

 

Two simulated sensitive areas were flagged-out within the test field at distances from 

the boom edge which were pre-determined to require nozzle transitioning based on typical 

operating conditions.  Cards were placed along the border of, and within the sensitive area, 

for each of the two sensitive areas, as shown in Figure 46. The defined card placement 

provides analysis of depositions within and around the close proximity of sensitive area. 

Each card was labeled based on its row (defined parallel to the sprayer path) and column 

(perpendicular to the sprayer path) position relative to the sensitive area for later correlation 

of depositions to positions within the field. Modified paperclips were attached to the cards 

and pushed into the ground as shown in Figure 47 to prevent displacement of the cards by the 

wind.  
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Figure 46. Measurement card placement for proof-of-concept testing showing origin for x-axis 

as referenced in Figure 56-Figure 59 

X 
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Figure 47. Kromekote collection card with paperclip fixture 

 

The first sprayer-encountered sensitive area, ―A‖, was located at a distance 78 m from 

the boom edge while the succeeding encountered area , ―B‖, was 9 m from the boom edge 

(see Figure 48 for sensitive area locations within field). Under anticipated operating 

conditions during the tests, highly sensitive areas at both ―A‖ and ―B‖ would result in coarse 

nozzle selection and ―no-spray‖ nozzle states respectively. Similarities between the coarse 

and very coarse nozzle spectrums did not present a predictable situation where a very coarse 

nozzle would be selected rather than the coarse nozzle therefore only two sensitive areas 

were used to generate a total of three nozzle conditions, as fine nozzles were set as the 

default nozzle.   
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 Proof-of-concept testing was conducted on October 8, 2010 at 3:30 pm central time. 

Due to difficulties in maintaining ambient weather conditions, only a single repetition was 

performed. The sprayer was positioned at the east most point of the ―AB‖ line of travel. 

Wind conditions were monitored until the wind speed was comparable to that used in 

sensitive area selection and placement and the wind direction stabilized to relatively due 

North heading. With the desired conditions reached, the sensitive area sensitivity levels (both 

High) and locations were input to the nozzle selection controller via the developed interface. 

Additional user inputs were as follows: 

 

Grid length: 2m 

Default Acceptable Drift: 1000 L/ha 

Pesticide Concentration: 100 g/L 

Default Nozzle: Fine 

 

When the desired conditions were obtained, the nozzle selection controller was 

engaged and spraying commenced along the ―AB‖ line which was marked with high-

A 

B 

Figure 48. Sensitive areas relative to centerline of travel within proof-of-

concept test field 
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visibility flags.  An application rate of 100 L/ha was maintained throughout the duration of 

the swath through the use of the sprayer‘s rate controller. Upon completion of the test, both 

the acceptable levels of drift and predicted drift deposition levels were written to test files for 

later analysis though the user interface. Kromekote cards were allowed to dry within the field 

prior to collection. Cards were stored within sealed bags to prevent the future effects of 

moisture on the droplet stains.  

Depositions on the field collected cards were measured through the use of WRK 

DropletScan™ (Lonoke, AR). Effectiveness of this system in measuring droplet sizes for 

downwind drift collections was confirmed by Wolf (2003) and Hoffman and Hewitt (2004). 

DropletScan™ measures the deposition on card surfaces through the application of imaging 

algorithms to scanned images. The algorithms use spread factors (the ratio of droplet 

diameter on the card to pre-deposition diameter) to relate color contrasts on the card surface 

to a total volume deposited on the card. Known scanned areas are applied to derive volume 

per unit area measures. 

The accuracy of DropletScan™ is highly dependent on the use of spread factor 

representative of the liquid-paper interface.  Barry et al. (1978) developed relationships 

between spot diameters, as measured under the microscope, and pre-deposition droplet 

diameters controlled through the use of a vibrating reed apparatus.  Relationships were 

determined for a wide variety of pesticides as well as dyes on Kromekote paper. Amongst 

dyes, relationships were similar, however between dyes and pesticides relationships were 

highly different.  Rhodamine dye produced a relationship of  

Equation 15. Rhodamine dye spread on Kromekote paper 

              
                         

    
 

With the low variability in dye relationships and similar properties between Rhodamine and 

Tracer dye, the Rhodamine spread factor was used within deposition analysis. 

Predicted drift and acceptable deposition levels were determined from the nozzle 

controller‘s output text file. Depositions were determined both numerically, directly from the 

text files, and visually using SMS. The controller‘s theoretical and experimental ability to 

protect sensitive areas was determined from comparisons between drift predicted by the 
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controller, measured deposition on the Kromekote cards, and acceptable deposition for the 

sensitive areas. 

 

7.3. Predictive Accuracy Testing 

7.3.1. Background  

The controller‘s ability to protect sensitive areas within the field hinges upon its 

predictive accuracy. An overpredicting controller will prematurely select larger droplets for 

application resulting in unnecessarily reduced pesticide efficacy. Underprediction can have 

even more detrimental impacts, as excessive drift will be allowed to deposit in sensitive areas 

resulting in environmental damage. Accuracy, in the context of the drift controller, is a 

measure of how well predicted drift compares to true in-field drift. Testing was conducted to 

quantify the automated nozzle selection controller‘s predictive accuracy. 

Wind tunnel testing is often chosen to replace in-field testing in evaluating the 

accuracy of a drift prediction model. The controlled environment of the tunnel allows single 

variables to be changed in a step wise fashion to generate a wide dataset for model 

evaluation. While convenient, wind tunnel testing does not truly represent the drift 

phenomenon which occurs in the field. The spatial aspects of drift due to sprayer position and 

wind direction require in-field testing to fully evaluate predictive ability.  Methods of 

predictive model evaluation through in-field testing were reviewed prior to formulating a test 

plan for evaluating the nozzle selection controller‘s predictive accuracy. 

Prior researcher‘s methods to evaluate predictive accuracy in the realm of spray drift 

tend to be more qualitative in approach as opposed to quantitative. Ellis and Miller (2010) 

compared predicted and experimental depositions at various distances from the boom edge 

for 13 different sets of operating conditions. Conclusions were drawn concerning predictive 

ability through the visual analysis of predicted and experimental depositions plotted on the 

same y axis versus distance from the boom edge on the x-axis. A cumulative plot of all 

predicted deposits versus measured deposits (as a percent of the application rate) was used to 

visually determine overall predictive ability as the ideal relationship between these two 

variables would be linear with a y intercept of zero (see Figure 49). This is a common method 

of model evaluation, also used as the primary method of accuracy analysis in works by Teske 
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et al. (2001, 2004) for the AGDISP model and Holtermann et al. (1997) for the IDEFICS 

model. 

 

Figure 49. Collective plot of predicted deposition versus experimental deposition commonly 

used to evaluate predictive accuracy (Ellis and Miller, 2010) 

 

Lebeau et al. (2009) determined the predictive ability of his plume model used for 

real-time prediction using data from five trials conducted with varying wind speeds and plant 

heights (effective boom height). Accuracy was evaluated by qualitatively comparing tabled 

percent deposition values of the predicted and in-field measured depositions. Nuyttens et al. 

(2007) expanded upon the graphical approaches of Ellis and Miller, Teske et al., and 

Holterman et al. by calculating the significance of the correlation coefficient for his dataset 

for a regression line similar to that seen in Figure 49.  

7.3.2. Procedures 

With the ability to predict drift based on real-time operating conditions comes an 

opportunity to perform more in-depth statistical analysis on predictive accuracy of a drift. 
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Prior methods of drift model evaluation have measured weather conditions but used 

―average‖ or mean weather during the test rather than adjusting for drift in much smaller 

―real time‖ steps. A test plan was developed with the anticipation of generating data through 

testing which would provide a basis for an innovative statistical evaluation of the drift 

prediction model using real-time weather to affect predicted drift. 

A significant limitation in in-field testing is the inability to vary and select weather 

conditions at will. In evaluating predictive accuracy of a model, conclusions can only be 

drawn for predictive accuracy at the set of conditions encountered during testing.  It was 

determined that the scope of the nozzle-controller predictive accuracy testing would be 

limited to typical operating conditions. To provide variability and increased understanding of 

the predictive ability, five general sets of operating conditions were selected to serve as 

treatments, with wind speed and boom height as the two principle subjects of variability. The 

fine nozzle type was selected as the primary target of analysis as it produces high drift 

potential cases, however test 5 was conducted with a coarse nozzle to generate a single low 

drift potential condition. The five test cases were as follows: 

 

Test 1 

Low wind 

High boom 

Fine nozzle 

 

Test 2 

Low wind 

Low boom 

Fine nozzle 

 

Test 3 

High wind 

High boom  

Fine nozzle 

Test 4 

High wind 

High boom 

Fine nozzle 

 

Test 5 

Low wind 

Low boom 

Coarse nozzle 
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Low wind speed is defined as encountered winds ranging from 1-5 m/sec, while high 

wind speeds range from 5-8 m/sec. Low boom heights are approximately 1 m while high 

boom heights are 1.2 m.  It was initially determined that a greater range in boom heights 

should be implemented within the treatments, however this detail was overlooked during the 

testing resulting in less distinguished low and high boom heights. This development led to 

reduced scope of model accuracy validation, however the overall subject of the testing was 

not compromised.  

The automated nozzle selection controller was implemented as described within the 

proof-of-concept testing. With the goal of comparing predicted and experimental depositions, 

measurements collected for accuracy testing include the in-field depositions collected on 

Kromekote paper, depositions at positions as predicted by the controller, and real-time 

updated operating conditions during testing.  As in the proof-of-concept testing, the 

controller‘s logging abilities were used to record predicted depositions as well as operating 

conditions. Depositions were collected on Kromekote cards. 

The proof-of-concept test field on the Iowa State University Agricultural Engineering 

and Agronomy farm served as the test site for the predictive accuracy testing. The field 

layout for predictive accuracy testing is shown in Figure 50.  Cards were placed from 0-50 m 

from the edge of the boom in 2 m increments, thus constituting a ―card vector‖. Ten card 

vectors were placed in the field for each set of test conditions with 50 m between each card 

vector. Fifty meter spacing allows for wind direction variability up to 45° without deposition 

from a single card vector overlapping an adjacent card vector per ASBAE S572.1. Test days 

were selected based on wind direction, wind direction stability, and wind speed to satisfy the 

test design criteria. In order to maintain the desired card vector spacing to prevent overlap, 

field dimensions required either due north or due south wind directions. Wind direction 

variations from due north or south of less than 20° were desirable to reduce the potential for 

overlap on adjacent card vectors. 

 



107 

  

 

 

Figure 50. Field layout and card placement in model accuracy testing 

 

Kromekote cards were labeled on the same row column basis as in the proof-of-

concept testing, with columns consisting of the 10 card vectors and rows of the 26 (0-50 m at 

2 m intervals) positions within the vectors.  Latitude and longitude coordinates were recorded 

for the location of card 0 within each column for later linking of card vectors with predicted 

depositions. 

Testing was conducted on three different days to acquire the appropriate wind 

conditions. Tests 1 and 2 were performed on September 28, 2010 when low wind speeds 

were observed, tests 3 and 4 on October 2, 2010 as high wind speeds were present, and test 5 

on October 5, 2010 when low wind speeds were observed.  Prior to each test, in-field 

conditions were monitored through the interface of the nozzle selection controller. When 
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conditions, most notably wind speed and direction, stabilized and were in the desired ranges, 

user inputs were established in the nozzle selection controller as follows: 

Grid length: 2 m 

Default Acceptable Drift: 1000 L/ha 

Pesticide Concentration: 100 g/L 

Default Nozzle: Fine (Tests 1, 2, 3, 4)/Coarse (Test 5) 

 

Sensitive areas were excluded from the inputs to prevent varying nozzle selection. 

The high default acceptable drift level assured that the fine nozzle would be selected for tests 

1-4, while on test 5 the coarse nozzle was input as the default nozzle for complete application 

with the coarse nozzle.  

 Each test consisted of a single swath along the ―AB‖ line (Figure 51 and Figure 52).  

Predicted depositions and operating conditions were monitored and recorded by the drift 

controller at an update rate of 0.5 Hz. The ―AB‖ line was extended 50 m beyond the last card 

vector to allow potential wind direction impacts to be consistent for all card vectors. 

Predicted deposition and operating condition text files were saved after the completion of 

each test for later analysis. Table 10 displays the average conditions for each of the five tests. 

Wind directions specifies the direction relative to parallel to the card vectors, with positive 

directions indicating westward tending (out of the east blowing to the west) winds and 

negative directions indicating eastward winds. Varying pressures were derived from slightly 

varying vehicle speeds, as flow rate was adjusted to maintain a consistent application rate 

(~70 L/ha).  

Table 10. Average operating conditions recorded during each of the 5 tests (standard deviations 

shown for wind measurements) 

 

Temp 
[C] 

Hum 
[%] 

Wind Speed 
(std.) [m/sec] 

Wind Dir. 
(std.) [deg.] 

Boom 
Height [m] 

Pressure 
[kPa] 

Nozzle 
Type 

Test 1 22.5 52.7 3.9 (1.1) 4.0 (13.5) 1.2 162.1 Fine 

Test 2 22.5 52.6 1.2 (0.4)  4.0 (14.8) 1.0 236.5 Fine 

Test 3 11.2 67.2 5.4 (1.17) -7.0 (16.0) 1.2 216.0 Fine 

Test 4 12.2 61.3 6.4 (1.87) -15.0 (19.3) 1.2 160.7 Fine 

Test 5 19.5 44.4 3.4 (1.1) 22.0 (50.3) 1.0 279.1 Coarse 
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Kromekote cards were analyzed as in the proof-of-concept testing with depositions 

being measured for each card. Predicted depositions at the position of each card were 

determined from the compiled text files. Both predicted and experimental depositions were 

input to Microsoft Excel for analysis. 

 

 

 

Figure 51. In-field drift from accuracy testing 
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Figure 52. In-field drift resulting from accuracy testing 
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Chapter 8. Results 

The automated nozzle selection controller‘s functionality was evaluated using both 

qualitative and quantitative techniques. Qualitative techniques mirrored those commonly 

used by other researchers in evaluating predictive ability of drift models. A method for 

quantitative analysis was developed to statistically determine the model‘s predictive ability 

and allow for objective comparison to other prediction models.  

8.1. Proof-of-Concept Results 

The goal of proof-of-concept testing was to evaluate the ability of the nozzle selection 

controller to both theoretically and experimentally protect sensitive areas from excessive 

amount of drift (greater than acceptable levels). Qualitative methods were relied upon to 

evaluate each of these capabilities. 

Predicted drift depositions for the proof-of-concept testing were uploaded into SMS 

to evaluate theoretical sensitive area protection. Predicted and acceptable deposition levels as 

represented in SMS are shown in Figure 53. 

  

 

Area A 

Area B 

A 
B 

Figure 53. Predicted deposition and sensitive areas within proof-of-concept testing 



112 

  

 

Each of the sensitive areas in Figure 53 has an acceptable deposition level of 0.029 

L/ha which corresponds to a highly sensitive area. Transitioning of the nozzles by the 

activated selection controller is clearly evidenced by the predicted drift profile. Beginning at 

point ―A‖, the sprayer applied with a fine nozzle. While large amounts of drift occur when 

spraying with the small droplet sizes of the fine nozzle, the absence of a sensitive area in 

close proximity to the sprayer causes the controller to focus on maximizing efficacy rather 

than the reduction of drift. As the sprayer continues down the ―AB‖ line toward sensitive 

area ―A‖, the controller recognizes that the fine nozzle theoretically produces drift levels 

exceeding those established as acceptable for area ―A‖. The controller determines that the 

coarse nozzle is the highest efficacy producing nozzle which does not result in excessive drift 

to area ―A‖ therefore the application nozzle is transitioned from fine to coarse. When the 

controller recognizes that the fine nozzle no longer violates the acceptable drift levels of 

sensitive area ―A‖, it is re-selected for application. Continuing along the ―AB‖ line, area ―B‖ 

which is near the boom edge, is encountered. For this area, the controller predicts each of the 

three on-board nozzles, if implemented, would produce excessive drift within area ―B‖, 

therefore a ―no-spray‖ condition is selected. Continuation past area ―B‖ re-instates the fine 

nozzle.  

An interesting control sequence occurs when the wind direction suddenly shifts after 

the sprayer has passed sensitive area ―B‖. A -45° wind direction causes spray to drift ―back‖ 

onto the sensitive area, therefore an additional ―no spray‖ condition is required to protect 

area ―B‖. Once wind direction returns to due north, the fine nozzle is re-selected for 

application to maximize efficacy. A higher resolution representation of the predicted 

depositions with the selected nozzles is shown in Figure 54 with a detailed nozzle selection 

profile, as recorded by the controller, relative to position on the ―AB‖ line is shown in Figure 

55. 
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Figure 54. Proof-of-concept testing predicted depositions and nozzle selection based on 

protecting areas from drift  

 

 

In Figure 54, predicted depositions can be seen within the sensitive areas which seem 

to violate to acceptable drift levels. These depositions are explained by the functionality of 

Fine Fine Fine V. Coarse Off 

Area ‗A‘ 

Area ‗B‘ 

Area  A 
Area  B 

Figure 55. Selected nozzles as recorded by the controller 
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the controller. Maintained predicted drift records precede the control process by one control 

iteration, through the use of the look-ahead distance (i.e. drift is predicted and stored before 

selecting a nozzle for application). Recorded predictions within an iteration are based on 

applying with the nozzle implemented during the previous iteration. With this methodology, 

the iteration which initializes nozzle transitioning (and thus violates the acceptable drift 

level) is evident within predicted drift records. In the development of the controller, it was 

assumed that most sensitive areas will be large relative to the grid size and distance covered 

over a time step, therefore recording the initial violating prediction would not cause a 

significant feature on the prediction map. While the controller records predicted drift based 

on the nozzle implemented over the previous iteration, the actual nozzle used for application 

over the area is selected, through the use of the look-ahead distance, to protect the sensitive 

area from excessive drift.   

It is of note that the look-ahead procedure is not simply a look-ahead in distance but 

also a look-ahead in time. Protection of the sensitive areas is therefore dependent upon the 

assumption that weather and operating conditions, including wind direction, are those 

occurring at one look-ahead time step in the future. Highly fluctuating conditions, most 

notably wind speed and direction, can create instances where this assumption would lead to 

large predictive inaccuracies and thus contamination of sensitive areas.  

Predicted depositions at the locations of each of the Kromekote cards placed along 

the border of, and within sensitive areas are shown in Figure 56. The x-axis and its origin 

within the figure corresponds to that shown in Figure 46. It is of note that cards from 

distances of 0-6 m and 24-30 m were outside the boundaries of the sensitive areas (per Figure 

46). Row numbers correspond to the three rows of cards paced at varying distances 

perpendicular to the boom edge with row 1 closest to the boom edge. 
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Figure 56. Predicted depositions within and around sensitive area “A” 

 

The satisfactory theoretical ability of the controller to protect the sensitive area from 

drift is evident from this figure. From 15-22 m, spikes in depositions are for the ―triggering‖ 

cases where wind direction shifted causing drift back onto the sensitive areas. The fast update 

rate of the controller is evidenced by the quick decline and return of deposition from and to 

0.45 L/ha.  

Figure 57 displays the experimentally measured depositions at positions 

corresponding to those of the predicted depositions in Figure 56.   
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Figure 57. Experimental depositions within and around sensitive area “A” 

 

Experimental depositions display little relation to those predicted in Figure 56. Based 

on the levels of deposition seen within the sensitive area, the 0.029 L/ha acceptable level 

would not be violated however there is not sufficient evidence to say protection is solely due 

to the controller‘s actions.  

For sensitive area ―B‖, which was closer to the boom edge, predicted deposition 

levels are shown in Figure 58.  
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Figure 58. Predicted deposition levels for area “B” 

 

Predicted deposition levels within the sensitive area are zero except for the trigger 

point seen at 10 m. The decreasing deposition with distance from the boom edge can be seen 

when comparing the three rows at 10 m. As was the case with area ―A‖, large predicted 

depositions along the border show the controllers ability to recognize the sensitive area with 

high resolution and thus preserve efficacy within the swath. A plot of experimental 

deposition is shown in Figure 59 for comparison to these predicted values. 
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Figure 59. Experimental depositions for area “B” 

 

As in the case of sensitive area ―A‖, the experimental deposition levels for sensitive 

area ―B‖ display little resemblance to the predicted depositions. With the closer proximity of 

area ―B‖ to the boom edge, much higher actual levels of deposition are seen than for area 

―A‖. With the high sensitivity level specified, the area would be highly contaminated.  

The most likely cause for discrepancies seen between the experimental and predicted 

depositions is an inability of the controller to accurately represent the effects of wind 

direction on drift. Limitations of the controller in regards to wind direction are seen in two 

areas, wind direction resolution and the temporal effects of wind.  

The controller truncates wind directions to 45° increments in order to simplify the 

mapping procedure. Truncating wind direction leads to low direction resolution, particularly 

for areas near the boom edge, and thus an inability to accurately represent the wind impact 

seen in the field. With 45° increments, true wind direction can be as much as 22° from the 

represented value. Proof-of-concept testing was conducted on a deemed ―stable‖ day, 

however over the short duration of testing wind direction was seen to vary by more than 30° 

from parallel to the card vector as shown in Figure 60.  
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Figure 60. Wind direction variability from parallel to card vectors over proof-of-concept 

duration 

 

An inability to represent the temporal effects of wind direction on drift is one of the 

greatest weaknesses of the controller. A single wind direction is assumed to act on each 

droplet from release until deposit. In reality, the variable nature of wind both in time and 

space leads to a constantly changing wind direction vector acting on the droplet. The 

controller‘s inability to represent the travel direction of a droplet is magnified when 

observing depositions at greater distances, as wind acts on the droplet for a greater duration. 

The use of multiple wind directions acting on a droplet is limited by two aspects of the 

controller. First, the use of multiple wind directions over the trajectory of the droplet would 

greatly add to the complexity of the prediction algorithm, thus increasing run time. 

Decreasing update rate has been a theme throughout development of the controller due to its 

impact on predictive accuracy. Second and perhaps more importantly, an inherent problem is 
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that the ultimate flight path of a droplet is influenced by subsequent but unknown wind shifts 

occurring after a droplet is released which cannot be predicted by on-board sensors. Even if 

the complexity of multiple wind directions could be accommodated and still maintain 

reasonable real-time speed, the controller cannot look into the future. When a droplet is 

released, the wind profile which will ultimately act on it during the duration of its flight path 

has yet to be established. The highly variable nature of drift limits the ability to assume what 

this profile will be. Based on the test data collected, assuming a wind profile could lead to 

greater inaccuracies than using a single instantaneously measured wind. 

8.2. Predictive Accuracy Testing Results 

8.2.1. Qualitative Accuracy Analysis 

The five sets of in-field tests generated a large database for use in evaluating 

predictive accuracy. In terms of statistical properties, the experimental unit within the tests is 

the card vector, made up of 26 cards. Depositions on individual cards within the vectors are 

dependent on one another disallowing treatment as experimental units; however depositions 

amongst vectors are independent, as vectors were spaced so that wind direction deviations 

did not cause overlap. Results were therefore observed on a card vector basis. 

For each of the five tests, predicted and experimental depositions seen within each of 

the card vectors were plotted for analysis. Figure 61 displays a single card vector 

representative for each of the five tests. Depositions are expressed as the logarithm of percent 

deposition calculated as  

Equation 16. Drift deposition representation 

                       
          

                
      

 

Percent depositions were included in the analysis rather than absolute depositions to 

remove the impact of slight variations in application rate between the five tests and within a 

single test. The log transformation allows for better viewing of the ranges in deposition 

encountered within the vector. The lower limit of the logarithm scale was truncated to -2, the 

corresponding representation of the experimental deposition resolution attained using the 

scanner. 
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The model exhibits an overprediction region from around 4 m to 20 m from the boom 

edge which varies in magnitude between the 5 tests. This ―bulging‖ region was most evident 

in the highest drift potential case, test 4, and least evident in the lowest drift potential case, 

test 5, however varies unpredictably for the intermediate three tests. Overprediction quickly 

transitions to underprediction around 20 m. The underprediction region is predominantly 

made up of predictions which are zero.  Even in the greatest drift potential case, there are no 

predicted drift deposits beyond 30 m from the boom edge. 



 

  

 

1
2
2
 

Test 1 
Test 2 

Test 3 Test 4 

Test 5 

Figure 61. Representative predicted/experimental depositions along card vectors compared for each of the five tests 
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Table 11 compares the average percentage of the volume lost in the form of fallout 

(deposited) drift for the predicted and experimental measures over each of the five tests. Test 

4, the highest drift potential case, produced the maximum predicted drift, however greater 

experimental drift was seen in test 3. In-field collection cards only account for drift 

depositing within 50 m of the boom edge. Reduced measured volume in test 4 was likely due 

to drift which remained airborne beyond 50 m and was not measured. Low predicted and 

measured drift in test 5 were due to a combination of low drift potential (large droplet sizes, 

low wind speed, low boom height) and highly variable wind directions encountered during 

testing. Predicted and experimental drift volumes, and thus percent error, are biased toward 

representing depositions near the boom edge, as drift deposition decreases exponentially with 

distance from the boom edge (shown by the linear trends seen in the logarithmic plots of 

Figure 61). More in-depth analysis is necessary to gauge model predictive ability. 

Table 11. Average percent volume lost as fallout drift for each of the five tests 

    Percent of Volume Lost   

   
Test 

  

 
1 2 3 4 5 

Predicted 14.44 5.63 22.67 23.00 1.71 

Experimental 9.14 8.01 15.87 14.95 3.36 

Percent Error 58.10 -29.73 42.85 53.82 -49.23 
 

To determine the variability in depositions, cards from each of the card vectors were 

combined in distance subsets and plotted with error bars representing the 95% confidence 

limits at each distance of measure (Figure 62-Figure 65). Based on the method of testing, 

error bars are not used to draw statistical conclusions as test conditions (wind speed and/or 

direction) were known to change for each of the 10 card vectors thus inducing known, rather 

than random error. Additionally the assumption that the logarithmic representation of the 

depositions follows a normal distribution should be validated to justify using the normal 

distribution to determine 95% confidence intervals. Error bars in this instance are used to 

represent variability caused by changing weather conditions in the case of the predicted 

depositions, and changing weather conditions and random errors in the case of the 

experimental depositions. Variability analysis was conducted for four of the five test cases. 



124 

  

 

Test 5, performed with the coarse nozzle, experienced highly variable wind directions during 

testing, resulting in extremely high degrees of predictive and experimental variability thus it 

was excluded from the variability analysis.  
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Figure 62. Predicted and experimental deposition mean and 95% confidence interval at each 

distance from the boom edge for test 1 
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Figure 63. Predicted and experimental deposition mean and 95% confidence interval at each 

distance from the boom edge for test 2 
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Figure 64. Predicted and experimental deposition mean and 95% confidence interval at each 

distance from the boom edge for test 3 
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Figure 65. Predicted and experimental deposition mean and 95% confidence interval at each 

distance from the boom edge for test 4 

 

Mean predicted and experimental deposition levels within the variability plots display 

the same patterns seen within the single card vector plots (Figure 61). The model generally 

displays high predictive accuracy in the region near the boom edge (<5 m), possibly as a 

result of assumed instantaneous wind speeds and directions being more representative of 

these droplets trajectories. An overprediction bulge, more evident in tests 1 and 2, occurs 

from 5 m to 20 m from the boom edge where the model then transitions sharply to under 

prediction. Of particular interest are the surprisingly high levels of variability seen within the 

predicted depositions. Predicted deposition variability is due entirely to changing weather 

conditions, most notably wind speed and wind direction, during the testing.  The high degree 

of variability seen in deposition is thus indicative of highly variable wind speeds and 

directions. For test cases 2 and 4 wind direction shifts were largely responsible for the 

changes in predicted depositions. For cases 1 and 3 much less predicted variability is seen 

with the bulge region, due to more consistent wind directions.  
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Predicted and experimental depositions were plotted three dimensionally to visually 

determine if there is a direct correlation (―tracking‖) between predicted and experimental 

depositions. The third dimension within the plots is the row number, 1-10. A visual 

correlation analysis was selected over a quantitative correlation analysis due to the value of 

spatial viewing. 

Plotting the data three dimensionally and on the log scale allows for relative 

comparisons of deposition at each distance over the 10 rows. A direct correlation between 

experimental and predicted depositions is indicative of two predictive qualities. First, the 

predictive model contains variables which are truly representative of the drift phenomenon. 

Second, the expression of the variables within the model are representative of the drift 

phenomenon. A third predictive quality not evaluated when looking for a direct correlation is 

model bias, however bias is easier to correct and thus of less interest than the first two 

qualities.  

As the predicted deposition varies mainly with wind speed and direction fluctuations, 

the direct correlation analysis specifically determines if wind speed and wind direction are 

good predictive variables of drift. Three dimensional predicted and experimental deposition 

plots are shown for test 1 (low wind speed) and test 3 (high wind speed) in Figure 66. 

 



 

  

 

1
2
8
 

Test 1 Experimental Test 1 Predicted 

Test 3 Experimental Test 3 Predicted 

Figure 66. Visual 3-D correlation analysis for low (Test 1) and high (Test 3) drift potential cases 
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Predicted deposition for tests 1 and 3 visually were not directly correlated with the 

experimental depositions. Each card vector within the predicted deposition plots displays a 

consistent trend. High depositions, relative to the surrounding card vectors, near the boom 

edge correspond to high depositions at greater distances from the boom edge within the same 

card vector. In the same manner relatively low depositions near the boom edge translate to 

low depositions seen at greater distances from the boom edge. The assumed single wind 

vector acting on each droplet is the cause for these consistencies and rigid prediction plots. A 

spike in wind direction increases drift as a whole for a vector rather than just near the boom 

edge as the wind is assumed to act upon all droplets expelled by the nozzle at the instant in 

which wind speed and direction are measured.  

Experimental depositions exhibit an entirely different behavior. Trends in deposition 

seen near the boom edge do not translate to the same trends seen at greater distances from the 

boom.  Trends do however hold consistent over shorter distances (4-6 m) suggesting that 

trends seen do in fact exist, and are not due to measurement error which would cause isolated 

spikes and valleys. As stated earlier during the evaluation of proof-of-concept testing, the 

effect of wind variability within a droplet‘s trajectory is the likely cause of a lack in 

prolonged trends.  Droplets which drift large distances from the boom edge are acted upon by 

different wind vectors than those droplets which deposit soon after release (assumedly the 

larger droplets).  The assumption that a single and consistent wind direction acts upon all 

droplets is inherently flawed and based upon the data seen within Figure 66, a major 

contributor to diminished predictive accuracy. 

8.2.2. Quantitative Accuracy Analysis 

The goal of the quantitative accuracy analysis was to statistically evaluate the drift 

model‘s predictive ability. Several approaches were taken to quantify predictive accuracy 

including more traditional approaches and an innovative method. 

8.2.2.1. Correlation 

A plot of the predicted deposition versus the experimental deposition for an ideal 

model would present a straight line with slope of one and y-intercept of zero. Data from test 

1-4 were combined and a plot of the logarithm of predicted percent deposition versus the log 
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of the experimental deposition for each card location was generated (Figure 67). As in earlier 

analysis, test 5 was excluded from the accuracy testing due to the high degree of wind 

direction and wind speed variability over the test duration. 

 

Figure 67. Log of predicted deposition versus log of experimental deposition for tests 1-4 

combined with linear regression line 

 

The plot in Figure 67 displays four distinct regions of data, termed regions 1 through 

4 referenced from the top of the graph to the bottom. The four regions display horizontal or 

predicted deposition trends. Region 1, the top region, corresponds to high predicted 

depositions which occur near the edge of the boom. This region contains a high degree of 

variability due to the exponential decrease in predicted (and experimental) depositions as one 

moves downwind from the boom edge. A void area exists between regions 1 and 2 which 

corresponds to few predicted deposition values of 1-3% (i.e.    -     ). This void region is 

followed by two middle regions separated by a second void. The two middle regions 

correspond to predicted deposition levels of around 0.31% and 0.1%, representing predicted 

depositions typically seen beyond 20 m from the boom edge. According to the clustered 

nature of these two regions, there is little predicted variability seen in deposition from 20 m 

to 30 m. Region 4 in Figure 67 represents 0% (i.e. no drift) predicted depositions. As can be 
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seen in the earlier figures, from 30 m outward, the model generally predicts 0 L/ha deposition 

even at the high wind speeds seen in the test 3 and 4.  

Generation of regions suggests the method of prediction is too discrete. Discrete 

properties of the model are derived from the use of the grid mapping scheme and ten droplet 

sizes to represent the nozzle spectrum. Decreasing grid sizes would lead to increased 

resolution and thus a more area specific representation of drift. A more continuous 

representation of the droplet spectrum would provide for greater variability in drift distances 

and thus deposition levels. Additionally, a nozzle spectrum representation which includes 

greater definition and resolution at the small droplet sizes is required to generate depositions 

at greater drift distance (>30m) and thus better compare to experimental depositions. 

The regression line fit to the dataset has a slope of 1.12, y-intercept of -0.1313, and 

coefficient of determination of 0.62. Nuyttens et al. (2007) performed statistical testing on 

the correlation coefficient when evaluating the performance of his developed prediction 

model. In a similar manner for this dataset, a null hypothesis that the correlation coefficient is 

zero, meaning no correlation between predicted and experimental deposition, is rejected at 

the 0.01 significance level therefore there is significant correlation between the predicted and 

experimental depositions. 

8.2.2.2. Paired T-test, Application at Individual Distances from the Boom 

Statistical testing conducted in order to determine predictive accuracy was based on 

paired difference t-tests. Paired difference t-tests remove variability which is caused by a 

certain characteristic of each observable unit. Within the spray drift analysis, pairing 

experimental and predicted depositions at each location within card vectors theoretically 

removes variability that is seen between card vectors within a test due to changing wind 

speed and direction conditions.  

A paired difference t-test was conducted on the predicted and experimental 

depositions at each downwind distance for tests 1 and 3 to determine predictive ability of the 

model at different distances. The observational unit within this testing is deposition on an 

individual card as comparisons are being made at each distance, therefore dependence on 

other cards within the same vector does not violate test assumptions.  The null hypothesis in 

this testing is that the difference is zero, or the experimental and predicted samples are the 
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same. Failure to reject the null hypothesis however does not conclude that the predicted and 

experimental depositions are in fact the same, as low confidence levels due to high variability 

can lead to failure to reject the null hypothesis. Rejecting the null hypothesis concludes that 

there is a significant difference between the predicted and experimental deposition levels. A 

summary of the statistical testing conducted at each distance is shown in Table 12, with ―x‖ 

denoting rejection of the null hypothesis at a significance level of 0.05 (two sided).  

Table 12. Summary of paired-difference statistical testing performed for tests 1 and 3 at each 

distance of drift measure 

  p-value (2-sided) Null Hypothesis* 

Distance 
(m) Test 1 Test 3 Test 1 Test 3 

0 0.08 0.21 
  2 0.02 0.96 x 

 4 0 0.36 x 
 6 0 0 x x 

8 0 0 x x 

10 0 0 x x 

12 0 0.01 x x 

14 0 0.07 x 
 16 0 0.26 x 
 18 0.02 0.04 x x 

20 0.07 0.01 
 

x 
22 0.11 0.99 

  24 0.07 0.62 
  26 0.37 0.22 
  28 0.86 0.17 
  30 0.42 0.11 
  32 0 0.01 x x 

34 0 0.01 x x 
36 0.01 0.02 x x 
38 0 0.01 x x 

40 0 0.01 x x 
42 0 0 x x 
44 0 0.02 x x 
46 0 0.03 x x 
48 0 0.07 x 

 50 0.01 0.12 x 
 *Where an ―x‖ indicates a rejection of the null hypothesis 
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Both tests 1 and 3 exhibit a region between 20 and 30 m from the boom edge where 

the null hypothesis is not rejected. The fact that there appears to be high variability within 

this region (as represented by log transformations in Figure 62 and Figure 64, which actually 

includes greater variability than that used within the test due to the paired effect) suggests 

that the failure to reject the null hypothesis within this region is not due to similarities in the 

predicted and experimental depositions but rather the high levels of variability within the 

data.  As expected, the null hypothesis is rejected for the bulging region of overprediction 

and the region of underprediction from 30 m to the edge of the boom.  

8.2.2.3. Paired T-test, Application at Card Vectors  

Analyzing predicted and experimental depositions on a basis of the true experimental 

unit, card vectors, requires the derivation of a single composite measure characterizing the 

deposition seen within an entire vector. A measure was derived as follows 

Equation 17. Unbiased summation observational unit 

                   ∑
           

                                

  

   

 

where 

             = the predicted or experimental percent deposition (depending on the 

subset of conversion) at card i within the card vector.  

                                = the average percent deposition at each card i 

distance within the specific test, calculated based on the 10 cards at card i position 

 

The derived observational unit provides an unbiased summation of all the depositions 

within the card vector. Dividing the deposition at each distance by the average experimental 

deposition at each distance creates a normalized or relative measure of deposition thereby 

generating the unbiased unit. The average experimental deposition is derived from the in-

field test dataset, however in application it can be viewed as an independent scaling factor.  

In order to determine the predictive accuracy of the model for tests as a whole, rather 

than at certain distances, a paired difference t-test was conducted using the differences 
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between the predicted and experimental derived observational units as objects of testing. The 

ten card vectors within each test provided ten repetitions with the local variability removed 

using the pairing method.  The null hypothesis within this testing is that that the difference 

between predicted and experimental observational units is zero. A summary of the results of 

this analysis is shown in Table 13. 

 

Table 13. Summary of predictive accuracies for each test 

 
Test 1 Test 2 Test 3 Test 4 Test 5 

p-value (2-sided) 0.012 0.004 0.001 0.006 < 0.001 
Null Hypothesis x x x x x 

 

For each of the 5 cases, the null hypothesis was rejected (as denoted by ―x‖) at the 

0.05 significance level. Test 5 had the most significant rejection level, as there was much 

disagreement between the predicted and experimental depositions caused by high variability 

within the wind direction throughout the test.  

8.2.2.4. Comparison with other Predictive Models 

While the predicted depositions were shown to be significantly different than the 

experimental depositions for each of the 5 tests, such a measure of absolute accuracy does 

not fully evaluate the usefulness of the predictive model for nozzle control. A relative 

comparison to other available prediction models is also necessary to determine if an 

alternative model is available which better matches the in-field collected data. As in the 

absolute evaluation, both qualitative and quantitative techniques were explored in this 

analysis. 

A single representative card vector was selected from test 1 for use within the 

qualitative assessment. Predicted deposition at each distance within the vector was calculated 

using prediction models by Smith et al. (2000b), Nuyttens et al. (2007), Ganzelmeier et al. 

(1995), Wolf et al. (2001), and Teske et al. (2001). Figure 68 displays a comparison of drift 

as predicted by each of the models to both the experimental (in-field measurements) 

depositions as well as the nozzle selection controller prediction model.  
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The model described by Teske et al. (2001) is that which is used within AgDRIFT®. 

This model strongly overpredicts drift for the entire card vector. Smith et al.‘s two regression 

models underpredict drift for the entire vector however are relatively good matches to the 

experimental measures at distances greater than 30 m. The German (Ganzelmeier et al.), 

Belgium (Nuyttens et al.), and Canadian (Wolf et al.) prediction models exhibit similar 

behavior, underpredicting depositions near the boom edge then overpredicting at distances 

greater than 15 m. The German model does a very good job of predicting drift greater than 30 

m downwind. The bulge described earlier in the nozzle selection controller‘s prediction 

model is clearly evident, and noticeably absent in each of the other prediction models. 

Overall the Canadian prediction model appears to best match the experimental deposition. 

The weather and operation conditions over the duration of test 1 were appropriately 

applied to each of the alternative prediction models to derive deposition levels within each of 

the ten card vectors. In the models by Smith et al. and Nuyttens et al., drift depositions are a 

function of specific operating conditions, therefore unique deposition levels were derived for 

each of the card vectors. Models by Wolf et al., Ganzelmeier et al., and Teske et al. predict 

drift for a general set of conditions, resulting in identical depositions in each of the ten card 

Figure 68. Comparison of alternative drift models to nozzle controller predicted depositions and in-

field measurements 
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vectors. For this reason, among this last set of models only Wolf et al.‘s was considered in 

further analysis. Two additional models not included within the qualitative assessment were 

added to the quantitative assessment. The first model is DRIFTSIM which was used to 

develop the single prediction equation expressed within the nozzle selection controller. The 

second model is an extension of the current nozzle controller prediction method. Termed the 

Static Hybrid prediction model, this alternative predicts drift based on an averaged set of 

operating conditions over the duration of test 1, resulting in an consistent representation of 

drift for each of the ten card vectors (similar to Wolf et al.‘s model in calculating a constant 

set of values for each card vector). 

Paired difference t-testing was applied to each combination of the nozzle controller‘s 

model with alternative models. The goal of such testing was to determine which, if any, of 

the alternatives are significantly more accurate than the nozzle selection controller current 

prediction model. Accuracy was defined as the magnitude of predicted error. Predictive error 

for each model was calculated by taking the absolute value of the predicted measure minus 

the experimental measure, where the measure is that shown in Equation 17. Paired difference 

tests were conducted by comparing the predictive error for each of the alternative models to 

the nozzle controller‘s model.  

The null hypothesis in the predictive error testing was that the predictive error of the 

nozzle selection controller prediction model is equal to the predictive error of the alternative 

model. Two alternative hypotheses (the difference between predicted errors is greater than 

zero, and the difference between predicted error is less than zero) were included to determine 

which of the predictive models was more accurate. A significance level of 0.05 was required 

for rejecting the null hypothesis in each of the cases.  

Table 14 displays the results of the error testing. A conclusion was drawn for each of 

the five tests individually and for all tests combined. When a significant difference was 

encountered between two prediction models, the more accurate of the two models is listed. 

Failure to reject the null hypothesis is represented by a ―-‖.  
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Table 14. Statistical comparison of predictive accuracy between alternative models and nozzle 

controller model NCM=nozzle controller model, NA=not applicable 

 
Test 1 Test 2 Test 3 Test 4 Test 5 Combined 

NCM/DRIFTSIM DRIFTSIM - - - - DRIFTSIM 
NCM/Static Hybrid Static  Static  - - - Static  
NCM/Wolf - NA NA NA NA NA 
NCM/Nuyttens - NCM - Nuyttens - NCM 

NCM/Smith #2 Smith Smith NCM - - Smith 
 

Wolf et al.‘s prediction model was only compared to the controller for test 1 as the 

model was not applicable to wind speeds encountered in the other four tests. The prediction 

model used within the nozzle selection controller was only significantly more accurate than 

Nuyttens et al.‘s prediction model. DRIFTSIM, the Static Hybrid model, and Smith et al.‘s 

prediction methods were all significantly more accurate than the nozzle selection controller 

prediction method.  

Smith et al.‘s model accounts for temperature, wind direction, pressure at the nozzles, 

and application rate in predicting drift. This model was developed from a regression analysis 

based on limited in-field testing. The model performs surprisingly well considering droplet 

size, wind speed, and boom height (the three most influential drift variables) are not included 

within the model.  

The Static Hybrid model provided significantly greater accuracy re-enforces earlier 

conclusions that the nozzle selection controller‘s predictive model is not able to track in-field 

changes. Attempting to track the real-time changes, in fact, reduces the controller‘s accuracy.  

Developing the prediction equation from DRIFTSIM data significantly reduced 

predictive accuracy. Reduced accuracy was evident in earlier development of the regression 

equation, however it was deemed a necessary tradeoff for increased computing time. A 

comparative plot of predicted depositions using DRIFTSIM and the nozzle selection 

controller along with the experimental deposition is shown in Figure 69. Depositions at each 

distance are an average of the 10 cases from test 1 resulting from the application of each 

respective method (DRIFTSIM predicted, controller equation predicted, and experimental). 

The most characteristic discrepancy between the controller‘s prediction model and the 
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experimental data, the overprediction ―bulge‖ between 5 and 20 m, is a product of the 

equation development and was not inherited from DRIFTSIM.  

 

 

Figure 69. Graphical comparison of DRIFTSIM and controller’s predicted deposition at each 

distance from the boom edge to in-field measurements  

 

 DRIFTSIM exhibits high predictive accuracy up to 20 m from the boom edge. 

DRIFTSIM‘S predictions were generated by modifying the prediction algorithm within the 

nozzle controller to revert back to the ―look-up‖ table method to determine drift distance. 

The discrepancies in predicting drift at greater distances (>25m) are inherited from the 

limited definition of the nozzle spectrum, as seen in the regression predictions.  

 An alternative approach to ―looking-up‖ drift distances was explored to utilize the 

predictive accuracy of DRIFTSIM seen in Figure 69, while still maintaining a fast run time. 

Rather than referencing a .txt file for each predictive iteration, DRIFTSIM‘s lookup tables 

were read into the program in their entirety upon startup and stored within a large array. 

Rather than looking at an exterior source, which increases required program executions, 

predictions are made by referencing the internal array. Computing times observed when 

implementing this method were nearly identical to the regression method of prediction, 

however a two minute load time upon startup is required to read in the 28 Mb lookup tables 
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in their entirety. While this method reduces computing time, the increased RAM and hard 

drive requirements limits implementation on current field controllers. It is also of note that 

the direct use of DRIFTSIM data does not alleviate the ―tracking‖ errors outlined in Figure 

66, which are inherited by the regression equation from DRIFTSIM, rather than derived from 

the regression process. 

8.3. Error Budget  

8.3.1. Controller Errors 

The first step in improving the nozzle selection controller is determining sources of 

error. In answering the question ―Is predicted drift greater than acceptable drift‖, the 

controller relies on predicted drift levels and established levels of acceptable deposition. 

Errors are induced to the system through both predicted and acceptable values.  

The selected approach to determining levels of acceptable deposition is reliant on 

toxicity studies of pesticides. As these are cause and effect determined levels with an overall 

high degree of conservativeness, description within the controller is their most significant 

avenue of error induction. Increasing the specificity of acceptable drift to sensitive areas 

would increase overall ability to protect sensitive areas (as opposed to the chosen general 

approach).  

Predicting drift is the fundamental function of the controller. Sources of error in the 

prediction process are as follows: 

 Error of inputs 

 Modeling error 

 Placement error 

 

Prediction is based on sensor measured, drift influential variables. A 100% accurate 

prediction model can still be rendered in-effective if the sensors do not provide accurate 

measures of in-field conditions. An inclusive list of sensors and their approximate accuracies 

is shown in Table 15. 
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Table 15. Accuracies of sensors implemented on the test machine 

Variable Error 

Wind Speed ± 2% 

Wind Direction ±  3° 
Temperature  ±  1°C 

Humidity ± 5%  
Boom Height 5% 

Pressure ± 0.5% 

Flow Rate ± 0.5% 

Sprayer position 3 cm 

 

Errors within the wind speed, temperature, humidity, boom height, and pressure 

values result in errors seen in predicted drift distances. Droplet size, although not measured 

real-time, misrepresentation can also lead to overall drift distance errors. Nozzle spectrums 

for the Varitarget nozzles were measured through the use of DropletScan™. A similar 

imaging software, DepositScan, exhibited up to 33% errors in measuring small droplets (Zhu 

et al., 2011). Wind direction, flow rate, and sprayer position error reduce accurate 

representations of both the magnitude and placement of predicted depositions. Wind 

direction and sprayer position sensor errors are less than positioning resolution thus, within 

the context of the controller, are low contributors to overall error.  

Applying the maximum errors of each of the sensors leads to overall drift distance 

prediction errors as high as 19%. The high impact of droplet size on drift combined with its 

high degree of uncertainty places a premium on the incorporation of state-of-the-art methods 

for droplet size measurement into defining nozzle spectrums.  

Modeling errors are derived from two fundamental sources: 

 The independent variables used to predict drift are not truly indicative of the drift 

process. 

 The relationship between the chosen independent variables is not indicative of the 

drift process. 

 

While extensive research has been conducted to determine which variables influence 

drift, there remains much uncertainty concerning what variable set best characterizes the drift 
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phenomenon. The interaction of wind and particle motion spatially and temporally is not 

agreed upon by researchers. Reduced accuracy due to the simplistic handling of wind speed 

and direction in the controller testing is indicative of an insufficient representation of each of 

these variables.   

The bulge induced by the prediction model, which is noticeably absent within the 

DRIFTSIM data, is representative of in-exact relationships between the independent 

variables and drift distance. In this instance, the regression model insufficiently described the 

variability seen within the DRIFTSIM data, therefore numerical relationship deficiencies 

were to blame. While developing a more complex regression model would possibly increase 

predictive accuracy, there are two properties of the deriving dataset which limit the attainable 

predictive accuracy. First, developing a regression model for a wide range in operating 

conditions results in a very general representation of drift. The more general the dataset, the 

more variably the model must account for, thereby reducing accuracy at a specific set of 

operating conditions. Second, the deriving dataset inherits a degree of ―randomness‖ from the 

random-walk model, generating contradictions within the deriving dataset. Regardless of the 

complexity of the regression model, contradictions in data cannot be accounted for and will 

reduce overall predictive accuracy. In addition to errors induced from the derived regression 

model, in-exact representation of relationships in the Fluent model employed to develop the 

dataset are also a source of error.  

Placement errors are related to assumptions and simplifications within the mapping 

algorithm. A list of crucial assumptions which reduce predictive accuracy is as follows: 

 A single wind direction at the time of release of each droplet is responsible for the 

droplets travel path. 

 Wind direction increments in 45° intervals. 

 A single deposition occurs over an entire grid cell. 

 Droplet spectrum is sufficiently defined by ten droplet size classes. 

 

8.3.2. Experimental Data Errors 

In the comparison of predicted depositions to experimental depositions, the 

experimental depositions were considered to be known (i.e. true measure of the drift 
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phenomenon). In reality errors are made in field measurements which are both random and 

systematic. Systematic error is of greater concern as its effect is consistent across the entire 

dataset and can lead to inaccurate statistical conclusions.  

DropletScan™ had been verified previously by several researchers for quantifying 

deposition on Kromekote cards. Confidence in the accuracy of this method has been called 

into question with the recent study of the accuracy of a related scanning software, 

DepositScan, in determining sizes of small droplets. Due to the high driftability of small 

droplets, the majority of droplets analyzed on collection cards within the study are considered 

―very fine‖ therefore accuracy in measuring the size of small droplets is critical to the 

validity of the experimental study. A comparison of the average depositions measured for test 

1 to data collected by Wolf and Caldwell (2001) under similar conditions is shown in Figure 

70. In Wolf‘s testing, concentrations of dyes measured within petri dishes were used to 

quantify drift. Wolf data displays similar characteristics to that evaluated using the 

DropletScan™ increasing confidence in experimental accuracy. 

 

Figure 70. Comparison of experimental depositions obtained from test 1 to in-field 

measurements by Wolf and Caldwell (2001). 
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8.4. Methods for Improvement 

One of the most challenging aspects of drift prediction is handling the effects of wind 

speed and wind direction. Wind speed generates a drag force on the droplets propelling them 

in the direction specified by the wind direction vector. Within the nozzle selection controller, 

it was assumed that initial or release wind speed and direction acted on each droplet for the 

duration of its trajectory. The inability of the nozzle selection controller to consistently agree 

with trends of field measured deposition suggests that this method of representing the effects 

of wind on the droplets is invalid. Additionally the static prediction model was significantly 

more accurate than the dynamic model, therefore accuracy of the system was decreased using 

an approach of relatively faster real-time wind updates for prediction. 

An analysis of the response of in-field measured deposition to changing wind speed 

and direction was performed in order to gain a better understanding of how temporal and 

spatial wind speed and direction measurements impact deposition. Specifically, alternative 

methods to representing wind speed and direction influences over time as well as the time 

durations for which wind speeds and directions act on a single droplet were analyzed.  

Depositions at 2 m (―near-field drift‖) and 20 m (―far-field drift‖) from the boom 

edge were selected as focal points for the experimental deposition analysis. As previously 

mentioned, trends in deposition were not consistent throughout a card vector, as seen in 

Figure 66, due to different wind profiles acting on droplets deposited at each distance. 

Division into a near-field and far-field case allows for more distance-specific analysis.  

The drift controller‘s prediction method neglects the influence of wind speed and 

direction vectors acting on a droplet after release. An inability of the prediction model to 

track with experimental depositions suggests that representations of both wind speed and 

direction occurring after the droplet‘s release are necessary for truly predicting the drift 

distance of a droplet. A wind speed effect and wind direction effect variable were defined to 

provide a simplistic temporal representation of wind speed and direction respectively as 

follows: 

Equation 18. Wind speed effect 

                   
∑                
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Equation 19. Wind direction effect 

                       
∑                     ∑                    

 
   

 
   

      
 

 

where: 

t=instance in time 

∆t=inverse of the system update rate, i.e. 2 seconds 

N=interval of consideration 

                  =the wind speed effect measured at an instance in time (e.g. 

units, m/sec) 

                =the wind speed i time steps after an instance in time  

                       = the wind effect at sampling time t (e.g. units, degrees) 

                    = the non-truncated wind direction i time steps before sampling 

time t  

                     = the non-truncated wind direction i time steps after sampling 

time t measured  

 

The wind speed effect is simply an average of the wind speeds from t to t+N∆t, thus 

generating a composite representation of future, relative to a droplet released at t, wind 

speeds which act on a droplet.  Based on its definition, it is hypothesized that wind speed 

effect is directly related to the drift distance of a single droplet as well as experimental 

deposition at time t (where t maintains both spatial and temporal implications).  

The wind direction effect variable attempts to represent the cumulating or 

concentrating nature of wind direction. In regards to drift, it is hypothesized that wind 

direction effect would be directly related to experimental deposition caused by the wind 

carrying droplets from other locations within the field to the position of measure. Both past 

(t-i∆t) and future (t+i∆t) consideration of wind directions are required to capture this 

cumulating effect of wind direction. It is of note that the wind direction effect does not 

directly represent variable wind directions which act on a single droplet released at time t, but 
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rather variable wind directions acting on multiple droplets released from time t-N∆t  to  

t+N∆t . This method of representing the wind direction effects at an instant in time t, 

removes the spatial transformations which are otherwise generated if observing the influence 

of variable wind directions acting on a single droplet. The wind direction effect variable 

however is an indirect measure of this phenomenon, and was assumed within the following 

analysis to be a suitable representation of the varying wind directions acting on a single 

droplet. A visual representation of the functionality of the wind direction effect variable, in 

context to the methods of experimental measurement, is shown in Figure 71. 

 

Figure 71. High magnitude wind direction effect example 

 

The case shown in Figure 71 would result in a high magnitude wind direction effect 

value and a hypothesized high level of experimental deposition at the card vector 

perpendicular to the shown sprayer position (at time t). Proceeding wind directions (at t-i∆t ) 

would have positive values and thus have a net positive effect on the wind direction effect 

variable, while succeeding wind directions (t+i∆t) would have negative wind directions 
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however due to subtraction would also have a net positive effect on the wind direction effect 

variable 

Droplets which deposit near the boom edge (2 m) remain suspended in the air for 

relatively little time when compared to those which drift to long distances (20 m). Based on 

the terminal velocity analysis summarized in Figure 8, a 50 µm diameter droplet (a medial 

droplet size classified as highly driftable) would require four seconds to travel the vertical 

distance equal to the boom height established during in-field testing. The wind speed effect 

was calculated at each sampling instance based on a time duration (defined as N∆t in 

Equation 18) of four seconds and is shown plotted with the experimental deposition at 2 m 

from the boom edge in Figure 72 for tests 1-4. 

 



 

  

 

1
4
7
 

 

Test 1 Test 2 

Test 3 Test 4 

Figure 72. Graphical correlation between experimental deposition at 2 m from the boom edge and the wind speed effect calculated based on 

a duration of 4 seconds  
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Tests 1 and 2 suggest relationships between the wind speed effect and the 

experimental depositions, however these same trends are not existent in tests 3 and 4. 

Additional time durations were applied to the wind speed effect variable and plotted with 

experimental deposition however none of the alternatives explored provided a significant 

visual upgrade in trending with the experimental deposition. 

In a similar manner, time durations were applied to the wind direction effect variable 

and plotted with experimental deposition located at 2 m. The most significant visual trending 

between the wind direction effect and experimental deposition occurred when a duration of 4 

seconds was applied (as in the wind speed effect case). Plots of the wind direction effect and 

experimental deposition are shown in Figure 73 for tests 1-4. 
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Test 1 Test 2 

Test 3 Test 4 

Figure 73. Graphical correlation between experimental deposition at 2 m from the boom edge and the wind direction effect calculated based 

on a duration of 4 seconds 
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The trends within each of the four tests suggest a direct relationship between the wind 

direction effect and experimental deposition. It is important to consider the limited resolution 

in the experimental deposition when analyzing the datasets as there were only ten rows of 

card vectors thus only ten measures. Random or systematic error within the experimental 

dataset can lead to false conclusions being drawn with a limited resolution. In spite of this 

limitation, the observed relationships are worthy of note. Trends seen in each of the four tests 

show potential increased predictive accuracy if the temporal effects of wind direction are 

incorporated within the model. 

Spearman‘s correlation coefficients for wind speed effect/experimental deposition at 2 

m, wind speed effect/experimental deposition at 20 m, wind direction effect/experimental 

deposition at 2 m, and wind direction effect/experimental deposition at 20 m pairings were 

calculated for a range in time durations considered for both the wind speed effect and wind 

direction effect variables. The dataset for which this analysis was conducted was composed 

of weather conditions and experimental depositions from tests 1-4 combined. Varying time 

durations represent different time periods for which wind speed and direction are considered 

to be acting on a single droplet. Spearman‘s correlation coefficient is a measure of the degree 

to which either the wind speed effect or wind direction effect, calculated based on each 

respective time duration, explains the experimental deposition. Specifically, Spearman‘s 

correlation coefficient characterizes the degree to which the relationship between the 

respective variable and experimental deposition is explained by a monotonic (maintaining a 

given order) function.  A summary plot of the correlation coefficients versus the time 

duration considered for each pairing is shown in Figure 74. 
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Figure 74. Correlation coefficients versus time duration for pairings of wind speed effect and 

wind direction effect with experimental deposition at two different locations from the boom 

edge 

 

Correlation coefficients for the wind speed effect and wind direction effect coupled 

with deposition at 2 m were maximized at a four second duration (as was seen in the visual 

correlation analysis). Correlation with the deposition at 2 m decreased for both increasing 

and decreasing durations around 4 seconds signifying the optimal ability of the four second 

duration to capture the impacts of wind speed and direction on drift at short distances. This 

result is consistent with the earlier hypothesis that droplets which deposit near the boom edge 

are acted on by wind speeds and directions for relatively short time durations. At far-field 

distances (20 m), the correlation coefficient for the wind speed effect and deposition reached 

a maximum at a 30 second time duration. The decrease in the correlation coefficient for 

increasing durations (beyond 30 seconds) considered suggests that wind speeds occurring 

greater than 30 seconds after release do not have an impact on the drift distance of a droplet 

released at an instance in time. The wind direction effect correlation to deposition displays 

continued increasing trends even at 50 seconds of duration. Limited recorded weather 

conditions before and after test runs restricts the ability to consider greater durations.  

Figure 74 is indicative of the extensive time durations which must be considered to 

truly determine the deposition at any point within the field. Additionally, depositions at 
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different distances from the boom edge require varying durations of considered wind speed 

and direction. In the context of a drift controller, information concerning wind speed and 

direction up to 30 seconds (and possibly greater for wind direction) after an instance time are 

required to make prudent decisions concerning which nozzle should be used for application. 

In its current form, the nozzle controller‘s method of describing drift is a modeling approach 

based on conditions encountered at the release time of a droplet. The results summarized in 

Figure 74 indicate that true representation of the drift phenomenon requires both modeling 

and predictive capabilities which describe future weather conditions. Further research is 

necessary to develop these predictive capabilities. 

8.5. Conclusions 

 The following conclusions were drawn based on the proof-of-concept and accuracy 

testing results: 

 The nozzle controller theoretically protects sensitive areas from excessive amounts of 

drift by correctly transitioning nozzles based on predicted drift deposition levels. 

Oversimplified and under-characterized wind interactions within the predictive model 

however limit the controller‘s ability to protect sensitive areas in practice.  

 For the tested weather conditions and sprayer application setup, the developed 

prediction model within the nozzle controller is significantly different than the drift 

phenomenon occurring in the field.  

 Significant biasing error is generated within the controller‘s prediction algorithm by 

the development of a regression equation from the DRIFTSIM data. When 

implemented using the appropriate techniques, direct use of the lookup tables offers 

improved predictive accuracy with identical run times when compared the regression 

equation method. 

 A low resolution representation of a nozzle‘s droplet spectrum (i.e. 10 droplet size 

classes) generates systematic predictive errors. As very fine droplets are responsible 

for far-field drift, a high resolution expression of droplets less than 150 µm is critical 

for predicting drift which deposits greater than 20 m from the boom edge.  
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 Attempting to account for real-time operating conditions with a single release wind 

speed and direction characterizing the air drag effects on a droplet significantly 

reduces the controller‘s predictive accuracy. Prediction based on generalized weather 

conditions held constant over testing as well as a more simplistic model by Smith et 

al. (200b), which does not attempt to capture the highly variable nature of wind 

speed, produced significantly greater predictive accuracies than that of the nozzle 

controller in its current form.  

 In order to accurately represent drift on a real-time basis, knowledge of wind speed 

and direction profiles up to 30 seconds after a droplet is released are required. In the 

context of the nozzle control process, a truly predictive approach to evaluating drift is 

necessary rather than the current controller‘s drift modeling method. 
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Chapter 9. Conclusions 

Increasing spray drift regulations in the United States and abroad have placed a focal 

point on implementing best management principles when spraying to reduce drift.  Spraying 

with a large droplet size has been shown to be the most effective measure in limiting the 

amount of off-target drift. The use of large droplet sizes however does not come without a 

cost, as large droplets can reduce efficacy, costing farmers and applicators both time and 

money. In order to balance drift and efficacy, state-of-the-art drift reduction technologies 

inform applicators of the real-time magnitude and potential effects of drift, allowing for the 

selection of droplet sizes on an as-needed basis. The principal component of these controllers 

is a drift prediction model which provides real-time drift potential.  

With the decision making process and mode of action controlled solely by the 

applicator, nozzle selection is both subjective and inefficient. Establishing a scientific, 

objective basis for nozzle selection is a critical step for the future development of automated 

nozzle selection controllers which fully optimize the balance between drift and efficacy.  

Information requirements for automated real-time nozzle selection were reviewed, 

developed, and packaged for use within a nozzle selection controller. An exemplary 

controller was designed, implemented, and tested to evaluate feasibility and quantify 

performance. 

9.1. Results 

Further development of existing drift prediction models was the first step in 

generating a basis for real-time nozzle selection control. Current drift prediction methods, 

including those in state-of-the-art real-time prediction settings, do not possess the run-time or 

mapping capabilities required for real-time nozzle control. A prediction equation and 

mapping algorithm were developed for use in nozzle control, and testing was conducted in 

the lab to evaluate the impact of highly influential drift variables and overall performance. 

Large impacts of boom height, wind speed, selected nozzle, and wind direction were 

observed in the lab tests. A GPS simulator was linked to the controller and the combined 

system performed as an effective tool in simulating in-field spraying events. Test files 

recorded by the program displayed the ability of a nozzle selection controller to be used for 

both educational and regulatory purposes. 
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Decision making for real-time nozzle selection control is a specialized risk 

assessment process. EPA‘s current risk assessment methods were reviewed and integrated 

into the controller. The basis for protection of sensitive areas is derived from toxicity studies. 

A simplified approach was developed for nozzle selection, as a tier 1 example for future 

development of more sophisticated models. Generalized high, medium, and low sensitivity 

categories were establish for common pesticide/sensitive area combinations. It is anticipated 

that as the EPA continues to develop more specific regulatory measures, possibly for direct 

use by decision making controllers, a more inclusive dataset of acceptable drift to sensitive 

areas would be established. Such a dataset could be easily incorporated into the controller for 

a more inclusive and specific approach to the protection of sensitive areas. 

A range in droplet sizes where efficacy of pesticides is maintained was derived from a 

literature review. Contrary to popular belief, multiple studies showed medium droplet sizes 

of fungicides and insecticides optimize the balance between droplet energy for canopy 

penetration and leaf coverage thereby maximizing efficacy. The relationship between droplet 

size and efficacy is dependent on the mode-of-action of the pesticide, however conflicting 

studies suggest that to truly optimize efficacy, one needs to equally consider the specific 

active ingredient of each pesticide.  Within the nozzle selection controller, an assumed 

―smaller is better‖ methodology was implemented such that when drift is not a concern, fine 

droplets may be selected for application. The prototype controller was implemented with a 

default nozzle selector for applicator entry of an override to the highest efficacy nozzle. 

A controller was developed and implemented on a self-propelled sprayer in the form 

of a prototype automated nozzle controller. In-field testing was conducted in order to display 

proof-of-concept and evaluate the controller‘s predictive accuracy. The controller was found 

to theoretically protect sensitive areas based on predicted drift, however overly simplistic and 

unrepresentative characterizations of the drift phenomenon limits the ability of the controller, 

in its current state, to maintain acceptable levels of deposition within sensitive areas.  

  The use of release wind speed and direction to represent full trajectory wind 

influences was identified as a major source of error within the controller predictions. Real-

time updated weather condition inputs to the model significantly reduced predictive 

accuracy, as release wind speeds and directions are limited indicators of trajectory-duration 
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wind conditions. Developed wind speed and direction effects variables which account for the 

changing wind conditions after a droplet‘s release were shown to be more explanatory and 

directly related to experimental depositions.  

 The following specific conclusions can be made from this work: 

 

 In evaluating drift in a discrete domain, a high resolution description of the nozzle 

spectrum is critical toward achieving overall high predictive accuracy. A high fidelity 

representation of the spectrum for very fine droplets (<150 µm) is of particular 

importance as smaller droplets are the predominant subjects of long distance spray 

drift. 

 Representing the spray drift phenomenon in the form of a single regression equation 

based on a broad scoped dataset is a challenging, multifaceted endeavor. Limitations 

in generating a highly specific model while accounting for the complex, even random 

nature of drift, suggest alternative methods of describing spray drift are necessary. 

While initially perceived as being an inefficient method of prediction, lookup tables 

(the raw form of the regression models) generated from previous, in-depth drift 

analysis are one possible alternative. 

 Accurately representing drift on a micro-scale (every few seconds and for high spatial 

resolutions) for control processes requires true drift prediction rather than merely 

modeling. Modeling describes mechanistic phenomenon, while prediction attempts to 

represent future occurrences. As the trajectory of spray droplets are influenced by 

highly variable weather conditions (most notably wind speed and direction) occurring 

after release, the prediction scope should include a representation of these future 

variables.   

 For droplets drifting long distances from the boom edge (>20 m), test data suggests 

that droplets are influenced by wind speed and direction for durations of 30 seconds 

or more after release. Characterizing conditions for such long durations is a major 

hurdle which must be overcome prior to implementing a nozzle controller on a micro 

scale. 
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9.2. Recommendations for Future Research 

Research into the following areas would generate valuable understanding for the further 

development and improvement of the automated nozzle selection control process: 

 Investigate the impact of increased controller resolutions, both mapping and nozzle 

spectrum description, on predictive accuracy. 

 Determine the effects of turbulent activity near the boom on drift. Turbulence 

generated by the sprayer chassis and boom leads to complex droplet trajectories. 

Research conducted to better understand the impacts of turbulence on drift is 

necessary to further develop drift modeling techniques.  

 Development of alternative methods for representing the impacts of multiple wind 

speeds and directions on droplets throughout their trajectory while maintaining nozzle 

control capabilities. Additionally identify and investigate methods to predict future 

wind speeds and directions which act on droplets, in the context of real time drift 

prediction. 

 Determine the suitability of the nozzle controller‘s modeling approach to nozzle 

control on a macro-scale. A macro scale would encompass large sensitive areas (>50 

m along the characteristic length) and generalized weather conditions implemented 

for prediction and nozzle control over durations greater than those used during testing 

(0.5 Hz). Macro scale prediction and control would be dependent on representing 

gradually changing conditions rather than the highly variable (second-to-second) 

changes in wind speed and direction.  

 Implementation of nozzle selection control on a sprayer section basis and potentially 

on a nozzle by nozzle basis for improved optimization of drift and efficacy. 
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