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ABSTRACT 

Technical progresses in the past two decades in instrumental design, laser and 

electronic technology, and computer-based data analysis have made Raman spectroscopy, a 

noninvasive, nondestructive optical molecular spectroscopic imaging technique, an attractive 

choice for analytical tasks. Raman spectroscopy provides chemical structural information at 

molecular level with minimal sample preparation in a quick, easy-to-operate and 

reproducible fashion. In recent years it has been applied more and more to the analysis and 

characterization of agricultural products and biological samples. This dissertation documents 

the innovative research in Raman spectroscopic characterization and analysis in both 

biomedical and agricultural systems that I have been working on throughout my PhD training. 

The biomedical research conducted was focused on glaucoma. Glaucoma is a chronic 

neurodegenerative disease characterized by apoptosis of retinal ganglion cells and subsequent 

loss of visual function. Early detection of pathological changes and progression in glaucoma 

and other neuroretinal diseases, which is critical for the prevention of permanent structural 

damage and irreversible vision loss, remains a great challenge. In my research, the Raman 

spectra from canine retinal tissues were subjected to multivariate discriminant analysis with a 

support vector machine algorithm to differentiate disease tissues versus healthy tissues. The 

high classification accuracy suggests that Raman spectroscopic screening can be used for in 

vitro detection of glaucomatous changes in retinal tissue not only at late stage but also at 

early stage with high specificity. 

To expand the scope of application of Raman analysis, it was also applied to 

characterize agricultural and food materials. More specifically, Raman spectroscopy was 

applied to analyze meat. Existing objective methods (e.g., mechanical stress/strain analysis, 
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near infrared spectroscopy) to predict sensory attributes of pork in general do not yield 

satisfactory correlation to panel evaluations. Raman spectroscopic methodology was 

investigated in this study to evaluate and predict tenderness, juiciness and chewiness of fresh, 

uncooked pork loins from 169 pigs. The method developed in this thesis yielded good 

prediction of sensory attributes such as tenderness and chewiness, and it has the potential to 

become a rapid objective assay for tenderness and chewiness of pork products that may find 

practical applications in pork industry. In addition, a Raman spectroscopic screening method 

in conjunction with discriminant modeling was developed for rapid evaluation of boar taint 

level in pork. Through the research demonstrated in this dissertation, Raman spectroscopy 

has been shown to have great potential to address analytical needs in new fields with great 

potential for innovative applications.  
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Chapter 1. GENERAL INTRODUCTION 

1.1 Introduction 

1.1.1 Raman spectroscopy and its instrumentation 

The phenomenon of inelastic scattering of light by matter was first observed 

experimentally by C.V. Raman, an Indian physics professor, and his collaborator K.S. 

Krishnan in1928 (Raman and Krishnan 1928). In 1930, he won the Nobel Prize in physics for 

his work on the scattering of light and for the discovery of the effect named after him. 

The mechanism for Raman scattering lies in the change of the rotational or 

vibrational quantum states of molecules being illuminated. When light shines on a sample 

most of the scattering that takes place is elastic with no loss of energy, and therefore no 

frequency change, this is known as Rayleigh scattering (Figure 1.1). Raman scattering, 

however, is due to inelastic scattering of the incident photons whereby energy is transferred 

to or received from the sample due to changes in the vibrational or rotational modes of 

sample molecules, causing a change in the energy, and therefore the frequency of the 

scattered light. If the incident photon gives up energy to the sample it is scattered with a red-

shifted frequency and referred to as stokes shift (Figure 1.1). If the molecule is already in an 

exited energy state, and gives energy to the scattered photon, the output has a blue-shifted 

frequency, and is referred to as anti-stokes shift (Figure 1.1). Because the probability of a 

molecule being in an excited state is much lower than being in the ground state, the anti-

stokes shift occurs much less frequently than the stokes-shift. In most cases, the Raman 

scattering photons collected and analyzed are the Stokes photons, referred to as Stokes lines. 

Although the rarity of anti-stokes photons result in much weaker anti-stokes lines, they are 

sometimes favored in analysis due to absence of fluorescence interference, which could be a 
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big problem for stokes lines. It is important to note that Raman scattering is much different 

from fluorescence (Figure 1.1). In fluorescence, the incoming photon is completely absorbed 

by the molecule and causes an electronic energy state change. A fluorescent photon is later 

released when the molecule relaxes back to a lower energy state (Szymanski 1967) whereas 

Raman scattered photon is released instantaneously.  

The selection rule governing Raman scattering is determined by changes in 

polarizibility during the vibration (Ingle Jr and Crouch 1988), which is different from another 

vibrational spectroscopic technique – infrared spectrometry (IR). In IR spectroscopy, the 

frequency of incident light has to match the energy differences between ground and excited 

vibrational states (Figure 1.1); and the energy loss of the incident light is detected. The 

molecular vibration can only be observed in IR spectroscopy when there is a change in dipole 

moment during vibration. Raman scattering spectrum provides essentially the same type of 

information as the infrared (IR) absorption spectrum, namely, the energies of molecular 

vibrational modes. However, the two methods differ fundamentally in mechanism and 

selection rules, and each has specific advantages and disadvantages for biological 

applications(Miura and Thomas Jr 1995) For example, it is problematic to compare 

quantitatively the scattering intensities of Raman bands, whereas IR absorption intensities are 

governed by Beer’s Law. Conversely, water is a notoriously strong IR-absorbing medium, 

and aqueous systems cannot be investigated with ease by IR methods. In contrast, water 

interferes only feebly with Raman spectra of aqueous solutions and hydrated solids. 
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Figure 1.1 Diagram of Rayleigh, Raman scattering, and fluorescence processes 

The frequency shift, Raman shift, is a measure of the energy of the molecular 

vibrational modes. Raman measurements hence provide valuable information for molecular 

characterization of complex systems(Braiman 2006). Figure 1.2 shows a typical schematics 

of Raman instrumentation for biological samples(Hata, Scholz et al. 2000). Excitation light 

from an argon laser is routed via optical fiber, beam expanding lens L3, laser bandpass 

filter F2, dichroic mirror BS, and lens L2 to the tissue. The Raman shifted backscattered light 

is collimated by lens L2, directed through BS, filtered by holographic rejection filter F1, 

focused by lens L1on to a fiber, and sent to a spectrograph. The wavelength dispersed signals 

are detected by a charge-coupled array detector CCD, and displayed on a computer monitor 

(PC). 

http://www.nature.com/jid/journal/v115/n3/fig_tab/5600819f1.html?url=/jid/journal/v115/n3/full/5600819a.html
http://www.nature.com/jid/journal/v115/n3/fig_tab/5600819f1.html?url=/jid/journal/v115/n3/full/5600819a.html
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Figure 1.2 Schematics of basic Raman scattering instrumentation. 

The successful application of Raman spectroscopy to bioanalysis is a direct result of 

the advances in Raman instrument design. Better detectors, spectrometers, Rayleigh rejection 

filters, sources and collection optics have shortened analysis time and increased signal-to-

noise ratios. It is now possible to observe and study Raman signals from materials that would 

have been completely out of reach by many orders of magnitude at the time Raman 

discovered the effect. Moreover, with the advent of commercial ‘read-to-use’ Raman 

spectrometers, and even portable systems, the technique becomes increasingly available to a 

wider range of users(Mukhopadhyay 2007). 
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1.1.2 Application of Raman spectroscopy 

1.1.2.1 General application 

 Over the past twenty years, there have been plenty of literatures published in Raman 

spectroscopic applications. (Long 2002; Demtröder 2003); W. Kiefer has published a review 

of recent advances in Raman spectroscopy with over 300 references of key developments 

published only in the Journal of Raman spectroscopy until 2007 (Kiefer 2007), which 

reported applications of Raman spectroscopy in the fields of art and archeology(Bellot-Gurlet, 

Pagès-Camagna et al. 2006), biosciences(Schweitzer-Stenner 2005), vibrational studies and 

analytical chemistry(Tuttolomondo, Navarro et al. 2005), solid state physics(minerals, 

crystals, glasses, ceramics, etc.)(Frost, Wills et al. 2005), liquids and liquid 

interactions(Kwac and Cho 2005), and nano-materials(Schmitt and Popp 2006). Here I intend 

to highlight applications of Raman spectroscopy in biology in which it has several 

advantages. Raman spectroscopy is noninvasive and nondestructive, it requires minimal 

sample preparation and small sample volume. In addition, Raman spectroscopy, unlike IR 

spectroscopy, does not suffer from severe water interference. Since water is omnipresent in 

biological systems, Raman spectroscopy is especially suitable for analyzing biological 

samples(De Gelder, De Gussem et al. 2007). 

1.1.2.2 General application in Bio-medical systems 

Due to these advantages, Raman spectroscopy has been widely utilized for 

biomedical analysis(Pappas, Smith et al. 2000; Notingher 2007). Raman spectroscopy is 

extremely suitable for probing the relationship between structure, dynamics and function of 

biomolecules (e.g. synthetic polypeptides, proteins, pharmacologically relevant molecules, 

vitamins, etc.)(Schmitt and Popp 2006). Furthermore, human and animal tissues provide 
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exciting prospects for the application of Raman imaging. Diseases and other pathological 

anomalies cause chemical and structural changes at the molecular level which can be 

captured by the Raman spectral measurements(Krafft and Sergo 2006), and the resulted 

Raman spectral changes can be used as sensitive and phenotypic spectral markers for the 

diseases(Erckens, Jongsma et al. 2001). These spectral markers are very specific and unique, 

so that they can be considered as fingerprints of the pathological samples(Katz, Kruger et al. 

2003; Wang, Grozdanic et al. 2011). Small structural features and compositional differences 

provide Raman spectral markers for a variety of disease states, such as brain 

cancer(Koljenovi, cacute et al. 2002), gastrointestinal disorders(Kendall, Stone et al. 2003) 

and dental disease (Ko, Hewko et al. 2005). Raman spectra have also been used to develop 

classification models to diagnose certain cancers. Such as bladder cancer(De Jong, Schut et 

al. 2006), prostatic cancer(Panza and Maier 2007), basal cell carcinoma(Nijssen, Schut et al. 

2002). The potential benefits of using Raman spectroscopy to diagnose breast cancer have 

been studied by several research groups(Frank, McCreery et al. 1995; Haka, Shafer-Peltier et 

al. 2005; Chowdary, Kumar et al. 2006; Yu, Gestl et al. 2006; Brożek-Płuska, Placek et al. 

2008; Stone and Matousek 2008). The surfaced enhanced Raman scattering (SERS) 

microscopy, which enhances the intensity of the Raman scattered signal from an analyte by 

orders of 10
6
 or more, combines the advantage of bio-functionalized metal nanoparticles and 

Raman micro-spectroscopy. At the single-nanoparticle level, recent theoretical work by Xu et 

al. (Xu, Aizpurua et al. 2000) suggested that the maximum enhancement factor through 

electromagnetic fields is about 10
11

. SERS is capable of providing detailed spectroscopic 

information and is a novel method of vibrational micro-spectroscopic imaging for the 

selective detection and identification of single biomolecules such as protein and DNA located 
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on the nanoparticle surface or at the junction of two particles under ambient conditions in 

targeted research(Sun, Yu et al. 2007; Yu and Irudayaraj 2007; Yu, Varghese et al. 2007). 

1.1.2.3 Application in ocular system and glaucoma 

The eyes are the most important sensory organs and the window to the soul. Raman 

spectroscopy has also been applied in ocular system. Based on functional illustrations, the 

eyeball can be simplified as three major structures, from the outer to inner layers, to achieve 

focusing and the transmission of light (Figure 1.3). The cornea and sclera layers can be found 

in the outermost layer. The middle layer consists of the choroid, ciliary body, lens, and iris. 

As light penetrates into the eyes from the environment, the photosensitive cells in the retina 

(the innermost layer) receive the light. According to specific structures in eye anatomy, 

ocular diseases can be further clinically classified into five groups: infectious, immunologic, 

congenital, degenerative, and traumatic diseases. Clinical approaches for ophthalmic diseases 

are based on the general medical approach but pay more attention to information regarding 

subjective vision and ocular structures. Measurement of Raman spectra has been developed 

as a novel qualitative and quantitative optical technique by the scattering of radiation to 

improve the diagnostic quality, rapidity and convenience.  
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Figure 1.3 Schematic diagram of the human eye. 

Water makes up about 78% of normal human cornea. Disorder of the cornea drainage 

functions may result in corneal edema. Moreover, water accumulated in cornea will decrease 

the transparency of the cornea due to scattering of penetrating light. Water content in cornea 

is important information clinically when patients receive laser refractive surgery. Imprecise 

instrument setting might increase the risk of overtreatment or undertreatment. Therefore, 

some researchers have focused on using a noninvasive diagnostic tool for measurement of 

water content in ocular tissues(Mizuno, Toshima et al. 1990). Siew et al. applied micro-

Raman spectroscopy to study the total water content in organ-cultured cornea(Siew, Clover 

et al. 1995). Erckens et al. studied biomolecules in ocular tissues and aqueous humour 

solutions(Erckens, Motamedi et al. 1997). Bauer and co-workers investigated the water 

content of cornea by analyzing the ratio of Raman intensities of the OH-bond (approximately 

3400cm-1) and the CH-bond(approximately 2940 cm-1)(Bauer, Wicksted et al. 1998). The 
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reported the sensitivity of using Raman spectra for water content analysis was higher by 

approximately 0.1mg H2O/mg drt-wt. Other noninvasive investigation and assessment of 

corneal hydration based on a confocal Raman spectroscopic technique was achieved in vivo 

by the same group(Bauer, Hendrikse et al. 1999). The mechanism for cataract formation is an 

interesting topic for ophthalmologists and vision scientists. State of cataract transformation 

may be related to the change of proteins and lipids compositions in lens directly (Siebinga, 

Vrensen et al. 1992; Lin, Li et al. 1998; Chen, Cheng et al. 2005). Molecular fingerprint 

information from Raman spectra can be assigned to the specific proteins. The changes in 

spectral intensity may be related to the differences in concentration. Age-related macular 

degeneration (AMD) is a leading cause of irreversible blindness in the elderly (≥65 years old). 

Macular pigment (MP) in the human retina is composed of three carotenoids, lutein, 

zeaxanthin and meso-zeaxanthin(Sharifzadeh, Zhao et al. 2008). These carotenoids are 

concentrated within the macula luteal region of the retina, as well as the retinal depression 

called the fovea. MPs are potent antioxidants and are thought to protect the retina against 

oxidative stress in response to AMD. A variety of methods have been used to assess MP in 

the human retina, of which resonance Raman imaging (RRI) is a developed in vivo 

method(Bernstein, Yoshida et al. 1998; Gellermann and Bernstein 2004). MP carotenoids are 

stereoisomers, each containing long conjugated polyene chains, thereby giving rise to a 

prominent C=C stretching Stokes Raman band around 1524 cm
-1

, which can be used to 

measure MP concentrations in human retina and has been validated against chromatographic 

methods using model systems, such as excised human donor eyecups(Sharifzadeh, Zhao et al. 

2008). 
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Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal 

ganglion cells (RGCs) and subsequent loss of visual function. Several factors can put you at 

increased risk for developing glaucoma, like elevated eye pressure, age, ethnic background, 

family history and certain medical conditions. The two main types of glaucoma are open-

angle and angle-closure, which describe fluid drainage angles between the eye’s cornea and 

iris. As a disease of progressive nature, glaucoma is not curable. The treatment of glaucoma, 

which reduce intraocular pressure by improving outflow of eye fluid or/and reducing its 

production, could only slow down the process. Early detection of glaucoma is critical for the 

prevention of permanent structural damage and irreversible vision loss. A series of eye exams 

are required to perform to diagnose glaucoma, like intraocular pressure measurement with 

“Tonometry”, optic nerve damage test, visual field test, optic nerve imaging with optical 

coherence tomography(OCT), Heidelberg retinal tomography and so on. Unfortunately, a 

significant loss of RGCs can occur before any of the current tests show an abnormality.  

Namely, between 25 to 35% of the RGCs could be lost before any visual field defect is 

detectable(Kerrigan–Baumrind, Quigley et al. 2000). Although OCT, a modern promising 

noncontact and noninvasive tool for the accurate and objective anatomic diagnosis of 

glaucoma using low-coherence interferometry to provide high-resolution cross-sectional 

image, has the potential to detect optic nerve damage and atrophy much earlier than other 

used technology, it works for optically transparent tissues with diminished penetration 

through retinal/subretinal hemorrhage and pupil diameter larger than 4 mm. As a result, the 

detection and monitoring of progressive changes in glaucoma is demanding at its early stages, 

before vision loss occurs. 
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Raman spectroscopy, which measures the inelastic scattering of laser light by 

biomolecules in the tissue samples to predict the general biochemical composition of 

biological samples, can be used to provide rapid characterization of healthy versus diseased 

tissues in a nondestructive and noninvasive fashion. Tim C. Lei and his co-workers at 

University of Colorado Denver image the human trabecular meshwork (TM) using non-

invasive, non-destructive coherent anti-stokes Raman scattering(CARS) without the 

application of exogenous label(Lei, Ammar et al. 2011). The CARS technique uses two laser 

frequencies to specifically excite carbon-hydrogen bonds, allowing the visualization of lipid-

rich cell membranes. It was shown that CARS techniques were successful in imaging live 

TM cells in freshly isolated human TM samples, which represents a new avenue for 

exploring details of aqueous outflow and TM cell physiology. This technique may be used to 

help elucidate mechanisms of aqueous outflow through the conventional outflow system of 

the eye and to quantify the effects of TM cell number and distribution on the glaucomatous 

disease process. CARS is one of Raman spectroscopy technique, but unlike spontaneous 

Raman spectroscopy, it employs multiple photons to address the molecular vibrations, and 

produces a signal in which the emitted waves are coherent with one another. As a result, 

although CARS is orders of magnitude stronger than spontaneous Raman emission, 

nonresonant background and autofluorescence from the sample may overwhelm the CARS 

signal. 

By now, the important concerns on future clinical application of Raman spectroscopy 

for glaucoma early diagnosis include: 1. Can Raman spectroscopy be used for early detection 

of molecular changes in glaucomatous retina tissue? 2. How to improve the spectra quality 

under the laser safety standards for in vivo measurement, like increasing the Raman signal 
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and reducing strong fluorescence background. 3. How to develop a working Raman imaging 

system with fiber optic probe that allows in vivo and remote Raman imaging of the retina in 

whole eye which is also a complex optical system. 

1.1.2.4 General application in agriculture systems 

Agricultural products and foods are essential to life and are also important to the 

world economy. With the increasing demand for a high quality life, quality and safety control 

of agricultural and food products are gaining the attention of the public as well as researchers. 

Variety of techniques has been employed for the characterization of the agricultural products 

and food. Traditional methods such as Gas Chromatography (GC)(Plutowska, Chmiel et al. 

2011), High-Performance Liquid Chromatography (HPLC)(Zhang, Wong et al. 2011; Sun, 

Chen et al. 2012), and Gas Chromatography-Mass Spectrometry (GC-MS)(Kim, Ha et al. 

2011) are all powerful tools for ingredient quantification and composition determination, but 

they are time consuming, and require skilled operators to carry out the analysis. Near-

infrared spectroscopy (NIR) (Todorova, Atanassova et al. 2011; Hernández-Hierro, Valverde 

et al. 2012; Mulbry, Reeves et al. 2012) is another method widely used to monitor and assess 

composition and quality of products in food industry. But it shows low spectral resolution 

and is susceptible to interference from water due to the very strong infrared absorption of 

water molecules. Fluorescence spectroscopy is a very sensitive tool to provide information 

about molecules and their environment in food samples (Sahar, Boubellouta et al. 2011); 

however, it is limited to fluorescent samples. In contrast, due to its narrow and highly 

resolved bands, Raman spectroscopy allows for nondestructive extraction of chemical and 

molecular structural information about samples, and can be applied in rapid on-line analysis 

without any special sample preparation. Raman spectroscopy has been gaining popularity as 
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an analytical tool for agricultural products. Applications of Raman spectroscopy have been 

explored in various fields of agricultural products and food, including fruits (Liu and Liu 

2011; Esser, Schnorr et al. 2012), vegetables(Nikbakht, Hashjin et al. 2011), crops(Shih, 

Lupoi et al. 2011; Schulmerich, Walsh et al. 2012), meat(Wang, Lonergan et al. 2012), 

dairy products(Meisel, Stöckel et al. 2011), coffee(El-Abassy, Donfack et al. 2011), 

oil(Samyn, Van Nieuwkerke et al. 2012), as well as beverages(Delfino, Camerlingo et al. 

2011). In a recent study, Raman spectroscopy has been utilized in analysis of low 

concentration organic contaminants, like pesticide residue, on apples’ surface(Li, Sun et al. 

2012). 

1.1.2.5 Application in muscle food quality evaluation and its limitation 

Raman spectroscopy has been employed for detailed characterization of the 

microstructure of animal tissues, including applications relating lipid deposition in tissue to 

human health and linking protein structure to texture and tenderness. Predictions drawn from 

spectroscopic data have been compared to that from different traditional assays for protein 

solubility, apparent viscosity water holding capacity, dimethyl amine content, peroxide 

values and fatty acid composition, as well as instrumental texture methods commonly used to 

determine quality in fish and meat muscle treated under different conditions of handling, 

processing and storage (Herrero 2008). It has been shown that Raman spectroscopic data 

could be used to evaluate muscle food quality. In addition, Raman spectroscopy offers 

structural information about complex solid systems such as muscle food proteins and lipids 

(Yang and Ying 2011), which could be applied to study changes in the protein structure 

during the elaboration of muscle food products(Herrero 2008; Wang, Lonergan et al. 2012).  
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But just as with every technique, Raman has its limitations. One is that it is a 

relatively weak phenomenon because the effect is based on inelastic scattering of photons. 

On average about one out of one million scattered photons is inelastic Raman photon. 

Because the Raman effect is many orders of magnitude less intense than fluorescence, 

fluorescence from even trace impurities will overwhelm the Raman signal. To reduce 

fluorescence background, near IR excitation lasers have often been used for Raman 

spectroscopic measurements of biological samples. Near IR excitation photons can minimize 

both sample damage and fluorescence background, combining it with the use of a sensitive 

CCD camera; it is possible to obtain dispersive Raman spectra of most biological analytes 

with high sensitivity. Furthermore, spectra pre-processing techniques are necessary to reduce 

the effect of spectral artifacts  such as varying background noises and intensity 

fluctuations(Schulze, Jirasek et al. 2005; Beier and Berger 2009). Data mining is sometimes 

necessary to be implemented to find delicate differences between groups, and to realize the 

full potential of Raman technique(Wang, Grozdanic et al. 2011). 

1.1.3 Raman spectra pre-processing 

1.1.3.1 Baseline correction 

One of the challenges of using Raman spectroscopy for biological applications is the 

inherent fluorescence generated by many biological molecules that underlies the measured 

spectra. This fluorescence can sometimes be several orders of magnitude more intense than 

the weak Raman scatter, and its presence must be minimized in order to resolve and analyze 

the Raman spectrum. Using near infrared excitation (e.g., 785nm) can significantly reduce 

sample fluorescence (i.e., auto-fluorescence). However, most biological samples still exhibit 

some fluorescence, even with 785nm excitation. Furthermore, NIR excitation (longer λ) is 



15 

 

not always desirable, since the Raman intensity is proportional to 1/λ
4
. With NIR excitation, 

the Raman intensity of a given sample is much lower than what is achievable with shorter 

wavelength excitation lasers. As a result, subtracting background fluorescence from the raw 

spectrum is necessary to obtain a more interpretable signal. Traditionally, baseline correction 

is done manually. However, for high throughput Raman examination or Raman imaging, it is 

easy to end up with tens of thousands of Raman spectra. Due to the ultra large volume of data, 

manual baseline correction is simply not feasible. What is required is an automated baseline 

correction algorithm.  

There are several available baseline correction approaches with different theoretical 

underpinnings(Lieber and Mahadevan-Jansen 2003; Schulze, Jirasek et al. 2005), such as 

wavelength shifting(Barclay, Bonner et al. 1997; Cai, Zhang et al. 2001), frequency-domain 

filtering(Mosier-Boss, Lieberman et al. 1995), first- and second- order derivatives(Zhang and 

Ben-Amotz 2000; O'Grady, Dennis et al. 2001), and simple curve sifting of the broadband 

variation with a high-order polynomial(Brennan, Wang et al. 1997; Mahadevan-Jansen, 

Mitchell et al. 1998; Vickers, Wambles et al. 2001). Though each of these methods has been 

shown to be useful in certain situations, they are not without limitations. Differentiation is an 

unbiased and efficient method for fluorescence subtraction, yet this method severely distorts 

Raman line shapes and relies on complex mathematical fitting algorithms to reproduce a 

traditional spectral form(Mosier-Boss, Lieberman et al. 1995). Frequency-based techniques 

can under- or over-filter, or cause artifacts to be generated in the processed spectra if the 

frequency elements of the Raman and noise features are not well separated(Mosier-Boss, 

Lieberman et al. 1995). Wavelet trans-formation is highly dependent on the decomposition 

method used and the shape of the fluorescence background(Barclay, Bonner et al. 1997).  
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 Of these, polynomial curve-fitting has a distinct advantage over other fluorescence 

reduction techniques in its ability to retain the spectral contours and intensities of the input 

Raman spectra, yet most published records rely on sample-dependent user intervention for 

assignment of “non-Raman” locations on which to fit the curve. Unfortunately, this 

subjective user-selected intervention is time-consuming and is prone to variability. To 

address these limitations, the modified polyfit method for fluorescence subtraction was 

developed in this study. This method smoothes the spectrum in such a way that Raman peaks 

are automatically eliminated, leaving only the baseline fluorescence intact, to be subtracted 

from the raw spectrum (Figure 1.4). The basis for this method is a least-squares-based 

polynomial curve-fitting function. However, to eliminate the Raman bands from the fit, this 

function is modified such that all data points in the generated curve that have an intensity 

value higher than their respective pixel value in the input spectrum are automatically 

reassigned to the original intensity. This process (curve fitting and subsequent reassignment) 

is repeated to gradually eliminate the higher-frequency Raman peaks from the underlying 

baseline fluorescence. The filtering process ceases when there are no longer any data points 

in the fit curve that require reassignment(all values equal to or less than respective smoothed 

spectrum intensities). The processed baseline spectrum is then subtracted from the raw 

spectrum to yield the Raman bands on a near-null baseline(Lieber and Mahadevan-Jansen 

2003). 
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Figure 1.4 Baseline corrected spectrum 

 (A)Original spectrum which is measured from eye tissue section of a healthy basset hound and its 

final polynomial fitted baseline; (B) Its baseline corrected spectrum.  

1.1.3.2 Smoothing 

Another challenge in pre-processing is to capture important patterns in the spectra 

while removing noise or other fine-scale structures(Bocklitz, Walter et al. 2011). The usual 

approach is to smooth the spectral data. Various mathematical manipulation schemes are 

available to smooth the spectral data. Whatever smoothing technique is employed, the aim is 

to reduce the effects of random variations superimposed on the analytically useful signal. 

This transform can be simply expressed as: Spectrum (smoothed) = Spectrum (raw)-noise. 
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 One of the most common algorithms for smoothing is the “moving average” which is 

used to analyze a sequence of data points by creating a series of averages of different subsets 

of the full data. Given a spectrum and a fixed odd subset size (wavenumber points), the 

moving average can be obtained by first taking the average of the first subset. The fixed 

subset size is then shifted forward, creating a new subset of numbers, which is averaged. This 

process is repeated over the entire data series to get a smoothed spectrum (Figure 1.5). As is 

shown in equation 

     
 
   

 
  

                       
   

 
  

   
 

(n+1) is the subset size (number of the points),     is i
th

 Raman intensity after 

smoothing.    is i
th

 raw Raman intensity. The center point in the window of a fixed odd 

number (n+1) of points is thereafter replaced by that calculated average. The primary factor 

controlling the extent of smoothing is the size of the window used for averaging. In general, 

the greater the size of the window is, the smoother the result is. Smoothing needs to be 

performed with caution. On one hand we want to smooth out noises to highlight the 

important Raman signatures, on the other hand we must avoid over-smoothing that may lead 

to loss of information. 
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Figure 1.5 Smoothed spectrum. 

(A)Baseline corrected spectrum; (B) Smoothed spectrum by moving average method. Both of them 

are based on a spectrum measured from eye tissue section of a healthy basset hound. 

1.1.3.3 Normalization 

Another widely used pre-processing method is normalization, in which intensity 

values are rescaled for consistency(Bocklitz, Walter et al. 2011). It is frequently used as a 

pre-processing step in preparing reference spectra for a qualitative identification library. 

Standard spectra of analytes with different concentrations or composition can be generated to 

confirm characteristic Raman shifts and peak intensities or areas for quantitative evaluation. 

Available algorithms include maximum intensity normalization, spectra area normalization 

and specific peak area normalization (Figure 1.6): 

(1) The peak height can be used to accurately quantify analyte concentration(Lin and 

Dence 1992) once it is confirmed to be proportional to analyte concentration. For the max 

intensity normalization method, the maximum intensity value of each spectrum is identified 

and then the whole spectrum is divided by the maximum value (Figure 1.6A), as is shown in 

equation 

    
  

      ⃗  
, 
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    is i
th

 normalized Raman intensity,    is i
th

 raw Raman intensity,     is the vector of 

all Raman intensity for that spectrum. 

  (2) Peak area normalization is generally preferred because background noise can be 

averaged throughout the width of the peak; thus, the noise has less impact on the data. For 

specific peak area normalization, only the area of peaks in the specific range is calculated, for 

example the Amide I region 1550-1650cm
-1

(Figure 1.6B), and then the whole spectrum is 

divided by that area and recalibrate by multiplying its range of the wavenumber, as is shown 

in equation 

    
                    

∬       
    
      

. 

(3) For the spectra area normalization method, the content of all chemicals are 

considered as the same and their composition could be examined after the entire spectral area 

is normalized. All Raman intensities in the entire spectrum is divided by the area of all peaks 

in that spectrum and recalibrated by multiplying its range of the wave number (Figure 1.6C), 

as is shown in equation 

    
                    

∬       
 
   

, 

    is the vector of all wavenumber for that spectrum. 
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Figure 1.6 Normalization strategies. 

(A)Maximum intensity normalized spectrum; (B) Specific peak area (1550-1650cm-1) normalized 

spectrum; (C) Area normalized spectrum. All of them are based on one same spectrum measured 

from eye tissue section of a healthy basset hound. 
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1.1.3.4 Statistic spectra 

Statistic spectra can be generated for extracting or displaying useful information from 

a group of spectra (Figure 1.7). An average spectrum is a spectrum in which Raman intensity 

at each wavenumber is averaged from Raman intensities of all the spectra in a category (for 

example, one group or replicated measurements for one sample) at the same wavenumber. 

The average spectrum of a sample could keep the most important characteristic features 

unique to this sample (Figure 1.7A). A range spectrum tells that the difference between the 

highest and the lowest intensity at any given wavenumber in the group (Figure 1.7B). A 

standard deviation spectrum shows how much variation or “dispersion” there is from the 

average spectrum in the group (Figure 1.7C). 

A difference spectrum is a spectrum that is the result of subtracting all the signal 

channels of one spectrum from another, usually calculated from average spectra of different 

groups (Figure 1.7D). Differences can be defined from specific Raman bands that change, or 

from a fitting of biochemical components to the spectra. These changes can potentially be 

used as markers for classifying different groups. 
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Figure 1.7 Statistic spectra. 

All the statistic spectra are calculated from 10 measurements for pork fat sample “17” or/and “49”. (A) 

Average spectrum; (B) Range spectrum; (C) Standard deviation spectrum; (D) Difference spectrum 

between average spectrum of pork fat “17” and “49”. 

1.1.3.5 Outlier removal 

Spectra outlier diagnosis is a very important step to identify system faults in building 

reliable dataset. Proper procedures for elimination of outliers are valuable tools for 

improving the quality of spectral fitting. Outlying measurements with large systematic errors 

can be selectively eliminated, while those containing large random errors are retained during 

fitting. There is no rigid mathematical definition of what constitutes an outlier. Determining 

whether or not an observation is an outlier is ultimately a subjective exercise. Outliers, being 
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the most extreme observations, may include the sample maximum, or sample minimum, or 

both, depending on whether they are extremely high or low. However, the sample maximum 

and minimum are not always outliers because they may not be unusually far from other 

observations. At each wavenumber, the Raman intensities for all spectra could be considered 

as a vector, Usually at each wavenumber, if the Raman intensity is differ by three times the 

standard deviation or more from the mean, it will be considered as a outlier. After classifying 

measurements as outliers, these spectra are removed and the steps are reiterated with lower 

estimates of standard deviations as longs as outliers are found. 

Also, interquartile range based method is used to detect spectral outliers in this study. 

This method is simple and easy to use, conceptually clear, and numerically stable.  It is 

routinely used for the detection of multiple outliers in multivariate spectra data. The criteria 

for removing outliers are the spectra that had extreme observation and are applied to both 

calibration and prediction sets. If Q1 and Q3 are the lower and upper quartiles respectively at 

each wavenumber, then one could define an outlier outside the range [Q1-k(Q3-Q1), Q3+k(Q3-

Q1)] for some chosen constant k, which is selected through an optimization process. 

1.1.3.6 Derivative spectrum 

The concept of derivative spectral data was first introduced in the 1950s and became 

generally practicable in the late 1970s due to the introduction of microcomputers. In 

spectroscopic data processing, first and second derivatives are routinely calculated to remove 

slowly varying background noises which otherwise would contribute non-essential variances 

to the subsequent qualitative analysis or for quantification. Furthermore, first and second 

derivatives may vary with greater amplitude than the primary spectral data. The more 

distinguishable derivatives are especially useful for separating out peaks of overlapping 
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bands. The significant disadvantage to the derivative technique is that the singal to noise ratio 

(SNR) becomes worse at progressively higher derivative orders. It yields good SNR only if 

the difference of noise levels at the endpoints of the interval is small enough to yield a noise 

equivalent calculation much smaller than the signal. 

For Raman spectra, the derivative technique is becoming increasingly popular in 

analytical spectroscopy as a resolution enhancement technique, to facilitate the detection and 

location of wavenumbers of poorly resolved components of a complex spectrum, and as a 

background correction technique to reduce the effect of spectral background interferences in 

quantitative analysis. First derivative spectra  
  ⃗ 

   
  avoid contributions from fluctuations in 

spectral background, but are still sensitive to Raman intensity fluctuations (Figure 1.8B). The 

signs of second derivative spectra 
   ⃗ 

    
  which indicate the locations of peaks and valleys are 

found to be extremely robust in identifying features with minimal variability in replicated 

measurements (Figure 1.8C). In this work, derivative spectra are obtained by applying a 

derivative transformation using Savitzky-golay algorithm(Savitzky and Golay 1964) to the 

data of the original spectrum. 

 With derivative spectra, the unique Raman signatures that distinguish a sample from 

others can be amplified. Therefore, derivative spectra are often utilized in differentiation 

analysis.  
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Figure 1.8 Derivative spectra. 

 (A)Baseline corrected, smoothed and area normalized spectrum from eye tissue section of a healthy 

basset hound; (B) First derivative spectrum; (C) Second derivative spectrum. 
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1.1.3.7 Binary spectrum 

Raman peaks are represented by their wavenumber (Raman shift) and intensity. The 

peak intensities are dependent on many factors that may vary from sample to sample (i.e., 

sample size, exposure time, etc.), but their Raman shifts remain identical as long as the 

molecular makeup is the same. In analysis of biological samples, usually the most important 

spectral signatures are the fingerprinting Raman peaks that represent the biochemical 

landscape of the sample. Therefore, the binary bar-codes calculated from signs of second 

derivatives are developed to further remove the redundant information in the intensity 

fluctuation due to all the sources of intensity. The binary bar-code approach was originally 

proposed by Ziegler et al. to differentiate microorganisms based on their Raman 

spectroscopic signatures(Patel, Premasiri et al. 2008). The binary bar-codes were generated 

based on the second derivative spectra (Figure 1.9A), a binary value (0 or 1) was assigned to 

each second derivative spectral data point primarily based on the value of the second 

derivative, i.e., 1 for the absolute value lager than the threshold 0.05 of maximum absolute 

value of second derivative at this wavenumber and 0 for others (Figure 1.9B). As is shown in 

equation 

    {
                                
          

, 

     is the i
th

 intensity value in binary spectrum,         is the i
th

 absolute intensity 

value in raw spectrum. 

Contribution to the measured spectra from low level background noises was thus 

removed by assigning 0 to it. Remaining 1s represent contributions to the measured spectra 

from relevant characteristic components. The selection of a threshold is determined through 
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investigation of the optimal threshold value that would yield the best classification accuracy. 

This threshold value helps to discriminate against residual noise components. 

 

Figure 1.9 Binary spectrum. 

(A)Second derivative from a baseline corrected, smoothed and area normalized spectrum from eye 

tissue section of a healthy basset hound; (B) Binary spectrum calculated from the second derivative 

spectrum with threshold 0.05 of the maximum value. 

1.1.3.8 Standardized residual spectrum 

A standardized residual spectrum (SRS) is sometimes calculated from the original 

spectral data to highlight the variations in spectral data measured from the same type of 
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samples (i.e., control versus diseased) (Figure 1.10B). The calculation of SRS includes mean 

centering and variance scaling. Mean centering is simply the subtraction of the mean Raman 

intensity at each Raman shift from each spectrum, which shifts the origin of coordinate 

system to the center of the dataset. The main reason for centering data is to prevent data 

points that are farther from the origin form exerting an undue amount of leverage over the 

points that are closer to the origin(Kramer 1998). Variance scaling is an adjustment to a data 

set that equalizes the variance of each variable(Kramer 1998). As is shown in equation 

                      
                   ̅               

                   
, 

SRS(Raman shift: i) is the standardized residual spectral intensity at Raman shift 

wavenumber i, X(Raman shift: i) is the Raman intensity of that spectrum at the same Raman 

shift i,  ̅ (Raman shift: i) is the mean Raman intensity of all spectra from the same data set 

(i.e., diseased or control) at the same Raman shift i, and s.d.(Raman shift) is the standard 

deviation of the Raman intensity within the data set at the same Raman shift i.  

From the analytical chemistry point of view, variance scaling maps the data set into 

an abstract space whose axes no longer have any external physical or chemical significance. 

It also can reduce the influence of variables where the signal variation (and hence 

analytically useful information content) is large while increasing the influence of variables 

that contain mostly noise. 
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Figure 1.10 Standardized residual spectrum. 

(A)One original spectrum for eye section of glaucomatous basset hound; (B) Its corresponding 

standardized residual spectrum for group glaucomatous basset hound. 

1.1.4 Classification of samples based on spectral signatures 

1.1.4.1 Data compression 

From a mathematical standpoint, each wavenumber of a Raman spectrum represents a 

dimension or variable. Commonly, one Raman spectrum contains thousands of dimensions, 

which brings a great challenge for following statistical analysis. For discriminant analysis, as 

the dimensions of the data set become large, the limitation on the capability of detecting 

distinguishable classes becomes severe. Due to the fact that most statistical methods are 

based on optimization criteria, it is advisable to reduce the dimension of the problem. This 

dimension reduction results in decreasing computational costs and increasing probability of 

finding the best model representing the data. For this purpose, it is a common practice that 

Principal Component Analysis (PCA)(Rencher and Christensen 2012) is utilized to optimally 



31 

 

reduce the dimensionality of the data set without degrading it and with the added benefit of 

removing some noise.  

PCA is mathematically defined as an orthogonal linear transformation that transforms 

the data to a new coordinate system such that the great variance by any projection of the data 

comes to lie on the first coordinate (called the first principal component), the second greatest 

variance on the second coordinate, and so on(Shaw 2003). As is shown in the equation X =  

L×S
T
, PCA summarizes the original X (the matrix of spectra, Raman intensities) into much 

fewer more informative variables called scores, S (score matrix). These new variables (or 

scores) are linearly weighted combination of the original X. The weighting profiles are called 

loadings L (matrix of loadings). For each score variable in S, the influence (weight) of the 

original spectra X is found in its corresponding loading profile L. 

PCA is also the simplest of the true eigenvector-based multivariate analyses. Often, 

its operation can be thought of as revealing the internal structure of the data in a way that best 

explains the variance in the data(Jolliffe 2005). The objective of principal component 

analysis is to retain as much variation as possible while reducing the dimensionality of the 

dataset.  This may identify new meaningful underlying variables that are linear combinations 

of the original variables. There are two methods to choose the number of components which 

are based on relations between the eigenvalues. The first is to plot the eigenvalues of the 

matrix XX
T
, which are proportional to the portion of the variance. If the points on the graph 

tend to level out, these eigenvalues are usually close enough to zero that they can be ignored. 

The second method is to limit the number of components to that number that accounts for a 

certain fraction of the total variance, for example, 0.99. In this work, 10-50 PCs (account for 
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at least 99% of the total variance in the data) were usually selected from thousands 

dimensional spectral data as inputs for multivariate discriminant classification model.  

1.1.4.2 Supervised machine learning 

The world is overwhelmed with data. As the volume of data increases, inevitably, the 

proportion of what people understand decreases. Laying hidden in all these data is 

information, potentially useful information that is rarely made explicit or taken advantage of. 

This is also the situation for Raman spectral data, the nature of which is highly overlapped 

signals from different chemical features combined with a lot of correlated information. These 

features and the information can be difficult to extract using simplistic univariate statistical 

methods.  

Supervised machine learning, which forms the core of what we call data mining, is 

the machine learning task of inferring a function from supervised (labeled) training data. The 

methods originated in statistics in the early nineteenth century. In 1936, Fisher’s linear 

discriminant (Fisher 1936) determines a linear combination of the variables that separates 

two classes by comparing the differences between class means with the variance of values 

within each class. An increase in the number and size of databases in the late twentieth 

century has inspired a growing desire to extract knowledge from data, which has contributed 

to a recent burst of research on new methods, especially on algorithm development.  

In supervised machine learning, each observation in training data is a pair consisting 

of an input object (typically a vector of variables) and a desired output value (also called 

the supervisory signal)(Figure 1.11). A supervised machine learning algorithm analyzes the 

training data and produces an inferred function, which is called a classifier (if the output is 
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discrete, i.e. group name, it is also called classification) or a regression function (if the output 

is continuous, called regression). The inferred function should predict the correct output 

value for any valid input object. This requires the learning algorithm to generalize from the 

training data to unseen situations in a "reasonable" way. The choice of specific learning 

algorithm is a critical step (Figure 1.11). Classical approaches and algorithms include linear 

discriminant analysis, quadratic discriminant analysis, artificial neural network, decision tree 

learning, random forests, Support Vector Machines (SVM), Bayesian networks, etc. 

Generally, SVMs and neural networks tend to perform better when dealing with multi-

dimensional, continuous features(Kotsiantis, Zaharakis et al. 2007). The classifier’s 

evaluation is most often based on prediction accuracy (the percentage of correct prediction 

divided by the total number of predictions). If the error rate evaluation is unsatisfactory, a 

previous stage of the supervised machine learning process needs to be returned to (Figure 

1.11). 
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Figure 1.11 The process of supervised machine learning. 

1.1.4.3 Support vector machines 

Support vector machine (SVM) (Steinwart and Christmann 2008) belongs to a new 

generation of machine learning algorithm, originally introduced by Vapnik and co-

workers(Boser, Guyon et al. 1992; Cortes and Vapnik 1995) and successively extended by 

recent advances in statistical learning theory for classification or regression. SVMs are 

currently among the best performers for classification and is an extension to nonlinear 

models of the generalized portrait algorithm developed by Vladimir Vapnik(Ben-Hur, Horn 

et al. 2002). Their remarkably robust performance with respect to sparse and noisy data is 

making them the system of choice in spectral analysis. 



35 

 

As a binary classification method, Support Vector Machine is particularly suitable to 

separate two distinguishable groups. In SVM, input labeled data from two classes are viewed 

as two sets of vectors in an n-dimensional space and the output are a model for classifying 

new unlabeled data into one of those two classes. SVM can generate linear and non-linear 

models. In the linear case, SVM algorithm will construct a separating hyper plane in that 

space, which maximizes the margin between the two data sets, the smallest distance between 

the decision boundary and any of the samples. Intuitively, a good separation is achieved by 

the hyper plane that has the largest distance to the neighboring data points of both classes, 

since in general larger the margin, better the classification. The SVM algorithm also assigns a 

weight to each input point, but most of these weighs are equal to zero. The points having 

non-zero weight are called support vectors and they can be bounded support vectors (if they 

take a maximum possible value C) or unbounded support vectors (if their absolute value is 

smaller than C). The separating hyper plane is defined as a weighted sum of supported 

vectors. 

Application of linear decision boundaries is severely limited. Noisy training data 

often makes the training set non-separable in the feature space. Since 1995, significant 

improvements have been made to SVMs, especially when the kernel trick was incorporated 

in order to allow non-linear hyper planes. The general idea is that the original feature space 

can always be mapped to some higher-dimensional feature spaces where the training set is 

separable with non-linear transformation. The kernel is a function that returns the value of 

the dot product between the images of the two arguments, such as  (     )              . 

Choosing kernel probably is the trickiest part of using SVM. The kernel function should 

maximize the similarity among instances within a class while accentuating the differences 
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between classes. A variety of kernels have been proposed for different types of data. 

Examples of commonly used kernel functions are polynomial kernel, Gaussian or Radial-

Basis Function (RBF) kernel and sigmoid kernel. In practice, a low degree polynomial kernel 

or RBF kernel with a reasonable width is a good initial try for data that live in a fixed 

dimensional input space.  

1.1.4.4 Partial least square regression 

Partial-least-squares regression (PLSR)(Abdi 2003) is a commonly used quantitative 

multivariate statistical tool that allows for the analysis of data with strong correlations and 

with noise(Wold, Sjöström et al. 2001) to model a response variable when there are a large 

number of predictor variables, known as PLS components, as linear combinations of the 

original predictor variables. Contrary to more general multiple linear regression model, 

PLSR can also handle data sets with more variables than samples. Hence, it is especially 

useful for Raman spectroscopic datasets that contain values at hundreds to thousands of 

wavenumbers. While originally developed for the field of chemometrics, PLSR has been 

applied to a number of spectroscopic studies in diverse applications fields such as vegetation 

studies(Asner and Martin 2008), soil mechanics(Yitagesu, van der Meer et al. 2009). 

Partial-least-squares modeling can be applied as classification model or as 

multivariate calibration model. In this work, PLSR models were developed to link the Raman 

spectra to pork sensory data and used as a calibration tool. The PLSR creates a regression 

model that uses a set of predictor variables X (in this case the Raman spectra) to predict the 

occurrence and concentration of a set of response variables Y (in this case the pork sensory 

data). It calculates a linear relationship between two matrices which is shown in     

   , where the matrices Q and P are the regression coefficients. If Y has only one column, 
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it can be interpreted as calculating the linear spectral response. Similar to a principal 

component analysis, the high dimensional X matrix is reduced to a few factors or latent 

variables by a projection to an orthogonal system of smaller dimensionality. The main 

difference being that in a PCA, the variance in X is maximized while in a PLSR the 

covariance between X and Y is maximized(Esbensen, Guyot et al. 2006). This causes the 

first few factors to contain the spectral content that is most representative and predictive of 

the Y values while higher number factors contain spectral content that is either not related to 

the particular predicted Y or contains noise.  

In a first step, a PLSR model is built, using a training set of samples for which the 

spectral information as well as the response is known. In the second step, the resulting PLSR 

model is applied to new samples for which only spectra are available and the responses (like 

values of beef sensory parameters) are modeled from the corresponding Raman spectra, 

afterward the differences between the predicted values and the true values are calculated. The 

quality of a PLSR model is often measured by the mean-squared-error-of-prediction (MSEP) 

as the indicator for predictive power of the model, which is the mean over all squared value 

differences and reflects the averaged error rate. 

1.1.4.5 Cross-validation and independent validation 

Cross-validation is a common technique in modern multivariate statistics for 

assessing how the results of an analysis will generalize to an independent dataset(Browne 

2000). One round of cross-validation involves partitioning a sample of data into 

complementary subsets, performing the analysis on one subset (called the training set), and 

validating the analysis on the other subset (called the validation set or testing set)(Figure 

1.12A). To reduce variability and avoid overfitting of the models, multiple rounds of cross-



38 

 

validation are performed using different partitions, and the validation results are averaged 

over the rounds(Witten, Frank et al. 2011). Averaging results over all cross-validation runs is 

useful and has an important influence over the error estimates (Figure 1.12A). 

One inherent drawback of cross-validation comes from the fact that the validation set 

and the training set are indeed spectra measured from the same batch of samples (e.g., retinal 

tissues of the same dog). The high prediction accuracy reported from cross-validated 

discriminant models can be biased. In this study, to further confirm that Raman spectroscopic 

data can yield enough information that distinguishes diseased tissues from normal ones, even 

at an early stage of the disease, we tested the discriminant model by independent validation 

(Figure 1.12B). In this approach, the validation set only contains spectral data that were 

acquired from an independent set of samples (e.g., a different group of dogs) (Figure 1.12B), 

with no overlap with the sample pool from which the spectral data for the training of the 

discriminant model were acquired. 
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Figure 1.12 Cross-validation and independent validation. 

Different color red, blue and grey blocks mean different samples. The number “1”, “2”, “3” stand for 

replicate measurements for same sample. (A) Cross-validation; (B) Independent validation. 
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1.1.4.6 “RSpec” package 

The “RSpec” package implements basic and classical Raman spectral pre-processing 

methods for raw spectra in R, such as polynomial baseline correction, maximum intensity 

normalization, area normalization, specific peak normalization, spectra statistics, outlier 

detection, moving average points smoothing, first and second derivative spectra calculation, 

binary spectra calculation, standardized residual spectra calculation. In addition, data analysis 

methods, such as principal component analysis, support vector machine, artificial neutral 

network, random forest and partial least squares regression, are included in this package 

(Figure 1.13). I developed the “RSpec” package primarily for this research. Nevertheless the 

RSpec package will be freely available from the Comprehensive R Archive Network 

(CRAN), licensed under the GNU General Public License (GPL). 
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Figure 1.13 Flow chart of "RSpec" 

1.2 Research Objectives 

Research related to Raman spectroscopy has grown rapidly in the past decade due to 

the decreasing cost of Raman instruments, and the ever-expanding scope of Raman 

applications. Raman spectroscopy has many advantages compared to other analytical and 

detection techniques that make it quite appealing as a method of choice for biological 

samples. The overall objective of this research was to develop innovative applications of 

Raman spectroscopy to address important problems related to biomedical and agriculture 

systems. The specific objectives for each project are as follows: 
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1) To evaluate whether Raman spectroscopy can be used for detection of molecular 

changes in glaucomatous retinal tissues at different stages of the disease, with the 

ultimate goal of developing imaging routines which can detect early onset and 

progression of glaucoma based on changes in tissue biochemical composition. 

2) To evaluate and predict tenderness, juiciness and chewiness of fresh, uncooked pork 

loins based on their Raman spectral features, and to develop a rapid objective assay of 

pork sensory attributes for practical applications in pork industry. 

3) To evaluate the potential of Raman spectroscopy as an innovative rapid method for in-

field/onsite evaluation of boar taint in male pig carcasses in slaughterhouses. 

1.3 Dissertation Overview 

This dissertation contains two main parts: exploring Raman spectroscopy in 

evaluation of glaucomatous and glaucoma-like retinal changes (Chapter 2, 3) and rapid pork 

sensory quality determination and boar taint evaluation using Raman spectroscopy (Chapter 

4, 5). In chapter 1, a general introduction to the research is presented. In chapter 2, Raman 

spectroscopy was applied to differentiate and classify differences between glaucomatous and 

healthy (control) retinal ganglion cells (RGCs) of canine retinal tissues. Chapter 3 shows that 

Raman spectroscopic screening can potentially become a powerful tool for detection and 

characterization of early stages of the disease, in which independent cross-validation is 

utilized to provide more reliable results. In chapter 4, partial least square regression models 

were developed to predicate the value of sensory tenderness, chewiness and juiciness based 

on Raman spectroscopic characteristics of pork loins. A new Raman spectroscopic binary 

barcoding model was created to classify pork loins into grades by sensory tenderness and 

chewiness. Raman spectroscopy was found to have the potential to become a rapid objective 
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assay for tenderness and chewiness of pork products that may find practical applications in 

pork industry. In chapter 5, high classification accuracies, above 90% for raw pork fat and 

above 95% based on methanol extraction method, demonstrated that Raman spectroscopy 

offers a rapid, efficient and relatively accurate detection method for boar taint (i.e., 

androstenone and skatole). In the last chapter, chapter 6, a general conclusion of the research 

work is presented and recommendations for future work are suggested. 
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2.1 Abstract 

Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal 

ganglion cells and subsequent loss of visual function. Early detection of glaucoma is critical 

for the prevention of permanent structural damage and irreversible vision loss. Raman 

spectroscopy is a technique that provides rapid biochemical characterization of tissues in a 

nondestructive and noninvasive fashion. In this study, we explored the potential of using 

Raman spectroscopy for detection of glaucomatous changes in vitro. Raman spectroscopic 

imaging was conducted on retinal tissues of dogs with hereditary glaucoma and healthy 

control dogs. The Raman spectra were subjected to multivariate discriminant analysis with a 

support vector machine algorithm, and a classification model was developed to differentiate 

disease tissues versus healthy tissues. Spectroscopic analysis of 105 retinal ganglion cells 

(RGCs) from glaucomatous dogs and 267 RGCs from healthy dogs revealed spectroscopic 

markers that differentiated glaucomatous specimens from healthy controls. Furthermore, the 

multivariate discriminant model differentiated healthy samples and glaucomatous samples 

with good accuracy [healthy 89.5% and glaucomatous 97.6% for the same breed (basset 
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hounds); and healthy 85.0% and glaucomatous 85.5% for different breeds (beagles versus 

basset hounds)]. Raman spectroscopic screening can be used for in vitro detection of 

glaucomatous changes in retinal tissue with a high specificity.  

2.2 Introduction 

Glaucoma is an optic neuropathy which is characterized by a progressive optic nerve 

head cupping and ultimately vision loss. It is the second leading cause of blindness 

worldwide according to the World Health Organization(Quigley 1999). Glaucoma is 

characterized by a progressive death of retinal ganglion cells (RGCs), which ultimately 

results in the loss of visual function. Elevated intraocular pressure (IOP) is considered a 

primary risk factor for the progression of glaucomatous neuropathy(Quigley 1999; Morrison 

2005). In many patients, despite the adequate control of the IOP, the loss of vision continues 

to progress, which necessitates further identification of molecular mechanisms responsible 

for the glaucomatous neurodegeneration and development of novel diagnostic modalities, 

which can detect glaucomatous changes even in patients where IOP is considered 

normal(Tielsch, Sommer et al. 1991; Levin 1999; Osborne, Chidlow et al. 1999; Morrison 

2005). 

Raman spectroscopy is a technique that provides rapid characterization of tissue and 

bodily fluids in a nondestructive and noninvasive fashion. This methodology relies on 

inelastic scattering of monochromatic light by macro biomolecules in the tissue, usually from 

a laser in the visible or near-infrared range(Long 1977 ). Raman spectroscopy is one of the 

ideal tools to obtain the general biochemical landscape of biological samples. In recent years 

a marked upsurge in the use of Raman spectroscopy as a noninvasive probing technique has 

occurred in biomedical research. The diverse applications have included characterization of 
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different cancers by obtaining biochemical information from an in situ sample such as lung 

cancer(Huang, McWilliams et al. 2003; Huang, Lui et al. 2005; Taleb, Diamond et al. 2006), 

vitamin distribution in tissues(Beattie, Maguire et al. 2007; Pudney, Mélot et al. 2007) and 

the investigation of bone properties(Carden, Rajachar et al. 2003). Once the Raman spectra 

of a tissue sample are acquired, mathematical classification techniques are utilized to 

differentiate the spectral signatures of diseased and normal tissues. 

In order to better understand glaucomatous changes that occur in the retina and optic 

nerve and develop effective diagnostic and therapeutic modalities for human disease, it is 

essential to use animal models that recapitulate the silent and slow development of the 

disease characterized by a progressive loss of a RGC function. Numerous inducible animal 

models of glaucoma have been used successfully to test different therapeutic strategies and to 

evaluate molecular mechanisms of RGC damage resulting from chronic elevation of IOP 

(Levkovitch-Verbin 2004; Morrison 2005; Rasmussen and Kaufman 2005). Due to the 

similar size to the human eye, spontaneously occurring large animal models (hereditary 

canine glaucoma) offer a unique opportunity to obtain functional, structural, and molecular 

data using instrumentation identical to that used in human patients(Grozdanic, Kecova et al. 

2010). 

The primary purpose of this study was to explore the potential of using Raman 

spectroscopy for characterization of glaucomatous molecular signatures. We compared the 

Raman spectral differences between canine glaucomatous eyes and healthy (control) eyes. 

The overall objective was to identify spectroscopic markers associated with glaucomatous 

changes in retinal ganglion cells, and to develop a classification methodology which 
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potentially could be effectively used to develop in vivo imaging modalities for early 

glaucoma detection using Raman spectroscopy. 

2.3 Materials and Methods 

2.3.1 Animals and tissue collection 

All animal studies were conducted in accordance with the ARVO Statement for Use 

of Animals in Ophthalmic and Vision Research, and procedures were approved by the Iowa 

State University Committee on Animal Care (IACUC Grant Nos. 11-09-6827-K and 9-05-

5968-K). Eyes were collected from eight basset hounds with hereditary progressive angle 

closure glaucoma from our colony(Grozdanic, Kecova et al. 2010), and retinal sections were 

used for Raman spectroscopic investigation. Additionally, eyes from 12 adult healthy beagles 

and 3 healthy basset hounds were used to serve as a control tissue. All control animals 

underwent ocular examination (slit lamp biomicroscopy, intraocular pressure evaluation, 

indirect ophthalmoscopy, gonioscopy), to rule out the possible presence of ocular disease 

before inclusion in the study. 

Eyes were surgically removed from glaucomatous basset hounds once their IOP 

reached the 35 to 45 mmHg range. At the time of removal, eyes did not have vision, but had 

positive photopic blink response and pupil light reflex responses. Eyes from control healthy 

beagles and healthy basset hounds were collected after euthanasia for reasons not related to 

this study. Eyes were fixed in the 10% buffered paraformaldehyde for 24 h and then rinsed 

and paraffin imbedded. Twenty micrometer thick central retinal sections containing optic 

nerve head profile were made and placed on gold-aluminum coated histology slides for the 

purposes of Raman imaging. Raman spectra were acquired from the fixed tissue sections 

using a Raman microscope with 4×, 10×, and 100× objectives. 
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2.3.2 Acquisition of Raman spectrum from retinal tissues 

Raman measurements were performed using a DXR Dispersive Raman Microscope 

(Thermo Scientific, Inc., Madison, Wisconsin) with 780 nm, 14 mW excitation laser with 50 

μm pinhole at ambient temperature. Raman spectra were collected with various exposure 

times (15, 20, 30, 60, 99 s) from 550 and to 2000 cm 
−1 

at a resolution of 1 cm 
−1

. 

With the 100× objective, individual RGCs can be resolved at subcellular spatial 

resolution (1 to 1.5 μm), and potential characterization of spectroscopic subcellular 

compartmentation within individual RGC can be achieved. However, this study focused on 

differentiation of healthy and glaucomatous tissues as whole units, and subcellular 

compartmentation was not investigated. Five spectra were collected from each individual cell 

at different spots and an average spectrum was then calculated (to minimize the variation due 

to subcellular compartmentation) for that cell to be used as one RGC spectrum in subsequent 

analysis (105 RGC spectra from glaucomatous basset hound tissues, 105 RGC spectra from 

healthy basset hound tissues, and 162 RGC spectra from healthy beagle tissues, respectively). 

With 4× and 10× objectives, spectra were collected from the entire RGC region as a whole 

(215 spectra from glaucomatous basset hound tissues, 220 spectra from healthy basset hound 

tissues, and 205 spectra from healthy beagle tissues, respectively). The intensity of the 

Raman spectrum acquired with low magnification objectives (4× and 10×) was stronger than 

that of an individual RGC cell due to the larger amount of Raman photons being collected. 

Nonetheless, their spectroscopic characteristics (i.e., peak wave numbers and peak profiles) 

were almost identical. Lower magnification objectives delivered the laser power to a much 

larger area on the tissue samples (~1 mm
2
 at 4×), and resulted in a much smaller laser energy 

density at the tissue surface. After normalization, all spectra from the same type of samples 
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were pooled together for the development and testing of the discriminant model generated 

using a support vector machine (SVM). The total spectra for each type of samples were: 320 

from glaucomatous basset hound tissues, 325 from healthy basset hound tissues, and 367 

from healthy beagle tissues. 

2.3.3 Spectral data processing 

All spectra were baseline corrected and smoothed using a 21-point averaging 

algorithm to reduce the baseline variability and background noises at the region between 550 

and 2000 cm
−1

. All spectra were then normalized by setting the intensity of the strongest 

Raman peak (amide I) to unity. All data processing was conducted using Omnic professional 

Software Suite (Thermo Scientific, Inc., Madison, Wisconsin). 

A standardized residual spectrum (SRS) was then calculated from the original 

spectral data using equation as follows: 

                  
                ̅             

                 
        

where SRS is the standardized residual spectral intensity at each Raman shift wavenumber, X 

is the Raman intensity of each individual spectrum at the same Raman shift,  ̅ is the mean 

Raman intensity of all spectra from the same data set (i.e., diseased or control) at the same 

Raman shift, and s.d. is the standard deviation of the Raman intensity within the data set at 

the same Raman shift. The SRS highlights the variations in spectral data measured from the 

same type of samples (i.e., control versus diseased), and they were used in a subsequent 

discriminant analysis. 
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It should be noted that the chemical fixation with paraformaldehyde alters the 

chemical makeup of the tissues and changes the Raman spectroscopic characteristics of the 

tissue samples. However, it has been demonstrated that fixation with paraformaldehyde 

produces spectral content that is closest to that of living cells(Meade, Clarke et al. 2010). 

Using hierarchical cluster analysis and principal components analysis (PCA) on individual 

Raman spectra randomly selected form the nuclear regions of single cancer cells, Draux and 

co-workers have shown that formalin-fixation and cyto-centrifugation are sample preparation 

methods that have little impact on the biochemical information as compared to living 

conditions(Draux, Gobinet et al. 2010). Although the chemical fixation is a possible 

confounding variable in the differentiation and classification analysis of the spectra acquired 

from the normal and diseased eye samples, its impact on the analysis is limited in nature 

since all samples were processed under identical conditions. 

2.3.4 PCA and data compression for SVM discriminant modeling 

For discriminant analysis, as the dimensions of the data set (i.e., each wave number in 

the spectral data represents an independent dimension) become large, the limitation on the 

capability of detecting distinguishable classes becomes severe(Jimenez and Landgrebe 2002). 

PCA was used in this study for the dimensionality reduction. The data sets (SRS) were 

compressed into PC scores, and 10 to 50 PC scores (accounted for 94% to 99% of the total 

variance in the data sets, as shown in Figure 2.6) were selected from 1506 dimensional 

hyperspectral data as inputs for multivariate discriminant classification model generated 

using a Support Vector Machine(Steinwart and Christmann 2008) implemented with 

MATLAB SVM toolbox (The Mathworks, Inc., Natick, Massachusetts) using polynomial 

kernel function(Gunn 1998). Training sets (110 spectra from each group, 330 in total) and 
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testing sets (100 spectra/tests) were randomly chosen from the measured spectra [from 

glaucomatous basset hounds (diseased), healthy basset hounds (control 1), and healthy 

beagles (control 2)]. Average classification accuracy was calculated from 10 random 

replications of the discriminant process. 

2.4 Results 

2.4.1 Spectroscopic characterization of retinal ganglion cells from the retinal tissues 

The optical images of the retinal tissue sections of glaucomatous basset hound, 

healthy hasset hound, and healthy beagle are shown in Figure 2.1. The layers of RGCs were 

identified under the microscope, as shown in the figures. 

 

Figure 2.1 Optic images of retinal tissue sections. 

They are from a healthy beagle (a), a healthy basset hound (b), and glaucomatous basset hounds (c) 

on gold coated slides (RGC–retinal ganglion cell layer). 

Raman peaks are represented by their wave number (Raman shift) and intensity. The 

peak intensities are dependent on many factors that may vary from sample to sample (i.e., 

sample size, exposure time, etc.), but their Raman shift remains identical as long as the 

molecular makeup is the same. A typical Raman spectra and SRS measured from 

glaucomatous basset hound RGCs are shown in Figure 2.2 in the 550 to 2000 cm 
– 1

 range. 

From the spectra, we could identify contributions from functional groups of the major 

macromolecules presented in the cells. Proteins (i.e., amide I and III peaks, phenylalanine 
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peaks, tryptophan peaks, tyrosine peaks) and DNAs (i.e., adenine peak, thymine peaks) can 

both be characterized with specific Raman bands. The differences shown by these Raman 

signature bands can be used to differentiate diseased tissues from healthy ones. 

 

Figure 2.2 Typical Raman spectrum and SRS of RGCs from glaucomatous basset hounds. 

To compare the biochemical changes between RGCs of glaucomatous basset hounds 

and healthy dogs (beagles and basset hounds), represented by their Raman spectroscopic 

signatures, we measured Raman spectra from 105 RGCs from 8 glaucomatous basset hounds, 

105 RGCs from 3 healthy basset hounds, and 162 RGCs from 12 healthy beagles with 

normal vision. The average and difference spectra between healthy and glaucomatous dogs 

are shown in Figure 2.3. The difference spectrum was acquired by subtracting the control 

(healthy beagle and healthy basset hound) from the diseased (glaucomatous basset hound) 

spectra, respectively. The wave number and intensity changes in those Raman bands of 
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biological importance were indicative of changes in the secondary structure and variations in 

local environments of intracellular proteins as well as DNAs, which may determine the 

characteristics of glaucomatous tissues. Differences at amide III peaks illustrate the changes 

in the overall concentration of total proteins(Herrero 2008), the composition of proteins also 

shows some significant differences, as evidenced by Raman bands of various amino acids, at 

800 to 1200 cm 
− 1

 . These changes can potentially be used as spectroscopic markers for the 

detection of glaucoma. 

 

Figure 2.3 Average Raman spectra and difference spectra between glaucomatous and normal RGCs. 

(A) Healthy basset hounds versus glaucomatous basset hounds; (B) Healthy beagles versus 

glaucomatous basset hounds. 1. Glaucomatous basset hound; 2. Healthy basset hound; 3. Difference 

spectrum; (2). Healthy beagle; (3). Difference spectrum. 
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2.4.2 Discriminant classification of glaucomatous versus healthy spectra using support 

vector machine 

A SVM was utilized to generate discriminant classification models to classify a 

measured spectrum from a retinal tissue sample into the two categories (glaucomatous and 

normal). One hundred and ten spectra measured from the control group (healthy beagles and 

healthy basset hounds) and 110 spectra measured from the glaucomatous group 

(glaucomatous basset hounds) were used as the training data sets to create the SVM 

discriminant models. After compressing the original spectral data using PCA, the resulted PC 

scores were used to calculate hyperdimensional classifier. The classification model generated 

with 10 PC scores (10 D hyperdimensional classifier) is illustrated in Figure 2.4. The support 

vectors defined a hyperplane that divided the 10 D hyperspace into two domains: normal and 

glaucomatous. The classification model was then validated through random testing of 10 

testing data sets, each containing 100 spectra measured from the control and glaucomatous 

retinal tissues, respectively. The average classification accuracy was then calculated to 

evaluate the performance of the classification models. 
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Figure 2.4 An example of the trained classifier by the support vector machine. 

The trained classifier between the spectra from RGCs from control healthy basset hounds (black) and 

glaucomatous basset hounds (gray) is shown. It should be noticed that this is a two-dimensional 

projection of a 10-D hyperplane separation, thus some overlapping was observed between the two 

groups while in 10-D space they were well separated. The SVM separating function divided the space 

into two areas represented by different colors (black and gray). The “circled” dots are support vectors. 

2.4.3 Effect of spectral data processing for the classification accuracy 

Using PCA, the dimensionality of the spectral data was greatly reduced. With 50 PCs, 

over 99% of the total variance within spectral data measured for each type of sample could 

be explained. Ten PCs accounted for 94% of the total variance for each type of samples. 

Figure 2.5 shows the impact of the number of PCs used in the SVM discriminant model on 

the classification accuracy for healthy basset hounds (control) and glaucomatous basset 

hounds (diseased). Consistently, classification accuracy for glaucomatous RGCs was better 

than that for normal RGCs. We hypothesize that biochemical changes caused by glaucoma 

may introduce characteristic spectroscopic signatures that lead to more coherently 

intercorrelated clustering of the data representing glaucomatous RGCs in the hyperspace of 

the SVM classifier, which results in the better classification accuracy. 
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Figure 2.5 The influence of the number of PC scores used in SVM discriminant models on the 

differentiation accuracy of classifying tissues into healthy and glaucomatous categories.  

Each error bar indicates the standard deviation of classification accuracy from 10 replications of 

different training and testing data sets. The inlet shows the total variance accounted for by the number 

of different PC scores. 

As the number of PCs increased from 10 to 30, the classification accuracy for a 

glaucomatous basset hound reached 100%. Since the number of spectra used in training the 

discriminant model (220) is far larger than the number of PC scores (<50), it is reasonable to 

believe that the high classification accuracy is not caused by overfitting(Kemsley 1998). 

Given the fact that the glaucomatous basset hounds investigated in this study were at the late 

stage of the disease and have lost almost 100% vision loss, it could be reasoned that severe 

physiological changes have occurred in their RGCs, which may result from significant 

biochemical alterations to the cells that are captured in their Raman spectral data. 

Interestingly, the classification accuracy for healthy basset hounds peaked at 30 PCs (~91%) 

and slightly declined with more PCs being used in the discriminant model, suggesting that 



64 

 

further optimization is possible by identifying the PCs that are the most responsible for 

differentiating the diseased group from the healthy group. 

2.4.4 Classification differences between different breeds of dogs 

Hereditary glaucoma is a genetic disorder affecting RGCs. It is reasonable to 

hypothesize that the biochemical makeup of the RGCs in diseased basset hounds differs from 

that of healthy basset hounds. As demonstrated by the high accuracy of the classification 

results reported before, these intrinsic biochemical differences were captured by their Raman 

spectroscopic characteristics. 

It was previously demonstrated that the gene and protein expression in the retina of 

glaucomatous and healthy dogs are not breed related, but it rather depends on the stage of 

glaucoma(Jiang, Harper et al. 2010). Therefore, a valid question to ask is whether or not the 

spectroscopic differences between healthy and glaucomatous retinal tissue exist regardless of 

the breeds of the dogs. To answer this question, we have compared Raman spectroscopic data 

between spectral specimens of two healthy control populations (healthy basset hounds and 

healthy beagles). 

The classification results to differentiate glaucomatous basset hounds and healthy 

beagles are shown in Figure 2.6 and Table 2.1. A slight reduction in classification accuracy 

was observed. With 10 PCs, 85.0% of RGCs were correctly classified for the healthy (control) 

group, and 85.5% RGCs were correctly classified for the glaucomatous group. When 

classification accuracy was compared within the same breed (control healthy basset hounds 

and glaucomatous basset hounds), 89.5% RGCs were correctly classified for the healthy 

group, and 97.6% were correctly classified for the glaucomatous group. 
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Figure 2.6 Classification performance of the SVM model to differentiate healthy tissues from 

glaucomatous tissues. 

Each error bar indicates the standard deviation of classification accuracy from 10 replications with 

different training and testing data sets. 

 

Table 2.1 The average classification accuracies for retinal ganglion cells between control and 

diseased tissues using 10 PCs in SVM discriminant analysis. 

  Healthy basset hounds versus Healthy beagle versus 

 

glaucomatous basset hounds glaucomatous basset hounds 

  

Normal 

RGCs 

Glaucomatous 

RGCs 

Normal 

RGCs 

Glaucomatous 

RGCs 

Classified as Normal 89.5% 2.4% 85.0% 14.5% 

 

Classified as 

Glaucomatous 10.5% 97.6% 15.0% 85.5% 

 

These results strongly suggest that there are significant biochemical differences 

between the retinal ganglion cells of glaucomatous and healthy dogs that can be identified 

from their Raman spectra, even between different breeds of dogs. The slight reduction in 

classification accuracy between different breeds may be related to the interbreed genetic 
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discrepancy, which may result in a greater spread of the data points, and may lead to the mild 

reduction in the classification accuracy. 

The hereditary glaucoma in basset hounds is most likely a result of genetic mutation(s) 

in the ocular tissues, and potentially all cells in the body. The classification results using the 

Raman spectra of fibroblast cells and retinal ganglion cells extracted from the control 

(healthy beagles) and glaucomatous animals (basset hounds) are shown in Figure 2.7 and 

Table 2.2. A dramatic reduction in classification accuracy was observed. Only 69.2% of 

fibroblasts were correctly classified for the healthy group, and only 46% of fibroblasts were 

correctly classified for the glaucomatous group. These observations suggested that the 

spectroscopic differences between healthy and glaucomatous animals are probably tissue 

type specific: they could only be observed with high certainty in RGCs, but not in fibroblast 

cells. The possible explanation for observed changes is that the biochemical footprints 

associated with glaucoma could be the result of the possible genetic abnormality resulting in 

a disease phenotype only in ocular tissues. However, it cannot be excluded that the presence 

of more aggressive disease phenotype in affected eyes (elevated intraocular pressure, 

neuroinflammatory changes, neuronal(Myers, Trevisani et al. 1998; Katz, Kruger et al. 2003) 

death, etc.) resulted in more prominent biochemical changes providing a distinct 

spectroscopic pattern. 
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Figure 2.7 Classification accuracy for RGCs and fibroblast cells from glaucomatous basset hounds 

(glaucomatous) and healthy beagles (normal). 

Table 2.2 The average classification accuracies for retinal ganglion cells and fibroblast cells between 

normal beagle and glaucomatous basset hounds using 10 PCs in SVM discriminant analysis. 

  RGCs Skin fibroblasts 

  

Normal 

(Beagles) 

Glaucomatous 

(Basset hounds) 

Normal 

(Beagles) 

Glaucomatous 

(Basset hounds) 

Classified as Normal 85.0% 14.5% 69.2% 54.0% 

 

Classified as Glaucomatous 15.0% 85.5% 30.8% 46.0% 

2.5 Conclusions 

Glaucoma is a disease which affects millions of patients worldwide, and frequently is 

diagnosed only when significant optic nerve damage has already developed. For the purposes 

of this study we have intentionally used tissues from animals with the advanced hereditary 

glaucoma to make sure that observed spectroscopic changes present in glaucomatous eyes 

can be detected. For this technology to become a viable clinical tool, it is obvious that testing 
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needs to be done in animals at a very early stage of the disease, which would be more 

representative of the condition seen in early glaucoma human patients and glaucoma disease 

suspects who are in the strongest need of accurate and early diagnosis. 

In this study, support vector machine discriminant classification modeling was 

incorporated with Raman spectroscopy to differentiate and classify differences between 

glaucomatous and healthy (control) RGCs. It was demonstrated that Raman imaging of RGC 

chemical profiles results in the high recognition accuracy of the tissue status (91% of healthy 

RGCs and 100% of glaucomatous RGCs were classified correctly by a predictive model 

which was trained using defined glaucomatous and healthy control samples). Furthermore, 

Raman spectroscopic signatures associated with changes in intracellular protein compositions 

were identified, which potentially can be used as spectroscopic biomarkers for glaucoma 

diagnosis in vivo in the future. To date, Raman spectroscopy has not been fully explored to 

detect molecular changes in eye tissues associated with glaucoma. 

For the 780 nm diode laser that was used in this study, the threshold limit value (TLV) 

can be calculated as follows(Myers, Trevisani et al. 1998; Katz, Kruger et al. 2003). 

                                        

The TLV determines the maximum permissible energy exposure to the retina in an in 

vivo measurement. In the current study, with 15 and 99 s exposure time, the TLV is 1.32 and 

0.82 mW/cm
2
, respectively. The laser spot-size on the sample was ~1 mm

2
 with 4× objective, 

and ~10% laser power (1.4 mW) was delivered on the sample. The resulting power density 

on the sample was 140 mW/cm
2
, significantly higher than the TLV. To utilize Raman 
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spectroscopy for in vivo imaging, the laser power density on the retina has to be greatly 

reduced. 

Raman scattering is a weak phenomenon in comparison to autofluorescence coming 

mostly from protein molecules(Barth and Zscherp 2002), Raman spectral fingerprints can be 

overwhelmed by stronger fluorescence background when in vivo imaging is conducted. 

Earlier reports utilizing Raman spectroscopy for ophthalmological investigation focused on 

detection of human macular pigment and glutamate in the eyes, in which the excitation laser 

wavelength was selected to resonate with the vibrational modes of the pigment/glutamate 

molecules, and an enhanced Raman signal was achieved(Erckens, Jongsma et al. 2001; Katz, 

Kruger et al. 2003). To acquire a Raman signal directly from the RGC cells without the 

resonance enhancement effects, the autofluorescence background has to be removed before 

the analysis of the vibrational bands takes place. The most common methods for background 

removal, as the one currently used in this study, are based on digital signal subtraction 

utilizing the common feature of fluorescent backgrounds—a smooth function of the emission 

wavelength(Lieber and Mahadevan-Jansen 2003; Schulze, Jirasek et al. 2005). Assuming the 

fluorescence signal contributes F photons to the recorded signal, while Raman signal adds an 

additional R photons (for a typical experimental setting R << F), the shot noise introduced by 

the signal in this case was calculated as N = (F + R)
1/2

 ≈ F
1/2

 , resulting in a signal-to-noise 

ratio (SNR) equal to R/F
1/2

 after the fluorescent background has been digitally subtracted 

from the data. This level of noise is still worse than the ideal SNR in the absence of the 

fluorescent background, which can be defined as SNRideal = R
1/2

. From the above equations, it 

is evident that the SNR degrades by a factor of (F/R)
 1/2

, and in order to compensate for it, the 

data acquisition times of roughly equal to or longer than F/R are required. In other words, if 
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the fluorescent background is somehow reduced by a factor of 1000, the acquisition times to 

achieve the same SNR Raman spectra should also be cut by approximately a factor of 1000 

(assuming that the shot noise is a predominant source of the data noise). If the acquisition 

time (exposure time) can be significantly reduced, the higher laser power can be potentially 

used to obtain a higher-quality spectral signal without reaching the safety limit. 

One possible solution to overcome excessive retinal exposure to the high levels of 

laser energy is to utilize pulse laser with extreme short time-gated detection (10
 − 12 

s). With 

such short exposure and detection time, background fluorescence is eliminated (shorter than 

the fluorescence lifetime so that fluorescence is not developed), and the signal-to-noise ratio 

of the Raman spectral measurement can be significantly improved, allowing much weaker 

Raman signals to be detectable(Tahara and Hamaguchi 1993; Matousek, Towrie et al. 1999). 

An extremely short detection time also allows a much higher laser power to be applied 

without increasing the overall retinal laser energy exposure. Simple calculation reveals that at 

10
-12

 exposure time, the TLV is 2601 mW/cm
2
, which is much higher compared to the energy 

levels used in this study. 

In this study, we have demonstrated that Raman imaging can be effectively used for 

the classification of neuronal changes associated with glaucoma. Further refinement of 

Raman imaging instrumentation and detection algorithms may provide an exciting 

opportunity for development of the novel and sensitive diagnostic modalities for the early 

detection of glaucoma. 
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3.1 Abstract 

Early detection of pathological changes and progression in glaucoma and other 

neuroretinal diseases remains a great challenge and is critical to reduce permanent structural 

and functional retina and optic nerve damage. Raman spectroscopy is a sensitive technique 

that provides rapid biochemical characterization of tissues in a nondestructive and 

noninvasive fashion. In this study, spectroscopic analysis was conducted on the retinal tissues 

of seven beagles with acute elevation of intraocular pressure (AEIOP), six beagles with 

compressive optic neuropathy (CON) and five healthy beagles. Spectroscopic markers were 

identified associated with the different neuropathic conditions. Furthermore, the Raman 

spectra were subjected to multivariate discriminate analysis to classify independent tissue 

samples into diseased/healthy categories. The multivariate discriminant model yielded an 

average optimal classification accuracy of 72.6% for AEIOP and 63.4% for CON with 20 

principal components being used that accounted for 87% of the total variance in the data set. 

A strong correlation (R
2
>0.92) was observed between pERG characteristics of AEIOP dog 

and Raman separation distance that measures the separation of spectra of diseased tissues 

from normal tissues, however the underlining mechanism of this correlation remains to be 
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understood. Since AEIOP mimics the pathological symptoms of acute/early stage glaucoma, 

it was demonstrated in this study that Raman spectroscopic screening has the potential to 

become a powerful tool for the detection and characterization of early stage disease.   

3.2 Introduction 

Glaucoma is a slowly progressive chronic optic neuropathy that is characterized by 

retinal ganglion cell (RGC) death with subsequent loss of optic nerve axons and decrements 

in visual function.  Glaucoma is diagnosed clinically by means of functional and structural 

analysis of the retina and optic nerve. After an initial diagnosis, these tests need to be 

repeated at regular intervals to assess the progress of the disease and any treatment effect.  

Unfortunately, a significant loss of retinal cells can occur before any of the current tests show 

an abnormality.  Namely, between 25 to 35% of the RGCs could be lost before any visual 

field defect is detectable(Kerrigan–Baumrind, Quigley et al. 2000).  The detection of 

progressive changes in glaucoma can also be demanding, requiring multiple testing sessions 

over a prolonged period of time.  Hence, a critical gap exists to develop clinical tests that 

could aid in the earlier diagnosis and monitoring of glaucoma. 

Raman spectroscopy measures the inelastic scattering of laser light by biomolecules 

in the tissue samples and can be used to predict the general biochemical composition of 

biological samples(Wang, Grozdanic et al. 2011).  As such, it can be used to provide rapid 

characterization of healthy versus diseased tissues in a nondestructive and noninvasive 

fashion. In recent years, the technique has been applied to characterize various biological 

samples, including mineralized tissue such as bone and teeth (Boskey and Mendelsohn 2005; 

Ko, Choo-Smith et al. 2006), skin(Knudsen, Johansson et al. 2002), brain(Koljenovi , Schut 

et al. 2005), the gastrointestinal tract(Shim, Wong Kee Song et al. 2000), mouth(Schut, 
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Witjes et al. 2000; Huang, Lui et al. 2005), blood vessels(Van de Poll, Kastelijn et al. 2003) 

and breast(Shafer Peltier, Haka et al. 2002). In ophthalmology, Raman spectroscopy has been 

used to determine carotenoid pigment levels in human retina (Gellermann 2002; Bernstein, 

Zhao et al. 2004), altered vitreous molecules such as glycated collagen in diabetic 

vitreoretinopathy (Sebag 2004), the distribution of cholesterol in a rat eye lens (Sijtsema, 

Duindam et al. 1996) as well as to detect glutamate in the vitreous of porcine eyes in an ex 

vivo experiment (Kruger, Minko et al. 2003).  

Raman spectroscopy provides rapid characterization of the chemical composition and 

molecular structures in cells and tissues. Diseases and other pathological anomalies lead to 

chemical and structural changes at the molecular level in tissues that are reflected in their 

Raman spectra before the appearance of clinical symptoms. These spectral changes can be 

used as sensitive, phenotypic markers disease (Krafft and Sergo 2006) and could potentially 

lead to early disease diagnosis before clinical symptoms are apparent. Once Raman spectra 

are acquired, mathematical classification techniques are utilized to differentiate the spectral 

signatures of diseased and normal tissues. In our previous study, Raman spectroscopic 

screening was utilized to detect glaucomatous changes in retinal tissue with a high specificity 

(Wang, Grozdanic et al. 2011). The specimens analyzed in that study were obtained from 

canine retinas with severe vision loss due to advanced hereditary angle-closure glaucoma.  

The physiological and biochemical retinal changes were quite significant in comparison to 

the healthy controls. It remains to be seen whether Raman spectroscopic screening can be 

used to detect glaucomatous changes at earlier stages of the disease in an animal model 

lacking any genetic predisposition for ocular pathology. 
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In order to better understand glaucomatous changes that occur at an early stage of 

glaucoma, it is essential to use animal models that recapitulate the development of the 

disease that is characterized by a progressive loss of RGC function. Elevated intraocular 

pressure (IOP) is considered a primary risk factor for the progression of glaucomatous 

neuropathy(Quigley 1999; Morrison 2005) and remains the etiological factor toward which 

all current therapeutic efforts are directed. Acute elevation of intraocular pressure (AEIOP) 

induces deformation of the lamina cribrosa and anterior scleral canal wall and underlies the 

onset of optic nerve head (ONH) surface hyper-compliance that is typically associated with 

early stage of glaucoma(Bellezza, Rintalan et al. 2003). Compressive optic neuropathy (CON) 

occurs when lesions appear along the optic nerve, which induces damage to the optic nerve 

and a progressive loss of visual function and structure (Girkin 2005). Due to the similar size 

of the human and canine eye, functional and structural data can be acquired using 

instrumentation identical to that which is used in human patients (Gelatt 1977; Grozdanic, 

Kecova et al. 2010). In this study retinal tissues from canine models of AEIOP and CON 

were compared to healthy control samples using Raman spectroscopy.  

The primary purpose of this study was to explore the potential of using Raman 

spectroscopy for characterization of glaucoma-like spectroscopic signatures at an early stage 

of retinal damage to identify spectroscopic markers in the eyes and to classify methods to 

effectively differentiate early stage glaucoma-like tissues and healthy tissues.  

3.3 Materials and Methods 

3.3.1 Acute elevation of the intraocular pressure in beagles 

Laboratory beagles were anesthetized with 2.5% halothane and a mixture of nitrous 

oxide and oxygen (30 : 70 ratio). Body temperature was maintained using a heating pad. The 
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pupils were dilated with topical 10% phenylephrine hydrochloride (Ak-dilate™, Akorn Inc., 

Buffalo Grove, IL, USA) and 1% tropicamide (Tropicamide, Falcon Pharmaceuticals, Fort 

Worth, TX, USA). Prior to anterior chamber cannulation the eye was surgically prepped and 

a drop of 0.5% propracaine hydrochloride (Falcon Pharmaceuticals, Fort Worth, TX, USA) 

was instilled. The anterior chamber was then cannulated with a 25-gauge needle connected to 

a reservoir containing 0.9% NaCl. The intraocular pressure in experimental eyes was 

controlled by adjusting the height of the reservoir to maintain a level of systolic blood 

pressure for 60 min. The systolic blood pressure was evaluated with an ultrasonic Doppler 

flow detector (Model 811-L, Parks Medical Electronics Inc., Las Vegas, NV, USA) every 

5 min. The average elevation of intraocular pressure was between 100 and 160 mmHg. After 

60 min, the bottle was lowered and the needle was subsequently removed from the anterior 

chamber and topical antibiotic ointment (Vetropolycin, Pharmaderm Inc., Melville, NY, 

USA) was applied on the cornea. Postoperative treatment included one dose of 

hydromorphone HCl (0.1 mg/kg, Dilaudid, Abbott Laboratories, Lake Forest, IL, USA) 

subcutaneously and application of topical antibiotic ointment to the operated eye twice daily 

for 2 days (Grozdanic, Matic et al. 2007). 

3.3.2 Dog model for compressive optic neuropathy 

Compressive optic neuropathy was induced in laboratory beagles by surgical 

implantation of custom-made silicone reservoir (Nagor LTD, Isle of Man, UK) into the left 

orbit. Animals were pre-medicated with intramuscular hydromorphone hydrochloride 

(0.1mg/kg; Dilaudid®, Hospira, Inc., IL, USA) and acepromazine maleate (0.01mg/kg, 

Vedco, USA). Anesthesia was induced with intravenous administration of propofol (3-

5mg/kg, Schering Plough Animal Health, USA) and maintained with 1.5-2.5% halothane 
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(Halocarbon Laboratories, USA) in a mixture of 1:1 oxygen and nitrous oxide. Body 

temperature was maintained using a heating pad (T/Pump® Professional, Gaymar Industries 

Inc., NY, USA) and a heating blanket (Bair Hugger®, Arizant Healthcare Inc., MN, USA). 

Systolic, mean and diastolic blood pressures were recorded with oscillometric arterial blood 

pressure monitor (Cardell Veterinary Monitor, Model 9401, Paragon Medical Supply, FL, 

USA) every 5 minutes and maintained in physiological levels with constant intravenous drip 

of lactated ringer’s solution (10 ml/kg for the first hour, 5 ml/kg after) during the orbital 

implant surgery and subsequent recordings. Heart rate, hemoglobin saturation, respiratory 

rate, expired CO2, end-tidal CO2 and end-tidal concentration of halothane were constantly 

monitored (Datascope Multinex Plus anesthesia monitor, Absolute Medical Equipment, NY, 

USA). After induction of anesthesia, the area around the left orbit and left side of the head 

was clipped and prepared for aseptic surgical procedure. Intravenous cefazolin (22 mg/kg; 

Cefazolin, Sandoz Inc., NJ, USA) was administered on a prophylactic basis and the same 

dose was repeated every 2 hours throughout the procedure. 

With the animals in sternal recumbence, a skin incision was made above the left eye, 

in the area of orbital ligament. The palpebral nerve was identified and where necessary, 

retracted with sterile umbilical tape to avoid its damage during the procedure. The orbital 

ligament was incised lengthwise to enable access to the retrobulbar space. A Gelpi retractor 

was inserted into the incision to enable good visualization of the surgical site and a custom-

made inflatable silicone implant (Nagor LTD, Isle of Man, UK) was introduced into the orbit, 

directly behind the eye. The injection port of the implant was passed through the incision in 

the orbital ligament and under the skin of the forehead into the occipital area, where it was 

fixed to the muscle fascia with absorbable monofilament suture (PDS 3-0, Ethicon, USA). 
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Surgical incisions were closed routinely. Post-operative analgesia and inflammation control 

was maintained with hydromorphone hydrochloride (0.1mg/kg BW) every 6-8 hours (as 

needed) for 3 days and carprofen (4.4 mg/kg BW) once daily for 7 days. The implant was 

inflated to a pressure that gave a complete optic nerve perfusion deficit as measured using 

fluorescein angiography. The device was then deflated until fluorescein was observed in the 

retina.  

3.3.3 Animals and tissue collection 

All animal studies were conducted in accordance with the ARVO Statement for Use 

of Animals in Ophthalmic and Vision Research, and procedures were approved by the Iowa 

State University Committee on Animal Care. Eyes were collected from seven beagles with 

acute elevation of intraocular pressure (AEIOP), six beagles with compressive optic 

neuropathy for 24 hours (CON) were used for Raman spectroscopic investigation. 

Additionally, eyes from five adult healthy beagles of 6 months of age were used as controls. 

All control animals underwent ocular examination (slit lamp biomicroscopy, intraocular 

pressure evaluation, indirect ophthalmoscopy and gonioscopy) to rule out the possible 

presence of ocular disease before inclusion in the study.  Eyes were surgically removed from 

the beagles after euthanasia. They were fixed in 10% buffered paraformaldehyde for 24 hours, 

rinsed and paraffin embedded. Twenty micron thick retinal sections were made and placed on 

gold-aluminum coated histology slides for the purposes of Raman imaging. Raman spectra 

were acquired from the fixed tissue sections using a Raman microscope with 10× objective, 

with a laser spot size of ~50 µm diameter.  
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3.3.4 Acquisition of Raman spectrum from retinal tissues 

In this study, Raman measurements were performed using a DXR Dispersive Raman 

Microscope (Thermo Scientific, Inc., Madison, WI) with 780nm, 14mW excitation laser with 

a charge coupled device (CCD) camera and 50 µm pinhole in ambient temperature. Raman 

spectra were collected with 99s exposure time from 600 and to 2000 cm
-1

 at a resolution of 1 

cm
-1

 (Full Range Grading). 

3.3.5 Spectral data processing  

The acquired Raman spectra were pre-processed to remove artifacts caused by 

background fluorescence and intensity fluctuations (Krafft and Sergo 2006; Zhao, Lui et al. 

2007; Bocklitz, Walter et al. 2011). Using near infrared excitation (780nm) radically reduces 

the observance of sample auto-fluorescence. To further reduce the remaining fluorescence, a 

polynomial background subtraction method was implemented(Jimenez and Landgrebe 1998). 

Another challenge in spectral pre-processing is to capture important patterns in the spectra 

while removing noise or other fine-scale structures. The 11-point moving average method 

was used in this study to smooth the spectra. Finally all spectra were area-normalized for 

intensity consistency at the region between 600 cm
-1

 to 2000 cm
-1

. All data processing was 

conducted using R, a widely used language and software tool for statistical computing and 

graphics. 

3.3.6 Principal component analysis  

In Raman spectra, each wavenumber represents a dimension or variable. Commonly, 

data in one Raman spectrum contains thousands of dimensions, which makes statistical 

analysis much more challenging. For discriminant analysis, as the (number of) dimensions of 

the data becomes large, the limitation on the capability of detecting distinguishable classes 
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becomes severe(Jimenez and Landgrebe 1998). Due to the fact that most statistical methods 

are based on optimization criteria, it is advisable to reduce the dimension(s) of the problem, 

which results in decreasing computational costs and increasing probability of finding the best 

model representing the data. For this purpose, often a Principal component regression (PCA) 

is utilized.  

         

In the equation above, Y is the matrix of spectra, S is the score matrix, L is the matrix 

of loadings and E is the error matrix. The data are compressed into PC scores. 

All spectra were polynomial baseline corrected, smoothed using moving average 

algorithms and area normalized at the region between 600cm
-1

 to 2000cm
-1

 before principal 

component regression (PCA) is utilized. 10-40 PCs (account for at least 90% of total 

variance in the data) were selected from thousands of dimensional hyper-spectral data as 

inputs for multivariate discriminant classification model. 

For each dog in AEIOP and CON groups, the calculated PC spectra form a cluster. 

The average intra-cluster Euclidean distances in the multi-dimensional PC space (one 

dimension represents one principal component for our data) are calculated between each 

diseased dog and the control group (i.e., all spectra from the control dogs). Our hypothesis is 

that more distinguishable spectroscopic signatures between diseased dog and the control 

group will translate into a higher separation distance in the multidimensional PC space. 

Hence, the calculated average distance may serve as a base for a disease score system that 

predicts the severity of the disease conditions. This hypothesis was checked against AEIOP, 
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CON and late-stage close angle glaucoma, with mixed results. More work is needed to 

further refine the disease score system. 

3.3.7 Cross-validation, independent validation and discriminant modeling 

Cross-validation is a technique for assessing how the results of a statistical analysis 

will generalize to an independent dataset(Witten and Frank 2005). One round of cross-

validation involves partitioning a sample of data into complementary subsets, performing the 

analysis on one subset (called the training set), and validating the analysis on the other subset 

(called the validation set or testing set). To reduce variability, multiple rounds of cross-

validation are performed using different partitions, and the validation results are averaged 

over the rounds. 

One inherent drawback of cross-validation comes from the fact that the validation set 

and the training set are indeed spectra measured from the same batch of samples (i.e., dogs). 

The high prediction accuracy reported from cross-validated discriminant models can be 

biased. In this study, to further confirm that Raman spectroscopic data can yield enough 

information that distinguishes diseased tissues from normal ones, even at an early stage of 

the disease, we tested the discriminant model by independent validation. In this approach, 

spectra from 2 beagles in each group were randomly selected as validation datasets that were 

excluded from the training pool used to create the SVM classification models. 10 repetitions 

were conducted. 20 PCs were used to develop the discriminant model. The validation set 

only contains spectral data that were acquired from an independent set of samples (i.e., dogs), 

with no overlap with the sample pool from which the spectral data for the training of the 

discriminant model were acquired. 
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In general, all spectra were baseline corrected, smoothed to reduce the baseline 

variability and normalized using R before classification analysis. Support vector machine 

(SVM) based on R packages “e1071”(Karatzoglou, Meyer et al. 2005) with folded cross 

validation was utilized as the discriminant classification modeling technique. 

3.3.8 Pattern electroretinography (pERG) characterization of the disease status of 

AEIOP dogs 

The pattern electroretinogram (pERG), which measures the retinal response evoked by 

viewing a temporally alternating pattern, is important in providing information about retinal ganglion 

cell function. With appropriate paradigms, pERG is objectively correlated with the overall RGC 

status (Bach and Hoffmann 2008). The P50 and the N95 component were affected rather similarly by 

glaucoma in PERGs. In this study, pERG was performed to evaluate the damage induced by elevated 

IOP to RGCs in the AEIOP dogs. pERGP50-N95 amplitude and P50op/P50ctrl ratio were obtained 

following ISCEV standard(Holder, Brigell et al. 2007).  

3.4 Results 

3.4.1 Spectroscopic difference between the RGCs of Acute Elevation of Intraocular 

Pressure (AEIOP), Compressive Optic Neuropathy (CON) and healthy beagles 

The optical images of the retinal tissue sections of Acute Elevation of Intraocular 

Pressure (AEIOP) beagle, Compressive Optic Neuropathy (CON) beagle, and healthy beagle 

are shown in Figure 3.1. The layers of RGCs were identified under the microscope, as shown 

in the figures. To compare the biochemical changes represented by the Raman spectroscopic 

signatures, we measured Raman spectra from 133 RGCs from five healthy beagles with 

normal vision, 114 RGCs from seven AEIOP beagles and 160 RGCs from six CON beagles. 

The difference spectra were acquired by subtracting the average spectrum of control (healthy 

beagle) from the diseased (AEIOP or CON) average spectra (Figure 3.2). 
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Figure 3.1 Optic images of retinal tissue sections. 

An AEIOP beagle (a), a CON beagle (b), and healthy beagle(c) on gold coated slides (RGC-retinal 

ganglion cell layer). 

 

The wave number and intensity changes in the Raman bands are indicative of changes 

in the secondary structure and variations of intracellular proteins as well as local cellular 

environments.  Looking at the actual and difference spectral graphs between AEIOP, CON 

and normal beagles (Figure 3.2), we noted hikes corresponding to the Amide III (1252cm
-1

) 

and Amide I (1656cm
-1

) peaks in both conditions.  While the total protein concentration 

indicated by the Amide III peak(Herrero 2008), seems to be increased in both conditions, 

suggesting an elevated protein synthesis in the RGCs, there is significant differences in the 

Raman bands of various amino acids at 800-1200 cm
-1

 in AEIOP/CON RGCs compared to 

healthy RGCs.  This suggests that different genes are being expressed leading to a different 

protein composition in each of the two conditions. The Amide I peak, on the other hand, may 

be caused by different concentrations of cholesterol, ceramide and unsaturated fatty acids 

which have cis C=C Raman bands at 1650cm
-1

. Also, the difference spectra reveal that, in 

general, the changes in AEIOP RGCs are more significant than that of CON RGCs.  

Quantitatively, the difference spectra reveal that, in general, the changes in AEIOP RGCs are 
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more significant than that of CON RGCs.  This is consistent with the fact that AEIOP has a 

more direct and probably more generalized impact on the RGCs than CONs.  

 

Figure 3.2 Average Raman spectra and difference spectra between glaucomatous and normal RGCs 

 (A). Average spectrum of RGCs from AEIOP beagles and healthy beagles, and the difference 

spectrum between them; (B). Average spectrum of RGCs from CON beagles and healthy beagles, and 

the difference spectrum between them. Difference spectra were acquired by subtracting the average 

spectrum of control (healthy dogs) from the diseased (AEIOP or CON).  

3.4.2 Spectroscopic differences between AEIOP/CON beagles and advanced glaucoma 

in basset hounds 

Another interesting comparison is between AEIOP, which mimics acute/early-stage 

glaucoma, CON, which is a different pathological process although sharing some clinical 

symptoms with glaucoma, and BaGlau that represents late stage glaucoma in our scenario. 

The late stage glaucoma spectra were acquired from diseased/control basset hounds reported 

previously (Wang, Grozdanic et al. 2011). Although the different breeds may introduce 
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additional variations to the spectral data, it has been shown in our previous work that the 

diseased/healthy conditions are still the determining factor that dictates the spectral 

signatures(Wang, Grozdanic et al. 2011). 

Figure 3.3 shows the difference spectra of AEIOP, CON and late stage glaucoma 

(BaGlau). It is clear that the spectroscopic changes in the RGCs associated with late stage 

glaucoma are more significant than that of the AEIOP/CON RGCs (The intensity changes 

associated with the disease conditions are three to four times higher in late stage glaucoma 

comparing to that of AEIOP/CON). At a later stage of disease most RGCs are dead and the 

remaining RGCs are biochemically different from healthy living RGCs, which may explain 

the more significant spectroscopic changes. Interestingly, no change is observed for the 

Amide III peak (1225 cm
-1

) in late stage glaucoma RGCs, suggesting no significant change 

in total protein concentration. This suggests that at an early stage of the disease, the RGCs 

behave differently in terms of protein synthesis. As we know, the spectra reflect the 

biochemical composition of the cellular milieu at the time of the test. The composition of the 

milieu depends on the balance between the production and clearance of the "apoptotic" 

proteins and other molecules. The qualitative differences between the spectra of 

AEIOP/CON and "late" glaucoma may suggests that in late stage glaucoma there are more 

significant changes in the protein synthesis pattern and the cumulative accumulation of 

apoptotic proteins and other molecules in the retina might be the reason for the observed 

spectroscopic differences. The summation of these changes may potentially be used as 

spectroscopic markers for the in vivo diagnosis of glaucoma.   
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Figure 3.3 Comparison between spectroscopic markers for AEIOP, CON and late-stage close-angle 

glaucoma. 

 (A). AEIOP markers vs. Glaucoma markers (B). CON markers vs. Glaucoma markers. 

Another interesting observation is the overlap between the AEIOP spectral markers 

and that of late stage glaucoma in the amino acid fingerprinting regions (700-1200 cm
-1

), and 

the lack of such an overlap with the CON spectral markers. Since AEIOP shares many 

pahtophysiologic features of acute glaucoma, it is reasonable to assume that spectral markers 

for AEIOP may be good for early stage glaucoma, and function as indicators of risk and 

susceptibility to the disease.  

3.4.3 Discriminant classification using support vector machine 

Support Vector Machine (SVM) using Raman spectroscopic features was utilized to 

generate discriminant classification models to classify a measured spectrum from a retinal 

tissue sample into groups of two categories (AEIOP and healthy, CON and healthy, AEIOP 

and CON). 133 spectra measured from the control group (5 healthy beagles), 114 spectra 
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measured from the 7 AEIOP beagles and 160 spectra measured from 6 CON beagles were 

used for the discriminant analysis. To construct the discriminant model, the spectra from 

each category were randomly assigned into ten blocks, and nine blocks were randomly 

chosen to train the SVM model (the detail of the SVM model was reported elsewhere) (Wang, 

Grozdanic et al. 2011), while the remaining one blocks were used as validation testing sets. 

This training-validation cycle was repeated 10 times (10 folded cross-validation). The 

average classification accuracy was subsequently calculated.  

Table 3. 1 shows the classification accuracy for AEIOP/control and CON/control with 

different numbers of PCs being used in the discriminant models. At 20 PCs, with 87% of the 

total variance accounted for, the classification accuracy for both AEIOP and CON reached 

their optimal values (81.2% and 73.3%, respectively). The classification accuracies for the 

AEIOP samples are consistently better than that for the CON samples, suggesting that the 

Raman spectral measurements of the RGC cells provided a better characterization of the 

AEIOP physiological conditions than that of CON cases. To better detect changes associated 

with CON, different cell types, or a combination of cell types (other than RGCs) in the retinal 

tissue may need to be characterized.  

Table 3.1 Classification accuracy with different PCs used in the discriminant modeling 

# of PCs (% of variance)  40(92%) 20(87%) 10(70%) 

AEIOP v.s. AEIOP 74.4% 81.2% 78.7% 

Normal Normal 89.5% 85.9% 60.2% 

CON v.s. CON 71.6% 73.3% 65.5% 

Normal Normal 69.7% 66.4% 61.6% 

It is well known that classification models tend to yield high accuracy when the 

training data and the validation data are acquired from the same sources. For the 
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spectroscopic screening to become a viable clinical tool, it needs to classify independent 

samples (not in the training pool) with high accuracy. In this study, we investigated the 

classification testing with independent validation. The average classification accuracy was 

then calculated to evaluate the performance of the classification models (Figure 3.4). As 

expected, the results confirm that an independent validation dataset does lead to a reduction 

in prediction accuracy. When independent samples (i.e., dogs) are used for the validation 

tests, individual differences between the validating samples and the samples in the training 

pool that are not due to diseases would contribute to the discriminant calculation, and result 

in a less accurate prediction. For AEIOP, the classification accuracy went from 82.1% to 

72.6%, and for CON, it went from 73.3% to 63.4%. Since in clinical settings, a new patient 

will certainly be an “independent” sample that is not currently included in the training pool 

from which the discriminant model is developed, it is more relevant from a potential 

application standpoint that the independent validation should be conducted.  
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Figure 3.4 Average classification accuracies for RGCs from SVM discriminant model. 

to differentiate healthy tissues from AEIOP tissues, CON tissues, and late-stage glaucomatous tissues; 

validated through cross-validation dataset (training and validation data from same sample pool), and 

independent validation dataset (training and validation data from same sample pool). 

Another observation is that the prediction accuracies for AEIOP and CON are both 

lower than that for the late stage glaucoma cases (for late stage glaucoma, an average 

accuracy of 97.6% was reported (Wang, Grozdanic et al. 2011), without taking into account 

the effect of independent validation. RGCs from retinal tissues of late stage glaucoma dogs 

are expected to differ more significantly from that of healthy dogs. It was further confirmed 

by calculating the Euclidean distances for Raman spectra from RGCs between group CON 

and group control, group AEIOP and group control, group late stage  glaucomatous BaGlau 

and group control in the multidimensional PC space. Longer distance suggests greater 

separation between the groups. As shown in Figure 3.5, the distance between group late stage 

glaucomatous and control is the highest, suggesting that most significant differences were 
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observed between late stage glaucomatous group and the control group. It also shows that the 

distance between the AEIOP group and the control group is larger than that between the 

CON group and the control group, which is consistent with the higher classification accuracy 

for AEIOP samples vs. CON samples (82.1% vs. 73.3%, respectively). The average 

independent prediction accuracy for AEIOP (72.6%) is a good indicator of the potential 

prediction accuracy for early-stage glaucoma, which is currently not effectively being 

diagnosed. In addition, this observation also suggests that AEIOP spectra exhibit more 

similarity to that of glaucomatous tissues, indicating that AEIOP is a good model to simulate 

early-stage glaucoma. 

 

Figure 3.5 Distance between groups in high dimensional space 

The Euclidean distances for Raman spectra from RGCs between group CON and group control, group 

AEIOP and group control, group late stage  glaucomatous BaGlau and group control were calculated 

in 20 dimensional space(1 principal component means one dimension). And the distances were 

recalibrated by being divided by the distance between group BaGlau and group control. 
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3.4.4 Limitations and future directions 

An interesting observation is the apparent negative correlation between the Raman 

separation distance of diseased and control groups and the electrophysiological 

characteristics of the retinal ganglion cells acquired by pattern electroretinography (pERGP). 

The separation distances between seven AEIOP dogs and the control group (used as Raman 

predictive score) were calculated. This distance measures the statistical separation between 

the control group and the AEIOP dogs. However, as shown in Table 3.2 and Figure 3.6, the 

scores correlate strongly with the pERGP data in a negative fashion. Higher pERG amplitude 

or ratio suggests healthier RGC cells, hence one would expect a shorter separation between 

the diseased dog and the control group. However, as shown in Table 3.2 and Figure 3.6, an 

almost opposite trend is observed. Higher pERG readings are consistent with higher 

separation distances, with strong correlation indicated by the high R
2
 values. Dog #2 has the 

highest pERG readings, and the largest Raman separation distance in multidimensional PC 

space as well. Moreover, a strong linear correlation could be established between the Raman 

separation distances and the pERG ratio between diseased and control dogs, but the pERG 

amplitude at P50-N95 seems to correlate with the Raman separation distance in a logarithm 

manner. More study is needed to explain this controversial result. Raman spectra measure the 

overall chemical compositional characteristics of the RGCs. The PC scores for different dogs 

with various disease conditions may vary in their contribution to the overall variance. The 

Raman separation distance in PC space therefore may not be a direct indicator to determine 

the loss of function in RGCs measured by pERGP. Further characterization of the chemical 

compositional changes in RGCs associated with the change in pERGP readings is needed for 

direct identification of Raman spectral peaks that are affected , and vice versa. The pERGP 

measurements are conducted with living tissues, while the Raman spectra were measured 
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from fixed tissue samples, which may also complicate the correlations between the pERG 

readings and the Raman separation distances. Nonetheless, the strong correlation between the 

pERG readings and the Raman separation distances still suggested that Raman spectra of 

diseased retinal tissues do capture important signatures that are correlated to the onset and 

progression of glaucoma-like disease such as AEIOP.      

Table 3.2 Pattern electroretinography parameters and calculated Euclidean distance between 

individual AEIOP beagles to control beagles in 20 PC space 

 

 AEIOP1 AEIOP2 AEIOP3 AEIOP4 AEIOP5 AEIOP6 AEIOP7 

pERGP50-N95 2.81 12.4 1.07 2.03 2.51 2.36 0.52 

P50op/P50 ctrl (%) 46 89 15.4 44.6 60.19 50.2 15.24 

Distance 24.405 50.7 8.235 23.315 31.35 26.28 7.88 

 

 

Figure 3.6 Correlations between the pERG data and the Raman separation distance predictor for 

AEIOP dogs. 

 (a). Correlation between pERG P50-N95 amplitude and Raman separation distance; (b). Correlation 

between pERG P50OP/P50 control ratio and Raman separation distance. 

In the current study, with the maximum laser exposure time at 99s, the threshold limit 

value (TLV), which determines the maximum permissible energy exposure to the retina in an 

in vivo measurement, is 0.82 mW/cm
2
.  Our power density on sample was 140 mW/cm

2
, 
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significantly higher than the TLV. To utilize Raman spectroscopy for in vivo imaging, the 

laser power density on the retina has to be greatly reduced without sacrificing the spectral 

quality. A possible solution would be to utilize pulse laser with extreme short time-gated 

detection (10
-12

 s). With such short detection time (i.e., laser exposure time), background 

fluorescence is eliminated (shorter than the fluorescence lifetime so that fluorescence is not 

developed), and the signal-to-noise ratio of the Raman spectral measurement can be 

significantly improved, and much weaker Raman signals will become detectable (Tahara and 

Hamaguchi 1993; Matousek, Towrie et al. 1999). Extremely short detection time also allows 

a much higher laser power to be applied without increasing the overall laser energy that the 

retina is exposed to. A simple calculation reveals that at 10
-12

 exposure time, the TLV is 2601 

mW/cm
2
, well beyond what was being used in this study.  

Another limitation of our study is the fact that we are looking at an acute and a 

substantial loss of retinal tissue, particularly in the AEIOP animals. This is most likely 

resulting in more severe damage and dysfunctional RGCs in the retinal tissues than in the 

case of early stage glaucoma.  In a more typical clinical scenario in which a Raman system is 

hoped to help, open angle glaucoma is a more chronic disease with a much smaller number 

of RGCs being lost at any particular time, leading to a less differentiable Raman spectral 

signal that needs to be distinguished from that of normal tissues. 

3.5 Conclusions 

In this study, we explore the potential of using Raman spectroscopy for early 

detection and characterization of glaucoma-like pathological anomalies. Spectroscopic 

markers related to changes in intracellular protein compositions associated with glaucoma-

like anomalies of retinal ganglion cells were identified. 72.6% classification accuracy was 
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achieved to identify AEIOP, a close mimic of early-stage/acute glaucomatous damage, from 

independent canine retinal tissues. Potentially, Raman spectroscopy in combination with 

time-gated pulsed laser excitation can be utilized for in vivo Raman imaging of retina and 

provide early detection and diagnosis for glaucoma.  
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4.1 Abstract 

Existing objective methods to predict sensory attributes of pork in general do not 

yield satisfactory correlation to panel evaluations, and their applications in meat industry are 

limited. In this study, a Raman spectroscopic method was developed to evaluate and predict 

tenderness, juiciness and chewiness of fresh, uncooked pork loins from 169 pigs. Partial 

Least Square Regression models were developed based on Raman spectroscopic 

characteristics of the pork loins to predict the values of the sensory attributes. Furthermore, 

binary barcodes were created based on spectroscopic characteristics of the pork loins, and 

subjected to multivariate statistical discriminant analysis (i.e., Support Vector Machine) to 

differentiate and classify pork loins into quality grades (“good” and “bad” in terms of 

tenderness and chewiness). Good agreement (>83% correct predictions) with sensory panel 

results was obtained. The method developed in this report has the potential to become a rapid 

objective assay for tenderness and chewiness of pork products that may find practical 

applications in pork industry. 

4.2 Introduction 

Quality of fresh pork is often defined by appearance and by sensory attributes from a 

consumer standpoint. While consumers can readily see color, firmness and marbling 
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attributes in a fresh pork chop, the sensory quality of a pork chop is more difficult to evaluate. 

Tenderness, chewiness and juiciness are among the more important sensory attributes of 

fresh meat(Mennecke, Townsend et al. 2007). The deviation in their quality experienced by 

consumers is a barrier to ensure demand for high quality fresh pork. Tenderness, chewiness 

and juiciness of fresh cooked pork are difficult to predict, though it is understood that pH(Bee, 

Anderson et al. 2007; Lonergan, Stalder et al. 2007), postmortem aging(Melody, Lonergan et 

al. 2004; Zhang, Lonergan et al. 2006) and marbling (Lonergan, Stalder et al. 2007) all 

contribute to tenderness of fresh pork. However, a robust objective method to rapidly 

evaluate and predict fresh pork sensory attributes remains to be developed. 

To this date, the best evaluation methods of sensory attributes which provide the most 

accurate prediction of customer responses are through sensory panels. The reason is obvious: 

panels comprised human beings, whose evaluation best mimics general human responses. 

However, sensory panel evaluations are costly and time consuming. It is not possible to use it 

as routine quality assurance method in meat production. There is a great need for a rapid, 

non-destructive analysis technique that can be used to predict consumer responses. 

Since tenderness and chewiness are primarily mechanical characteristics of cooked 

meat, a considerable number of studies have been conducted to investigate the correlations 

between them and physically measured properties (i.e., shear force, stress and strain response 

curves). Some reports showed strong correlations between mechanical properties (mainly 

Warner-Bratzler shear tests) of meat (i.e., beef) and the tenderness(Jeremiah and Phillips 

2000), yet others suggested that only weak correlations could be established(Chan, Walker et 

al. 2002). Juiciness on the other hand is defined as the amount of perceived juice that is 
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released from the meat during mastication, which is related to the water holding capacity of 

the meat and its fat content(Fox, Wolfram et al. 1980; Huff-Lonergan and Lonergan 2005). 

Meat tenderness, in general, is affected to a small degree by lipid 

composition(Rincker, Killefer et al. 2008), but a much greater proportion of the variation in 

tenderness is determined by the protein component and the structures that are made primarily 

of proteins in the connective tissue component as well as the myofibrillar component. The 

content of connective tissue explains difference in pork tenderness(Wheeler, Shackelford et 

al. 2000) especially when considerations across muscles are made. Importantly, changes in 

protein solubility(Barbut, Sosnicki et al. 2008; Kim, Huff-Lonergan et al. 2010; Kim, 

Lonergan et al. 2010), protein degradation(Melody, Lonergan et al. 2004; Huff Lonergan, 

Zhang et al. 2010), protein cross-linking(Kim, Huff-Lonergan et al. 2010) and protein 

nitrosylation (Huff Lonergan, Zhang et al. 2010) all contribute to differences in pork 

tenderness. In many cases, the rate and extent of postmortem pH decline are important 

determinants of some of these changes(Lonergan, Stalder et al. 2007; Barbut, Sosnicki et al. 

2008). Unfortunately, in some cases, rapid, accurate determination of these features is 

difficult and costly. Development of a method to measure the changes in protein 

modifications in meat is a critical need to predict tenderness in fresh pork. 

Near infrared (NIR) spectroscopy has been utilized by many groups as a method to 

quickly evaluate the biochemical characteristics of meats and their correlations to sensory 

attributes(Mitsumoto, Maeda et al. 1991; Park, Chen et al. 1998; Rodbotten, Mevik et al. 

2001; Venel, Mullen et al. 2001; Liu, Lyon et al. 2003). However, in NIR spectroscopy, the 

overtones of fundamental molecular vibration modes are being measured which are often 

overlapped to yield broad bands that do not provide high resolution spectroscopic fingerprints 
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of different molecular functional groups, which subsequently limits the accuracy of the 

biochemical profiling of the meat. Mid-infrared Fourier Transform (FT-IR) spectroscopy has 

also been explored for meat characterization(Böcker, Ofstad et al. 2006). Although FT-IR 

yields high-resolution spectroscopic profiles for meat samples, it suffers from strong 

interference from omnipresent water in the meat samples. 

Raman spectroscopy is another alternative vibrational spectroscopic method that has a 

considerable number of advantages compared to other food analysis techniques (Vapnik and 

Chervonenkis 1964; Beattie, Bell et al. 2004; Beattie, Bell et al. 2008). It is a noninvasive 

spectroscopic technique providing in situ information about the composition and structure of 

proteins and lipids, which are main components of pork (Beattie, Bell et al. 2004; Beattie, 

Bell et al. 2008; Herrero 2008). Raman spectroscopy is relatively insensitive to water and 

hence does not suffer from water interference, which is a severe problem in mid-IR 

spectroscopy like FT-IR, since foods commonly contain ≥75% water. In addition, it does not 

require any sample preparation and is nondestructive while at the same time providing high-

resolution, detailed spectral information about the chemical composition of the sample. 

Raman spectroscopy has been explored to predict the sensory quality of beef 

rounds(Beattie, Bell et al. 2004) and changes in pork properties during cooking and aging 

(Beattie, Bell et al. 2008). A relatively good correlation between Raman data and sensory 

panel's ratings of acceptability of texture and degree of tenderness was reported. However, 

previous studies did not establish a working model for classifying meats into pre-determined 

tenderness and/or chewiness categories that potentially can be used in a meat processing 

plant(Beattie, Bell et al. 2004). 
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Partial Least Square Regression (PLSR) is a commonly used method to model a 

response variable when there are a large number of predictor variables, known as 

components, as linear combinations of the original predictor variables, which has been 

widely applied in correlating spectroscopic characteristics to sensory attributes (Mitsumoto, 

Maeda et al. 1991; Park, Chen et al. 1998; Rodbotten, Mevik et al. 2001; Venel, Mullen et al. 

2001; Liu, Lyon et al. 2003; Beattie, Bell et al. 2004; Beattie, Bell et al. 2008). Support 

Vector Machine (SVM) belongs to a new generation of machine learning system based on 

recent advances in statistical learning theory(Steinwart and Christmann 2008) for 

classification or regression. It is an extension to nonlinear models of the generalized portrait 

algorithm developed by Vladimir Vapnik (Cristianini and Shawe-Taylor 2000; Ben-Hur, 

Horn et al. 2002). The SVM algorithm is based on the statistical learning theory and the 

Vapnik-Chervonenkis (VC) dimension introduced by Vladimir Vapnik and Alexey 

Chervonenkis (Vapnik and Chervonenkis 1964). It is particularly suitable to separate two 

distinguishable groups. In SVM, input data are viewed as two sets of vectors in an n-

dimensional space, an SVM will construct a separating hyper plane in that space, one which 

maximizes the margin between the two datasets. To calculate the margin, two parallel hyper 

planes are constructed, one on each side of the separating hyper plane. Intuitively, a good 

separation is achieved by the hyper plane that has the largest distance to the neighboring data 

points of both classes, since in general the larger the margin, the better the classification. 

Our objectives were to determine the utility of using uncooked loin chop Raman 

Spectra data to predict sensory quality of pork loin chops. To achieve this objective, we 

investigated the correlations between Raman spectroscopic characteristics of uncooked pork 

loin chops and the corresponding sensory attributes of cooked chops (i.e., tenderness, 
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chewiness and juiciness). Additionally we developed Partial Least Square Regression models 

to predict the sensory quality of cooked pork loin chops based on the Raman spectroscopic 

characteristics of the uncooked chops. Furthermore, we developed a Raman spectroscopic 

binary barcoding method in conjunction with Support Vector Machine modeling to classify 

the sensory tenderness and chewiness of fresh pork loins, with excellent accuracy (>83%) for 

selection of the pork samples with tenderness/chewiness values at the two extreme ends. 

Potentially the Raman method can serve as selection tools to quickly screen and separate 

high quality (very tender) and low quality (very tough) meat during the meat processing. 

4.3 Materials and Methods 

4.3.1 Animals and sample collection 

This experiment utilized pork loins from a project designed to determine the influence 

of selection for reduced residual feed intake on swine growth, pork composition and pork 

quality(Smith, Gabler et al. 2011). The boneless loins were removed from the carcass at 24 h 

postmortem, vacuum packaged, and were transported to the ISU Meat Laboratory on the 

same day. Boneless center loins (10
th

–12
th

 thoracic vertebrae, n = 169; 2 d postmortem) were 

separated into 2.5 cm chops at the ISU Meat Laboratory. Loin chops that were to be used for 

sensory and star probe analyses(Lonergan, Stalder et al. 2007) were vacuum-packed and held 

for 7 to 10 d postmortem at 4 °C. Samples to be used for Raman measurement were vacuum 

packaged and held at 4 °C until they were frozen at 2 d postmortem. 

4.3.2 Meat sensory quality and star probe value assessments 

Star probe values and sensory quality scores were determined on cooked pork loin 

chops. Chops aged 7–10 d postmortem were cooked on clamshell grills to an internal 

temperature of 70 °C. The temperature of each chop was monitored individually using 
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thermocouples (Omega Engineering, Inc., Stamford, CT). The chops were cooled to room 

temperature prior to analysis(Lonergan, Stalder et al. 2007). A circular, five-pointed star 

probe that measures 9 mm in diameter with 6 mm between each point was attached to an 

Instron Universal Testing Machine (Model 5566, Instron, Norwood, MA). Each chop was 

punctured at a crosshead speed of 3.3 mm/s. 

Chops cooked to an internal temperature of 70 °C were prepared for sensory analysis 

by an existing trained sensory(Lonergan, Stalder et al. 2007). This panel routinely evaluates 

fresh pork loin traits of tenderness, chewiness, and juiciness. Panelists had 2 one-hour 

orientation sessions to include the diversity of quality expected in this experiment. Cooked 

pork chops were evaluated for sensory tenderness, chewiness, and juiciness. A 15-cm line 

scale was used (0 = not tender, chewy, juicy; 15 = very tender, chewy, juicy) to evaluate 

sensory traits for all chops. Sensory data were recorded using a computerized sensory 

software system (Compusense five 4.6, Compusense, Inc., Guelph, Ontario, Canada). During 

each session, four panelists evaluated each pork loin chop. The same four panelists were used 

throughout the entire study. 

4.3.3 Sample preparation and Raman measurements 

Each pork sample was stored at −20 °C individually. They were fully thawed at 

ambient temperature before measurement. Raman measurements were performed using a 

DXR Dispersive Raman Microscope (Thermo Scientific, Inc., Madison, WI) with 780 nm, 14 

mW excitation laser at ambient temperature. Raman spectra were collected with 2 s exposure 

time from 400 to 2000 cm 
−1

 at a resolution of 1 cm 
−1

. The pork samples were placed 

directly on glass slides at the focus of the laser beam with no pretreatment. In each 

measurement, the excitation laser was focused (a ~ 1 mm diameter spot) onto 15 randomly 
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selected locations on the pork chop, and the 15 collected spectra were averaged to yield one 

spectrum of the pork sample to minimize variations inside the pork chop. Ten spectra were 

acquired for each pork sample following this protocol and were used in discriminant analysis. 

4.3.4 Spectral data processing 

All spectra were automatically baseline corrected and smoothed using a 5-point 

averaging smoothing algorithm to reduce the baseline variability at the region between 400 

cm 
−1

 and 2000 cm 
−1

 and normalized using Omnic professional Software Suite (Thermo 

Scientific, Inc., Madison, WI). The spectra were then normalized against the maximum 

Raman peak (i.e., the intensity of the maximum Raman peak was set to 1), and the first and 

second derivatives of the Raman peak intensities versus wave numbers were calculated and 

used for generating the binary barcodes. Correlations between Raman spectral data (Raman 

intensity at each wave number for all 169 pork samples) and sensory attribute readings (panel 

values) were calculated. Partial Least Square Regression was also conducted to compress the 

dimension of the spectral data (1661 wave numbers) into 20 PLS components, and 

correlations between the sensory attribute values to each PLS component were also 

calculated to identify the PLS components that are more responsible for generating the 

variance in the sensory attributes. 

Raman peaks are represented by their wave number (Raman shift) and intensity. The 

peak intensities are dependent on many factors that may vary from sample to sample (i.e., 

sample size, exposure time, etc.), but their Raman shift remains identical as long as the 

molecular makeup is the same. Therefore, in this study we developed a binary barcode to 

eliminate variations in the spectral data due to peak intensities, and highlight the unique 

Raman shift fingerprints of each sample. The binary barcode approach was originally 
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proposed by Patel, Premasiri, Moir, and Ziegler(Patel, Premasiri et al. 2008) to differentiate 

microorganisms based on their Raman spectroscopic signatures, in this study a similar 

approach was developed to improve the classification accuracy for pork loins. 

The binary barcodes were generated based on the second derivative spectra in the 400 

cm 
−1

 to 2000 cm 
−1 

range. A binary value (0 or 1) was assigned to each calculated second 

derivative spectral data point primarily based on the sign of the second derivative, i.e., 1 for 

positive second derivatives (upward curvature), and 0 for negative second derivatives 

(downward curvature). Furthermore, a threshold for zero was set at 6% of the maximum 

absolute value of the second derivative for positive second derivative readings (for all 

absolute values larger than the threshold, 1 was retained; otherwise it was switched to 0). 

This threshold helps discriminate against residual noise components. Contribution to the 

measured spectra from low level background noises was thus removed by assigning 0 to it. 

Remaining 1 s represents contributions to the measured spectra from relevant meat samples. 

The threshold value (6%) was determined experimentally by finding the barcodes that 

provided the best prediction for the sensory attributes. for the SVM model. The main goal is 

to predict sensory attributes (i.e., tenderness and chewiness) that are at the two ends of the 

panel evaluation spectrum. The 169 pork loin samples were divided into 3 groups according 

to the value of specific sensory attributes and/or star probe values. One calibration set and 

one test set were set in such a way that both the calibration set and the test set showed 

approximately the same distribution of one specific variable. Different calibration samples 

were chosen randomly to calculate the average classification accuracy (over 10 random 

sampling). Chemometric analysis was conducted using both WinDas (Wiley & Sons, 

Chichester, UK, 1998 version) and Matlab (The MathWorks, Natick, MA) software. 
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4.4 Results and Discussion 

4.4.1 Sensory tenderness, star probe, sensory chewiness, and sensory juiciness 

Values of sensory tenderness, chewiness, juiciness and star probe vary significantly 

between samples, as shown in Figure 4.1. Star probe values were negatively correlated to 

sensory tenderness scores, which was in agreement with earlier report (Lonergan, Stalder et 

al. 2007). 

 
 

Figure 4.1 Sensory tenderness (A), sensory chewiness (B), sensory juiciness (C) and star probe (D) 

for 169 pork samples. 

Tenderness was determined on a scale of 0–15; the range was 4 to 13 with higher scores representing 

greater tenderness. Chewiness was determined on a scale of 0–10; the range was between 1 and 9 

with higher scores representing greater chewiness. Juiciness was determined on a scale of 0–15; the 

range was between 4 and 14 with higher scores representing greater juiciness. 

Since one of the primary goals is to correctly predict pork samples that fall into the 

two extreme ends of their sensory texture attributes (e.g., tenderness and chewiness), we 
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divided the samples into three groups based on their sensory texture attributes: high quality 

(tenderness score > 10, chewiness score < 2), medium quality (10 > tenderness score > 8, 4 > 

chewiness score > 2) and poor quality (tenderness score < 8, chewiness score > 4). 

4.4.2 Raman spectroscopic analysis 

Typical Raman spectra of pork samples in the 400-2000 cm 
–1

 region are shown in 

Figure 4.2. Baseline correction, smoothing and normalization were applied to reduce 

background noises. The wavenumber and intensity changes in the Raman bands were 

indicative of changes in the secondary and tertiary structures and variations in local 

environments of meat proteins, which in turn determine the characteristics/properties of the 

meat. The Raman band centered near 1653 cm 
−1

 (Figure 4.2), represents amide I band which 

is an indicator of the overall concentration of proteins(Herrero 2008). 

 

Figure 4.2 Typical Raman spectra of pork loins (original, baseline corrected and smoothed). 
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The Pearson correlation coefficients between each of the well-modeled sensory 

attributes (tenderness, chewiness and juiciness) and Raman intensity at each wave number of 

all spectra of 169 samples were calculated and shown in Figure 4.3. In general, Raman 

intensities are only moderately correlated to the sensory attributes; it is understandable, 

sensory attributes are complex, subjective factors; they cannot be directly explained by 

physically measured parameters. Another interesting observation was that the correlations 

between tenderness and juiciness and Raman spectral data showed very similar patterns, 

which were very different from the pattern of the correlation between chewiness and Raman 

spectral data. It suggests that variations in tenderness and juiciness may have similar 

biochemical/ compositional origin (i.e., protein structure, protein components and structures 

that determine water holding capacity), while the underlying determining factor for 

chewiness (connective tissue amount/structure around the muscle fibers) may have a different 

biochemical explanation. Further investigation is necessary to better understand these 

observations. 

 
 

Figure 4.3 Pearson correlation coefficients (r) between Raman spectral data and sensory attributes 

(tenderness, chewiness and juiciness) (N = 169 samples). 
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4.4.3 Predication of sensory tenderness, chewiness and juiciness values based on PLS 

regression model 

The first 20 PLS components were calculated from the Raman spectral data, more 

than 95% of the variances could be accounted for by the first 10 PLS components. The 

Pearson correlation coefficients between PLS components and sensory attributes calculated, 

and the first 10 PLS components are more strongly correlated to the sensory attributes than 

the original spectra. Hence, the first 10 PLS components were used for regression model 

development. 

To develop the regression model, spectra of 117 pork samples (70% of total samples) 

were randomly selected as a training set. The remaining 52 pork samples were designated as 

the validation/testing set. The PLSR model and the testing results were illustrated in Figure 

4.4, good linear regression models were established between the PLS components and all 

three sensory attributes (R
2
 = 0.986 for tenderness and chewiness, 0.982 for juiciness). Table 

4.1 shows the validation results. For an error tolerance of 25% (i.e., predicted value = (1.0 ± 

0.25) × observed value), the prediction accuracy is 82.7%, 43.8% and 82.7%, for tenderness, 

chewiness and juiciness, respectively; for an error tolerance of 10% (predicted value = (1.0 ± 

0.1) × observed value), the prediction accuracy is 40.8%, 21.1% and 43.8%, respectively. For 

an error tolerance of 5% (predicted value = (1.0 ± 0.05) × observed value), the prediction 

accuracy is 23.2%, 9.6% and 17.3%, respectively. The prediction accuracy for chewiness is 

significantly lower than that for tenderness and juiciness. Sensory tenderness is directly 

correlated to the proteins in the connective tissue component as well as the myofibrillar 

component of the meat, while sensory juiciness is related to the water holding capacity of the 

meat, which is also primarily dependent on the protein structures/compositions of the muscle 

fibers and connective tissues(Kim, Huff-Lonergan et al. 2010). The chewiness is primarily 
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dependent on the amount and structures of the connective tissues. The significant discrepancy 

in prediction accuracy between tenderness/juiciness and chewiness suggests that Raman 

spectroscopic signatures of meat may be more closely related to the protein 

composition/structures of the myofibrillar component than that of connective tissues. More 

investigation is needed for further understanding. The standard deviations of the sensory 

panel values were around 5%, the prediction accuracy of the PLS model based on Raman 

spectral data was hence significantly deviated from the sensory panel results. However, to 

predict consumer responses to a meat product, it may not be necessary to know the precise 

sensory panel values. If a prediction can be acquired that distinguishes the extreme cases (i.e., 

very good quality vs. very poor quality) with good reliability, such prediction would be 

beneficial to a meat producer to classify its meat products. Therefore, we further developed a 

new classification model using Raman spectral data to differentiate and classify pork loins 

based on their sensory attribute grades. The sensory attributes we investigated were sensory 

tenderness and chewiness. 
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Figure 4.4 PLS Regression models and testing plots (inlets) for the prediction of sensory attributes of 

the pork loins using Raman spectroscopy (A: tenderness, B: chewiness and C: juiciness). 

 

Table 4.1 Accuracy of the PLS regression prediction for sensory tenderness, chewiness and juiciness 

with different error tolerance. 

 Error tolerance ±25% ±10%  ±5%  

Tenderness 82.7% 40.8%  23.2%  

Chewiness 43.8% 21.1%  9.6%  

Juiciness 82.7 % 

 

43.8% 17.3%  
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4.4.4 Discretization of spectra for classification 

In spectroscopic data processing, first and second derivatives are routinely calculated 

to remove slowly varying background noises which otherwise would contribute non-essential 

variances to the subsequent statistical analysis. First derivative spectra avoid contributions 

resulting from fluctuations in spectral background, but are still sensitive to Raman vibration 

intensity fluctuations. Second derivative spectra similarly minimize background variability 

and tend to further reduce sensitivity to intensity fluctuations. Furthermore, the signs of the 

second derivatives, indicating the locations of peaks and valleys, are found to be extremely 

robust identification features with minimal variability in replicated measurements. The binary 

barcodes (with a 6% threshold) calculated from these signs of second derivatives further 

eliminated signal fluctuations due to all the sources of intensity variations. 

The selection of a threshold was determined through investigation of the optimal 

threshold value that would yield the best classification accuracy. Threshold values of 0–24% 

of the maximum second derivatives were investigated, and 6% was identified as the optimal 

value to retain the most information that yielded the best classification results. It was used 

throughout the study. 

4.4.5 Classification of pork loins by sensory tenderness and sensory chewiness 

A primary question was to determine if Raman spectroscopic characteristics could be 

used to classify pork loins into three distinguishable quality grade groups (good, medium, 

poor) as defined by their tenderness or chewiness values. As shown in Figure 4.5, using the 

binary barcodes for each pork samples, with canonical variant analysis, a classification based 

on tenderness (Figure 4.5A) and chewiness (Figure 4.5B) was achieved that demonstrated 

three well-separated groups for each quality category. The successful classification shows 
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that the Raman spectroscopic binary barcodes for different pork samples are uniquely 

correlated to their sensory attributes. 

 

Figure 4.5 Classification of pork loins into three quality categories based on their Raman 

spectroscopic barcodes and sensory panel classifications. 

A. Left panel: for tenderness; B. Right panel, for chewiness. 

Furthermore, the PLS generated clusters were employed in a Support Vector Machine 

(SVM) discriminant model to classify unknown pork loin samples into different quality 

categories based on their Raman spectroscopic binary barcodes. The results are shown in 

Figure 4.6. For each test, we randomly selected 100 spectra of known pork samples to 

construct a training set, and then spectra from 20 randomly chosen, unclassified samples 

were used for testing. The process was repeated for 5 times and the average classification 

accuracy was calculated. The classification accuracy for correctly predicting a sample that 

belongs to an extreme category (good vs. poor) is shown in Table 4.2. The SVM model 

performed better in classifying the more tender meats. For the meats with tenderness grade 

higher than 11, the classification accuracy was 95.8%; for the meats with tenderness grade 

lower than 9, the classification accuracy was 83.8%. The high predictive accuracy is also 

benefited from the fact that the training set and the testing set are from the same population 
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of meat samples. It remains to be seen how independent testing samples will affect the 

predictive accuracy. 

 

Figure 4.6 Prediction of classifying pork samples into different tenderness grades based on their 

Raman spectroscopic barcodes. 

Each error bar indicates the standard deviation of classification accuracy from 5 training and testing 

using Support Vector Machine. 

 

 

Table 4.2 The average classification accuracies for pork Raman spectra between poor (tenderness 

grade b 9) and good (tenderness grade > 11).  

The average accuracies are calculated from 5 repetitions of training and testing using Support Vector 

Machine. 
 

  Poor Good 

Classified as “Poor” 83.80% 4.20% 

Classified as  “Good” 16.20% 95.80% 

We also investigated the effect of changing the definition of the grade categories on 

the classification accuracy. We reset the “poor” class to be samples with tenderness scores 

below 8, instead of 9. The overall prediction accuracy decreased slightly from 88% to 83%; 
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however, if instead of defining “poor” and “good” classes at the extreme ends of the 

tenderness spectrum, a simple separation line was set (tenderness score = 10) to define the 

two classes, the prediction accuracy diminished significantly to 64%. Apparently, pork 

samples that belong to the medium quality category are more difficult to predict based on 

their Raman spectroscopic characteristics. 

As a comparison, correlation between star probe values and sensory tenderness of the 

pork samples was shown in Figure 4.7A. The correlation coefficient (R) was −0.31886, 

suggesting that mechanical measurement correlates moderately with sensory tenderness. 

Interestingly, it was observed that the prediction accuracy for star probe categories (in 

parallel with the tenderness categories) was less than that for the actual sensory tenderness 

(73% for star probe vs. 85% for tenderness). Since tenderness is primarily determined by the 

biochemical characteristics of the meat, Raman spectrosensing, which measures the 

biochemical characteristics of the meat, is indeed a better tool to predict sensory tenderness 

than to predict mechanical properties of the meat, which are only indirectly correlated to its 

biochemical properties. 
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Figure 4.7 Comparison between mechanical measurements and Raman spectrosensing in 

determining sensory tenderness. 

 A. Correlations between star probe value and sensory tenderness; B. Prediction accuracy for 

classification of sensory tenderness and for star probe values. Each error bar indicates the standard 

deviation of classification accuracy from 5 training and testing using Support Vector Machine. 

Classification for sensory chewiness was also conducted using similar approaches as 

for sensory tenderness using the Raman spectroscopic binary barcodes for pork loin samples. 

The results are shown in Table 4.3. The prediction accuracy for “good” class (chewiness b 2) 
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was 100% over five random tests; the prediction accuracy for “poor” class (chewiness > 4) 

was 83.3% over five random tests. However, if the classification criterion was set to separate 

the samples only into two categories with the boundary at chewiness score of 3 or 4, the 

prediction accuracy dropped to ~ 70% and 63%, respectively (data not shown). Similar to the 

case of sensory tenderness, pork samples with medium levels of chewiness are the most 

difficult to classify. 

Table 4.3 The average classification accuracies for pork Raman spectra between poor (chewiness 

grade > 4) and good (chewiness grade < 2). 

The average accuracies are calculated from 5 repetitions of training and testing using Support Vector 

Machine. 

  Poor Good 

Classified as “Poor” 83.30% 0.00% 

Classified as  “Good” 16.70% 100.00% 

Another interesting observation was that the prediction accuracy for “good” samples, 

either for tenderness or chewiness, was consistently better than that for “poor” samples. 

Further study is needed to identify the biochemical compositional markers that differentiate 

pork samples. Potentially the Raman spectroscopic method can become a tool to quickly 

identify premium meat products. 

4.5 Conclusions 

In this report, Partial Least Square Regression models were developed to predicate 

the value of sensory tenderness, chewiness and juiciness based on Raman spectroscopic 

characteristics of pork loins, it was demonstrated that sensory attributes of pork loins are 

moderately correlated to their Raman spectroscopic characteristics. Furthermore, a new 

Raman spectroscopic binary barcoding model was created to classify pork loins into grades 

by sensory tenderness and chewiness. The method was demonstrated to yield good 
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performance in identifying pork loins that belong to extreme categories of their sensory 

quality (i.e., superior and inferior). 

In this study, Raman spectra were acquired from frozen/thawed meat samples, yet the 

sensory evaluation was performed on fresh samples. The freezing/thawing operation may 

change the structural characteristics of the samples, and some chemical compositional 

changes may have occurred during the storage. All these factors may have affected the 

correlations between the Raman data and the sensory data negatively. Still, the predictive 

accuracy was reasonably good. Potentially, Raman spectral acquisition can be done rapidly 

(less than 10 s) with handheld portable Raman spectrometer directly from a pork carcass 

inside a slaughterhouse. By applying the methods of performance-enhancing data processing 

and multivariate statistical discriminant modeling developed in this work, it is possible that a 

rapid, on-line screening tool can be developed eventually for the pork producers to quickly 

select meats with superior quality and/or poor quality to better serve customers. 
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5.1 Abstract 

Boar taint is an undesirable flavor in cooked pork from male pigs that mainly 

originates from androstenone and skatole compounds. Conventional detection methods for 

boar taint require time-consuming sample preparation and sophisticated instrumentation that 

are not suitable for onsite evaluation of freshly slaughtered carcasses. In this study, Raman 

spectroscopic screening method in conjunction with discriminant modeling was developed to 

rapidly determine whether or not androstenone (AN) and/or skatole (SK) levels in pork back 

fat collected from male pigs are above designated threshold levels. Based on the spectral 

readings, classification of the fat samples into two categories (high AN vs. low AN, high SK 

vs. low SK) was achieved at 90% accuracy. By implementing a simple methanol extraction 

method to remove SK and AN from the fat samples, classification was further refined to four 

categories (high, medium high, medium low, low) for both An and SK, with improved 

accuracies (94-95%). The innovative Raman spectroscopic screening has the potential to 

become a rapid evaluation routine for onsite boar taint monitoring in slaughter houses.  

5.2 Introduction 

Boar taint is the offensive odor or taste that can be evident during the cooking or 

eating of pork or pork products derived from non-castrated male pigs once they reach puberty. 
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Studies show that about 75% of consumers are sensitive to boar taint so it is necessary for 

pork producers to control it(Bonneau, Le Denmat et al. 1992). Androstenone (AN) and 

skatole (SK), two malodorous fat-soluble compounds, are considered to be the two main 

contributors to boar taint. Androstenone, first isolated from boar fat by Patterson(Patterson 

1968),  is produced in the testes as male pigs reach puberty and exhibiting an intense urine-

like odor. The biology of androstenone in pigs and its contribution to boar taint has been 

extensively studied (Brooks and Pearson 1986). Skatole is a byproduct of intestinal bacterial 

digestion of amino acid. It is produced in equivalent amounts in both males and female pigs, 

but it is poorly metabolized and eliminated by males, hence it tends to accumulate in the fat 

of male pigs (Squires and Schenkel 2009). Its contribution to boar taint has been established 

in a number of studies (Hansson, Lundstrom et al. 1980; Miller, Kottler et al. 2003; Schiestl 

and Roubik 2003). Both of the two malodorous compounds contribute to boar taint, and they 

interact with each other’s presence in a complex manner which is still not fully understood. 

Androstenone production and storage is highly dependent on pigs’ age, weight and genotype 

(Bonneau 1982), which differ widely in various countries. From a practical point of view, it 

can be tempting to rely more heavily on skatole for evaluating boar taint risk in carcasses or 

meat, since this compound can be measured on the slaughter-line, whereas there is no such 

readily available method for fat-dissolved androstenone measurement. So far, the “skatole 

equivalent method” is also the only method that has been taken into use on an industrial scale 

at-line for the purpose of sorting boar tainted carcasses. It is a colorimetric method based on 

solvent extraction of fat followed by addition of reagent and spectrophotometric fluorescence 

measurementl(Mortensen and Sørensen 1984). 
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Androstenone and skatole only start to accumulate in the fat of pigs when they 

sexually mature.  For centuries, male pigs have been castrated to prevent boar taint which can 

show up in a small percentage of boars in some breeds (Jeong, Choi et al. 2008). Improvest®, 

a veterinary pharmaceutical produced by Pfizer (Pfizer Animal Health, Kalamazoo, MI), is a 

9 amino-acid base pair gonadotropin releasing factor (GnRF) conjugate that immunologically 

“castrate” male pigs by disrupting their reproductive functions. A recent study showed that 

immunological castration with Improvest® prevents androstenone accumulation in male pigs 

even when allowed to grow to ending live weights over 130 kg (Boler 2011). Thus, 

measuring the content of androstenone in back fat of pigs is a good way of monitoring 

whether or not the “Improvest®” administered has functioned properly. Use of Improvst® 

has been shown to improve cutting yields of male pigs with no negative impact on fresh and 

cured product characteristics and quality (Boler 2011). 

The risk of boar taint development increases as concentration of androstenone goes 

above 500 ng/g fat, and especially above 1000 ng/g fat; for skatole, the risk of boar taint goes 

up as the concentration exceeds 200-250 ng/g fat. These two compounds may interact with 

each other in complex ways that further increase the risk of boar taint development(Robic, 

Larzul et al. 2008), hence monitoring their concentrations in parallel is important.  The pig 

fat matrix is complicated. Several types of steroids and organic compounds can be found in 

the pig fat. These compounds affect the quantitative analysis of androstenone and skatole. 

Boar taint was traditionally evaluated using sensory profiling in scientific study(Furnols, 

Guerrero et al. 2007). In recent years instrumentation analysis has been applied to evaluate 

boar taint. LC-MS (Verheyden, Noppe et al. 2007; Chen, Ren et al. 2010) and HPLC 

(Garcia-Regueiro and Diaz 1989; Banon, Costa et al. 2003) methods were developed for 
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accurate quantification of androstenone and skatole in pig fat.  However, these assays require 

time-consuming sample preparation, and therefore are not suitable for onsite implementation 

in slaughterhouses. (Henion, Brewer et al. 1998).   

Pig fats, with different compositions of dissolved steroids and other organic 

compounds, display specific Raman spectroscopic fingerprints which are direct reflection of 

their chemical makeup(Schrader and Steigner 1973; Harada, Miura et al. 1986). Fats 

containing higher levels of androstenone and skatole compounds may yield spectroscopic 

signatures that are distinguishable from fats that only contain low levels of these compounds, 

although accurate quantification of the relevant compounds (i.e., androstenone and skatole) 

may not be feasible. Nevertheless, to determine whether a pork product is acceptable to 

consumers, it may not be necessary to accurately evaluate the exact quantity of the 

compounds; it might be sufficient to just determine if a threshold (i.e., 500 or 1000 ng/g of 

AN) has been reached and hence a “good” or “bad” classification can be granted to the 

product. Raman spectroscopy combined with multivariate discriminant analysis may provide 

a solution to address this need. Statistically significant differences between spectroscopic 

signatures that represent different categories (i.e., High vs. low androstenone/skatole) of boar 

taint compounds could be identified when a large number of samples are analyzed; and using 

these signatures a discriminant model can be created to differentiate these 

categories(Guzmán, Baeten et al. 2012); Once the discriminant model is established, any 

unknown sample can be tested against the model to determine to which category it belongs 

with good reliability and accuracy.     
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The objective of this study is to develop a Raman spectroscopic screening method in 

conjunction with discriminant modeling to rapidly analyze pig fat samples to classify them 

into categories based on levels of AN or SK.  

5.3 Materials and methods 

5.3.1 Sample preparation and Raman spectral acquisition 

105 pork fat samples (some are from pigs treated with Improvest®) with the 

concentration of androstenone ranging from extremely low (<20 ng/g), to very high (>2000 

ng/g) and concentration of skatole between ~30 ng/g to 700 ng/g, were acquired from Pfizer 

Animal Health (Kalamazoo, MI). Residual muscle tissues were carefully trimmed and 

samples were then mounted onto glass microscope slides and subjected to Raman 

spectroscopic measurement. 

For samples subjected to AN/SK removal through methanol extraction, 5g of fat 

sample were placed in glass disposable centrifuge tube in boiling water bath for 5 mins to 

melt the fat. 2ml methanol was then added into the tube. After vigorous stirring, the sample 

was centrifuged at 4 °C 2 minutes to separate the supernatant methanol from the fat. 

Supernatant is micropipetted into the lid of an eppendorf tube and covered with cover slip for 

Raman measurements. The supernatant contains AN and SK extracted from the fat samples. 

Raman measurements were performed using a DXR Dispersive Raman Microscope 

(Thermo Scientific, Inc., Madison, WI) with 780nm, 14 mW excitation laser at ambient 

temperature. Raman spectra were collected with 2s exposure time from 200 and to 2800 cm
-1

 

at a resolution of 1 cm
-1

. At least 5 replicates were acquired from each sample. 
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5.3.2 Spectra preprocessing and data compression 

All spectra were baseline corrected, normalized and smoothed using 5-point 

averaging smoothing algorithm to reduce the baseline variability at the region between 200 

cm
-1

 to 2800 cm
-1

. The first derivative and second derivative spectra were calculated from the 

normalized spectra. To highlight the important spectral signatures representing the chemical 

landscape of each sample, and to minimize the effect of variations in the spectral data due to 

peak intensities, a binary barcode was developed. A binary value (0 or 1) was assigned to 

each second derivative spectral data point primarily based on the sign or the value of the 

second derivative, i.e., 1 for upward curvature (positive second derivatives), and 0 for 

downward curvature (negative second derivatives). 

 In Raman spectra, each wavenumber represents a dimension or variable. Commonly, 

data of one Raman spectrum contain thousands of dimensions, which bring a great challenge 

for following statistical analysis. For discriminant analysis, as the dimensions of the data 

become large, the limitation on the capability of detecting distinguishable classes becomes 

severe. Due to the fact that most statistical methods are based on optimization criteria, it is 

advisable to reduce the dimension of the problem. This dimension reduction results in 

decreasing computational costs and increasing probability of finding the best model 

representing the data. For this purpose a Principal component regression (PCA) is executed 

for data compression in this study. 

All data processing was conducted using R, a widely used language and software tool 

for statistical computing and graphics 
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5.3.3 Cross-validation and discriminant analysis 

Cross-validation is a technique for assessing how the results of a statistical analysis 

will generalize to an independent dataset. One round of cross-validation involves partitioning 

a sample of data into complementary subsets, performing the analysis on one subset (called 

the training set), and validating the analysis on the other subset (called the validation set or 

testing set). To reduce variability, multiple rounds of cross-validation are performed using 

different partitions, and the validation results are averaged over the rounds.  

In this study, the discriminant model to classify “unknown” spectra into each 

category was developed using support vector machine algorithm(Steinwart and Christmann 

2008)  implemented based on Matlab SVM toolbox(Canu, Grandvalet et al. 2005) or R 

package “e1071”(Karatzoglou, Meyer et al. 2005; Dimitriadou, Hornik et al. 2007) in R with 

folded cross validation. 

5.4 Results 

5.4.1 Binary spectra 

Raman peaks are represented by their wavenumber (Raman shift) and intensity. The 

peak intensities are dependent on many factors that may vary from sample to sample (i.e., 

sample size, exposure time, etc.), but their Raman shifts remain identical as long as the 

molecular makeup is the same. Therefore, the binary bar-codes are calculated from signs of 

second derivative spectra to highlight the important chemical landscape of each sample and 

minimize the effect of variations. A threshold for zeros was selected as a percentage of the 

maximum absolute value of the second derivative for positive second derivative readings (for 

all absolute value larger than the threshold, 1 was retained; otherwise it was switched to 0). 

Contribution to the measured spectra from low level background noises was thus removed by 
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assigning 0 to it. Therefore, for fat samples with very low AN and/or SK levels, 0 may be 

assigned to unique AN and/or SK peaks whilst 1 will be retained if the AN and SK levels are 

higher. The distinction between low/high AN/SK samples will be highlighted. The threshold 

value was determined experimentally by finding the barcodes that provided the best 

prediction for differentiating the two categories (high vs. low). Figure 5.1 shows the typical 

binary barcodes generated for fat samples with low vs. high androstenone (>500 ng/g fat) and 

low v.s. high skatole (>250 ng/g fat) levels. Here the optimal threshold value was found to be 

10%.  

 

Figure 5.1 Binary barcode based on secondary derivative sign. 

 C-C at 860-880 cm
−1

, 1050-1100 cm
−1

 C=C at 1290-1320 cm
−1

, -CH3 at 1290-1310, 1430-1460 cm
 -1

, 

C=O at 1740-1750 cm -1. 



131 

 

5.4.2 Accuracy using spectra from un-treated pork fat 

The discriminant model to classify “unknown” spectra into each category (high AN, 

low AN, high SK, low SK) was developed using Support Vector Machine (SVM) algorithm 

implemented with Matlab SVM toolbox. Partial Least Square Regression (PLSR) algorithm 

was used to further compress the data sets (the binary barcodes) and generated inputs for the 

SVM model. The main goal here is to accurately classify fat samples that are at the two 

extreme ends of the AN/SK levels. The measured spectra of fat samples were divided into 2 

groups (i.e., AN high/low groups and SK high/low groups) according to the values of their 

AN and SK contents.  

Training (calibration) sets and test sets were set in such a way that both the training 

sets and the test sets showed approximately the same distribution of one specific variable (i.e., 

they have roughly the same numbers of “high” or “low” entries). Different training/test sets 

were chosen randomly to calculate the average classification accuracy (over 10 random 

sampling). Given a set of training data, each marked as belonging to one of two categories; 

an SVM training algorithm builds a model that assigns new data points into one category or 

the other. Penalty coefficient of optimization (C) and kernel function are the main parameters 

of SVM training algorithm. A Gaussian radial basis (RBF) kernel, which is one of the most 

popular kernel function, was selected for SVM, and the optimal values for C and σ of RBF 

function,  which determine the area of influence the support vector has over the data space,  

are 100 and 1.6, respectively. Table 5.1 shows the average classification accuracy for the 

samples with high/low AN and SK levels, with a list of different cutoff thresholds for 

high/low levels for AN and SK, respectively.  



132 

 

Table 5.1 The average classification accuracies between high/low samples using the whole spectra 

ranging from 200-2800 cm-1. 

Skatole 

threshold 

(ng/g) 

The number 

of samples 

tested with 

skatole 

higher than 

threshold 

The 

accuracy of 

classification 

%  

Androstenone  

threshold 

(ng/g) 

The number of 

samples which 

androstenone is 

more than 

threshold 

The accuracy of 

classification for 

androstenone % 

300 5 92.31 2000 7 92.86 

200 17 83.33 1000 31 89.92 

150 29 92.86 800 36 85.71 

   500 44 91.33 

 

The best classification accuracy for both AN and SK is ~92%, for cutoff threshold 

values towards the extreme ends. The classification accuracy is lower when the cutoff-

threshold values for high/low categories are in the intermediate range. It confirms the 

reasoning that the classification would be the most accurate for samples at the extreme ends 

of AN or SK contents.  

With the direct spectral analysis,  major improvement over the prediction accuracy 

would be difficult. The fat samples are predominantly comprised of triglyceride, at 10
6-8

 

times higher content than AN and SK. The spectral signatures of AN and SK are often 

overwhelmed by that of triglyceride. Besides, the fat samples are far from homogeneous and 

consistent, variations from sample to sample contribute significantly to their spectral 

differences. When a new, unknown sample was subjected to the discriminant analysis, these 

complications add onto the difficulty of correctly classifying the sample into the proper 

category. 

A support vector machine model was developed to further classify the samples into 

“bands” of AN and SK contents based on their binary barcodes. The “bands” are listed in 

Table 5.2, with the classification accuracy.  
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Table 5.2 Classification accuracy with different “bands” of AN and SK contents. 

Skatole 

contents 

The number of 

spectra tested 

within each 

band 

The accuracy of 

classify for 

skatole % 

Androstenone  

coontents 

The number of 

spectra tested 

within each 

band  

The accuracy of 

classify for 

androstenone 

>150 5 91.67 >2200 4 91.67 

130-150 7 83.33 2000-2200 6 90.91 

110-130 8 81.82 1800-2000 5 75 

90-110 6 68.33 1600-1800 10 75 

70-90 11 66.67 1400-1600 12 72.73 

50-70 7 78.33 1200-1400 15 75 

<50 4 91.67 1000-1200 9 73.64 

   800-1000 11 76.67 

   600-800 22 78.33 

   400-600 4 85 

   <400 19 95 

 

The accuracy of classifying samples into “bands” of SK and AN contents again 

confirms the observation that the classification model yields the best results for samples at 

the extreme ends of AN and SK contents. The accuracy deteriorates significantly for samples 

with intermediate AN/SK contents. Generally, the lack of accuracy is mainly caused by the 

weak signals coming from the AN and SK, and the strong interferences from other ingredient 

of the samples, as well as the unaccounted for variations from sample-to-sample due to their 

uniqueness in terms of chemical composition. 

5.4.3 Differentiation accuracy of processed pork fat samples before/after methanol 

based removal 

If the AN and/or SK contents of a fat sample is high, when these ingredients are 

removed from the sample by methanol extraction, the Raman spectroscopic signatures of the 

treated sample would differ from that of the original sample due to the disappearance of 

AN/SK specific peaks. A differentiation test would yield a positive result with high accuracy 

(i.e., samples before/after treatment are distinguishable). On the other hand, if the initial 

AN/SK contents are low, their removal would not alter the spectral signatures much, and a 
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differentiation test may yield a negative results (i.e., samples before/after treatment are 

indistinguishable). In this approach, the analysis is conducted on the same fat sample 

before/after treatment, hence the great variations across fat samples from different sources 

won’t affect the results. It is also hypothesized that the differentiation accuracy would be 

directly correlated to the AN/SK contents of the fat sample, as high AN/SK content should 

yield high differentiation accuracy. 

105 samples with various AN and SK contents were investigated. A summary of the 

sample SK and AN contents is listed in Table 5.3 and 5.4.  

Table 5.3 Distribution of SK content data (Unit: ng/g fat). 

Minimum 
1st Quartile Median Mean 3rd quartile Maximum 

6.893 
52.5 96.1 168.9 157.8 800.6 

 

Table 5.4 Distribution of AN content data (Unit: ng/g fat). 

Minimum 
1st Quartile Median Mean 3rd quartile Maximum 

BLQ<(20) 
355.6 1487 1669 2715 6245 

 

To analyze the real fat samples, we first categorized the samples into 3 groups, high 

(H), medium (M) and low (L), the grouping criteria are listed in Table 5.5 and 5.6, 

respectively for AN and SK. 

Table 5.5 Grouping for SK classification (Unit: ng/g fat). 

 
H M L 

Grouping  
≥500          100-500 <100 

Spectra number 
60 214 366 
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Table 5.6 Grouping for AN classification (Unit: ng/g fat). 

 
H M L 

Grouping  
≥1500 600-1500 ≤600 

Spectra number 
316 114 210 

 

Table 5.7 shows the differentiation accuracy for samples from the three groups 

before/after the AN/SK removal treatments. Evidently, the differentiation accuracy is not 

high, and there is no clear trend as whether the accuracy is dependent on the AN/SK contents 

in the fat sample, as one may have expected. 

Table 5.7 Differentiation accuracy of samples with different SK/AN contents before/after methanol 

based removal. 

Skatole 

group 

The number 

of spectra 

within each 

group 

The average 

accuracy of 

differentiation 

Androstenone  

group 

The number 

of spectra 

within each 

group  

The average 

accuracy of 

differentiation 

H 60 75.0±1.8 H 316 70.2±2.7 

M 214 66.1±2.8 M 114 82.4±1.2 

L 366 63.3±3.5 L 210 61.1±2.3 

There are several reasons for this to happen. In each group the actual AN or SK 

contents cover a large range, which may lead to variations in the differentiation analysis that 

leads to indefinite results. The fat samples may respond to the extraction-based removal 

procedure differently, given the complex nature of the fat.    

5.4.4 Classification accuracy of methanol samples after methanol based removal 

The extraction procedure generates not only processed fat samples (after AN/SK 

removal), but also methanol samples (with AN/SK extracted into them). Methanol is a simple, 

pure substrate before the extraction, which provides a consistent background matrix that can 

be used to establish a baseline for the subsequent differentiation/classification analysis.  
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Figure 5.2 shows the Raman spectra of pure methanol (green) and methanol after 

extraction. It is obvious that the extraction has brought new chemical substance into the 

methanol and changed its spectral characteristics. A quick differentiation analysis yields a 

100% differentiation accuracy for all fat samples, even the ones with very low AN/SK 

contents.

 

Figure 5.2 Processed spectra for pork fat extracted and pure methanol. 

We then investigated whether we can use the extracted methanol spectra as classifiers 

to classify the fat samples. In this effort, we categorized the fat samples into four groups, as 

shown in Table 5.8 and 5.9. After spectra pre-processing and data compression, the 

classification model was developed using support vector machine algorithm (Steinwart and 

Christmann 2008)  implemented using R package “e1071”(Karatzoglou, Meyer et al. 2005; 
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Dimitriadou, Hornik et al. 2007) with folded cross validation.  Figures 5.3 and 5.4 show the 

classification accuracy for SK and AN of all fat samples. 

Table 5.8 Grouping for SK classification (Unit: ng/g fat). 

 
H MH ML L 

Grouping  
≥157.8  96.1≤MH<157.8 52.5<MH<96.1 ≤52.5 

Spectra number 
174 158 142 166 

 

Table 5.9 Grouping for AN classification (Unit: ng/g fat). 

 
H MH ML L 

Grouping  
≥2715 1487≤MH<2715 355.6<MH<1487 ≤355.6 

Spectra number 
146 170 154 170 

 

 

Figure 5.3 Classification accuracy for SK into 4 content groups. 
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Figure 5.4 Classification accuracy for AN into 4 content groups. 

It is encouraging that the simple methanol extraction significantly improved the 

classification accuracy, especially for the AN analysis. The classification accuracy for all 

four groups is at ~94-95%. We have further simplified the protocol to a 1 min microwave 

heating followed by a 30 s methanol extraction. The methanol is then subjected to a 

spectroscopic measurement which takes 30 s. The total time for one analysis is about 2 

minutes. A fully automated system can be built with a portable Raman spectrometer for 

onsite sample evaluation. 

5.5 Conclusions 

In this study, Raman spectroscopic screening methods in conjunction with 

multivariate discriminant analysis were developed for quick evaluation of contents of boar 

taint compounds in back fat samples directly collected from pig carcasses. With a simple, 

easy-to-use sample preparation protocol based on methanol extraction, classification of fat 

samples based on their androstenone or skatole contents into qualitative categories can be 

achieved with reasonably high accuracy (~95%). The easy-to-use nature of this method 
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makes it an appealing alternative to time consuming and sophisticated lab protocols that are 

the norm today for boar taint analysis. Potentially Raman screening can become a valuable 

option for onsite evaluation of boar taint in slaughterhouses. 

5.6 Acknowledgments 

We acknowledge Pfizer Animal Science for providing pork fat samples and funding 

to support this research. 

5.7 References 

Banon, S., E. Costa, et al. (2003). "A comparative study of boar taint in cooked and dry-

cured meat." Meat Science 63(3): 381-388. 

Boler, D. D. (2011). Effects of gonadotropin releasing factor immunological (Improvest®) 

on carcass characteristics, pork quality, and further processing characteristics of 

finishing male pigs. Animal Sciences, University of Illinois at Urbana-Champaign. 

Ph.D. 

Bonneau, M. (1982). "Compounds responsible for boar taint, with special emphasis on 

androstenone: A review." Livestock Production Science 9(6): 687-705. 

Bonneau, M., M. Le Denmat, et al. (1992). "Contributions of fat androstenone and skatole to 

boar taint: Sensory attributes of fat and pork meat." Livestock Production Science 

32(1): 63-80. 

Brooks, R. and A. Pearson (1986). "Steroid hormone pathways in the pig, with special 

emphasis on boar odor: A review." Journal of Animal Science 62(3): 632. 

Canu, S., Y. Grandvalet, et al. (2005). "SVM and kernel methods matlab toolbox." 

Perception Systemes et Information 2: 2. 

Chen, G., L. Ren, et al. (2010). "Determination of androstenone levels in porcine plasma by 

LC-MS/MS." Food Chemistry 122(4): 1278-1282. 

Dimitriadou, E., K. Hornik, et al. (2007). "The e1071 package." CRAN. 

Furnols, M. F. I., L. Guerrero, et al. (2007). "Sensory characterization of boar taint in entire 

male pigs." Journal of Sensory Studies 15(4): 393-409. 

Garcia-Regueiro, J. and I. Diaz (1989). "Evaluation of the contribution of skatole, indole, 

androstenone and androstenols to boar-taint in back fat of pigs by HPLC and capillary 

gas chromatography (CGC)." Meat Science 25(4): 307-316. 



140 

 

Guzmán, E., V. Baeten, et al. (2012). "A portable Raman sensor for the rapid discrimination 

of olives according to fruit quality." Talanta 93: 94-98. 

Hansson, K. E., K. Lundstrom, et al. (1980). "The importance of androstenone and skatole 

for boar taint." Swedish Journal of Agricultural Research 10(4): 167-173. 

Harada, I., T. Miura, et al. (1986). "Origin of the doublet at 1360 and 1340 cm
-1

 in the Raman 

spectra of tryptophan and related compounds." Spectrochimica Acta Part A: 

Molecular Spectroscopy 42(2-3): 307-312. 

Henion, J., E. Brewer, et al. (1998). "Sample preparation for LC/MS/MS: Analyzing 

biological and environmental samples." Analytical Chemistry 70(19): 650-656. 

Jeong, J., J. Choi, et al. (2008). The effects of immunocastration on meat quality and sensory 

properties of pork loins. Proceedings of the 20th International Pig Veterinary Society 

Congress, Durban, South Africa. 

Karatzoglou, A., D. Meyer, et al. (2005). Support vector machines in R. Vienna, Department 

of Statistics and Mathematics, Department of Statistics and Mathematics, WU Vienna 

University of Economics and Business. 

Miller, M., S. Kottler, et al. (2003). "3-Methylindole induces transient olfactory mucosal 

injury in ponies." Veterinary Pathology 40(4): 363-370. 

Mortensen, A. and S. Sørensen (1984). Relationship Between Boar Taint and Skatole 

Determined with a New Analysis Method. Proceedings of the 30th European meeting 

of meat research workers, Bristol, England. 

Patterson, R. (1968). "5α-androst-16-ene-3-one: Compound responsible for taint in boar fat." 

Journal of the Science of Food and Agriculture 19(1): 31-38. 

Robic, A., C. Larzul, et al. (2008). "Genetic and metabolic aspects of androstenone and 

skatole deposition in pig adipose tissue: A review." Genetics Selection Evolution 

40(5): 581. 

Schiestl, F. and D. W. Roubik (2003). "Odor compound detection in male euglossine bees." 

Journal of Chemical Ecology 29(1): 253-257. 

Schrader, B. and E. Steigner (1973). "Raman spectroscopy of steroids." Modern Methods of 

Steroid Analysis: 231. 

Squires, E. and F. Schenkel (2009). Potential strategies to reduce boar taint. Guelph, ON, 

Canada, Department of Animal and Poultry Science, University of Guelph: 105-114. 

Steinwart, I. and A. Christmann (2008). Support Vector Machines. New York, NY, USA, 

Springer Verlag. 



141 

 

Verheyden, K., H. Noppe, et al. (2007). "Development and validation of a method for 

simultaneous analysis of the boar taint compounds indole, skatole and androstenone 

in pig fat using liquid chromatography-multiple mass spectrometry." Journal of 

Chromatography A 1174(1-2): 132-137. 

 

  



142 

 

Chapter 6.  GENERAL CONCLUSIONS AND FUTURE 

PERSPECTIVE 

6.1 General Conclusions 

In this dissertation, the potential of using Raman spectroscopy as an effective 

detection technique for glaucoma at both late and early stages was explored. It was 

demonstrated that reproducible Raman spectra with good signal quality can be obtained from 

canine retinal tissue sections. With multivariate discriminant analysis, a support vector 

machine classification model was developed to differentiate retinal ganglion cells from late-

stage glaucomatous versus healthy canine tissues based on their Raman spectroscopic 

signatures. Furthermore, spectroscopic markers were identified associated with different 

neuropathic conditions (i.e., AEIOP and CON). Since AEIOP mimics the pathological 

symptoms of acute early stage glaucoma, it was demonstrated that Raman spectroscopic 

screening could potentially become a powerful tool for detection and characterization of 

early stages of the disease.  

The feasibility of applying Raman spectroscopic method to evaluate and predict 

tenderness, juiciness and chewiness of fresh, uncooked pork were also proved here. A new 

Raman spectroscopic binary barcoding model was created to classify pork loins into extreme 

categories (i.e., superior and inferior) of sensory tenderness and chewiness with reasonably 

good prediction accuracy. Raman spectra can be acquired rapidly (less than 10 seconds) with 

handheld portable Raman spectrometer directly from a pork carcass inside a slaughterhouse. 

It is possible that a rapid, on-line screening tool can be developed eventually for meat 

processers to quickly select meats with superior quality to better serve consumers.  
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Another problem the pork industry is facing is to quickly evaluate undesirable boar 

taint in pork products. There is still no method available for in-line or onsite detection of boar 

taint in freshly slaughtered carcasses. In this dissertation, Raman spectroscopic screening 

method in conjunction with discriminant modeling was developed to tackle this problem. It 

was demonstrated that rapid determination of whether or not major boar taint compounds 

(i.e., androstenone (AN) and/or skatole (SK)) are beyond certain threshold levels could be 

made with good accuracy (>90%) with direct analysis of pork backfat. With the help of a 

simple methanol extraction, the classification accuracy for boar taint compounds was 

improved to ~94-95%. 

As a general conclusion, through this work it was demonstrated that Raman 

spectroscopic methods are powerful tools for the analysis of biological samples. It is 

particularly suitable for the identification of chemical variations in biological samples, 

caused by differences in molecular compositions in the samples. These differences can be the 

result of onset and progression of diseases, or genetic heritage of individual animals. With 

the help of multivariate discriminant analysis, the spectroscopic screening can be 

successfully implemented to distinguish and differentiate various biological samples, with 

broad applications in agriculture, food and medical sciences.       

6.2 Future Perspective 

The future perspective discussion is focusing on the potential of using Raman 

spectroscopic screening for in vivo glaucoma diagnosis. In vitro studies in dogs have 

established the feasibility of identifying Raman specific spectroscopic markers that are 

directly related to glaucoma. Also, discriminant model was developed for the identification 
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of diseases tissues with good predictive accuracy. However, before in vivo testing can be 

conducted, laser safety issues must be addressed.  

As discussed before, for the 780 nm diode laser that was used in current study, the 

power density delivered on the sample was significantly higher than the threshold limit value 

(TLV), which determines the maximum permissible energy exposure to the retina in an in 

vivo measurement. To utilize Raman spectroscopy for in vivo imaging, the laser power 

density on the retina has to be greatly reduced.  

One possible solution to overcome excessive retinal exposure to the high level of 

laser energy is to utilize pulse laser with extreme short time-gated or time-resolved detection 

(10
 −12

s)(Lippert, Gschneidtner et al. 2010). The recent dramatic advances in laser technology 

allow compact table-top lasers with tunable broadband spectrum, from the infrared to the 

visible, and with adjustable pulse durations down to few ps (1ps=10
-12

) or even shorter. With 

such a short excitation time, time-gated or time-resolved collection of signal photons can be 

implemented to capture only Raman photons. Background fluorescence is eliminated 

(detection time is shorter than the fluorescence lifetime so that fluorescence has not 

developed)(Bird, Eliceiri et al. 2004), and the signal-to-noise ratio of the Raman spectral 

measurement can be significantly improved, allowing much weaker Raman signals to be 

detectable. An extremely short detection time also allows a much higher laser power to be 

applied without increasing the overall retinal laser energy exposure which is critical for non-

invasive and damage-free diagnostics. Simple calculation reveals that at 10
-12

 exposure time, 

the TLV is 2601 mW/cm
2
, which is much higher compared to the energy levels used in this 

study. 
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For time-correlated single photon counting system for time-resolved micro-

photoluminescence (µ-PL), the samples were excited by ultrafast laser diodes (LDs) with 

proper spectral profiles which should be mounted onto an adjustable focal length collimating 

optics with a heat sink and driven by a fast pulse generator for the pulsed mode. For shorter 

pulses, a 10 W pumped oscillator will be used which delivers 1.1 W, sub-20 fs (femtosecond, 

1fs = 0.001ps) pulse with ~70 nm bandwidth. A gradient neutral density filter combined with 

other neutral density filters should be inserted in the optical path to vary the excitation 

intensity, ideally over more than three orders of magnitude. The laser beam was either (i) 

lightly focused by a lens to a ~500-700 µm spot diameter for uniform excitation or, (ii) 

focused down to a minimum of ~10 µm diameter spot for localized excitation. The laser 

power was measured by an optical power meter placed before the sample. The luminescence 

is collected by the same focusing objective, i.e., confocal configuration, and imaged through 

a camera lens, giving a magnification of ~×15. This will provide diffraction limited (~1.7 µm) 

spatially resolved images. Sample surface tomography can be imaged a CCD camera with 

proper band-pass interference filter for which a ~2 µm spatial resolution can be achieved. 

The emissions can then spectrally resolved by a spectrometer. 

Another major technical obstacle for in vivo Raman imaging of the retina is the 

design of the optical probing system. Fiber-optic probes through which electromagnetic 

waves are constrained and optical energy can be transported with minimal loss and at nearly 

constant average energy density over distances of up to several kilometers have been 

available since the 1970s.  But most fiber-optic probes are not appropriate for collecting 

Raman spectra, because the fused silica that makes up the fibers generates its own Raman 

signal. Feld and Motz have published one design that has been particularly successful (Figure 
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6.1)(Motz, Hunter et al. 2004); it allows the researchers to characterize arterial plaques and 

breast cancer tumor margins, both during real surgeries (Römer, Brennan III et al. 1998; 

Manoharan, Shafer et al. 2008). Their probe, which is 2 mm in diameter, consists of a 

delivery fiber surrounded by a ring of collection fibers(Libby 1995). The delivery fiber has a 

micro optic filter on the tip that cuts out most of the fused-silica noise before the excitation 

beam hits the tissue. The collection fibers are also fitted with filters that cut off the reflected 

excitation light yet allow the Raman signal to pass back to the detector. Furthermore, the 

collection fibers, in which fiber-bundle imaging compression method are applied, use a 

multiplicity of fibers to collect a two-dimensional array of Raman spectra from a grid of 

samples points with all three dimensions (two spatial and one spectral) being measured 

simultaneously. 

 

Figure 6.1 Schematic of the Feld and Motz Raman probe tip. 
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It shows a longitudinal view at left and a transverse cross section at the fiber-filter interface at the 

right.  Ball lens B is in contact with the filter module that couples to the fiber bundle(Motz, Hunter et 

al. 2004). 

Potentially, the combination of ultrafast pulsed lasers together with time-, spatially- 

and single photon-resolved Raman spectroscopy and fiber-bundle imaging technique, can 

yield a working Raman imaging system that allows in vivo Raman imaging of the retina It 

will provide fascinating opportunities to develop new in vivo early detection and diagnostic 

tool that can revolutionize  clinical glaucoma diagnosis. It will make it possible to detect 

early glaucomatous changes even before any change in intraocular pressure, function and/or 

structure loss occurs.  
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