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ABSTRACT 

 

Autonomous agricultural robots have experienced rapid development during the 

last decade. They are capable of automating numerous field operations such as data 

collection, spraying, weeding, and harvesting. Because of the increasing demand of field 

work load and the diminishing labor force on the contrary, it is expected that more and 

more autonomous agricultural robots will be utilized in future farming systems. 

The development of a four-wheel-steering (4WS) and four-wheel-driving (4WD) 

robotic vehicle, AgRover, was carried out at Agricultural Automation and Robotics Lab 

at Iowa State University. As a 4WS/4WD robotic vehicle, AgRover was able to work 

under four steering modes, including crabbing, front steering, rear steering, and 

coordinated steering. These steering modes provided extraordinary flexibilities to cope 

with off-road path tracking and turning situations. AgRover could be manually controlled 

by a remote joystick to perform activities under individual PID controller of each motor. 

Socket based software, written in Visual C#, was developed at both AgRover side and 

remote PC side to manage bi-directional data communication. Safety redundancy was 

also considered and implemented during the software development. 

One of the prominent challenges in automated navigation control for off-road 

vehicles is to overcome the inaccuracy of vehicle modeling and the complexity of soil-

tire interactions. Further, the robotic vehicle is a multiple-input and multiple-output 

(MIMO) high-dimensional nonlinear system, which is hard to be controlled or 

incorporated by conventional linearization methods. To this end, a robust nonlinear 

navigation controller was developed based on the Sliding Mode Control (SMC) theory 
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and AgRover was used as the test platform to validate the controller performance. Based 

on the theoretical framework of such robust controller development, a series of field 

experiments on robust trajectory tracking control were carried out and promising results 

were achieved.  

Another vitally important component in automated agricultural field equipment 

navigation is automatic headland turning. Until now automated headland turning still 

remains as a challenging task for most auto-steer agricultural vehicles. This is particularly 

true after planting where precise alignment between crop row and tractor or tractor-

implement is critical when equipment entering the next path. Given the motion 

constraints originated from nonholonomic agricultural vehicles and allowable headland 

turning space, to realize automated headland turning, an optimized headland turning 

trajectory planner is highly desirable. In this dissertation research, an optimization 

scheme was developed to incorporate vehicle system models, a minimum turning-time 

objective, and a set of associated motion constraints through a direct collocation 

nonlinear programming (DCNLP) optimization approach. The optimization algorithms 

were implemented using Matlab scripts and TOMLAB
®
/SNOPT tool boxes. Various case 

studies including tractor and tractor-trailer combinations under different headland 

constraints were conducted. To validate the soundness of the developed optimization 

algorithm, the planner generated turning trajectory was compared with the hand-

calculated trajectory when analytical approach was possible. The overall trajectory 

planning results clearly demonstrated the great potential of utilizing DCNLP methods for 

headland turning trajectory optimization for a tractor with or without towed implements. 
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CHAPTER 1: GENERAL INTRODUCTION 

1.1 Introduction 

With the development of robotic technologies, autonomous agricultural robots are 

expected to relieve farm labour from having to do monotonous, unproductive and 

uncreative work, such as weeding (Watanabe, 2004), data sampling (Nejati, et al, 2008) 

and harvesting (Katupitiya, 2005). Autonomous agricultural robots are capable of 

collecting crop and soil samples (Wang, 2007) because they can be small in size, which 

allows them to be able to acquire data close to the crops. They are also capable of 

mowing (Jarvis, 2001), spraying pesticides (Chen, et al, 2002; Zhang, et al, 2005), 

finding diseases or parasites, and performing precision mechanical weeding. Agricultural 

robots that are equipped with cameras and sensors were used to harvest fruit and 

vegetables such as apples (Kataoka, et al, 1999), melons (Edan and Miles, 1993), 

radicchio (Foglia, et al, 2006) and asparagus (Dong, et al, 2011).  

As the basis of autonomous field robot technology, motion control for agricultural 

robotic vehicle has been an active research area in recent years (Hargas, et al 2002; 

Kondo, 2005). However, like other MIMO nonholonomic nonlinear systems, agricultural 

robotic vehicles have system uncertainties and time-varying parameters, especially when 

working in off-road environment. In addition, external factors such as soil and wind 

conditions also affect vehicle dynamic characteristics. Both unpredictable internal 

perturbations and external disturbances create a great challenge of controlling such a 

nonholonomic nonlinear system. Imprecision in modelling a nonlinear system may come 

from the actual uncertainty of the plant or from the purposeful choice of a simplified 

representation of the system dynamics. It is desirable to develop a capable and robust 
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navigation controller that is able to navigate the vehicle accurately and effectively, 

overcome system uncertainties, resist external disturbances, and mostly important, 

maintain system stability.  

The method of backstepping decomposes complex nonlinear system to lower 

dimension subsystems that are designed to make the whole system perform as desired by 

using Lyapunov function and pseudo-control variables. Compared with the feedback 

linearization method (Kanayama, et al, 1990; Kim and Oh, 1999; Wang, 2005), 

backstepping does not require an accurate model while still maintains system properties 

and nonlinearity. Sliding mode control (SMC) of the variable structure control (VSC) has 

strong robustness to parameter perturbation and external disturbances (Cheng, et al, 

2007). In contrast to fuzzy control (Hagras, et al 1999) and adaptive control (Dixon, et al, 

2004), SMC is more robust and responsive, which is suitable for off-road conditions. The 

approach of combining backstepping and sliding mode control has demonstrated good 

performance for controlling both linear and nonlinear systems (Lin, Shen, 2002; Shen, 

Lin, 2005). Thus it is worthwhile to investigate how backstepping SMC will perform on 

an agricultural robotic vehicle.  

 As an essential part of agricultural vehicle navigation control and field coverage 

path planning process, headland turning is a process that has to meet the given initial and 

final conditions when leaving and reentering the crop field. The headland turning process 

should also be done in a minimum time and travel within a restricted headland space (Jin, 

2009). The optimization of headland turning control can reduce time and fuel 

consumption during headland turning and in turn improve the overall field efficiency of 

agricultural field equipment. Therefore optimization of the headland turning trajectory is 
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of great interest for agricultural equipment manufacturers. However, this optimization 

process has until now remained largely unresolved, primarily due to the difficulties of 

finding such an optimized solution in an enormously large solution space. Off-road 

vehicle models are complex and non-linear, making linear optimization algorithms 

unsuitable for solving the problem (Oksanen, 2004). Furthermore, the tractor towed 

implements further increase the complexity of the model and make this dynamic 

nonlinear problem even more challenging to solve. 

Numerical solutions for the trajectory optimization problem can be categorized 

into two approaches, indirect methods and direct methods (Conway, 2012).  Indirect 

solutions use analytical necessary conditions from the calculus of variations, which 

requires the addition of co-state variables of the problem. However, when using indirect 

methods, the derivation of the necessary conditions, including differential equations, 

boundary conditions and path constraints, is usually a intractable mathematical procedure. 

A minor change of any of these constraints may cause considerable amount of 

computation, even with the help of software such as POST
®
 (Program to Optimize 

Simulated Trajectories, Sierra Engineering Inc., Carson City, Neveda) or GTS 

(Geostatistical Temporal-Spatial algorithm, The Aerospace Corporation, El Segundo, 

CA). In contrary, direct solutions convert the optimization problem into a Nonlinear 

Programming (NLP) problem which transcribes a continuous optimal control problem 

into a parameter optimization problem (Conway and Paris, 2011; Ross and Fahroo, 2003; 

Fahroo and Ross, 2002). A NLP method integrates the system equations stepwise using 

either implicit or explicit rules. Compared to indirect methods, considerable 

advancements have been made in direct methods over the last decade (Conway, 2012). 
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Commercial software packages such as TOMLAB
® 

(Tomlab, Stockholm, Sweden), 

DIDO
®
 (Elissar Global, Carmel, CA), and SOCS

®
 (Boeing, Seattle, WA) are available to 

facilitate the implementation of direct methods for solving optimal control problems. 

Therefore, exploration of applying direct methods for agricultural field equipment 

headland turning trajectory optimization represents a potential significant contribution 

toward this long-standing problem, which is important to both our research community 

and the equipment industry.  

 

1.2 Research Objectives 

The overall goal of the proposed research is to investigate navigation control of 

autonomous agricultural vehicles under off-road conditions. To better understand and 

achieve this goal, the research work was divided into two main objectives.  

1) To design and develop a robust navigation controller for the off-road vehicle to 

follow a given reference trajectory. The specific objectives for this phase were:  

a) To develop a prototype of autonomous agricultural robotic vehicle; 

b) To develop the vehicle model and the theoretical derivation of a robust controller 

that has ensured system stability and performance; 

c) To validate the controller design by using an autonomous agricultural robotic 

vehicle under field conditions. 

2) To optimize the navigation control trajectory in the field headland turning operation 

with given boundary conditions and constraints. The specific objectives for this 

second phase were: 

a) To set up the research framework of assumed headland turning scenario; 
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b) To build various system models of agricultural vehicles and vehicle-implement 

combinations in the established framework; 

c) To investigate the feasibility of using direct collocation nonlinear programming 

methods to solve the targeted optimization problem. 

 

1.3 Dissertation Overview 

This dissertation consists of four parts which are detailed in Chapter 2 to Chapter 

5. In Chapter 2, the development of AgRover robotic vehicle platform is described. 

Chapter 3 is a research paper about backstepping sliding mode control designed for 

AgRover. Vehicle dynamic model was established and a sliding mode control based 

navigation controller was simulated in MATLAB. Chapter 4 introduces the 

implementation of a SMC controller on AgRover. Field experiment results are presented 

and discussed. Chapter 5 covers the development of a headland turning optimization 

procedure, including problem framework setup, vehicle modeling, and the formulation of 

the optimization problem. Simulation results are presented and discussed in this chapter.  
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CHAPTER 2: AGROVER DESIGN AND DEVELOPMENT 

2.1 Background Introduction 

 Agricultural robotics experienced rapid development during the last two decades. 

Robotics has been extended to numerous bio-systems such as agriculture, forestry (Liu, 

2008), and fisheries (Tan, et al, 2006). Applying automation to agriculture has helped 

create several advancements to the industry while helping farmers save money and time.  

Autonomous agricultural robots are capable of collecting crop and soil samples 

(Wang, 2007) because they are small in size, which allows them to be able to accumulate 

data close to the crops. They are also capable of mowing (Jarvis, 2001), spraying 

pesticides (Chen, et al, 2002; Zhang, et al, 2005), finding diseases or parasites, and 

performing mechanical weeding. Agricultural robots come equipped with cameras and 

sensors that are used to harvest fruit and vegetables such as apples (Kataoka, et al, 1999), 

melons (Edan and Miles, 1993), radicchio (Foglia, et al, 2006) and asparagus (Dong, et al, 

2011).. Their sensors are used to detect weeds (Have, et al, 2005; Bin Ahmad, 2012) and 

spray only the area affected by the parasite instead of the entire crop.  This has helped to 

protect our environment by reducing the amount of harmful chemicals released in the air. 

Advanced computer and electronic technology plays an important role in this tremendous 

development, and it is also the basis of the research in future. 

Because of the stated advantages and increasing need in autonomous in field 

mobile robots, a four-wheel-steering (4WS) and four-wheel-drive (4WD) robotic vehicle, 

AgRover, was developed at the Agricultural Automation and Robotics Lab of Iowa State 

University. The evolution of AgRover consists of two generations, Generation I and 

Generation II. Gen. I had a pneumatic self-leveling system, which offered AgRover 



10 

 

 

 

capability that keeping platform flat while working on uneven field. However, because of 

the limited responsiveness and maneuverability, it was removed during the development 

of Gen. II. Whereas Gen. II does not have the self-leveling system as Gen. I had, Gen. II 

has a three-point chassis design and is still able to handle uneven terrain. Moreover, it is 

more agile and flexible to be able work under off-road conditions because of the lighter 

platform and weight decrease.  

As a 4WS/4WD robotic vehicle, AgRover can work under four steering modes, 

crab steer, front wheel steer, rear wheel steer, and coordinated steer. They provide 

enormous flexibility to AgRover to be able to work out some difficult turning situations. 

And each of the modes has unique advantages under certain scenarios, which will be 

discussed in the paper. AgRover Gen. II could be manually controlled by a remote 

joystick to perform movements and steering mode shift under PID control. Socket based 

software, written in Visual C#, was developed at both AgRover side and remote PC side 

to handle the mutual communication. Safety redundancy was considered in the software 

development and operation procedure design. 

Based on the well developed manual control and precise RTK-GPS technology, 

an automatic navigation controller was developed and implemented. Related simulation 

was done by MATLAB (Chapter 3). The shift between manual mode and automatic mode 

was secure and safe. A series of field experiments of trajectory tracking navigation 

control were carried out and the results were presented (Chapter 4).   
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2.2 AgRover Evolution 

2.2.1 AgRover Gen. I 

The major purpose to develop AgRover was to make a flexible and robust 

experimental platform that is able to work under off-road conditions and handle possible 

data sampling and collection job for the potential field research projects. It had unique 

features compared with other field robots which will be presented and discussed in this 

chapter. 

 

2.2.1.1 High ground clearance 

 

(2.1a)     (2.1b) 

Figure 2.1: Front (2.1a) and side (2.1b) view of AgRover Gen. I 

 

AgRover Gen. I had high ground clearance (Figure 2.1), which was a great 

advantage for carrying out field experiments. With the help of pneumatic system, the 

ground clearance could be adjusted from a minimum of 1.3 m to a maximum of 1.8 m. 
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2.2.1.2 Expandable chassis 

 

Figure 2.2: Top view of expandable AgRover chassis  

   

The retractable leg design and flexible “X” shaped frame in the square shaped 

chassis of AgRover Gen. I is enabled track width and wheel-base adjustability. The 

AgRover could then be flexibly adjusted for different row widths in the field.  

 

2.2.1.3 Self-leveling system 

As mentioned, AgRover was designed for dealing with off-road conditions. It is 

normal for the robot to work on hills or uneven field. By carrying a computer, sensors, a 

generator and an air compressor, AgRover is fairly heavy (270 kg). With the high ground 

clearance, the platform could also be vibrating or shaking hard in the field. Under motion 

mode, it may increase the instability of the whole vehicle (Figure 2.3a), it was desired to 

have a leveling controller to keep the platform steady by utilizing the pneumatic system 

(Figure 2.3b). 
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(2.3a)      (2.3b) 

Figure 2.3: Functionality of AgRover pneumatic self-leveling system 

 

With heavy carried equipments and high ground clearance, driving on uneven off-

road fields could cause extremely dangerous consequences such as roll over or pitch over 

(Figure 2.3a). An intelligent controller was required that could control individual 

pneumatic cylinders and maintain the platform flat and stable, so that there was no worry 

about the safety of the vehicle. Therefore with this secured protection the data collection 

experiments could even be done under this circumstance. AgRover did have such 

leveling control system (Figure 2.4). 
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Figure 2.4: Intelligent pneumatic self-leveling system 

The self-leveling system had its own microcomputer which was independent from 

but could be communicated with the vehicle central controller. Each leg had a cylinder 

installed. There was a linear potentiometer on top of the cylinder of the front-left leg, 

which indicated and acted as the “Control” height compared to the other cylinders. By 

cooperating with a tilt sensor mounted on the platform, the controller was able adjust the 

other three cylinders dynamically to balance the platform. 
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2.2.2 AgRover Gen. II 

The pneumatic self-leveling system was an intelligent and valuable design 

because of its flexibility. However, the bulky pneumatic components and sluggish 

pneumatic delay did affect the vehicle mobility and agility. After multiple times of field 

validation and maneuverability tests, it was decided to remove the leveling system from 

the platform. After redesign and re-integration, AgRover Gen. II came out at Agricultural 

Automation and Robotics Lab in 2010 (Figure 2.5).   

  

Figure 2.5: AgRover Gen. II 

 

2.2.2.1 Lighter chassis and better maneuverability 

Though AgRover Gen. II did not have flexibility of leveling or chassis 

expandability, it maintained remarkable ground clearance to accommodate field tasks. 

And with lighter curb weight and lower center of gravity, the agility and handling got 

tremendous improvement.  
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2.2.2.2 Upgraded central controller 

AgRover used embedded industrial computer as its central controller. On Gen. I, 

the controller was IEI WAFER-C400 with Celeron 300MHz processor. On Gen. II it was 

upgraded to IEI NOVA 7896 with Pentium III 1.2GHz processor. The system memory 

got expanded from 256MB to 512MB. 

 

(2.6a) WAFER-C400 Celeron 300MHz (2.6b) NOVA 7896 Pentium III 1.2GHz 

Figure 2.6: Embedded industrial computers for AgRover Gen. I (2.6a) and Gen. II (2.6b) 
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2.2.2.3 Triangle chassis design 

The new chassis was designed according to the “Triangle” (three point) vehicle 

chassis principle. The platform and the rear axle are connected by a pivot (Figure 2.7).   

 

(2.7a) Top view     (2.7b) Side view 

Figure 2.7: Pivot of triangle chassis design 

 

 

Figure 2.8: AgRover Gen. II on uneven surface 

 

Triangle chassis design helped all of the wheels that could provide traction while 

the vehicle is working on an uneven field situation (Figure 2.8). 
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2.3 Steering and Driving System 

2.3.1 Steering 

The steering system for each leg consisted of two components, a steering motor 

(Figure 2.9a) and an encoder (Figure 2.9b). The steering motor was manufactured by 

VALEO®, which was driven by a CURTIS® amplifier. The associated encoder’s 

resolution is 2048 pulses/rev, with an index channel available.   

 

(2.9a) Side view     (2.9b) Bottom view 

Figure 2.9: Steering motor and encoder 

 

 

Figure 2.10: Steering composition  
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2.3.2 Driving 

Similarly, the driving system for each wheel was a combination of two 

components as well, a driving motor and an encoder. The HONDA® DC motor worked 

with 24V and provided 150W output. The encoder’s resolution was 1024 pulses/rev. 

 

(2.11a) Driving motor and encoder   (2.11b) Driving composition 

Figure 2.11: Driving motor, encoder and composition 
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2.4 Control System 

2.4.1 AgRover control architecture 

With the steering and driving hardware, the preparation for the central controller 

design was done. The AgRover manual control could be decomposed by three levels 

(Figure 2.12), including remote monitoring and control station, controller on AgRover, 

and motors with encoders.  

 

 

Figure 2.12 Three levels: AgRover manual control 

 

The remote monitoring and control station (“remote station” in the text to follow) 

collected settings and inputs from the operation program or from the joystick, and sent 

UDP packages to the AgRover controller over Wi-Fi. The controller delivered translated 

commands to each control port via PC104 cards and read feedback from the encoders, 

and then transmitted feedback to the remote station. The feedback was instantly visibly 

displayed on the operation screen, and presented the vehicle working status to the 

operator. 
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2.4.2 Remote station 

Remote station consisted of a laptop and a joystick (Figure 2.13), where the 

joystick is a pure input device and the laptop took in charge of the communication and 

data display. 

 

Figure 2.13: AgRover remote station: laptop + joystick 

The communication between the remote station and AgRover was via WLAN 

UDP/IP protocol. And the package composition was as below (Figure 2.14). All data 

packets, started with OxFF and Ox80 and ended with 0x0D, consisted of 23 different 

types of messages. 

 

Figure 2.14: UDP communication package composition 
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2.4.2.1 Joystick operation 

The setting and operations of AgRover could be handled on the joystick such as 

steering mode setting (Figure 2.15), driving control (Figure 2.16), and emergency 

handling (Figure 2.17) etc. 

                              
Figure 2.15:  Steering mode setting on the joystick 

 

          
Figure 2.16: Steering and driving control on the joystick 

 

Figure 2.17: Emergency handling on the joystick 
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2.4.2.2 Remote operation program 

All functions on the joystick could be realized on the remote operation window 

(Figure 2.18), in addition to using joystick. For example, driving control could be done 

by dragging the green bubble on the “Direction and Speed” interface. The steering mode 

could be selected by clicking the buttons at the bottom row. Moreover, the buttons of 

“Emergency Brake” and “Reset Motors” did the same job as their counterparts on the 

joystick. 

 

Figure 2.18: Remote operation and display window 
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2.4.3 AgRover local controller 

The hardware control of AgRover was managed on the central controller. The 

execution and feedback were both communicating through PC104 with the 

microcomputer. The control parameters were set by the operator on the remote operation 

program (illustrated on Figure 2.19).   

By clicking the “Config” button on Figure 2.18, a setting window popped up  

(Figure 2.19). The PID parameters for both steering and driving motors could be adjusted 

respectively, and will be set to all the motors. The initial value of the steering angle for 

each wheel could be customized as well. It did have the flexibility for the user to choose 

which IP to go if there were multiple robots available. 

 

Figure 2.19: Remote operation and display window 
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2.4.4 Motors and encoders 

After setting the control parameters, according to the orders from the remote 

station, the controller started manipulating eight motors and monitoring eight encoders.  

 

Figure 2.20: Steering and driving motor control flow chart 

 

All steering and driving motors were controlled by PID controllers. And the 

control diagram is as Figure 2.21. 

 

Figure 2.21: AgRover controller program architecture 
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2.4.5 Safety redundancy 

For hardware safety concern, there are self-diagnostic rules defined on the 

AgRover controller that can help protect the robot itself.  

Table 2.1: Self diagnostic situations that may lead to emergency stop 

No. Description Reaction 

1) Steering motor or encoder failure AgRover stop and alarm on 

2) Driving motor or encoder failure AgRover stop and alarm on 

3) One or more wheels get stuck AgRover stop and alarm on 

4) Battery power is low AgRover stop and alarm on 

5) Wireless communication with PC is 

dropped 

AgRover stop and alarm on 

 

The main purpose of this self-checklist was to help control the robot properly, 

protect the hardware from electrical or mechanical damages, and also to remind the 

operator of manipulation mistakes. 
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2.5 Steering Modes 

Because AgRover is a four-wheel steering robotic vehicle, it has four steering 

modes to select from (Table 2.2), which are crab steer, front wheel steer, rear wheel steer 

and coordinated steer.  

Table 2.2: Four steering modes of AgRover 

 

All of four wheels have the same steering 

angle 

 

Only two front wheels can be steered. 

 

Only two rear wheels can be steered. 

 

Each wheel has independent steering 

angle.  

 

 

Figure 2.22: Crabbing steering mode 

 

Crab steer can have the robot turn fast while the vehicle speed is low and there is 

no need to adjust the orientation.  



28 

 

 

 

 

Figure 2.23: Front steering mode 

Front wheel steer mode is similar like a conventional car. It showed promising 

performance on following a straight line trajectory, which will be discussed in Chapter 3.  

 

Figure 2.24: Coordinated steering mode 

Coordinated steer has the most degrees of freedom, and it is the most flexible and 

agile way to turn the vehicle. Coordinated steering performed well in the curve trajectory 

tracking field experiments, which will be presented in Chapter 3. 
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2.6 Automatic Navigation Control 

The manual operation is not enough for an autonomous robot, and automatic 

navigation control is desired. An RTK-GPS based automatic navigation control system 

was designed and integrated (Figure 2.25).  

2.6.1 System integration 

 

Figure 2.25: Automatic navigation control system integration 

Two StarFire GPS receivers (JOHN DEERE®) were installed at front and rear 

end of the chassis respectively (Figure 2.5), and were both set working under real time 

kinematic (RTK) mode. By processing the GPS data from both of the receivers and 

cooperating with designated RTK-GPS base station, the location and orientation of 

AgRover could be determined. 
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2.6.2 Control structure 

The central body controller was the “brain” for the whole navigation control 

system. It was taking care of all the motors and encoders, and monitoring the feedback 

from the GPS receivers.  

The central controller could be divided into two levels, the upper level controller 

and the lower level controllers (Figure 2.26). The upper level controller read the given 

reference path information and translated it into the vehicle local coordinate system. By 

processing the GPS data from front and rear receivers, the upper level controller was able 

to tell the system the errors and generate control signals, which were distributed to 

individual lower level motor controllers. The lower level controllers are in charge of 

controlling steering and driving motors with PID control. The control loop for lower level 

controller is fast and time efficient, which guaranteed that the hardware would not fail 

even if the upper level processing and calculation took longer time interval. 

 

Figure 2.26:  Architecture of central controller 
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The control algorithm applied in the upper level controller was sliding mode 

control (SMC), which was investigated theoretically in Chapter 3, and validated with 

field experiments in Chapter 4. 

 

2.7 Conclusions 

The development of AgRover was productive and inspiring. According to the off-

road working capability requirements, AgRover Gen. I and Gen. II were designed and 

developed. The mechanic and electronic system design were presented and introduced. 

With this capable field working platform, further research activities of automatic 

navigation control could be conducted. As an autonomous mobile robot, AgRover is 

expectable to carry out field experiments, which were further investigated and studied in 

Chapter 4. 
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CHAPTER 3: BACKSTEPPING-BASED SLIDING MODE 

CONTROL FOR AN AGRICULTURAL ROBOTIC VEHICLE 

A paper to be submitted to Journal of Field Robotics 

Xuyong Tu, Lie Tang 

3.1 Abstract 

This paper introduces a new controller design based on backstepping and sliding 

mode control (SMC) techniques for an agricultural robotic vehicle. This agricultural 

robotic vehicle is four-wheel-steering (4WS) and four-wheel-drive (4WD), which has 

multiple degrees of freedom and nonlinearity. The navigation control of this vehicle 

needs to cope with multiple inputs (front and rear steering angles, acceleration) and 

multiple outputs (heading, velocity and location). To deal with this multiple-inputs and 

multiple-outputs (MIMO) nonlinear system, backstepping-based SMC approach was 

chosen in the controller design, which also met the Lyapunov stability requirement. The 

performance of the developed navigational controller was simulated in Matlab Simulink. 

Simulation results are presented; and the dynamic performance with parameter 

uncertainty and external disturbances is analyzed. 

Keywords: backstepping, sliding mode control, MIMO, path following, 

agricultural robotic vehicle 

 

3.2 Introduction 

Motion control for agricultural robotic vehicle has been an active research area in 

recent years (Hargas, et al 2002; Kondo, 2005). With the development of robotic 

technologies, autonomous agricultural robots are expected to relieve farm labour from 



34 

 

 

 

having to do monotonous, unproductive and uncreative work, such as weeding 

(Watanabe, 2004), sampling (Nejati, et al, 2008) and harvesting (Katupitiya, 2005).  Like 

other nonholonomic nonlinear systems, agricultural robotic vehicles have system 

uncertainties and time-varying parameters, especially when working in off-road 

environment. In addition, external factors such as soil and wind conditions also affect 

vehicle dynamic characteristics. Both unpredictable internal perturbations and external 

disturbances create a great challenge of controlling such nonholonomic nonlinear system. 

Four-wheel-steering (4WS) provides improved manoeuvrability at low speed 

when compared with conventional vehicles with front wheel steering only. Four-wheel-

drive (4WD) improves the traction control capability of the vehicle when coping with 

variable soil surfaces. The prototype 4WD/4WS vehicle, AgRover, is constructed with a 

rigid frame with four identical wheels. The platform has adjustable high clearance to 

accommodate field conditions where crops are presented with variable heights. The 

robotic vehicle has multiple inputs (acceleration, front steering angle, rear steering angle) 

and multiple outputs (heading, velocity and location), which constitute a typical 

nonholonomic multiple-input and multiple-output (MIMO) high-order nonlinear system. 

Imprecision in modelling a nonlinear system may come from the actual 

uncertainty of the plant or from the purposeful choice of a simplified representation of the 

system dynamics. The method of backstepping decomposes complex nonlinear systems 

to lower dimension subsystems that are designed to make the whole system perform as 

desired by using Lyapunov function and pseudo-control variables. Compared with 

feedback linearization method (Kanayama, et al, 1990; Kim and Oh, 1999; Wang, 2005), 

backstepping does not require accurate models while still maintains system properties 
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and nonlinearity. Sliding mode control (SMC) of variable structure control (VSC) has 

strong robustness to parameter perturbation and external disturbances (Cheng, et al, 

2007). In contrast to fuzzy control (Hagras, et al 1999) and adaptive control (Dixon, et al, 

2004), SMC is more robust and fast, which is suitable and responsive under off-road 

environment. Combining backstepping and sliding mode control has demonstrated good 

performance for both linear and nonlinear systems (Lin, Shen, 2002; Shen, Lin, 2005).  

In this paper, a backstepping-based SMC controller for path-following control for 

AgRover, a small prototype 4WS/4WD agricultural robotic vehicle, is introduced. 

Vehicle dynamic modelling, procedure of backstepping-based SMC are presented. To 

verify the robustness of the developed navigational controller, paths of a step perturbation 

and high-frequency parameter and external disturbances are adopted during the 

simulation process. 

 

3.3 4WS System Introduction 

3.3.1 Introduction to AgRover Platform 

Dynamic modeling and simulation are useful in evaluating the performance of 

controllers for robotic vehicles.  This section presents the modeling of AgRover, which is 

a 4WD/4WS mobile research platform, with the integrated pneumatic suspension and 

self-leveling system (Figure 3.1).  
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Figure 3.1: The overall structure of AgRover 

Each wheel leg has one pneumatic cylinder and one square shape sliding tube. 

One of the four cylinders has position feedback for platform leveling and clearance 

control. Some other features of the vehicle are: (1) adjustable vehicle height for providing 

needed ground clearance at different crop growth stages; (2) adjustable width to variable 

row width; (3) capability to rough terrain; and (4) high degree of manoeuvrability. 

The AgRover consists of five subsystems, including four independent wheel 

assemblies and a central body. The body subsystem has all basic vehicle parameters (e.g. 

corner stiffness) which define the characteristics of AgRover. The central controller 

gathers the location update of central gravity (CG) from GPS receiver and heading 

information from gyroscope. The model was setup in Matlab Simulink. 

The following table (Table 3.1) shows all the system parameters affecting the 

performance of AgRover. 
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Table 3.1: Nomenclature 

Symbol Description Value and Unit 

M Mass of AgRover 270 kg 

a Distance from CG to front axle 0.8 m 

b Distance from CG to rear axle 0.8 m 

    Turning moment of inertia 157.27          

    Front tire corner stiffness 765.79  N/rad 

    Rear tire corner stiffness 765.79  N/rad 

  Friction coefficient between tires 

and ground 

0.45 

u Longitudinal velocity m/s 

v Lateral velocity m/s 

r Yaw rate rad/s 

Ψ Heading angle rad 

   Front wheel steering angle rad 

   Rear wheel steering angle rad 

  Side slip angle rad 

X, Y Global Coordinates m 

    Front lateral force N 

    Rear lateral force N 

   Front load force N 

   Rear load force N 

Acc Longitudinal acceleration      
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Figure 3.2: Illustration of planar motions and forces of AgRover 

 

The force on each wheel can be decomposed into two sub-forces,    and   . Yaw 

rate “r” is the rotation rate of the whole vehicle (Figure 3.2). 

Since AgRover is a four-wheel-steering (4WS) robotic vehicle, there are four 

steering modes available. Among the four steering modes listed in the Table 3.2, 

coordinated steering has the highest flexibility, under which each wheel can be 

individually controlled. In this study, coordinated steering mode is selected. To simplify 

the system model, the two front wheels are assumed to have the same steering angle. The 

same assumption is made for the two rear wheels. 
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Table 3.2:  List of four steering modes 

 

All of four wheels have the same steering 

angle 

 

Only two front wheels can be steered. 

 

Only two rear wheels can be steered. 

 

Each wheel has individual steering angle 

and aiming to the same turning center.  

 

The turning centre of coordinated steering is constrained to be on the central line 

paralleled with front and rear axle, where the centre of the gravity is. In other words, 

under this particular coordinated steering mode, though each wheel has independent 

steering angle, the front and rear steering angles have the same magnitude but to opposite 

ways of direction. 



40 

 

 

 

 

Figure 3.3: Free way coordinated steering mode 

 

As displayed in Figure 3.3, the freeway steering mode, which belongs to 

coordinated steering mode, is one of the most flexible steering modes for this 4WS and 

4WD platform. The turning center is not constrained on the central line, but can be 

flexible on the 2-D surface. Though it has not been adopted and studied in this paper, but 

can be a potential option for some difficult steering circumstances, such as headland 

turning within limited area. It should present capability to solve such issues. 
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3.4 System Modelling 

3.4.1 Vehicle kinematic model 

 Vehicle kinematic model is to be studied specifically in Chapter 4, so the 

discussion in this section will be focused on vehicle dynamic model. 

3.4.2 Vehicle dynamic model 

At this research stage, roll and pitch factors such as load shift are not included in 

this paper. There are six variables including heading angle ( ), location X and Y , yaw 

rate ( r ), longitudinal velocity ( u ) and lateral velocity ( v ) were chosen as the state 

variables to build the model. The relationships among them are presented below: 

State Variables: 

                                         (3.1) 

 ,  , and    are chosen as system output : 

                                     (3.2) 

Input (control signal): 

                         (3.3) 

Because the vehicle kinematic control should be based on vehicle-fixed 

coordinate system, to unify the relationship equations, coordinates rotation and 

translation are necessary (Chen, et al, 2009).  
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Figure 3.4, Illustration of the global coordinate system and the vehicle-fixed coordinate 

system. 

 

As illustrated in Figure 3.3, X and Y are current global coordinates, and    and 

   are vehicle coordinates.    and    are the target location of the robotic vehicle in 

global coordinates. In this case, to simplify the relationship equations between different 

state vectors, the global coordinates should be converted into vehicle-fixed coordinates, 

which is a time-varying coordinate system associated with heading angle. 

As indicated in Figure 3.3, coordinate rotation matrix is: 

   
   
         
          

            (3.4) 

Define pseudo variables: 

       

   
   
   

   
   
         
          

  

  
  
  
          (3.5) 
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and                     (3.6) 

Then the state equations can be described as :   

 
 
 

 
 

      

     
   
   
   

  

 
 
 
 

         

   

   
            

  
 
 
 

  
 
 

   
   

 
 

   
 

 

   

   

 
 

 

 

 

  

   
   
   

 
     (3.7) 

Where   represents system uncertainty. 

The system state can be described as: 

 
      

               
           (3.8) 

                           (3.9) 

   

 
 

   
 

 

   

   

 
 

 

 

 

                     (3.10) 

                              (3.11) 

As defined, the control signals are: 

                  .    

Based on vehicle dynamics theory,  

if       
   

 
, then               .                (3.12) 

Otherwise, if      
   

 
,  then 

                   
   

         
  .               (3.13) 

    is the lateral force of the front tires. Similarly     is the lateral force of the 

rear tires. The lateral force is related to the side slip angle   and steering angle  . The 

relationship is: 
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   ,    

    

 
     .       (3.14) 

From the equations above, the control signals given in (3.3) can be achieved. 

In this case, CG is assumed to be at the geometric centre. It is also assumed that 

the load of the front and rear tires satisfy the equation     . On the other hand, since 

the vehicle speed in this simulation is considered to be slow, load shift from side to side 

while turning is not considered. 

 

3.5 Methods 

3.5.1 Sliding Mode Control 

The sliding mode control (SMC) approach, of variable structure control (VSC), is 

recognized as an efficient tool to design robust controllers for complex high-order 

nonlinear dynamic plant operating under uncertain conditions (Sabanovic, et al., 2004). It 

was initiated in the former Soviet Union about forty years ago. SMC methodology has 

subsequently received much attention from the international control community within 

the last two decades. The major advantage of SMC is low sensitivity to plant parameter 

variations and disturbances which eliminates the necessity of exact modeling. 

 

3.5.1.1 The concept of a “sliding mode” 

The “sliding mode” phenomenon may appear in dynamic systems governed by 

ordinary differential equations with discontinuous state functions in the right-hand sides 

(Sabanovic, et al., 2004).  

Define      a sliding manifold                          
   (3.15) 

Where   is determined by the dimension of the system control inputs.  
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The domain of the sliding mode is        ,          (3.16) 

3.5.1.2 Design procedure 

The design procedure of SMC consists of two independent sub problems of lower 

dimensions (Sabanovic, et al., 2004): 

 Design of the desired dynamics for the system of the      th order by proper 

choice of a sliding manifold    , where   is the dimension of the system. 

 Enforce sliding motion in this manifold which is equivalent to a stability problem 

of the  th order system. The switching function    was designed to make sure 

     . 

For the second step, Lyapunov stability theory is usually used to solve this 

problem. The defined Lyapunov function      must be ensured as positive definite to 

maintain the system stability, and it is also the control target. 

3.5.2 Backstepping Technique 

In control theory, backstepping is a technique for designing stabilizing controls 

for a special class of nonlinear dynamic systems (Sabanovic, et al., 2004). This recursive 

control technique decomposes a higher-dimensional system to several lower-dimensional 

subsystems. Because of the recursive structure, the designer can start the process at the 

known stable system and progressively stabilize each outer subsystem.  

The advantage of the combining SMC and backstepping methodology is that the 

controller has the merits from both of them and is able to provide the vehicle system 

stability without exact system model. Backstepping downgrades the MIMO system 

model to a lower dimensional virtual model and SMC provides robust control with 

uncertainties and disturbances. 
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3.5.3 Backstepping SMC Design 

For this AgRover path following control application, since the system is a high 

dimensional MIMO nonlinear system with some varying system factors and parameters, 

conventional control methods such as PID control are not applicable. Backstepping-based 

sliding mode control offers a promising control strategy. The design work contains two 

backstepping steps (Liu, 2005): 

3.5.3.1 Step I: 

Define state error         , where    is the reference value of the state of 

vehicle.  

                         
(3.17) 

Define        , where      is a positive constant. 

Define         , whose derivative is 

                                        (3.18) 

And Lyapunov function is chosen as: 

    
 

 
  
 ,         (3.19) 

Then 

                                       
     (3.20) 

To make sure      , i.e., to ensure the system is stable and converges to     , 

     is required.  

3.5.3.2 Step II: 

Define SMC switch function         ,    .    (3.21) 

Then define Lyapunov function:       
 

 
          (3.22). 
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Because of the positive definiteness of    is required, the control law   can be 

designed:  

                                                        

                    (3.23) 

where the control parameters      .        

The control law design in (3.20) is not unique because, besides        

          other functions, such as saturation function, relay function etc., could be 

selected to replace sign function to realize the “sliding mode” of    .  

            

      
                                             

          
                     

          
                       

          
           

                        
(3.24). 

Define    
         

 

 

   
 

 
 

 ,   and            

            
         

 

 

   
 

 
 

  
  
  
  

     
       

                  
  

     
          ,                                      (3.25) 

Then                                    (3.26) 

As long as       (positive definite),     , then the system is convergent. Thus 

     and   should satisfy: 
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                 (3.27) 

As long as the control parameters meet the in-equation requirement above, the 

system is asymptotically stable. 

 

3.6 Simulation Results 

The AgRover modelling and control simulation was done by Matlab Simulink. In 

this simulation experiment, there are three input signals: acceleration, front steering angle, 

and rear steering angle and three output signals: heading angle, X-coordinate, and Y-

coordinate. Any complex path can be decomposed into lines and curves, thus the path-

following simulation comprises three types of reference paths: straight line, circle and 

inconsistent path. 

3.6.1Tracking a straight line path 

The reference path is     with the velocity of 1.41 m/s, so the reference path 

function is: 

        
 

 
   

 
            (3.28) 

The original vehicle location is       .  
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Figure 3.5: Vehicle trajectory when tracking a straight line path 

 

 

Figure 3.6: Longitudinal velocity change when tracking a straight line path 
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Figure 3.7: Heading error when tracking a straight line path 

 

 

Figure 3.8: Vehicle acceleration during the straight line path approaching and following 

processes 
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Figure 3.9: Front and rear steering angles during the straight line path approaching and 

following processes 

 

From simulation results Figure 3.5-3.9, it is apparent that AgRover can approach 

a straight line reference path effectively and accurately. 

 

3.6.2 Tracking an inconsistent path 

In this experiment, the reference path has a step change from     to      at 

10 sec. The original location is at        and the original heading is   .  
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Figure 3.10: Vehicle trajectory when tracking an inconsistent path 

 

 

Figure 3.11: Error in Y-coordinate when tracking an inconsistent path 

The tracking trajectory is presented in Fig. 10. When observing the tracking error 

in Y-coordinate (Figure 3.11), it is obvious that there was a pulse of the tracking error at 

10 sec but the vehicle adjusted and corrected itself quickly. 
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3.6.3 Track a circle reference path 

The origin of the circular path is located at [3, 1] with a radius of 1m. 

 

Figure 3.12: Vehicle trajectory when tracking a circular path 

It is noticeable that AgRover does not simply “reach” the reference circle (Figure 

3.12). It is adjusting the heading during approaching, which effectively avoids any large 

overshoot during the tracking process.  

 

3.6.4 Robustness Test 

3.6.4.1 Step perturbation test 

To test the robustness of the controller, we intentionally changed the vehicle 

model parameters to examine the performance of the proposed controller when tracking 

an inconsistent path same as that given in section 3.6.2. 

Assume parameter perturbation happened at 5sec as follows: 
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Vehicle mass (M): 270         540 kg  

Turning moment of inertia (Izz): 157          100          

 

Figure 3.13: Vehicle trajectory when tracking an inconsistent path during parameter 

perturbation test with mass and turning moment of inertia changed.  

 

The system parameter change does not affect the performance of AgRover along 

the original reference path. However, it causes an apparent overshoot (marked with an 

oval) at where the step change of the reference path occurs. The controller adjusts 

responsively and eliminates the error within 2 seconds. 

Under off-road circumstances, friction coefficient cannot maintain as a constant, 

but a time-varying variable, which affects the cornering stiffness. For an off-road vehicle 

controller, it should have capability of overcoming cornering stiffness perturbation. 

Another robustness test was done by adding a perturbation of             on the 

cornering stiffness    ,    , which simulates the circumstance that AgRover is working 

with variable friction coefficient: 
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Figure 3.14: Vehicle trajectory during parameter perturbation test with cornering 

stiffness changed. 

 

From Figure 3.14 it can be observed that the disturbance from corner stiffness 

does not significantly affect the system tracking performance. When compared with the 

result in Figure 3.10, where no disturbance is introduced when tracking an inconsistent 

path, this sinusoidal perturbation in the cornering stiffness causes an overshoot at 11 sec 

(marked by an oval). Similar to the result presented in Figure 3.14, this overshooting 

error is corrected quickly within 2 seconds, but a small ripple type tracking error persists 

due to the sinusoidal characteristics of the disturbance in cornering stiffness.  

 

3.6.4.2 High frequency disturbance test 

To test the robustness to high frequency disturbance on the feedback, a feedback 

disturbance            was added to both X-coordinate and Y-coordinate signals, where 

              and the following results (Figure 3.15, 3.16) have been achieved: 
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Figure 3.15: Vehicle trajectory when tracking an inconsistent path with high frequency 

disturbance in feedback. 

 

 

Figure 3.16: Tracking error in Y-coordinate. 
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The results show that though the feedback signal is contaminated with external 

disturbance, the system sustains well. Figure 3.15 and Figure 3.16 depict that the 

backstepping-based SMC controller has great robustness to external disturbance. The 

influence from disturbance-caused “chattering” was observed but with a small magnitude 

(Figure 3.16). 

 

3.7 Conclusion 

The results from different path following simulation tests have revealed that 

backstepping-based SMC is an effective controller design method for the path following 

control of AgRover, which is a nonholonomic MIMO high-order nonlinear system. The 

proposed basckstepping-based SMC control does not require precise plant model and is 

robust to system uncertainties and external disturbances. Under various operational 

circumstances, the backstepping-based SMC demonstrated a great effectiveness and 

accuracy in navigational control. Through dividing the control process into two 

backstepping stages, the reference paths of various shapes can be approached correctly 

and accurately. This work has built a valuable foundation for controlling the real 

hardware system, which will be the next step of this research. Besides, the system 

complexity can be increased to include roll and pitch factors and the capability of the 

controller will be further examined. 

  



58 

 

 

 

References 

Chen, C., Li, T., Yeh, Y., Chang, C. (2009) Design and implementation of an adaptive 

sliding-mode dynamic controller for wheeled mobile robots. Mechatronics; 19(2): 

156-166. 

 

Cheng, J., Yi, J., Zhao, D., (2007) Design of a sliding mode controller for a trajectory 

tracking problem of marine vessels. Control Theory & Applications; 1(1): 233-

237.  

 

Dixon, W., De Queiroz, M., Dawson, D., Flynn, T., (2004) Adaptive tracking and 

regulation of a wheeled mobile robot with controller/update law modularity. IEEE 

Transactions on Control Systems Technology; 12(1): 138-147. 

 

Hagras, H., Callaghan, V., Colley, M., Carr-West, M., (1999) A fuzzy-genetic based 

embedded-agent approach to leaning and control in agricultural autonomous 

vehicles. Proceeding of the IEEE International Conference Robotics and 

Automation. p. 1005-1010. 

 

Gillespie, T. D., (1992) Fundamentals of vehicle dynamics. Society of Automotive 

Engineers, Inc. Warrendale. 

 

Hagras, H., Colley, M., Callaghan, V., Carr-West, M.,(2002) Online Learning and 

adaptation of autonomous mobile robots for sustainable agriculture. Autonomous 

Robot; 13(1): 37-52. 

 

Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T., (1990) A stable tracking control 

method for an autonomous mobile robot. Proceedings of the IEEE conference on 

Robotics and Automation, p. 384-389. 

 

Katupitiya, J., Eaton, R., Cole, A., Meyer, C., Rodnay, G., (2005) Automation of an 

Agricultural Tractor for Fruit Picking. Robotics and Automation: Proceedings of 

the IEEE International Conference; p. 3201-3206. 

 

Kim, D., Oh, T., (1999) Tracking control of a two-wheeled mobile robot using input-

output linearization. Control Engineer Prac; 7: 369-73. 

 

Kondo, N., (2005) Latest agricultural robots and traceability information based on robotic 

agriculture. Resource: Engineering and Technology for Sustainable World; 12(7): 

3-4. 

 

Lin, F., Shen, P., (2002) Adaptive backstepping sliding mode control for linear induction 

motor drive. IEE Proceedings- Electric Power Application; 149(3): 184-194.  

 

Liu, J., (2005) MATLAB Simulation for Sliding Mode Control: Tsinghua University 

Press. 



59 

 

 

 

 

Nejati, H., Azimifar, Z., Zamani, M., (2008) Using fast fourier transform for weed 

detection in corn fields. Proceeding of the IEEE International Conference 

Systems, Man and Cybernetics. p. 1215-1219. 

 

Sabanovic, A., Fridman, E.M., Spurgeon, S., (2004) Variable Structure Systems: from 

Principles to Implementation, IEE Control Series 66. 

 

Shen, P., Lin, F., (2005) Intelligent backstepping sliding-mode control using RBFN for 

two-axis motion control system. IEE Proceeding electrical Power Application; 

152(5): 1321-1342. 

 

Wang, S., Wang, P., (2005) Nonlinear Modeling and Analysis of Vehicle Planar Motion 

Dynamics. IEEE International Conference on Mechatronics; p. 90-95.  

 

Watanabe, T., (2004) A duck robot for weeding work on the paddy field. Proceeding of 

the First IEEE Technical Exhibition Based Conference on Robotics and 

Automation. p. 81-82 

 

Zhou, J., Zhang, M., Liu, G., Li, S., (2008) Fuzzy Control for Automatic Steering and 

Line Tracking of Agricultural Robot. Proceeding of the International Conference 

on Computer Science and Software Engineering, p. 1094-1097. 

 

 

  



60 

 

 

 

CHAPTER 4:  ROBUST NAVIGATION CONTROL 

IMPLEMENTATION AND EXPERIMENTS ON A 4WD/4WS 

ROBOTIC VEHICLE 

A paper to be submitted to Autonomous Robots 

Xuyong Tu, Lie Tang 

4.1 Abstract 

 This chapter demonstrates how to develop and implement a backstepping sliding 

mode control (SMC) controller on a 4WS and 4WD agricultural robotic vehicle. The 

experimental results demonstrated capability and robustness of the developed SMC 

navigation controller when dealing with a nonholonomic system that has a high degree of 

freedom. This Lyapunov-based controller design method has been proven using 

mathematical computations, and it performed robustly under off-road conditions. Diverse 

reference trajectories were chosen to validate the controller performance, including both 

static and dynamic performance evaluation. 

Keywords: agricultural robotic vehicle, robust control, navigation control, 

backstepping, SMC, trajectory tracking 

4.2 Introduction  

Sliding mode control has been widely applied in industrial and research 

engineering control, and it has gained considerable attention for its robustness when 

parameters are uncertain and external disturbances exist (Utkin, 1992; Hung et al., 1993; 

Young et al., 1999; Huang et al., 2003). Robustness of a control system is critical because 

of the complexity of real-world applications. There are uncertainties and time-varying 

parameters in the systems, as well as unpredictable external noise and disturbances, 
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which the controller needs to overcome. For instance, the dynamics of agricultural 

robotic vehicles are highly non-linear, coupled, and time varying. Off-road working 

conditions continuously present challenges and difficulties for the controllers to 

accommodate and cope with. Therefore, a navigation controller that is resistant to system 

uncertainties and outside disturbances is essential for an autonomous agricultural robotic 

vehicle to perform under off-road conditions. In Chapter 3, SMC was theoretically 

proved to be an effective and robust control method, but its performance has to be 

validated by field experiments. 

There have been many examples of successful outcomes in the literature. Vessel 

trajectory tracking control (Cheng et al., 2007) was accomplished using SMC. In the 

literature, some adaptive control algorithms for trajectory tracking and dynamic 

positioning of underwater robots have been proposed, such as PD adaptive control 

(Gianluca et al., 2001; Li and Lee, 2005a; Nguyen and Edwin, 2007). 

However, results of field experiments conducted with a vehicle dynamic model 

suggest that using SMC with a vehicle dynamic model requires high feedback frequency 

to reflect dynamic performance, which cannot be met by the realistic condition of the 

equipment. This issue will be discussed, with examples, later in this chapter. Therefore, 

to accommodate realistic GPS signal sampling frequency, a vehicle kinematic model was 

adopted and used in a system upper level controller design. With the revised model, the 

SMC controller presented effective and robust performance, as well as smooth and 

accurate approaching precision. Quantification error calculation and analysis was 

conducted; it is discussed later in the chapter. 
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4.3 Vehicle Modeling  

4.3.1 AgRover platform evolution overview 

As described in Chapter 1, AgRover has experienced two development phases. 

The main reason for the evolution from Gen. I to Gen. II was to lighten the weight of the 

platform and lower the center of gravity. The purpose of this redesign was to find a 

compromise between the working power provided by the steering and driving motors, 

and the mobility and maneuverability of the whole vehicle system.  

 

 

 

 

 

Figure 3.1 AgRover Gen.I 

 

 

(4.1a)                                                                                    (4.1b) 

Figure 4.1: AgRover Gen. I (4.1a) and Gen. II (4.1b) 

 

After the modification, as briefly mentioned in Chapter 2, the heavy pneumatic 

leveling system was abandoned to lower the gravity center. This measure improved the 

stability of the vehicle body. The changes from Gen. I to Gen. II can be seen in Figure 

4.1. All future references to “AgRover” mentioned in the paper refer to AgRover Gen. II, 

unless clearly marked as AgRover Gen.I. 
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Figure 4.2: AgRover Gen. I  

 

 

 

 

 

 

Figure 4.3: AgRover Gen. II three-point chassis design with pivot junction 
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To maintain off-road capability, AgRover has a three-point chassis design (Figure 

4.3), as introduced in Chapter 2, to accommodate off-road field surfaces and ensure that 

all the wheels are able to provide traction on uneven terrain.  

 

Figure 4.4: AgRover Gen. II controller structure 

 

As introduced in Chapter 1, the system control architecture is as shown in Figure 

4.4. The central controller does not need to access the motor control directly, but instead 

sends commands to each lower level controller. This architecture is able to ensure that the 

lower level control, or motor level control, is relatively fast (50 Hz) and the critical 

hardware control time is efficient.  
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Figure 4.5: The AgRover controller architecture 

 

Because the upper level controller focuses on sampling and communication with 

RTK-GPS receivers, it can guarantee that generating control signals for the motors is in 

time. In this chapter, the upper level controller, or the central controller, is introduced in 

detail. 

 

4.3.2 Vehicle kinematic model and local coordinate conversion  

Based on the preliminary experimental tests, the results of the dynamic vehicle 

model were not satisfactory; therefore, the kinematic model was adopted. According to 

the controller architecture, the upper level controller was no longer responsible for 

acceleration control, which was handled by the lower level controllers.  
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Table 4.1: Parameters and descriptions of the vehicle kinematic model 

Parameter Description 

  X coordinate in the global 2D coordinate system 

  Y coordinate in the global 2D coordinate system 

  Heading  angle between the orientation of the vehicle 

body and X axle in the global 2D coordinate system 

   Reference X coordinate in the global 2D coordinate 

system 

   Reference Y coordinate in the global 2D coordinate 

system 

   Reference heading angle of the vehicle body in the 

global 2D coordinate system 

   X coordinate in the vehicle 2D coordinate system 

   Y coordinate in the vehicle 2D coordinate system 

   Vehicle heading angle in the vehicle 2D coordinate 

system 

δ Vehicle steering angle, control variable 

  Vehicle longitudinal velocity, control variable 

  Vehicle yaw rate 

   Reference steering angle, control variable 

   Reference longitudinal velocity, control variable 

   Reference yaw rate 

  System state vector in the global coordinate system 

   System state vector in the vehicle coordinate system 

  Control input vector 

 

The first step of the controller design was to convert the global vehicle position 

coordinates into a vehicle coordinate system (see Chapter 3). As stated previously, front 

steering and coordinated steering are the selected areas to be studied. Further examination 
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regarding how to set up the vehicle system model and realize the conversion for these 

two steering modes will be presented. A “bicycle” two-wheel model will be used to 

simplify the modeling procedure and present the conversion in a straightforward manner. 

 

4.3.2.1 Front-steering kinematic model conversion 

Under front-steering mode, the robot actually worked like a conventional front-

steering car, and the yaw motion center was at the middle point of the rear axle, which 

was the same case for the robot.  

Table 4.2: Subscript in vehicle modeling 

Subscript Description 

  Variables referring to the front wheels 

  Variables referring to the rear wheels 
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Figure 4.6: AgRover under front steering mode in the global 2D coordinate system, with 

its reference coordinates and orientation. The lower figure is the current location and 

gesture of AgRover, and the upper one is the target location and gesture. 

 

As previously stated, the robot can be simplified by a two-wheel bicycle model, 

from which it is more straightforward to attain coordinate conversion from the global 2D 

coordinate system to the local vehicle coordinate system (see Figure 4.6).  
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Figure 4.7 AgRover two-wheel bicycle model under front-steering mode in the global 2D 

coordinate system, with its reference coordinates and orientation.    and    represent the 

coordinates of the reference point in the current vehicle coordinate system. 

 

In Figure 4.7, the angle between the vehicle local coordinate system       and 

the global coordinate system     is equal to the current heading angle  . The 

following relationships are obvious from the diagram (Figure 4.7): 

         ,        (4.1) 

                          ,     (4.2) 

                              .     (4.3) 

Further, the transformation matrix is defined as 
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   .      (4.4) 

Define          and            
 , and          ; the 

conversion equation is derived as follows: 

    
  
  
  

    

    
                      

                           
     (4.5) 

and 

   
   
         
          

  
    
     
    

  .      (4.6) 

The system state equation was attained in the vehicle local coordinate system as 

follows: 

  
    

        
        

          (4.7) 

                        (4.8) 

                         (4.9) 

And   
      

           
           

         (4.10) 

                             (4.11) 

                            (4.12) 

Therefore, the following simplification can be derived: 

                        (4.13) 
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                       (4.14) 

Similarly, 

                                                         

                                                    

                 

                                                       

                                 

                                                        

     

                                                        

                      (4.15) 

Given the above equations, the state function in the vehicle coordinate system was 

derived as follows: 

     
   

   
   

   

    
              
             

   

  
        
       

   
   
    
    

  
 
 
  . (4.16) 

In front-steering mode, the relationship between   and   was 

   
     

 
  ,         (4.17) 

where   was the robot wheelbase in (3.17). Therefore, the control signal for the 

steering wheel was 

          
  

 
   .       (4.18) 
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4.3.2.2 Coordinated steering kinematic model conversion 

The difference in coordinated steering is that, because the front and rear wheels 

are both steering, the yaw motion center changes from the rear axle to the geometric 

center of the chassis (Figure 4.8). 

 

Figure 4.8: AgRover under coordinated steering mode in the global 2D coordinate 

system, with its reference coordinates and orientation. The lower figure is the current 

location and gesture of AgRover, and the upper one is the target location and gesture. 
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The simplified bicycle two-wheel steering model needed be revised to account for 

the differences in steering (Figure 4.9). 

 

Figure 4.9: AgRover two-wheel bicycle model under coordinated steering mode in the 

global 2D coordinate system, with its reference coordinates and orientation.    and    

represent the coordinates of the reference point in the current vehicle coordinate system. 

 

The modeling process for    was exactly the same as for the front-steering mode; 

the state equations were  

     
   
         
          

  
    
     
    

       (4.19) 

and 
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  . (4.20) 

Because the front and rear steering angles have the same magnitude, but in 

opposite directions, the steering angles can specified as 

   
      
 
  

  
         

 
  

  .      (4.21) 

The control signal for the front and rear steering wheels is 

              
  

  
    .      (4.22) 

 

4.4 Backstepping SMC Controller Design 

The purpose of the backstepping SMC controller was to compute the solution for 

     , as well as to ensure system convergence. In other words, the ultimate goal of 

the SMC controller is to realize that in finite time,     ,      and     . In this 

controller design process, the switch function design is critical and challenging. The 

procedure to design the switch function requires a detailed discussion. 

4.4.1 An important theorem 

Theorem 1 (Wu et al., 2001; Liu, 2005). For       and      , 

                    and            .  

Proof. It can be proved under the following three circumstances: 

1) If    ,       . 

2) If          ,          
 

 
   , so              ,       . 

3) If          ,           
 

 
 , so              ,       .  
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The proved theorem plays an important role in the design of the switch function. 

 

4.4.2 Switch function design 

Sliding mode control is a Lyapunov stability theory-based controller design 

methodology, and the generation of the controller and the convergence of the system are 

both related to Lyapunov theory.  

When     , define the Lyapunov function as 

   
 

 
  
  .         (4.23) 

Assume                , and by using Eq. (4.15), we get following equation: 

                                                      

             
                     (4.24) 

               (4.25) 

          .        (4.26) 

From Theorem 1, it can be concluded that 

           
           , and            

                            

          (4.27) 

Therefore, it is guaranteed that  

      and     .        (3.28) 

Thus, if      and    is contingent to             , the state variable   is 

contingent to  . According to this conclusion, two switching functions can be designed as 

   
  
  
   

  
              

  .      (4.29) 
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The next step is to design the SMC controller and let      and     , which 

may lead to     . Meanwhile,    is contingent to             , and      and 

    . 

4.4.3 SMC controller signals 

The tasks for this step were to design the approaching law and attain controller 

output. In the SMC approaching law selection, there are several popular options, one of 

which is sign function:  

           ,     .       (4.30) 

However, sign function approaching is fast, but it is not continuous and usually 

causes chattering issues. It does not account for fast robot motion control scenarios. Thus, 

an improved continuous approaching law was adopted: 

      
 

     
 ,      .       (4.31) 

This method maintained rapid approaching speed, as sign function does, and it 

eases overshooting while penetrating the sliding surface    . 

With         
  

       
 and         

  

       
 

    
   
   
   

   
  

       

   
  

       

   
   

  
  

            

   
 

            

   

  , (4.32) 

substitute (4.13–4.15) for (4.32): 

    
   

  

       

   
  

       

   
 
 
            

     
  

        
     

  

        
         

      
   (4.33) 

Then, the control output can be attained: 
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  .  (4.34) 

If the vehicle is under front-wheel steering, the steering angle for the bicycle 

model is 

         
  

 
           (4.35) 

If coordinated steering is the case, the front and rear steering angles are 

              
  

  
          

 (4.36) 

From the development, it is proven and known that the system is contingent to the 

origin, where          , and     . The four control parameters,   ,   ,   , and 

  , affect the dynamic performance of the controller; this is investigated in the following 

discussion.  

 

4.5 Controller Implementation 

The control signals, the steering angle, and the reference velocity are calculated 

and generated by the upper level controller. However, these are not the signals that can 

directly communicate with the motors. Before talking to the lower level controllers, the 

signals have to be translated into specific control signals for all four steering motors and 

the four driving motors. Further,      are considered as known parameters in this 

discussion. 
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Table 4.3: AgRover physical information  

Description (unit) Symbol Value 

Wheelbase (cm) L 138.43 

Tread (cm) d 91.44 

Tire Diameter (cm)    55.88 

 

The basic physical specifications of AgRover, listed in Table 4.3, were used in the 

conversion from central control signals to the wheel control information. Because 

AgRover is a four-wheel-steering and four-wheel-driving platform, there are four 

available steering modes, which were introduced in Chapter 2. In the practical 

experiments presented in this paper, front steering and coordinated steering were 

examined and tested.  

Table 4.4: AgRover subscript notation 

Subscript Definition 

  Left wheels 

r Right wheels 

   Front left wheel 

   Front right wheel 

   Rear left wheel 

   Rear right wheel 
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4.5.1 Controller implementation under front steering mode 

Under front steering mode, the turning center is on the extension of the rear axle, 

and the steering angle and velocity signal for each wheel can be calculated using the 

diagram shown in Figure 4.10. 

 

Figure 4.10: Signal conversion diagram: front wheel steering mode 

 

With steering signal   given by the SMC controller, the turning center can be 

located as 

   
 

    
 .         (4.37) 

Then, the left and right wheel turning radii can be derived by 
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         (4.38) 

and 

     
 

 
  

 

    
 

 

 
 .       (4.39) 

The left steering angle is attained by 

          
 

  
         

 

     
          

 
 

    
 
 

 
 
   (4.40) 

and the right steering angle can also be provided: 

          
 

  
         

 

     
         

 
 

    
 
 

 
 
     (4.41) 

The velocity control signals for every driving motor can be attained accordingly: 

     
  

      
 ,         (4.42) 

     
  

      
 ,         (4.43) 

     
  

 
,         (4.44) 

     
  

 
.          (4.45) 

 

 

4.5.2 Controller implementation under coordinated steering mode 

Similarly, under coordinated steering mode, the turning center is on the extension 

of the line pertaining to the geometric center, parallel with the front and rear axles. Thus, 

the steering angle and velocity signal for each wheel can be calculated using the diagram 

shown in Figure 4.11. 
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Figure 4.11: Signal conversion diagram: coordinated steering mode 
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With steering signal   given by the SMC controller, the turning center can be 

located as 

   
 
  

    
 

 

     
 .        (4.46) 

The turning radii of the left and right wheels can be calculated by 

     
 

 
  

 

     
 

 

 
        (4.47) 

and 

     
 

 
  

 

     
 

 

 
  ,      (4.48) 

leading to the steering angles of each wheel, as follows: 

           
 
  

  
         

 

    
          

 
 

    
   
  ,  (4.49) 

            
 
  

  
          

 

    
           

 
 

    
   
  , (4.50) 

           
 
  

  
         

 

    
          

 
 

    
   
  ,  (4.51) 

 

            
 
  

  
          

 

    
           

 
 

    
   
  . (4.52) 

The velocities of all the wheels are attained easily: 

         
  

      
 ,        (4.53) 

         
  

      
 .        (4.43) 
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4.5.3 Controller working diagram 

Thus far, then, the controller design and all motor control command signals have 

been finished. In the vehicle operating software, a multi-threading technique is used to 

accommodate the large amount of the hardware control tasks and to handle the rapid 

sampling frequency.  

 

Figure 4.12: AgRover control loops working flow diagram 

 

 

4.6 Automatic Guidance Working Procedure 

As introduced in Chapter 1, the shift between manual mode and automatic mode 

on the AgRover has a safety redundancy design. The details regarding the automatic 

guidance working procedure are demonstrated in this section (Figure 4.13). This process 

involves a lot of realistic and practical considerations, which are critical for the AgRover 

itself and important for the operational safety of personnel and objects at the working 

site.  
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Figure 4.13: AgRover automatic guidance working procedure 

 

4.6.1 GPS-related hardware checking 

The initialization procedure, shown in Figure 4.13, takes several steps. The 

automatic guidance mode can be started after the AgRover has been fully started in a 

normal manner and it is working flawlessly, controlled by the joystick. Another 

precondition for determining whether the experiment can be executed is the status of the 

two GPS receivers. The items on the checklist for GPS receiver status is shown in Figure 

4.14.  
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Figure 4.14 Checklist for the status of the GPS receivers 

 

1) Interface status, as marked by purple circles. It indicates whether the USB interface is 

properly open. Any further procedures can be conducted only when both of the receivers 

indicate “open succeeded!” Otherwise, hardware troubleshooting is required. 

2) Converter status, as marked with orange circles. Each of the LAWICEL (Sweden) 

CAN/USB converters has its unique serial ID, and each has hardware self-checking 

capability. If an error code comes back and displays “Status,” a malfunction or 

disoperation has occurred. 

3) Signal quality and working mode, as marked with green circles. Because it is a precise 

automatic navigation experiment, both of the GPS receivers are required to be working 
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under “3D RTK” mode, as indicated in Figure 4.14. Multiple factors could cause the GPS 

receiver not to work properly. One of the common possibilities is that the mobile GPS 

signal is shadowed, or the communication from the base station is blocked.  

4) Latitude and longitude data, as marked with yellow circles. The data from the base station 

is readable and can be compared with the two receivers from the AgRover. With the 

1.38m wheelbase, it can be roughly determined whether they are collecting reasonable 

data.  

After these checks are completed, it is safe to start collecting and using the 

data from the two GPS receivers by clicking the button “Start recording” (marked in 

red). The button text changes to “Stop recording” during the trial, which can be used 

as an emergency button while the trajectory tracking is proceeding. The GPS data is 

stored temporarily in the computer’s RAM memory. The program creates and writes 

the data to a log file after the trial is completed. 

 

4.6.2 Origin setting and initial vehicle information collection 

Although the AgRover was powered by deep-cycle batteries, the power was not 

sufficient for the robot to work continuously for several hours. Due to the drifting GPS 

signal issue, which happened occasionally, it was helpful to survey the initial position of 

the robot at the beginning of each trial to ensure experimental accuracy. In the 

experiments presented in this paper, the initial location of the AgRover on the GPS UTM 

coordinate system was considered the origin of the virtual coordinate system, which was 

also used for reference path and waypoint creation. This coordinate survey directly 

affects experimental accuracy. 
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4.6.2.1 Origin survey under front-steering mode 

 Under front-steering mode, the origin was set at the center of the real axle; 

therefore, the stabilized location of the rear GPS receiver was used as the origin. The   

axis and   axis were parallel to their counterparts in the UTM coordinate system. Thus, 

initial heading angle   can be derived from the data received by the front and rear GPS 

receivers (Figure 4.15).   

 
Figure 4.15: Initialization of the origin and the vehicle’s original heading under front 

steering mode 

 

4.6.2.2 Origin survey under coordinated steering mode 

The survey process was similar under coordinated steering mode, and the heading 

calculation is the same as that of front-wheel steering. However, the origin is set at the 

geometric center of the vehicle, rather than the rear (Figure 4.16). This is due to the 

ability of both the front and rear wheels to steer at the same time and the center of the 

vehicle being the yaw center. 
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Figure 4.16: Initialization of the origin and the vehicle original heading under 

coordinated steering mode 

 

4.6.2.3 Origin setting 

After the GPS data is ready and settled, the origin can be manually set by clicking 

the “Set” button on the interface window.  

 

4.6.3 Reference path setting and waypoint selection 

4.6.3.1 Reference path creation 

Under the newly created local coordinate system, it was possible to map the 

reference path. Basic information about the reference path was defined on the robot 

control software interface. The software provided flexibility of the reference path setting, 

which improved working efficiency while working in the field. The example shown in 

Figure 4.17 demonstrates how to define a circle-shaped reference path with radius and 

velocity. 
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Figure 4.17: An example of a circle reference path setting on the AgRover: “R” denotes 

the turning radius of the reference circle and “Vr” denotes the longitudinal velocity of 

the AgRover on the circle.  

 

4.6.3.2 Waypoint selection 

As the vehicle’s initial location and heading were defined in a new vehicle-based 

coordinate system, the reference path could be determined from the basic information 

offered by the software interface window. However, for practical trajectory tracking, it is 

not realistic to select the closest point on the reference path as the target. Because the 

designed SMC controller is sensitive to the system errors,   ,     and   , it would try 

hard to reach the target with all of the error contingent to zero. However, the realistic 

hardware working limit and delay might lead to an endless vibration in the vehicle 

system, and the target would never be reached in finite time. To accommodate this issue 

and provide a reasonable approach and tracking plan, a waypoint selection mechanism 

was proposed. 

With the provided reference path information, the waypoints were generated and 

used by the SMC controller algorithm. A mechanism regarding how and when to select 

an appropriate waypoint to provide promising trajectory tracking performance was 

developed; Figure 4.18 helps explain this procedure. 
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Figure 4.18: Waypoint generations and selection diagram: the red dashed curve is the 

reference path; there are several waypoints (  ,     and   ) on the red path.  

 

As shown in Figure 4.18, the dashed   ,   , and    lines are vertical to the 

connections between the waypoints, and they divide the area into   ,     and    (three 

phases). The step length,      between the waypoints was   , and it should be      on 

the straight-line reference path. If the AgRover was approaching the reference path, it 

started from approaching   . However, during this process, once the controller detected 

that the vehicle already exceeded   , and no longer stayed in    but entered into   , 

  was replaced by    as the target waypoint. This algorithm is further explained in the 

following section. 
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4.6.4 Implementation of waypoint updating mechanism 

To realize the mechanism defined above in the AgRover controller, a 

corresponding algorithm was developed. Based on each waypoint as an origin, a sub-

coordinate system was built up. While the robot approaches one of the waypoints, the 

coordinates of the robot location in that coordinate system are calculated. Once the robot 

has been detected across the vertical line, even though the target waypoint has not been 

reached, it has to be replaced with the next waypoint instead. The procedure is explained 

further in Figure 4.19. 

 

Figure 4.19: Waypoint update mechanism diagram: Ag_1 and Ag_2 represent the two 

statuses of the AgRover while it approaches     .        ,      and        are the 

calculated heading angles that will be implemented in the lower level controllers.  
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As AgRover was at      and operating in the       phase, the vehicle was located 

at the left side of the virtual      axis, and there is no doubt that the      coordinate of 

     at the                 coordinate system is negative. The target waypoint 

continued as      in this case. 

When AgRover moved to     , however, it was operating under another 

condition. To clarify the problem, it was necessary to calculate the      coordinate under 

the           coordinate system: 

                                               .  (4.44) 

It could be concluded from the last equation that the AgRover was at the right 

side of the virtual      axis, so the target waypoints needed to be updated from      to 

  . Likewise, target heading angle      for the lower level controllers to execute, had to 

be updated as    
 . Thus, the same calculation was performed again to make sure        

                                       (4.45) 

        
  .         (4.46) 

If condition       still existed, then the target waypoint kept updating by       

The difference between (3.44) and (3.45) is that the slope angle of    axis  

   
       

 
  .        (4.47) 

However, to apply to the first and last waypoints, the slope angle is consistent as 

the reference heading angle: 

      ,      .        (4.48) 

Thus, the preparation at the reference path and waypoints has been accomplished. 
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4.6.5 Safety redundancy design 

The scope of the safety design is a large one, which is very important for 

experimental platform design. It includes mechanical safety design, electrical safety 

design, and operational and maintenance safety design. As introduced in Chapter 2, 

mechanical and electrical safety was involved in the AgRover design. In this section, 

operational safety, especially operation emergency stop under automatic navigation 

mode, will be presented and discussed. It was mentioned in the automatic navigation 

working procedure, represented by the stop sign in Figure 4.13. 

4.6.5.1 Self-diagnosed emergency stop 

As introduced in Chapter 2, the AgRover had self-diagnosis capability under the 

manual control mode, and it was also valid under the automatic navigation mode. To 

enhance hardware safety, an RTK-GPS signal was involved and contributed to safety 

design. The circumstances that can cause emergency stop are summarized in Table 4.5. 

Table 4.5: Self-diagnosed situations that might lead to emergency stop 

No. Description Reaction 

1) Steering motor or encoder failure AgRover stop and alarm on 

2) Driving motor or encoder failure AgRover stop and alarm on 

3) One or more wheels stuck AgRover stop and alarm on 

4) Battery power low AgRover stop and alarm on 

5) Wireless communication with PC 

dropped 

AgRover stop and alarm on 

6) GPS signal shaded or quality fails AgRover stop 

7) Waypoint is invalid as defined AgRover stop 
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The circumstances listed in Table 4.5 are all realistic situations that occurred 

during the previous study and experiments conducted by the author. All of them played 

important roles in protecting the AgRover and nearby personnel. 

4.6.5.2 Mandatory emergency stop 

The AgRover had a strong self-protection mechanism. However, there were still 

numerous possibilities wherein unpredictable mistakes or external interrupts could occur 

under automatic navigation, which needed to be prevented. Especially while in controller 

troubleshooting and debugging mode, the robot did not have the ability to indicate any 

setting mistakes. Moreover, when the hardware limit was at risk of being exceeded, the 

AgRover had to be forced to stop before anything worse could occur. There were 

multiple options to stop the robot, which are introduced in this section. 

 

4.6.5.2.1 Emergency stop on AgRover operation interface 

 

Figure 4.20: Emergency buttons on the AgRover operation interface 

 

Either “Auto” or “Stop Recording” could stop the automatic navigation mode 

from “working” to “idle.” However, these two options were only able to work if the 

wireless remote desktop was still accessible and the software was working properly. 
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4.6.5.2.2 Emergency stop on remote monitoring station 

The stop buttons on the joysticks were usually handled by the index finger; this 

was actually the easiest way to stop the vehicle. After the vehicle fully stopped, the 

working mode and the motors could all be reset with the “Motor reset” button. 

There were also two buttons on the remote monitoring software interface that 

could perform an emergency stop—“Emergency Brake” and “Automatic” (marked on 

Figure 4.21). Either of these buttons could stop the automatic working cycle and return 

the robot to manual control mode.  

 

Figure 4.21: Emergency stop buttons on the PC remote monitoring software 

 

4.7 Results and Discussion 

4.7.1 Controller Parameter Setting 

As derived in Section 4.4, the control signal output of the SMC controller was 

   
 
 
   

               
  

       

   
  

        
     

  
        

           
  

       

  
  

        
   

 . (4.49) 
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The functionalities of the four control parameters were different, but they were 

coupled, affecting the dynamic performance of the control result. 

Table 4.6: Functionalities of control parameters 

Affected signal Parameter Functionality 

     Determine approaching speed to             

   Consistency when penetrating sliding surface      

     Determine approaching speed to           

                     

   Consistency when penetrating sliding surface      

 

From Table 4.6, it can be concluded that    and    were critical to the system 

approaching speed to the zero point, and that    and    were sensitive to the system 

dynamic performance while the robot was working within the target trajectory 

neighborhood. Because the convergence of the system was proven in Section 4.4, there 

was no concern that the value of the control parameters might destroy the system's global 

stability. However, the dynamic performance variance within finite time by different 

control parameters still needed to be investigated.  

 

Figure 4.22: Control parameter setting on AgRover operation interface  
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Although the relationship between the control signal and parameters appeared to 

be independent in Equation (4.49), the coupled relationship among the system state 

variables made the system a high-dimensional MIMO nonlinear system. It was difficult 

to study the sensitivity of each parameter to the system dynamic performance 

theoretically. SMC had already proved its robust capability, which instilled confidence in 

the subsequent off-road experiments.  

All of the trajectories could be decomposed by straight lines, curves, and circles, 

where curves could be treated as special circle parts. Therefore, straight lines, circle 

curves, and their combinations were usually chosen as reference trajectories to validate 

the effectiveness of a controller. In the following discussion, each of the cases is studied 

and results are presented. 

 

4.7.2 Straight-line trajectory tracking 

Straight-line trajectory was a common case if the AgRover was required to follow 

a crop row in a field. As assumed and shown in Figure 4.27, on the virtual coordinate 

system, the robot was parked at the origin      , and the initial heading angle was 

     . The start point of the straight line was               , and the slope angle was 

     . Therefore, the initial orientation of the AgRover was almost parallel to the path. 

In this case, the AgRover was working under front-steering mode. 
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Figure 4.23: Straight-line reference trajectory and initial location and heading of 

AgRover  

 

After running SMC automatic navigation with the AgRover, the tracking 

trajectory shown in Figure 4.24 was attained. 
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Figure 4.24: Straight-line trajectory tracking result under front-steering mode  

 

The average tracking velocity on the line was         . To investigate the 

dynamic performance, the offset error shown in Figure 4.25 was observed. 
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Figure 4.25: Offset error of straight-line trajectory tracking under front-steering mode 

 

The root mean square error (RMSE) of this straight-line trajectory tracking was 

       . The working performance of this tracking trial was promising. 

 

4.7.3 Circle trajectory tracking 

Circle trajectory was another common example of field operation. It existed in 

various turning scenarios, such as on-road/off-road turning and headland turning. 

Because any complex curve can be decomposed into combinations of circles, a 

satisfactory circle-turning performance was required for the capability of complex 

trajectories.   

As illustrated in Figure 4.30, on the virtual coordinate system, the robot was 

assumed parked at the origin      , and the initial heading angle was         . The start 
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point of the circle was          , with a turning radius of     , and the center of the 

circle was              . The AgRover was working under coordinated steering mode, 

which had an advantage on the sensitivity of the heading angle. 

 

Figure 4.26: Circle reference trajectory and initial location and heading of AgRover  

By running the SMC controller with the coordinated steering model, the tracking 

trajectory showed in Figure 4.27 was achieved. 

 

Figure 4.27: Circle trajectory tracking result under coordinated steering mode  
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The approaching process of the coordinated steering was smooth and accurate. To 

be able to assess the details of the dynamic approaching performance, the offset error, 

shown in Figure 4.32, was observed as well. 

 

Figure 4.28: Offset error of circle trajectory tracking under coordinated steering mode. 

 

The average velocity on the circle was        , and the RMSE was       . 

 

4.7.4 “ ”-shaped trajectory tracking 

Based on the experience of circle trajectory tracking, it was reasonable to see the 

tracking performance when the reference trajectory had two circles side by side. Under 

the assumption, the AgRover was originally at origin      , and the initial heading angle 

was     . The start point of the circle was             , with a radius of     , and the 

center of the circle was          . The other circle was tangential to the first one, with 

the same radius        , and the center was at         . The AgRover was working 

under coordinated steering mode. 
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Figure 4.29: “ ”reference trajectory and initial location and heading of AgRover  

 

 

Figure 4.30: “ ” trajectory tracking result under coordinated steering mode  
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Figure 4.31: Offset error of “ ” trajectory tracking under coordinated steering mode 

 

The RSME on the trajectory was       , and the average velocity was         . 

4.7.5 Complex trajectory tracking 

The “U” turn is a common headland turning circumstance that contains straight 

lines and curves. To finish this type of complex trajectory, a “hybrid” steering mode was 

proposed and adopted, in which the AgRover worked under front steering on the straight 

lines and under coordinated steering on the curves. The AgRover was originally at origin 

     , and the initial heading angle was      .  
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Figure 4.32: “ ” reference trajectory and initial location and heading of AgRover  
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Figure 4.33: “Hybrid” turning mode performance in a U-turn trajectory 

 

The curve turning radius was      . The RSME on the straight lines were        

and         respectively, and it was        on the curve. The average speed was 

         on the reference trajectory.  
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4.8 Conclusions 

 

SMC was proven to be an effective tool, both theoretically and practically. It was 

studied and investigated by previous research work and in this chapter as well. It was 

successfully implemented on the AgRover to accomplish automatic navigation control of 

trajectory tracking tasks. The quantified experimental results of the field experiments 

were promising and impressive.  

However, SMC is not perfect. The error rate was consistently between      and 

    , which could be improved. It is expected that with improved hardware 

responsiveness and sampling frequency, the controller performance could be improved 

correspondingly. The “chattering” issue existed in most of the experiment results, which 

was shown in the tracking trajectory. Improved adaptive control and fuzzy logic control 

can help and it can be implemented with an SMC controller to solve and ease this issue. 

The control parameters were sensitive to the system dynamic performance. In addition, 

computing the sensitivity and the relationship among individual control parameters could 

be a potential research interest.  

In conclusion, SMC performed well in AgRover off-road tests. It showed the 

potential to adopt a vehicle dynamic model to the controller design if the hardware and 

feedback capability allows. It is predictable that with computer and electronic technology 

development, SMC will be able to play an important role in autonomous agricultural 

vehicle navigation control. 
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CHAPTER 5: HEADLAND TURNING OPTIMIZATION FOR 

AGRICULTURAL VEHICLES 

A paper to be submitted to the Transactions of the ASABE 

Xuyong Tu, Lie Tang 

5.1 Abstract 

 An essential part of agricultural vehicle navigation control and field coverage 

path-planning process, agricultural vehicle headland turning is a process that has given 

initial and final conditions. It should be conducted in a manner that minimizes time and 

travel, in order to maximize operational efficiency. To optimize and automate the turning 

process, vehicle technical specifications and headland topographic features should be 

considered and respected. However, it is challenging to solve this dynamic nonlinear 

optimization problem with traditional indirect numerical methods. Improved computer 

technologies provide the possibility and capability to use direct numerical methods to 

solve such a problem in restricted parameter spaces with constraints. By using 

optimization software such as TOMLAB
®
, simulation results were generated for diverse 

circumstances of the tractor/trailer headland-turning scenario.   

Keywords: headland turning optimization, trajectory optimization, direct 

numerical methods, agricultural vehicles 

5.2 Introduction 

By January 2013, there were 2,286,736 farms with 400,830,068 planted acres 

across the United States (Farm Service Agency, USDA, Jan. 2013), which is a dramatic 

increase from 242,609,961 acres in 2007. However, the number of hired farm workers 

(which make up one-third of all those working on farms) has held relatively steady, from 
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1,032,000 in 2007 to 1,062,000 in 2012 (Farm Labor Survey [FLS], USDA). To improve 

operational efficiency and realize better farm economy, agricultural automation is 

absolutely required and expected.   

With the tremendous development of unmanned technology in modern agriculture, 

automated path planning plays an important role in agricultural field operation, and 

agricultural vehicle headland turning is a significant part of this process. The headland 

turning process should be conducted in a minimum amount time and travel within 

restricted off-road conditions (Jin, 2009). The optimization of headland-turning control 

can help substantially improve time and fuel efficiency and maximize field use efficiency, 

and it might simply affect the generation of the planned path. Therefore, to improve the 

field efficiency of auto-steer mobile agricultural field equipment, optimization of their 

headland-turning trajectory is of great interest to agricultural equipment manufacturers. 

However, the difficulties of headland-turning optimization are also obvious. The off-road 

vehicle model is complex and nonlinear; therefore, well-developed linear optimization 

algorithms are not able to solve the problem (Oksanen, 2004). In addition, attached 

trailers increase the complexity of the model and make the dynamic nonlinear problem 

more challenging to solve. 

The numerical solutions to the trajectory optimization problem can be categorized 

into two approaches—indirect methods and direct methods (Conway, 2012). Indirect 

solutions use analytical necessary conditions from the calculus of variations, which 

requires the addition of the co-state variables of the problem. However, when using 

indirect methods, the derivation of the necessary conditions, including differential 

equations, boundary conditions, and path constraints, is usually a complicated 
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mathematical procedure. A minor change in any of these constraints can cause 

considerable amounts of computation, even with the help of software such as POST
®
 

(Program to Optimize Simulated Trajectories; Sierra Engineering Inc., Carson City, NV) 

or GTS (Geostatistical Temporal-Spatial algorithm; The Aerospace Corporation, El 

Segundo, CA). Conversely, direct solutions convert such types of optimization problems 

into a nonlinear programming (NLP) problem, which transcribes a continuous optimal 

control problem into a parameter optimization problem (Conway and Paris, 2011; Ross 

and Fahroo, 2003; Fahroo and Ross, 2002). An NLP method integrates the system 

equations stepwise, using either implicit or explicit rules. Compared to indirect methods, 

considerable advancements have been made in direct methods over the last decade 

(Conway, 2012). Commercial software packages, such as TOMLAB
® 

(Tomlab, 

Stockholm, Sweden), DIDO
®
 (Elissar Global, Carmel, CA), and SOCS

®
 (Boeing, Seattle, 

WA), are available to facilitate the implementation of direct methods for solving optimal 

control problems. Therefore, the exploration of applying direct methods to agricultural 

field equipment headland-turning trajectory optimization represents a potential significant 

contribution toward this long-standing problem, which is important to both our research 

community and the equipment industry. 

In this paper, a framework for tractor headland-turning optimal control is 

provided. The presented optimal headland-turning research was restricted to a 2-D plane. 

This study investigated the following three models: 1) tractor only, 2) tractor-implement, 

and 3) tractor-implement-implement. The minimum-time optimal control problem of 

headland turning in the three different models was studied and discussed. The 

optimization simulation was conducted using MATLAB with a TOMLAB
 
toolbox.   
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5.3 Research Question Statement 

The headland-turning problem could be described by the schematic shown in 

Figure 5.1, where the areas outside of the headland are considered a “prohibited area.” 

Because it was assumed that the situation was known, the basic information about the 

environment and the vehicle was also considered as known, and it was the basis of the 

future discussion. 

 

Figure 5.1: Headland turning schematic 

 

As illustrated in the schematic (Figure 5.1), the headland was located between the 

two prohibited areas, where the borders were assumed to be parallel straight lines. D 

denotes the width, and the angle between the border and the orthogonal direction of the 

path is denoted as β. The vehicle was supposed to go from the initial point,   , to the 
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final point,   , both located on the lower border line. The initial heading angle, ψ1, and 

the final heading angle, ψ2, were lined up with the vehicle infield paths, but they were of 

opposite orientations. During the turning process, the trajectory was restricted to the 

headland area, which meant that the vehicle was not allowed to traverse into the 

prohibited areas. 

Some of the diverse optimization objectives associated with this scenario are: 

 Minimum time with fixed velocity 

 Minimum time with variable velocity 

 Minimum fuel consumption with open time 

 Shortest trajectory with fixed time 

In this study, minimum time problems with fixed and variable velocities were 

selected as the optimization objectives and investigated. A time-optimal control 

framework was established, and the steering control sequence was designed accordingly. 

 

5.4 System Modeling 

5.4.1 Optimal Headland-Turning Problem Formulation 

Based on the description in Section 5.3, the initial and final conditions were 

mapped on a two-dimensional coordinate system, where the initial point was set as the 

origin of the coordinate system, and the initial heading,   , was considered the direction 

of the Y axis.  
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Table 5.1: Parameters used in Headland Turning Optimization modeling. 

Parameters Description (unit) 

D Headland width (m) 

d Row width (m) 

β Angle of headland boundary (rad) 

Ψ Heading angle of vehicle (rad) 

 

All parameters described in Table 5.1 are further depicted in Figure 5.2. One of 

the assumptions of the model was that the edges of the headland were considered to be 

two parallel straight lines. This concept is applied and discussed throughout this paper. 

 

Figure 5.2: Virtual coordinate system 

 

The original position of the headland-turning process was set at the origin of the 

XY coordinate system. Thus, the initial condition could be stated as 
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   ,     (5.1) 

and the final condition could be stated as 

 
        

 

 

                       
  .     (5.2) 

As indicated in Figure 4.2, the working area was restricted by two parallel straight 

lines, which were defined as 

 
          

          
 

    
   

  .      (5.3) 

These inequalities were considered to be constraint conditions. Some other 

constraints, such as steering angle limit (            ) and constant velocity 

(       ), were also considered in the optimization process.  

 Further, the constraints were summarized as 

 

            

          

          
 

    
   

   .     (5.4) 

Thus, all initial, final conditions and constraints of this headland-turning 

trajectory optimization problem were formulated mathematically. The next step is vehicle 

modeling.  

5.4.2 Tractor Kinematic Modeling 

The farm tractor is one of the most common agricultural vehicles in daily field 

operations. In this study, the tractor and its implements were chosen as the prototypical 

example for the headland-turning optimization problem. Thus, front-wheel steering was 
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the designated steering mode in the vehicle modeling. A schematic tractor model was 

mapped onto a two-dimensional world coordinate system, shown in Figure 5.3. 

 

Figure 5.3: Schematic representation of a tractor in a two-dimensional coordinate 

system 

 

In the headland-turning scenario, the tractor is usually driving at a relatively low 

speed to avoid an under-steering situation and reduce vibration. With this assumption, the 

system states had little transition during the turning process, and the fidelity of vehicle 

dynamics could be compromised and ignored. According to the vehicle system modeling, 

the kinematic model was the most appropriate model to be adopted and applied. In a 

vehicle kinematic model, the steering tires are assumed to be traveling in the direction 

they are facing. In addition, the responses of a vehicle to a steering input are determined 
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only by the geometric parameters. The four-wheel farm tractor model can be simplified 

and converted to a two-wheel “bicycle” model (Figure 5.4). 

 

Figure 5.4: Top view of a tractor modeled as a bicycle, with geometric variables labeled  

 

Given that there were no vehicle dynamic factors in this modeling,   

                 (5.5) 

and 

         ,        (5.6) 

where u was the vehicle longitudinal velocity and Ψ was the vehicle heading 

angle (the angle between the world coordinate x-axis and the vehicle longitudinal axis, as 

depicted in Figure 5.4).  
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Because front steering was the only steering mode, the yaw rate (derivative of 

heading angle) of the vehicle had a triangular function relationship with the steering 

angle: 

     
     

 
 .        (5.7) 

The steering angle δ had to stay within the range of hardware limit: 

              .       (5.8) 

In this study, it was defined that turning left is positive steering and turning right 

is negative steering. Besides steering, acceleration of the vehicle’s velocity was 

considered another system control input: 

     .         (5.9) 

The velocity and acceleration had boundaries and could be described as 

                    (5.10) 

and 

             .       (5.11) 

Thus, there were two control signals—steering angle, δ, and longitudinal 

acceleration,  . Thus, it was a system that had two degrees of freedom. The state 

variables,         were considered to be system output. The system vector, Χ, was 

defined as 

   

  
  
  
  

    

 
 
 
 

  .       (5.12) 

Then, the system state function was derived as 
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 ,      (5.13) 

assuming that velocity,   , was a constant. Because this optimization problem was 

a minimum time problem, the cost function should be 

           
  
  

     
 

     
 

  
  

   .     (5.14) 

 Thus, the problem frame has been established.  

 

5.4.2 Tractor-implement Kinematic Modeling 

Similar to the tractor model, tractor-implement models have been proposed in the 

literature for either off-road (Bell, 1999; Feng et al., 2005) or on-road (El-Gindy, 1989; 

Torishu et al. 1992; Deng and Kang, 2003) operations. In this study, a single-axle towed 

implement was considered the only implement model in further research. A top view of a 

generic tractor-implement combination is presented in Figure 5.5.  
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Figure 5.5: A tractor-implement combination in a two-dimensional coordinate system 

 

 

Figure 5.6: Top view of a tractor-implement model with geometric variables labeled in a 

two-dimensional coordinate system 
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A top view of a tractor-implement model with geometric variables labeled in a 2D 

coordinate system is presented in Figure 5.7. For the convenience of further discussion, 

subscript notations were used to specify whether the variable was related to the tractor or 

to the implement, specifying the coordinate axis to which the variable corresponds.  

Table 5.2: Subscript notations for the vehicle dynamics variables. 

Subscript Description 

t Tractor 

i Implement 

 

The velocity of the tractor affects the tractor’s GC coordinates:   

            ,        (5.15) 

            ,        (5.16) 

where u is the vehicle longitudinal velocity and    is the tractor heading angle. 

Similar to the tractor-only model, the yaw rate is 

  
     

       

  
,        (5.17) 

where steering angle    is one of the system control inputs. Tractor acceleration is 

considered to be the other control input of the system: 

       .        (5.18) 

Because the single-axle implement is a passive object in this combination, the 

velocity and heading angle of the implement are passive variables, depending on tractor 

velocity   , heading     and having a one-order relationship with tractor steering angle   :  

         ,        (5.19) 

                .       (5.20) 
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Thus, the model of the implement could be described as 

                              ,     (5.21) 

                              ,     (5.22) 

  
     

       

  
  

                        
  
  

             
   
 (5.23) 

Therefore , 

                    
       

  
 

            

  
                          

  
                

  
 

  
            

  
 .      (5.24) 

 

In summary, there are two control signals—steering angle       and 

longitudinal acceleration      . The state variables                                       
 are 

considered to be system output. The system vector, Χ, is defined as 

  

 
 
 
 
 
 
 
 
  
  
  
  
  
  
  
   
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 
  
  
  

  
  
  
  

   
 
 
 
 
 
 
 

 .       (5.25) 

Then, the system state equations are derived as 

        

 
 
 
 
 
 
 
 
   
   
   
   
   
   
  
   
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
   
   

  
 

   
   
   

  
   

 

 
 
 
 
 
 
 
 
 

       (5.26) 

and 
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.  (5.27) 

The model indicates that the tractor-trailer combination was a two-order and 

eight-dimensional system. The description of   
  and     implied that the motion of the 

implement was affected by the heading angles and velocities of both the tractor and the 

implement itself. Although it was still a two-DOF system, the complexity of the system 

was increased.  

5.4.3 Tractor-implement-implement Kinematic Modeling 

In agricultural farm operation, two implements might be needed to do individual 

tasks in series, such as pre-seeding processing and fertilizing. The tractor-implement-



124 

 

 

 

implement scenario (Figure 5.7) was considered in this headland-turning optimization 

research.  

 

Figure 5.7: A tractor-implement-implement combination in a two-dimensional 

coordinate system 

 

 

Figure 5.8: Top view of a tractor-implement-implement model, with geometric variables 

labeled, in a two-dimensional coordinate system 
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Table 5.3: Subscript notations for the vehicle dynamics variables. 

Subscript Description 

t Tractor 

i1 Implement 1 

i2 Implement 2 

 

In summary, there were still two control signals for the vehicle system—steering 

angle       and longitudinal acceleration      . However, the system dimension was 

increased from 8 to 12, due to the addition of a second implement. The state variables 

                                                                 
  were considered to be system 

state variables.  

From single implement modeling, it was known that: 

            ,      (5.28) 

                  ,      (5.29) 

                                    ,    (5.30) 

                                    ,    (5.31) 

   
      

         

   
  

                          

   
 

              

   
,  (5.32) 

and 

                      
       

  
 

             

   
                       

     
  

                 

  
 

  
             

   
 .     (5.33) 

Based on the known equations, it was possible to solve the derivatives of the 

second implement as follows:  

                   (5.34) 
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System vector Χ was defined as 
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Then, the system state function was derived: 
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  (5.43) 

According to the equations, the combination was a 12-dimensional system. 
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5.5 Results and Discussion 

The philosophy behind direct methods was to discrete the problem in time and 

approximate the states and controls in these time intervals. The optimal control problem 

(OCP) then was converted to a nonlinear programming (NLP) problem, which could be 

solved effectively with numerical tools. In this chapter, the tractor and implement models 

mentioned previously were used in various headland-turning scenarios, and the 

simulation results are presented. The TOMLAB/SNOPT toolbox was adopted to generate 

these regional optimal solutions. TOMLAB/SNOPT is a direct collocation nonlinear 

programming (DCNLP) toolbox, which can be executed with MATLAB, Visual Studio, 

SQL, and other compiling environments. The specialty of this toolbox is that it is able to 

cope with high-dimensional nonlinear systems and provide local optimization solutions. 

The discussion is based on a simple example of a symmetric light bulb turn and is 

extended to more complicated scenarios, such as a fishtail turn (Figure 5.9). Tractor-

implement combinations were considered and investigated in the optimization as well. 

 

Figure 5.9: Two different headland-turning modes—bulb turn and fishtail turn 
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5.5.1 An Example: Symmetric Bulb Turn 

Agricultural vehicles are commonly built in large dimensions to carry big and 

heavy motors and implements, to accommodate tough off-road environments. However, 

to improve land efficiency, the width between the working rows are sometimes narrow, 

which makes it difficult for vehicles to make a “U” turn to get to the next path. The “bulb” 

turn is a usual turning mode used when the minimum turning diameter of the tractor is 

greater than the path width. The turning process can be divided into three phases. At the 

beginning of the research, a tractor-only model was chosen for further study. The fixed 

vehicle parameters and the restricted area constraints are shown in Table 4.4.  

Table 5.4: Fixed vehicle parameters and restricted area constraints 

Vehicle parameters 

Description (Unit) Symbol in the model Value/Range 

Wheelbase (m) L 1.85 

Initial heading of the tractor 

(rad) 

    
   

Final heading of the tractor 

(rad) 

     
   

Steering angle (rad) δ               

Headland width (m) D 6.5 

Headland boundary angle (rad) β 0 

Row width (m) d 5.0 

Constant vehicle velocity (m/s) u 2.0 

As shown in Table 5.4, to simplify the complexity and prove the effectiveness of 

the toolbox, the vehicle was working under a constant velocity during the complete 

turning process, from the initial position to the final position. The headland boundary was 

vertical to the reference path, which implied that the headland angle was 0. Thus, the 
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optimal time cost problem was equivalent to a shortest trajectory problem. The 

simulation results are presented in Figures 5.10 and 5.11.  

 

Figure 5.10: Trajectory of a tractor bulb turn in minimum-time headland-turning 

optimization with constant velocity 

 

In this simplified scenario, there was no implement attached, so the trajectory of 

the tractor is the only focus. Because the velocity was considered constant, the steering 

angle was the only control signal of the system. The system states and control during the 

turning process are displayed in Figure 5.11. 
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Figure 5.11: States and control of a tractor bulb turn in minimum-time headland-turning 

optimization with constant velocity 

 

The optimal time cost obtained from the simulation was 8.048 seconds. The three 

“phases” can be seen clearly by the steering angle control plot. The tractor was steering 

left at the beginning, then right, following a “bulb” shape, turning and finally steering 

left, finishing the trajectory. Because the problem could be considered to be a shortest 

trajectory problem with constant velocity, it could be computed by geometric analytical 

methods.  

The minimum turning radius was obtained from the wheelbase and maximum 

steering angle of the tractor: 

  
 

      
    .        (5.44) 
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The minimum turning diameter could be derived as         , which means 

that a U-turn could not be accomplished, and the tractor had to make a bulb turn. Based 

on the known and derived information, the geometric solution was applied (Figure 5.12). 

 

 

Figure 5.12: A geometric solution of shortest trajectory of a tractor symmetric bulb turn  

 

As presented in Figure 5.12, the optimal trajectory was composed of three curves: 

   ,    , and    . They were from three circles with radii of 3.2 m, which were tangent to 

one another. The proof of why this trajectory was the optimal solution for the minimum 

time problem is omitted. Because the initial heading and final heading are 
 

 
 and   

 

 
 , 

two of the circles were tangent to the lines     and     , and the other one was 



133 

 

 

 

tangent to both of them; the center was on the line of      . By geometric calculation, 

the centers of    ,    , and     were computed as         ,           , and        , 

respectively.  

Due to the tangential relationship of the three circles, the tangent points were 

located at              and            , respectively (as denoted by red circles in 

Figure 5.12). The curvature of     and     was derived by 

                                          (5.45) 

The arc length of     and     was 

                       .      (5.46) 

Obviously,                , so the curvature of     was 

                            (5.47) 

and the arc length of     was                          .  (5.48) 

Hence, the length of the trajectory could be achieved: 

                                     (5.49) 

 Because the tractor velocity was constantly      , the analytical optimal turning 

time for this problem was 

     
    

   
                  

            .   (5.50) 

 The coordinates of the top point (denoted by the yellow circle in Figure 5.12) 

were derived as           . This implied that under the setting scenario, one of the 

essential conditions was that the headland width must meet         . 
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Table 5.5: Comparison of Minimum Time Optimization results of DCNLP and analytical 

methods 
DCNLP result (sec) Analytical result (sec) Error (sec) Error percentage 

8.048 8.052 0.004 0.05 % 

 Based on Table 5.5, the DCNLP result is extremely close to what was achieved by 

the traditional analytical method. The error was 0.05%, which was relatively low within 

this short-range trajectory optimization. The performance of TOMLAB/SNOPT was 

satisfactory. The simulation was completed within 0.4843 seconds (according to the 

indicated CPU computation time), which indicated the potential of using this toolbox to 

solve NLP problems.  

5.5.2 Asymmetric Bulb Turn 

 As the effectiveness and accuracy of DCNLP have been proven, a more realistic 

scenario is proposed. In this scenario, the headland boundary has an angle β with the field, 

and the velocity of the tractor is controllable. The vehicle parameters and headland 

information are listed in Table 5.6. 

Table 5.6: Fixed vehicle parameters 
Vehicle parameters 

Description (Unit) Symbol in the model Value/Range 

Wheelbase (m) L 1.8 

Initial heading of the tractor 

(rad) 

    
   

Final heading of the tractor 

(rad) 

     
   

Initial tractor velocity (m/s)    0 

Final tractor velocity (m/s)    0 

Steering angle (rad) δ               

Vehicle velocity (m/s) u          

Vehicle acceleration (    ) a           
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Table 5.7: Area boundary constraints 
Headland width (m) D 6.0 

Headland boundary angle (rad) β  
   

Row width (m) d 5.0 m 

 

The headland angle (the boundary of the headland versus the field) was assumed 

to be 30°, and the headland width became narrower. Furthermore, the initial and final 

vehicle velocities were both 0, but velocity could be a variable from 0 to 3 m/s on the 

trajectory. The maximum acceleration was       , and the maximum brake deceleration 

was        , with the consideration of the safety concern during the turning process. 

The steering angle limit remained the same. By running this model in MATLAB with 

TOMLAB/SNOPT, the trajectory shown in Figure 5.13 was attained. 
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Figure 5.13: Trajectory of a tractor bulb turn in minimum-time headland-turning 

optimization with variable velocity and revised headland angle 

  

The upper boundary of the headland was –      
 

 
        , and the lower 

boundary was –      
 

 
     . Thus, the headland boundary condition could be 

described as         
 

 
         .      (5.51) 



137 

 

 

 

 

Figure 5.14: States and control of a tractor bulb turn in minimum time headland turning 

optimization with variable velocity and revised headland angle 

 The optimal time cost given from the simulation was 5.8359 seconds. From the 

control signal plots, the turning process could be divided into three phases as well. The 

tractor was accelerating hard from the initial position and kept turning left in the first 

phase (Figure 5.14). Then it was steering right and kept running with constant velocity. 

Finally the tractor slowed down and adjusted the tractor heading straight to the path and 

was ready to enter. It was easy to locate the extreme point (blue circle illustrated in 
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Figure 5.15) on the trajectory to make a parallel straight line to the lower boundary. From 

which it could be calculated that the minimum headland width required with the tractor 

and headland angle parameters was 5.57 m.  

 

Figure 5.15: Minimum headland width calculations with the headland angle at 
 

 
. 

 

In this trial, the minimum turning radius remained the same as in the Symmetric 

Bulb Turn trial because of the same front steering angle limit, as well as the in-field path 

width. Though the vehicle velocity became a variable, it did not affect the turning radius 

or the trajectory. But the required headland width was changed, due to the impact of the 

changed headland angle. This would imply the necessity of headland turning optimization 

in global path planning research. 
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Table 5.8: Comparison of Minimum Time Optimization results from DCNLP and 

analytical methods 
Parameter Symmetric Bulb 

Turn 

Revised Bulb Turn Difference? 

In-field path width (m) 5.0 5.0 No 

Tractor turning radius (m) 3.2 3.2 No 

Headland angle (rad) 0  
   Yes 

Required headland width 

(m) 

6.11 5.57 Yes 

 

The impact of the headland angle to the headland width was presented in Table 

5.7. Further, it could be concluded that the angle between the path and the headland 

impacted the required width on the headland. If the headland width was restricted in 

global path planning scenario and bulb turn was the only turning mode, changing 

approaching angle to the reference path is a potential way to solve this issue. 

 

5.5.3 Fishtail Turn 

According to the previous discussion, it would be interesting to see what could be 

done if the headland width did not meet the requirement of bulb turn. In other words, if 

the headland was too narrow for any bulb turn, compared to the steering limit of the 

tractor, for the tractor to accomplish a bulb turn, some other turning mode should be 

adopted. And “fishtail” turn was one of the options. 

Similar to bulb turn, the procedure of fishtail turn also could be divided into three 

phases. There is one main difference in the second phase that the tractor is allowed to 

reverse. It provides the possibility that the tractor was able to adjust the orientation within 
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a relatively limited space, which improved the flexibility and mobility of the tractor in the 

field operation. 

Table 5.9: The fixed vehicle parameters and restricted area constraints 
Vehicle parameters 

Description (Unit) Symbol in the model Value/Range 

Wheelbase (m) L 1.85 m 

Initial heading of the tractor 

(rad) 

    
   

Final heading of the tractor 

(rad) 

     
   

Initial tractor velocity (m/s)    0.5 

Final tractor velocity (m/s)    0.5 

Headland width (m) D 4.33 m 

Headland boundary angle (rad) β  
   

Row width (m) d 5.0 m 

Steering angle (rad) δ                 

Vehicle velocity (m/s) u           

Vehicle acceleration (    ) a           

As illustrated in the table above, the difference on the parameter was the tractor 

maximum steering angle is limited at  

      
 
             (5.52) 

            
                    

 
        (5.53) 

Thus the turning radius could be derived. 

           
      

                      (5.54) 

The width of the headland was set to be as low as 4.33 m, which was quite small 

compared to the increased turning radius. And it is impossible for the tractor to make a 
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bulb turn in this restricted headland. Thus fishtail turn was required under this 

circumstance. The simulation results of the optimal solution were achieved by running 

DCNLP methods. 

 

Figure 5.16: Trajectory of a tractor fishtail turn of minimum time headland turning 

optimization with variable velocity and revised headland angle 
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Figure 5.17: States and control of a tractor fishtail turn in minimum-time headland-

turning optimization with variable velocity and revised headland angle 

The optimal time cost of the fishtail turn was 8.4524 seconds. From the trajectory 

result shown in Figure 5.16, it was apparent that the fishtail turn could be accomplished 

even if the headland width was narrower, indicating an absolute advantage over the bulb 
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turn. From a time efficiency aspect, and given the existence of the reverse phase, the 

headland-turning process was relatively slow, compared to the U-turn and bulb turn.  

 

5.5.4 Tractor-implement headland turning optimization 

Tractor-implement is a common scenario in agricultural field operation. The 

system model, discussed in Section 5.4.2, was a tractor with a single-axle implement. It 

will be studied and discussed further in this section.  

Table 5.10: Fixed vehicle and implement parameters and area constraints 
Vehicle parameters 

Description (Unit) Symbol in the model Value/Range 

Wheelbase (m)    1.85 

Implement length (m)    2.5 

Initial heading of the tractor (rad)      
   

Final heading of the tractor (rad)       
   

Initial heading of implement (rad)      
   

Final heading of implement (rad)       
   

Initial tractor velocity (m/s)    0.5 

Final tractor velocity (m/s)    0.5 

Headland width (m) D 9.0 

Headland boundary angle (rad) β   

Row width (m) d 5.0 

Steering angle (rad) δ               

Vehicle velocity (m/s) u           

Vehicle acceleration (    ) a           

 

By loading the headland constraints and tractor-implement information into 

MATLAB and running SNOPT, the trajectory shown in Figure 5.18 was attained.  
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Figure 5.18: Trajectory of a tractor-trailer combination in minimum-time headland-

turning optimization with variable velocity 

 

In the trajectory, it can be seen that the tractor was performing a bulb turn to 

accommodate the turning of the implement.  
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Figure 5.19: States and controls of a tractor-trailer in minimum-time headland-turning 

optimization with variable velocity and steering limit 

The optimal time cost given by the simulation was 8.6093 seconds. From the 

variable plots in Figure 5.19, the results suggest that because the row width was not 

spacious enough to make a U-turn, the tractor steered first to the left to make a bulb turn 

and then accelerated toward the right. Once the implement approached the line of    , 

the tractor slowed down, adjusted the body orientation, and was ready to enter the 

reference path. 
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There is a possible situation that with a larger implement, the tractor would not be 

able to turn hard to shorten the trajectory. In other words, the tractor steering angle limit 

is extremely small. It would be interesting to compute the minimum headland width to 

provide best-time efficiency under this scenario. The following simulation provides an 

example with most of the vehicle parameters remaining the same and the steering limit 

changing:  

 
 

  
    

 

  
 .        (5.55) 

Table 5.11: Fixed vehicle and implement parameters and restricted area constraints 
Vehicle parameters 

Description (Unit) Symbol in the model Value/Range 

Wheelbase (m)    1.85 

Implement length (m)    2.5 

Initial heading of the tractor (rad)      
   

Final heading of the tractor (rad)       
   

Initial heading of implement (rad)      
   

Final heading of implement (rad)       
   

Initial tractor velocity (m/s)    0.5 

Final tractor velocity (m/s)    0.5 

Headland width (m) D 9.0 

Headland boundary angle (rad) β   

Row width (m) d 5.0 

Steering angle (rad) δ                 

Vehicle velocity (m/s) u          

Vehicle acceleration (    ) a           

 

The trajectory shown in Figure 5.20 was attained.  
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Figure 5.20: Trajectory of a tractor-trailer combination in minimum-time headland-

turning optimization with small steering limit 

 

From the generated minimum time trajectory, with the steering limit 
 

  
 (18°), the 

headland width needed to be at least 16.63 m to offer generous space to obtain optimal 

time efficiency. The given minimum turning time was 13.8 seconds. 
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Figure 5.21: States and controls of a tractor-trailer in minimum time headland turning 

optimization with small steering limit 

 

To test the effectiveness of SNOPT for solving realistic problems, another 

example was proposed. It was realistic to assume that the headland was located on a hill, 
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and the altitude at the right side was higher than the left side. Furthermore, if the tractor 

was hauling a large, heavy trailer, the tractor would not be able to make a sharp turn in 

the uphill direction compared to the downhill direction. In other words, when the tractor 

entered the headland, the steering limit to the left would be greater than that to the right 

     
    

       
     

 . 

Table 5.12: Fixed vehicle and implement parameters and area constraints 
Vehicle parameters 

Description (Unit) Symbol in the model Value/Range 

Wheelbase (m)    1.85 

Implement length (m)    2.5 

Initial heading of the tractor (rad)      
   

Final heading of the tractor (rad)       
   

Initial heading of implement (rad)      
   

Final heading of implement (rad)       
   

Initial tractor velocity (m/s)    0.5 

Final tractor velocity (m/s)    0.5 

Headland width (m) D 15.58 

Headland boundary angle (rad) β  
   

Row width (m) d 5.0 

Steering angle (rad) δ                

Vehicle velocity (m/s) u          

Vehicle acceleration (    ) a           
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Figure 5.22: Trajectory of a tractor-trailer combination under different steering limits 

An asymmetric bulb turn was generated (Figure 5.22). It shows that there is a 

possibility that the DCNLP method was able to solve headland-turning optimization 

problems with complicated terrain constraints. For a comprehensive overview of 
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individual wheel movements, there is a detailed wheel trajectory provided. In this trial, 

the width of the tractor was 2.45 m, and the width for the trailer was 5.0 m. 

 

Figure 5.23: Trajectory of all wheels of a tractor-trailer combination on a hill headland. 

In the tractor wheel plots, “fl” means front left wheel, “fr” means front right wheel, “rl” 

means rear left wheel, and “rr” means rear right wheel. In the trailer wheel plots, “l” 

means left wheel and “r” means right wheel. 
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Figure 5.24: States and controls of a tractor-trailer in headland turning on a hill 

 

The steering difference to the left and right can be seen in the plots in Figure 5.24. 

As indicated by the red circles, the right steering (negative steering angle) could not be 
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large; therefore, the steering control required more time to finish the bulb turn. The 

optimal headland turning time for this case was 14.2 seconds. 

5.5.5 Tractor with two implements headland-turning optimization 

After discussing single-trailer scenarios, it is reasonable to consider a case where 

the tractor has two single-axle implements. An assumed working scenario is proposed 

below. However, due to the complexity of the two-implement model, which was 

discussed in Section 5.4.3, this simulation result needs further investigation. 

Table 5.13: Fixed vehicle and implement parameters and restricted area constraints 
Vehicle parameters 

Description (Unit) Symbol in the model Value/Range 

Wheelbase (m)    1.85 

Length of Implement 1 (m)     2.5 

Length of Implement 2 (m)     2.5 

Initial heading of the tractor (rad)      
   

Final heading of the tractor (rad)       
   

Initial heading of Implement 1 (rad)       
   

Final heading of Implement 1 (rad)        
   

Initial heading of Implement 2 (rad)       
   

Final heading of implement 2 (rad)        
   

Initial tractor velocity (m/s)    0.5 

Final tractor velocity (m/s)    0.5 

Headland width (m) D 28.0 

Headland boundary angle (rad) β   

Row width (m) d 10.0 

Steering angle (rad) δ               

Vehicle velocity (m/s) u          

Vehicle acceleration (    ) a           
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Figure 5.25: Trajectory of headland turning by a tractor with two trailers hitched 

sequentially 
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Figure 5.26: States and controls of headland turning by a tractor with two trailers 

hitched sequentially 

 

The optimal headland turning time of this trial was 33.6102 seconds.  
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5.6 Conclusions 

This research investigated the possibility and potential of using direct methods to 

solve the agricultural vehicle headland-turning optimization problem. A fresh research 

framework for the objective of minimum-time optimization was formulated. In this 

established framework, different tractor and tractor-implement vehicle models were 

created and applied. A direct collocation nonlinear programming toolbox, TOMLAB, 

was adopted in the MATLAB program development. The effectiveness and accuracy of 

the algorithm was evaluated and examined by a symbolic bulb turn example, and the 

result was promising. A series of simulation tests were carried out for further study and 

investigation. The results indicated that agricultural headland turning trajectory 

optimization can be accomplished by using numerical direct methods. 

Based on this novel exploration, some helpful conclusions and thoughts were 

achieved for future work:  

 The presented work was conducted using a vehicle kinematic model. To further the 

study, it is recommended that a vehicle dynamic model be adopted in the framework. 

A comparison will be conducted under the same boundary conditions and hardware 

constraints.  

 The fishtail turn exhibited maneuverability advantages within a tighter headland 

space. However, the feasibility of a fishtail turn with towed implements needs to be 

further investigated and validated in field experiments. 

 The study of on-hill headland turning implied the influence of terrain features on 

optimal trajectory generation. It also indicated the possibility of using direct methods 

to cope with complicated headland-turning scenarios in 3-D terrain.  



157 

 

 

 

 References 

Bell, T. (1999). Precision robotic control of agricultural vehicles on realistic farm 

trajectory.PhD dissertation, Stanford University. 

 

Bchtis, D., Vougioukas, S., Tsatsarelis, C., and Ampatzidis, Y., (2007) Optimal Dynamic 

Motion Sequence Generation for Multiple Harvesters. Agricultural Engineering 

International: the CIGR Ejournal. Manuscript ATOE 07001. Vol. IX.  

 

Betts, J. T..(1998) Survey of Numerical Methods for Trajectory Optimi-zation, Journal of 

Guidance, Control, and Dynamics, Vol. 21, No. 2, pp. 193–207. doi: 10.2514 / 

2.4231 

 

Conway, B.A., Paris, S.W.(2011). Spacecraft trajectory optimization using direct 

transcription and nonlin-ear programming. In: Conway, B.A. (ed.) Spacecraft 

Trajectory Optimization. Cambridge University Press, Cambridge. 

 

Conway, B.A. (2012). A Survey of Methods Available for the Numerical Optimization of 

Continuous Dynamic Systems. J. Optim. Theory Appl. 152:271-306 

 

Deng, W., and X. Kang (2003). Parametric study on vehicle-trailer dynamics for stability 

control. SAE Transactions, Journal of Passenger Cars, p. 1411-1419. 

 

El-Gindy, M. (1989). Directional response of a tractor towing a semitrailer. International 

Journal of Vehicle Design, 10(2): 211-226. 

 

Enright, P.J., Conway, B.A.(1992) Discrete approximations to optimal trajectories using 

direct transcription and nonlinear programming. J. Guid. Control Dyn. 15, 994–

1002. 

 

Fahroo, F., Ross, I.M.(2002) Direct trajectory optimization by a Chebyshev 

pseudospectral method. J. Guid. Control Dyn. 25, 160–166. 

 

Feng, L., Y. He, Y. Bao, and H. Fang (2005). Development of trajectory model for a 

tractorimplement system for automated navigation applications. Instrumentation 

and Measurement Technology Conference, Ottawa, Canada, May 17-19. 

 

Hargraves, C.R., Paris, S.W.(1987). Direct trajectory optimization using nonlinear 

programming and collo-cation. J. Guid. Control Dyn. 10, 338–342. 

 

Jin, J. (2009). Optimal field coverage path planning on 2D and 3D surfaces. PhD 

dissertation, Iowa State University. 

 

Oksanen, T., Visala, A. (2009) Coverage Path Planning Algorithms for Agricultural Field 

Machines. Journal of Field Robotics. 26(8), 651-668. 

 



158 

 

 

 

Oksanen, T., Visala, A. (2004). Optimal Control of Tractor-Trailer System in Headlands. 

Proceedings of the 7-8 October Conference. ASAE Publication Number 

701P1004. 

 

Ross, I.M., Fahroo, F.(2003) Legendre pseudospectral approximations of optimal control 

problems. In: Lec-ture Notes in Control and Information Sciences, vol. 295, pp. 

327–342. Springer, New York. 

 

Snider, J.M., (2009). Automatic Steering Methods for Autonomous Automobile Path 

Tracking. Dissertation. Robotics Institute, Carnegie Mellon University. 

 

Torishu, R, S. W. Mugucia, and J. Takeda (1992). The kinematics and open-loop 

characteristics of tractor-trailer combinations. Journal of Faculty of Agriculture, 

Iwate University 20: 299-314. 

  



159 

 

 

 

CHAPTER 6: GENERAL CONCLUSIONS AND 

RECOMMENDATIONS 

6.1 General Conclusions 

This research investigated navigation control of autonomous agricultural vehicles 

under off-road conditions. The research work consisted of two main objectives, robust 

navigation control and headland turning optimization. For the first objective, an 

autonomous 4WS/4WD robot, AgRover, was designed and developed, and a robust 

backstepping-based SMC navigation controller was developed and implemented. For the 

second objective, an innovative research framework of headland turning optimization 

problem for agricultural vehicles was formulated and proposed. Direct collocation 

numerical method was investigated to generate optimized solutions under various 

assumed headland turning scenarios. 

SMC was proven to be an effective tool, both theoretically and practically. It was 

successfully implemented on the AgRover to accomplish automatic navigation control of 

trajectory tracking tasks. The quantified experimental results of the field experiments 

were promising and impressive. The controller performed well in AgRover off-road tests.  

The headland turning optimization research investigated the possibility and 

potential of using direct methods to solve the agricultural vehicle headland-turning 

optimization problem. In the proposed framework, different tractor and tractor-implement 

vehicle models were created and applied. A direct collocation nonlinear programming 

toolbox, TOMLAB, was adopted in the MATLAB program development. The 

effectiveness and accuracy of the algorithm was evaluated and examined by a symbolic 

bulb turn example, and the result was promising. A series of simulation tests were carried 
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out for further study and investigation. The results indicated that agricultural headland 

turning trajectory optimization can be accomplished by using numerical direct methods. 

 

6.2 Recommendations for Future Work 

There are several potential areas where this work can be improved and/or 

expanded. Some of the important areas are listed as follows. 

 The SMC controller is not perfect. The error rate was consistently between      and 

    , which could be improved. It is expectable that with improved hardware 

responsiveness and sampling frequency, the controller performance could be 

improved correspondingly. The “chattering” issue existed in most of the experiment 

results, which was shown in the tracking trajectory. Improved adaptive control and 

fuzzy logic control can help and it can be implemented with an SMC controller to 

solve and ease this issue.  

 The control parameters were sensitive to the system dynamic performance. In future, 

computing the sensitivity and the relationship among individual control parameters 

could be a potential research interest.  

 The study showed the potential to adopt a vehicle dynamic model to the controller 

design if the hardware capability allows.  

 Also, the presented headland turning optimization work was conducted using a 

vehicle kinematic model. To further the study, it is recommended that a vehicle 

dynamic model be adopted in the framework. A comparison will be conducted under 

the same boundary conditions and hardware constraints.  
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 The fishtail turn exhibited maneuverability advantages within a tighter headland 

space. However, the feasibility of a fishtail turn with towed implements needs to be 

further investigated and validated in field experiments. 

 The study of on-hill headland turning implied the influence of terrain features on 

optimal trajectory generation. It also indicated the possibility of using direct methods 

to cope with complicated headland-turning scenarios in 3-D terrain. 
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