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ABSTRACT 

 
According to the United States Department of Transportation (USDOT), more than 3.1 

billion tons of hazardous materials (HazMat) are shipped within the country annually. This 

averages to about 800,000 individual shipments of hazardous materials per day, of which 

300,000 are shipments of petroleum/flammable-combustible liquids. This paper presents a 

temporal trend study (1995-2004) of 1,850 HazMat incidents occurring through the 

transportation of flammable-combustible liquids. The study was centered about HazMat 

shipments originating within five states (California, Illinois, Iowa, New Jersey, Texas) 

chosen for their geographic variations in size and location. The main objective of this study is 

to conduct a frequency analysis of HazMat incident as a function of distance between origin 

and incident location. Procedures for this study entailed compiling a sample of HazMat road 

incidents originating within the selected states and generating the great-circle distance from 

their originating location to sites of incident. The distance between origin and incident 

locations were attained through great-circle calculations because data compilation did not 

allow for the identification of specific routes utilized in commodity transport. Key findings of 

the analysis illustrated a bimodal distribution of incident frequency as a function of the great-

circle log distance. The first mode presented an average distance of incident which was short 

haul in classification. The second mode presented an average distance of incident which was 

long-haul in classification. The study also addressed incidents as they occurred within 

primary phases within transportation. For all phases, incidents occurred at average distances 

which are long haul in classification.  



 vii 

 

 

Time series forecasting suggests continuing trends in HazMat incidents. Findings of this 

study speculate fatigue to be a contributing factor for incident occurrences. This requires that 

more research be carried out on various aspects of flammable-combustible liquids such as 

hours-of-service regulations, fatigue and incident reporting.  
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CHAPTER 1. INTRODUCTION 

 

1.1 Overview 

 

According to the United States Department of Transportation (USDOT), more than 

3.1 billion tons of hazardous materials (HazMat) shipments are shipped within the United 

States annually (Qiao, Keren, & Mannan, 2005). This averages to about 800,000 individual 

shipments of hazardous materials per day, of which 300,000 are shipments of 

petroleum/flammable-combustible liquids. HazMat delivery by truck is the most dominant 

mode of transportation (accounting for 94% of individual shipments) in terms of both 

tonnage and number of vehicles. To put these numbers into perspective, according to the U.S. 

Department of Commerce (1994), roughly every fifth truck on U.S. highways is a HazMat 

truck (Erkut and Verter, 1998). 

1.2 Problem of the Study 

 

  Truck transportation poses a great risk to the environment and the public because of 

the consequences that a HazMat release can create. Despite the low probability of hazardous 

material incidents (10 
-8

 – 10
-6

 per vehicle mile), the potentially catastrophic impacts 

attributed to such incidents and the large number of hazardous shipments raise serious 

concerns for all stakeholders involved in and affected by the hazardous materials 

transportation process (i.e. governmental authorities,  carriers, local societies and social 

groups, and shippers) (Zografos and Androutsopoulos, 2005). Prior studies involving 

HazMat transport have identified the frequency of incidents and conducted risk and 

probability estimates. Past studies involving HazMat transportation have not sought to 
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address the possibility of underlying trends within these incidents. One of these possible 

trends is that incidents may be likely to occur at similar distances among several states. 

Utilizing the Hazardous Material Incident Systems (HMIS), a database maintained by the 

Office of Hazardous Material Safety (OHMS), this study will compile incident data for five 

states (California, Iowa, Illinois, New Jersey and Texas) were shipments (by road) originated. 

An analysis will then be performed to identify similarities within average distance and 

transportation phases of incidents among states. Significant findings in this area would prove 

beneficial if incident occurrence can be linked to distance driven (between origin and 

incident) and transportation phases.  

1.3 Purpose of Study 

 

The goal of this paper is to document the change in the distribution of two primary 

functions (distance and transportation phases) as they relate to flammable-combustible 

HazMat transportation by road. To accomplish this task, the following research objectives 

were pursued:  

1.3.1 Research Objective I 

    

To conduct frequency analysis of HazMat incidents as a function of distance between 

origin and incident location. 

1.3.2 Research Objective II 

 

To identify whether incidents documented for occurring during primary transportation 

phases (loading, enroute, loading, temporary storage, unknown) are likely to occur at 

similar distances. 
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1.4    Need for the Study 

 

This research will inform HazMat carriers of incident trends based on distances in 

which flammable-combustible liquids are shipped. This will better allow them to be 

proactive at assessing optimal route selection criteria based on results of this study. The study 

will also allow firms to better assess policies during loading, unloading, and driving if found 

that primary phases are correlated to incident probability. Findings of this research may be 

instrumental at establishing a probability density function based on the expected travel 

distance of flammable-combustible liquids. 

1.5  Assumptions of the Study 

 

 This study was based on the following assumptions: 

1. A higher frequency of incidents will occur at longer distances. 

2. The larger states in the study will generate higher averages in the distance of incidents 

from origin. 

1.6   Delimitations of the Study 

 

1.   HMIS database does not provide detailed information on specific route segments 

utilized by shippers.  

2.   Great-circle distances are not an exact representation of actual road distances. 

1.7 Data Source 

  

Despite lacking detail-specific content on route segments utilized for commodity 

transport, the Hazardous Material Incident System (HMIS) is recognized as one of the 
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foremost index databases which currently dates back to 1971, contains more than 300,000 

records and adds approximately 14,000 reports annually (Comparative Risks, 2001). HMIS is 

also specifically designed to capture information concerning the unintentional release of a 

hazardous material (Comparative Risks, 2001). Incident data in HMIS represents an accurate 

information source whose content may prove valuable for incident forecasting. In this study, 

an Autoregressive Integrated Moving Average (ARIMA) time series analysis will be utilized 

for incident prediction. Trends depicting incident occurrences similar those in study will 

prove meaningful for future analysis. 
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CHAPTER 2. LITERATURE REVIEW 

 

2.1 Hazardous Material Transportation 

 
Land transport is very important for a country’s economy because it is used for the 

mobility of both goods and persons (Oggero, Darba, Munoz, Planas, & Casal, 2006). The 

hazards associated with Hazmat transport will remain existent so long as commodities need 

to be shipped. Due to the high volume of HazMat shipments throughout the nation’s 

roadways, incidents are likely to occur. The risk associated with transporting HazMats 

depends not only on the substance being transported but also on the characteristics of the 

road network such as road type and population along the chosen routes (Erkut and Verter, 

1998).  

Most companies involved in HazMat transport employ risk control procedures. 

Among other items, these procedures use stringent inspection criteria for containers and other 

vessels used for commodity transport. This also involves inspection for container defects and 

vehicle compatibility for transporting these commodities. Policies and procedures are also 

geared toward the assessment of equipment (i.e. hose, valves) used for loading and 

unloading. Other policies are in place to utilize proper labeling and placard signs for 

identification of these commodities by carriers and civilians while flammable-combustible 

liquids are loaded/unloaded, in storage and enroute. There are also measures to ensure the 

qualification of drivers involved in the transport of flammable-combustible commodities. For 

instance, the movement of HazMat requires not only that drivers be trained in “normal” 

carrier-operating processes and procedures, but also have a thorough understanding of the 
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shipment’s characteristics, special packaging, and loading requirements, to obtain the 

necessary HazMat certification (Dobie and Glisson, 2005). Engineering measures involve 

rigorous collision-proof testing of cargo tanks and containers to ensure they can withstand 

impact of vehicular accidents. Testing for all emergency shutdown mechanisms used during 

loading and unloading is required as well. Operation procedures primarily during loading and 

unloading are assessed continuously for proper functioning during normal operation to 

mitigate unintended releases. 

What differentiates shipments of HazMats from shipments of other materials is the 

risk associated with an accidental release of these materials during transportation (Erkut and 

Verter, 1998). Incidents in which transportation of flammable-combustible HazMats are 

involved can result in fires, explosions, and in less severe instances spills. Title 40 of the US 

Code of Federal Regulations (CFR), Part 355, defines a release as any spilling, leaking, 

pumping, pouring, emitting, emptying, discharging, injecting, escaping, leaching, dumping, 

or disposing into the environment (including the abandonment or discarding of barrels, 

containers, and other closed receptacles) of any hazardous chemical, extremely hazardous 

substance, or Comprehensive Environmental Response, Compensation, and Liability 

(CERCLA) substance (U.S. 40 CFR, 1999). The potentially catastrophic impacts attributed to 

such incidents, coupled with the volume of HazMat traffic in the U.S. raise serious concerns 

for all stakeholders involved in and affected by this traffic (Viichez, SeviUa, Montielt, & 

Casalt, 1995). The following definitions for incident and accident are suggested by 

Abkowitz, Abkowitz and Lepofsky (1989), p.1: 

An incident is defined as any unintentional release of a hazardous 

material during the transport process, including loading/unloading or 

temporary storage related to transportation. The term “accident” 
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refers to a vehicular accident. Most hazardous materials transport 

accidents are not caused by vehicular accidents.     

 

In Comparative Risks (2001), an incident is defined as an event involving the transportation 

of hazardous material that result in an unanticipated cost to the shipper, carrier or any other 

party. In this work “incidents” will be used to represent both accidents and incidents as 

defined by Comparative Risks (2001). Flammable-combustible liquids were chosen for this 

study due to the volume and frequency of its shipment.  According to Comparative Risks 

(2001), petroleum products, which comprise the major part of the Class 3 shipments, account 

for an estimated 314,000 of daily shipments and about 1.04 billion annual tons of shipped 

HazMats. Hazards associated with the combustion of flammable/combustible liquids from 

mishandling are fires, explosions, chemical burns, asphyxiation, and environmental damage.  

The degree of flammability or combustibility from Class 3 commodities is defined based on 

the following; Class I liquids with flash points below 37.8°C (100 °F), with a flashpoint 

being defined as the temperature at which a liquid gives off a vapor sufficient to form an 

ignitable mixture the atmosphere. Flammable liquids are further subdivided into three 

different classes: Class IA Liquids — those liquids that have flash points below 22.8°C 

(73°F) and boiling points below 37.8°C (100°F); Class IB Liquids — those liquids that have 

flash points below 22.8°C (73°F) and boiling points at or above 37.8°C (100°F ); Class IC 

Liquids — those liquids that have flash points at or above 22.8°C (73°F ), but below 37.8°C 

(100°F). Combustible liquids are defined as any liquid with a flash point at or above 37.8°C 

(100 °F). They are further subdivided into three classes: Class II Liquid — any liquid that has 

a flash point at or above 37.8°C (100°F) and below 60°C (140°F); Class IIIA — any liquid 

that has a flash point at or above 60°C (140°F), but below 93°C (200°F); Class IIIB — any 
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liquid that has a flash point at or above 93°C (200°F). The classification for all flammable-

combustible groups can be observed in Figure 2.1.  
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                             Figure 2.1 Flash Points range for flammable/combustible liquids 

 

According to statistics provided by the Hazardous Material Incident System (HMIS) 

incident database, 85% of 300,000 records dating back to 1971 are in the highway mode 

(Pipeline and Hazardous Material Safety Administration PHMSA, 2005). These incidents are 

the result of an unintentional release of a hazardous material in commerce occurring during 

the course of transportation. Impacts from Class 3 incidents account for about 56% of all 

incidents involving HazMat within the year of study (PHMSA, 2005). In Viichez et al. 

(1995), a total of 5,325 incidents taken from the Major Hazard Incident Data Service 

(MHIDAS) database from the beginning of the 20
th
 century up to July 1992 were used to 

study the contribution of different situations, activities, equipment, etc. to the risks associated 

with HazMat shipments. Half of the cases (53%) identified the material involved in the 

incident as a liquid; this is in good agreement with the fact that most of the products handled 
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by the chemical industry are liquids, often flammable liquids that give rise to fires and 

explosions (Viichez et al., 1995). 

Eventhough HazMat carriers have better incident records than carriers of non-HazMat 

commodities, incidents do happen during the transportation of HazMats (Erkut and Verter, 

1998). According to Moses and Savage (1993), hazardous materials carriers have an incident 

rate 7% higher than that of carriers of non-hazardous materials, and a rate of fatalities and 

injuries that is 19% higher. Firms that carry hazardous materials have an incident rate 11% 

higher than comparable firms that do not carry these commodities and a rate of fatalities and 

serious injuries that is 22% higher (Moses and Savage, 1995). In addition to injury statistics 

based on commodities handled, studies have also been carried out on carriers based on their 

range of operation. The range of operation represents the distance in which a carrier operates 

from their home base.  The two primary ranges are long distance and short distance 

operations. Moses and Savage (1995, pp. 6-9) sums up long distance operations by stating: 

Long distance operations are associated with higher accident rates. These 
long distance operators, defined as firms whose drivers are all involved in 
trips that exceed 100 miles, have a total accident rate that is 22% higher that 
that of firms that are exclusively involved in short distance operations, and a 
rate of fatalities and injuries that is 53% higher. The accidents on long 
distance trips tend to be more serious and result in a higher rate of accidents 
that involve fatalities and serious injuries, as well as more property damage.   
 

 Much of the research on HazMat transport is centered about long haul commodity 

shipment. Although, the largest segment of the trucking industry operates within 50 miles of 

the vehicle’s home base, the majority of research has been directed at long-haul operations. 

(Massie, Blower, & Campell, 1997). As shown in Table 2.1, local operations account for 

73.3% of all trucks in operation, while total short range operations account for 16.5%. Massie 

et al. (1997) indicate that trucks that operate less than 50 miles from the vehicle's home base 
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comprise 58% of the trucking industry. Despite being the largest segment of transportation, 

research involving local/short haul (L/SH) operations has been scant and little is known 

about the general safety issues in L/SH operations (Hanowski, 2000).  

Table 2.1 Registered trucking percentage and operation classification as defined by U.S. 

Department of Commerce (1994). 

Range of Operation Definition Trucks 

Registered in 

1992  

(in thousands) 

Percentage of 

Industry 

Local  Less that 50-miles 

from home base 

1,111.4 73.3% 

Short Range  50 to 100 miles from 

home base 

194.2 12.8% 

Short Range-Medium 100 to 200 miles from 

home base 

56 3.7% 

Long Range-Medium 200 to 500 miles from 

home base 

37.7 2.5% 

Long Range  Beyond 500 miles 

from home base 

31.3 2.1%                    

 

 Most of the research on transporting HazMat is case-study oriented and focuses on 

routing (Glickman and Sontag, 1996; Harwood and Viner, & Russel 1993), risk analysis 

(List, Mirchandani, Turnquist, & Zografos, 1991; Pijawka & Radwan, 1985; Purdy 1993), 

regulation (Campell & Langford, 1991), emergency response (Hobeika & Signon, 1993), and 

pre- and post-disaster planning for HazMat incidents (Sorenson & Rogers, 1988; Rogers & 

Sorenson, 1989; Quarentelli 1991; Bergoggi & Wallace, 1991; Lepofsky, Abkowtiz, & 

Cheng, 1993).  

According to Cuttler and Ji (1997), p. 319; 

There are a few studies that examine the historical and spatial context 

within which HazMat incidents occur in the United States. There are 

also a few studies that examine the long term trends in hazardous 

material spills. While data on transportation accidents are available, 

spill incidents (e.g., releases of hazardous materials arising from 
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accidents or human error), exposure (volume of hazardous material 

shipped), and consequence (population affected, damages, etc.) data 

are extremely limited.                            

2.2 Route Selection 

 

When hazardous materials are transported, a natural question to pose is whether the 

route to be used should be (a) the least expensive one, in terms in operating costs, (b) the 

least hazardous one, in terms of the potential impacts of an incident, or (c) something in 

between (Glickman & Sontag, 1996) A controversial issue associated with transportation of 

HazMat is the tension between the need to minimize costs and risk (Glickman & Sontag, 

1996; Qiao, Keren, & Mannan, 2007). According to Haghani and Chen (2003), the route for 

hazardous material transportation must represent a compromise between the internal cost 

(for the company or the organization that wants to ship the hazardous material) and the 

social cost (potential risk to the society). Routing and scheduling problems (for on-time 

delivery) focus on finding appropriate routes according to a variety of competing objectives 

including cost, some measure(s) of risk, and perhaps even a measure of risk equity (Luedke 

&White, 2003; Qiao et al. 2007). Risk minimization criterion is achieved through the 

determination of routes with minimum total transportation risk expressed by the sum of the 

risk values on the links of roadway network that constitute the respective routes (Zografos 

and Androutsopoulos, 2005). Glickman and Sontag (1996) identified thirteen variables which 

also affect route-selection preference:  

1. Population density 

2. Highway type 

3. Type and quantity of non-radioactive hazardous materials (NHRM) 
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4. Emergency response capabilities 

5. Results of consultation with others 

6. Terrain considerations 

7. Continuity of routes 

8. Alternate routes 

9. Effects on commerce 

10. Delays in transportation 

11. Climatic conditions  

12. Congestion  

13. Incident history 

In long-haul transport, route length is contingent upon the use of these variables for 

optimal route selection. The key issue is considering an integrated routing, scheduling, and 

location approach, so the drivers can spend less travel time on the road and avoid the high-

risk links (road segments) and nodes (Haghani &Chen, 2003). Zografos and Androutsopoulos 

(2005) proclaims that the objective of the hazardous materials routing problem is to 

determine a set of minimum risk and cost routes for a fleet of trucks from a depot to a 

destination point  in order to service a set intermediate stopping points with pre-specified 

demand and service time windows. The minimization of the cost is expressed through the 

optimum utilization of the fleet of trucks and the identification of economical routes 

(Zografos and Androutsopoulos, 2005). Damodaren, Daniel and Luke (2002) predict that in 

spite of routing strategies to avoid hazardous materials incidents, incidents will continue to 

occur. Due to the multi-objective nature of route selection problems, there are a number of 
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“equivalent” solutions, in the sense that none of them is better than any other for every 

objective (Huang & Fery, 2002). For instance, the shortest path may not be the one with 

minimum risk to the surrounding population. Actually, the fastest route may even be the 

worst route from a safety perspective, since higher road qualities usually are found in densely 

populated areas (Huang and Fery, 2002). 

Viichez et. al (1995) studied 5,325 HazMat incidents occurring during the 20
th

 

century and concluded that 39% of HazMat incidents occurred during the en route phase of 

shipment. This same study finds loading/unloading to be the initiating cause in 8% of the 

incidents originating during these operations. Another historical analysis found that 8% of all 

incidents occurring during the transportation of HazMats are associated with this operation 

when tanks are being filled (loaded) for the purpose of transportation (Cuchi, Vilchez, & 

Casal, 1999). However, this study did not clarify if loading/unloading incidents occur at 

beginning (loading), middle (enroute), or ending (unloading) phases of transportation. The 

en-route HazMat incidents may produce consequences (fire, explosion, chemical spills, 

infection etc.) that could endanger human lives, cause property damages and environmental 

pollution (Zografos and Androutsopoulos, 2005).      

A reasonable question to pose is: What types of identifiable patterns are occurring 

within trends of HazMat incidents? This study seeks to answer this question by identifying 

whether distance driven can be a predictor of HazMat incident frequency. Findings will 

hopefully indicate how incidents involving shipments of flammable-combustible liquids are 

likely to occur for the purpose of mitigating unwanted consequences. An additional objective 

will be to identify which phases of transport (loading/unloading, temporary storage, enroute) 
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incidents are occurring in conjunction with distance driven. Through time series analysis, 

HMIS data will be used to provide a clear indication of future incidents. 

2.3 Box-Jenkins-ARIMA Model 

 

The Box-Jenkins time series model represents a predictive model that forecasts the 

number of future incidents likely to occur in coming months based on the number of 

incidents that occurred in previous months. It is also important for collecting, analyzing, and 

developing a model describing an underlying relationship within the data. In this study, time 

series analysis will be used to analyze patterns within the data and predict the values of future 

observations (incidents). The Box-Jenkins method can be used to develop stochastic-dynamic 

models, in which the behavior of the variable of primary interest (the endogenous variable, or 

variable forecasted) is related not only to its past behavior, but to the behavior of other 

(exogenous) variables as well (Garson, 2006). It also can be used to represent processes that 

are stationary or nonstationary. A stationary process is one whose statistical properties are the 

same over time (Garson, 2006). The Box-Jenkins model is simple and stochastic, enables 

efficient utilization of other predictive information contained in the data, and obtains the 

highest forecasting accuracy possible for the variables on which the forecast is based 

(Garson, 2006). 

Traditional approaches to time series predictions such as the Box Jenkins or 

Autoregressive Integrated Moving Average (ARIMA) method assume that the time series 

under study are generated from linear processes (Tabachnick & Fidell, 2000). The current 

observation is represented by a linear combination (weighted average) of previous 

observations, an error term associated with the current observation, and a linear combination 
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of error terms associated with previous observations (Garson, 2006). Linear models have 

advantages in that they can be understood and analyzed in great detail, and they are easy to 

explain and implement (Tabachnick & Fidell, 2000). The error terms have zero mean, 

constant variance, and are uncorrelated with each other (Garson, 2006). The inclusion of 

ARIMA terms makes the Box-Jenkins methodology quite flexible. 

ARIMA forecasting is the process of predicting future observations from a known 

series, and is often the major goal in non-experimental time series analysis (Jenkins & Box, 

1970). The portion of the model involving the observations is called the autoregressive part 

of the model, and the portion involving the error terms is called the moving average part of 

the model (Garson, 2006). This modeling approach is particularly useful when little 

knowledge is available on the underlying data-generating process or when there is no 

satisfactory explanatory model that relates the outcome variable to other explanatory 

variables (Caldwell, 2006). Time series accounts for the likelihood that data taken over time 

may contain autocorrelation or seasonal structural variation. The model is then used to 

extrapolate the time series into the future (Caldwell, 2006). 

ARIMA modeling, as it relates to this study, represents (long-term memory) incidents 

as they occur by month. The ARIMA method estimates exponentially weighted correlation 

structures, indicating that observations farther back in time contribute less to current and 

expected future observations than does an immediately preceding time period. It represents a 

method by which past Hazmat incidents can be used to forecast current and future HazMat 

incidents. The popularity of the ARIMA model is due to its statistical properties as well as 

the well-known Box–Jenkins methodology in the model building process (Zhang, 2003). 
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ARIMA has been one of the most popular linear models in time series forecasting during the 

past three decades (Caldwell, 2006). 

The ARIMA model is referred to by the “p, q, d” notation, because these three 

components must be specified before analysis is carried out. ARIMA modeling involves 

three stages (Garson, 2006): 

1. Identification of the initial p, d, and q parameters using autocorrelation and partial 

autocorrelation methods. 

2. Estimation of the p (autoregressive) and q (moving average) components to see is 

they contribute significantly to the model or if one or the other should be dropped. 

3. Diagnosis of the residuals to see if they are random and normally distributed, 

indicating a good model. 

The integrated element, d, represents trends in the data, and is investigated before p 

and q (Jenkins & Box, 1970). The first step, of determining whether the series data is 

stationary or nonstationary, requires identification of the changing average over time. 

Nonstationary observations would involve recurring spikes or cyclical increases/decreases in 

observations at certain points within the time series. A nonstationary time series requires 

making it stationary before determining the values of p and q (Jenkins and Box, 1970). 

Stationarity of the time series can be assessed with the use of an autocorrelation plot. If the 

mean is changing (nonstationary), the trend is removed by differencing once or twice 

(Jenkins and Box, 1970). Differencing means subtracting the value of an earlier observation 

from that of a later observation until the mean has been made stationary. The resulting 

residual values can be assessed through chi-square estimates of lack of fit. Null hypothesis 

testing can be carried out to test residual noise for randomness. Random values for residuals 
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indicate that all systematic variability has been taken into account for the series. The value of 

d = 0 means that the time series is naturally stationary. For a nonstationary series, d values of 

1 or 2 are usually adequate (Jenkins and Box, 1970). Higher values of d are rarely 

encountered. After stationarity is attained, the autoregressive value, p, is then generated. 

The autoregressive component (AR) p represents the lingering effect of preceding 

observations (Jenkins and Box, 1970). This essentially measures how well all preceding 

observations work at predicting a current observation. The p value is representative of the 

number of AR components in the ARIMA model. When p = 1, the current observation value 

is dependent upon the nearest preceding observation. A value of p = 2 indicates that the 

current time series observation is affected by the nearest preceding two values. 

The moving average (MA) component, q, represents the short-term memory for 

incident prediction. This assesses the lingering effect of preceding shocks (observations) that 

are one month prior to any current observation. A values of q = 0 indicates no MA 

component in any series that is ideally autoregressive. This means that preceding 

observations have to affect at predicting current observations. A value of q = 1 or 2 indicates 

that current observations are influenced by shocks (spikes) at lag 1 (preceding observation) 

or lag 2 (previous two observations). Higher values for this component are rarely 

encountered. Autocorrelation is useful for: 

1.  Detecting non-randomness in the data. 

2. Identifying an appropriate time series model if the data are not random. 

Various AR and MA patterns can leave distinctive footprints on the Autocorrelation 

Function (ACF) and Partial Autocorrelation Function (PACF) (Jenkins and Box, 1970). 

ACFs and PACFs identify which of the (p, q, d) patterns exist within the data. 
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Autocorrelation values declining exponentially toward zero indicate that earlier observations 

have less effect than the immediately preceding observation on predicting current and future 

observations. Values of p = 0 indicate no autocorrelation within the raw data. 

2.4 Definitions 

 

The following definitions for time series analysis are provided in Tabachnick and Fidell 

(2000); 

2.4.1 Time Series Definitions 

 

ARIMA (p,d, q) – Autoregressive integrated moving average model. The three terms to be 
estimated in the model are autoregressive (p), integrated (trend-d), and moving average (q). 
 
Autocorrelation (ACF) – The pattern of autocorrelations in a time series at numerous lags; 
the correlation at lag 1, then the correlation at lag2, and so on. 
 
Autoregressive terms (p) – The number of terms in the model that describe the dependency 
among successive observations. 
 
Differencing – Calculating differences among pairs of observations at some lag to make a 
nonstationary series stationary. 
 
Integrated (d) – The terms needed to make a nonstationary times series stationary. A model 
with d = 2 has to be differenced twice to make it stationary. 
 
Lag – The time period between two observations. 
 
Moving average terms (q) – The number of terms that describe the persistence of a random 
shock from one observation to the next. 
 
Observation -The DV score at one time period. The score can be from a single case or an 
aggregate score from numerous cases. 
 
Partial autocorrelation function (PACF) – The pattern of partial autocorrelations in a time 

series at numerous lags after partialing out the effects of autocorrelations at intervening lags. 

 

Random Shock – The random component of a time series. The shocks are reflected by 
residuals (or errors) after an adequate model is identified. 
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Stationary & Nonstationary – Stationary series vary around a constant mean level, neither 
decreasing nor increasing systematically over time, with constant variance. Nonstationary 
series have systematic seasonal and cyclical trends. 

2.4.2 Class 3 Hazardous Material Definitions 

 

Combustible Liquids- Any liquid with a flash point at or above 37.8°C (100 °F). 

 

Combustible (II)- Any liquid with that has a flashpoint at 37.8°C (100°F) and below 60°C 

(140°F) 

 

Combustible (IIIA)- Any liquid that has a flash point at or above 60°C (140°F), but below 

93°C (200°F) 

 

Combustible (IIIB)- Any liquid that has a flash point at or above 93°C (200°F). 

 

Flammable (IA)- Those liquids with that have flash points below 22.8°C (73°F ) and boiling 

points below 37.8°C (100°F) 

 

Flammable (IB)- Those liquids that have flash points below 22.8°C (73°F) and boiling 

points at or above 37.8°C (100°F ). 

 

Flammable (IC)- Those liquids that have flash points at or above 22.8°C (73°F ), but below 

37.8°C (100°F). 

 

Flashpoint- The temperature at which a liquid gives of a vapor sufficient to form an 

ignitable mixture with the atmosphere. 
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CHAPTER 3. METHODOLOGY 

 

3.1 Hazardous Material Incident System 

 

While data on transportation incidents are available, information on spills (i.e., 

releases of HazMat due to incidents), exposure (amount of HazMat shipped), and 

consequence (population affected, damages, etc.) is very limited (Cuttler & Ji, 1997). Often, 

poor data frequently restrict any national analyses of HazMat transportation safety (Hobeika 

& Signon, 1993). 

Data for this study was gathered from the USDOT Hazardous Material Information 

System (HMIS) database. Although HMIS is a multi-modal database, about 85% of its 

records are in the highway mode (Comparative Risk, 2001). Minor incidents that are reported 

dominate the truck transport records contained in the HMIS database (Comparative Risk, 

2001). The US Code of Federal Regulations (CFR) 171.15 requires that incidents within 

HMIS be reported when one of the following occurs 

• there is a death 

 

• a person receives an injury requiring hospitalization 

 

• there is a general public evacuation, and/or 

 

• there is a closure of a major transportation artery or facility 

 

Data acquisition began with a compilation of 1,850 individual HazMat incidents from 

1995-2004 from California, Texas, Illinois, New Jersey. States in this study were chosen 

based on their variation in geographic size and location within the United States. Incident 

data in HMIS are grouped individually within separate years. Data in HMIS included the 



 21 

 

 

following variables of interest: (1) city of origin (2) state of origin, (3) ZIP code of origin (4) 

route of incident, (5) city of incident, (6) state of incident, and (7) county of incident. Data 

collection and assortment presented the following percentages on the primary modes of 

highway transport in which HazMat incidents were reported for: cargo tanks (5.8%), van 

trucks (91%), and flatbed trucks (3.2%). These vehicles types conventionally carry cylinders, 

drums, bulk commodities, containers and other small packages.  Data compilations began 

with joining annual data sets together into one dataset, followed by selecting only road 

transportation incidents involving flammable-combustible (Class 3) liquids. Examples of 

these types of commodities are ethyl alcohol, gasoline, acetone, benzene, dimethyl sulfide, 

methyl amyl ketone and fuel oil.  

 Traditional incident databases contain a number of data related to the incident, 

ranging from the data and the place to the chemicals involved. Often, however, important 

information may be lacking or incomplete (Madala, 2000). One major limitation of the HMIS 

database is the absence of detailed information on the specific routes utilized by carriers. 

This information is vital as travel distance is dependent upon those route segments. The 

challenge HMIS poses for this study is obtaining distances between the points of shipment 

origin and incident locations. Since HMIS lacks information for specific routes of 

transportation, an alternative measure was needed to determine these distances. The measure 

utilized needed to compensate for deviations in actual distances by having negligible 

calculation error.  
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3.2 Geocoding 

 

Geocoding is the process by which locations such as addresses and ZIP codes that are 

not in spatial format are placed as points on a map by ArcGIS software. The idea of doing 

this is similar to putting pins on a paper map. To be successfully geocoded, locations needed 

to contain accurate addresses, street names, city, zip codes and state information. Through 

geocoding, longitudes and latitudes are assigned to the origin (referenced by city, state, and 

ZIP codes) and incident locations (referenced by address, city, and state) listed in the data. 

Latitudes generated by geocoding are positive because U.S. latitudes are all north of the 

equator. U.S. longitudes all lay west of the Greenwich Meridian, making them negative. Data 

then can be analyzed for the purpose of distance mapping, using haversine formula for great 

circle (described below). The most pertinent variables to this study within HMIS were place 

of origin (including state, city, and ZIP code) and location of incident (including address, 

city, state, and county). 

Geocoding proved to be an appropriate technique for performing this type of analysis 

for two reasons. First, HMIS database only provided zip codes as the most accurate means 

for origin locations. Geocoding with zip codes provides one of the closest approximations to 

exact locations.  As stated by (Bow, Waters, Faris, Seidel, Galbraith, Knudtson & Ghali, 

2004), researchers interested in conducting and interpreting results of geographical studies 

need to consider carefully, on a case-by-case basis, whether a misplacement of 200 meters 

(0.12 miles) to 300 meters (0.19 miles) (or more) in spatial location is problematic to the 

objectives of their analysis. It was determined that misplacements in this amount would be 

acceptable because great-circle measurements are not an exact representation of road 
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distances. While useful, prior studies alone do not provide a clear indication of how valid 

location derived from postal codes is relative to location derived from street address (Bow et 

al., 2004). Although postal code location is not a perfect representation of street address 

location, the estimate is very close for a majority of cases (Bow et al. 2004). Like authors of 

this study, Bow et al. (2004) concludes that postal code locations are a reasonably accurate 

proxy for address location.  The second reason for the use of geocoding is that automated 

geocoding (with GIS software) is cheaper, more convenient, and hence much more common 

than non-automated methods (Zimmerman, Fang, Mazmumdar & Rushton, 2007).  

 

  For locations where shipments originated, ZIP codes were the most accurate means of 

identifying location because specific addresses were not provided for this parameter. 

Although frequently represented as polygons to facilitate analysis, ZIP codes are actually 

defined at a narrower spatial resolution reflecting the street addresses they serve (Grubesic, 

2007). The aggregation of data assumes that ZIP codes are networks, as opposed to areas. 

Given their use in directing the distribution of mail, ZIP codes are not attributed to space in 

general, but rather to roads, post offices, and other facilities (Grubesic, 2007). Due to the lack 

of specificity for origin data, geocoding with ZIP codes assigns a longitude/latitude 

coordinate to the 5-digit center of that geographic location. Once latitude/longitude 

coordinates are assigned, the data can be used for distance mapping or spatial analysis. One 

of the difficulties associated with ZIP code areas is their significant variation in geographic 

extent (Krieger, Waterman, Chen, Soobader, Subramanian, & Carson, 2002; Cook, Grala, & 

Wallis, 2006). Grubesic and Matisziw (2006) note that the average size of a ZIP code area in 

Wyoming is 1,430 km
2
 (889 square miles), while the average size of a ZIP code area in New 
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Jersey is 12.8 km
2
 (8 square miles). As a result, ZIP codes can range in size from a single 

building to a delivery zone spanning hundreds of square miles and crossing several political 

jurisdictions (U.S. Census Bureau, 2001). Dramowicz (2004) states that geocoding based on 

a postal code produces radically different results in urban and rural areas because urban 

postal codes represent very small areas, as they approximate a block face—one side of the 

street between two intersections, whereas rural postal codes are very large, covering many 

communities, making geocoding results less accurate.  

For incident locations, addresses were the most precise means of location 

identification based on the data contained within HMIS database. Geocoding with street 

addresses determines the longitude/latitude location for a given address. Traditional 

geocoding uses a street vector data source to obtain address range and coordinates of the 

street segment on which the given address is located (Bakshi, Knoblock, & Thakkar, 2004). 

Geocoding then uses an approximation technique to estimate the location of the given 

address using the address range of the selected street segment. Address geocoding results in 

the same accuracy in urban and rural areas (Dramowicz, 2004). A geocoding training module 

from Brown University (Geocoding and Buffering, n.d.): 

While street addresses are an easy to understand way for us to make sense of 

locations in a local area there are many problems will using them for 

distinguishing locations in the world. Street addresses are generally 

considered location identifiers within a local reference system; furthermore, a 

street address system is often discrete, meaning it is only effective for 

positions that fall on the street network. For this reason the US street network 

has been digitized and coordinates (lat/long for instance) have been 

determined for the two points that specify individual line segments (smallest 

line segments possible). In addition to the global coordinates the street 

address range for each side of the street is also specified for that segment of 

the street network. Therefore, based on the known range of street addresses 

and lat/long coordinates a reasonable approximation can be made of the 

location of an address on a street in global coordinates. 



 25 

 

 

3.3 Great Circle Distance Calculation 

 

The great circle distance represents the shortest distance between two points over the 

surface a sphere with a plane passing through the center as presented in Figure 3.1. 

  

 

 

 

 

 

Given the longitudes/latitudes of origin and incident location pairs a great-circle shortest 

distance between them can be calculated. Calculating distances on earth based on great circle 

requires two assumptions: 

1. Height elevations are ignored; and 

2. Earth assumed to be spherical (ignoring ellipsoidal effects) with an average 

radius of 6,373 km 

Great circle measurements provide the distance between two points (provided their 

longitude/latitude) in kilometers, statute miles, meters, feet, and the angle of bearing between 

two points in degrees or radians. The haversine formula as given in Equation 3.1: 
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Where,  

  1 and 2 are the longitudes of origin and incident location, respectively and 

Figure 3.1 Great circle distance (ab) between points A and B 
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  1 and  2 are the latitudes of origin and incident location, respectively 

 – Angular distance in radians. 

The distance is then calculated as given in Equation 3.2     

             •= RD                                                                                                       (3.2)                         

Where,  

R is the radius of Earth in [km]. 

 When calculating the great circle distance, a sphere with an average great-circle 

radius of 6,372.795 km will produce results with error of 0.5 % (Thorvaldsen, 2006). Great 

circle distance measurements require a high level of mathematical accuracy in upwards of 15 

digits. The steps to obtaining great circle distances can be observed in Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Haversine Formula 

Great circle distance 

Origin: 
 City, State, Zip code 

Geocoding 

Origin: 

Longitude 
Latitude 

Incident Location: 

Address, Street, City, 
State, or Zip code 

Geocoding 

Incident Location: 

Longitude 

Latitude 

 

Figure 3.2 Flowchart for obtaining great circle distances 
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3.4 One-Way Analysis of Variance 

 

With the acquisition of great-circle distances, a methodology would be needed to 

provide information on statistical similarities in the average distance of state means. The 

dataset was analyzed with SPSS software for the following purposes; (1) Generating 

descriptive statistics on the overall sample; (2) attaining the mean distance of incidents for 

each state and testing for differences by generating a p-value (3) Obtaining distribution 

curves for distance and phases for the cumulative sample and; (4) Obtaining a distribution 

curve for individual states in the study.  

 For quantitative response variables, one of the most common analyses, one-way 

analysis of variance (ANOVA), refers to comparing the means of several groups. (Argesti & 

Finlay, 1997, p. 439). The one-way ANOVA is a global test of independence (Argesti & 

Finlay, 1997, p. 445).The heart of this analysis is a significant test, using F distribution, for 

detecting evidence of differences among the population means (Argesti & Finlay, 1997, p. 

439). ANOVA is considered to be an F test of the null hypothesis H 0: μ1= μ2= μ3=… μn 

against the alternative hypothesis Ha: at least two means are unequal (Argesti & Finlay, 1997, 

p. 439). This method is based on three assumptions surrounding the data. 

1. The data distribution is normal. 

2. The data has equal standard deviations or constant variance. 

3. The same data is random. 

 

If sample means end up being unequal, further inferences are needed to determine the 

nature of the difference (Argesti & Finlay, 1997, p. 445). SPSS software for a one-way 

ANOVA will present a side by side comparison (post-hoc analysis) of states which indicate 
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differences by generating p-values. The post-hoc test utilized will be dependent upon which 

ANOVA assumptions are met. The one-way ANOVA will also construct confidence 

intervals for between-sample comparisons. Evidence of similarities/differences in sample 

means can be further interpreted if zero exists within the interval.  ANOVA will also be used 

to test for similarities among the phases in which incidents occur and the distances they may 

be correlated to. Significance will be determined by the p value generated ( =0.05 was 

employed) A pairwise comparison among phases will also be used to determine correlations 

in mean distances between phases in study. 
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CHAPTER 4. RESULTS 

 

4.1 Descriptive Statistics 

 

 This study utilized 1850 incidents involving the release of flammable-combustible 

HazMats during the course of transportation. The study included five states (California, 

Illinois, Iowa, New Jersey, Texas) in which shipments originated.  The total number of 

incidents used in this study generated a wide range of distances in which incidents occurred. 

As noted by Table 4.1, the shortest distance (based on normal scale analysis) in which any 

incident occurred from it’s location of origin is 0.2 km (0.1 miles). The greatest distance was 

4214 km (2618 miles). The average distance of incident occurrence for the total sample is 

1072 km (667 miles).  

                                Table 4.1 Descriptive Statistics of study sample. 

Statistics Normal Distance  

(km) 

Sample Size 1 850 

Mean 1 072 

Standard Deviation 965 

Minimum Distance ~0 

Maximum Distance 4 214 

  Range 4 214 

 

 

Table 4.2 presents a breakdown of incidents by state and year. The trend in number of 

flammable-combustible incidents within the five states does not demonstrate stability as 

Figure 4.1 reveals. There was no explanation (such as change in legislation, introduction of 

new technology, etc.) for this variation in number of incidents. The possibility that this is 

attributed to the varying degrees of industrial activity within states should be pursued. 
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       Table 4.2 Distribution of incidents by state and by year. 
Year/ 

State 

1995 

(1) 

1996 

(2) 

1997 

(3) 

1998 

(4) 

1999 

(5) 

2000 

(6) 

2001 

(7) 

2002 

(8) 

2003 

(9) 

2004 

(10) 

Total

[ %] 

Iowa 5 2 4 12 5 5 1 7 1 2 44 

2% 

Illinois 28 25 22 50 90 93 46 126 129 27 636 

34% 

New 

Jersey 

8 10 13 37 24 8 8 64 52 8 250 

14% 

California 18 20 14 27 49 53 19 70 91 9 370 

20% 

Texas 115 18 68 56 87 49 19 73 52 13 550 

30% 

Total/ % 174 

9% 

75 

4% 

121 

6.5% 

182 

10% 

255 

14% 

226 

12% 

93 

5% 

340 

18% 

325 

18% 

59 

3.2% 

1850 

 

 
Figure 4.1 Total incidents by year 

4.2 Normal Scale Distribution 

 

        This study was undertaken to realize the objective of analyzing 1,850 HazMat incidents 

to determine whether the average distance of incident occurrence is equal among all states in 

study. Using SPSS statistical software, a distribution for the total number of incidents in 

study was generated. As shown in Figure 4.2, the histogram of cumulative incidents as a 

function of distance is skewed right. This curve did not fall in line with the one-way ANOVA 

assumption of a normal distribution. This is attributed to the high frequency of incidents 
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(367) within the range of 0 km to 161 km (100 miles). Remaining data was categorized 

within 161 km increments as seen in Table 4.3. Since a normal curve was not attained, a 

transformation method was utilized in hopes of generating a normal distribution. 

 
Figure 4.2 Frequency of incidents by distance 

 

 

Table 4.3 Cumulative incidents represented by distance 

Distance (km) Distance (mi) Frequency 

0-160 0-100 367 

160-322 100-200 139 

322-482 200-300 155 

482-643 300-400 120 

643-804 400-500 106 

804-966 500-600 96 

966-1127 600-700 115 

1127-1287 700-800 100 

1287-1448 800-900 131 

1448-1609 900-1000 81 

1609-1770 1000-1100 48 

1770-1931 1100-1200 43 

1931-2092 1200-1300 48 

2092-2253 1300-1400 41 

2253-2414 1400-1500 37 

2414-3219 1500-2000 67 

3219-4345 2000-2700 57 
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4.3 Logarithmic Scale Distribution 

 

The logarithmic (log) transformation was used in attempting to attain normality and 

equalize the sample variance for cumulative incidents. The nature of the log transformation 

makes small numbers larger and large numbers smaller. This ultimately results in a more 

balanced comparison of average distances among states. It was determined that use of the log 

transformation could prove essential in identifying any underlying patterns within the high 

number of incidents between the 0 to 160 km range. Surprisingly, as seen by Figure 4.3, the 

histogram failed to present a normal distribution and instead indicated a distribution that is 

skewed left. However, an interesting observation is that the distribution presents two separate 

modes. The peak of one mode is observed at approximately log distance 2.6 km (12 miles). 

The second mode presented a peak at log distance 7 km (1098 miles). Based on these results, 

it was evident that incidents in this study showed a tendency to occur at local/short haul and 

long haul distances. It became essential to further analyze these two modes in hopes of 

acquiring a normal distribution. 

  

 

                      Figure 4.3 Frequency of incidents by distance (Log) 
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4.3.1 Bimodal Distribution Analysis 

 

The two modes were separated at log distance 4.8/196 km (122 miles) which 

presented an observable valley in incident frequency. The lower mode of incidents, at log 

distance 4.8 and below, presented 402 incidents occurring at distances of 196 km or less. 

Figure 4.4 presents a distribution curve for the first mode with an average incident distance 

of 24 km (15 miles). While normality was not established, constant variance was 

demonstrated. It is expected, however, that if data from all states was used, higher level 

normality (lower p value) will be demonstrated. A high frequency of incidents (255) within 

this mode occurred at distances below 40 km (25 miles) classifying them as local (L) and 

short-haul (SH) in nature. The second mode of incidents (1448) also presented an average 

distance of incidents at 1061km (659 miles) classifying them as long range (Figure 4.5). The 

average distance of these two modes proved to be very interesting. It was necessary to 

determine why incidents were likely to occur at separate average distances. Suggestions will 

be provided later in this study as to why incidents may be more prevalent at these short-haul 

and long-haul distances.  

To verify that the two models are not a random result of the summation of data, the 

five states were investigated separately. The distribution in the number of incidents by 

normal and log distances for each state is presented in APPENDIX A; Figures A.1 to A.10. 

Individual states generated similar trends caused by a great frequency of incidents occurring 

at shorter distances. Despite a bimodal distribution, an analysis of variance (ANOVA) for 

states would indicate whether average distances were equal. 
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            Figure 4.4 Lower mode of distribution 

 

 

 
               Figure 4.5 Upper mode of distribution 

4.3.1.1 Results - Research Objective I 

 

An ANOVA model was utilized for testing the null hypothesis that the average 

distance of incidents is equal for all states, assuming incidents are independent of one 

another, with equal variances and normal distribution. The assumptions that incidents were 

independent of each other and have constant variance were satisfied. As shown in Table 4.4, 

statistically significant (p<0.001) indicates a difference in the average distance of incidents 

among states. Even though all states did not generate similar averages for incidents, two key 
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findings were identified. First, the larger states in study based on geography (Texas and 

California) did generate larger distance averages. This fell in line with the expectation that 

vehicles would generally have longer road segments to cover when transporting commodities 

in these states. This assumption was not met for remaining states as New Jersey which is 

smaller in size than Iowa generated a greater average distance of incident. The second 

finding was that all states generated an average distance of incident occurrence which was 

long-haul in classification.   

Table 4.4 Test of for claim that average distance of incidents is equal among states 

Dependent 

Variable 

Sum of 

Squares 

Degrees 

of 

Freedom 

Mean 

Square 

F-test p-value  

Normal 

Distance 

24326423.0 4 6081605.8 17.52 <0.001 

 = 0.05 

 

Constant variance among states required that post-hoc analysis use an appropriate test 

(Tukey-Kramer pair-wise comparison) that adjusts for heteroscedasticity. Pairwise 

comparisons of state averages for normal distance is provided in Table 4.5. Based on 

comparisons for original distances, California’s average distance of incident is not similar to 

that of any other state. Iowa’s, Illinois, New Jersey and Texas all generated average distance 

of incident that are not statistically different. A slight difference in average distance could be 

observed among Texas and Illinois.  
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Table 4.5 Pairwise comparison of state means for original distance 
STATES CA 

 

IA 

 

IL 

 

NJ 

 

TX 

 

CA 

 

 0.0107 <.0001 <.001 <.0001 

IA 

 

0.0107  1.00 0.9997 0.8431 

IL 

 

<.0001 1.00  0.9844 0.0313 

NJ 

 

<0.0001 0.9997 0.9844  0.4385 

TX 

 

<0.0001 0.8431 0.0313 0.4385  

 

 
 

Standard error values were used to facilitate the interpretation of these pairwise 

results. Standard error values represent the measure of uncertainty about the extent to which 

sample averages estimate true state averages (Table 4.6). Figure 4.6 plots the average 

distance for each state with standard error bars. States with overlapping standard error bars 

have similar average distance of incident. The standard error graph verifies the results that all 

states other than California have similar average distance of incident. Similarities in average 

distance can be attributed to the high frequency of incidents occurring at shorter distances 

within all states.  

 

Table 4.6 Average distance of incident for states with standard error 

State Mean Std Error 

CA 881 30 

TX 671 25 

IA 577 88 

IL 572 23 

NJ 595 37 
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     Figure 4.6 State averages for distance with standard error uncertainty 

 

4.3.1.2 Results - Research Objective II 

 

HMIS grouped all incidents within key phases of transport in for which they 

occurred. In this study, analysis was carried out for five primary phases in which incidents 

occurred.  Like distance, a histogram for phases based on normal distance presented a highly 

skewed distribution. Therefore, phase differences were also analyzed using the logarithmic 

distance scale to establish normality. The analysis includes the following phases: 1) incidents 

occurring while the commodity was enroute (on-road) for delivery; 2) incidents occurring 

while the commodity was being loaded; 3) incidents occurring while the commodity is being 

unloaded; 4) incidents where the commodity was at a temporary storage facility and; 5) 

incidents where it was unknown at which phase they occurred. Eventhough all phases were 

analyzed, results involving the final two phases (temporary storage & unknown) were not 

interpreted because of their negligible sample representation. An instrumental finding is that 

the majority of incidents (1241) in this study occurred during the unloading phase.  The 
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loading phase represented the second highest amount (361), followed by enroute incidents 

(145). It is possible that the high number of incidents classified during unloading is attributed 

to some incidents being discovered during unloading at destination eventhough they may 

have occurred earlier. In these instances, it may be more convenient to classify these 

incidents as “occurring during unloading.” Consequences of this error may result in 

significant underreporting of incidents occurring during the enroute phase. In this instance, 

there is no ideal method to depict if incidents are occurring enroute or simply being 

discovered during the unloading process. Suggestions will be presented later in this study as 

to how this issue can be addressed. The fourth phase identified incidents that occurred while 

the commodity was at some temporary storage facility between origin and destination. The 

last phase represents incidents where it is indeterminable at which point the incident 

occurred. The final two phases were not used for analysis due to a negligible representation 

within the sample. The sample representation of phases and averages can be observed in 

Table 4.7. 

Table 4.7 Sample representation of phases with average distance 

Phase Total Amount Average Distance 

(Enroute) 145 550 

(Loading) 361 626 

   (Unloading) 1241 697 

  

Incidents within the three primary phases all occurred at average distances classified 

as long haul. The loading phase also presented an average distance of incident occurrence 

that is higher than anticipated.  It was anticipated that loading would generate the smallest 

average distance because this process typically occurs at the front end of transportation 

(before commodity movement). One explanation for such a high distance average of 
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incidents occurring during loading is that they may truly be occurring at some intermodal 

point a significant distance from origin (between origin and destination). A second possible 

explanation points to errors in phase classification when documenting incidents. This 

suggests that a high number of shipments were handled at an intermodal point significantly 

far from their origins. This may have resulted in correctly labeling these locations as “non-

origin”, while incorrectly classifying the phases as loading. In this instance, phases should 

have been correctly classified as “being at a temporary storage facility.” It is also suggested 

that a new category for phases be developed. An appropriate title may be “loading while at a 

temporary storage facility.” 

Like distance, histograms of individual phases based on log distance illustrate a bimodal 

distribution as seen by Figures 4.7, Figure 4.8, and Figure 4.9.  

 

 

Figure 4.7 Distribution of enroute phase frequency relative to log-distance 

 

 

 

Figure 4.8 Distribution of loading phase frequency relative to log-distance 
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Figure 4.9 Distribution of unloading phase frequency relative to log-distance 

  

Based on its usefulness for multiple mean comparisons, an ANOVA analysis was ran 

to test whether the average distance of incident between phases is equal. As seen by Table 

4.8, this analysis was carried out for normal. The normal distance scale demonstrated a 

failure to accept the claim based on a statistically significant p= 0.0202. Similar analysis for 

log distance also demonstrated a difference based on p< 0.0001. Between group comparisons 

for normal distances revealed that the average distance for the enroute and unloading phase 

are different (Table 4.9). However, based on logarithmic distance, between group 

comparison among phases indicates that the loading phase and the unloading phase were not 

similar (p< 0.0001) in average distance where incidents occurred (Table 4.10). This finding 

presents itself as logical because loading takes place at the front end of shipment and 

unloading occurs on the back end. 

 

Table 4.8 Test of claim that average distance of incidents is equal among states 

Dependent 

Variable 

Sum of 

Squares 

Degrees 

of 

Freedom 

Mean 

Square 

F-

test 

p-value  

Normal 

Distance 

4 180 514 4 1 045 

128.5 

2.92 0.0202 

 = 0.05 
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Table 4.9 Pairwise comparison of transportation phases (normal distance) 
PHASE Enroute 

 

Loading 

 

Unloading 

 

Enroute 

 

 0.6983 0.0408 

Loading 

 

0.6983  0.2685 

Unloading 

 

0.0408 0.2685  

 

Table 4.10 Pairwise comparison of transportation phases (log distance) 

PHASE Enroute 

 

Loading 

 

Unloading 

 

Enroute 

 

 0.7630 0.0802 

Loading 

 

0.7630  <0.0001 

Unloading 

 

0.0802 <0.0001  

 

4.4 Time Series Results 

 

This analysis utilized SAS software to perform an ARIMA time series analysis. This 

method analyzed HazMat incidents for the purpose of incident forecasting. Relative to this 

study, the time series is represented by the number of incidents occurring at each time period 

(monthly) within the study (1995-2004). The 1,850 incidents were distributed over an 83-

month baseline. The number of incidents was also forecasted for 24 months beyond the last 

baseline month. This analysis is centered on the idea of long-term memory, with the number 

of incidents for any current month/observation depending critically on the number of 

incidents occurring in previous months. However, the memory within the data fades 

exponentially going farther back in time. The AR component is estimated based on this logic. 

This indicates that incidents closer to the current observations in the series have a stronger 

weight for predicting current observations than do observations farther back in time. 
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ARIMA models are identified by matching obtained patterns of AutoCorrelation 

Function (ACF) and Partial AutoCorrelation Function (PACF) plots with idealized patterns 

(Jenkins and Box, 1970). ACF and PACF functions identified autoregressive AR (1) and 

moving average MA (1) patterns within the data. Two principal findings are interpreted from 

the ACF and PACF plots. The large positive ACF and PACF spikes at lag 0 demonstrate a 

MA structure, indicating incidents occurring one month prior are most critical for predicting 

current incidents. This also can be regarded as the shocks created by prior months 

contributing to the value of current observations. ACF estimates, as observed in the SAS 

output in Appendix B, p. 62, also behave in an exponentially decaying manner, as recognized 

by the reduction in spikes at increasing lags. This behavior is a result of the AR component. 

T-tests verified the statistical significance of the AR (1) and MA (1) components. The 

MA parameter estimate (0.3425) and the t-test value of 2.04 (p = 0.0410) demonstrate the 

significance of adjacent shocks for forecasting current incidents.  As seen in Table 4.11, the 

parameter point estimate (0.805) and t-test value of 7.66 (p < 0.0001) show the significance 

of the weighted average of incidents one month prior for predicting current incident values; 

with exponential decay, the point estimate value (i.e., 0.805
2
, 0.805

3
, etc.) for months further 

removed from the current observation quickly approaches 0. 

Table 4.11 Significant tests for autoregressive (AR) and moving average (MA) components 

Parameter Estimate Standard 

Error 

t-value Approx 

Pr > t 

Lag 

Mu 21.81 3.35024 6.51 <0.0001 0 

MA1,1 0.34253 0.16762 2.04 0.0410 1 

AR1,1 0.80537 0.10511 7.66 <0.0001 1 

 

Post-model estimation chi-square values represent a test of the null hypothesis that 

residuals values are random and lacking systematic patterns. Chi-square values are presented 
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at 6-month intervals for the first 2 years, as seen in Table 4.12. Smaller chi-square values and 

p-values > 0.05 support the claim of random residuals. 

Table 4.12 Chi-square test for random residuals 

Lag Chi-square Pr > Chi-square 

6 1.32 0.8581 

12 7.94 0.6351 

18 13.00 0.6730 

24 15.59 0.8355 

 

4.5 Forecasting 

 

The SAS output (Appendix B, p. 70), presents the forecasted values of incidents for 

the next 24 months beyond the 83-month baseline. The “Obs” column presents the month 

being forecasted and the “Residual” column represents residual values. Standard errors and 

95% confidence intervals can be seen to increase for upper limits period beyond 83 months. 

Future prediction needs to be approached with caution because the farther the prediction 

extends beyond the actual data the less reliable is the prediction (Jenkins and Box, 1970). 

Only a small percentage of future data values can be predicted before the forecast turns into a 

straight line (Jenkins and Box, 1970) (see Figure 4.10). Forecasting does not necessarily 

produce an accurate predicted value, but instead provides a general point of comparison. 

Forecasting needs to be conducted in an adaptive manner. New data values should be 

incorporated into the time series model as they occur. It is generally not advised to forecast 

beyond 6 months, as those values will not be as meaningful (Shelley, M.C., personal 

communication May 17
th

 2007). Forecasted values generated beyond the 6-month period 

generally will tend to stabilize, which contradicts the expectation that the series behavior will 

be more volatile.  
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Figure 4.10 Incident for 83 months in study and 24 months beyond 
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CHAPTER 5. SUMMARY, 

RECOMMENDATIONS, AND CONCLUSION 

5.1 Summary 

 

This study sought to conduct frequency analysis of HazMat incidents as a function of 

distance between origin and incident location. It also sought to identify whether incidents 

documented for occurring during primary transportation phases (loading, enroute, loading, 

temporary storage, unknown) are likely to occur at similar distances. 

 Data from five states was utilized (California, Illinois, Iowa, New Jersey, Texas).  

The 1,850 incidents in study presented an average distance of incident that was long haul in 

classification. This demonstrated that being further away from a carrier’s home-base may be 

more substantial with respect to incident occurrence. The five states in study generated 

differences in their average distance of incident. The average distance for incidents 

originating within each state was also long haul in classification. An ANOVA pairwise 

comparison indicated that aside from California, other states, though having stark contrasts in 

geography and incident numbers, registered similar average distance of incidents. These 

findings did not agree with what was anticipated.  Suggested findings centered on the idea 

that variations in state sizes would generate a wider range of average distance among states. 

It was not expected that Texas, based on its large geography, would generate similar averages 

to Iowa, Illinois, and New Jersey. This fell in line with the assumption that in larger states, 

shipments on average would have longer road segments to cover for interstate/intrastate 

travel.  
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Use of the logarithmic values for distance presented a bimodal distribution as a 

function of distance. This proved to be one of the more interesting findings of this study 

because the two modes presented average distance of incidents which were short haul (first 

mode) and long haul (second mode) in classification. The average distance of incident for the 

first mode (24 km/15 miles) was attributed to a high percentage of incidents occurring at 

short- haul distances of 161km (100 miles) or less. This suggests that within town, city and 

state deliveries may also be an area of concern with respect to incident likelihood. A possible 

explanation for this may be a high level of flammable-combustible material handling as seen 

with local and short haul carriers. This constant handling may lead to fatigue which in turn 

may lead to HazMat incidents. Hanowski et. al (2003) explains that in addition to driving, a 

L/SH driver may receive the day’s driving schedule, load and unload the vehicle, get in and 

out of the vehicle numerous times, lift and carry packages, engage in customer relations and 

perform other miscellaneous tasks. The physical activity that plays a major role in the daily 

tasks of L/SH drivers could potentially lead to fatigue and could impact driving performance 

and safety (Hanowski et. al., 2003). Wylie, Schultz, Miller, Mitler, & Mackie (1996) and 

Hanowski et al. (2003), in their study, confirm that fatigue does appear to be an issue in L/SH 

trucking operations.  

The second mode of the distribution presented a sample of incidents occurring at a 

long haul average distance of 1061km (659 miles). For long-haul drivers, fatigue is an 

important safety issue because of the monotony of driving for many hours at a time 

(Hanowski et. al, 2003).  In contrast to local/ short-haul carriers, long-haul drivers may be on 

the road for several days or weeks at a time, drive and sleep at irregular times and sleep in the 

truck’s cab or sleeper-berth during off-hours (Hanowski et. al, 2003). Given the typical work 
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routine of long-haul drivers, it is not surprising that HOS and driver fatigue have been 

research areas of focus (Hanowski et. al, 2003).  

Prior studies have demonstrated fatigue to be a contributing factor to incidents in 

short and long-haul general trucking. Based on the average distances of the two modes, it is 

believed that fatigue may also be a factor with regard to the high numbers HazMat incidents 

involving flammable-combustible commodities.   

It must first be noted that the great-circle distance between points of origin and 

incident are not road distances. The great circle distance provides the shortest distance 

between two points over the surface of a sphere (earth). By no means is this measurement as 

accurate a form as road distance. This method of distance measurement proved most useful 

because data compilation did not allow for the identification of specific road segments used 

in commodity transport.  

ANOVA analysis also indicated that incident occurrences within primary 

transportations phases did not occur at similar distances. Incidents within primary phases all 

occurred at a long haul distance average. This fell in line with the average distance for all 

states being long haul in classification. However, it was anticipated that the loading phase 

would have generated an average distance of incident which was short-haul in classification. 

This is due to loading typically occurring at the beginning of transportation. Having an 

average this high (long-haul) may be attributed to incidents truly occurring at some 

intermodal point or reporters making errors in incident documentation. In regards to 

documentation errors, it is suggested that many of the incidents classified for the loading 

phase may actually be occurring at some temporary storage facility a significant distance 

from origin locations. This suggests that incident reporters may correctly document these 
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temporary areas as non-origin while incorrectly reporting this phase as loading. It is 

suggested that these incidents be documented as occurring within the temporary storage 

phase.   

A pairwise comparison was utilized to provide a more distinct interpretation for the 

differences in the average distance of incident among phases. The pairwise comparison based 

on normal distance values indicated different mean averages for distance in incidents 

occurring during the enroute and unloading phases. However, pairwise comparisons for log 

distance indicated differing incident averages for loading and unloading phases. This 

particular finding proved logical due to the nature of where loading/unloading occur with 

regards to transportation. 

5.2 Recommendations  

 

This work identifies issues that must be assessed further to mitigate the variables that 

lead to incidents involving flammable-combustible commodities. For example, many policies 

and regulations are established to regulate long-haul road transportation in hopes of reducing 

incidents. Some of these policies deal with hours of service and driver fatigue. However, a 

large percentage of the incidents within this study occurred at distances under 161 km (100 

miles). This leads to one important suggestion that local and short-haul carriers may be 

involved in a substantial number of incidents involving flammable-combustible goods.  

5.2.1 Recommendations for policy change 

 

Findings of this research suggest that special emphasis be placed on prevention and 

control of local/short-haul and long haul carriers of flammable-combustible HazMats. This 

may entail creating special policies regarding the transport of flammable-combustible 
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HazMats within those respective distances. This is because consequences resulting from 

incidents involving flammable-combustible HazMats may be more severe than incidents 

involving non-HazMats. Therefore general policies should not be applied across the board.    

Within HMIS database, there was severe underreporting of criteria which could have 

proven useful in this study and in future analysis. One area is the lack of more detailed 

information for shipment origins. As previously mentioned, great-circle distance is not an 

exact representation of actual road distances. The use of centroid approximations for zip 

codes further reduces measurement accuracy. It is suggested that HMIS require the listing of 

exact addresses for shipment origins as done with incident locations. Also, to gain a better 

understanding of incident probabilities relative to distance, the HMIS database should also 

require the reporting of specific route segments used in commodity transport. Carriers should 

be required to retain logs of route specifics. This will be instrumental for assessing incident 

probability with respect to actual distance (as opposed to great-circle) and identifying those 

route segments which are highly susceptible to incident probability.  

Another issue is that the second mode of incidents registered an average distance of 

incident of 1061km (659 miles). Based on this average distance of incident, a highway speed 

of 70 mph indicates that incidents would occur at a time of slightly over 9 hours. Federal 

hours-of-service regulations suggest driving a maximum of 11 hours after a consecutive 10 

hour rest period. The discrepancy in federal hours-of-service requirements and findings of 

this research may suggest a change in federal non-stop driving regulations. The primary issue 

may be that 11 consecutive hours of non-stop driving may be to long a period of non-stop 

driving. It is suggested that federal regulations be set around the limit of eight hours. Studies 

should then be carried out to assess the effectiveness of such a change. 
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5.2.2 Recommendations for Future Research 

 

The number of incidents utilized in this study is minute compared to the overall amount 

of HazMat incidents involving flammable-combustible commodities. To generate more 

concrete findings, it is suggested that a more thorough analysis involving a greater sample of 

states and incidents be carried out. It may also prove essential for an analysis of incident 

distributions by distance and a time series analysis for short/long-haul shipments be carried 

out on a state by state basis.  

Because incidents in this study occurred at random locations, data assortment did not 

differentiate between various origin-incident/destination pairs. Another suggestion is to 

perform an analysis where the destination of commodity shipment is utilized and controlled 

for within the analysis. For instance, specific origin-destination nodes which generate high 

volumes of delivery traffic should be focused on (i.e. California to Texas). This may provide 

a clearer description of how incidents are occurring relative to distance. In doing so, it can 

also be understood if incidents are occurring at some arbitrary point within transport or at its 

final destination.  

 One final idea is to utilize the months and regions synonymous to incidents in hopes 

of introducing a seasonal parameter. It may me possible to analyze annual peaks in incidents. 

This may enable a frequency analysis of incidents by month or seasons. An analysis of this 

form may result in the calculation of incident probability based on time of year. 

5.3 Conclusion 

 

With increasing traffic volumes of HazMats, concerns over the safe transport of 

HazMats have continued to grow (Madala, 2000). Government and industry alike, see a need 
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for safety and policy analysis to plan the minimum risk movement of these dangerous 

substances over the world’s network of highways, railroads, waterways, and other 

transportation (Madala, 2000). In this study, forecasted time series trends have indicated 

continuing occurrences of HazMat incidents. There is clearly a need to improve safety 

measures various aspects of land transport to tackle the growing frequency detected in the 

occurrence of incidents (Oggero et al., 2006). The findings of this study have given reason in 

reaffirming the need to better regulate the transportation of HazMats by the trucking industry.  

Future research within this field could build upon this study with the development of a 

density function model which generates incident probability based on length of commodity 

travel. 
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APPENDIX A. ADDITIONAL GRAPHS 
 

 

Graph A.1 Normal distance distribution of total incidents for California. 

 
 

 

Graph A.2 Log-distance distribution of total incidents for California. 
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Graph A.3 Normal distance distribution of total incidents for Iowa. 

 
 

 

Graph A.4 Log-distance distribution of total incidents for Iowa. 
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Graph A.5 Normal distance distribution of total incidents for Illinois. 

 
 

Graph A.6 Log distance distribution of total incidents for Illinois. 
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Graph A.7 Normal distance distribution of total incidents for New Jersey. 

 
 

 

Graph A.8 Log-distance distribution of total incidents for New Jersey. 
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Graph A.9 Normal distance distribution of total incidents for Texas. 

 
 

 

Graph A.10 Log-distance distribution of total incidents for Texas. 
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APPENDIX B. ARIMA TIME SERIES ANALYSIS 

 
 
 

                                        The SAS System            21:22 Friday, May 18, 2007   1 
 

                                       The ARIMA Procedure 

 
                                   Name of Variable = incident 

 

                                Mean of Working Series    22.28916 
                                Standard Deviation        11.77554 

                                Number of Observations          83 

 
 

                                         Autocorrelations 

 
  Lag    Covariance    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1      Std Error 

 

    0       138.663        1.00000    |                    |********************|             0 
    1     81.198586        0.58558    |                .   |************        |      0.109764 

    2     64.820891        0.46747    |              .     |*********           |      0.142517 

    3     52.995526        0.38219    |              .     |********            |      0.159927 
    4     42.603316        0.30724    |             .      |******.             |      0.170577 

    5     41.258281        0.29754    |             .      |******.             |      0.177119 

    6     25.639042        0.18490    |             .      |****  .             |      0.183042 
    7     15.058125        0.10859    |             .      |**    .             |      0.185279 

    8     24.979167        0.18014    |             .      |****  .             |      0.186044 

    9     32.588843        0.23502    |            .       |*****  .            |      0.188134 
   10     34.985717        0.25231    |            .       |*****  .            |      0.191638 

   11     24.446024        0.17630    |            .       |****   .            |      0.195600 

   12     24.596853        0.17739    |            .       |****   .            |      0.197505 
   13     28.077774        0.20249    |            .       |****   .            |      0.199415 

   14     21.782819        0.15709    |            .       |***    .            |      0.201877 

   15      6.441269        0.04645    |            .       |*      .            |      0.203344 
   16      5.265490        0.03797    |            .       |*      .            |      0.203472 

   17     -2.366233        -.01706    |            .       |       .            |      0.203558 

   18      5.581664        0.04025    |            .       |*      .            |      0.203575 
   19      1.923377        0.01387    |            .       |       .            |      0.203671 

   20      1.165801        0.00841    |            .       |       .            |      0.203682 

 
                                  "." marks two standard errors 

 

 
                                     Inverse Autocorrelations 

 

 
 
 
              

 
Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 

 

                  1       -0.28259    |              ******|   .                | 
                  2       -0.15987    |                .***|   .                | 

                  3       -0.05129    |                .  *|   .                | 
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                  4        0.13286    |                .   |***.                | 
                  5       -0.16263    |                .***|   .                | 

                  6       -0.04305    |                .  *|   .                | 

                  7        0.16289    |                .   |***.                | 
                  8        0.05780    |                .   |*  .                | 

                  9       -0.10614    |                . **|   .                | 

                 10       -0.11171    |                . **|   .                | 
                 11        0.13107    |                .   |***.                | 
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                                       The ARIMA Procedure 

 
                                     Inverse Autocorrelations 

 

                Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 

                 12       -0.01052    |                .   |   .                | 

                 13       -0.08404    |                . **|   .                | 
                 14       -0.05569    |                .  *|   .                | 

                 15        0.15035    |                .   |***.                | 

                 16       -0.08328    |                . **|   .                | 
                 17        0.06100    |                .   |*  .                | 

                 18       -0.04248    |                .  *|   .                | 

                 19        0.05352    |                .   |*  .                | 
                 20       -0.03497    |                .  *|   .                | 

 

 
                                     Partial Autocorrelations 

 

                Lag    Correlation    -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 
 

                  1        0.58558    |                .   |************        | 

                  2        0.18957    |                .   |****                | 
                  3        0.07787    |                .   |** .                | 

                  4        0.02313    |                .   |   .                | 

                  5        0.08719    |                .   |** .                | 
                  6       -0.09401    |                . **|   .                | 

                  7       -0.06798    |                .  *|   .                | 

                  8        0.16298    |                .   |***.                | 
                  9        0.15126    |                .   |***.                | 

                 10        0.05998    |                .   |*  .                | 

                 11       -0.08885    |                . **|   .                | 
                 12        0.03618    |                .   |*  .                | 

                 13        0.04611    |                .   |*  .                | 

                 14       -0.06517    |                .  *|   .                | 
                 15       -0.14605    |                .***|   .                | 

                 16        0.06503    |                .   |*  .                | 

                 17       -0.05762    |                .  *|   .                | 
                 18        0.04010    |                .   |*  .                | 

                 19       -0.03085    |                .  *|   .                | 

                 20        0.04941    |                .   |*  .                | 
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                                       The ARIMA Procedure 
 

                               Autocorrelation Check for White Noise 

 
    To        Chi-             Pr > 

   Lag      Square     DF     ChiSq    --------------------Autocorrelations-------------------- 

 
     6       80.99      6    <.0001     0.586     0.467     0.382     0.307     0.298     0.185 

    12      102.72     12    <.0001     0.109     0.180     0.235     0.252     0.176     0.177 

    18      109.96     18    <.0001     0.202     0.157     0.046     0.038    -0.017     0.040 
 

 

                             Squared Canonical Correlation Estimates 
 

                 Lags      MA 0      MA 1      MA 2      MA 3      MA 4      MA 5 

 
                 AR 0    0.3532    0.2286    0.1531    0.0998    0.0946    0.0371 

                 AR 1    0.0365    <.0001    <.0001    0.0026    0.0189    0.0009 

                 AR 2    0.0056    <.0001    <.0001    0.0015    0.0115    0.0182 
                 AR 3    0.0004    0.0012    0.0015    0.0003    0.0016    0.0003 

                 AR 4    0.0054    0.0050    0.0093    0.0016    0.0003    0.0007 

                 AR 5    0.0126    0.0114    <.0001    0.0002    0.0009    0.0025 
 

 

                              SCAN Chi-Square[1] Probability Values 
 

                 Lags      MA 0      MA 1      MA 2      MA 3      MA 4      MA 5 

 
                 AR 0    <.0001    0.0006    0.0148    0.0707    0.0915    0.3092 

                 AR 1    0.0807    0.9403    0.9779    0.6840    0.2684    0.8100 

                 AR 2    0.5013    0.9793    0.9349    0.7383    0.4779    0.2764 
                 AR 3    0.8647    0.7955    0.7380    0.8867    0.7903    0.9049 

                 AR 4    0.5145    0.5606    0.5330    0.7952    0.9041    0.8605 

                 AR 5    0.3196    0.4432    0.9757    0.9122    0.8647    0.7395 
 

 

                             Extended Sample Autocorrelation Function 
 

                 Lags      MA 0      MA 1      MA 2      MA 3      MA 4      MA 5 

 
                 AR 0    0.5856    0.4675    0.3822    0.3072    0.2975    0.1849 

                 AR 1   -0.2904   -0.0102    0.0050   -0.0542    0.1550    0.0448 

                 AR 2   -0.3290   -0.1164   -0.0185    0.0006    0.1577    0.0533 
                 AR 3   -0.2337   -0.0169   -0.0615    0.0025    0.0366    0.0012 

                 AR 4   -0.2465   -0.2115   -0.0639    0.0022    0.0349    0.0137 

                 AR 5    0.4470    0.2429    0.0906   -0.0288   -0.0663    0.0040 
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                                       The ARIMA Procedure 

 
                                     ESACF Probability Values 

 

                 Lags      MA 0      MA 1      MA 2      MA 3      MA 4      MA 5 
 

                 AR 0    <.0001    0.0010    0.0169    0.0717    0.0930    0.3124 

                 AR 1    0.0086    0.9324    0.9667    0.6583    0.1719    0.7064 
                 AR 2    0.0031    0.2963    0.8755    0.9959    0.2006    0.6485 

                 AR 3    0.0366    0.8855    0.5832    0.9824    0.7818    0.9937 

                 AR 4    0.0285    0.0676    0.5722    0.9847    0.7959    0.9329 
        

 

 

        
 
 

 

AR 5    <.0001    0.0583    0.5165    0.8442    0.6600    0.9810 
 

 

                                  Minimum Information Criterion 
 

                 Lags      MA 0      MA 1      MA 2      MA 3      MA 4      MA 5 

 
                 AR 0  4.843125  4.765734  4.703092  4.688765  4.712666  4.698434 

                 AR 1  4.474347  4.479279  4.527994  4.579464  4.629734  4.661032 

                 AR 2  4.488464  4.530555  4.577761  4.627827  4.678797  4.701108 
                 AR 3  4.536627  4.582325  4.613947  4.654153  4.700395  4.732476 

                 AR 4  4.586052  4.633264  4.651752  4.701434  4.747115  4.780323 

                 AR 5  4.626199  4.674413  4.678963  4.730991  4.783906  4.833556 
 

                             Error series model:  AR(9) 

                             Minimum Table Value: BIC(1,0) = 4.474347 
 

 

                            ARMA(p+d,q) Tentative Order Selection Tests 
 

                          ---------SCAN--------    --------ESACF-------- 

                          p+d     q         BIC    p+d     q         BIC 
 

                            1     1    4.479279      1     1    4.479279 

                            2     0    4.488464      2     1    4.530555 
                            0     5    4.698434      3     1    4.582325 

                                                     5     2    4.678963 

                                                     0     5    4.698434 
 

                                     (10% Significance Level) 

 
 

                                   Random Walk with Drift Tests 

 
                            Type           Lags        Tau    Pr < Tau 

 

                            Drift             2      -1.36      0.1785 
                                              5      -0.90      0.3707 
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                                       The ARIMA Procedure 
 

                                      Preliminary Estimation 

 
 

                                      Initial Autoregressive 

                                             Estimates 
 

                                                    Estimate 

 
                                        1            0.79830 

 

 
                                      Initial Moving Average 

                                             Estimates 

 
                                                    Estimate 

 

                                        1            0.30287 
 

 

                               Constant Term Estimate      4.495706 
                               White Noise Variance Est    89.20655 

 

 
 

                               Conditional Least Squares Estimation 

 
  Iteration         SSE          MU       MA1,1       AR1,1    Constant      Lambda      R Crit 

 

          0     7139.63    22.28916     0.30287     0.79830    4.495706     0.00001           1 
          1     7132.73    21.92613     0.34459     0.81393    4.079868        1E-6    0.031083 

          2     7132.72    21.95215     0.34490     0.81396     4.08399        1E-7    0.000906 

          3     7132.72    21.95212     0.34497     0.81401    4.082936        1E-8    0.000052 
 

 

                                   Maximum Likelihood Estimation 
 

    Iter       Loglike          MU       MA1,1       AR1,1    Constant      Lambda      R Crit 

 
       0    -302.85912    21.95212     0.34497     0.81401    4.082936     0.00001           1 

       1    -302.85103    21.81248     0.34228     0.80480    4.257773        1E-6    0.014382 

       2    -302.85101    21.81342     0.34253     0.80537    4.245526        1E-7     0.00077 
 

 

                              ARIMA Estimation Optimization Summary 
 

         Estimation Method                                             Maximum Likelihood 

         Parameters Estimated                                                           3 
         Termination Criteria                        Maximum Relative Change in Estimates 

         Iteration Stopping Value                                                   0.001 

         Criteria Value                                                          0.000736 
         Alternate Criteria                         Relative Change in Objective Function 

         Alternate Criteria Value                                                1.458E-7 
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                                       The ARIMA Procedure 
 

                              ARIMA Estimation Optimization Summary 

 
         Maximum Absolute Value of Gradient                                      8.991314 
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         R-Square Change from Last Iteration                                      0.00077 
         Objective Function                                       Log Gaussian Likelihood 

         Objective Function Value                                                -302.851 

         Marquardt's Lambda Coefficient                                              1E-7 
         Numerical Derivative Perturbation Delta                                    0.001 

         Iterations                                                                     2 

 
 

                                  Maximum Likelihood Estimation 

 
                                            Standard                 Approx 

               Parameter      Estimate         Error    t Value    Pr > |t|     Lag 

 
               MU             21.81342       3.35024       6.51      <.0001       0 

               MA1,1           0.34253       0.16762       2.04      0.0410       1 

               AR1,1           0.80537       0.10511       7.66      <.0001       1 
 

 

                                 Constant Estimate      4.245526 
                                 Variance Estimate      89.14146 

                                 Std Error Estimate     9.441476 

 
 
 
 

 

                                 AIC                     611.702 

                                 SBC                    618.9585 
                                 Number of Residuals          83 

 

 
                               Correlations of Parameter Estimates 

 

                             Parameter        MU     MA1,1     AR1,1 
 

                             MU            1.000    -0.046    -0.078 

                             MA1,1        -0.046     1.000     0.771 
                             AR1,1        -0.078     0.771     1.000 

 

 
                                Autocorrelation Check of Residuals 

 

    To        Chi-             Pr > 
   Lag      Square     DF     ChiSq    --------------------Autocorrelations-------------------- 

 

     6        1.32      4    0.8581     0.010    -0.003     0.003    -0.010     0.110    -0.048 
    12        7.94     10    0.6351    -0.195     0.010     0.113     0.132    -0.041    -0.013 

    18       13.00     16    0.6730     0.123     0.097    -0.078    -0.018    -0.130     0.032 

    24       15.59     22    0.8355    -0.034    -0.094     0.016     0.028     0.104     0.029 
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                                       The ARIMA Procedure 

 

                                    Model for variable incident 
 

                                    Estimated Mean    21.81342 

 
 

                                      Autoregressive Factors 

 
                                   Factor 1:  1 - 0.80537 B**(1) 

 

 
                                      Moving Average Factors 

 

                                   Factor 1:  1 - 0.34253 B**(1) 
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                                       The ARIMA Procedure 

 

                                    Outlier Detection Summary 
 

                               Maximum number searched           2 

                               Number found                      2 
                               Significance used              0.05 

 

 
                                          Outlier Details 

                                                                         Approx 

                                                                 Chi-     Prob> 
                    Obs    Type                  Estimate      Square     ChiSq 

 

                     46    Additive             -27.15461       14.15    0.0002 
                     42    Additive              22.58519        9.96    0.0016 
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2007   9 
 

                                       The ARIMA Procedure 

 
                                  Forecasts for variable incident 

 

    Obs       Forecast    Std Error       95% Confidence Limits           Actual       Residual 
 

      1        21.8134      11.9786        -1.6642        45.2910        21.0000        -0.8134 

      2        21.3314       9.6490         2.4198        40.2431        34.0000        12.6686 
      3        27.4734       9.4650         8.9223        46.0244        26.0000        -1.4734 

      4        25.6873       9.4442         7.1770        44.1977        13.0000       -12.6873 

      5        19.0587       9.4418         0.5531        37.5642        17.0000        -2.0587 
      6        18.6419       9.4415         0.1370        37.1469        10.0000        -8.6419 



 69 

 

 
      7        15.2594       9.4415        -3.2456        33.7643        10.0000        -5.2594 
      8        14.1008       9.4415        -4.4042        32.6057         9.0000        -5.1008 

      9        13.2410       9.4415        -5.2639        31.7460         7.0000        -6.2410 

     10        12.0209       9.4415        -6.4841        30.5258         7.0000        -5.0209 
     11        11.6029       9.4415        -6.9020        30.1079         9.0000        -2.6029 

     12        12.3855       9.4415        -6.1195        30.8904        11.0000        -1.3855 

     13        13.5792       9.4415        -4.9258        32.0841        18.0000         4.4208 
     14        17.2279       9.4415        -1.2770        35.7329        23.0000         5.7721 

     15        20.7919       9.4415         2.2870        39.2969        19.0000        -1.7919 

     16        20.1614       9.4415         1.6564        38.6663        15.0000        -5.1614 
     17        18.0940       9.4415        -0.4109        36.5990        25.0000         6.9060 

     18        22.0143       9.4415         3.5093        40.5192        12.0000       -10.0143 

     19        17.3402       9.4415        -1.1647        35.8452        17.0000        -0.3402 
     20        18.0534       9.4415        -0.4516        36.5583        19.0000         0.9466 

     21        19.2233       9.4415         0.7184        37.7283         6.0000       -13.2233 

     22        13.6072       9.4415        -4.8978        32.1121         7.0000        -6.6072 
     23        12.1463       9.4415        -6.3586        30.6513         6.0000        -6.1463 

     24        11.1831       9.4415        -7.3219        29.6880         7.0000        -4.1831 

     25        11.3160       9.4415        -7.1890        29.8209         7.0000        -4.3160 
     26        11.3615       9.4415        -7.1435        29.8664         6.0000        -5.3615 

     27        10.9142       9.4415        -7.5907        29.4192         4.0000        -6.9142 

     28         9.8354       9.4415        -8.6696        28.3403         5.0000        -4.8354 
     29         9.9287       9.4415        -8.5763        28.4336        23.0000        13.0713 

     30        18.2917       9.4415        -0.2133        36.7966        16.0000        -2.2917 

     31        17.9164       9.4415        -0.5885        36.4214        24.0000         6.0836 
     32        21.4906       9.4415         2.9857        39.9956        24.0000         2.5094 

     33        22.7149       9.4415         4.2099        41.2198        25.0000         2.2851 

     34        23.5971       9.4415         5.0921        42.1020        33.0000         9.4029 
     35        27.6019       9.4415         9.0970        46.1069        32.0000         4.3981 

     36        28.5109       9.4415        10.0060        47.0159         5.0000       -23.5109 

     37        16.3257       9.4415        -2.1793        34.8306        13.0000        -3.3257 
     38        15.8545       9.4415        -2.6505        34.3595        19.0000         3.1455 

     39        18.4701       9.4415        -0.0348        36.9751        23.0000         4.5299 

     40        21.2174       9.4415         2.7125        39.7224        30.0000         8.7826 
     41        25.3983       9.4415         6.8934        43.9033        19.0000        -6.3983 

     42        21.7392       9.4415         3.2343        40.2442        51.0000        29.2608 

     43        35.2966       9.4415        16.7917        53.8016        39.0000         3.7034 
     44        34.3865       9.4415        15.8815        52.8914        32.0000        -2.3865 

     45        30.8348       9.4415        12.3299        49.3398        28.0000        -2.8348 

     46        27.7669       9.4415         9.2620        46.2719         1.0000       -26.7669 
     47        14.2195       9.4415        -4.2855        32.7244        26.0000        11.7805 

     48        21.1499       9.4415         2.6450        39.6549        34.0000        12.8501 

     49        27.2266       9.4415         8.7216        45.7315        18.0000        -9.2266 
     50        21.9026       9.4415         3.3977        40.4076        18.0000        -3.9026 

     51        20.0790       9.4415         1.5740        38.5839        28.0000         7.9210 

     52        24.0827       9.4415         5.5777        42.5876        28.0000         3.9173 
     53        25.4541       9.4415         6.9492        43.9591        29.0000         3.5459 

     54        26.3867       9.4415         7.8817        44.8916        29.0000         2.6133 

     55        26.7061       9.4415         8.2012        45.2111        16.0000       -10.7061 
     56        20.7987       9.4415         2.2937        39.3036        37.0000        16.2013 

     57        28.4948       9.4415         9.9898        46.9997        31.0000         2.5052 
     58        28.3539       9.4415         9.8489        46.8588        23.0000        -5.3539 
     59        24.6029       9.4415         6.0980        43.1079         2.0000       -22.6029 

     60        13.5985       9.4415        -4.9064        32.1035        19.0000         5.4015 

   61        17.6974       9.4415        -0.8076        36.2023        24.0000         6.3026 
     62        21.4156       9.4415         2.9106        39.9205        27.0000         5.5844 

     63        24.0777       9.4415         5.5727        42.5826        29.0000         4.9223 

     64        25.9152       9.4415         7.4103        44.4202        43.0000        17.0848 
     65        33.0244       9.4415        14.5194        51.5293        32.0000        -1.0244 

     66        30.3683       9.4415        11.8633        48.8732        45.0000        14.6317 

     67        35.4754       9.4415        16.9704        53.9803        42.0000         6.5246 
     68        35.8362       9.4415        17.3312        54.3411        48.0000        12.1638 
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     69        38.7368       9.4415        20.2319        57.2418        31.0000        -7.7368 
     70        31.8621       9.4415        13.3572        50.3671        30.0000        -1.8621 

     71        29.0445       9.4415        10.5396        47.5495        26.0000        -3.0445 

     72        26.2280       9.4415         7.7231        44.7330        42.0000        15.7720 
     73        32.6687       9.4415        14.1637        51.1736        36.0000         3.3313 

     74        32.0978       9.4415        13.5928        50.6027        44.0000        11.9022 

     75        35.6049       9.4415        17.1000        54.1099        29.0000        -6.6049 
     76        29.8637       9.4415        11.3587        48.3687        23.0000        -6.8637 

     77        25.1201       9.4415         6.6152        43.6251        37.0000        11.8799 

     78        29.9750       9.4415        11.4700        48.4799        26.0000        -3.9750 
     79        26.5467       9.4415         8.0418        45.0517        32.0000         5.4533 

     80        28.1495       9.4415         9.6445        46.6544        19.0000        -9.1495 

     81        22.6816       9.4415         4.1766        41.1865        20.0000        -2.6816 
     82        21.2715       9.4415         2.7665        39.7764        16.0000        -5.2715 

     83        18.9371       9.4415         0.4322        37.4421         4.0000       -14.9371 

     84        12.5835       9.4415        -5.9215        31.0884          .              . 
     85        14.3799      10.4037        -6.0110        34.7708          .              . 

     86        15.8267      10.9829        -5.6993        37.3527          .              . 

     87        16.9919      11.3427        -5.2394        39.2232          .              . 
     88        17.9303      11.5701        -4.7467        40.6073          .              . 

     89        18.6861      11.7153        -4.2755        41.6476          .              . 

     90        19.2947      11.8085        -3.8494        42.4389          .              . 
     91        19.7849      11.8685        -3.4769        43.0468          .              . 

     92        20.1797      11.9073        -3.1582        43.5177          .              . 

     93        20.4977      11.9324        -2.8894        43.8848          .              . 
     94        20.7538      11.9487        -2.6652        44.1727          .              .    
     95        20.9600      11.9592        -2.4796        44.3996          .              . 

     96        21.1261      11.9660        -2.3268        44.5791          .              . 
     97        21.2599      11.9704        -2.2017        44.7215          .              . 

     98        21.3676      11.9733        -2.0996        44.8349          .              . 

     99        21.4544      11.9752        -2.0165        44.9253          .              . 
    100        21.5243      11.9764        -1.9490        44.9975          .              . 

    101        21.5805      11.9772        -1.8942        45.0553          .              . 

    102        21.6259      11.9777        -1.8499        45.1017          .              . 
    103        21.6624      11.9780        -1.8141        45.1388          .              . 

    104        21.6918      11.9782        -1.7851        45.1686          .              . 

    105        21.7154      11.9783        -1.7617        45.1926          .              . 
    106        21.7345      11.9784        -1.7428        45.2118          .              . 

    107        21.7499      11.9785        -1.7275        45.2273          .              . 
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