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ABSTRACT 

The growing trend of model-based design in off-road vehicle engineering requires 

models that are sufficiently accurate for their intended application if they are to be used with 

confidence.  Uncertain model parameters are often identified from measured data collected in 

experiments by using an optimization procedure, but it is important to understand the 

limitations of such a procedure and to have methods available for assessing the uniqueness 

and confidence of the results.  The concept of model identifiability is used to determine 

whether system measurements contain enough information to estimate the model parameters.  

A numerical approach based on the profile likelihood of parameters was utilized to evaluate 

the local structural and practical identifiability of a tractor and single axle towed implement 

model with six uncertain tire force model parameters from tractor yaw rate and implement 

yaw rate data.  The analysis first considered datasets generated from simulation of the model 

with known parameter values to examine the effect of measurement error, sampling rate, and 

input signal type on the identifiability. The results showed that the accuracy and confidence 

of identification tended to decrease as the quality, quantity, and richness of the data 

decreased, to the point that some of the parameters were considered practically unidentifiable 

from the information available.  The profile likelihood plots also indicated potential 

opportunities for model reduction.  Second, the analysis considered the identifiability of the 

model from two datasets collected during field experiments, and the results again indicated 

parameters that were practically unidentifiable from the information available.  Overall, the 

study showed how different experimental factors can affect the amount of information 

available in a dataset for identification and that error in the measured data can propagate to 

error in model parameter estimates. 
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CHAPTER 1.  GENERAL INTRODUCTION 

1.1 Introduction 

Off-road vehicle design and manufacturing companies are continually striving to 

meet customer needs by providing higher-quality and higher-performance products more 

quickly and at a lower cost.  The term “off-road vehicles”, used throughout this thesis, refers 

to the collection of ground vehicles used in the fields of e.g., agriculture, construction, 

logging, and mining (Wong, 2008).  Companies in this industry are frequently faced with 

new engineering challenges, such as emissions regulations (ASABE, 2010), improvement of 

energy efficiency, increased safety requirements (Directive 2006/42/EC, 2006), and growing 

integration of electronic components for advanced control designs (Prabhu, 2007; DPNA, 

2010).   

The traditional engineering design process is iterative in nature, alternating between 

stages of design, testing, and analysis (Dieter and Schmidt, 2009).  Intermediate forms of a 

final design, or prototypes, are often created and tested during the process to validate 

performance and obtain information for subsequent stages.  However, design and analysis 

need not always be physical in nature.  Engineers often develop mathematical models to 

characterize a physical system.  In off-road vehicle applications, models have been developed 

for applications such as guidance controller design (Karkee and Steward, 2010), traction 

modeling (Book and Goering, 2000), ride and comfort evaluation (Ahmed and Goupillon, 

1997), handling evaluation (Previati et al., 2007), and real-time driving simulators (Fales, et 

al., 2005; Hummel et al., 2005; Karimi and Mann, 2006; Karkee et al., 2009). 
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Advances in computer technology have had a major impact on engineering design 

and analysis over the last few decades (Dieter and Schmidt, 2009).  An array of languages 

and software packages for modeling and simulation of systems have been developed to take 

advantage of faster and more-flexible computing platforms (Åström et al., 1998).  These 

technologies have fostered the growing trend of model-based design strategies in the off-road 

vehicle industry (Prabhu, 2007).  In general, a model-based approach utilizes 

characterizations of system behavior to meet specified design requirements (Wymore, 1993).  

Model-based design has the potential to reduce reliance on physical prototypes, which can 

lead to time and cost savings (Prabhu, 2007; Lennon, 2008).  It also provides a means to 

explore potentially unsafe operating scenarios (Arikan, 2008; Lumpkin and Alford, 2010); 

for example, safety is a concern as tractors are engineered for higher-speed operation (Clay 

and Hemingway, 2001). 

An extension of model-based design is virtual prototyping, in which design, analysis, 

and evaluation of products is performed in an immersive, interactive environment (Sastry and 

Boyd, 1998).  As noted by Karkee (2009), “virtual prototyping (VP) is defined differently 

across disciplines and industries”, but there are some elements that should be common to 

most dynamic system design and development applications, including: a modeling and 

simulation environment, a virtual reality environment, and a user interaction component.  

Virtual prototyping applications have been demonstrated in the off-road vehicle engineering 

context as well (Karkee et al., 2009). 

Real-time simulation is a special class of simulation in that it enables real-time 

analysis.  In many cases, real-time simulations of models are developed for hardware-in-the-

loop studies, which incorporate physical hardware, controllers, and/or human operators.  In 
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automotive applications, there are numerous examples of driving simulators.  One of the 

most notable is the National Advanced Driving Simulator (NADS) at the University of Iowa, 

which provides a realistic environment for many types of studies (NADS, 2010).  In off-road 

vehicle engineering specifically, there are several examples of the development of driving 

simulators (Fales, et al., 2005; Hummel et al., 2005; Karimi and Mann, 2006; Karkee et al., 

2009).  Real-time simulation faces the challenge of balancing model fidelity with 

computational resources, as the simulation time must keep up with the clock time.  

Specifically, for real-time simulation, the timeliness of an “answer” is as important as its 

correctness (Stankovich, 1988).  This constraint can limit the fidelity of certain modeling 

domains in off-road vehicle systems, such as fluid power dynamics, tire-soil interaction, and 

3D multibody dynamics.  However, high-performance computing hardware, such as field-

programmable gate arrays (FPGA), has recently been demonstrated for real-time simulation 

of a fluid power (hydraulic) system on an agricultural tractor (Karkee et al., 2010).  

As modeling software capabilities and computer hardware capabilities have 

improved, there has been the potential for higher-fidelity and more-realistic models in 

engineering applications.  Software capabilities often range from mathematical modeling to 

physical modeling to 3D computer-aided engineering (CAE) tools. Mathematical modeling 

pertains to the traditional characterization and derivation of mathematical system equations 

which are manually programmed for an application.  Physical modeling is an object-oriented 

approach involving the development of model classes which represent physical components 

(Fritzson, 2004). It does not require the manual derivation of mathematical equations; 

instead, the software package interprets the representation and automatically forms the 

equations for simulation (Bernardin, 2009).  Examples of physical modeling software include 
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Simscape (The MathWorks, Inc., Natick, MA) and the collection of platforms (e.g., Dymola, 

MapleSim, MathModelica, and OpenModelica) that use Modelica (The Modelica 

Association), an open physical modeling language.  Lastly, CAE tools generally refer to the 

array of advanced software packages for performing, for example, finite element analysis 

(FEA), computational fluid dynamics (CFD) analysis, and multibody system (MBS) 

simulation, and they typically enable the integration of 3D CAD (computer-aided design) 

models and utilize elaborate graphical user interfaces; examples include ANSYS (ANSYS, 

Inc., Canonsburg, PA), LMS Virtual.Lab (LMS International, Leuven, Belgium), and 

MSC.Adams (MSC.Software Corporation, Santa Ana, CA).  As engineers use the different 

modeling products provided by these software companies, the focus seems to be more on 

“representing” the system for simulation by numerical solvers than on obtaining closed-form 

mathematical expressions for analysis.  In most cases, it is not possible to export a 

mathematical representation of a modeled system from the software package, so users must 

rely on the capabilities built into the software or apply numerical approaches. 

An ongoing limitation in the advancement of model-based engineering design is the 

development of models with sufficient accuracy in which one can put confidence regarding 

their ability to characterize a system (Radhakrishnan and McAdams, 2005).  Without 

sufficient confidence, the usefulness of a model is restricted, and there will be hesitancy to 

rely on it to drive decision-making in design.  Validation processes can be run to ensure that 

a model can satisfactorily represent a physical system, at least within certain scenarios of 

interest (Ljung, 1999).  However, this does not necessarily ease the initial process of model 

development. 
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1.2 Previous Work 

Over the past few years, researchers in the Iowa State University Departments of 

Agricultural and Biosystems Engineering, Mechanical Engineering, and Electrical and 

Computer Engineering have worked together on several projects related to the modeling and 

simulation of off-road vehicle systems.  Much of this research has been performed in 

collaboration with engineers at a leading company in the design and manufacture of off-road 

vehicles.  A major outcome of this previous work was an architecture for modeling and real-

time simulation of off-road vehicles in a virtual reality environment (Karkee et al., 2009).   

However, as efforts to develop newer and higher-fidelity models have taken place, 

there have been many ongoing questions regarding how to improve and validate model 

accuracy for use in various applications.  Karkee studied the modeling, identification, and 

analysis of a tractor and single axle towed implement system as part of his dissertation 

research (Karkee, 2009) at Iowa State University.  After developing and analyzing three 

tractor-implement models of varying degrees of fidelity, it was found that a dynamic model 

with tire relaxation length dynamics included represented the system most accurately based 

on a comparison of frequency response.  The parameters of the tire force model were found 

to be among those to which the vehicle response was most sensitive, but their values were 

also among those with the most uncertainty.  An approach was developed and utilized to 

identify values for each of these tire model parameters based on system-level sensor data 

collected in field experiments.  Overall, the parameter identification approach was shown to 

improve the ability for the model to represent system behavior compared to initially-selected 

parameter values.  However, some of the parameters – particularly the tire relaxation length 
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parameters – were more difficult to estimate based on greater variation in their estimated 

values over several trials and larger standard deviation estimates. 

Karkee’s research demonstrated the potential of a parameter identification approach 

to address the challenge of developing more-accurate models for model-based design, but it 

also raised new questions regarding the practical limitations of such an approach in various 

applications.  Although a parameter identification approach could always be used to obtain 

some set of more-or-less suitable values for a model’s parameters, it was natural to question 

the accuracy, uniqueness, and overall confidence of those values as parameter estimates.  For 

example, in later studies, it was observed that there was interaction between the different 

vehicle model parameters such that changes in one parameter value could be compensated, or 

“offset”, by changes in other parameter values with little effect on the overall suitability of 

the model at representing system behavior.  Also, further inspection of typical vehicle system 

sensor data from experiments revealed significant noise in some of the signals and called into 

question whether or not those signals contained enough information about the dynamics to be 

successfully used for identification. 

In light of these observations, we desired to identify and demonstrate some type of 

methodology that could be used to assess the identification of parameters from experimental 

data; specifically, we desired to consider the effects of the model structure and experimental 

data properties on the identification of parameters.  Such a methodology could have 

usefulness both before and after experimental data collection. 
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1.3 Research Objectives 

The overall objective of the research in this thesis is to investigate methods that could 

be used to assess the process of identifying model parameters from experimental data.  Based 

on those results, additional objectives are to investigate the identifiability of the tractor and 

single axle towed implement model’s tire force model parameters from measured vehicle 

system data and to evaluate the effect of model structure as well as experimental factors such 

as measurement noise, data sampling rates, and input excitation type on the identification 

process.  Overall, this thesis is intended to contribute additional knowledge to the process of 

parameter identification in the model-based design of off-road vehicle systems. 

1.4 Organization of the Thesis 

Chapter One provides a general introduction to model-based design, an overview of 

previous work, and the overall research objectives.  Chapter Two presents a background on 

some of the methods used in the research, including some information on modeling, 

parameter identification, optimization, and identifiability.  This chapter also includes a few 

simple examples that serve as case studies for the research that follows.  Chapter Three is 

presented in the form of a paper intended for submission to a journal.  That paper is focused 

on identifiability analysis of the tractor and single axle towed implement model mentioned 

above.  Chapter Four presents some general conclusions derived from this research as well as 

recommendations for future work. 
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CHAPTER 2.  BACKGROUND 

The work presented in this thesis takes a closer look at some issues related to the 

identification of a parametric vehicle model from output data.  It is not necessarily focused 

on the development or validation of off-road vehicle or tire models but is based upon recent 

work done in this area.  It examines the topic of model identifiability in the context of a 

tractor and single axle towed implement identification experiment in order to determine 

whether there is a unique solution for the identified parameters.  This chapter presents 

background information on some methods in the literature that are used later in this thesis. 

2.1 Parameter Identification 

As described by Walter and Pronzato (1997), physical systems are generally modeled 

in continuous time and described by a set of differential equations, 

 ̇     (           ) (2.1) 

       (           ) (2.2) 

where   is the state vector,   is the parameter vector,   is the vector of controlled inputs,   is 

time, and    is the vector of model outputs. 

At a high level, several different model types can be considered, each having 

advantages and disadvantages in different applications (Walter and Pronzato, 1997; Ljung, 

1999; Bohlin, 2006).  The most common type is the “white box” model, which is guided by 

first principles such as conservation and balance to represent system phenomena.  Any model 

parameters have physical meaning and can be measured and specified directly.  However, it 

is difficult to completely describe many complex systems in this manner.  At the other end of 

the modeling spectrum is the “black box” model, in which an arbitrary mathematical 
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structure is used to fit an input to an output recorded in experimental data.  The model 

parameters generally have no physical interpretation, so their values lend less direct insight 

into the underlying system.  From an engineering design standpoint, it is often more 

beneficial to examine the impact of a physical parameter change on performance.  However, 

black box approaches can be very effective at modeling observed system behavior.  In 

between white box and black box models is the “grey box” modeling approach.  A first 

principles model structure is used to explain most, if not all, of the system behavior.  Some of 

the model parameter values may be known with greater certainty, but other parameter values 

may be unknown.  The unknown parameters are then identified, or “estimated”, from 

experimental data.  The main advantage of a grey-box model is that its parameters retain 

physical meaning, yet it has been calibrated to match observed system behavior.   

A typical way to obtain the parameters for a given model structure is to find the set of 

values for which the model output most closely represents the actual system output for a 

given input (Walter and Pronzato, 1997).  This general process is illustrated in Figure 2.1. 

System

Model

u(t)

ym(t)

y(t)

Objective 

Function

Optimization 

Algorithm

+

-

ey(t,θ)

θ

 
Figure 2.1 – The general parameter identification process.  (Adapted from similar 

figures given by Walter and Pronzato (1997).) 
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Closeness of representation may be determined by comparing the time history of one or more 

sensed outputs of the system with the time history of the same outputs of the model.  For a 

common input vector,  , the error vector,   , between the system output vector,  , and the 

corresponding model output vector,   , is calculated as, 

                     (2.3) 

In an effort to obtain the best estimate of parameter values,  ̂, for the model to characterize 

the system, an objective function will be formulated that calculates a scalar value as a 

function (e.g., the sum of squares) of the output error,   .  The purpose of the objective 

function is to quantify the suitability of the model with a particular set of parameter values, 

and the calculation and weighting of error can be performed in any way that emphasizes the 

“objective” of the optimization.  Therefore, obtaining the optimal set of model parameters 

(i.e., the one with the least error) becomes a problem of minimizing the objective function.   

Since an exhaustive search of the parameter space is rarely practical, an optimization 

algorithm will generally be used to search the parameter space for the minimum value of the 

objective function.  Such a minimization problem can be approached with one of many 

algorithms available in the literature which search the parameter space for the optimal set of 

parameter values. 

2.2 Optimization Algorithms 

As mentioned above, identifying the set of parameter values for which a model best 

represents a physical system can be approached as an optimization problem with the 

objective of minimizing the error between the outputs of the model and system.  For a 

problem with one or two parameter values to optimize, the parameter space can be 
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envisioned as a one- or two-dimensional “landscape”, respectively, with an additional, 

vertical dimension reflecting the value of the objective function at any unique parameter 

value or pair of values.  The topography of the landscape will generally include regions of 

relatively lower objective function values, or minima, that optimize, either locally or 

globally, the parameters for that particular objective function.  The general goal of 

optimization is to locate the global minimum of the landscape formed by that objective 

function.  For parameter sets of dimension greater than two, the previously-mentioned 

landscape is less intuitive to visualize, but the goal of optimization within that parameter 

space is the same. 

Various optimization methods have been suggested as being more or less effective for 

different problem types, parameter set dimensions, and optimization scopes (Venkataraman, 

2009).  Among the different optimization methods available, two classes emerge: local 

techniques and global techniques. 

2.2.1 Local Optimization 

Local optimization techniques are usually deterministic in nature.  They are, in 

general, not likely to converge to the global optimum, and their results are highly dependent 

upon the initial values, or “starting point”, of the design variables.  Repeated application of a 

local optimization technique from different initial values in the parameter space will tend to 

increase the chances of reaching a global optimum; however, this outcome is not guaranteed, 

and this approach becomes more difficult to implement as the number of parameters 

increases.  Common techniques include Newton’s method and gradient descent (Nocedal and 

Wright, 1999; Venkataraman, 2009). 
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2.2.2 Global Optimization 

Global optimization techniques are usually stochastic in nature.  They search the 

parameter space in a heuristic manner and are more likely to reach a global optimum, 

although this is also not guaranteed.  The main drawback to global techniques is 

computational expense associated with the large number of function calls typically required 

during optimization.  Common examples include evolutionary computation and simulated 

annealing (Venkataraman, 2009). 

The genetic algorithm (GA) approach (Goldberg, 1989), a subset of the broader class 

of evolutionary computation, was inspired by the natural genetic processes of inheritance, 

selection, crossover, and mutation, and has shown considerable usefulness in global 

optimization and search applications since the 1980s, aided by the widespread advance of 

computer technology (Goldberg, 1994).  A number of applications in vehicle dynamics have 

made use of GA for optimization problems.  It has been used for optimization of vehicle 

trajectory simulations (Bernard et al., 1998; Fittanto and Puig-Suari, 2000; Bernard and 

Balling, 2004) as well as automotive design applications (Fujita et al., 1998; Hoffmeister and 

Bernard, 1998).   

Examples of the use of GA specifically for vehicle model parameter identification 

based on experimental data are available in the literature; although, as noted by Arikan 

(2008), it seems to be less common than the use of other identification techniques.  A GA 

approach has been used for the identification of two and three degree of freedom handling 

models for road vehicles based on experimental data (Arikan, 2008) as well as simulated data 

obtained from high-fidelity multibody models (Bolhasani and Azadi, 2002).  A GA approach 

has also been used for identification of a drivetrain model (Maclay and Dorey, 1993), 
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identification of a nonlinear vehicle ride model based on simulated data (Alasty and 

Ramezani, 2002), and identification of parameters for a semi-empirical tire model based on 

the results of finite element analysis (FEA) of a tire in sand (Grujicic et al., 2010).  In off-

road vehicle engineering applications, there is even less evidence of the use of GA for 

optimization problems.  A GA approach was shown to improve the identification of 

hydraulic system parameters from experimental data compared to a manual search (Book, 

1996).  A GA approach was also used to identify the parameters for a traction model of a 

crawler tractor based on data collected in field experiments (Book and Goering, 2000).   

In the trend toward higher-fidelity and more-realistic models for use in design in off-

road vehicle applications, GA may be a useful technique for parameter identification that has 

not been fully considered.  GA optimization is non-deterministic, and the algorithm’s direct 

interaction with a model is as straightforward as proposing a set of parameters and evaluating 

the simulation results (Goldberg, 1994).  This nature of interaction means that global 

optimization approaches can be applied to almost any model type without needing to 

evaluate or approximate gradients or Hessians of the objective function.  A GA approach was 

used in Chapter 3 of this thesis to obtain an initial parameter set for a tractor-implement 

model with respect to experimental data. 

2.3 Identifiability 

Although the gray-box approach to system modeling may promote model accuracy 

for use in model-based design, success is not necessarily guaranteed for identification of any 

arbitrary model’s parameters from any experimental dataset.  Model identifiability analysis is 

used to determine whether system measurements contain enough information to estimate the 
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model parameters.  That is, identifiability refers to the uniqueness of a parameter vector  ̂ as 

an estimate of the true parameter vector    in a model   representing a physical system 

(Walter and Pronzato, 1997).  Within this field, there are two subtypes frequently referred to 

as structural identifiability and practical identifiability in the literature. 

2.3.1 Analytical Approaches 

2.3.1.1 Structural Identifiability 

From a structural standpoint, a model may be parameterized in a way that one or 

more parameters cannot be uniquely determined from the output.  Furthermore, often only a 

limited number of the model states can be measured on an actual system.  Structural 

identifiability analysis is conducted independent of any parameter values or experimental 

data and is concerned with determining the ability to identify a model in ideal conditions – 

that is, with no error in modeling the system, no noise in the data, and with input and output 

measurement times “chosen at will” (Walter and Pronzato, 1997).  Therefore, it is also 

referred to as the theoretical or a priori identifiability. It is considered to be the “qualitative” 

aspect of experimental design for parameter identification (Walter and Pronzato, 1990).   

Formal definitions for structural identifiability are given by e.g., Walter and Pronzato 

(1997) and Ljung (1999).  The following explanation follows closely from the definitions 

given by Walter and Pronzato (1997).  If the condition 

 ( ̂)         ̂    
  (2.4) 

holds for almost any    in   (the prior feasible set for  ;      unless otherwise stated), 

then a parameter    is classified as structurally globally identifiable.  In other words, 

“identical input-output behavior” of two identical model structures implies that the estimated 

parameter set  ̂ is unique and corresponds to the true parameter set   .  Furthermore, 
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structural global identifiability of each parameter    in   is a necessary condition for 

structural global identifiability of the model structure.  The condition “almost any   ” 

functions to exclude atypical parameter values that may cause other parameters to become 

unidentifiable.  If a model structure cannot be classified as globally identifiable, it may be 

possible to verify the model’s local identifiability for some neighborhood        around the 

true parameter set.  If Eq. (2.4) holds for  ̂        then a parameter    is classified as 

structurally locally identifiable.  Each parameter    in   must be at least structurally locally 

identifiable for the model structure to be classified as structurally locally identifiable.  

Consequently, local identifiability is a necessary condition for global identifiability.  If there 

does not exist a neighborhood       for which Eq. (2.4) holds, then a parameter    is 

classified as structurally unidentifiable.  A model structure is structurally unidentifiable if 

one or more of its parameters is unidentifiable. 

A number of analytical methods have been developed for investigating structural 

identifiability and are demonstrated for various applications in the literature.  For linear 

models, two common methods for testing structural identifiability include the Laplace 

transform, or “transfer function”, approach (Bellman and Åström, 1970) and the similarity 

transformation approach.  An approach for local identifiability of linear models in state-space 

format is to assemble the Markov parameter matrix and determine if there is a one-to-one 

mapping from the parameter space to the Markov parameters; this is ensured if the Jacobian 

of the matrix is full rank (Grewal and Glover, 1976).  For nonlinear models (and linear 

models), the Taylor series approach, local state isomorphism approach, and elimination 

theory (e.g., differential algebra) are available.  More information on these methods is given 

by Walter and Pronzato (1997). 
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Consider, for example, the identification of a simple mechanical system shown in 

Figure 2.2 consisting of a mass, spring, and damper with one translational degree of freedom. 

 

Figure 2.2 – A simple mechanical system with mass  , spring constant  , and damping 

coefficient  .  The system has a translational degree of freedom along the  -axis and is 

acted upon by a horizontal force     .  

This system can be modeled mathematically by constructing a free body diagram for the 

mass and summing forces in the x-direction, which leads to the following second-order 

model relating the force f(t) to the displacement, x, of the mass from its equilibrium position, 

  ̈    ̇          (2.5) 

In this case, the objective is to identify the values of all three parameters, m, k, and b, by 

measuring the displacement, x, with a sensor as the force, f(t), is input to the system.  One 

may seek to determine if there is a globally unique solution for these three parameters based 

on the input and output used for this experiment.  Since the model is a linear, time-invariant, 

single-input, single-output structure, the Laplace transform (or “transfer function”) approach 

originally proposed by Bellman and Åström (1970) can be used.  Assuming initial conditions 

of zero for the position and velocity states of the mass and taking the Laplace transform of 

Eq. (2.5), the open-loop transfer function for this system in canonical form is, 
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The structural, global identifiability requirement,  ( ̂)       , is equivalent to, 
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(2.7) 
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(2.9) 

which has a unique solution, 

 ̂             (2.10) 

All three parameters of the model and, therefore, the model itself are structurally globally 

identifiable.  Therefore, the true values for m, k, and b, can be determined uniquely from 

noise-free input and output data. 

 However, consider a similar mechanical system shown in Figure 2.3 which has two 

springs in parallel between the fixed ground and the mass. 

 

Figure 2.3 - A simple mechanical system with mass  , spring constants    and   , and 

damping coefficient  .  The system has a translational degree of freedom along the x-

axis and is acted upon by a horizontal force     . 

The second-order mathematical model for this system is, 
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  ̈    ̇                (2.11) 

and the transfer function for this system is, 

     
    

    
 

 
 

    
 
       

 

 
(2.12) 

The structural, global identifiability requirement,  ( ̂)       , is equivalent to, 
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(2.13) 

 ̂

 ̂
 

  

  
 

(2.14) 

 ̂   ̂ 

 ̂
 

  
    

 

  
 

(2.15) 

The mass and damping coefficient are both structurally identifiable, but each spring constant 

estimate could take on one of many feasible values as long as  ̂   ̂    
    

 .  The 

relationship between the input and output only depends on the effective spring constant of the 

system.  It would be necessary to have additional information about    or    (e.g., from a 

previous experiment) in order for the model to be identifiable.  In this case, it is relatively 

straightforward to recognize, based on visual inspection and experience, that it would be 

impossible to uniquely identify spring constants for the two springs in parallel.  However, the 

ability to make this judgment for arbitrary models may be limited as model complexity 

increases.  Note that sensitivity analysis alone cannot be used to determine structural 

identifiability; the output,  , has a nonzero sensitivity to    and    in both transient and static 

response to an input force     , but this is not sufficient for unique identification of these two 

parameters. 
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2.3.1.2 Practical Identifiability 

In parameter identification, there are concerns regarding the amount of information 

contained in the actual experimental data (Ljung, 1999).  Even if a model has been 

determined to be structurally identifiable, this does not necessarily guarantee successful 

estimation from measured data.  The ideal conditions in Section 2.3.1.1 under which 

structural identifiability is evaluated are certainly not characteristic of actual parameter 

identification experiments.  Practical identifiability, however, considers model identifiability 

in light of the characteristics of the experimental data used for identification (Balsa-Canto 

and Banga, 2010).  This is also referred to as the a posteriori identifiability or the 

“quantitative” aspect of experimental design for parameter identification and is also related to 

a field known as optimal experimental design (Walter and Pronzato, 1990).  Experimental 

data properties considered in identification experiments often include quality, quantity, and 

richness.  Data quality refers to the presence of error in the output data.  Quantity refers to the 

actual number of data points available.  Richness of data is related to the manner in which a 

system input is excited; richer datasets are generated by inputs that contain spectral content 

across the bandwidth of the model and persistently excite the system (Ljung, 1999).  These 

data properties as well as the interaction between parameters can affect the certainty of 

parameter estimates.  Therefore, it is possible for a structurally identifiable parameter to be 

considered practically unidentifiable once experimental data is introduced.  However, unlike 

structural identifiability, practical identifiability is not as clear of a “yes-or-no” question.  As 

noted by Raue et al. (2009), the literature does not seem to provide as clear of criteria 

defining practical identifiability versus unidentifiability. 
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Sensitivity analysis is related to practical identifiability analysis, but it does not 

provide quite the same type of information.  Sensitivity analysis is concerned with variation 

in the system output due to variation in system parameters and determines the influence of 

parameters on system behavior (Banks, 1998).  There are many practical applications of 

sensitivity analysis (Saltelli et al., 2000).  In product engineering, sensitivity analysis can aid 

in determining which aspects of a system must be designed and manufactured with the 

highest precision.  In dynamic system modeling and simulation, sensitivity analysis can aid 

in determining which aspects of a system must be investigated and measured with greatest 

certainty (Karkee and Steward, 2010).  However, practical identifiability analysis is 

concerned with uncertainty in the identification of system parameters due to variation in the 

measured system output and takes into account the interaction between parameters. 

The statistical aspects of parameter identification from experimental data have been 

considered with maximum likelihood principles (Ljung, 1999), for which a number of 

inferential methods are available (Meeker and Escobar, 1998).  The following explanation of 

maximum likelihood estimation is based on descriptions given by Vardeman and Jobe 

(2001).  For a set of observed data   (with each observation assumed independent and 

identically distributed) and a model with parameter vector  , the probability function 

        of a model taking the value   for various parameter vector values is called the 

likelihood function, and its natural logarithm is called the log likelihood function, 

        (       ) (2.16) 
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Therefore, the goal is to determine the set of parameters   that maximizes  .  The maximum 

likelihood estimate  ̂ is the one that maximizes the probability of the observed data (Ljung, 

1999). 

 For large samples, likelihood-based confidence intervals can be defined to contain a 

region of parameter values around the maximum likelihood estimate  ̂ of dimension   for 

which the likelihood is highest (Vardeman and Jobe, 2001).  In other words, the confidence 

region is defined as, 

{ |      ( ̂)    } (2.17) 

where    is a value appropriate for the confidence level desired.  This concept is illustrated 

in Figure 2.4 for a single parameter  . 

 

Figure 2.4 - Plot of a log likelihood function      (the parabolic curve) and indication of 

a likelihood-based confidence interval (CI) for   around its maximum likelihood 

estimate  ̂ based on a value   . 
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An approximate           likelihood-based confidence region is obtained when 

Δ  
 

 
  (2.18) 

where   is the       quantile of the   
  distribution. 

 For two parameters    and   , two-dimensional likelihood-based confidence regions 

are visualized around the maximum likelihood estimate.  The log likelihood value is plotted 

on the axis coming out of the page, and confidence regions are bounded by contours of 

constant value      as shown in Figure 2.5.  This theory extends similarly to parameters sets 

of dimension greater than two, but visualization of the confidence region is not as intuitive. 

 
Figure 2.5 – Plot of likelihood-based confidence regions for two parameters.       is 

plotted on the axis coming out of the page.  Each parameter confidence region is 

bounded by a contour of constant value         ̂     

The Fisher Information Matrix (FIM) is a measure used for testing practical 

identifiability (Balsa-Canto and Banga, 2010) and determining an optimal experimental 

design for identification (Walter and Pronzato, 1997).  As described by Meeker and Escobar 

(1998), the FIM is calculated as an expectation of information in future data, 
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(2.19) 

The precision of estimation is implied by the curvature in the likelihood.  Greater precision is 

indicated by larger second-derivatives of the log likelihood     .  If data is available, the 

local FIM can be computed by evaluating Eq. (2.19) at    ̂.  The inverse of the FIM 

provides an approximate large-sample covariance matrix. 

2.3.2 Numerical Approaches 

Application of analytical identifiability approaches to large, complex models can be 

mathematically impractical, even with the help of symbolic math software.  Numerical 

approaches for local, structural identifiability have been proposed in mechanical system 

contexts (Serban and Freeman, 2001; Jiafan et al., 2010). 

Identifiability of dynamic models is an active topic of research in the field of systems 

biology.  Researchers in this field develop mathematical models of biological reaction 

networks and identify model parameters based on experimental observations.  According to 

Raue et al. (2009), their reaction networks permit only a limited number of outputs to be 

measured, and experimental data is often of insufficient quantity and quality for parameter 

identification; furthermore, the size and complexity of their mathematical models often 

renders analytical identifiability methods inappropriate.   

Therefore, numerical approaches for detecting unidentifiability of models have been 

investigated (Hengl et al., 2007; Raue et al., 2009). To address the problems stated above, 

Raue et al. (2009) proposed an approach to evaluate both structural and practical 

identifiability of model parameters based on their profile likelihood.  The approach is data-

based, enabling practical identifiability to be used to evaluate experimental factors such as 
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data quantity, noise, and system input.  An important feature of the profile likelihood 

identifiability approach is that it can be applied to arbitrary model types.  At a minimum, it is 

only necessary to be able to call the model with a specific parameter set and to obtain the 

outputs for objective function calculation.  This particular aspect can be favorable for any 

method used in model-based design.  Since modeling is done in various software formats, it 

is not always possible to obtain a closed-form, mathematical representation for a system. 

Based on a review of the literature pertaining to identifiability analysis and the 

feasibility of different methods in the context of off-road vehicle modeling applications, the 

profile likelihood approach proposed by Raue et al. (2009) was utilized for the identifiability 

analysis in this thesis.  In the following, this approach is explained and applied to some 

simple mechanical system examples. 

2.3.2.1 Profile Likelihood Approach 

Raue et al. (2009) and (2011) described a numerical approach to local structural and 

practical identifiability based on the profile likelihood of the model parameters.  A detailed 

description of the approach can be found in those studies but is summarized as follows.  For 

the optimization problem, they considered an objective function which is the weighted sum 

of squared residuals 

      ∑∑(
   

          

   
 )

  

   

 

   

 
(2.20) 

where   is the index of   outputs measured,   is the index of   data points collected,    
  is 

an experimental data point,    is a model output, and    
  is the corresponding measurement 

error of a data point.  Assuming that the noise on the measurements is normally distributed, 

         , minimization of this objective function yields maximum likelihood estimates of 
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the parameter set,  .  Although asymptotic confidence intervals for the parameters can be 

obtained based on a quadratic approximation of the likelihood at the estimated parameter 

values if the model “sufficiently describes the experimental data”, Raue et al. (2009) 

acknowledged that this approximation may not hold as well for cases with data of lower 

quality and/or quantity.  For those cases, confidence intervals based on a “threshold” in the 

likelihood were recommended, defined by 

{          ( ̂)    } (2.21) 

    (   
     ) (2.22) 

where Δ  is the     quantile of the   -distribution with    degrees of freedom.   

Raue et al. (2009) sought to efficiently search the parameter space around each 

parameter estimate by “exploring the parameter space for each parameter in the direction of 

least increase in   ”.  The profile likelihood was selected for that objective.  This 

computation individually increments each parameter in increasing and decreasing directions 

around its estimate, reoptimizing all of the other parameters to the data and recording the    

(objective function) value at each step.  Therefore, the approach is able to capture the effects 

of parameter sensitivity as well as parameter correlation on the identification of model 

parameters.  The computation produces a profile likelihood plot for each parameter, showing 

how its likelihood changes with respect to the parameter values.  Based on Eqs. (2.21) and 

(2.22), upper and lower confidence bounds for a parameter are determined by the locations at 

which the likelihood crosses a certain    threshold. 

Assessment of parameters’ local identifiability can then be made from their 

likelihood-based confidence intervals in logarithmic space.  Raue et al. (2009) defined a 
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parameter as identifiable if it has finite confidence bounds, i.e., a profile likelihood that 

reaches a specific    threshold (upper red dashed line) as shown in Figure 2.6a.   
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c) 

Figure 2.6 – Example profile likelihood plots (in black) for a) an identifiable parameter, 

b) a structurally unidentifiable parameter, and c) a practically unidentifiable 

parameter.  The gray curve results from a quadratic approximation of the likelihood. 

A completely flat profile likelihood with no minimum, as shown in Figure 2.6b, is 

structurally unidentifiable, indicating a functional relation between parameters such that a 

change in one parameter value can be compensated by a change in at least one other 

parameter with no increase in the objective function.  Acknowledging that (compared to 

structural identifiability) the literature does not provide as clear of a definition for practical 

unidentifiability, Raue et al. (2009) defined a parameter as practically unidentifiable if it has 

an infinite upper and/or lower confidence bound but the likelihood has a definite minimum 

value.  An example of this case is shown in Figure 2.6c.  Even if a parameter is deemed 

identifiable, the precision of its estimation can be assessed by the width of its confidence 

interval. 

This profile likelihood approach described above is implemented into the third-party 

PottersWheel mathematical modeling toolbox (Maiwald and Timmer, 2008) for MATLAB 

(The MathWorks, Inc., Natick, MA).  Although the toolbox is tailored specifically toward the 
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systems biology community, it has the capability to handle general mathematical models 

defined as a set of ordinary differential equations as well.  In addition, the toolbox has many 

other functionalities that are useful in mathematical modeling, parameter identification, and 

model analysis. 

2.3.2.2 Examples 

As an example of the profile likelihood identifiability approach implemented in 

PottersWheel, consider again the structurally unidentifiable mass-spring-damper system in 

Figure 2.3, modeled by the second-order equation, 

  ̈    ̇                (2.23) 

The PottersWheel toolbox requires mathematical models to be entered in a specific M-file 

format compatible with its functions; particularly, the model must be entered as a set of 

ordinary differential equations.  Reduction of order for Eq. (2.23) results in, 

 ̇     (2.24) 

 ̇  
 

 
 

 

 
   

       

 
   

(2.25) 

where      and     ̇.  The model input,     , was defined using a driving input function 

with predefined input types.  All four model parameters were considered to be unknown (or 

“free”), but within the bounds given in Table 2.1. 

Table 2.1 - Parameter bounds for the simple mass-spring-damper system example. 

Parameter Units Lower Bound Upper Bound 

  kg 0.01 5.00 

   N/m 0.01 5.00 

   N/m 0.01 5.00 

  N-s/m 0.01 5.00 
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Nominal values of      ,       ,       , and       were specified.  The model 

output,  , was defined with an error model and sampled at 5 Hz.  The error model was 

Gaussian and had a standard deviation of approximately 0.1 m (compared to a change in the 

steady-state position of the mass of approximately 9 m) in order to produce a dataset with 

low noise amplitude, i.e., a high signal-to-noise ratio. 

After loading the model into the PottersWheel graphical user interface (GUI), the 

option to create simulated data was used.  A step input force of 40 N was applied.  The 

simulation used the nominal values of the four free parameters and applied the specified error 

model to the output.  The built-in CVODES solver for ordinary differential equations 

(Hindmarsh et al., 2005), with “methods for stiff and nonstiff systems”, was used for model 

integration.  The time histories of the input and output signals are shown in Figure 2.7. 
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Figure 2.7 - Time histories of a) the input force (N) and b) the mass position (m) for the 

system in Figure 2.3.  The blue points are simulated data points, and the red line is the 

trajectory produced by the model with the nominal values for the four parameters. 

After creating the simulated data, it was necessary to reoptimize the four free parameters to 

the data to ensure that the optimum set of parameter values was reached; even though the 
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parameter values used to create the data were known, a slightly different set of values would 

generally fit the data with a lower objective function value.  The parameter identification 

functionality built into PottersWheel was used, and the “trust region” optimization algorithm 

was selected for this optimization, starting at the nominal parameter values used to create the 

data.  Optimization was conducted in logarithmic parameter space.  From the identified 

parameter values, the profile likelihood approach was run.  As before, the CVODES solver 

was used for integration, and the trust region optimization algorithm was used to fit 

parameters in logarithmic space; the parameter bounds in Table 2.1 were applied during these 

optimizations as well.  The    threshold for identifiability was calculated based on a 

simultaneous confidence level of 68% for which all four parameter confidence intervals hold 

jointly.  For a normal distribution, a “68%” confidence interval covers plus-or-minus one 

standard deviation.  Simultaneous confidence intervals consider the joint effects of parameter 

uncertainty on model validity.  The resulting profile likelihood plots for each parameter are 

shown in Figure 2.8; the confidence interval values, true values, and estimated values for 

these parameters are listed in Table 2.2. 

The profile likelihood results affirm the analytical results obtained in Section 2.3.1.1.  

Likelihood-based confidence intervals with finite upper and lower bounds indicate that the 

mass and damping coefficient parameters are identifiable from the information available.  

The points at which the profile likelihood crosses the upper threshold determine the upper 

and lower 68% simultaneous confidence interval values.  (The differences seen in the 

quadratic approximation (gray) are attributed to the estimation of the curvature.)  The flat 

profile likelihood plots with no local minimum indicate that the spring constants are both 

structurally unidentifiable.  In other words, as each spring rate is incremented in increasing 
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and decreasing direction around its estimated value, it is possible to reoptimize the remaining 

parameter values such that no change in the objective function value is achieved.  Namely, 

the two spring constant parameters are able to be adjusted such that a change in one value 

can be offset in a change by the other, i.e., to maintain          .  The functional 

relation between the two spring constants can be observed over the range of parameter values 

examined during the analysis.  Plots created by PottersWheel show this relation in Figure 2.9. 
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Figure 2.8 - Profile likelihood plots for the four parameters of the mass-spring-damper 

system in Figure 2.3, plotted in logarithmic space, for the simulated data shown in 

Figure 2.7.  Black lines represent the profile likelihood; gray parabolas represent the 

quadratic approximation for asymptotic intervals.  Gray asterisks at the valley of each 

curve indicate the estimated values of the parameters.  The upper red dashed line of 

each plot represents the threshold for 68% simultaneous confidence intervals.  The 

lower red dashed line represents the threshold for 68% pointwise confidence intervals.  

The mass and damping coefficient plots reach the upper threshold and are identifiable; 

the spring constant plots are flat and have no local minimum, so they are structurally 

unidentifiable. 

0.025 0.03 0.035 0.04 0.045

38

39

40

41

42

43

44


2 P

L

0.025 0.03 0.035 0.04 0.045
0.1

0.2

0.3

0.4

0.5

o
th

e
r 

p
a
ra

m
e
te

rs

log
10

(m)

0.35 0.4 0.45 0.5 0.55 0.6

38

39

40

41

42

43

44


2 P

L

0.35 0.4 0.45 0.5 0.55 0.6
-0.6

-0.4

-0.2

0

0.2

0.4

log
10

(k1)

o
th

e
r 

p
a
ra

m
e
te

rs

 

 

k2

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

38

39

40

41

42

43

44


2 P

L

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

log
10

(k2)

o
th

e
r 

p
a
ra

m
e
te

rs

 

 

k1

0.19 0.195 0.2 0.205 0.21

38

39

40

41

42

43

44


2 P

L

0.19 0.195 0.2 0.205 0.21
0

0.1

0.2

0.3

0.4

0.5

o
th

e
r 

p
a
ra

m
e
te

rs

log
10

(b)



34 

 

 

 

Table 2.2 - True values of each parameter, as well as estimated values and 68% 

simultaneous likelihood-based confidence intervals (all in normal parameter space) for 

the simulated data shown in Figure 2.7. 

Parameter Units   
    ̂    

    
    

    
 

  kg 1.1 1.09 1.06 1.11 

   N/m 3.0 3.00 0    

   N/m 1.4 1.40 0    

  N-s/m 1.6 1.58 1.54 1.62 

 

 

  

Figure 2.9 - Parameter values (all in logarithmic space) during profile likelihood 

analysis.  The functional relation between structurally unidentifiable parameters    

and    is visualized by changes in their values that maintain          .  The light 

blue and dark blue lines represent the damping coefficient and mass, respectively, 

which are unaffected by the relation. 

As a second example of the profile likelihood identifiability approach, consider again 

the structurally identifiable mass-spring-damper system in Figure 2.2, modeled by the 

second-order equation, 

  ̈    ̇          (2.26) 

This model was implemented into PottersWheel in a manner similar to the previous example, 

with nominal values of      ,      , and       and the same lower and upper bounds 

of 0.01 and 5.00 for each parameter.  The same step input force of 40 N was used as well.  
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Although the 5 Hz sampling frequency on the mass position was retained, the Gaussian error 

model was modified to produce noise with a larger spread, i.e., a larger standard deviation.  

The time histories of the input and output signals are shown in Figure 2.10. 

As in the previous example, the model parameters were first optimized to the dataset, 

and the profile likelihood analysis was run.  The results of this analysis affirmed the 

structural identifiability of the model, and the detection of finite upper and lower confidence 

intervals for each of the three model parameters indicated their practical identifiability for the 

dataset given.  As shown in Table 2.3, the presence of noise in the dataset widened the 

confidence intervals for the mass and damping coefficient compared to the values obtained in 

the previous example. 
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b) 

Figure 2.10 - Time histories of a) the input force (N) and b) the mass position (m) for 

the system in Figure 2.2.  The blue points are simulated data points, and the red line is 

the trajectory produced by the model with the nominal values for the three parameters. 
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Figure 2.11 - Profile likelihood plots for the three parameters of the mass-spring-

damper system in Figure 2.2, plotted in logarithmic space, for the simulated data shown 

in Figure 2.10.  Black lines represent the profile likelihood; gray parabolas represent 

the quadratic approximation for asymptotic intervals.  Gray asterisks at the valley of 

each curve indicate the estimated values of the parameters.  The upper red dashed line 

of each plot represents the threshold for 68% simultaneous confidence intervals.  The 

lower red dashed line represents the threshold for 68% pointwise confidence intervals.  

The model parameters’ profile likelihoods each reach the upper threshold and are 

identifiable. 

 

Table 2.3 - True values of each parameter, as well as estimated values and 68% 

simultaneous likelihood-based confidence intervals (all in normal parameter space) for 

the simulated data shown in Figure 2.10. 

Parameter Units   
    ̂    

    
    

    
 

  kg 1.1 1.24 1.04 1.43 

  N/m 4.4 4.44 4.28 4.62 

  N-s/m 1.6 1.52 1.22 1.91 

 

However, a confidence range has more meaning when translated into a range of physical 

performance.  Figure 2.12 shows how the parameter confidence intervals translate into a 

family of trajectories for the mass position, forming a region of confidence in the output. 
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Figure 2.12 - Variation of the simulated trajectory (red) of the mass position within the 

parameter confidence intervals for the dataset given (blue). 
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CHAPTER 3.  IDENTIFIABILITY ANALYSIS OF A TRACTOR AND 

SINGLE AXLE TOWED IMPLEMENT MODEL 

A paper to be submitted to Biosystems Engineering. 

Simon L. Nielsen, Brian L. Steward 

Abstract 

The growing trend of model-based design in off-road vehicle engineering requires 

models that are sufficiently accurate for their intended application if they are to be used with 

confidence.  Uncertain model parameters are often identified from measured data collected in 

experiments by using an optimization procedure, but it is important to understand the 

limitations of such a procedure and to have methods available for assessing the uniqueness 

and confidence of the results.  A numerical approach based on the profile likelihood of 

parameters was utilized to evaluate the local structural and practical identifiability of a tractor 

and single axle towed implement model with six uncertain tire force model parameters from 

tractor yaw rate and implement yaw rate data.  The analysis first considered datasets 

generated from simulation of the model with known parameter values to examine the effect 

of measurement error, sampling rate, and input signal type on the identifiability.  The results 

showed that the accuracy and confidence of identification tended to decrease as quality and 

quantity of data decreased, to the point that several of the parameters were considered 

practically unidentifiable from the information available.  The profile likelihood plots also 

indicated potential opportunities for model reduction.  Second, the analysis considered the 

identifiability of the model from two datasets collected during field experiments, and the 

results again indicated parameters that were practically unidentifiable from the information 
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available.  Overall, the study showed how different experimental factors can affect the 

amount of information available in a dataset for identification and that error in the measured 

data can propagate to error in parameter estimates. 

Keywords: identifiability, parameter identification, optimization, experimental design, 

tractor and implement model, model-based design 

3.1 Introduction 

Off-road vehicle design and manufacturing companies are continually striving to 

meet customer needs by providing higher-quality and higher-performance products more 

quickly and at a lower cost.  Advances in computer technology have had a major impact on 

engineering design and analysis over the last few decades (Dieter and Schmidt, 2009).  An 

array of software packages for modeling and simulation of physical systems have been 

developed to take advantage of faster and more-flexible computing platforms (Åström et al., 

1998).  These technologies have fostered the growing trend of model-based design strategies 

in the off-road vehicle industry (Prabhu, 2007).  In general, a model-based approach utilizes 

characterizations of system behavior to meet specified design requirements (Wymore, 1993).  

Model-based design has the potential to reduce reliance on physical prototypes, which can 

lead to time and cost savings during development (Prabhu, 2007; Lennon, 2008). 

However, an ongoing limitation in the advancement of model-based design has been 

the development of accurate models in which one can put confidence regarding their ability 

to characterize a system (Radhakrishnan and McAdams, 2005).  Without sufficient 

confidence, the usefulness of a model is restricted, and there will be hesitancy to rely on it to 

drive decision-making in design.  Validation processes can be conducted to ensure that a 
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model can satisfactorily represent a physical system, at least within certain scenarios of 

interest (Ljung, 1999).  Areas of concern include: the appropriateness of the model for the 

application, the accuracy of the mathematical representation of the model, and the accuracy 

of the model parameters (Bernard and Clover, 1994). 

Off-road vehicle dynamics models are often mathematical models developed based 

on the principles of on-road vehicle dynamics, which can be found in e.g., Gillespie (1992) 

and Wong (2008).  Off-road vehicle models have been developed for applications such as 

guidance controller design (Karkee and Steward, 2010a), traction modeling (Book and 

Goering, 2000), ride evaluation (Ahmed and Goupillon, 1997), handling evaluation (Previati 

et al., 2007), and real-time driving simulators (Fales, et al., 2005; Hummel et al., 2005; 

Karimi and Mann, 2006; Karkee et al., 2009).  Depending on its level of fidelity, a vehicle 

model will typically incorporate a set of parameters to describe the physical system, 

including mass and inertia properties, geometric values, and other component and system 

properties such as stiffness or damping characteristics.  Some of the parameter values may be 

uncertain due to the difficulty or impossibility of direct measurement, and certain parameter 

values that characterize a system well in one set of conditions may not be as appropriate as 

conditions vary (Kiencke and Nielsen, 2005; Karkee and Steward, 2011).  Sensitivity 

analysis can be used to determine the effects of parameter variation on the model output 

(Jang and Han, 1997) as well as guide efforts to improve the certainty of specific parameters 

(Karkee and Steward, 2010b).  In other words, variation in parameter values is used to 

evaluate variation in the output.  Additionally, identification approaches can be used to 

determine vehicle model parameter values by finding the set of values for which the model 

output most closely represents the actual system output for a given input  (Kiencke and 
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Nielsen, 2005).  There are many examples of vehicle model parameter identification in the 

literature.  Closeness of representation may be determined by comparing the time history of 

the same outputs and minimizing the error between them using an optimization approach.  

However, the values that minimize the error between a model structure and experimental data 

may differ from values obtained from other experimental approaches or other identified 

models. 

For off-road vehicle models, the interaction of tires and soil is complex and difficult 

to characterize accurately (Wong, 1989).  In particular, as noted by Karkee (2009), it is 

difficult to find a widely-accepted tire-soil model for lateral force development, which plays 

a primary role in steering response and yaw dynamics.  However, researchers have used the 

well-known slip-angle-based tire model from on-road vehicle dynamics to relate tire slip 

angle to force development in off-road cases as well (Metz, 1993; Bevly et al., 2002; Karimi 

and Mann, 2006; Karkee and Steward, 2011).  In some cases, values for the tire model 

parameters have been identified from vehicle-level data obtained during field experiments.  

Bevly et al. (2002) and Karimi and Mann (2006) each used tractor yaw rate data measured 

with a gyroscopic sensor along with front wheel steering angle data to identify cornering 

stiffness and relaxation length parameters of the front and rear tires of a linear bicycle model.  

Karkee and Steward (2011) used tractor yaw rate and heading angle data measured from 

Global Positioning System (GPS) receivers along with front wheel steering angle data to 

identify cornering stiffness and tire relaxation length parameters of a linear bicycle model of 

a tractor and single axle towed implement.  In each of these cases, the difficulty in obtaining 

confident estimates for the tire model parameters was noted. 
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It is acknowledged that the off-road environment is less controlled than on-road 

environments, and the soil properties related to tire-soil interaction can vary substantially 

(Koolen and Kuipers, 1983; Crolla and El-Razaz, 1987; Karkee and Steward, 2011).  

Therefore, a model structure that assumes a constant value for the tire parameters is likely an 

insufficient representation of the physical system.  However, without the ability to quantify 

this variation as a function of some other variable or system state, it is necessary to assume 

that, for each tire model parameter, a constant value exists that may minimize the error in the 

characterization.  The term “cornering stiffness”, referring to the slope of the lateral force 

versus lateral slip angle curve at zero slip, is actually a tire property that does not vary 

significantly for different surface conditions (Pacejka, 2006).  The relationship between 

lateral force generation and slip angle in soil is nonlinear, so the use of this parameter in off-

road studies to distinguish the force generation on different surfaces is a linear approximation 

that holds for a limited range (Metz, 1993).  The results obtained in system-level parameter 

identification would not necessarily be expected to be the same as those obtained in 

controlled, lab-based tire tests, for example. 

 It is important to consider the possible limitations in parameter identification from 

experimental data.  Although parameter sensitivity analysis lends insight into the effects that 

parameters have on the output, it does not necessarily show what effect the observed output 

(measured data) will have on the estimation of the parameters; that is, it does not show how 

variation in the output propagates to uncertainty in the estimated parameters.  Model 

identifiability analysis is used to determine whether system measurements contain enough 

information to estimate the model parameters (Walter and Pronzato, 1997).  Within this field, 

there are two subtypes frequently referred to as structural identifiability and practical 
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identifiability.  Specifically, structural identifiability considers the mathematical structure of 

the model, independent of data, to determine if the parameters can be uniquely identified 

from the measured output (Walter and Pronzato, 1997).  Several analytical methods are well-

known for this analysis depending on the model type and size.  With structural identifiability 

established, practical identifiability takes into account the properties of the measured data 

(Balsa-Canto and Banga, 2010), such as quantity, quality, and richness.  Many practical 

identifiability studies make use of the Fisher Information Matrix, a measure of the precision 

of estimation based on the data at hand. 

Despite its potential importance, a review of the literature shows that many 

mechanical system parameter identification studies do not seem to consider identifiability.  

Furthermore, if identifiability is considered, it will often only be structural in nature and will 

not consider the practical aspects of data collection.  Unfortunately, identifiability analysis of 

complex linear models and nonlinear models using analytical methods is impractical, if not 

impossible, in many cases, even with the help of symbolic math computation (Arikan, 2008). 

Identifiability analysis has been conducted in vehicle model identification studies 

(Serban and Freeman, 2001; Alasty and Ramezani, 2002; Arikan, 2008).  Serban and 

Freeman (2001) noted the difficulty in applying global identifiability tests, but they 

developed a local, numerical test that determined if estimated parameters were at an “isolated 

minimum” of the optimization cost function.  That test was demonstrated in the context of 

parameter identification of a multibody vehicle suspension model.  Alasty and Ramezani 

(2002) tested the structural identifiability of a nonlinear, full-vehicle, ride model before using 

genetic algorithm optimization to identify 17 parameters from simulated data obtained from a 

high-fidelity multibody model.  The model was linearized about an operating point to 
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determine the rank of the Jacobian of the Markov parameters, and identifiability of the 

linearized system was used to infer identifiability of the nonlinear system.  Arikan (2008) 

examined the identifiability of a two degree-of-freedom linear vehicle handling model and a 

three degree-of-freedom nonlinear vehicle handling model prior to identification from data.  

The structural identifiability of the linear model was analyzed a priori using the transfer 

function approach for different observed output combinations and guided the sensor 

configuration for experimental data collection.  The structural identifiability of the nonlinear 

model was examined using a differential algebra technique.  The practical identifiability of 

the nonlinear model was examined based on the Fisher Information Matrix, which was used 

to ensure that there was not high correlation between parameters to be estimated.  As noted 

by Arikan (2008), high correlation between parameters enables a change in one parameter 

value to be compensated by a change in another parameter value and limits identifiability. 

Identifiability of dynamic models is an active topic of research in the field of systems 

biology.  According to Raue et al. (2009), their reaction networks permit only a limited 

number of outputs to be measured, and experimental data is often of insufficient quantity and 

quality for parameter identification; furthermore, the size and complexity of their 

mathematical models often renders analytical identifiability methods inappropriate.  The 

trend has been to utilize growing computational power to perform numerical identifiability 

analyses rather than use analytical approaches (Hengl et al., 2007; Raue et al., 2009).  Raue 

et al. (2009) proposed a numerical approach for local identifiability analysis of arbitrary 

models by “exploiting” the profile likelihood of model parameters.  The approach was able to 

detect structurally unidentifiable parameters due to functional relations and, since it was data-

based, was able to detect practically unidentifiable parameters due to inadequate quality or 
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quantity of data.  The approach considered identifiable parameters to have likelihood-based 

intervals in which the “true” value was to exist with a certain level of confidence. 

 In light of the challenges observed in identification of models, especially off-road 

vehicle tire force models, from data, it was desired to gain further insight into the feasibility 

of these approaches.  In addition, it was desired to identify methods that could be used to 

determine the confidence/adequacy of parameter estimates, aside from system-level 

validation activities.  The overall goal was to investigate the structural and practical 

identifiability of a tractor and single axle towed implement model, acknowledging that there 

are few methods widely demonstrated for this task.  The purpose of this analysis was to 

better understand the influence of the model structure and the experimental conditions on the 

ability to identify certain parameters from data.  The specific objectives were to: 

 Examine the effect of measurement noise, data collection rates, and input excitations 

on the identifiability of tire model parameters from simulated data. 

 Examine the identifiability of tire model parameters based on actual data collected in 

field experiments. 

Therefore, of the three areas of concern in vehicle modeling discussed by Bernard and Clover 

(1994), this investigation is focused on the appropriateness of a model from a parameter 

identification standpoint.  Results from this analysis may guide efforts to choose levels of 

model fidelity with parameters that can be reasonably identified from the experimental data 

available.  The results may also provide information to guide experimental design for data 

collection. 
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3.2 Methods 

In this study, identifiability analysis of a tractor and single axle towed implement 

model was performed based on the profile likelihood of the model parameters, using a 

numerical approach proposed by Raue et al. (2009).  A dynamic bicycle model of the tractor-

implement system (Karkee and Steward, 2010a) was used for the analysis.  Several factors 

related to experimental data collection, including measurement noise, sampling rate, and 

system input characteristics were investigated to determine their influence on the 

identifiability of the model parameters of interest.  The analysis was conducted first on 

simulated data with a specified noise model and then on data collected from field 

experiments. 

3.2.1 Vehicle Model 

The subject of this work was a tractor and single axle towed implement model of an 

agricultural tractor and grain cart system, studied extensively by Karkee and Steward 

(2010a).  The actual system being modeled was a John Deere 7930 MFWD (mechanical front 

wheel drive) tractor (Deere and Co., Moline, IL) and a single axle, 18 m
3
 (500 bu.) grain cart 

(model 500, Alliance Product Group, Kalida, OH).  Those research efforts included the 

modeling of vehicle and tire force dynamics and an examination of open and closed loop 

system characteristics.  Among the different models studied, they found that a dynamic 

bicycle model with tire relaxation length dynamics represented the system most accurately.  

This conclusion was based on a comparison of frequency response, and that model was used 

for the sensitivity analysis (Karkee and Steward, 2010b) and parameter identification studies 

(Karkee and Steward, 2011) that followed.  Tire lateral forces were represented by a linear 

model based on the tire lateral slip angle,  , and a tire cornering stiffness,   , by, 
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        (3.1) 

The development of each tire slip angle was modeled as a first-order delay and parameterized 

by a relaxation length,  , so that, 

 ̇  
 

 
       (3.2) 

where    is the steady state slip angle (Bevly et al., 2002). The overall vehicle model is 

described by Eqs. (3.3) - (3.10): 
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and a schematic is shown in Figure 3.1.  Full development of this model was documented by 

Karkee (2009).  These equations can be represented in matrix differential equation 

representation as, 
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a) 

Figure 3.1 - Dynamic bicycle model of a tractor and single axled towed implement 

system (Karkee and Steward, 2010a); a) forces on the system, and b) velocities at 

different locations of the system (continued on text page).  
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In the context of a field experiment for data collection, there are a limited number of 

system-level, tractor-implement outputs that can be reasonably measured with common, 

commercially-available sensors and data acquisition equipment and that have meaning with 

respect to the level of fidelity of the model being used.  For the linear bicycle model 

considered here, these measurements could potentially include tractor and implement 

positions, heading angles, yaw rates, velocities, and accelerations.  This study considered 

position and yaw rate measurements. 

Vehicle positions are commonly measured using Global Positioning System (GPS) 

receivers, which may incorporate real-time kinematic (RTK) technology for increased 

accuracy.  Although the GPS receiver will generally not be mounted directly over the tractor 

center of gravity (CG) in an experiment, it is assumed that this placement has been made 

possible for the purpose of this analysis.  Based on the parameters and model states, the 

trajectory of the tractor CG was calculated as, 

 ̇ 
    

           
         (3.15) 

 ̇ 
    

           
         (3.16) 

Similarly, the trajectory of the implement CG was calculated as follows based on the position 

of the tractor CG and the kinematics of the tractor and towed implement. 

  
    

                (  ) (3.17) 

  
    

                (  ) (3.18) 

Yaw rates measurements are commonly obtained using gyroscopic sensors.  These sensors 

can be mounted at any point on the object of interest as long as the measurement axis is 

oriented properly (i.e., parallel to an object’s vertical axis).  The tractor yaw rate,   , and 

implement yaw rate,   , were already calculated as states of the model. 
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3.2.2 Identifiability 

As described by Walter and Pronzato (1997), physical systems are generally modeled 

in continuous time and described by a set of differential equations, 

 ̇     (           ) (3.19) 

       (           ) (3.20) 

where   is the state vector,   is the parameter vector,   is the vector of controlled inputs,   is 

time, and    is the vector of model outputs.  For a common input vector,  , the error vector, 

  , between the system output vector,  , and the corresponding model output vector,   , is 

                     (3.21) 

These errors are also referred to as the “residuals”.  In an effort to obtain the best estimate of 

parameter values,  ̂, for the model to characterize the system, an objective function will be 

formulated that calculates a scalar value as a function of the output error,   , and an 

optimization algorithm will be used to search the parameter space for the minimum value of 

the objective function.  One of many optimization algorithms described in the literature can 

be used to search the parameter space for the optimal set of parameter values (Nocedal and 

Wright, 1999; Venkataraman, 2009). 

As described by Walter and Pronzato (1997), identifiability refers to the uniqueness 

of a parameter vector  ̂ as an estimate of the true parameter vector    in a model   

representing a physical system.  Structural identifiability is considered independent of any 

data properties and considers a model to exactly represent the system of interest. Definitions 

for structural identifiability are given by e.g., Walter and Pronzato (1997) and Ljung (1999) 

and are closely described as follows.  If the condition 
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 ( ̂)         ̂    
  (3.22) 

holds for almost any    in   (the prior feasible set for  ;      unless otherwise stated), 

then a parameter    is classified as structurally globally identifiable.  In other words, 

“identical input-output behavior” of two identical model structures implies that the estimated 

parameter set  ̂ is unique and corresponds to the true parameter set   .  Furthermore, 

structural global identifiability of each parameter    in   is a necessary condition for 

structural global identifiability of the model structure.  The condition “almost any   ” 

functions to exclude atypical parameter values that may cause other parameters to become 

unidentifiable.  If a model structure cannot be classified as globally identifiable, it may be 

possible to verify the model’s local identifiability for some neighborhood        around the 

true parameter set.  If Eq. (3.22) holds for  ̂        then a parameter    is classified as 

structurally locally identifiable.  Each parameter    in   must be at least structurally locally 

identifiable for the model structure to be classified as structurally locally identifiable.  

Consequently, local identifiability is a necessary condition for global identifiability.  If there 

does not exist a neighborhood       for which Eq. (3.22) holds, then a parameter    is 

classified as structurally unidentifiable.  A model structure is structurally unidentifiable if 

one or more of its parameters is unidentifiable. 

 A number of methods are available for testing the structural identifiability of 

mathematical models (Walter and Pronzato, 1997).  Methods for linear models are fairly well 

known but usually require the use of symbolic math analysis as model complexity increases.  

Methods for nonlinear models are generally more complicated.  As noted by Serban and 
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Freeman (2001), “a global identifiability test is impractical for even the simplest models”, so 

the scope must often be limited to local identifiability. 

 Practical identifiability, however, considers model identifiability in light of the 

characteristics of the experimental data used for parameter identification (Balsa-Canto and 

Banga, 2010), such as the quality, quantity, and richness of the data.  Therefore, it is possible 

for a structurally identifiable parameter to be practically unidentifiable once experimental 

data is introduced.  Quality refers to the presence of error in the output data.  Quantity refers 

to the actual number of data points available; for data collection with respect to time, this will 

be determined by the sampling rate.  Richness of data is related to the manner in which a 

system input is excited; richer datasets are generated by inputs that contain spectral content 

across the bandwidth of the model and persistently excite the system (Ljung, 1999).  

Statistical aspects of parameter identification have been described using maximum likelihood 

principles (Ljung, 1999). 

 Raue et al. (2009) and (2011) described a numerical approach to local structural and 

practical identifiability based on the profile likelihood of the model parameters.  A detailed 

description of the approach can be found in those studies but is summarized as follows.  For 

the optimization problem, they considered an objective function which is the weighted sum 

of squared residuals 

      ∑∑(
   

          

   
 )

  

   

 

   

 
(3.23) 

 

where   is the index of   outputs measured,   is the index of   data points collected,    
  is 

an experimental data point,    is a model output, and    
  is the corresponding measurement 

error of a data point.  Assuming that the noise on the measurements is normally distributed, 
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         , minimization of this objective function yields maximum likelihood estimates of 

the parameter set,  .  Although asymptotic confidence intervals for the parameters can be 

obtained based on a quadratic approximation of the likelihood at the estimated parameter 

values if the model “sufficiently describes the experimental data”, Raue et al. (2009) 

acknowledged that this approximation may not hold as well for cases with data of lower 

quality and/or quantity.  For those cases, confidence intervals based on a “threshold” in the 

likelihood were recommended, defined by 

{          ( ̂)    } (3.24) 

    (   
     ) (3.25) 

where Δ  is the     quantile of the   -distribution with    degrees of freedom.   

Raue et al. (2009) sought to efficiently search the parameter space around each 

parameter estimate by “exploring the parameter space for each parameter in the direction of 

least increase in   ”.  The profile likelihood was selected for that objective.  This 

computation individually increments each parameter in increasing and decreasing directions 

around its estimate, reoptimizing all of the other parameters to the data and recording the    

(objective function) value at each step.  Therefore, the approach is able to capture the effects 

of parameter sensitivity as well as parameter interaction on the identification of model 

parameters.  The computation produces a profile likelihood plot for each parameter, showing 

how its likelihood changes with respect to the parameter values.  Based on Eqs. (3.24) and 

(3.25), upper and lower confidence bounds for a parameter are determined by the locations at 

which the likelihood crosses a certain    threshold. 
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 The profile likelihood approach was used in this tractor-implement study instead of, 

for example, a quadratic likelihood approximation because it was not initially clear what 

constituted data of sufficient quantity and quality for this vehicle modeling application.  

Also, it was known that increased quantity and quality of data would cause the likelihood to 

converge toward the quadratic approximation anyway (Raue et al., 2011).  Furthermore, this 

approach did not require any interaction with model equations and would thus be suitable for 

potential, future implementations with models of arbitrary format.  The main drawback of the 

approach, being numerical in nature, was the computational requirements due to repeated 

function calls and optimization procedures during the analysis. 

This profile likelihood approach is provided in the third-party PottersWheel 

mathematical modeling toolbox (Maiwald and Timmer, 2008) for MATLAB (The 

MathWorks, Inc., Natick, MA).  Although the toolbox is tailored specifically toward the 

systems biology community, it has the capability to handle general mathematical models 

defined as a set of ordinary differential equations as well.  In addition, the toolbox has many 

other functionalities that can be useful in mathematical modeling, parameter identification, 

and model analysis in many disciplines.  Therefore, this toolbox was utilized to perform the 

identifiability analysis in this study. 

3.2.3 Analysis 

3.2.3.1 Simulated Data Analysis 

The profile likelihood approach was first performed on simulated data for the tractor 

and single axle towed implement model described in Eqs. (3.3) - (3.10).  Simulated data is 

sometimes analyzed in order to gain controlled insight into a model or procedure before 

considering experimental data, and it is generally advised to study properties of the 
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experiment before committing to experiments (Ljung, 1999).  The intention was to analyze 

the model’s identifiability free from any model characterization errors or unknown 

experimental error and to have complete control over the addition of error to the output data.  

These results would then represent a best-case scenario for parameter identification, upon 

which actual experimental data would not be likely to improve.  Of primary interest in the 

simulated data analysis were the effects of measurement noise, data sampling rate, and input 

signal type on the identifiability of the tractor-implement model. 

This effort was focused only on the identifiability of the tire model parameters, which 

were considered to be the most uncertain and most difficult to measure (Karkee and Steward, 

2011).  Although it is acknowledged that the values of the other parameters (masses, yaw 

moments of inertia, and geometric dimensions) have a degree of uncertainty associated with 

them as well, this assumption provided a narrowing of scope for the analysis.  The values of 

these “fixed” parameters were measured or estimated by Karkee (2009) and are given in 

Table 3.1. 

Table 3.1 - Dynamic bicycle model parameters for the JD 7930 tractor and Parker 500 

grain cart system (Karkee, 2009). 

Tractor  Implement (Grain Cart) 

Parameter Nominal 

Value 

Units  Parameter Nominal 

Value 

Units 

  1.7 m    3.62 m 

  1.2 m    0.1 m 

  2.1 m     

   9391 kg     2127 kg 

  
  35709 kg-m

2 
   

  6402 kg-m
2 

 

The PottersWheel toolbox required mathematical models to be entered in a specific 

format compatible with its functions.  In particular, since the model was required to be 
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entered as a set of ordinary differential equations, it was necessary to convert the tractor-

implement model from matrix differential equation representation, Eq. (3.11), to state-space 

representation to obtain the state equation, 

 ̇        (3.26) 

where        and       .  The MATLAB Symbolic Math Toolbox was used to 

perform the conversion.  From this representation, the eight state equations were extracted.  

The only model input, the front wheel steer angle,  , was specified using a driving input 

function with predefined input types.  Fixed model parameters were specified directly, and 

the six unknown, or “free”, tire model parameters were specified with a default value as well 

as minimum and maximum values for bounds.  The nominal values of the tire model 

parameters were set at or near the values initially selected by Karkee and Steward (2010a) 

based on their review of the literature, but the upper and lower bounds, given in Table 3.2, 

were defined relatively wide around those nominal values, as if their values were unknown.  

These parameters are physically limited to real values greater than zero, so the lower bound 

selection was straightforward.  However, the upper bounds were set more arbitrarily because 

there was no additional information available to guide their definition. The outputs for a 

given model were determined by the particular sensor configuration being simulated and 

were calculated based on the model states and parameters according to the development in 

Section 3.2.1.  As part of the format for defining outputs, an error model with noise could be 

specified as well.  Simulated data collection times were specified using a vector with start 

and stop times and intermediate times determined by a fixed collection frequency (e.g., 5 

Hz). 
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Table 3.2 - Upper and lower bounds as well as nominal values for tire model 

parameters during the optimization. 

Parameter Units Lower Bound Nominal Upper Bound 

      N/rad 10000
 

220000 700000 

      N/rad 10000 486000 700000 

      N/rad 10000 167000 700000 

    m 0.1 0.5 2.0 

    m 0.1 1.0 2.0 

    m 0.1 0.5 2.0 

 

After loading a model into the PottersWheel graphical user interface (GUI), the 

option to create simulated data was used.  The simulation used the nominal values of the free 

parameters and applied the specified error model to the outputs.  The built-in CVODES 

solver for ordinary differential equations (Hindmarsh et al., 2005), with “methods for stiff 

and nonstiff systems”, was used for integration. 

After creating the simulated data, it was necessary to reoptimize the six free 

parameters to the data to ensure that the optimum set of parameter values was reached; even 

though the parameter values used to create the data were known, a slightly different set of 

values will generally fit the simulated data with a lower objective function value.  

PottersWheel was used for the parameter identification process.  A “trust region” 

optimization algorithm was selected for this process, starting from the known parameter 

values used to create the data.  A global optimization technique would generally be chosen 

for the initial optimization step of a complex, multi-dimensional identification problem, but it 

was assumed that the optimal parameter set for the simulated data could be reached with a 

local technique since it started at the known, true values.  Optimization was conducted in 

logarithmic parameter space since the normal values of the parameters extended more than 

one order of magnitude and can only have positive values. 
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From the identified parameter values, the profile likelihood approach was run.  As 

before, the CVODES solver was used for integration, and the trust region optimization 

algorithm was used to fit parameters in logarithmic space; the parameter bounds in Table 3.2 

were applied during these optimizations as well.  The    “threshold” for identifiability was 

calculated based on a simultaneous confidence level of 68% for which all parameter 

confidence intervals hold jointly.  For a normal distribution, a “68%” confidence interval 

covers plus-or-minus one standard deviation.  Simultaneous confidence intervals consider the 

joint effects of parameter uncertainty on model validity.  The computation time required to 

complete the analysis depended on the model, the amount of data, and the particular 

configuration of the profile likelihood settings but was typically between five and ten 

minutes per parameter for conservative settings on a 2.8 GHz workstation with 8 GB of 

RAM.  The profile likelihood was computed in relatively small steps to ensure that it would 

be smooth; this required a greater number of function calls.  Sometimes, a slightly better 

optimum of the objective function was found during the computation, and it was necessary to 

rerun the analysis for that better set of parameter values. 

3.2.3.1.1 Simulated Step Input Sampled at 5 Hz 

The first case considered the influence of measurement noise on the identifiability of 

the six tire model parameters.  Whether a function of sensor error, unmodeled dynamics, or 

any other unwanted corruption source, noise is a practical issue in the measurement of 

physical system outputs.  The tractor forward velocity was held constant at 4.5 m/s, and a 

rate-limited step input from 0 to 10 degrees at the front wheels was applied over 0.5 seconds.  

The model outputs were the tractor yaw rate and the implement yaw rate, each sampled at 5 

Hz for a period of 10 seconds, a length of time that provided measurements that were 
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composed of approximately half transient response and half steady-state response.  The 5 Hz 

sampling frequency was selected based on the specifications of a GPS receiver with yaw rate 

sensing capabilities that is commonly used in agricultural applications.  For the purpose of 

this investigation and to maintain the validity of the identifiability approach, Gaussian noise 

was added to the simulated data.  The signal-to-noise ratio (SNR) of data has been expressed 

as the reciprocal of the coefficient of variation (Meeker and Escobar, 1998), in which 

    
    

     
 

(3.27) 

In this equation,      and       represent the expected value and standard deviation, 

respectively, of a continuous random variable  .  In this study, the numerator term of the 

SNR equation was specifically defined as the maximum amplitude of each tractor yaw rate 

signal,        , in the maneuver, such that 

    
       

 
 

(3.28) 

The denominator term,  , was the standard deviation of the specific noise model applied to 

the output.  Therefore, the signal-to-noise ratio was varied from 1000, a nearly undistorted 

signal, to 12.5, a signal for which the transient response was nearly impossible to detect 

visually.  Within this range, SNR values of 100, 50, 25, and 16.67 were considered. 

3.2.3.1.2 Simulated Step Input Sampled at 10 Hz 

The second case considered the influence of sensor sampling rate on the 

identifiability of the six tire model parameters.  Experiment 1 was repeated for the same 10 

second period with a 10 Hz sampling rate and compared with the 5 Hz sampling rate results.  

The increased rate provided a better opportunity to capture the transient yaw rate response 

and doubled the amount of data available for a given time period. 
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3.2.3.1.3 Simulated Chirp Input Sampled at 5 Hz 

The third case considered the influence of the input signal type on the identifiability 

of the six tire model parameters.  Experiment 1 was repeated using a chirp steering input (a 

sine wave with a frequency varying linearly with time) instead of a rate-limited step input.  

The initial steering frequency was 0.1 Hz, the final steering frequency was 0.5 Hz, and the 

signal amplitude was 10 degrees.  The frequency values were selected based on handwheel 

input rate limitations encountered in the actual system.  The intention was to use an input 

signal that would persistently excite the system and produce output data composed entirely of 

transient response. 

3.2.3.2 Experimental Data Analysis 

The identifiability of the tractor-implement model from data collected during actual 

field experiments was investigated as well.  The data used for the analysis were collected by 

Karkee (2009) in 2008 and 2009 as part of a parameter identification study using the tractor 

and implement system described in Section 3.2.1.  In that study, tractor and implement CG 

(center of gravity) trajectories, heading angles, and yaw rates were measured at 5 Hz using 

agricultural GPS receivers with yaw rate sensors, and the front wheel steering angle was 

collected using a rotary potentiometer that was installed on the left-wheel kingpin by the 

tractor manufacturer.  Data were collected in an agricultural field that had been planted to 

alfalfa three growing seasons before the experiments and had been uncultivated since that 

planting. Data were collected for a variety of steering maneuvers at three different forward 

velocities.  To maintain the assumptions needed for the linear model, steering angles were 

limited to +/- 10 degrees, and the forward velocity was held approximately constant.  The 

data were used to identify the six tire model parameters of the tractor-implement model.  
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Although the parameter estimation approach in that study was able to identify parameter 

values that improved the ability of the model to represent system behavior over initial 

parameter values, there was substantial uncertainty in some of the parameter estimates, and 

the suitability of the estimates varied between different experimental trials.  Nonetheless, 

based on the results of the investigation by Karkee (2009), it is assumed that the eighth-order 

tractor-implement model presented in Section 3.2.1 provides a “sufficient” representation of 

the measured data and can be used in this identifiability study. 

 Two datasets from those field experiments were examined separately in this 

identifiability study using the same numerical approach applied to the simulated data in 

Section 3.2.3.1.  The first dataset was collected while applying two step steering angle inputs 

to the tractor, and the second dataset was collected while applying a chirp steering angle 

input to the tractor.  For each set, the data were uploaded into the PottersWheel toolbox, and 

the front wheel steering angle sensor data were used to drive the steering angle of the tractor-

implement model.  It was assumed that any noise in the steering angle sensor data was 

random noise of low amplitude about the true steering angle value and of a frequency high 

enough to have little to no impact on the output.  The error values of the data points that were 

used to weight the residuals in the objective function calculation, Eq. (3.23), were estimated 

with respect to a cubic smoothing spline that was fit to the data. 

Contrary to the situation in the simulated data analysis, the “true” values of the tire 

model parameters were unknown in the experimental cases, and it was more difficult to know 

if the best estimates of the parameters were obtained.  Since the performance of local 

optimization techniques is dependent on the initial values of the unknown parameters, a 

global optimization algorithm was used first (outside of PottersWheel) to determine the best 
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estimates for the data available.  A genetic algorithm (GA) optimization approach, which is a 

stochastic procedure that searches the parameter space in a heuristic manner (Goldberg, 

1989), was used initially.  The goal was to obtain a set of parameter values at or near the 

global optimum.  The approach was implemented using the GA functions in the Global 

Optimization Toolbox in MATLAB which minimized an objective function that quantified 

the sum of squared error for the tractor yaw rate and implement yaw rate time histories.  The 

values obtained using GA then served as a starting point for the trust region method in 

PottersWheel, which yielded another slight improvement in fit, subject to the upper and 

lower bounds specified in Table 3.2.  The profile likelihood approach was then configured 

and run in a manner similar to that used in the simulated data analysis. 

3.3 Results and Discussion 

3.3.1 Simulated Data Analysis 

Identifiability analysis of the simulated data with a known noise model provided a 

means by which the model structure could be evaluated. The impact of different conditions 

associated with experimental data collection became apparent as they were varied, and the 

overall trends agreed with expectations.  Analysis of the results is based on the methods and 

identifiability definitions described by Raue et al. (2009) and (2011). 

3.3.1.1 Simulated Step Input Sampled at 5 Hz 

The nearly noise-free dataset with signal-to-noise ratio of 1000 represented the ideal 

situation for parameter identification, as shown in Figure 3.2.  The profile likelihood of each 

parameter was nearly parabolic, as shown in Figure 3.3, approaching the quadratic 

approximation for asymptotic confidence intervals. 
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Figure 3.2 - Time histories of a) front wheel steering input (rad) and simulated data 

with signal-to-noise ratio of 1000 for b) tractor yaw rate (rad/s), and c) implement yaw 

rate (rad/s). 

   
  

 

 

 
 

             
 

 

   
  

 

 

 
 

             
 

 

   
  

 

 

 
 

             
 

   
  

 

 

 
 

           
 

 

   
  

 

 

 
 

           
 

 

   
  

 

 

 
 

           
 

Figure 3.3 - Profile likelihoods for each of the six tire model parameters, plotted in 

logarithmic parameter space, for the simulated data shown in Figure 3.2.  Black lines 

represent the profile likelihood; gray parabolas represent the quadratic approximation 

for asymptotic intervals.  Gray asterisks at the valley of each curve indicate the 

estimated values of the parameters.  The upper red dashed line of each plot represents 

the threshold for 68% simultaneous confidence intervals.  The lower red dashed line 

represents the threshold for 68% pointwise confidence intervals. 

Confidence intervals with finite upper and lower bounds indicated that the tractor-implement 

model, with six uncertain tire model parameters, was practically identifiable from the tractor 
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yaw rate and implement yaw rate data and, therefore, structurally identifiable.  The values of 

these confidence intervals, as well as the true values and the estimated values, are listed in 

normal parameter space in Table 3.3. 

Table 3.3 - True values of each parameter, as well as estimated values and 68% 

simultaneous likelihood-based confidence intervals (all in normal parameter space) for 

the simulated data shown in Figure 3.2. 

Parameter Units   
   ̂     

    
    

    
 

      N/rad 220000 219700 218600 220800 

      N/rad 486000 485400 481400 489200 

      N/rad 167000 169000 162700 175900 

    m 0.5 0.500 0.486 0.513 

    m 1.0 0.990 0.969 1.010 

    m 0.5 0.591 0.510 0.667 

 

Even though it was deemed identifiable, the implement tire relaxation length was 

estimated least accurately, and its true value was narrowly outside of the likelihood-based 

confidence region.  However, as the signal-to-noise ratio decreased from 1000, practical 

unidentifiabilities became apparent based on widening, sometimes infinite, confidence 

intervals and less accurate identification of the true parameter values.  The first practically 

unidentifiable parameter to emerge from the analysis was the implement tire relaxation 

length for SNR = 100, which was fit to its lower bound of 0.1.  Sensitivity analysis had 

already shown that the implement tire relaxation length was among the parameters to which 

the system dynamics were the least sensitive (Karkee and Steward, 2010b), so it was 

expected that it would be difficult to estimate this parameter confidently based on the system 

output.  In fact, this parameter value was frequently fit to one of its bounds, which may be 

indicative of a poor fit due to inappropriate model structure.  The inability of the implement 

tire relaxation length’s profile likelihood to reach the threshold value for identifiability 
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showed that changes in that parameter caused little improvement in the model’s fit to the data 

and/or could be masked by changes in other parameters such that there was little increase in 

the objective function value.  From a model calibration standpoint, it is also more difficult to 

converge to the optimum value of a parameter if its effect on the output cannot be easily 

detected.   

As the signal-to-noise ratio continued to decrease from 100 to 12.5, the next practical 

unidentifiabilities to emerge were the tractor’s front and rear tire relaxation lengths, the 

implement tire cornering stiffness, and even the tractor’s rear tire cornering stiffness.  These 

results also follow the outcomes of the previously mentioned sensitivity analysis; that is, the 

parameters to which the system dynamics are most sensitive are also the ones that can be 

estimated most confidently from the output data.  A compilation of the results is shown in 

Figure 3.4.  The red bars represent likelihood-based, 68% simultaneous confidence intervals 

for each of the six tire model parameters.  The number to the left of each bar indicates the 

signal-to-noise ratio of the data it pertains to.  An arrow on the upper and/or lower end of a 

bar indicates a practical unidentifiability due to a confidence bound extending to +/- infinity 

(in logarithmic space).  The black line in each cluster indicates the true value of the 

parameter which was used to create the simulated data.  Each green diamond in a red bar 

indicates the estimated value of the parameter from the data. 

The confidence intervals for each of the six parameters have more physical meaning 

once translated into a range of performance in the tractor-implement system.  Within the 

confidence intervals for a particular signal-to-noise ratio, a family of trajectories for the 

tractor yaw rate and implement yaw rate could be determined as well as for the position of 

the tractor CG and the implement CG based on Eqs. (3.15) - (3.18).  
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Figure 3.4 - Likelihood-based, 68% simultaneous confidence intervals (red bars) for 

each of the six tire model parameters in the first experiment of the simulated data 

analysis (5 Hz collection frequency of the tractor yaw rate and implement yaw rate for 

a rate-limited step steer input of 10 degrees).  The number to the left of each bar 

indicates the signal-to-noise ratio of the data it pertains to. 
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Figure 3.5 – Variation of the simulated trajectories within the 68% simultaneous 

confidence intervals obtained for each of the six tire model parameters, for the 

simulated rate-limited step input sampled at 5 Hz and with SNR = 12.5. 

The plots in Figure 3.5 show these four signals for the noisiest case, where SNR = 12.5.  The 

nominal and estimated CG trajectories matched very closely despite the large confidence 
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intervals for the parameters and the inability to closely estimate the true parameter values for 

all but the front tractor tire cornering stiffness. 

As shown in Figure 3.6, the profile likelihood plots lent some additional insight into 

the analysis.  As the signal-to-noise ratio decreased, the unidentifiability of the tire relaxation 

length parameters was generally manifested as a flattening or limited increase of the profile 

likelihood in the decreasing direction. This indicated the inability to determine a finite 

likelihood-based lower confidence bound based on the amount and quality of data available.  

As a tire relaxation length approaches its theoretical lower limit of    , the time constant 

associated with its slip angle dynamics decreases to zero as well, and the relaxation length 

dynamics are removed.  Therefore, the inability to determine a lower confidence bound for 

these relaxation length parameters from this data suggests a growing inability to distinguish 

between the current dynamic model with relaxation length dynamics included and a reduced 

model with these dynamics removed.  This result does not necessarily suggest that the 

reduced model is a better characterization of the actual system – it just suggests that it 

becomes more difficult to distinguish the adequacy of the reduced model versus the full 

model as the noise increases in the information available.  It also calls into question the 

rationality of attempting to identify the relaxation length parameters from that information.  

(“Distinguishability” is, in fact, another property used to compare the suitability of two or 

more models (Walter and Pronzato, 1997).)  The red dots in the plots indicate simulation 

points where at least one of the other parameter values was fit to one of its bounds.  

Discontinuities and smaller valleys encountered in the traversal of the profile likelihood are 

local minima (Raue et al., 2009). 
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Figure 3.6 - Profile likelihood plots for each tire model parameter (in logarithmic space) 

when identified from simulated 5 Hz tractor yaw rate (rad/s) and implement yaw rate 

(rad/s) data for a 10 degree rate-limited step steer input.  Simulations are grouped 

column-wise by the signal-to-noise ratio of the error applied to the measured outputs.  

Red dots on a profile likelihood plot indicate simulation points where at least one of the 

other five parameters was fit to one of its bounds.  Discontinuities and smaller valleys 

encountered in the traversal of the profile likelihood are local minima. 
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Likewise, unidentifiability of the implement cornering stiffness and even the tractor’s 

rear tire cornering stiffness for greater noise levels were generally manifested as a flattening 

out or limited increase of the likelihood in the increasing direction, which indicates the 

inability to determine a finite likelihood-based upper confidence bound (within the specified 

parameter range) based on the amount and quality of data available. 

The outcome for the cornering stiffness parameters was more difficult to interpret, 

because the unidentifiabilities were determined with respect to the upper bounds of 700000 

N/rad that were chosen somewhat arbitrarily; a higher upper bound or a lower confidence 

threshold could change this classification.  Additional information about the practical range 

of these parameter values would help set these bounds with more certainty.  However, as a 

tire cornering stiffness approaches its theoretical upper limit of     , the tires will have 

no slip angle and will move in the direction that they are facing.  Therefore, the inability to 

determine an upper confidence bound for the cornering stiffness parameters from this data 

and the flattening of the likelihood in the upper direction may indicate growing inability to 

distinguish between a dynamic model and a kinematic model.  Again, this conclusion is only 

made with regard to the data used for identification. 

If the effect of the towed implement on the tractor is neglected, the identifiabilities of 

the tractor’s front and rear cornering stiffness values may be partially explained by a vehicle 

steering response characteristic known as the “understeer gradient”, given by, 

  
  

    
 

  

    
 

(3.29) 

where    and    are the loads on the front and rear axle, respectively.  The understeer 

gradient of a vehicle, measured in the units degrees/g, is an important property that indicates 
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how its steering angle must change as the lateral acceleration changes (Gillespie, 1992).  

Since the maneuvers in this analysis were conducted with constant forward velocities and 

relatively small steering angles, it can be assumed that longitudinal load transfer is 

negligible, and the tractor’s understeer gradient should be approximately constant.  

Therefore, a change in one of the cornering stiffness values can be balanced by a change in 

the other value such that the understeer gradient steering response characteristic can be held 

constant. 

 It should also be noted that the steady-state portions of the implement yaw rate 

response do not provide information for the identification of the implement tire cornering 

stiffness values.  In steady state conditions, the yaw rate of the implement is determined 

solely by the yaw rate of the tractor.  This factor likely plays a role in the identifiability of the 

implement tire cornering stiffness. 

3.3.1.2 Simulated Step Input Sampled at 10 Hz 

Doubling the tractor yaw rate and implement yaw rate sampling rates from 5 Hz to 10 

Hz resulted in slight improvements in both accuracy and confidence of identification 

compared to simulated case 1.  Confidence intervals for identifiable parameters generated 

from the 10 Hz data tended to be narrower than their respective confidence intervals 

generated from the 5 Hz data, and accuracy of estimation tended to be better.  Practical 

unidentifiability of the tractor’s rear tire cornering stiffness, rear tire relaxation length, and 

implement tire relaxation length each emerged one SNR level lower for the 10 Hz data than 

for the 5 Hz data.  The overall trends seen in the profile likelihood results, given in Figure 

3.7, were the same as for the 5 Hz data.  A compilation of confidence interval and estimation 

results for all three simulated cases is shown in Figure 3.9 and Figure 3.10.  
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Figure 3.7 - Profile likelihood plots for each tire model parameter (in logarithmic space) 

when identified from simulated 10 Hz tractor yaw rate (rad/s) and implement yaw rate 

(rad/s) data for a 10 degree rate-limited step steer input.  Simulations are grouped 

column-wise by the signal-to-noise ratio of the error applied to the measured outputs.  

Red dots on a profile likelihood plot indicate simulation points where at least one of the 

other five parameters was fit to one of its bounds.  Discontinuities and smaller valleys 

encountered in the traversal of the profile likelihood are local minima. 
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3.3.1.3 Simulated Chirp Input Sampled at 5 Hz 

Changing the steering signal used to excite the system from a rate-limited step input 

to a chirp input resulted in improvements in both accuracy and confidence of identification 

compared to both simulated cases 1 and 2.  In many of the cases, the fitting operation led to 

optimum parameter values at or near the true values used to create the data.  Likewise, the 

confidence intervals for the parameters identified using the chirp input were much narrower 

than their respective confidence intervals in simulated cases 1 and 2.  Each of the tire 

cornering stiffnesses was identified relatively accurately compared to their true values, and 

each had finite upper and lower likelihood-based confidence bounds.  Identification of the 

tire relaxation lengths was also slightly improved, and practical unidentifiabilities of each 

parameter emerged one SNR level lower than for the 10 Hz, rate-limited step input data in 

simulated case 2.  The overall trends in the profile likelihood plots, shown in Figure 3.8, were 

the same as for the previous two simulated experiments.  A compilation of results for all 

three simulated cases is shown in Figure 3.9 and Figure 3.10. 
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Figure 3.8 - Profile likelihood plots for each tire model parameter (in logarithmic space) 

when identified from simulated 5 Hz tractor yaw rate (rad/s) and implement yaw rate 

(rad/s) data for a 10 degree chirp steer input.  Simulations are grouped column-wise by 

the signal-to-noise ratio of the error applied to the measured outputs.  Red dots on a 

profile likelihood plot indicate simulation points where at least one of the other five 

parameters was fit to one of its bounds.  Discontinuities and smaller valleys encountered 

in the traversal of the profile likelihood are local minima. 
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Figure 3.9 - Compilation of likelihood-based, 68% simultaneous confidence intervals (in 

normal space) for the tire cornering stiffness parameters in the three simulated data 

cases.  The number to the left of each bar indicates the signal-to-noise ratio of the data 

it pertains to. 
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Figure 3.10 - Compilation of likelihood-based, 68% simultaneous confidence intervals 

(in normal space) for the tire relaxation length parameters in the three simulated data 

experiments.  The number to the left of each bar indicates the signal-to-noise ratio of 

the data it pertains to. 
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3.3.2 Experimental Data Analysis 

3.3.2.1 Step Steer Input 

A 30-second long maneuver conducted at 4.5 m/s, consisting of a first step input to 

approximately -2 degrees and a second step input to approximately +2.5 degrees was 

examined.  Time histories for the steer angle, tractor yaw rate, and implement yaw rate are 

shown in Figure 3.11.  The experimental yaw rate data contained a significant amount of 

noise compared to the simulated datasets considered in this study.  This noise was partially 

attributed to vehicle oscillations caused by the somewhat uneven ground surface, and it was 

larger at higher velocities (Karkee and Steward, 2011).  However, it was still possible to 

visually observe the changes in the steady state yaw rate value during the step changes in the 

steering input.  Karkee and Steward (2011) addressed the noise problem in their parameter 

identification study by identifying an error model as part of a prediction-error minimization 

(PEM) method.  In the current study, the datasets were left unaltered to avoid elimination of 

any important dynamic information. 
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a) 

   
      

 

 
                                                                

 

 

b) 
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Figure 3.11 - Time histories of experimental data for step steering angle input: a) front 

wheel steering angle input, b) tractor yaw rate, and c) implement yaw rate.  Blue dots 

are experimental data points, and the red lines are simulated outputs for the model 

after parameter estimation (in this study). 
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Quantile-quantile (Q-Q) plots of the residuals and histograms of weighted residuals 

for this data indicated that they were reasonably normally distributed.  At the least, this 

suggested against the presence of substantial error in model structure. 

Tractor Yaw Rate Tractor Yaw Rate 

  

a) 

 
Implement Yaw Rate 

b) 

 
Implement Yaw Rate 

 
 

 

c) 

 

 

d) 

 

Figure 3.12 - Residuals for the experimental step-steer dataset with respect to the 

tractor-implement model with optimized parameters.  A quantile-quantile (Q-Q) plot of 

the residuals and histogram of the weighted residuals for the tractor yaw rate are 

shown in a) and b), respectively.  The same are shown for the implement yaw rate in c) 

and d), respectively. 
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The profile likelihood results indicated that only the tractor’s front tire cornering stiffness 

was identifiable from the data, and all other parameters were practically unidentifiable. 

   
  

 

 

  
             

 

 

   
  

 

 

 
 

             
 

 

   
  

 

 

 
 

             
 

   
  

 

 

 
 

           
 

 

   
  

 

 

 
 

           
 

 

   
  

 

 

 
 

           
 

Figure 3.13 - Profile likelihoods for each of the six tire model parameters, plotted in 

logarithmic parameter space, for the experimental data in Figure 3.11.  Black lines 

represent the profile likelihood; gray parabolas represent the quadratic approximation 

for asymptotic intervals.  Gray asterisks at the valley of each curve indicate the 

estimated values of the parameters.  The upper red dashed line of each plot represents 

the threshold for 68% simultaneous confidence intervals.  The lower red dashed line 

represents the threshold for 68% pointwise confidence intervals. 

It was possible to identify a lower bound for the tractor’s rear tire cornering stiffness, but all 

other likelihood-based confidence bounds did not cross the upper    threshold within the 

range of parameter values allowed.  In fact, the profile likelihoods for those unidentifiable 

parameters were very flat, showing little appreciable increase in the objective function as 

their values were varied across the allowed range.  The results are summarized in Table 3.4.  

The identifiability of the parameters followed a trend similar to the results of the noisier data 
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sets in the simulated data analysis; that is, the parameters to which the output is more 

sensitive can be estimated with greater confidence. 

Table 3.4 - Estimated values of each parameter and 68% simultaneous likelihood-based 

confidence intervals (all in normal parameter space) for the experimental data shown in 

Figure 3.11. 

Parameter  ̂     
    

    
    

 

      59300 14500 131100 

      421700 113600    

      80700 0    

    0.106 0    

    0.471 0    

    0.181 0    

 

The practical unidentifiability of the relaxation length parameters was expected based on the 

difficulty in visually observing any transient response in the yaw rate data.  Practical 

unidentifiability of a parameter casts significant doubt on its estimated value, but it may be 

less important to have an accurate estimate of that parameter’s value if its effect on the 

measured output is minimal. 

3.3.2.2 Chirp Steer Input 

Another 40-second long maneuver conducted at 4.5 m/s was considered which 

consisted of an approximate chirp steering angle input with maximum amplitudes between 5 

and 8 degrees and frequencies between approximately 0.1 Hz and 0.5 Hz.  The input was 

approximately sinusoidal but contained brief periods of constant steering angle at the wave 

peaks.  Time histories for the steering angle, tractor yaw rate, and implement yaw rate are 

shown in Figure 3.14.  The local spread of the data about the simulated trajectory was 

approximately the same as for the experimental step steer dataset, but the larger steering 

angle values in the chirp input resulted in larger yaw rate values.  Therefore, the signal-to-

noise ratio was larger than for the step steering dataset.  The data were again left unaltered.  
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Figure 3.14 - Time histories (s) of experimental data for step steer input: a) front wheel 

steering input, b) tractor yaw rate, and c) implement yaw rate.  Blue dots are 

experimental data points, and the red lines are simulated outputs for the model after 

parameter estimation (in this study). 
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Quantile-quantile (Q-Q) plots of the residuals and histograms of weighted residuals for this 

data, shown in Figure 3.15, indicated that they were reasonably normally distributed.  At the 

least, this suggested against the presence of substantial error in model structure. 

Tractor Yaw Rate Tractor Yaw Rate 

 
 

a) 

 

Implement Yaw Rate 

b) 

 

Implement Yaw Rate 

 
 

 

c) 

 

d) 

Figure 3.15 - Residuals for the experimental chirp-steer dataset with respect to the 

tractor-implement model with optimized parameters.  A quantile-quantile (Q-Q) plot of 

the residuals and histogram of the weighted residuals for the tractor yaw rate are 

shown in a) and b), respectively.  The same are shown for the implement yaw rate in c) 

and d), respectively. 
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The profile likelihood results again indicated that only the tractor’s front tire 

cornering stiffness was practically identifiable.  Four of the six parameters minimized the 

objective function at or near their upper or lower bounds, as shown in Table 3.5, 

automatically assigning them to be practically unidentifiable.  Despite these extreme fits, a 

much greater amount of activity can be observed in the profile likelihood plots, shown in 

Figure 3.16, for the experimental chirp-input dataset than the experimental step-input dataset.  

This is possibly attributed to a greater amount of information available in the chirp input data 

since it contained a greater amount of transient response.  Nonetheless, the results of the 

optimization and identifiability analysis again indicated that the model parameters were 

practically unidentifiable from the data available and encouraged the consideration of a 

reduced model compared to the dynamic model with tire relaxation length parameters 

considered here. 

Table 3.5 - Estimated values of each parameter and 68% simultaneous likelihood-based 

confidence intervals (all in normal parameter space) for the experimental data shown in 

Figure 3.14. 

Parameter  ̂     
    

    
    

 

      72600 58600 91700 

      699800 558000    

      166000 60800    

    0.100 0 0.217 

    1.997 0    

    1.940 0    
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Figure 3.16 - Profile likelihoods for each of the six tire model parameters, plotted in 

logarithmic parameter space, for the experimental data in Figure 3.14.  Black lines 

represent the profile likelihood; gray parabolas represent the quadratic approximation 

for asymptotic intervals.  Gray asterisks at the valley of each curve indicate the 

estimated values of the parameters.  The upper red dashed line of each plot represents 

the threshold for 68% simultaneous confidence intervals.  The lower red dashed line 

represents the threshold for 68% pointwise confidence intervals. 

3.4 Conclusions 

The profile likelihood approach to identifiability analysis proposed by Raue et al. 

(2009) provided a numerical means by which to examine a model and was able to 

incorporate actual data.  The approach showed that even structurally identifiable parameters 

become practically unidentifiable due to the presence of noise and other properties related to 

data collection.  The shape of the likelihood for each parameter provided additional 

information about its identifiability and lent insight into opportunities for model reduction. 

The simulated data analysis showed the challenge of parameter identification even for 

data generated from a model with constant tire model parameters and a Gaussian noise 
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model.  Although the tractor-implement model was structurally identifiable (at least locally), 

the issue of greater concern was practical identifiability due to the properties of the data.  

Although the tractor and implement yaw rates had non-zero sensitivities to each of the six 

tire model parameters (Karkee and Steward, 2010b), several of the parameters, especially the 

relaxation lengths and the implement cornering stiffness, were more difficult to identify 

accurately as measurement noise increased and were often practically unidentifiable in terms 

of their likelihood-based confidence intervals.  Also, the parameter values that minimized the 

objective function often pertained to estimates that were far from the true values.  Overall, it 

showed that the model structure and the experimental design can have an impact on the 

identifiability of parameters. 

The experimental data analysis showed that, although it was possible to identify a set 

of tire model parameters for the tractor-implement model that minimized the error between 

the simulated and experimental yaw rates, all but the tractor’s front tire cornering stiffness 

were considered practically unidentifiable from the data available.  In both datasets 

considered, at least two of the six parameters were fit to an upper or lower bound.  Efforts to 

decrease the amount of noise in the data, increase the collection frequency, measure 

additional outputs, or perform maneuvers which more-persistently excite the system would 

likely improve the accuracy and confidence of identification in future experiments. 

It should be noted that the confidence interval values and the identifiability 

conclusions for every dataset in this study are directly related to the confidence level chosen 

as well as the bounds chosen for each parameter.  Modification of either the confidence level 

or the parameter bounds could change the conclusions made, but those values need to be 

selected based on the purpose of the model identification in any given study.  The confidence 
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level for the results obtained in this study could be decreased without rerunning the analysis 

by simply calculating a different    threshold and determining where it intersects the profile 

likelihood plots. 

Although this study did not provide any direct improvement upon off-road vehicle 

modeling or the identification of tire model parameters themselves, it demonstrated the 

concept of identifiability in that context and lent insight into the ongoing challenge of model 

parameter identification from experimental data.  Specifically, it challenges researchers to 

design experiments that maximize the amount of information available in the measured data, 

to minimize the presence of noise in the data, and to choose levels of model fidelity that can 

be reliably identified.  Identification from experimental data is likely to increase in use as 

model-based design of off-road vehicle systems becomes more common and as sensing 

capabilities improve. 

In summary, the following conclusions can be drawn from this work: 

 The tractor-implement model with six free tire model parameters and measured 

tractor and implement yaw rates is structurally identifiable, at least locally.  However, 

aspects related to experimental data collection, such as measurement noise, sampling 

rate, and the system input excitation can affect the practical identifiability of the 

model.  As data quality and quantity decreased, the practical unidentifiability of 

model parameters tended to emerge in the order of least to greatest sensitivity. 

 The numerical, profile likelihood approach for testing structural and practical 

identifiability lent additional insight into the identification of the tractor-implement 

model.  The shape of the likelihood indicated opportunities for model reduction that 

might lead to more reliable identification of parameters.  In the simulated data 
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analysis, the size of the likelihood-based confidence intervals tended to indicate the 

accuracy of the identification as well. 

 The unprocessed data collected from two representative field experiments appeared to 

be of insufficient quality and quantity for reliable identification of the tractor-

implement model parameters.  Efforts to increase the number of measured outputs, 

increase sampling rates, and utilize input signals that maximize the richness of the 

data would likely improve the results of identification.  Sensor noise may be 

mitigated with the use of on- or off-line signal filters, but this will not necessarily 

improve the accuracy of identification, especially if it removes important dynamic 

information.  Finally, depending on the application, a reduced model with fewer free 

parameters may be more reliably identifiable from the data available. 
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Notation and List of Variables 

 

Variable: the variable itself 

  

Superscript: denotes whether the variable is related to the tractor or the implement 

   – tractor,   – implement 

  

Subscript 1: specifies the coordinate axis the variable corresponds to 

   – x-axis,   – y-axis,   – z-axis 

  

Subscript 2: specifies the location the variable corresponds to 

   – front,   – rear,   – center of gravity 

  

Tractor-implement model 

  tire lateral slip angle 

   steady-state tire lateral slip angle 

  yaw rate 

  wheel steer angle 

  tire relaxation length 

  heading angle 

  distance between front axle and CG of tractor 

  distance between rear axle and CG of tractor 

  distance between hitch point and CG of tractor 

   tire cornering stiffness 

  distance between hitch point and CG of implement 

  distance between rear axle and CG of implement 

  force 

  yaw moment of inertia 

  mass 

  longitudinal velocity 

  lateral velocity 

  position of a CG in the x-axis of the world coordinate system 

  position of a CG in the y-axis of the world coordinate system 

  

Identification 

  vector of model parameters to be estimated 

   parameter of index   in   
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   true value of   

 ̂ estimate of   

  measurement error 

  
  chi-square distribution with   degrees of freedom 

   confidence interval bound 

   degrees of freedom 

   output error 

     model with structure   and parameter vector   

   profile likelihood abbreviation 

  prior feasible set for   

   set of real numbers in  -dimensional space 

    signal-to-noise ratio 

  time 

  vector of controlled inputs to a model or system 

  model state vector 

  system output vector 

   model output vector 
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CHAPTER 4.  GENERAL CONCLUSIONS 

4.1 Conclusions 

The overall objective of this research was to investigate methods that could be used to 

assess the process of identifying parametric models from experimental data.  After reviewing 

the current trends in model-based design and parameter identification from experimental 

data, especially in vehicle dynamics applications, identifiability was recognized as a model 

property that could lend insight into the investigation.  Nonetheless, many mechanical system 

identification studies do not appear to consider identifiability as part of their analysis.  A 

number of methods for testing structural identifiability and practical identifiability of models 

were found in the literature; particularly, a numerical approach which could test for local 

structural and practical identifiability of arbitrary models was recognized.  This approach 

considered the statistical aspects of parameter identification from actual data through 

principles of maximum likelihood estimation and, specifically, used the profile likelihood of 

each parameter to determine likelihood-based confidence intervals and assess their 

identifiability.  An implementation of the approach in a third-party mathematical modeling 

toolbox for MATLAB was demonstrated on two simple mechanical system examples. 

The additional objectives of this research were to investigate the identifiability of a 

tractor and single axle towed implement model from measured data and to evaluate the 

effects of experimental factors such as measurement noise, data sampling rates, and input 

excitation type on the identification process.  The identifiability of the six tire force model 

parameters from tractor yaw rate and implement yaw rate data was investigated using 

simulated data with fixed parameter values, which enabled a more controlled assessment of 
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the three previously-mentioned experimental factors and eliminated any possibility of error 

in model structure.  The analysis showed that the six unknown model parameters were at 

least locally, structurally identifiable, but measurement noise, sampling rate, and input 

excitation type had an impact on both the accuracy and confidence in what could be 

considered an ideal scenario for identification.  The trends in the profile likelihood plots 

indicated opportunities for model reduction as well.  Identifiability analysis of the parameters 

from actual experimental datasets suggested that the tractor yaw rate and implement yaw rate 

data available did not contain enough information for several of the parameters to be 

considered practically identifiable to the level of confidence specified.   

Overall, it has become increasingly clear that identification of models from 

experimental data needs to be carefully planned and conducted in order to increase the 

chances of success in estimation.  The approach should be multifaceted, considering model 

structure, experimental design, sensor configuration, signal processing, optimization 

methods, and validation.  Ultimately, the objectives of any modeling effort will determine 

what level of accuracy/realism is needed for identification to be considered “successful” and 

for a model to be considered “useful”.   

4.2 Recommendations for Future Work 

There are several areas where this work could be improved or expanded.  Some 

potential areas are described as follows: 

 In this work, one experimental factor that was not considered in the identifiability 

analysis of the tractor-implement model was the impact of different sensor 

configurations.  An additional simulated data analysis case could consider the 
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selection and placement of sensors on the tractor and implement to optimize the types 

of information collected in an experiment. 

 This study only considered the identifiability of the six tire model parameters in the 

tractor-implement model and assumed that the remaining model parameters (masses, 

inertias, and geometric dimensions) were known with certainty.  A more complete 

study would include the identification of these additional parameters from 

experimental data and assess their impact on the identifiability of the model. 

 Before one can properly consider local identifiability of a model with respect to a 

location in the parameter space, it must be assumed that the global optimum of the 

model parameters has been estimated.  Reaching the global optimum is a challenge of 

its own, especially as parameter set dimensions increase and as an objective function 

landscape contains more nonlinearities and local minima.  Further insight into the 

convergence properties of global optimization techniques like genetic algorithms as 

well as the development of optimal objective functions for problems in off-road 

vehicle model identification should be considered. 

 Numerical identifiability approaches could be implemented for handling arbitrary 

models in common modeling packages like MATLAB/Simulink.  Although a number 

of MATLAB/Simulink toolboxes (e.g., System Identification, Simulink Design 

Optimization, Optimization, and Statistics, among others) contain useful functions for 

model identification, they do not appear to have any functions built-in for specifically 

examining structural nor practical identifiability of models.  Although this study 

relied heavily on a numerical identifiability method, analytical methods should be 

considered when it is feasible. 
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 The literature review conducted during this study has raised further awareness to the 

academic areas of system identification, estimation theory, and optimal experimental 

design.  It is suggested that educational efforts in vehicle dynamics, modeling, and 

simulation be supplemented with theory from these previously mentioned areas in 

future model identification projects to improve the chances for success and to better-

design experiments, which can be expensive, time-consuming, and highly dependent 

upon environmental conditions. 
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APPENDIX.  POTTERSWHEEL FILE FOR THE TRACTOR-

IMPLEMENT MODEL 

% PottersWheel model definition file 

  
function m = TracImpDynamicwRL() 

  
m = pwGetEmptyModel(); 

  
%% Meta information 

  
% Dynamic tractor-implement model 
m.t = [0:0.2:10];                                   % 5 Hz data collection 

  
%% Dynamic variables 
% m = pwAddX(m, ID, startValue, type, minValue, maxValue) 

  
m = pwAddX(m, 'v_tc', 0);                           % [m/s]; tractor CG 

lateral velocity 
m = pwAddX(m, 'gam_t', 0);                          % [rad/s]; tractor yaw 

rate 
m = pwAddX(m, 'gam_i', 0);                          % [rad/s]; implement 

yaw rate 
m = pwAddX(m, 'alp_tf', 0);                         % [rad]; tractor front 

tire slip angle 
m = pwAddX(m, 'alp_tr', 0);                         % [rad]; tractor rear 

tire slip angle 
m = pwAddX(m, 'alp_ir', 0);                         % [rad]; implement 

tire slip angle 
m = pwAddX(m, 'x_tc', 0);                           % [m]; tractor CG 

trajectory in world 
m = pwAddX(m, 'y_tc', 0);                           % [m]; tractor CG 

trajectory in world 
m = pwAddX(m, 'psi_t', 0);                          % [rad]; tractor 

heading angle in world 
m = pwAddX(m, 'psi_i', 0);                          % [rad]; implement 

heading angle in world 

  
%% Dynamic parameters 
% m = pwAddK(m, ID, value, fitSetting, minValue, maxValue, unit, name, 

description) 

  
% p130 
m = pwAddK(m, 'C_atf', 220000, [], 10000, 700000);  % [N/rad]; tractor 

front tire cornering stiffness 
m = pwAddK(m, 'C_atr', 486000, [], 10000, 700000);  % [N/rad]; tractor 

rear tire cornering stiffness 
m = pwAddK(m, 'C_air', 167000, [], 10000, 700000);  % [N/rad]; implement 

tire cornering stiffness 
m = pwAddK(m, 'sig_tf', 0.5, [], 0.1, 2.0);         % [m]; tractor front 

tire relaxation length 
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m = pwAddK(m, 'sig_tr', 1.0, [], 0.1, 2.0);         % [m]; tractor rear 

tire relaxation length 
m = pwAddK(m, 'sig_ir', 0.5, [], 0.1, 2.0);         % [m]; implement tire 

relaxation length 

  
%% Constant (fixed) parameters 

  
% p130 
m = pwAddK(m, 'm_t', 9391, 'fix');                  % [kg]; tractor mass 
m = pwAddK(m, 'm_i', 2127, 'fix');                  % [kg]; implement mass 
m = pwAddK(m, 'I_tz', 35709, 'fix');                % [kg-m^2]; tractor 

yaw moment of inertia 
m = pwAddK(m, 'I_iz', 6402, 'fix');                 % [kg-m^2]; implement 

yaw moment of inertia 
m = pwAddK(m, 'u_tc', 4.5, 'fix');                  % [m/s]; tractor 

longitudinal velocity 
m = pwAddK(m, 'a', 1.7, 'fix');                     % [m]; distance 

between front axle and CG of tractor 
m = pwAddK(m, 'b', 1.2, 'fix');                     % [m]; distance 

between rear axle and CG of tractor 
m = pwAddK(m, 'c', 2.1, 'fix');                     % [m]; distance 

between tractor CG and hitch point 
m = pwAddK(m, 'd', 3.62, 'fix');                    % [m]; distance 

between hitch point and implement CG 
m = pwAddK(m, 'e', 0.1, 'fix');                     % [m]; distance 

between implement CG and implement axle 

  
%% Driving input 
 

% Ramp 
m = pwAddU(m, 'del', 'linear', [0 1 1.5], [0 0 0.17452]);  % [rad]; ramp 

input to front wheel angle 

 
% Chirp 
% m = pwAddU(m, 'del', 'linear', [0:0.1:10], 

[0,0.0111778960931067,0.0227448762788643,0.0346410333652654,0.046794516355

9924,0.0591209200963829,0.0715228376915582,0.0838896160672813,0.0960973576

325432,0.108009212795761,0.119476008834540,0.130337260052100,0.14042260198

6874,0.149553688384379,0.157546583405930,0.164214672869473,0.1693721069614

96,0.172837772648374,0.174439776850454,0.174020401324205,0.171441467255787

,0.166590022086360,0.159384233528051,0.149779346755508,0.137773531259491,0

.123413414948844,0.106799076146579,0.0880882407358103,0.0674994136696496,0

.0453136633304624,0.0218747758786817,-0.00241249313492610,-

0.0270863189917560,-0.0516340700304305,-0.0755010863562033,-

0.0981020561425106,-0.118834979337074,-0.137097600015138,-

0.152306064481649,-0.163915425428713,-0.171441467255787,-

0.174483179714332,-0.172745063408684,-0.166058319751008,-

0.154399869234677,-0.137908065670923,-0.116893941005801,-

0.0918468359616914,-0.0634333555713249,-0.0324887434952374,-

4.27482376382620e-

17,0.0329196227850760,0.0650647311188034,0.0951800379460785,0.122009779038

965,0.144352792003766,0.161121213152131,0.171400234580817,0.17450591598395

0,0.170037703428543,0.157922112266475,0.138444023440735,0.112262256453567,

0.0804065441731334,0.0442537577970197,0.00548221166464041,-
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0.0339959053295080,-0.0721225166557922,-0.106799076146579,-

0.136004863457722,-0.157922112266475,-0.171060634823028,-

0.174373646072444,-0.167355991317692,-0.150116059953858,-

0.123413414948844,-0.0886556353884071,-0.0478500583535319,-

0.00350895624360309,0.0414899317953503,0.0840818779665467,0.12122322635399

7,0.150116059953858,0.168433539395435,0.174527964218666,0.167602866011742,

0.147831238905102,0.116404510817839,0.0755010863562026,0.0281691133891860,

-0.0218747758786819,-0.0705211180823961,-0.113600029657880,-

0.147245386376670,-0.168259917990565,-0.174446803736655,-

0.164872798225465,-0.140030855354542,-0.101876837333062,-

0.0537250074001185,-1.28244712914786e-16;]); 

  
%% ODEs 
% m = pwAddODE(m, leftHandSide, rightHandSide) 

  
m = pwAddODE(m, 'v_tc', '- gam_t*u_tc - (C_atf*alp_tf*(I_iz*m_i*c^2 + 

I_iz*a*m_i*c + I_tz*m_i*d^2 + I_iz*I_tz))/(I_iz*m_i*m_t*c^2 + 

I_tz*m_i*m_t*d^2 + I_iz*I_tz*m_i + I_iz*I_tz*m_t) - 

(C_atr*alp_tr*(I_iz*m_i*c^2 - I_iz*b*m_i*c + I_tz*m_i*d^2 + 

I_iz*I_tz))/(I_iz*m_i*m_t*c^2 + I_tz*m_i*m_t*d^2 + I_iz*I_tz*m_i + 

I_iz*I_tz*m_t) - (C_air*I_tz*alp_ir*(I_iz - d*e*m_i))/(I_iz*m_i*m_t*c^2 + 

I_tz*m_i*m_t*d^2 + I_iz*I_tz*m_i + I_iz*I_tz*m_t)'); 
m = pwAddODE(m, 'gam_t', '(C_atr*alp_tr*(b*m_i*m_t*d^2 + I_iz*b*m_i + 

I_iz*b*m_t - I_iz*c*m_i))/(I_iz*m_i*m_t*c^2 + I_tz*m_i*m_t*d^2 + 

I_iz*I_tz*m_i + I_iz*I_tz*m_t) - (C_atf*alp_tf*(a*m_i*m_t*d^2 + I_iz*a*m_i 

+ I_iz*a*m_t + I_iz*c*m_i))/(I_iz*m_i*m_t*c^2 + I_tz*m_i*m_t*d^2 + 

I_iz*I_tz*m_i + I_iz*I_tz*m_t) + (C_air*alp_ir*c*m_t*(I_iz - 

d*e*m_i))/(I_iz*m_i*m_t*c^2 + I_tz*m_i*m_t*d^2 + I_iz*I_tz*m_i + 

I_iz*I_tz*m_t)'); 
m = pwAddODE(m, 'gam_i', '(C_air*alp_ir*(e*m_i*m_t*c^2 + I_tz*d*m_t + 

I_tz*e*m_i + I_tz*e*m_t))/(I_iz*m_i*m_t*c^2 + I_tz*m_i*m_t*d^2 + 

I_iz*I_tz*m_i + I_iz*I_tz*m_t) - (C_atf*alp_tf*d*m_i*(I_tz - 

a*c*m_t))/(I_iz*m_i*m_t*c^2 + I_tz*m_i*m_t*d^2 + I_iz*I_tz*m_i + 

I_iz*I_tz*m_t) - (C_atr*alp_tr*d*m_i*(I_tz + b*c*m_t))/(I_iz*m_i*m_t*c^2 + 

I_tz*m_i*m_t*d^2 + I_iz*I_tz*m_i + I_iz*I_tz*m_t)'); 
m = pwAddODE(m, 'alp_tf', 'v_tc/sig_tf - (alp_tf*u_tc)/sig_tf - 

(del*u_tc)/sig_tf + (a*gam_t)/sig_tf'); 
m = pwAddODE(m, 'alp_tr', 'v_tc/sig_tr - (alp_tr*u_tc)/sig_tr - 

(b*gam_t)/sig_tr'); 
m = pwAddODE(m, 'alp_ir', 'v_tc/sig_ir - (alp_ir*u_tc)/sig_ir - 

(psi_i*u_tc)/sig_ir + (psi_t*u_tc)/sig_ir - (gam_i*(d + e))/sig_ir - 

(c*gam_t)/sig_ir'); 
% m = pwAddODE(m, 'y_tc', 'v_tc + psi_t*u_tc');                     % 

Linear position calculation 
m = pwAddODE(m, 'x_tc', 'u_tc*cos(psi_t)-v_tc*sin(psi_t)');         % 

Nonlinear position calculation 
m = pwAddODE(m, 'y_tc', 'v_tc*cos(psi_t)+u_tc*sin(psi_t)');         % 

Nonlinear position calculation 
m = pwAddODE(m, 'psi_t', 'gam_t'); 
m = pwAddODE(m, 'psi_i', 'gam_i'); 

  
%% Observables 
% m = pwAddY(m, rhs, ID, scalingParameter, errorModel) 
 

m = pwAddY(m, 'gam_t', [], 'scale_gam_t_obs', '0.01*max(y)'); 
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m = pwAddS(m, 'scale_gam_t_obs', 1, 'fix'); 
m = pwAddY(m, 'gam_i', [], 'scale_gam_i_obs', '0.01*max(y)'); 
m = pwAddS(m, 'scale_gam_i_obs', 1, 'fix'); 
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