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ABSTRACT 

Tier 4 legislation and rising fuel prices have increased the attention dedicated 

to increasing efficiency by designers of off highway vehicles and their components.  

This paper discusses a methodology for comparing flow loss models of closed circuit 

axial piston pumps, which are common on off-highway vehicle propulsion systems.  

Having the best mathematical representation of the flow losses in the pump will aid 

the designers in understanding the impacts of loss on their vehicle’s efficiency.  Five 

flow loss models were compared including the: 1) Wilson, 2) Schlösser, 3) Zarotti 

and Nevegna 4) Ivantysyn and Ivantysynova and 5) Jeong models. The 

methodology consists of four steps for the comparison of flow losses: 1) calibration 

of complete models, 2) parameter reduction through stepwise regression, 3) 

parameter reduction by reducing multicollinearity and 4) a leave one out cross 

validation (LOOCV).  Of all five, the Ivantysyn and Ivantysynova model clearly 

calibrated to the measured data set the closest with an root mean squared error of 

0.305 L/min.  However, in performing cross validation, there does not appear to be a 

significant difference between the Zarotti and Nevegna, Ivantysyn and Ivantysynova 

and the Jeong models in their capability to estimate measured flow losses. 
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CHAPTER 1. GENERAL INTRODUCTION 

1.1  Introduction 

Legislation in the United States has mandated that the amount of pollution 

emitted by non-road vehicles (also known as off-highway vehicles) utilizing diesel 

engines must be reduced significantly.  The new pollution controls will reduce the 

amount of NOx and particulate material exhausted into the atmosphere [1] within 

allowable pollutant levels (Fig 1.1).  The EPA has estimated the by the year 2030 

these reductions will prevent 12,000 premature deaths, save 8,900 hospitalizations 

and one million lost work days annually [2]. 

     

Figure 1.1. Graphic showing the decreases in pollutants required by EPA / EU 

regulations from Tier 1 to Tier 4i. 

 

To accomplish these reductions engine manufacturers have chosen one of 

two systems to meet the criteria set by the EPA final rule for Tier IV.  First, systems 

with exhaust gas recirculation (EGR) mixes exhaust gas back in with fresh air into 

the combustion chamber to reduce combustion temperatures.  Secondly, selective 

catalytic reduction (SCR) systems mix a water/urea mixture into the exhaust gas to 
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turn the nitrogen oxides from the exhaust into nitrogen gas and water.  Both of these 

methods increase the total cost of ownership to the end user; EGR reduces engine 

efficiency and SCR adds cost to the engine and requires diesel exhaust fluid for 

proper function.  One large off-road, construction vehicle company is raising prices 

of all of vehicles by nearly twelve percent due to R&D and after-treatment system 

costs [3]. 

For the vehicle manufacturer, efficiency in all of the systems powered by the 

engine must be increased.  Hydraulic systems are being examined not only in 

industry, but also in academia, as a target system where efficiency gains for off-road 

machines can be accomplished.  All components of a hydraulic system (pumps, 

motors, valves, etc.) as well as circuit concepts are being studied to reduce energy 

loss.  Fluid power systems on average are estimated to be only 22% energy 

efficient, with around one third of the inefficiencies directly attributable to component 

losses [4]. A better understanding of the efficiency of individual components will help 

designers build more efficient hydraulic systems.  

 Hydrostatic transmissions (HSTs) are a type of hydraulic system that transmit 

mechanical power from the engine to a ground drive mechanism (wheel, mechanical 

drive for a tracked or wheeled vehicle) and to fan drive systems for cooling (Fig 1.2).  

These systems are called closed circuit systems since only a small portion of the 

hydraulic flow is returned back to the reservoir with the majority flowing around the 

circuit.  These systems typically include a primary hydraulic pump that flows oil 

directly to a hydraulic motor; a “charge” pump is also adding flow to the low pressure 

side of the loop.  In addition to the pumps and motors, relief and check valves are 
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needed to maintain charge pressure on the low-pressure line returning flow from the 

motor to the pump.  The efficiency of the HST components has a direct effect on 

overall vehicle efficiency [5]. 

 
Figure 1.2. Basic schematic of a HST.  Included are prime mover, hydrostatic 

pump, charge pump, charge relief valve, charge check valves, hydrostatic 

motor and load. 

   
A number of authors have developed mathematical models to characterize 

both the volumetric and mechanical losses or efficiency of hydraulic pumps and 

motors.  Approaches are generally sorted into three categories [6]: 1) physical, 2) 

analytical and 3) numerical.  Physical models are based singularly on first-principle 

descriptions of the physical system.  Analytical models are not limited to only loss 

terms based on physical principles and typically include non-linear terms that better 

explain variability in measured losses. These models include terms that model 

physical processes as well as terms that aid in fitting data.  Numerical loss models 

characterize loss behavior by approximation.  The individual terms of the model 

generally have little physical meaning and are assembled to fit the data as best as 

M
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possible.  Numerical models can only be determined by fitting parameters to a large 

data set.     

1.2  Research Objectives 

The overarching objective is to develop a clear methodology for comparing 

flow loss models for axial piston pumps. Within that framework, a group of flow loss 

models from the literature were compared through the methodology.  The first 

objective is to determine how well each of the models can be calibrated to a 

common data set.  The second objective is to determine if reduced versions of the 

original models can be developed without loss of performance.  The third objective is 

to ensure that the models are characterizing the pump flow loss and not over 

characterizing the specific measured data set. At the same time, an indication of 

how well each of the models will predict flow losses relative to one another will be 

found.  The overall goal of this thesis is to contribute to the knowledge of flow loss 

modeling in axial piston pumps and draw attention to the statistical issues that may 

arise from using any of the current or future models. 

1.3 Organization of the Thesis 

The thesis is organized into four chapters.  An introduction to the research 

context is presented in this thesis chapter (Ch. 1). Chapter two will present an 

exhaustive literature review of methods used to determine the ideal displacement of 

hydraulic pumps and steady state flow loss models of hydraulic pumps.  Each of 

these models is discussed in detail. A subset of these methods and models 

presented will be used in the primary research work of this thesis.   
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Chapter three presents an article prepared for publication in a peer reviewed 

journal.  It presents a comparison of five flow loss models that are representative 

examples of those found in the literature review.  The models were calibrated, 

reduced, and cross-validated to a data set acquired during product development at 

Danfoss Power Solutions in Ames, Iowa.  General conclusions derived from the 

work and recommendations for the future work are presented in Chapter four of the 

thesis.   
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CHAPTER 2. IDEAL DISPLACEMENT AND FLOW LOSS 

MODELING BACKGROUND 

2.1 Introduction 

 The work in this thesis examines mathematical modeling of flow loss in axial 

piston pumps.  This chapter presents the background information of how both the 

ideal displacement of a pump can be determined using measured data or 

displacement element dimensions, and how previous authors have quantified flow 

losses.  One ideal displacement calculation method and five flow loss models were 

used in the primary work of this thesis. 

 This thesis concentrates on modeling flow losses of positive displacement, 

axial piston pumps.  It is important to ensure that the terminology used to describe 

the mathematical representation of the pump has a clear connection to the physical 

hardware and operating characteristics.  The rotating group along with the variable 

swash plate determines the ideal displacement of the pump (Fig. 2.1).  As the input 

shaft rotates, flow is produced by drawing fluid into the low-pressure inlet and 

displacing the fluid to the high-pressure side.  The volume captured within the 

housing and the end-cap, but outside the rotating group is referred to as the pump 

case volume.  The pressure of the fluid within the pump case volume appears in 

many of the loss models throughout this chapter.  The valve-plate ports oil between 

the rotating group and the end-cap to ensure that the flow is as uniform as possible 

and still maintain the desired efficiency of the pump.   
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Figure 2.1. Internal components of an axial piston pump.  Primary components 

include: 1) rotating group, 2) swash-plate, 3) valve-plate, 4) input shaft, 5) 

housing and 6) end-cap. (courtesy Danfoss Power Solutions). 

 

 The remainder of this chapter is separated into three primary sections: 1) 

methods of determining the ideal displacement of the pump and 2) a detailed 

description of the notable flow loss models and 3) a discussion and comparison of 

the flow loss models.  This review of the literature will provide the background 

necessary for the characterizing flow losses within an axial piston pump. 

2.2 Ideal Displacement  

 The ideal displacement of an axial piston pump is defined as the volume that 

is swept by the rotating group per revolution of the input shaft.  The pump would 

have zero flow loss if the measured flow out of the pump was equal to the ideal 

displacement multiplied by the pump input speed. 

1 2 
3 

4 

5 6 
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 To this point, there are two types of methods of determining the ideal 

displacement of a pump.  The first method determines the displacement based on 

the manufactured geometry of the pump and calculating the displacement of the 

pump.  The second class of methods bases the ideal displacement on interpolated 

values of measured test data.  These methods were developed due to the low cost 

of running a lab test as compared with that due to the complexity of calculating the 

displacement from pump internal volumes with associated manufacturing tolerances.  

Applying this first method to gear pumps is especially challenging.  Chapter 3 of this 

thesis will use an interpolation method of the second class to determine ideal 

displacement. 

2.2.1 Measurement Based Ideal Displacement 

 Three methods exist for determining the ideal displacement of pumps through 

measured test data.  These methods are used to accurately estimate the 

displacement of the pump without precise knowledge of the construction or 

geometric dimensions of the components within the pump [1].  These measurement-

based methods all require a set of steady state tests at specific operating conditions 

for interpolation of ideal displacement. The three methods are the Wilson method, 

the Toet method, and the ISO 8426 method. 

2.2.1.1 Wilson Ideal Displacement Method 

 

The Wilson method of determining Ideal displacement [2] uses two 

regressions on measured pump data.  At the test temperature, the pump flow rate is 

measured across a range of multiple shaft speeds and  pressures across the pump.  

Then the analysis has two steps, First, flow rate is regressed onto pressure and the 
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y-intercepts of the regression lines for each shaft speed are stored.  In the second 

step, flow rate y-intercepts from the first step are regressed onto shaft speed, and 

the ideal (or theoretical) displacement is set equal to the slope of the regression line 

(Fig. 2.2).   

 
Figure 2.2. The two step process of determining ideal displacement of an axial 

piston pump according to the Wilson method.  Step 1 of the method 

determines the zero crossings of the speed sub-populations (left sub-plot).  In 

step 2, the ideal pump displacement is determined from the slope of the speed 

to flow points from step 1. 

 

2.2.1.2 Toet Ideal Displacement Method 

 

The Toet method for calculating ideal pump displacement [3] utilizes a similar 

method of multiple interpolations, but reverses the order to determine the ideal 

displacement.  The first step of Toet’s method is to regress the flow rate onto shaft 

speed for each of different test pressure difference across the pump outlet and inlet 

and the test temperature.  The slope of each of these regression lines from the first 

step are then regressed against the measured pressure difference across the pump 
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(Fig. 2.3).  The ideal displacement is set to be the x-intercept of the regression line 

from the second step. 

 
Figure 2.3. The two step process of determining ideal displacement of an 
axial piston pump according to the Toet method.  Step 1 of the method 

determines the slope of the flow vs. speed regression lines for the pressure 
sub-populations (left sub plot).  Step 2 then determines the ideal 

displacement from the intercept of the regressed line for the step 1 slopes 
and pressure points. 

 

 

2.2.1.3 ISO 8426 Method 

 The method within ISO 8426:2008, entitled Hydraulic Fluid Power, Positive 

Displacement Pumps And Motors, Determination Of Derived Capacity [4], specifies 

that the ideal displacement is found by utilizing the slope (Fig. 2.4) of regression 

measured flow rate onto the measured shaft speed.  These data are measured while 

the pump is operating at 5% of its rated pressure.  Mathematically, the ideal pump 

displacement is set according to the relationship:     

   (
      
      

)
               

 
(2.1) 

where:  

    is the ideal displacement determined at a specific temperature and 5% of 

rated pressure, 

        is the average change in flow, and  

        is the average change in measured shaft speed.  
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Figure 2.4. The determination of ideal pump displacement by ISO standard 

8426 is accomplished by setting the ideal displacement to the slope of the 

regression line of flow rate as a function of pump shaft speed and 5% of rated 

pressure of the pump. 

2.2.2 Geometric Ideal Displacement Method  

 A precise calculation of the ideal displacement of hydraulic pumps can be 

accomplished given sufficient geometric data about the displacement elements.  For 

an axial piston pump, the ideal displacement is equal to the volume that all of the 

pistons sweep out during a single shaft rotation.  Figure 2.5 shows a cross sectional 

view of the rotating group and includes depicts the dimensions needed to determine 

ideal displacement.   

 The calculation for ideal displacement of an axial piston pump described by in 

many textbooks, including Ivantysyn and Ivantysynova [5], and is shown 

mathematically to be: 

                   (2.2) 

Where  

         is the cross sectional area of a the piston,  

        is the total stroke length that the piston travels during a single 
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revolution of the input shaft, and 
   is the number of pistons in the pump.  

 

 

Figure 2.5. A cross sectional view of the rotating group in an axial piston 

pump with dimensions identified (from Jeong [19]). 

 

The area of the piston and the stroke length are: 

         (
       

 
)

 

 (2.3) 

where  

         is the diameter of a piston from the rotating group, and  

  

                   ( ) (2.4) 

where  

        is the pitch circle radius of the pistons in the rotating group, and 

  is the swash angle of the pump.  
    

 This geometric method does have a few drawbacks.  Based on the variation 

of hardware component dimensions and any potential tolerance stack-up issues 

could lead to an over-estimation or under-estimation of the ideal displacement.  A 
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displacement determination method based on measured test data is robust against 

making errors based on geometric relationships and tolerances of rotating group 

components.  

2.3 Steady State Flow Loss Overview 

 Hydraulic pumps are designed to have some inherent loss within them.  Flow 

losses are necessary to lubricate sliding and loaded bearing surfaces and transfer 

heat to ensure a long and consistent operating life of the pump.  Other mechanical 

losses related to viscous friction on internal components rotating at input shaft speed 

inside the case is unavoidable.  Understanding the sources of loss and quantifying 

them has been a topic of research dating back many decades.  

 In the successive portions of this thesis, a common notation for pump 

pressures has been adopted.  Additionally, the pressures are all gage pressure, so 

the gauge pressure of associated with atmospheric pressure is defined to be zero.  

The pump pressure naming convention has five pump pressures, which are: 1) the 

high system pressure at the pump outlet, which is labeled    , 2) low system 

pressure at the pump inlet, which is labeled    , 3) the internal case pressure of the 

pump, which is labeled       , 4) atmospheric pressure, which is labeled     , and 5) 

the pressure rise across the pump, which is labeled      , and is the difference 

between     and     (Fig. 2.6).  This common naming convention is needed to 

alleviate confusion between models covered in this chapter due to the variety of 

naming conventions used by the authors cited.  
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Figure 2.6. A graphical representation of the pressure naming convention 

used in this thesis.  The left side of the figure is a schematic of a hydrostatic 

pump with the pressures illustrated with 1) high pressure in red, 2) charge 

pressure in blue, 3) case pressure in green and 4) atmospheric pressure in 

black.  On the right is a depiction of the relative value of pressure with respect 

to atmospheric pressure. 

 

An important distinction needs to be made between pump losses and pump 

efficiency.  Rahmfeld and Meincke [6] concluded that when modeling the difference 

between the ideal and actual flow out of a pump, loss models should predict the flow 

loss and not the ratio between the measured and ideal flow.  The primary advantage 

of this is that large modeling errors can appear to be small in the context of 

efficiency.  In all of the flow loss models within this paper, with only a single 

exception, losses were considered instead of efficiency.   

 The definition of flow loss is the difference between the ideal flow and 

measured flow.  Flow loss is mathematically represented as:  
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                   (2.5) 

where: 

 
pumpn  is the pump input speed,

 
 PV  is the ideal displacement of the pump, 

 P  is the percent of maximum displacement of the pump, and 

 
LQ  is the sum of the volumetric losses of the pump. 

 

 

A variety of steady state flow loss models have been developed for both 

hydraulic pumps and motors (Table 2.1).  Each of the models can be categorized 

into one of three types: 1) physical models, 2) analytical models and 3) numerical 

models [7].  Over time, the number of parameters has generally increased to both 

better describe experimental data as well as model the physical processes that were 

understood at that time that they were published [2], [8] – [14], [5], [15] – [19]. 

Physical flow loss models quantify loss using terms based on physical 

principles of processes or component interactions.  Early examples of physical 

models such as those described by Wilson [2], Schlösser [8] and Olsson [9] include 

physical processes such as laminar and turbulent flow loss.  Later physical models, 

like those described by Bavendiek [13], Kögl [15], and Jeong [19] calculated losses 

as the sum of sources of interaction between moving components within the pump.  

Interfaces that are common between the two models are the piston to cylinder-block 

bore interface, the cylinder-block to valve plate interface and the piston-slipper to 

swash-plate interface. 
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Table 2.1. Summary of the steady state loss models for hydraulic pumps 

including the number of variables within the models. 

Author Year Model Type 
Number of 

Terms 

Wilson 1948 Physical 2 

Schlösser 1961 Physical 2 

Olsson 1973 Physical 4 

Pacey, Turnquist and Clark 1979 Physical 2 

Zarotti and Nevegna 1981 Analytical 5 

Rydberg 1983 Analytical 5 

Bavendiek 1987 Physical 11 

Dorey 1988 Analytical 2 

Ivantysyn, Ivantysynova 1993 Numerical 27* 

Kögl 1995 Physical 11** 

Huhtala 1997 Numerical 12 

Baum 2001 Numerical 3 layers 

Ortwig 2002 Numerical 3 

Jeong 2006 Physical 6 

* The Ivantysyn and Ivantysynova model can vary in the number of parameters 

based on the maximum exponent selected. 

** Huhtala parameters are based on test data at the extremes of the operating 

range, not based on the complete data set. 

 

Numerical models explain the flow loss data by means of a statistical model, 

relating flow loss to relevant operational variables; typically pressure across the 

pump, shaft speed and pump displacement.  The parameters within the models have 

little or no physical meaning, but may usefully explain the variation in the data.  

These models require a large number of measurements to define the loss behavior 

of the pump.  A notable example of this type of model is that of Ivantysyn and 

Ivantysynova [5].  Their loss model is a linear combination of model term which are 

products of three system variables (pump displacement, delta pressure and shaft 

speed) raised to powers with exponents from zero to a desired value (typically 2 or 

3).  The authors suggested that a viscosity variable could also be added. 
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 The analytical models are a blend of physical and numerical models.  The 

majority of the terms have physical meaning, but additional terms are added to 

better explain variation in the data.  For example, the Zarotti and Nevegna [11] 

added terms that had little physical meeting, but reported increased the capability of 

the model to explain measured test data variability. 

2.4 Individual Loss Models 

 The authors of the models described above exhibited different motivations for 

developing their models.  Additionally, many of the authors modeled the flow out of 

the pump as a difference between the ideal pump flow and flow loss. The remainder 

of this section will only discuss the flow loss portion of each of their models.  Also, a 

common set of variables will be used where possible; for example,       will be used 

to denote the pressure rise across the pump within the flow loss model.  

2.4.1 Wilson Loss Model 

The first mathematical pump flow loss model for hydraulic pumps is widely 

recognized to be developed by Wilson [2].  Wilson’s flow model describes pump flow 

loss with laminar loss flow and constant flow loss terms.  Mathematically, the model 

is represented by: 

.
2

const

sysP

SL Q
pV

CQ 





 (2.6) 

where 

 SC  is the laminar flow loss constant, 

   is the oil viscosity,  

 .constQ  is the constant/ delivery flow loss parameter, and 

 

 LQ  is the total flow loss.  
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The justification for this relationship is that most of the flow loss is assumed to 

be leakage flow past the pumping elements.  This leakage flow is assumed to be 

laminar because the clearances within a pump are quite small.  The constant flow 

loss term models the flow losses associated with drawing the fluid into the 

displacement element.  This constant is generally small and some subsequent 

authors omit the term when reviewing the model.   

2.4.2 Schlösser Loss Model 

Schlösser [8] built upon Wilson’s models by removing the constant flow term 

and replacing it with a turbulent flow loss term.  The flow equation was modified by 

replacing the constant flow loss term term with a turbulent loss term that is similar in 

structure to an orifice equation with the area of the orifice being proportional to the 

displacement volume to the two-thirds power. This addition and a subsequent better 

fit of data brings into question the assumption of Wilson that all flow loss is laminar. 

Mathematically, the Schlösser flow loss model is written as: 



sys

Pst

sysP

SL

p
VC

pV
CQ







2

2
3

2

 (2.7) 

where 

 
stC  is the turbulent flow loss constant, and

 

 

 

  is the density of the hydraulic fluid.

 
 

 

2.4.3 Olsson Loss Model 

 Olsson [9] developed a flow loss model that introduced compressibility effects 

into the flow loss model.  Starting with the terms from the Schlösser flow loss model, 

Olson added two loss terms to account for the compressibility of the pump flow.  The 

two compressibility terms accounted for displacement independent flow loss in the 
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term with the coefficient, CC1, and displacement dependent flow loss in the term with 

the coefficient, CC2.  This compressibility effect became evident when testing axial 

piston machines under high pressures compared to other types of positive 

displacement pumps, for example, gear pumps.  For example, at 414 bar (6000 psi), 

a three percent compression of a petroleum-based hydraulic fluid is typical.  

Mathematically, the Olsson flow loss model is written as: 

 
oil

sysP

PCC

sys

Pst

sysP

SL

pV
CC

p
VC

pV
CQ













 21

3

2 2

2
 (2.8) 

 

2.4.4 Pacey, Turquist and Clark Loss Model 

Pacey, Turquist and Clark [10] built a flow loss model upon Wilson’s model 

and proposed a model for both pumps and motors.  The first term of their flow loss 

model is the same as Wilson’s model with the second term accounting for viscosity 

based losses.   Pump flow loss was described mathematically as: 


CPsysP

SL

CpV
CQ 




2
 (2.9) 

where 

 
CPC  is the viscous flow loss coefficient.

  

 

 

2.4.5 Zarotti and Novenga Loss Model 

Zarotti and Novenga [11] also studied axial piston machines and developed a 

model for modeling flow loss.  In their flow loss model, a number of model terms 

explained experimental flow loss data.  The pump flow loss is described 

mathematically as: 

 PPnsyspsyssyssysL VCnpCnpCpCpCQ  54

2

3

2

21
2

3

 
(2.10) 
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Using their model, Zarotti and Novenga could reliably predict the behavior of 

a pump.  Each of the model terms, apart from the compressibility and power 

dependent terms, have little physical meaning, yet they do aid in improving the 

model’s capability in describing flow loss variability.   

2.4.6 Rydberg Loss Model 

 Rydberg proposed a flow loss model [12] that built on the Olsson model and 

was developed specifically to model variable displacement axial piston pumps.  After 

studying the models developed by many of the proceeding authors, Rydberg 

concluded that a model that could explain 98% of the measured variability in the flow 

loss would require physical terms as well as higher order terms.  Based on this 

strategy, he developed the Rydberg flow loss model, which is written mathematically 

as: 

            (       )
         

 
    

       

   
          

  (2.11) 

where  

   is the flow dependent coefficient,  

  is the displacement setting independent compressibility loss coefficient, 
  is the displacement setting dependent compressibility loss coefficient, 

   is the laminar flow loss coefficient, and  

   analytical loss coefficient (best fit for axial piston pumps).  
 

2.4.7 Bavendiek Loss Model 

 

 The Bavendiek flow loss model [13] departs from the previous physical 

models because the loss terms are derived component interaction level flow losses 

instead of a system level flow loss terms.  For example, in the Wilson loss model, 

laminar flow loss is a represented with a single term, but Bavendiek initially modeled 

viscous flow losses in several interfaces among them is the piston seal to cylinder-
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block bore interface.  Then for convenience, Bavendiek reduced similar terms within 

the loss models, and replaced gap heights and flow coefficients with lumped 

parameters.    Bavendiek considered five sources or interactions that produced flow 

losses in a bent axis motor.  The five flow loss locations include (Figure 2.7): 1) the 

leakage between the piston and the cylinder-block bore (in the rotating group), 2) 

piston ball and retainer (between the rotating group and shaft), 3) piston and piston 

rod, 4) swash block and the cylinder-block running face, and 5) swash block 

lubrication notches.  To complete the loss model, a fluid compressibility loss term 

was added.   

 
Figure 2.7. Components of a bent-axis piston motor. 1) rotating group, 2) 

output shaft 3) swash-block, 4) housing, 5) end-cap (courtesy Danfoss Power 

Solutions). 

3 1 2 

5 4 
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The Bavendiek flow loss model is written mathematically as: 

                                            (2.12) 

 
where 

     is the total flow loss for a motor, 
 

    is the high pressure squared dependent loss term, and is represented 
mathematically by: 

       
          

 
 (
   

     
) (2.13) 

  

    is the high pressure cubed dependent loss term, and is represented 
mathematically by: 

       
          

 
 (
   

     
)
 

 (2.14) 

  

    is the high pressure to the fourth power loss term, and is represented 
mathematically by: 

       
          

 
 (
   

     
)
 

 (2.15) 

  

    is charge pressure dependent loss term, and is represented 
mathematically by: 

       
(        )     

 
 (2.16) 

  

    is the charge pressure square root dependent loss term, and is 
represented mathematically by:  

       √
(        )

 
     

 
  (2.17) 

  

    is the loss term that is dependent on the product of delta  pressure and 
shaft speed, and is represented mathematically by:  

       
 

    
        (

   

     
) (2.18) 

  

    is the loss term with linear dependency on delta pressure, and is 
represented mathematically by:  

       
          

 
 (2.19) 

  

    is the delta pressure square root dependent loss term, and is 
represented mathematically by:  
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  (2.20) 

  

        is the bulk modulus flow loss term, and is represented 

mathematically by: 
                               (2.21) 

The model coefficients K1 through K9 were selected using an optimization algorithm 

called GLGOPT that Bavendiek used to minimize the error between the measured 

and modeled flow loss. 

2.4.8 Dorey Loss Model 

Dorey [14] proposed a number of steady-state models for a number of 

different designs of pumps and motors, including a flow loss model developed for 

variable displacement pumps specifically is shown in equation 2.22.  The model 

includes a non-linear leakage term as well as losses due to compression of fluid.  

The Dorey flow loss model is written mathematically as: 
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where  

 

*

sC  is the non-linear, laminar leakage coefficient, 
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 a is the pressure dependent constant within the laminar leakage 

 coefficient,

 

b is the pressure and flow dependent constant within the laminar leakage 

coefficient, and

 

rV  is the ratio between the dead volume of the axial piston rotating group 

and displacement pV .
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2.4.9 Ivantysyn and Ivantysynova Loss Model 

Ivantysyn and Ivantysynova [5] developed a flow loss model that is a 

statistical power model using three primary system variables for pumps: pressure 

across the pump, shaft speed and displacement.  The Ivantysyn and Ivantysynova 

flow loss model is written mathematically as: 

   ∑∑∑      
        

 

 

   

 

   

 

   

 (2.24) 

 

The motivation for this model was to mathematically describe the flow loss as 

a function of system variables without concern of the source of the loss.  With the 

inherent complex nature of flow loss, Ivantysyn and Ivantysynova argue that the 

exact sources of loss and the underlying physics need not be understood to obtain 

accurate loss models.  

The model order is determined by the terms p, q and r, which not only change 

the number of terms within the model, but also change the power of the system 

variables within a term.  Generally, a maximum power of two is initially used then the 

model coefficients are found using a numerical method or technique (ordinary least 

squares linear regression will be used in this work).  In the paper describing this 

model, the authors commented that hydraulic viscosity could be used as a fourth 

system variable in the model.     

2.4.10 Kögl Loss Model 

 The Kögl flow loss model [15] emerged in a similar manner to the Bavendiek 

model.  Both model are based on first-principle loss models and are then simplified 

to a model with lumped terms multiplied by model coefficients. The primary 
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difference between the two is that the Kögl model was developed to describe losses 

with terms based on axial piston pumps where the Bavendiek model was developed 

for bent-axis motors. The component interfaces that Kögl identified as likely sources 

of flow loss are: 1) the cylinder-block to valve-plate interface, 2) the cylinder-block 

bore to piston interface, 3) the piston to slipper interface, and 4) the slipper to 

swash-plate interface.  The model also accounts for losses to control the pump and 

fluid compressibility.  Kögl, like Bavendiek, derived the flow loss model as the sum of 

the losses from individual locations of interaction and then collected like terms.  The 

Kögl flow loss model is written mathematically as:   

                                                  (2.25) 
 
where 

 

    is the laminar flow loss between the piston and cylinder-block due to the 

system pressure delta and is represented mathematically by: 

        
          

  
 (2.26) 

  
    is the laminar flow loss between the piston and cylinder-block due to the 

pressure drop between charge pressure and case pressure and is 

represented mathematically by: 

        
(         )     

  
 (2.27) 

  
    is the laminar flow loss between the piston and cylinder-block due to the 
linear relationship between high pressure and case pressure by: 

        
          

  
 (
   

     
) 

 

(2.28) 

    is the laminar flow loss between the piston and cylinder-block due to the 
squared relationship between high pressure and case pressure by: 
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 (2.29) 
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    is the laminar flow loss between the piston and cylinder-block due to the 
cubic relationship between high pressure and case  pressure by: 

        
          

  
 (
   

     
)
 

 (2.30) 

  
    is the laminar flow loss for the slipper that is linearly dependent  on the 
ratio between actual and rated shaft speed by: 

        
(               )     
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) (2.31) 

  
    is the laminar flow loss for the slipper that has a squared  relationship 
between actual and rated shaft speed by: 
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 (2.32) 

 

    is the laminar flow loss for the slipper that has a cubic relationship 
between actual and rated shaft speed by: 

        
(               )     

  
 (
 

    
)

 

 (2.33) 

  
    is the turbulent flow loss for the valve-plate dependent on high system 
delta pressure by: 

            

 
  √

     

 
 (2.34) 

  
     is the turbulent flow loss for the valve-plate dependent on pressure drop 
from charge pressure to case pressure by: 

              

 
  √

         

 
 (2.35) 

  
     is the fluid compressibility loss related to the dead-volume in the rotating 
group by: 

                          (2.36) 

 

     is the fluid compressibility loss related to the displaced volume of the 
rotating group by: 

                 
   ( )

   (    )
           (2.37) 
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2.4.11 Huhtala Loss Model 

 Huhtala [16] developed a flow loss model for a hydrostatic transmission 

consisting of a single pump and a single motor.  The goal for the model derivation 

was to achieve an “acceptable” accuracy with a “reasonable” amount of data.    

Huhtala’s approach to develop the model was to identify the maximum and minimum 

speeds and pressures at which the pump operated.  Then two curves (or two lines) 

were generated from flow loss measurements acquired at regular pressure intervals 

at the maximum and minimum rated shaft speeds.  Curves were fit to the flow loss – 

pressure data.  These curves were represented by the functions       ( )  and 

      ( )  which were at the maximum and minimum pump shaft speeds, respectively 

(Figure 2.8).   

 A similar procedure was then carried out by generating curve fits of flow loss 

as a function of shaft speed at the maximum and minimum pump pressures.  The 

functions,      ( ) and      ( ), represent the relationship  between flow loss and 

shaft speed at the maximum and minimum pressures, respectively.   
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Figure 2.8. A plot of the polynomial fit to find the “two line” curves for the flow 

loss of an axial piston pump.  The left plot is determining the equations 

      ( ) and       ( ) with the right determining       ( ) and      ( ). 

(From Huhtala [16]). 

 

The pump flow loss in the Huhtala model is the theoretical pump flow less a 

pressure and speed dependent flow loss term        ( ), a viscosity dependent flow 

loss term   ( ) , and a bulk modulus flow loss term   ( ) .  All three terms are 

generated through the methodology described above. Thus the flow loss is 

represented mathematically as: 

   (       ( )    ( )    ( )), (2.38) 

where,  

      is the pressure and speed dependent flow loss, and mathematically is: 

      (     ( )       ( )) ((      ( )        ( )) (
      

         
)  

      ( ))       ( ), 

(2-39) 

     ( ) is the speed dependent flow loss rate at maximum  pressure 
equation, 

      ( ) 

      ( ) 

     ( ) 

     ( ) 
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2.4.12 Baum Loss Model 

 Baum [17] investigated the use of artificial neural networks (ANN) to describe 

efficiency of hydrostatic units.  The Baum ANN model was constructed with an three 

element input layer and a three element hidden layer and connected by synapses 

     ( )  is the speed dependent flow loss rate at minimum pressure  
equation, 
      ( )  is the pressure dependent  flow loss rate at maximum pressure  

equation, 
      ( )  is the pressure dependent  flow loss rate at minimum pressure  

equation, 

      is the maximum shaft speed,  

      is the minimum shaft speed,  

  ( ) is the displacement setting dependent flow losses, and mathematically 
is: 

  ( )  (     ( )       ( )) (
      

         
)       ( ), (2.40) 

  

     ( )  is the displacement dependent  flow loss rate  at maximum  
pressure  equation, 

     ( ) is the displacement fitted flow loss rate at maximum  pressure  
equation, 

      is the maximum pressure in the measured data set,  

       is the minimum pressure in the measured data set,  

  

   ( ) is the viscosity dependent flow losses, and mathematically is: 
 

 

  ( )  (     ( )       ( )) (
      

         
), (2.41) 

  

     ( ) is the pressure dependent flow loss rate at maximum viscosity  

equation, 
     ( )  is the pressure dependent flow loss rate at minimum viscosity  

equation, 

       is the maximum viscosity in the measured data set,  

        is the minimum viscosity in the measured data set,  

   ( ) is the bulk modulus dependent flow losses,  and mathematically is: 

  ( )        (   
    

 
) (

 

 
 

 

    
), and (2.42) 

      is the bulk modulus at the point that is being fitted.  
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and an outer layer connected to the hidden layer with neurons with two outputs of 

volumetric efficiency (Fig. 2.9).  The model was developed for a particular pump 

through a training the ANN with the back-propagation process that varies the 

strength of each of the synapses and compares the output value to the measured 

efficiency. 

 

Figure 2.9. A graphical representation of the Baum flow efficiency.  This neural 

network is constructed with an input layer, a hidden layer and an output layer. 

 

2.4.13 Ortwig Loss Model 

Ortwig [18] developed a flow loss model similar to the Ivantysyn and 

Ivantysynova model by virtue of the fact that both models are calibrated to test data 

without attempting to model particular physical phenomena.  The goal of the model 

was to accurately model the measured data with the least number of model terms as 

possible.  The Ortwig flow loss model was developed starting with a numerical 

expansion similar to the Ivantysyn and Ivantysynova model with the maximum 
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exponents of 1, 1, and 3 for displacement, pump input speed and pressure across 

pump variables respectively; yielding sixteen terms. Model coefficients were 

determined using least squares linear regression across a wide range of pumps and 

motors.    

The Ortwig flow loss model determined the first three model terms using the 

methodology above.  When the model consisting of the first three terms was 

validated, the error between the measured data and modeled flow loss was high at 

low shaft speeds and small swash-plate angle.  To correct this, a fourth term was 

added with exponential terms that become large at these low speed and angle 

conditions. This model term addition yielded an error over the measured operating 

range to less than 10%.  

 (      )                                    
(
  
   

)
  
(
  
  
)
 

(2.43) 

2.4.14 Jeong Loss Model 

Jeong [19] developed a motor loss model similar to the Bavendiek and Kögl 

models.  All three models attempt to capture losses based on a first-principle 

understanding of the closed circuit axial piston machines.  Many of the terms among 

the three models are similar, but the Jeong model had a number of simplifying 

assumptions that resulted in a model with a lower number of terms. 

 In the papers documenting the Jeong model, the flow loss was stated to be 

the sum of seven physical loss terms.  Those terms included: 1) the flow loss 

between the pistons and the cylinder block, 2) the flow loss between the slippers and 

the swash-plate, 3) the flow loss between the valve-plate and the cylinder-block, 4) 

the flow loss related to the valve-plate transition notches, 5) the flow loss due to 
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turbulent filling, 6) the flow loss due to fluid compressibility, and 7) constant flow 

losses. 

However, a number of the model terms from the complete model were 

observed to be perfectly collinear with one another.  For example, three interfaces 

within the model were observed to have a collinear laminar flow loss term: 1) the 

pistons and the cylinder block interface, 2) the slipper and the swash-plate interface, 

3) the valve-plate and the cylinder-block interface.  These terms were grouped into a 

single laminar flow loss term.  Based on this methodology of grouping similar terms, 

the final Jeong flow loss model consisted of model terms that represented: 1) 

laminar flow loss, 2) Couette flow from sliding components 3) turbulent loss due to 

the valve plate transition notches 4) turbulent flow loss due to rotating group filling, 

5) fluid compressibility, and 6) constant leakage. 

        
     

 
              √

     

 
    

   

     
                  

 
(2.44) 

 

2.5 Flow Loss Model Discussion 

 In this section, the models introduced above will be further discussed and 

compared with one another.  The model discussion will be organized according to 

within the three model classes, physical, analytical and, numerical, which were 

introduced above.      

 The physical model class can be further divided into two sub-classes:  1) 

process-based models and 2) component interaction-based models.  This division 

clarifies the division between the models that calculate losses with respect to the 
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complete pump (process-based) versus the models explain loss due to component 

interactions within the pump (component interaction-based).    

2.5.1 Physical Process-Based Flow Models 

 All of the early physical flow models generally built successively on new 

knowledge and described more variability in flow loss. Below is a summary of the 

type of flow loss terms associated with each of the models (Table 2.2).      

Table 2.2. Summary of the physical process based flow models.  The dot 

indicates the presence of that type of term within the flow loss model. 

Loss Source Wilson Schlösser Olsson Pacey, Turnquist, and Clark 

Laminar ● ● ● ● 

Turbulent  ● ●  

Constant ●    

Viscous    ● 

Bulk Modulus 
(Dead Volume) 

  ●  

Bulk Modulus 
(Disp. Volume) 

  ●  

 

Wilson originally postulated that most of the flow losses within hydraulic 

pumps and motors were laminar in nature with remainder being constant.  He made 

this assumption because of the small clearances between moving components and 

the resulting small Reynolds number.  Building on Wilson’s original model, Schlösser 

proposed that that some portion of the flow losses in a pump or motor are turbulent 

in nature.   

Olsson used the Schlösser flow loss model as a starting point, and then 

added two additional terms to account for losses due to fluid compression in the 

dead volume and the displacement volume of the pump/motor.  Pacey, Turnquist 

and Clark expanded on the original Wilson model by removing the constant loss 

term and adding a viscous loss term that is dependent only on viscosity. 
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2.5.2 Physical Component Interaction-Based Flow Loss Models 

 The component interaction-based flow loss models differ from the earlier flow 

loss model in that they model the individual sources of loss within specific types of 

piston machines.  For example, the Bavendiek, Kögl, and Jeong models 

approximated the losses in a bent axis motor, a axial piston pump and an axial 

piston motor, respectively.  Jeong did not cite either Kögl or Bavendiek in the articles 

documenting his model development, but instead based its development primarily on 

the sum of loss equations described by Ivantysyn and Ivantysynova [5]. 

 Only the piston to cylinder-block interface is common between all three flow 

loss models.  From there, there is some divergence, but typically, the remaining 

terms that model laminar or turbulent leakage paths. 

Table 2.3. Summary of the physical, component interaction-based flow loss 

sources. The dot indicates that the component interface is included within the 

derivation of the flow loss model. 

Loss Source Bavendiek Kögl Jeong 

Cylinder Block to Swash-Block Interface ●   

Cylinder-Block to Valve-Plate Interface  ● ● 

Cylinder Block to Piston Interface ● ● ● 

Piston to Slipper Interface  ● ● 

Piston to Piston Rod Interface ●   

Piston-Rod Drive Flange ●   

Shaft Bearings ●   

Slipper to Swash-Plate Interface  ●  

Shaft Seal ●   

Control Losses  ●  

Cylinder-Block bore to Valve-Plate 
Kidney 

  ● 

Valve-Plate pre-compression notches   ● 
 

Bavendiek evaluated the performance of his flow loss model on four different 

bent-axis motors (Hydromatik A6V 164 cm3/rev and 250 cm3/rev, a Volvo V11 130 

cm3/rev and a Linde BMV 260 cm3/rev).  Only 27 flow loss measurements were used 
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to calibrate the coefficient values for each of the four motors.  All four of the motors’ 

flow loss models were calibrated in both pumping and motoring modes.  Across the 

four devices, model performance in explaining flow loss varied with the following 

standard error of each of the motors: 1) 0.708 L/min. for the Hydromatik A6V 164 

cm3/rev motor, 2) 0.643 L/min. for the Hydromatik A6V 250 cm3/rev motor, 3) 1.110 

L/min. for the Volvo V11 130 cm3/rev motor and 4) 1.07 L/min. for the Linde BMV 

260 cm3/rev motor. 

The Kögl model was evaluated using a 71 cm3/rev open-circuit axial-piston 

pump (model A4VSO, Rexroth, Lohr am Main, Germany).    Twenty-seven data 

points were used to calibrate the flow loss models across all combinations of three 

pressures, three shaft speeds, three swash-plate angles.  With the full flow loss 

model, the standard error of calibration of flow loss was 0.624 L/min with a maximum 

pump output flow of 106.5 L/min.  

After calibrating the Jeong flow loss model with a least squares regression 

method, the model performance had a maximum efficiency error of 2.33% and an 

average efficiency error of 0.3% (Figure 2.10). Compared to the previous research, 

in which authors used very small sets of measurement data, Jeong used 311 data 

points to determine the parameter values within the flow loss model.  The test unit 

for this model was a 45 cm3/rev open-circuit axial-piston unit (model A10VM, 

Rexroth Lohr am Main, Germany).  
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Figure 2.10. Surface plot of the volumetric efficiency estimation error as a 

function of pressure and speed for an axial piston motor (from Jeong [19]). 

 

2.5.3 Analytical Flow Loss Models 

 The analytical flow loss models described measured data without being 

constrained to directly model physical processes.  The terms within the models were 

similar to previously proposed physical models, but non-linear terms were also 

included in the loss models (Table 2.4). 

Table 2.4. Summary of the analytical flow loss models. 

Author Flow Loss Source 

Zarotti and Nevegna Five terms, tailored to piston pumps 

Rydberg Five terms 

Dorey 1) Laminar, 2) Non-linear Bulk Modulus 
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 The Zarotti and Nevegna model was the first flow loss model to stray from the 

Wilson’s approach of constructing a flow loss model as a sum of physical 

phenomena losses.  In contrast, the Zarotti and Nevegna model used terms that 

best explained the test data.  In addition, the model was developed to best describe 

variable displacement axial piston units compared to other models that were 

developed to fit many different types of units. The primary finding of Zarotti and 

Nevegna’s work is that models with non-linear relationships to system variables 

calibrate to loss data better than models with linear relationships. 

 The Rydberg model was inspired by the Wilson and Olsson Models.  The first 

two terms described the laminar leakage flows, and the final two terms explained the 

losses due to fluid compression.  A goal of a ±2% maximum efficiency error over 

eight flow loss measurements (four speeds and two pressures) was set for the 

study.  The measurements came from the technical literature for a 70 cc axial piston 

pump (model Series 22, Sauer-Sundstrand, Ames, Iowa).  The Rydberg model had 

a maximum calibration error of 0.5% for volumetric efficiency.  This accuracy was a 

large improvement over Wilson’s model with all parameters found using linear 

regression. 

 The Dorey flow model was developed as a direct improvement of the original 

terms of the Wilson model.  The improvement comes from replacing the constant 

term of the Wilson model with a function.  This function added a non-linear 

relationship between pressure and speed to the model. Examining a number of 

different pump designs, Dorey concluded that this non-linear coefficient modeling 

approach increased the accuracy of the model compared to Wilson.  This 
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comparison was presented through a visual comparison of flow loss for each of the 

measured data points.  A numerical comparison of flow loss error was not 

presented.  

2.5.4 Numerical Flow Loss Models 

 The Ivantysyn and Ivantysynova flow loss model, as implemented in the 

Polymod software application (Purdue University, West Lafayette, IN), was 

developed to provide a flow loss model that modeled the measured data as closely 

as possible (Table 2.5).  As a departure from many other authors, the model did not 

employ any physical process, but instead took a statistical power modeling 

approach.  The original work cited did not explicitly compare model accuracy to other 

models, but others have and this work will do so as well.  One noted comparison 

was graphically depicted by Kohmäscher et. al. [7].  Their findings suggested that 

Polymod was quite accurate throughout the operating range, but had more error 

than the Huhtala model at low pump displacements. 

Table 2.5. Summary of the numerical flow loss models. 

Author Flow Loss Sources 

Ivantysyn, Ivantysynova Statistical Power Model (from 27 to 125 terms) 

Huhtala 
1) Power dependent , 2) Viscosity dependent , 3) 
Bulk Modulus dependent  

Baum Three Layer Neural Network 

Ortwig 
Four Terms (1-3 through expansion; 4 to fit low 
shaft speeds) 

 
 The Huhtala flow loss models were developed to estimate the error at the 

limits of the operating range and interpolate data within the operating range.  This 

model was compared to the Wilson models, and two variations of the Dorey models.   
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The Baum model utilized artificial neural networks to estimate the flow losses 

for a pump or motor.  The method relies heavily on having a comprehensive data set 

to “teach” the loss behavior to the model.  Baum attempted no direct comparison to 

any other flow loss models.  However, Kohmäscher et. al. [7] found that the Baum 

model explained variation in flow loss data well, but noted that tuning of the network 

behavior was quite labor intensive.  Additionally, just outside of the bounds of the 

calibration data set, unexpected model output results were observed. 

 The Ortwig flow loss model started using a power model and reduced it to 

terms that were consistently dominant across several pumps.  The error between the 

measured and modeled flow loss was less than +10% across the entire operating 

range captured with 180 operating points.      

2.6 CONCLUSIONS 

 In conclusion, a wide variety of approaches have been taken to model flow 

losses in axial piston pumps.  Many of the models have attempted to explain 

variation in measured flow loss data with terms based on physical loss terms, terms 

assembled only to fit the data set and a blend of the two.  Generally, the number of 

terms has increased over time as the understanding of flow losses in pumps has 

increased. 

Many of the models present comparisons to previous author’s models and 

generally show an improvement with the newly developed model.  However, the 

approaches for calibrating the models and the differing data sets used for the 

calibrations make it difficult to compare model performance across the available 
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models.  The approach in Chapter three provides a clear framework for flow loss 

model comparison. 
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Notation and List of Variables 

a    Pressure dependent constant within the laminar leakage  

coefficient 

a0    Flow dependent coefficient 

a1    Displacement independent compressibility coefficient (Rydberg  

model) 

a2    Displacement dependent compressibility coefficient (Rydberg  

model) 

a3   Laminar flow coefficient (Rydberg model) 

a4    Analytical loss coefficient (best fit for axial piston pumps)  

(Rydberg model)  

          Cross sectional area of a piston 

b:    pressure and flow dependent constant within the laminar  

leakage coefficient 

                Loss coefficients (Zarotti and Nevegna model) 
      Displacement independent compressibility coefficient (Olsson  

model) 

      Displacement dependent compressibility coefficient (Olsson  

model) 

         Constant flow loss term 
      Viscous flow coefficient (Pacey, Turquist and Clark model) 

     Laminar flow loss coefficient 
  
     Non-linear laminar flow loss coefficient (Dorey) 

       Turbulent flow loss coefficient 
       Valve plate notch loss coefficient (Jeong model) 

        Couette flow coefficient (Jeong model) 
     Bulk Modulus loss coefficient (Jeong model) 

        Laminar flow loss coefficient (Jeong model) 

          Diameter of a piston 

         Displacement dependent  polynomial fitted flow loss rate at  

maximum  pressure (Huhtala model) 

         Displacement dependent  polynomial fitted flow loss rate at  

maximum pressure (Huhtala model) 

      Displacement setting dependent flow losses (Huhtala model) 
         Pressure dependent polynomial fitted flow loss rate at maximum  

Viscosity (Huhtala model) 

          Pressure dependent polynomial fitted flow loss rate at minimum  

Viscosity (Huhtala model) 

         Stroke height of the rotating group of an axial piston pump 
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    :    Loss coefficient (Ivantysyn and Ivantysynova model) 

        :   Loss Coefficients (Kögl model) 

       Maximum operating speed of an axial piston pump 

       Minimum operating speed of an axial piston pump 

        Pump input shaft speed 

       Atmospheric Pressure 

        Pressure in the pump case 

      Pressure on the pump outlet 

      Pressure at the pump inlet 

        Maximum pressure in the measured data set (Huhtala model) 

        Minimum pressure in the measured data set (Huhtala model) 

        Pressure rise from the pump inlet to outlet 

         Average change in flow (from ISO 8426) 

     :  Loss Coefficients: (Ortwig) 

      Total Flow Loss 
         Compressibility flow loss coefficient (Bavendiek) 

          Flow loss coefficients (Bavendiek) 

      Constant flow loss (Jeong model) 
          Pressure dependent polynomial fitted flow loss rate at maximum  

Pressure (Huhtala model) 
          Pressure dependent polynomial fitted flow loss rate at minimum  

Pressure (Huhtala model) 

         Speed dependent polynomial fitted flow loss rate at 
   maximum pressure (Huhtala model) 

        Speed dependent  polynomial fitted flow loss rate at minimum 
pressure(Huhtala model) 

        Pressure and speed dependent flow loss (Huhtala model) 

          Piston pitch radius in an axial piston pump 

       Maximum displacement of an axial piston pump 

     Ideal pump displacement 

     Ratio between the dead volume of the axial piston rotating  

group and displacement   

z   Number of pistons in a pump 

    Swash angle of an axial piston pump 

        Bulk modulus at fitting point (Huhtala model) 

        Bulk modulus of the fluid 

      Coefficient of displacement 

 :    Hydraulic fluid viscosity 
         Maximum viscosity in the measured data set (Huhtala model) 
       Minimum viscosity in the measured data set (Huhtala model) 
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 :    Hydraulic fluid density 
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CHAPTER 3. CALIBRATION AND CROSS-VALIDATION OF 

FLOW LOSS MODELS OF A HYDROSTATIC PUMP 
 

A paper to be submitted to the American Society of Mechanical Engineers 

Samuel J. Hall, Brian L. Steward 

Abstract 

Environmental legislation and rising fuel prices have increased the attention 

dedicated to increasing efficiency by designers of off highway vehicles and their 

components.  This paper discusses a methodology for comparing flow loss models 

of closed circuit axial piston pumps, which are common on off-highway vehicle 

propulsion systems.  Having the best mathematical representation of the flow losses 

in the pump will aid the designer in understanding the impact of flow losses on 

overall vehicle efficiency.  The methodology consists of four steps to compare the 

flow loss models including: 1) calibration of complete models, 2) model term 

reduction through stepwise regression, 3) model term reduction by reducing 

multicollinearity, and 4) a leave one out cross validation (LOOCV).  The Ivantysyn 

and Ivantysynova model clearly has the best performance in explaining the 

variability in the flow loss data set.  However, in performing the LOOCV, there does 

not appear to be a significant difference between the Zarotti and Nevegna, Ivantysyn 

and Ivantysynova and the Jeong models in their performance to estimate the 

measured flow loss based on measured system variables not used for model 

calibration 

Keywords: hydrostatic pump, linear regression, stepwise regression, leave one out 

cross validation, multicollinearity  
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3.1 Introduction 

Legislation in the United States has dictated that the emissions of off-highway 

vehicles utilizing diesel engines must be reduced.  New pollution controls will reduce 

the amount of NOx and particulates emitted from diesel engines.  The EPA has 

estimated that by the year 2030 these reductions will prevent 12,000 premature 

deaths, save 8,900 hospitalizations and one million lost work days annually [1]. 

As a result of these regulations, off-highway machine designers will be 

challenged by increased costs and space claim for engines.  To this end, a large 

manufacturer of off-highway vehicles has stated that prices of their vehicles will rise 

by 12% on average due to equipment needed to comply with these regulations [2].     

Hydraulic systems are common on these machines for power transmission 

and understanding the losses within the components is critical.  A study from the 

United States Department of energy has estimated that the average hydraulic 

system is only 22% efficient.  It is estimated that nearly a third of the inefficiency can 

be directly attributed to the components within the system, and the remainder 

attributed to the architecture of the hydraulic system [3]. This inefficiency further 

increases the need for accurate mathematical loss models of machine components 

during the design process.  

One component that is common in industry is an axial piston pump that 

provides hydraulic fluid flow to the system.  Not all of the flow that is swept by the 

rotating group is delivered to the outlet, the difference between the two is referred to 

as flow loss.  Understanding and mathematically modeling the flow losses in these 
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pumps has been an area of study for over 60 years.  The models of flow loss from 

the literature fall generally within one of three categories: 

1) Physical flow loss models, 

2) Numerical flow loss models, or 

3) Analytical flow loss models.   

Physical flow loss models characterize flow loss by utilizing loss terms that 

model physical interactions or processes within a pump.  Common terms among 

these models are laminar, turbulent and compressible flows.  Many of the models 

within this type use the Wilson model [4] and build on additional terms.   

Numerical loss models characterize losses using terms that have little 

physical meaning, but have been shown to fit data sets well.  Of these, the Ivantysyn 

and Ivantysynova model [5] is well recognized in the industry. 

Analytical flow loss models use terms from both physical and numerical 

models to fit data.  Table 3.1 is a list of notable loss models with the author, year 

they were published, and their model type [4] – [17]. 

 The models developed in the literature all attempt to explain variation in the 

flow loss data, but with sets of model terms that vary in their composition and 

number.  Some were constructed to only explain variability in measured data sets 

and others to attempt to quantify the amount of one type of loss or another.  

However, given the structure of some of the models, statistical problems may arise 

such as collinear terms or overfitting.  
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Table 3.1. Summary of the steady state loss models for hydraulic pumps 

including the number of variables within the models. 

Author Year Model Type 
Number of 

Terms 

Wilson 1948 Physical 2 

Schlösser 1961 Physical 2 

Olsson 1973 Physical 4 

Pacey, Turnquist and Clark 1979 Physical 2 

Zarotti and Nevegna 1981 Analytical 5 

Rydberg 1983 Analytical 5 

Bavendiek 1987 Physical 11 

Dorey 1988 Analytical 2 

Ivantysyn, Ivantysynova 1993 Numerical 27* 

Kögl 1995 Physical 11** 

Huhtala 1997 Numerical 12 

Baum 2001 Numerical 3 layers 

Ortwig 2002 Numerical 3 

Jeong 2006 Physical 6 

* The Ivantysyn and Ivantysynova model can vary in the number of model terms 

based on the maximum exponent selected. 

** Huhtala model coefficients based on test data at the extremes of the operating 

range, not based on the complete data set. 

The work in this chapter investigates these issues with five selected flow loss 

models from the literature.  The specific objectives of this study were to: 

 Determine how well each of the full models can explain the variability in a 

measured flow loss data set. 

 Determine if the models can be reduced by either stepwise cross validation or 

multicollinearity reduction without loss of performance 

 Determine how well each of the full and reduced models generalizes the flow 

loss data set through cross validation. 
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3.2 Methods 

Five of the above listed flow loss models were compared.  The models were 

chosen to show the different types of models and see how each of them performs in 

estimating flow losses in a dataset from a 45 cm3/rev closed circuit, axial piston 

pump (series H1, Danfoss Power Solutions. Ames, IA).  The models included in this 

study were the three physical loss models from Wilson [4], Schlösser [6], and Jeong 

[17]; an analytical loss model from Zarotti and Nevegna [9], and the numerical model 

from Ivantysyn and Ivantysynova [5]. 

3.2.1. Overview of the Flow Loss Models 

The Wilson flow loss model [4] is the earliest physical flow loss model, and 

many of the early flow loss models use this model as a starting point. The model 

consists of two loss terms: a laminar flow loss term and a constant flow loss term.  

The flow loss is represented mathematically as: 

     
       

   
           (3.1) 

The second flow loss model was developed by Schlösser [6].  Schlösser 

started with the laminar flow loss term from the Wilson model, but hypothesized that 

flow losses are better characterized using a turbulent loss term instead of a constant 

flow loss term.  The flow loss is represented mathematically as: 

     
       

   
      

 
 √
      

 
 (3.2) 

The Zarotti and Nevegna flow loss model [9] was developed principally to fit 

loss model data.  Among the terms, the final two terms resemble a fluid 
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compressibility term and a power dependent term.  The flow loss is represented 

mathematically as: 

                  
         

      

 
                              (3.3) 

Ivantysyn and Ivantysynova [5] proposed a power model relating flow losses 

to pump displacement, input speed and the pressure increase across the pump.  

Additionally, Ivantysyn and Ivantysynova suggested that a viscosity-related set of 

terms could be added to span a range of operating temperatures.  This set of 

viscosity dependent terms are added to the model for this study (p=q=r=2, s=1).  

The flow loss is represented mathematically as: 

   ∑∑∑∑       
        

   
 

   

 

   

 

   

 

   

 (3.4) 

Jeong [17] constructed a flow loss model based on the component 

interactions within a hydrostatic machine.  Through inspection, many of the 

interfaces had terms that could not be mathematically differentiated from one 

another.  These terms were then consolidated a reduced number of term included in 

the flow loss model.  The terms are: 1) a laminar flow loss, 2) a Couette flow from 

sliding components 3) a turbulent loss term from the valve plate transition notches 4) 

A turbulent loss term due to rotating group filling, 5) a fluid compressibility term and 

6) a constant leakage term.  The flow loss is represented mathematically as: 

        
     

 
              √

     

 
    

   

     
                  (3.5) 
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  Within the flow loss models, system variables such as the pressure rise 

across the pump,      , the input speed of the pump       can be provided from 

measurements directly.  However, in many of the models, the dynamic viscosity of 

the fluid,  , is needed as well.  In this work, a model for viscosity was used to 

estimate viscosity as a function of fluid temperature.  This relationship is represented 

mathematically as: 

  (     )     
       (3.6) 

where  

   is the oil density at a reference condition  

   is the rate of change of oil density with temperature  

     is the reference kinematic viscosity  

 k is the kinematic viscosity constant  
 

The model coefficients were estimated from fluid product data (Shell Tellus ISO VG 

46).   

3.2.2 Statistics Background 

 

To determine the coefficients within the flow loss models, a common method 

was used across all of the models.  Since the coefficients were linearly related to the 

terms within the models, linear regression was a suitable method of determining the 

coefficients within the models.  Specifically, ordinary least squares regression [20] is 

a common method that minimizes the sum of the squared error between the model 

and the measured data set. 

The structure of a linear model is the measured data set y, is equal to the 

coefficient(s) that the regression will determine  , multiplied by the independent 

variables, X, plus the error  . 
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       (3.7) 

The OLS regression method minimizes the sum of squared residuals to determine 

the value of the estimated model coefficient  ̂:     

 ̂  (   )      (3.8) 

The metric for comparison of the models is the Root Mean Squared Error 

(RMSE).  The RMSE was calculated by determining the square root of the sum of 

the difference between the modeled,  ̂, and measured values, y, of the independent 

variable divided by the total number of data points, n, shown as: 

     √
∑ ( ̂   )  
   

 
 (3.9) 

Stepwise linear regression uses the Bayesian information criterion to 

determine which components of the model best describe the data.  This method is 

accomplished by progressively adding terms, calculating the criterion and 

determining if there is an optimum value of the BIC for a sub model [19].  The BIC is 

calculated with the maximized value of the likelihood function of the model,  ̂, the 

number of free terms in the model,  , and the number of data points, n written as: 

        ( ̂)      ( ) (3.10) 

 The BIC criterion decreases as the number of terms increases during 

stepwise regression (Figure 3.1).  The example in figure 3.1 is the BIC from a 

stepwise regression procedure for the Ivantysyn and Ivantysynova model.  Starting 

with zero terms, the BIC was calculated and recalculated as the number of model 
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terms increased. This process continued until the stopping condition of the method 

was reached at 25 of the 54 terms.  The minimum value of the BIC occurred at 15 

terms signified with the vertical line.  This result is interpreted as the sub model that 

best represents the data with the minimum number of terms.   

 

Figure 3.1. BIC criterion as a function of number of model terms during 

stepwise regression. 

3.2.3 Experimental Methodology. 

The methodology for comparing the performance steady-state flow loss 

models of hydraulic, axial piston pumps was a four-step process.  First, the models 

were calibrated to determine how well each of the flow loss models explains the 

variability in the measured data.  This calibration was accomplished by constructing 

a common pump flow model framework that into which all of the various flow models 

were placed.  This framework provides a data set for which a linear regression 

obtained flow loss model terms. 

The second step was to determine if the full pump loss model can be reduced 

and still explain the variability in the flow loss data set.  This reduction was 

accomplished using stepwise regression and Bayesian Information Criterion (BIC).  

Number of Model Terms 

Parameters 
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This method determines the best trade-off between model complexity and goodness 

of fit.  Additionally, over fitting is also reduced due to the most significant terms being 

added first.  

The third step is a reduction of the flow loss models by removing 

multicollinearity within them.  The method consists of examining model terms that 

are collinear with one another and then eliminating the term that is more likely to 

have a coefficient that is equal to zero.  A comparison of the calibration error will 

also be included.  

The fourth step will use leave one out cross validation (LOOCV) to compare 

the complete and reduced models.  The LOOCV of both the complete models and 

the reduced models will give insight to if both models were over-fitting the data and 

how well each of the models characterizes the pump losses. 

3.2.4 Flow Loss Determination from Measured Data 

The basis for calibrating a flow loss model is accurate flow data.  The data 

used for this study was collected based on the standard pump test found in the 

international standard for testing steady state performance of pumps and motors, 

ISO4409 [20] .  All of the instruments were in accordance with accuracy class “A” of 

the ISO standard.  Data for the test was acquired from an 45 cm3/rev closed-circuit 

axial piston pump test (Series H1, Danfoss, Ames, IA; Figure 3.2).   

Flow loss measurements were acquired across the variation of four 

experimental factors with corresponding numbers of levels.  These factors and levels 

included two temperatures, four displacement settings, five input shaft speeds and 

six differential pressures resulting in a dataset with a possible two hundred and forty 
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data points (Table 3.2).  However, four flow loss measurements could not be 

collected at both temperatures, the slowest shaft speed, and the lowest 

displacement with the two highest pressures, reducing the data set to flow loss 

measurements at 236 combinations of experimental factors.   

 
Figure 3.2. A 45 cm3/rev closed circuit, axial piston pump during testing. 

 
Table 3.2. Pump test stand levels of experimental treatments to generate the 

loss data set.  

Pressure 

(Pa) 

Speed 

(Rad/s) 

Displacement 

(%) 

Temperature 

(˚C) 

1e6 52.4 20 50 

5e6 104.7 40 80 

1e7 209.4 80  

2e7 314.2 100  

3e7 366.5   

4e7    

 

In the test circuit, a mixture of charge flow and return flow,       , enters the 

pump inlet (Figure 3.3). The flow then enters the rotating group, cross-port flow 

losses,       , leak back to the inlet, and case drain flow losses,       , flow out to the 
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pump case.  The flow from the pump output,        , flows through the relief valve 

before being measured, filtered, cooled and then recirculated to the inlet.   

 
Figure 3.3. Schematic of the pump flow test rig for which the flow loss data is 

taken from. 

To determine the pump flow loss, both the ideal flow, and the flow out of the 

pump outlet must be known.  The flow out of the outlet can be determined based on 

the flow measured downstream of the relief valve and the effective flow loss due to 

compressibility of the hydraulic fluid,        in the test rig [5] and is shown as:   

                     (3.11) 

where  

            
     

                 
 (3.12) 

    is the isothermal compressibility coefficient of fluid,  
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    is the volumetric expansion coefficient of fluid,  

    is the reference bulk modulus of the fluid.  

      is the pressure rise from the pump inlet to the pump outlet  

The bulk modulus flow term is used to describe how the volumetric flow rate 

changes across the relief valve, and yet the mass flow rate coming into and going 

out of the relief valve are equal.   

The total flow loss out of the pump,   , is the sum of the internal flow loss, 

      , and the external flow loss,        and the compressibility flow.  It is also equal 

to is defined then as the difference between the ideal flow out of the pump and the 

flow out of the pump outlet mathematically shown as: 

                                       (3.13) 

The ideal flow is defined as the product of ideal displacement multiplied by 

the measured input speed.  The ideal displacement for this study was calculated 

using the Toet method [21], using data points at an array of speeds and pressures 

with the pump servo piston mechanically locked in place. 

The Toet method for calculating ideal pump displacement utilizes a similar 

method of multiple interpolations, but reverses the order to determine the ideal 

displacement.  The first step of Toet’s method is to regress the flow rate onto shaft 

speed for each of different test pressure difference across the pump outlet and inlet 

and the test temperature.  The slope of each of these regression lines from the first 

step are then regressed against the measured pressure difference across the pump 

(Fig. 3.4).  The ideal displacement is set to be the y-intercept of the regression line 

from the second step. 
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Figure 3.4. Graphical depiction of the Toet method for calculating Ideal 

displacement. 

 

3.2.5 Calibration of Flow Loss Models using Linear Regression 

The comparison of loss models starts with the calibration of a model to the 

measured data set.  For this study, each of the models was calibrated to the 

complete data set. Then, the models were compared based on their performance in 

explaining the variability in the loss data. The performance metric used was the Root 

Mean Squared Error (RMSE) of each of the models with the given data set. 

All five of the models have non-linear terms with respect to the system 

parameters of the pump under test.  However, the models either were already or 

were mathematically manipulated so that they were linear in their coefficients.  This 

approach enabled the use of ordinary least squares (OLS) linear regression [18], as 

a valid method of determining coefficients for a given model.  The regression was 

performed using the “Fit Model” functionality with the commercial statistical package 

JMP Pro® (JMP Pro V10, Statistical Analysis System Institute; Cary, North 

Carolina). 
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3.2.6 Stepwise Regression 

 The second portion of the model comparison was to examine the models and 

determine if they over-fit the data.  Stepwise regression analysis was employed to 

determine the set of model terms that described the most variation with the minimum 

number of terms.  Stepwise regression was carried out using forward selection and 

the Bayesian Information Criterion (BIC).  JMP Pro®  was also used for this task. 

3.2.7 Reduction of Flow Loss Models due to Multicollinearity 

An issue that can arise in statistical modeling is that two or more model terms 

can be linearly related.  This correlation between terms can have a detrimental effect 

on model performance.  Strong interactions between model terms that can have 

significant influence on model coefficient values with very little numerical difference 

between input data.  These issues are commonly referred to in literature as 

multicollinearity [18]. 

An assumption that is made when performing OLS linear regression is that 

none of the model terms within the model are “perfectly collinear”; meaning that 

there is not an exact linear relationship between model terms. If perfectly collinear 

pairs do exist, the rank of the variable matrix X (from equation 3.9) will be less than 

the number of observations plus one, and the matrix will not be invertible.  This 

singularity will cause the least squares calculation to fail. 

Perfect collinearity is uncommon in measured data; however, mathematical 

models can have terms that are mathematically identical, but may be based on 

understood sources.  An example of this can be found in the unreduced Jeong flow 

loss model.  The laminar flow loss terms representing the laminar flow between the 
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slippers and the swash plate and the laminar flow between the cylinder-block and 

valve-plate are both represented by the pressure increase across the rotating group 

Δpsys, divided by the fluid viscosity μ multiplied by the coefficient. The final version of 

the Jeong flow loss model combines these model terms, and the model does not 

attempt to distinguish between the two sources. 

High multicollinearity is more prevalent in statistical modeling and is 

characterized by highly-correlated model variables [22]. In this case, even though 

the XTX matrix from equation 3.8 is invertible, the matrix will be ill-conditioned and 

thus can have numerical problems, such as small differences in the data set leading 

to large differences in model coefficient values and model coefficient confidence 

intervals. 

 Multicollinearity can be detected by a number of different methods.  The 

following are common methods of detecting multicollinearity: 1) the p-value of F-test 

rejecting the null hypothesis that all of the model coefficients are zero for the 

complete model is low, but few to none of the individuals coefficients have a low p-

value from the associated t-test, 2) a variance inflation factor (VIF) of >10 of model 

coefficients, and 3) the correlation coefficient between two model terms is greater 

than a set value (0.8 to 0.9 are typical) [23].   

3.2.7.1 P-Value Examination to Determine Multicollinearity  

 The first method of examining for multicollinearity uses the p-value for the 

model F-test and that of the t-test for the individual model terms to determine if 

multicollinearity may be present.  The p-value is the probability that the null 

hypothesis for a linear model is incorrect; the null hypothesis is that all of the model 
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coefficients are equal to zero. Another way of stating it is the probability that at least 

one of the model terms explains some variability in the dependent data set. 

 In the case of models that have independent variables that have high levels of 

collinearity, the p value for the complete model is low, and many of the model 

coefficient p-values are high.  This should be interpreted to mean that the complete 

model has model coefficients that are non-zero, but each of the model coefficients 

cannot be determined to be non-zero.  This suggests that the model term either is 

not significant or can be compensated with by another model term. 

3.2.7.2 Multicollinearity Determination using VIF  

 The variance inflation factor (VIF) is an aid in quantifying the amount of 

multicollinearity that may be present in a linear model.  The VIF of a regression 

coefficient measures how much the variance of that term has been increased due to 

collinearity with any and all of the other coefficients within the model. 

  The VIF of a model term can be expressed as the inverse of the one minus 

the square of the standard error of   
   of all of the other independent terms in the 

model when linearly regressed to a given term (Eq. 3.14); The goal being to 

determine if the model term is correlated with the remaining terms in the full model. 

    
 

(    
 )

 (3.14) 

 

That is, the VIF indicates how well can a linear model be constructed of every 

model term less the one model term that was left out.   A down side of the VIF is that 

it is a scalar value and only indicates that multicollinearity is present. The VIF does 

not direct one to the set of other model terms to which a particular term may be 
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collinear.  Thresholds of VIF that indicate if multicollinearity may be present vary in 

the literature between 5 [18] and 10 [22]. 

3.2.7.3 Multicollinearity Determination using Model Term Correlation 
Coefficients 
 
 For linear model terms that exhibit high levels of collinearity, one method of 

improving the model is to reduce the number of model coefficients.  This method 

consist of two steps: 1) determining variable pairs that are highly linearly correlated 

and 2) removing one of each pair of correlated variables.  This methodology will 

remove model term pairs that are highly correlated and reduce the possibility of over 

fitting the data set. 

 To determine the pairs of variables that are highly linearly correlated, the 

correlation coefficients between each of the variables is calculated for all possible 

model term pairs [24].  The Pearson correlation coefficient is a measure of linear 

correlation between two model terms in a model.  An example of this is shown in 

Table 3.2 which is taken from the Zarotti and Nevegna model discussed later. Since 

the matrix is symmetric by nature, so only one half of the correlation matrix is 

needed and the other half is blacked out.  Additionally, the 1:1 relationship between 

a model term is blacked out to only consider the model term inter-relationships. 

Table 3.3. Pearson correlation matrix of independent variables in the full 
Zarotti and Nevegna model. 

                 

   1.0000 0.9668 0.7138 0.7618 0.5106 

   0.9668 1.0000 0.7403 0.7401 0.4978 

   0.7138 0.7403 1.0000 0.9647 0.7968 

    0.7618 0.7401 0.9647 1.0000 0.8111 

   0.5106 0.4978 0.7968 0.8111 1.0000 
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Many statistical software packages also display a scatter plot matrix of the 

correlation matrix as is shown in Figure 3.5.  The red lines are the bivariate normal 

density ellipse of a given percentage.  That is, 95% of the data points are within the 

ellipse.  This aids in visualizing the relationships between variables.  For instance, 

C1 and C2 have a correlation coefficient of 0.9668 and appear to highly linearly 

correlated while C1 and C5 are not and have a high correlation coefficient of 0.5106.  

 

Figure 3.5. Example of a scatter-plot matrix array for all of the model terms 
within the complete Zarotti and Nevegna flow loss model. 

 
 Once the correlation coefficients are determined, and if the correlation 

coefficients are large enough, the model should be reduced. To systematically 
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approach this task, all of the correlation coefficients above a threshold should be 

listed and model coefficient that has the largest p-value from the initial calibration 

should be dropped.  That is, the variable of the two that is most likely to be equal to 

zero of the two model terms should be dropped. The threshold of the 

correlation coefficient should be between 0.8 and 0.9 [23]. 

3.2.8 K-Fold Cross Validation  

 Cross-validation is a statistical method of determining how well a model 

characterizes a data set that is independent of the calibration data set.  This method 

can help to determine which of multiple models may have the best predictive 

performance.  Cross-validation may also aid in determining if a particular model is 

over-fitting a data set. 

 In academia and industry, resources are limited, limiting the amount of data 

available to a researcher or engineer.  This limited amount of data drives one to use 

a model cross validation methods.  The k-fold cross validation, uses a single data 

set, but divides it up the complete data set into groups called folds.  These folds are 

then divided into a teaching data set to which the model is calibrated to and the 

validation data set to which the model output is compared.  This process is repeated 

for all of the folds, and the root mean squared error (RMSE) between the model 

output and the measured output is calculated.  

  An illustration of k-fold cross validation is illustrated in table 3.4.  The Method 

would start by calibrating a model to k-folds 2 through 4 and then calculate the errors 

of estimation the data in k-fold 1.  The process is then repeated for all four folds and 

the RMSE of each of the points is then calculated.    
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Table 3.4: Illustration of a k-fold cross validation. 

K-Fold 1 K-Fold 2 K-Fold 3 K-Fold 4 

Data 
1 

Data 
2 

Data 
3 

Data 
4 

Data 
5 

Data 
6 

Data 
7 

Data 
8 

Data 
9 

Data 
10 

Data 
11 

Data 
12 

 

  The guidance on the number of folds varies among authors with typical 

guidance being 10 [25] or equal to the number of samples.  The method that uses 

the same number of folds as number of observations is commonly referred to as 

leave-one-out cross validation (LOOCV).  LOOCV is computationally the most 

expensive since the number of regressions is equal to the number of observations, 

but the training data set for each model calibration is as large as possible.  LOOCV 

was used in this study because of the relatively small perceived difference in the 

computation time between either a small number of folds or a complete LOOCV. 

3.2.9 Analysis 

 The data set for the study was collected during qualification testing of a 45 

cm3/rev closed circuit axial piston pump (series H1, Danfoss, Ames, Iowa). The test 

conditions are the set of all possible combinations of pressure, speed, pump 

displacement and oil temperature shown in Table 3.2.  This experimental design 

yielded 240 conditions. This array of data was selected based on the criteria 

specified in ISO 4409 [20].  

 To keep with the intent of ISO 4409, and given that the test rig was set up 

with the location of the flow meter being in the alternate location, after the relief valve 

(Fig. 3.3), the flow at the outlet of the pump must be calculated based on the 

measured flow and the known bulk modulus.  Additionally, the ideal or theoretical 

pump displacements were determined using Toet’s Method. A commercially 
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available statistical software package (JMP Version 10, SAS Institue, Cary, North 

Carolina) was used to perform the linear regression for both steps of Toet’s Method.  

This same software is used for all of the regression in this work less the cross 

validation. 

 The ideal pump flow rate was determined given the measured input speed for 

each test run and the derived ideal displacement.  The pump flow loss was 

subsequently determined as the difference between the ideal flow and effective 

pump outlet flow.  These calculations were performed in an Excel spreadsheet 

(Microsoft Excel 2010, Microsoft Corporation, Redmond, Washington).  With the flow 

loss tabulated, the flow loss models were calibrated; cross validated and compared 

using this data set.  

3.2.9.1 Calibration of Complete Models 

 The first step of comparing the models started with an initial calibration of 

each of the five flow loss models.  The models will initially be compared by using the 

root mean squared error (RMSE) statistic.  This statistic shows how well each of the 

models can explain the variability in the flow loss data. 

 In addition, an initial assessment determined if multicollinearity may be an 

issue with the model.  First, the p-value of the complete model was compared with 

the p-value of the model coefficients.  If the model p-value indicates that the model 

has one non-zero model coefficient and very few to none of the model coefficients 

were likely to be equal to zero, multicollinearity may be an issue. 

 The second indicator of possible multicollinearity was the VIF.  The VIF is a 

statistic that shows how much the confidence interval for a given model coefficient 
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within the linear model is increased due to linear correlations with other model terms.   

A VIF that is greater than ten indicated that a model term is heavily correlated with 

another and may need to be removed to prevent over-fitting [18].  Both of these sets 

of statistics were calculated when performing a linear regression. 

3.2.9.2 Model Reduction through Stepwise Regression 

 The first method used to reduce the number of terms within the model and the 

possibility of over-fitting was stepwise regression analysis.  The stepwise regression 

algorithm for this work was step-forward along with BIC criteria.  This method added 

model terms in the order of those which explained the most variation in the data until 

there is a relative minimum in the calculated BIC of the reduced model (Figure 3.4).  

The stepwise regression was performed using JMP Pro 10 in the “Fit Model” utility.  

The intent of model reduction was to explain as much of the variability of a data set 

with the minimum number of model terms from a given model. 

3.2.9.3 Model Reduction through Collinearity Analysis 

 The second method for model reduction excluded model terms that exhibit 

high levels of multicollinearity. This exclusion was accomplished using a two-step 

process.  The first step generated a correlation matrix between all of the model 

terms within the model.  The correlation matrix gave an indication of how linearly 

related were all pairs of model terms.   The elements of the correlation matrix varied 

from zero to positive or negative one [18].    

 Secondly, the model was reduced by examining the correlation coefficient 

matrix to see which combinations of terms had a correlation coefficient larger than a 

threshold value.  The model term that would be removed is the term with the larger 
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p-value from the full model calibration. The threshold value of the correlation 

coefficient for this study was 0.85; the mean of the  recommended range of 0.8 and 

0.9 [23].  The reduced models were calibrated to determine if there was a significant 

reduction on the RMSE. 

3.2.9.4 Leave One Out Cross Validation of Complete and Reduced Models 

 The final point of comparison of the models was a complete leave one out 

cross validation.  Three versions of each of the models were evaluated: 1) the 

complete model, 2) the stepwise regression reduced models and 3) the 

multicollinearity analysis reduced models.  The models were compared across the 

different models and the versions each models.  The leave one out cross validation 

(LOOCV) [24] was carried out using scripting and the statistical toolbox in MATLAB 

(version 2013b, MathWorks, Natick, Massachusetts).   

The RMSE of cross validation was compared across of all three versions of 

each model.  RMSE of cross validation gave an indication to how well a model may 

predict a data set and an indication if the model was over-fitting the data set.  The 

prediction comparison helps one to infer how well each of the models will predict an 

independent data set.  The second inference was made by comparing the RMSE of 

LOOCV and the model calibration. If the RMSE of LOOCV is significantly higher 

than that of the original calibration, this is in indicator that the model overfit the 

calibration data set and may not generally characterize the pump flow loss behavior. 
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3.3 Results and Discussion 

3.3.1 Calibration of Complete Models 

 The calibration of all five flow loss models vs. the measured flow loss data is 

summarized in figures 3.6, 3.8 and 3.10 through 3.12.  The cross plot displays the 

measured flow losses on the x-axis and the modeled loss on the y-axis.  Also 

included is a solid 1:1 line that if the model were to equal the data, the point would 

be directly on the line.  All of the losses are in liters per minute (L/min) of flow loss. 

The cross plot for the Wilson model (Fig. 3.6) shows a poor correlation 

between the measured and modeled flow loss with much scatter about the 1:1 line.  

The Wilson model constant was slightly more than 3.9 L/min thus resulting in the no 

predicted flow losses less than 3.9 L/min.  Additionally, pump shaft speed was not 

taken into account in this model. 

 
Figure 3.6. Cross plot of measured vs. modeled flow loss for the complete 

Wilson flow loss model. 
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 Examining the model from another perspective, the measured flow loss was 

regressed onto the laminar flow loss term (Fig. 3.7) plus a constant.  At low values of 

the laminar term, the measure flow loss data point were scattered both below and 

above the regression line.  The R2 of 0.211 between the laminar term and the 

measured flow loss suggests that laminar flow loss was not sufficient by itself to 

model flow losses for these data.  

 
Figure 3.7. The relationship between the laminar flow loss term and the 

modeled flow loss in the full Wilson flow loss model. 

The Wilson model has a model p-value of less than 0.0001 as does both of 

the model coefficients.  The two model coefficients within the model both have a VIF 

less than ten.  This leads one to believe that multicollinearity was not an issue with 

the model.  This intuitively makes sense because the first term was dependent on 

displacement, pressure and fluid viscosity while the second term was a constant. 
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Table 3.5. Model coefficient p-values and variance inflation factors of the full 

Wilson model. 

Model p-value <.0001*  

Term Coeff. value Coeff. p-value VIF 

   2.089e-4 <.0001* 1.6 

          3.904 <.0001* 1.6 

 

The Schlösser model (Figure 3.8) has an increasing scatter in the modeled 

flow loss as the measured flow loss increases.  Since the Schlösser model does not 

have a constant term, the flow loss intercept is forced to be zero, and so the model 

could be improved with the addition of a constant term.  The model has a RMSE 

2.814 L/min; the largest of the full flow loss models. 

 
Figure 3.8. Cross plot of measured vs. modeled flow loss, post calibration for 

the full Schlösser flow loss model. 

 To examine the lack of fit associate with the Schlösser model, the turbulent 

term (Fig. 3.9) was investigated in a similar manner as the laminar term of the 

Wilson model.  There was an R2 0f 0.2946 between the turbulent term and the 

measured flow loss.   Many of the test conditions with the largest flow loss have the 
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largest deviation off the regression line.  Many of these data points were at low 

displacements, larger shaft speeds, and higher delta pressures.  From these results, 

it appears that additional model terms must be added to the model to better explain 

variability in the flow loss data. 

Figure 3.9. Cross plot of the turbulent flow loss term to the full Schlösser flow 

loss model. 

 The Schlösser model had a p-value of less than 0.0001 as did as the 

turbulent loss term,    , (Table 3.6). However, the coefficient associated with the 

laminar flow loss term,   , had a very small magnitude and was not significantly 

different than zero. The two model terms both have a VIF less than ten, which 

indicated that multicollinearity was not an issue with the model.   
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Table 3.6.  Model coefficient p-values and variance inflation factor of the full 

Schlösser model. 

Model p-value <.0001*  

Term Coeff. Value Coeff. p-value VIF 

   -8.666e-5 0.0676 3.9 

    40.006 <.0001* 3.9 

 

The Zarotti and Nevegna model exhibited substantially better performance 

than the two physical process based flow loss models with a RMSE of 1.083 L/min 

(Fig 3.10).  There appears to be slight non-linear characteristic to the modeled vs. 

measured relationship; an additional term may help to address this.  The addition of 

a constant term may be able to help as well.   

 
Figure 3.10. Cross plot of measured vs. modeled flow loss, post calibration for 

the full Zarotti and Nevegna flow loss model. 

The Zarotti and Nevegna model has p-value of less than 0.0001 and each of 

the five model coefficients were statistically significant (Table 3.7). However, 

examining the VIF of the model coefficients, four of the five coefficients have a value 

of greater than ten.  This indicates that some of the model terms have linear 
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dependencies with one another.  It may be possible that a reduced model could 

have similar predictive capability, but multicollinearity could be reduced. 

Table 3.7. Model coefficient p-values and variance inflation factor of the full 

Zarotti and Nevegna model. 

Model p-value <.0001*  

Term Coeff. value Coeff. p-value VIF 

   3.360E-07 <.0001* 58.3 

   -8.79E-15 <.0001* 40.7 

   3.862E-19 0.0059* 40.1 

     4.292E-10 <.0001* 61.7 

   -2.78E-12 <.0001* 4.5 

The Ivantysyn and Ivantysynova model explained most the variability in the 

flow loss data with most of the data points lying on or close to the 1:1 line (Fig 3.11).  

This model had the lowest RMSE of calibration of all the full models at 0.304 L/min.  

The primary point of concern for the model was the large number of model terms, 

54, and the possibility of multicollinearity with only 236 measured data points. 

 
Figure 3.11. Cross plot of measured vs. modeled flow loss, post calibration for 

the full Ivantysyn and Ivantysynova flow loss model. 
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The Ivantysyn and Ivantysynova flow loss model has a p-value of less than 

0.0001 (Table 3.8).  However, of the fifty four model coefficients, none of them were 

statistically different from zero, leading to the conclusion that there was a high level 

of multicollinearity inside the model.  Additionally, the VIF values for each of the 

model coefficients was extremely high varying from just over eight thousand to over 

six million.  This finding was not unexpected due to the model being a power model 

of four system parameters.  Even though this model explains most of the variability 

in the flow loss data, it was apparent that the model should be reduced to remove 

multicollinearity and at the same time determine if the reduced model can yield 

similar performance. 

Table 3.8. Model coefficient p-values and variance inflation factor of the full 
Ivantysyn and Ivantysynova model. 

Model p-value <.0001*  

Term Coeff. value Coeff. p-value VIF 

    (  
       ) 1.321E+00 0.503 9723.4 

    (  
       ) 1.525E+00 0.952 75862.9 

    (  
       ) -6.683E+00 0.917 39139.0 

     (  
       ) 4.354E-03 0.860 88167.2 

    (  
       ) -2.958E-02 0.925 674664.0 

     (  
       ) -4.084E-02 0.960 347085.2 

     (   
       ) -1.170E-06 0.984 50611.3 

     (  
       ) -6.000E-05 0.937 386503.3 

     (   
       ) 4.451E-04 0.818 198702.5 

     (   
       ) 6.882E-08 0.802 92293.8 

     (  
       ) 1.028E-06 0.764 709544.6 

     (  
       ) -2.231E-06 0.798 362116.1 

     (  
       ) 1.591E-09 0.634 810040.5 

     (  
       ) -1.558E-08 0.711 6092449.4 

     (  
       ) 3.520E-08 0.742 3112848.6 

    (  
       ) -2.930E-12 0.713 454656.1 

    (  
       ) 4.665E-11 0.643 3437815.3 

    (  
       ) -1.190E-10 0.644 1761356.4 
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Table 3.8. Continued. 

Term Coeff. value Coeff. p-value VIF 

    (  
       ) 7.369E-15 0.299 71503.5 

    (  
       ) -6.450E-14 0.454 521588.6 

    (  
       ) 1.207E-13 0.576 260227.7 

    (  
       ) -8.110E-17 0.333 593755.0 

    (  
       ) 7.129E-16 0.492 4322610.3 

    (  
       ) -1.500E-15 0.568 2179472.0 

    (  
       ) 2.030E-19 0.304 325158.1 

    (  
       ) -1.950E-18 0.429 2404247.4 

    (  
       ) 4.398E-18 0.481 1220325.4 

    (  
       ) 4.362E+01 0.548 8172.7 

    (  
       ) -3.545E+02 0.705 65914.5 

    (  
       ) 7.190E+02 0.764 34538.9 

    (  
       ) -2.581E-01 0.778 73140.2 

    (  
       ) 2.928E+00 0.803 582458.4 

    (  
       ) -9.818E-01 0.974 303867.4 

    (  
       ) 3.280E-04 0.883 41989.7 

    (  
       ) -2.686E-03 0.925 333609.4 

    (  
       ) -8.308E-03 0.909 173583.3 

    (  
       ) -2.357E-06 0.826 78295.0 

    (  
       ) 1.139E-05 0.933 636106.6 

    (  
       ) -6.772E-06 0.984 330537.9 

    (  
       ) 2.681E-09 0.984 690365.3 

    (  
       ) 6.892E-08 0.967 5541242.2 

    (  
       ) -3.987E-07 0.924 2877288.5 

    (  
       ) 2.792E-11 0.929 387195.5 

    (  
       ) -8.140E-10 0.837 3123370.7 

    (  
       ) 2.456E-09 0.807 1623783.3 

    (  
       ) -1.070E-13 0.709 62416.2 

    (  
       ) 6.141E-13 0.860 479149.0 

    (  
       ) -1.050E-12 0.904 242873.1 

    (  
       ) 8.556E-16 0.801 519946.1 

    (  
       ) -8.930E-15 0.830 4036605.9 

    (  
       ) 1.936E-14 0.853 2067688.7 

    (  
       ) -2.800E-18 0.727 284477.8 

    (  
       ) 3.488E-17 0.725 2249460.2 

    (  
       ) -7.940E-17 0.751 1159718.0 
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The Jeong model explained the flow loss data well at the region of losses, but 

the error was higher with the larger flow loss data points.  Jeong had a similar finding 

when he first published his model.  The model had a RMSE of calibration of 0.896 

L/min. 

 
Figure 3.12. Cross plot of measured vs. modeled flow loss, post calibration for 

the full Jeong flow loss model. 

The Jeong flow loss model has a p-value of less than 0.0001 and four of the 

six variables were statistically different than zero (Table 3.9).   

Table 3.9. Model coefficient p-values and variance inflation factor of the full 
Jeong model. 

Model p-value <.0001*  

Term 
Coeff. 
value 

Coeff. 
p-value 

VIF 

      4.395E-05 <.0001* 5.0 

     -7.634E-05 0.4039 12.9 

    3.780E+00 <.0001* 24.6 

    4.361E-14 0.6063 2.0 

   4.402E-06 <.0001* 10.5 

    1.482E+00 <.0001* 18.5 
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However, four of the model coefficients within the model have a VIF greater than 10.  

This large VIF value leads one to the conclusion that multicollinearity may be an 

issue and reduction of model terms may improve the model. 

The Ivantysyn and Ivantysynova model had the lowest RMSE of calibration 

(Table 3.10).  The Jeong model and the Zarotti and Nevegna flow loss models were 

next closest at around three times the Ivantysyn and Ivantysynova model.  The two 

physical process-based flow loss models – Wilson and Schlösser – had the largest 

values of RMSE of calibration. 

Table 3.10. RMSE of full model, stepwise regression reduced and 
multicollinearity reduced models. 

Model 
Number of Model Terms Model RMSE (L/min) 

Full 
Stepwise 
Reduced 

Multicollin. 
Reduced 

Full 
Stepwise 
Reduced 

Multicollin. 
Reduced 

Wilson 2 2 2 2.446   

Schlösser 2 1 2 2.814 2.828  

Zarotti and 
Nevegna 

5 5 3 1.083  1.400 

Ivantysyn and 
Ivantysynova 

54 15 12 0.304 0.305 0.851 

Jeong 6 4 6 0.896 0.893  

  

3.3.2 Stepwise Regression Comparison 

 After stepwise regression, three of the five models had a reduced number of 

terms (Table 3.10).  In all three, there was only a slight increase in RMSE even 

though the models had terms reduced.  A further discussion of each of the models is 

below including the model terms that remained after the stepwise regression as well 

as descriptive statistics about model coefficients that remained.  The Wilson and 

Zarotti and Nevegna models will not be discussed further in this section since they 

were not different than the full models above. 



79 
 

 
 

 The Schlösser model was reduced from two terms to one during the stepwise 

regression.  The laminar flow loss term was removed and the RMSE only increased 

by 0.014 L/min.  This result makes sense since in the complete model, the turbulent 

flow loss term was significant and the laminar was not significant (Table 3.11).  

However, the Schlösser model had the largest RMSE of calibration in this study. 

 
Figure 3.13. Cross plot of measured vs. modeled flow loss, of the post 

stepwise regression Schlösser flow loss model. 
 

Table 3.11. Model coefficient p-values and variance inflation factor of the post 

stepwise regression Schlösser model. 

Model p-value <.0001*  

Term Coeff. p-value Coeff. p-value VIF 

      

    3.578E+01 <.0001* 1 

 

 The number of model terms in the Ivantysyn and Ivantysynova model was 

reduced from fifty-four to fifteen (Table 3.12).  With this reduced flow loss model, the 

RMSE was only increased by 0.001 L/min, and the measured vs. modeled cross plot 
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appeared to be nearly indistinguishable from that of the complete model calibration 

(Fig 3.14).  All of the model coefficients were statistically significant, but all of the 

model terms still have a VIF of greater than 10.  This model had the lowest RMSE of 

the stepwise reduced models, but multicollinearity may still be an issue even with the 

reduced model as indicated by the VIF values. 

Table 3.12. Model coefficient p-values and variance inflation factor of the post 

stepwise regression Ivantysyn and Ivantysynova model. 

Model p-value <.0001*  

Term Coeff. value Coeff. p-value VIF 

    (  
       ) 9.633E-01 <.0001* 39.4 

    (  
       )    

    (  
       )    

     (  
       ) 3.867E-03 <.0001* 40.7 

    (  
       ) -1.536E-02 <.0001* 33.2 

     (  
       )    

     (   
       )    

     (  
       )    

     (   
       )    

     (   
       ) 2.511E-07 <.0001* 90.1 

     (  
       ) -3.536E-07 <.0001* 42.9 

     (  
       )    

     (  
       )    

     (  
       )    

     (  
       )    

    (  
       ) 8.015E-13 <.0001* 83 

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       ) -7.010E-18 <.0001* 176.2 

    (  
       )    

    (  
       )    
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Table 3.12. Continued. 

Term Coeff. value Coeff. p-value VIF 

    (  
       ) 2.364E-20 <.0001* 180.1 

    (  
       )    

    (  
       )    

    (  
       ) 2.218E+01 <.0001* 24.3 

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       ) 2.268E+00 <.0001* 45.3 

    (  
       )    

    (  
       ) -1.535E-03 <.0001* 37.0 

    (  
       )    

    (  
       ) -1.840E-06 <.0001* 91.2 

    (  
       )    

    (  
       ) 2.385E-05 <.0001* 30.8 

    (  
       )    

    (  
       )    

    (  
       ) -6.543E-08 <.0001* 14.6 

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       ) -2.790E-14 0.0009* 51.6 

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    
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Figure 3.14. Cross plot of measured vs. modeled flow loss, of the Ivantysyn 

and Ivantysynova flow loss model post stepwise regression. 

The Jeong model was reduced to four model terms from the original six 

(Table 3.13), and the RMSE was reduced by 0.003 L/min (Fig 3.15).  All of the 

remaining model coefficients were significantly different from zero and three of the 

four had a VIF of less than 10, so only one term,    , has any indication of 

multicollinearity. 

Table 3.13. Model coefficient p-values and variance inflation factor of the 

reduced Jeong flow loss model. 

Model p-value <.0001*  

Term Coeff. value Coeff. p-value VIF 
      4.509E-05 <.0001* 4.8 

        

    3.942E+00 <.0001* 17.8 

       

   4.171E-06 <.0001* 4.2 

    1.349E+00 <.0001* 6.4 
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Figure 3.15. Cross plot of measured vs. modeled flow loss, of the Jeong flow 

loss model post stepwise regression. 
 

3.3.3 Model Reduction by Multicollinearity Analysis 

 Of the five models, only the Zarotti and Nevegna model and the Ivantysyn 

and Ivantysynova model had evidence of multicollinearity within them (Correlation 

Coefficient > 0.85).  Only these two models will be discussed in this section. 

 Examining the correlation matrix for the Zarotti and Nevegna flow loss model 

in table 3.16, there were two combinations of model terms that were exhibited: 1)    

and   , and 2)    and     (Table 3.14). 

Table 3.14. Correlation matrix for the Zarotti and Nevegna flow loss model. 

                  

   1.0000 0.9668 0.7138 0.7618 0.5106 

   0.9668 1.0000 0.7403 0.7401 0.4978 

   0.7138 0.7403 1.0000 0.9647 0.7968 

     0.7618 0.7401 0.9647 1.0000 0.8111 

   0.5106 0.4978 0.7968 0.8111 1.0000 
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Of these two relationships, the model coefficients with the larger p value from the 

complete model calibration were eliminated (   and   ).  As result of this model 

reduction, only one single coefficient     , had a VIF greater than 10 (Table 3.15). 

Table 3.15. Model coefficient p-values and variance inflation factor of the 

multicollinearity analysis reduced Zarotti and Nevegna model. 

Model p-value <.0001*  

Term Coeff. value Coeff. p-value VIF 

   1.353E-07 <.0001* 5.0 

    <.0001* 40.7 

    0.0059* 40.1 

     6.815E-10 <.0001* 10.6 

   -2.720E-12 <.0001* 4.4 

 

 
Figure 3.16. Cross plot of measured vs. modeled flow loss, of the reduced 

Zarotti and Nevegna flow loss model from multicollinearity analysis. 
 

In the case of the Ivantysyn and Ivantysynova model, 122 model term 

combinations had a correlation coefficient of greater than 0.85 of the 1431 possible 

combinations of model terms.  After going through all 122 model term combinations, 

and removing the one of the pair that had the larger p-value, twelve of the original 
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fifty four model terms remained (Table 3.16).  However, eight of the twelve model 

coefficients from the reduced model were significantly different from zero for the 

reduced model whereas zero of the fifty four model coefficients were non-zero in the 

complete model.  Thus, the amount of multicollinearity has been greatly reduced, but 

only three of the twelve had a VIF of less than ten.  This suggests that the 

multicollinearity has been greatly reduced, but may still be an issue with the model. 

Table 3.16. Model coefficient p-values and variance inflation factor of the post 
multicollinear reduction Ivantysyn and Ivantysynova model. 

Model p-value <.0001*  

Term Coeff. value Coeff. p-value VIF 

    (  
       ) 2.289E+00 <.0001* 54.0 

    (  
       )    

    (  
       ) -9.393E+00 0.0477* 27.4 

     (  
       ) 4.448E-03 0.0064* 49.0 

    (  
       )    

     (  
       )    

    (   
       )    

     (  
       )    

     (   
       ) -5.482E-05 0.3258 21.3 

     (   
       )    

     (  
       )    

     (  
       )    

     (  
       )    

     (  
       )    

     (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       ) 4.985E-15 <.0001* 18.7 

    (  
       ) -6.660E-15 <.0001* 9.0 

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       ) 2.257E-20 <.0001* 4.3 

    (  
       )    
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Table 3.16. Continued. 

Term Coeff. value Coeff. p-Value VIF 

    (  
       )    

    (  
       ) -7.732E+00 0.7135 89.1 

    (  
       ) 1.823E+02 0.0486* 82.6 

    (  
       )    

    (  
       ) 1.403E-05 0.9999 85.3 

    (  
       ) -3.295E-01 0.3804 77.0 

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       ) -4.950E-14 <.0001* 8.7 

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

    (  
       )    

The model was then calibrated with the measured data set, and the RMSE of 

the reduced model was 0.851 L/min, which was substantially higher than 0.304 

L/min with the complete model (Fig. 3.17).  The model overestimates flow loss below 

4 L/min, then underestimates the flow loss until 6 L/min.  The method reduced the 
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amount of multicollinearity, but the remaining model terms did not explain flow loss 

variability as well as the stepwise regression reduced model. 

 
Figure 3.17. Cross plot of measured vs. modeled flow loss, of the reduced 

Ivantysyn and Ivantysynova flow loss model after multicollinearity analysis. 
 

3.3.4 Leave One Out Cross Validation 

 The results of the leave one out cross validation are shown in table 3.17.  

Neither the Wilson nor the Schlösser model had a significant increase in error of 

cross validation.  This result is probably due to their poor calibration performance 

and to their only having two terms.   

The Zarotti and Nevegna model was not reduced by stepwise regression, but 

the multicollinearity reduction resulted in two model terms being dropped.  After 

performing the LOOCV, it was apparent that the RMSE of cross validation was 

higher for the multicollinearity reduced model, but the percent increase in RMSE was 

significantly less than the complete model.   
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Table 3.17. Validation error and percent increase in RMSE of cross validation 
compared to RMSE of calibration. 

Model 

Number of Model Terms 
LOOCV RMSE (L/min)  

(% increase from calibration) 

Full 
Stepwise 
Reduced 

Multicollin. 
Reduced 

Full 
Stepwise 
Reduced 

Multicollin. 
Reduced 

Wilson 2 2 2 
2.457 

(0.4) 

  

  

Schlösser 2 1 2 
2.823 

(0.3) 

2.836 

(0.3) 

 

 

Zarotti and 

Nevegna 
5 5 3 

1.094 

(4.5) 

 1.402 

(0.1)  

Ivantysyn and 

Ivantysynova 
54 15 12 

1.105 

(263.4) 

1.183 

(287.9) 

2.438 

(286.5) 

Jeong 6 4 6 
0.914 

(2.1) 

0.912 

(1.9) 

 

 

The Ivantysyn and Ivantysynova models vary substantially in the number of 

model terms between the complete model and the two reduced models.  The cross 

validation error increased by more than 260 percent over that associated with 

calibration for the complete model and by 280 percent for the reduced models. This 

dramatic increase in RMSE from calibration to cross validation showed that even 

after the model had been reduced through stepwise regression and multicollinearity 

analysis, that both reduced models overfit the measured flow loss data set. 

The Jeong model was reduced from six to four terms during stepwise 

regression and there were no collinear pairs in the multicollinearity reduction; this 

effectively yields only two models for LOOCV.  For the two versions of the model, 
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the cross validation error was approximately two percent greater than that 

associated with calibration indicating a low degree of overfitting. 

From a standpoint of evaluating the predictive capability of the models, the 

cross validation error associated with the Wilson and Schlösser models indicated 

that they were not over-fitting, but they never had high performance in explaining 

flow loss.  The remaining three models had similar magnitude cross validation error, 

except for the reduced Ivantysyn and Ivantysynova model through multicollinearity 

analysis.  Of these three models, the Jeong model had the lowest RMSE of cross 

validation and showed the best performance in modeling the flow loss for the cross 

validation data.  

3.4 Conclusions 

The Ivantysyn and Ivantysynova model clearly had the lowest RMSE when 

calibrated to the flow loss data set.  However, early indications from the VIF and the 

high model coefficient p-values indicate that overfitting may be an issue.  In 

subsequent sections, the model was shown to have problems with overfitting. The 

Jeong and Zarotti and Nevegna models were calibrated and produced similar 

calibration errors at around one liter per minute, and the Wilson and Schlösser 

models were had error substantly above that. 

 Stepwise regression only reduced two of the flow loss models: the Ivantysyn 

and Ivantysynova model and the Jeong Model.  The number of model terms in the 

stepwise reduced Ivantysyn and Ivantysynova model decreased dramatically from 

fifty four to fifteen.  From the subsequent correlation coefficient matrix examination 

and LOOCV, this dramatic reduction was due to the complete model being too 
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complex and over fitting the data set.  The Jeong model was reduced to four model 

terms, but it appears that the two model terms were not eliminated due to over 

fitting, but instead the terms did not add predictive capability to the model. 

 Through multicollinearity analysis, the Zarotti and Nevegna model and the 

Ivantysyn and Ivantysynova model were the only models reduced.  The Zarotti and 

Nevegna model had two pairs of collinear model terms. Conversely, the number of 

model terms in the Ivantysyn and Ivantysynova model decreased dramatically 

through multicollinearity analysis, but overfitting was still observed in the reduced 

model. 

The Jeong model exhibited the lowest cross validation error providing 

evidence that it was modeling the flow losses of the pump without fitting to the 

specific data set.  Even though all three versions of the Ivantysyn and Ivantysynova 

model have a smaller RMSE of calibration, it was evident that the models were 

overfitting the data set.  The Zarotti and Nevegna model also closely models the flow 

loss phenomena, and with the complete model, has a similar capability to predict 

flow loss as the Ivantysyn and Ivantysynova model. 

In summary, the following conclusions can be drawn from this work 

 The Ivantysyn and Ivantysynova had the lowest calibration error, and thus 

had the highest performance in explaining variability in flow loss.  The Jeong 

model and Zarotti and Nevegna model were nearly equivalent, and had 

calibration error that was about three times larger than that of the Ivantysyn 
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and Ivantysynova models.  The Wilson and Schlösser models did not show 

good performance in modeling the flow loss data. 

 The Ivantysyn and Ivantysynova model terms were greatly reduced through 

both reduction methods.  However, the stepwise regression reduced model 

had a much lower RMSE than the multicollinearity analysis reduced model.  A 

reduced Jeong model emerged through step-wise regression analysis, but 

none results from multicollinearity analysis. The opposite result occurred with 

the Zarotti and Nevegna model; in neither case did model reduction have a 

substantial effect on error.  The Schlösser model was reduced to only the 

turbulent term in stepwise regression with minimal change to the error 

compared to the complete model. 

 There appears to be a significant amount of overfitting within the complete 

and both reduced versions of the Ivantysyn and Ivantysynova model.  In all 

three cases the RMSE of cross validation was nearly three times that of the 

RMSE of calibration.  Given the Jeong model and Zarotti and Nevegna model 

had a similar RMSE of cross validation compared to the Ivantysyn and 

Ivantysynova models, the Jeong model, the  Zarotti and Nevegna model 

and the Ivantysyn and Ivantysynova model estimate the pump flow 

losses equally well.  The Wilson and Schlösser models do not generalize as 

well as the other three.  
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DEFINITIONS, ACRONYMS, ABBREVIATIONS 

EPA: Environmental Protection Agency 
NOx: Nitrous Oxide 
OLS: Ordinary Lest Squares 
RMSE: Root Mean Squared Error 
BIC: Bayesian Information Criterion 
 
Flow Loss Modeling 

                Loss coefficients (Zarotti and Nevegna model) 

            Constant flow loss coefficient 
      Laminar flow loss coefficient 
      Turbulent flow loss coefficient 
       Couette flow coefficient of the Jeong flow loss model 
      Valve plate notch loss coefficient (Jeong model) 
        Laminar flow loss coefficient (Jeong model) 

  :    Bulk modulus loss coefficient (Jeong model) 

          Model coefficients with exponents 2,2,2 and 1  
(Ivantysyn and Ivantysynova model) 

     Kinematic viscosity constant 
         Loss coefficient (Ivantysyn and Ivantysynova model) 

        Pump input shaft speed 

        Pressure rise from the pump inlet to outlet 

         Effective flow due to fluid decompression 
         Flow from pump based on ideal displacement 
     Total flow loss 
         Flow losses that flow into the pump case 
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         Flow losses that flow back to the pump inlet 

      Constant flow loss (Jeong model) 
        System flow measured after the relief valve 
          System flow out of the pump 

        Oil temperature relative to a reference condition 
     Ideal pump displacement 

      Reference bulk modulus of the fluid. 
      Isothermal compressibility coefficient of fluid, 

      Volumetric expansion coefficient of fluid, 

      Reference kinematic viscosity 
     Hydraulic fluid viscosity 
     Hydraulic fluid density 
      The oil density at a reference condition 

      Rate of change of oil density with temperature 
 
Regression, Multicollinearity and Cross Validation 
k:    Number of independent coefficients in a linear model 

 ̂:    Maximized value of the likelihood function for a model 
n:    Number of samples in the regression data set 

    Pearson correlation coefficient  

     Coefficient of determination of a model coefficient 
    Independent variable (linear regression) 

     Dependent variable (linear regression) 
 ̂    Modeled value of the independent variable 
     Regression coefficient (linear regression) 

 ̂    Estimated regression coefficient (linear regression) 

    Error (linear regression) 
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CHAPTER 4. GENERAL CONCLUSIONS 
 

4.1 Conclusions 

 The overall objective of this work was to present a methodology for 

comparing flow loss models for axial piston pumps.  After reviewing the literature, it 

is apparent that the authors of the flow loss models took great care in developing 

models based on knowledge of pumps and were able to calibrate the model 

coefficients with measured data sets.  However, statistical issues may arise when 

building models constructed of model terms representing the flow loss behavior 

associated with different pump locations, but are nearly linearly related in their loss 

behavior. 

 This methodology first considered calibration of each of the models using 

ordinary least squares linear regression. Nearly all of the models were reducible by 

one of the two methods and yielded a reduced model that had a similar error of 

calibration as the full models.  The Ivantysyn and Ivantysynova model had the lowest 

error of calibration. 

 The full and reduced models were cross validated.  In the end, the leave one 

out cross validation demonstrated that even if the Ivantysyn and Ivantysynova model 

was reduced, it still overfits the data.  To that end, the Jeong model and Zarotti and 

Nevegna models were just capable of generalizing the data as the Ivantysyn and 

Ivantysynova model.  Ultimately, the objective of any type of statistical model is to 

represent the physical phenomena as closely as possible, while not overfitting the 

particular data set used for model calibration. 
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4.2 Recommendations for Future Work 

 There are several areas where this work could be expanded to gain a deeper 

understanding of losses within axial piston pumps.  Some potential areas are 

described as: 

 In this work, only flow losses were considered.  In nearly all of the models 

reviewed in chapter 2, each author had a torque loss model as well.  A similar 

study could investigate torque loss models. In general, the number of terms in 

torque loss models is larger, and it would be of interest to see if the data 

would support torque model reduction with fewer torque loss terms. 

 This study used linear regression to determine the values of the model 

parameters.  Using this analysis, it is possible that some flow loss model 

terms are negative, but a negative flow loss does not intuitively make sense.  

A study of alternate statistical methods for determining model parameters 

could be carried out.  Especially in component interaction physical loss 

models, model parameters could be constrained to correlate to physical 

dimensions in the pump.  Non-linear optimization methods are capable of 

determining model parameters that can only vary within a user-defined range. 

 This research was carried out on one data set from one pump.  Given that 

axial piston pumps do have manufacturing variation within a population, the 

amount of flow loss in any given pump model is likely to also vary.  This 

variation should be studied, and if specific flow loss parameters are significant 

across a large number of pumps, this knowledge will aid in ensuring that the 
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losses are similar to the source of loss that is expected for a particular pump 

design. 

 This study only considered a single design and displacement of axial piston 

pump.  If there is a distinct difference in the design of a set of pumps, it would 

be of great interest to see if these design differences can be correlated to the 

terms that are dominant in the flow loss model.  Also, comparisons of pumps 

within a family but different displacements could also be of interest to the 

pump designer. 
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