
Graduate Theses and Dissertations Graduate College

2013

Process optimization: Ultrasonic welding of
coextruded polymer film
Jessica Ann Riedl
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/etd

Part of the Agriculture Commons, Bioresource and Agricultural Engineering Commons, and the
Industrial Engineering Commons

This Thesis is brought to you for free and open access by the Graduate College at Iowa State University Digital Repository. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Riedl, Jessica Ann, "Process optimization: Ultrasonic welding of coextruded polymer film" (2013). Graduate Theses and Dissertations.
13323.
http://lib.dr.iastate.edu/etd/13323

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F13323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/grad?utm_source=lib.dr.iastate.edu%2Fetd%2F13323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F13323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=lib.dr.iastate.edu%2Fetd%2F13323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1056?utm_source=lib.dr.iastate.edu%2Fetd%2F13323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Fetd%2F13323&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/etd/13323?utm_source=lib.dr.iastate.edu%2Fetd%2F13323&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


 

  

Process optimization: Ultrasonic welding of coextruded polymer film 
 
 

by 
 
 

Jessica Ann Riedl 
 
 
 

A thesis submitted to the graduate faculty 
 

in partial fulfillment of the requirements for the degree of 
 

MASTER OF SCIENCE 
 
 
 

Major: Agricultural Engineering 
 

Program of Study Committee: 
David A. Grewell, Major Professor 

Michael Kessler 
D. R. Raman 

 
 
 
 
 
 
 
 
 
 
 
 

Iowa State University 
 

Ames, Iowa 
 

2013 
 



ii 

 

TABLE OF CONTENTS 

LIST OF TABLES iv 

LIST OF FIGURES  v 

ABSTRACT viii 

CHAPTER 1. GENERAL INTRODUCTION 1 

 Plastic Packaging 1 

 Ultrasonic Welding 2 

 Experimental Materials 5 

 Thesis Organization 8 

CHAPTER 2. PEEL AND SHEAR STRENGTH AND TEAR RESISTANCE OF 
ULTRASONICALLY SEALED COEXTRUDED POLYOLEFIN FILMS FOR 
PACKAGING APPLICATIONS 

9 

 Abstract 9 

 Introduction 10 

 Experimental Procedure 13 

 Results and Discussion 22 

 Conclusions 43 

CHAPTER 3. PEEL STRENGTH OF COEXTRUDED POLYOLEFIN BAGS 
CREATED IN A VERTICAL FORM, FILL, SEAL MACHINE WITH ULTRASONIC 
END SEALS 

46 

 Abstract 46 

 Introduction 47 

 Screening Experiments 49 

 Experimental Procedure 54 

 Results and Discussion 58 



iii 

 

 Conclusions 70 

CHAPTER 4. GENERAL CONCLUSIONS 72 

 General Discussion 72 

 Recommendations for Future Research 74 

APPENDIX A. BENCH TOP WELDING PARAMETERS 76 

APPENDIX B. FFS MACHINE PARAMETERS 81 

APPENDIX C. INSTRON PARAMETERS 82 

REFERENCES 83 

ACKNOWLEDGEMENTS 84 

 

  



iv 

 

LIST OF TABLES 

Table 1 Distinguishing characteristics of variable OPP layers 8 

Table 2 Design of experiment factors 13 

Table 3 Typical ultrasonic welding cycle [6] 14 

Table 4 Seven main and interaction effects for benchtop welds 24 

Table 5 P-values for peel strength 30 

Table 6 P-values for shear strength 34 

Table 7 P-values for coefficient of variance for shear strength 38 

Table 8 P-values for tearing force 43 

Table 9 FFS machine design of experiment 55 

Table 10 Seven main and interaction effects for FFS welds 60 

Table 11 P-values for peel strength for top weld 66 

Table 12 P-values for peel strength for bottom weld 72 

 

  



v 

 

LIST OF FIGURES 

Figure 1 Branson 200X 30 kHz digitally controlled actuator 3 

Figure 2 Schematic of film orientation in bench top weld system 7 

Figure 3 Excessive over weld condition 12 

Figure 4 A complete weld (left) and example of under weld (right) 12 

Figure 5 Photograph of weld configuration 15 

Figure 6 Diagram of cross-section of welded specimen 16 

Figure 7 Schematic of individual test specimen locations for weld specimen 16 

Figure 8 Diagram of specimen placement for peel strength testing 17 

Figure 9 Photograph of specimen placement for shear strength testing 19 

Figure 10 ASTM D 1922 tear propagation template [11] 20 

Figure 11 Specimen prior to tearing force testing 22 

Figure 12 Peel strength (N) as a function of energy (J) for F2A 27 

Figure 13 Peel strength (N) as a function of energy (J) for F2B 27 

Figure 14 Peel strength (N) as a function of energy (J) for F8 28 

Figure 15 Peel strength (N) as a function of energy (J) for CB 28 

Figure 16 Peel strength (N) as a function of energy (J) for PW 29 

Figure 17 Peel strength (N) as a function of energy (J) for YH 29 

Figure 18 Shear strength (MPa) as a function of energy (J) for F2A 31 

Figure 19 Shear strength (MPa) as a function of energy (J) for F2B 32 

Figure 20 Shear strength (MPa) as a function of energy (J) for F8 32 

Figure 21 Shear strength (MPa) as a function of energy (J) for CB 33 



vi 

 

Figure 22 Shear strength (MPa) as a function of energy (J) for PW 33 

Figure 23 Shear strength (MPa) as a function of energy (J) for YH 34 

Figure 24 Cv of shear strength as a function of Energy (J) for F2B 36 

Figure 25 Cv of shear strength as a function of Energy (J) for CB  37 

Figure 26 Cv of shear strength as a function of Energy (J) for PW 37 

Figure 27 Cv of shear strength as a function of Energy (J) for YH 38 

Figure 28 Tearing force (mN) as a function of energy (J) for F2A 40 

Figure 29 Tearing force (mN) as a function of energy (J) for F2B 41 

Figure 30 Tearing force (mN) as a function of energy (J) for F8 41 

Figure 31 Tearing force (mN) as a function of energy (J) for CB 42 

Figure 32 Tearing force (mN) as a function of energy (J) for PW 42 

Figure 33 Tearing force (mN) as a function of energy (J) for YH 43 

Figure 34 Schematic of vertical form, fill, seal machine [3] 49 

Figure 35 (Left) Burst test needle; (Right) Tear propagation at needle location 51 

Figure 36 Vacuum chamber with specimen, lid, hose, and vacuum pump 51 

Figure 37 Locations prone to over weld and under weld 53 

Figure 38 FFS machine equipped with ultrasonic horizontal sealer 53 

Figure 39 Balun schematic [14] 56 

Figure 40 Schematic of peel test specimen location from bag specimen 58 

Figure 41 Diagram of specimen placement for peel strength testing 59 

Figure 42 Peel strength (N) as a function of energy (J) for top weld of F2A 63 

Figure 43 Peel strength (N) as a function of energy (J) for top weld of F2B 63 



vii 

 

Figure 44 Peel strength (N) as a function of energy (J) for top weld of F8 64 

Figure 45 Peel strength (N) as a function of energy (J) for top weld of CB 64 

Figure 46 Peel strength (N) as a function of energy (J) for top weld of PW 65 

Figure 47 Peel strength (N) as a function of energy (J) for top weld of YH 65 

Figure 48 Peel strength (N) as a function of energy (J) for bottom weld of F2A 68 

Figure 49 Peel strength (N) as a function of energy (J) for bottom weld of F2B 68 

Figure 50 Peel strength (N) as a function of energy (J) for bottom weld of F8 69 

Figure 51 Peel strength (N) as a function of energy (J) for bottom weld of CB 69 

Figure 52 Peel strength (N) as a function of energy (J) for bottom weld of PW 70 

Figure 53 Peel strength (N) as a function of energy (J) for bottom weld of YH 70 

 

 

  



viii 

 

ABSTRACT 

The purpose of this research is to determine the effect of various weld and 

machine parameters on ultrasonic weld strength. Specifically, welds with six 

different triple-layer coextruded polyethylene and metallized polypropylene films 

were examined. These materials were welded in separate experimental studies 

using a bench top weld system and a high production volume packaging machine. 

The first study investigated the effect of a range of weld forces, energies, and 

amplitudes in a lap joint geometry using a bench top ultrasonic plunge welding 

system. Weld strength was determined by measuring resistance to tearing and peel 

and shear strength. It was observed that low energy and low weld force had a 

significant effect on shear strength welds for all materials. High peel strength was 

observed at relatively high weld forces and energies, and high tear resistance was 

observed at relatively high forces, high amplitudes, and mid-range energy levels. 

The second study determined the suitability for the same materials to be 

sealed as bags for packaging applications in a vertical “form fill seal” machine. This 

machine was equipped with an ultrasonic end seal jaw. The machine factors tested 

in this study include energy, amplitude, and production rate (the rate at which bags 

are created/welded) to determine the effect on peel strength. It was observed that 

low energy and amplitude correlated with high strength for the top weld (top of 

bag) of one material and low production rate resulted in high strength for the top 

weld of two materials as well as the bottom weld for two materials. Data for the 

sixth material was inconclusive.
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CHAPTER 1. GENERAL INTRODUCTION 

The purpose of this research was to characterize the weld strength of six 

different, triple-layer coextruded polyethylene and metallized polypropylene films. 

These materials were welded on both a bench top ultrasonic plunge welding system 

and a vertical form fill seal (FFS) machine with ultrasonic end seals. Weld 

configuration (bench top and FFS machine) and machine parameters were varied to 

determine their effects on weld peel strength, shear strength, and tearing force. The 

purpose of this chapter is to provide background information regarding packaging 

applications for polymers and basic ultrasonic welding theory, as well as to describe 

the six materials that are examined in Chapters 2 and 3. 

Plastic Packaging 

The global packaging market, valued at $429 billion and employing over five 

million people in 2009 [1], is steadily growing. As the market expands and increases 

the scarcity of resources, it will be advantageous for producers to minimize non-

renewable resources consumed by packaging. These resources include, but are not 

limited to, process and product inputs such as raw materials, water, and energy as 

well as process outputs such as waste chemicals, pollutants, and scrap materials. 

Groups such as the International Standards Organization [1] and Sustainable 

Packaging Coalition (SPC) support efforts to create guidelines to identify packaging 

materials and practices that are most sustainable, considering global economic and 

environmental health [2].  
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Plastic packaging is expected to be the fastest-growing segment of 

sustainable packaging [1]. Plastic products, including packaging, often attract 

criticism because most are based on nonrenewable petroleum, typically not 

recycled at end-of-life, and usually non-compostable. However, there are also many 

reasons why plastics are used for packaging: these products are moldable, generally 

chemical inert, cost effective, lightweight, and versatile in transparency, color, heat 

resistance, vapor barrier, and heat sealable [3]. 

Traditionally polymer film bags were created using heat seals or adhesives. 

However, heat sealing is a relatively lengthy and energy inefficient process because 

of thermal radiation losses when the heated tools are idle. Use of adhesives may 

create hazardous waste and require protective equipment for personnel.  

Ultrasonic Welding 

Thermoplastics were first joined by ultrasonic energy in the late 1960s. 

Benefits of ultrasonic welding include high speed, efficiency, lack of material 

contamination, and no required consumables. Ultrasonic welding systems perform 

with high consistency, provide uniform joint quality and are very fast with weld 

times typically less than a second [4]. Because of these benefits, the use of ultrasonic 

energy has become an increasingly common method to join plastics for applications 

such as packaging, electronic components, automotive, and consumer products, 

despite high initial cost and limitations regarding part size and design [5]. 

Use of ultrasonics for plastic joining inherently meets two criteria developed 

by SPC for sustainable packaging, 1) “physically designed to optimize materials and 
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energy” and 2) “manufactured using clean production technologies and best 

practices” [2]. Ultrasonic welding achieves both of these goals because it does not 

require the use of any mechanical fasteners or chemical adhesives and it utilizes 

energy for the minimum time required to create a weld [6]. 

 

Figure 1 Branson 200X 30 kHz digitally controlled actuator 

Ultrasonic weld systems consist of four main components, including a power 

supply, and the transducer, booster, and horn, a combination known as the stack 

and actuator. An anvil supports the work pieces below the stack. A solid-state power 

supply converts 50 or 60 Hz standard current to a 10 to 70 kHz signal, which the 
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transducer then converts to mechanical vibrations, typically by way of piezoelectric 

materials. The booster, and often the horn, amplify the vibration, typically between 

1 and 250 μm, and apply it to the parts. This vibration causes cyclical deformation in 

the surface asperities of the parts at the joining surface [5]. 

Because polymers are viscoelastic, some of the mechanical energy applied to 

the surface asperities is recovered, but the remainder is dissipated as thermal 

energy (heat). This behavior is represented by a complex dynamic modulus, E*, 

which has a real part, storage modulus, E’, and an imaginary part, loss modulus, E”, 

shown in Equation (1). Enough heat is released because of this cyclical deformation 

to melt and fusion-bond the material at the joining surfaces [6]. 

           (1) 

The rate of heat loss,  ̇, (W/m3), in the material can be described as a 

function of the loss modulus of the material and the angular frequency, ω, and strain 

of the deformation, ε0, which is generally directly proportional to the vibration 

amplitude. Even though the loss modulus is difficult to measure and is unknown for 

the materials used in these studies, it is clear from Equation (2) that increasing the 

vibration amplitude (proportional to strain) will result in faster heating [6]. 

  ̇  
     

 

 
 (2) 

At the same time that ultrasonic energy is activated, the horn is also applying 

a normal force to the welding surfaces. When the asperities reach the melt 

temperature, they begin to flow and the increased weld force will also increase this 
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flow under pressure, known as squeeze flow. Squeeze flow orients the long polymer 

chains parallel to the direction of flow, which reduces weld strength in at least two 

ways. First, it makes them more susceptible to cracking, and second, it results in 

fewer secondary bonds between the two materials and less molecular entanglement 

[6]. 

Squeeze flow also allows filling of the voids between asperity peaks and at 

limited flow rates it can promote entanglement of the molecules thus enhancing 

bond strength. After the interfaces have completely conformed to each other, the 

polymer chains diffuse across the weld interface and become entangled. This is 

known as interfacial healing. Once healing is complete and ultrasonic energy has 

been deactivated, the interface cools and solidifies [5]. 

In Chapter 2, weld force, energy, and amplitude were varied to identify a 

range of operating parameters for a bench top system that results in optimal weld 

strength as determined by peel strength, shear strength, and tearing force. In 

Chapter 3 the experimental design varied the ultrasonic energy and amplitude and 

the production rate of a high speed packaging machine to again determine 

parameters resulting in optimal weld strength as determined by peel strength. 

Experimental Materials 

Commonly seen in packaging applications is the combination of up to seven 

layers of different plastic films. A process known as coextrusion combines layers of 

film in order to capitalize on a combination of properties that the individual 

components alone cannot achieve [3]. For example, one layer may provide 
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resistance to ultraviolet light, another provides chemical resistance, and yet another 

provides puncture resistance. In the two studies detailed in this thesis, six grades of 

proprietary 200 gage (0.05 mm thick) triple-layer coextruded polyethylene (PE) and 

polypropylene (PP) film were examined. These materials were not commercially 

available and had been supplied by an anonymous manufacturer. 

Like for all polymers, there are many grades and densities of polyethylene. 

Information regarding the specific material properties of the polyethylene film used 

in this study was not provided by the manufacturer. However, linear low density 

polyethylene is commonly used for film applications because of its good tensile 

strength as well as puncture, tear, and impact resistance properties. Applications 

include produce bags, garbage bags, stretch wrap, industrial liners, diaper liners, 

and shopping bags [7]. 

Polypropylene differs chemically from PE in that it has a stiffening methyl 

group attached to every other carbon atom. This results in a higher melting point 

and tensile strength for PP. Polypropylene film is commonly used for packaging 

because it has excellent chemical resistance and flexibility [7]. Grewell et al. also 

rate PP “easiest” for general weldability [6] and according to the American Welding 

Society, polypropylene can be welded to itself [8]. 

The anonymous material supplier provided the proprietary films in the form 

of 450 m × 0.343 m rolls. Each coextruded film consisted of a polyethylene layer 

sandwiched between a metallized oriented polypropylene (OPP) layer and a 

variable OPP layer. Metallization of the OPP layer occurs during the extrusion 
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process when a gaseous metal is blown over the film. All specimens in both studies 

were completed with the material folded so the inside metallized OPP layers were at 

the weld interface, or faying surface. The variable layers were adjacent to the horn 

and anvil as shown in Figure 2. 

 

Figure 2 Schematic of film orientation in bench top weld system 

The supplier indicated that both OPP layers were heat sealable. The variable 

layers differed in thickness, stiffness, and coefficient of friction. The variable layers 
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for the F2A, F2B, and F8 materials were slip modified to lower the coefficient of 

friction resulting in faster, more efficient processing and package manufacturing. It 

is unknown whether the film was produced by casting or blowing or whether it was 

oriented in the machine or transverse direction or both. The differences in the OPP 

layers are summarized in Table 1. 

Table 1 Distinguishing characteristics of variable OPP layers 

Material ID Distinguishing Characteristics Weight (g) 

F2A Printable, Lower Coefficient of Friction 70 

F2B Printable, Lower Coefficient of Friction 90 

F8 Lower Coefficient of Friction 90 

CB High barrier 80 

PW Metallized 70 

YH Metallizable 70 

Thesis Organization 

Chapters 2 and 3 are modified journal articles that both explain experimental 

characterizations of the polyolefin film materials described in this chapter. Chapter 

2 investigates the peel strength, shear strength, and tearing force responses of 

materials welded on a bench top system. Chapter 3 details research that examined 

the peel strength of the top and bottom seals of bags created in a vertical form, fill, 

seal packaging machine. Chapter 4 summarizes the conclusions drawn from both 

studies and offers recommendations for future investigation. References for the 

contents of each chapter are aggregated prior to the Appendices. 
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CHAPTER 2. PEEL AND SHEAR STRENGTH AND TEAR RESISTANCE OF 

ULTRASONICALLY SEALED COEXTRUDED POLYOLEFIN FILMS FOR PACKAGING 

APPLICATIONS 

Modified from a paper to be submitted to Polymer Engineering and Science 

J. Riedl, D. Grewell, D. R. Raman1, M. Kessler2 

Abstract 

The aim of this study was to identify the set of welding parameters that 

yields the highest weld strengths in six different triple-layer, coextruded polyolefin 

films. The parameters investigated include weld forces, energy delivery, and 

amplitude.  Welds were made using an ultrasonic plunge welding system. Weld 

performance was determined by peel and shear strength and tearing force. 

It was observed that energy and weld force had a significant effect on peel 

strength for the majority of the materials and the highest peel strength was found at 

high weld forces and high energies for all materials. Low weld energy and low weld 

force were observed to produce high shear strength welds for all materials. 

However, the results for tearing force were inconsistent amongst all six materials. 

                                                        

 

1 Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50010 
2 Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50010 
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The highest tear resistance was found with welds created with the highest force and 

amplitude and at mid-range energy levels. 

Introduction 

This study focused on characterizing the strength of ultrasonic welds made in 

the six polyolefin films. Welds similar to these can be used to seal film of various 

materials creating bags used for packaging. These seals create a barrier protecting 

products from air, water, and chemical infiltration. Bags of this type are used for 

packaging  foods, such as potato chips, as well as other applications. 

Ultrasonic welding systems are typically controlled by factors such as horn 

and anvil size and shape, frequency, amount of energy delivered, weld time, joint 

type, and weld force (the normal force applied to the part [5]). For manufacturing, it 

is critical to identify a suitable combination of weld parameters in order to meet the 

design requirements for the product specification (joint performance). One of the 

most critical requirements is weld strength. Weld strength can be determined in a 

number of ways and this study, three approaches were examined: peel strength, 

shear strength, and tearing force. 

Several welding parameters were varied during preliminary welding trials at 

Branson Ultrasonics Corporation (BUC) (Danbury, CT) in order to identify the 

boundaries of an experimental design space that could be investigated in more 

detail. These parameters included several discrete energy levels, ranging from 200 

to 400 J, three discrete amplitudes from 0.025 to 0.032 mm, and three discrete weld 

forces, from 412 to 620 N. 
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Welds created using these initial parameters were inspected visually and 

findings were documented. Evidence of excessive welding, known as over weld, is 

shown in Figure 3.  An example of a weld not fully sealed for the length of the horn 

and anvil, also known as under weld, is shown in Figure 4. Welds were also 

inspected for contamination. 

 

Figure 3 Excessive over weld condition 

 

Figure 4 A complete weld (left) and example of under weld (right) 

The final experimental design space and various settings that were studied 

are detailed in Table 2. Trigger force, the force threshold at which ultrasonic energy 
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is activated [5], was not varied independently and was set to 95% of weld force. All 

other processing factors such as frequency and joint type, horn and anvil design, 

were held constant. There were 45 total process parameter combinations in the full 

factorial experimental design and five weld specimens of each of the six materials 

were made during each treatment. All welds were analyzed for three response 

variables: peel strength, shear strength, and tearing force. 

Table 2 Design of experiment factors 

Factors Levels 

Energy (J) 

400 

300 

250 

200 

100 

Amplitude (mm) 

0.032 

0.029 

0.025 

Weld Force (N) 

620 

517 

412 

 

It was believed that all three of these variables—weld energy, amplitude, and 

force—would affect weld strength as these parameters affect heating, squeeze flow, 

and interfacial healing [6]. The objective of this study was to identify the set of 

parameters that yields the highest weld strength. 
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Experimental Procedure 

 All welds for this study were created at BUC using a 30 kHz Branson 2000X 

1500 W power supply, single converter, and gold booster with a gain of 1:1.5. The 

3:1 gain horn was a Branson rectangular slotted riser back made of uncoated 

titanium. It was 152.4 mm long with a 12.7 mm wide front face and a 38.1 mm back 

stock. The anvil was solid hardened steel with a triple solid bar pattern, which is a 

common configuration for packaging. The Branson 2000X system was set to the 

energy mode, meaning that the power supply monitors the dissipated power as a 

function of time and discontinues the weld cycle once a preselected value of energy 

has been delivered to the part [6]. 

Table 3 Typical ultrasonic welding cycle [6] 

Step Typical Time (s) 

Load parts 
Manually 3 – 5 

Automated 0.1 – 3 

Press palm buttons to 
activate process 

Manually 1 – 2 

Automated 0 – 0.5 

Head lowers 0.25 – 2 

Ultrasonic energy on 0.1 – 10 

Hold time 0.1 – 10 

Head raises 0.25 – 2 

Remove parts 
Manually 3 – 5 

Automated 0.1 – 3 

 

Specimens were cut to approximately 350 mm × by 200 mm rectangles and 

folded in half. The folded end was secured in a clamp. The remainder was stretched 
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over an anvil and secured as shown in Figure 5, and the welder was actuated. The 

specimen was labeled and the following data was documented: material ID, cycle 

number, specimen number, energy, amplitude, weld force, and trigger force. Table 3 

shows the typical weld operations and cycle times for each operation. 

 

Figure 5 Photograph of weld configuration 

The resultant specimens had a cross-section as shown in Figure 6. The 

welded seal was 152.4 mm wide and approximately 38 mm from the fold. Three 

samples were cut from each weld specimen and each was subjected to a different 

physical performance test: tearing force, peel, and shear strength as shown in Figure 

7. 
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Figure 6 Diagram of cross-section of welded specimen 

  

 

Figure 7 Schematic of individual test specimen locations for weld specimen 

Peel Strength Testing 

Peel strength was determined by a procedure based on the ASTM 

International D882-12 Standard Test Method for Tensile Properties of Thin Plastic 

Sheeting [9] though the elongation aspects of ASTM D882 were not used. Specimens 

met the size and shape requirements outlined in ASTM D882. Specimens were cut to 
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25 mm width using a paper cutter with a sliding metal blade. Specimen length 

varied from 65 to 150 mm, and specimens of excessive length were trimmed using 

ceramic scissors. 

Peel strength measurements were taken using an Instron (Norwood, MA) 

Model 4502 load frame with grip distance of 50 mm and crosshead speed of 25 

mm/min. Mechanical wedge action grips were used, and the grip surface was 

covered with 0.5 mm thick Nexcare Absolute Waterproof First Aid Tape to prevent 

slip and puncture of the specimens because of the sharp diamond serrated finish on 

the face of the jaw grips. 

 

Figure 8 Diagram of specimen placement for peel strength testing 
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Both legs of the sample were placed into the grips such that the weld was 

centered between the grips as shown in Figure 8. The bottom grip remained 

stationary and the top grip traveled 20 mm upward or until the weld failed. The 

measured maximum load was documented. 

Shear Strength Testing 

Shear strength was also determined by a procedure based on ASTM D882 [9]. 

Again, the elongation specifications of the standard were not used. Specimens were 

cut to the same dimensions using the same method as for peel strength testing 

described above. However, the loop in the specimens was cut so the cross-section 

would resemble an “X”.  

Shear strength measurements were made with the Instron Model 4502 load 

frame, with grip distance of 50 mm and crosshead speed of 25 mm/min. Mechanical 

wedge action grips were again covered with 0.5 mm thick Nexcare Absolute 

Waterproof First Aid Tape to prevent slip and puncture of the specimens. 



18 

 

 

Figure 9 Photograph of specimen placement for shear strength testing 

The top right leg of the “X” was placed in the top jaw grip, and the bottom left 

leg was secured in the bottom jaw grip as shown in Figure 9. The weld was centered 

between the grips while maintaining at least 6 mm of film in the grips. The bottom 

grip remained stationary, and the top grip traveled 75 mm upward or until the weld 

failed. The measured maximum load was documented and used to calculate the 

stress endured based on the area of the three bar pattern on the anvil over the 

width of the test specimen, 3×(0.6 mm × 25 mm). The maximum shear stress 

sustained prior to failure is equivalent to shear strength [10]. 
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Tear Resistance Testing 

Tear force was measured according to ASTM D1922-09 Standard Test 

Method for Propagation Tear Resistance of Plastic Film and Thin Sheeting by 

Pendulum Method [11]. This method measures the energy absorbed by the 

specimen when a tearing force is applied to a pre-existing slit in the material. 

Specimens were cut using ceramic scissors in compliance with the template as 

shown in Figure 10.  

Measurements were made with an Oakland Instruments Model ME-800 

Elmendorf Tear Tester (Minneapolis, MN) outfitted with an 800 g pendulum. 

Specimens were clamped into the vice with the constant radius section pointing 

upward. The slit was centered between the twin vise jaws. One jaw was connected 

to the tester base and kept stationary throughout the test. The other jaw was 

attached to and thus moved along with the pendulum. 

 

Figure 10 ASTM D 1922 tear propagation template [11] 



20 

 

Prior to testing, the pendulum was swung without a specimen in the vice to 

verify that the pointer reported a zero reading. The orientation in Figure 11 shows 

the beginning of the test, when the pendulum was secured at its maximum height 

and potential energy position. To initiate the test, a release was pressed and the 

pendulum swung. The pendulum slowed as it tore the film, indicating that some of 

the kinetic energy from its motion was absorbed by the specimen [12]. After 

specimen failure, the pendulum was stopped and the test result was read from the 

indicator on the pendulum. 

The result was a percentage of maximum potential energy. This result was 

used to calculate tearing force (in units of force) as shown in Equation 3. A reading 

of 100% indicates that all potential energy of the pendulum was absorbed by 

tearing the specimen. For example, for a tearing force reading of 5% the tearing 

force would be 392 mN as shown in Equation (3) [11]. 

            
 

  
        (3) 
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Figure 11 Specimen prior to tearing force testing  
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Results and Discussion 

The three objectives of the experiments described in this chapter were to 

determine the optimum 1) weld force, 2) amplitude, and 3) energy to produce 

strong welds.  It was expected that excessively high energy, amplitude, and weld 

force would each increase the rate of internal heating at the faying surface, resulting 

in excessive squeeze flow and reduced weld strength. Results ranged from 1.6 to 31 

N for peel strength testing, 0.05 to 5.6 MPa for shear strength, and 78 to 2,600 mN 

for tearing force. 

The response variables were plotted as function of energy for each of the six 

materials. Spline curve lines were added in all of the graphs and are shown for 

visualization only. While they approximate the response as a continuous curve 

across energy levels, response data only exists at discrete energy values. All error 

bars correspond to one standard deviation with a population of four or five. 

These results were then analyzed in JMP statistical software using 3-way 

Analysis of Variance (ANOVA) with replications to identify statistically significant 

relationships between the three single terms and four cross terms  variables and the 

three response (dependent) variables (see Table 4). Effects test tables were created 

to determine the probability values, or p-values, for each independent variable. Low 

p-values, below the 0.05 level of significance adjusted for the total number of effects 

as shown in Equation (4), indicated that the means of the response variables were 

dependent on the explanatory variables. 
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Table 4 Seven main and interaction effects for benchtop welds 

Main Effects Interaction Effects 

Energy Energy and Amplitude 

Amplitude Energy and Weld Force 

Weld Force Amplitude and Weld Force 

 Energy, Amplitude, and Weld Force 

 

   
    

 
       (4) 

In addition, all results were analyzed in JMP to determine whether 

statistically significant relationships existed between the three single term and four 

cross term explanatory variables and the coefficient of variance, Equation (5), for 

each of the response variables. That is to say, statistical tests were conducted to 

determine if the independent variable affected the repeatability of the dependent 

variables. Effects tests tables were created to determine the p-values for each 

explanatory variable. P-values less than the adjusted level of significance, 0.007, 

indicate that the Cv of the response variable was dependent on the explanatory 

variables. 

    
 

 
 (5) 

The test results for the coefficient of variance for peel strength and tear 

resistance were not found to be statistically significant and are not detailed. A 

discussion of the significant relationships between coefficient of variance for shear 

strength and the dependent variables is provided in the “Coefficient of Variance of 

Shear Strength Results” in the following section. 



24 

 

Peel Strength Results 

 The p-values for peel strength in Table 5 show evidence of a significant effect 

of amplitude on peel strength for F2A and YH materials, although this relationship is 

not clear in Figure 12 and Figure 17. Table 5 also shows an interaction effect of 

energy and weld force for peel strength for those materials. In more detail, the 

effects of energy and weld force were dependent on each other [13]. This can be 

seen by comparing the different slopes of the curves in Figure 12 and Figure 17.  It is 

seen that the slope of the lines (peel strength as a function of energy) is higher at 

higher weld forces.  This is likely the result of better coupling of the horn to the part 

at the higher forces, allowing better heating.  In addition, the higher weld forces may 

have promoted better alignment between the horn and the anvil, in turn promoting 

more uniform welding.  Because this higher energy and high force did not result in 

lower weld strength, it is suggested that no effects of excessive squeeze flow were 

seen and the energy and force levels were below the critical value that would 

promote this adverse effect.  

The peel strength for materials F2B, F8, and PW were significantly affected 

by energy and weld force. These were not interaction effects. For these materials, 

peel strength was generally proportional to weld force and energy. The overall slope 

of the curves in Figure 13, Figure 14, and Figure 16 are very similar for each weld 

force level, unlike the previous plots of interaction effects. This suggests that higher 

energy and force levels promoted better fusion of the faying surfaces independently. 
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Again, this effect would be limited at higher levels as a result of excessive welding 

and burn through. 

Table 5 also indicates a significant interaction effect between energy and 

amplitude for the CB material. In more detail, Figure 15 shows that the slope of peel 

strength as a function of energy appears to be dependent on amplitude (which is 

statistically supported). For example, in this case peel strength increased for the 400 

J level as amplitude increased. This could be because higher amplitudes promoted 

more uniform welds (approaching the thickness of the film thickness) and the 

higher energy promoted better fusion.  In more detail, at the high amplitude, the 

relative standard deviation (experimental error) is 25%, while at the lower energy 

and amplitude the relative standard deviation is as high as 50%.  This is in 

agreement with the fact that higher amplitudes promote more uniform welds as 

long as the amplitude and energy are not excessive enough to promote burn 

through and weld or film damage. 
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Figure 12 Peel strength (N) as a function of energy (J) for F2A 

 

Figure 13 Peel strength (N) as a function of energy (J) for F2B 
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Figure 14 Peel strength (N) as a function of energy (J) for F8 

 

Figure 15 Peel strength (N) as a function of energy (J) for CB 
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Figure 16 Peel strength (N) as a function of energy (J) for PW 

 
 

Figure 17 Peel strength (N) as a function of energy (J) for YH 
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Table 5 P-values for peel strength 

Source of Variation 
Material ID 

F2A F2B F8 CB PW YH 

Energy <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* 

Weld Force <0.0001* <0.0001* <0.0001* 0.0090 <0.0001* <0.0001* 

Energy×Weld Force <0.0001* 0.4882 0.2764 0.3208 0.2399 <0.0001* 

Amplitude 0.0002* 0.0088 0.0123 0.0002* 0.0445 <0.0001* 

Energy×Amplitude 0.1444 0.2642 0.3564 0.0005* 0.4469 0.1671 

Weld Force×Amplitude 0.5683 0.0660 0.7528 0.1533 0.5367 0.1988 

Energy×Weld 
Force×Amplitude 

0.4164 0.8854 0.2386 0.5006 0.2920 0.3940 

*p-value < α indicates significant difference in means 

 

Shear Strength Results 

 Table 6 indicates a significant interaction effect between energy and weld 

force for shear strength for all materials. This is supported by Figure 18-Figure 23, 

where shear strength is generally inversely proportional to energy. In more detail, 

shear strength is relatively high for all weld forces at lower energy levels and low 

for forces of 517 and 620 N at the 300 and 400 J energy levels. It is believed that at 

the higher energy and force settings, the weld experiences burn through (which was 

visually observed) and excessive welding resulted in a loss in weld strength. 

It is important to note that this was not seen in the peel strength test because 

here, the ultimate force at failure at the highest weld strengths was 26 to 31 N, while 

in the shear strength tests the ultimate forces were as high as 85 to 253 N. Thus, the 

effect of over weld was not seen in peel tests. This pattern was consistent across the 
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balance of the materials, with the exception of some high strength values at the mid-

energy levels for materials F8 and PW. 

Material F2A also exhibited a significant interaction effect between energy 

and amplitude. This can be seen in Figure 18, where shear strength is inversely 

proportional to energy as amplitude increases. Again, the reason for this loss in 

weld strength is probably related to over welding and the onset of burn through. 

Materials F2B, CB, and YH also exhibited a significant relationship between 

shear strength and amplitude according to the p-values in Table 6. However, this is 

difficult to differentiate from Figures Figure 19Figure 21, and Figure 23. 

 

 

Figure 18 Shear strength (MPa) as a function of energy (J) for F2A 
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Figure 19 Shear strength (MPa) as a function of energy (J) for F2B 

 

Figure 20 Shear strength (MPa) as a function of energy (J) for F8 
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Figure 21 Shear strength (MPa) as a function of energy (J) for CB 

 

Figure 22 Shear strength (MPa) as a function of energy (J) for PW 
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Figure 23 Shear strength (MPa) as a function of energy (J) for YH 

Table 6 P-values for shear strength 

Source of Variation 
Material ID 

F2A F2B F8 CB PW YH 

Energy <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* <0.0001* 

Weld Force <0.0001* <0.0001* <0.0001* <0.0001* 0.1850 <0.0001* 

Energy×Weld Force <0.0001* <0.0001* <0.0001* <0.0001* 0.0016* <0.0001* 

Amplitude 0.0095 0.0001* 0.8107 0.0009* 0.8359 0.0036* 

Energy×Amplitude 0.0002* 0.2398 0.2999 0.1225 0.2967 0.0217 

Weld Force×Amplitude 0.2647 0.0253 0.3415 0.7128 0.3828 0.5614 

Energy×Weld 
Force×Amplitude 

0.0847 0.5445 0.4641 0.0531 0.6800 0.0773 

*p-value < α, indicates significant difference in means 
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Coefficient of Variance of Shear Strength Results 

 The p-values for the coefficient of variance of shear strength in Table 7 show 

evidence of a significant effect of energy for materials F2B, CB, and PW. This 

evidence is seen in Figure 24, Figure 25, and Figure 26. The figures show that the 

coefficient of variance is proportional to energy. It is believed that there is a critical 

energy value of 300 J at which point burn through may start to occur.  When burn 

through is initiated, the effects of excessive heating compound the burn through, 

resulting in a wide range of weld strengths.  In some cases, the burn through did not 

initiate, and relatively strong welds were produced.  These two possible outcomes 

resulted large experimental error.  This compounding effect is most likely caused by 

excessive heating resulting in a disproportional increase in loss modulus, resulting 

in thermal “run away” [6]. 

Table 7 also indicates significant p-values for the effect of weld force and the 

interaction effect of energy, weld force, and amplitude on the Cv of shear strength for 

material YH. All three explanatory variable effects on Cv were dependent on each 

other. This can be seen in Figure 27. For example, at low amplitude and low energy, 

the shear strength Cv is low for all weld forces. At higher amplitudes, the Cv 

increases at the higher energies for the lower weld forces. It is seen that the highest 

weld force, lowest energies, and highest amplitude had the most variance. Again it is 

believed that at higher energy and amplitude values, there were critical values, that 

once exceeded, resulted in possible over welding, and once initiated, the processes 
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would promote excessive over welding. However, it is clear that in all cases higher 

weld force resulted in higher variance.  

Excessive squeeze flow and burn through is more likely to occur at high 

energy and high weld force levels compared to lower energy and weld force levels. 

Along with burn through, inconsistencies occur in the weld diffusion zone, which 

lead to more variation in weld strength. 

 

Figure 24 Cv of shear strength as a function of Energy (J) for F2B 
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Figure 25 Cv of shear strength as a function of Energy (J) for CB 

 

Figure 26 Cv of shear strength as a function of Energy (J) for PW 
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Figure 27 Cv of shear strength as a function of Energy (J) for YH 

Table 7 P-values for coefficient of variance for shear strength  

Source of Variation 
Material ID 

F2A F2B F8 CB PW YH 

Energy 0.2566 0.0003* 0.2445 <0.0001* 0.0019* 0.0425 

Weld Force 0.8713 0.0493 0.8381 0.8364 0.0096 0.0040* 

Energy×Weld Force 0.0156 0.0089 0.2754 0.5810 0.0132 0.6158 

Amplitude 0.0489 0.2874 0.3141 0.1312 0.2522 0.1717 

Energy×Amplitude 0.5692 0.0805 0.4225 0.1259 0.8371 0.4831 

Weld Force×Amplitude 0.0877 0.3883 0.6256 0.2439 0.5012 0.9164 

Energy×Weld 
Force×Amplitude 

0.3763 0.2605 0.9985 0.2014 0.4395 0.0013* 

*p-value < α, indicates significant difference in means 
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Tear Resistance Results 

Materials F2A and F2B both exhibited a significant interaction effect between 

energy and amplitude as seen in Table 8. In more detail, Figure 28 and Figure 29 

show tearing force is generally inversely proportional to energy increases at the 

lower amplitude setting. However, it is generally proportional to energy at higher 

amplitude settings. This pattern is slightly more obvious for the F2A material. It is 

believed that these observations are related to a balance of over welding (burn 

through) as well as sufficient fusion to produce a relatively strong weld. It is 

important to note that there is significant experimental error (large error bars), 

which is typical of tear testing results. 

Material F2B also showed an interaction effect for weld force and amplitude. 

Figure 29 shows moderate and flat tearing force across amplitudes for the two low 

weld forces and increasing tearing force over amplitudes at the highest weld force. 

This can likely be explained by brittleness caused by burn because of excessive 

squeeze flow at higher amplitudes and weld forces. 

Weld force was also a significant main effect for F2A, F2B, F8, and PW as 

indicated in Table 8. For the PW material, shown in Figure 32, low weld force 

resulted in higher weld strength. This is incongruent with the other five materials, 

but within the range of being explained by experimental error. Figure 30 show the 

tearing force being consistently proportional to high weld force, especially at the 

200 to 300 J energy levels. This suggests that at these levels there is likely better 

coupling of the horn to the part, allowing better heating and better alignment 
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between the horn and the anvil, in turn promoting more uniform welding. Tearing 

force decreased at the 400 J level which is believed to be an indication of excessive 

squeeze flow and over weld conditions resulting in lower strength. 

 Amplitude was the only significant main effect for material YH indicated by 

Table 8. Tearing force is slightly higher across all energies and weld forces at the 

highest amplitude (Figure 33). This may be explained by the fact that higher 

amplitudes promoted more uniform welds (approaching the thickness of the film 

thickness). 

 There were no significant effects for material CB, as shown in Table 8 and 

Figure 31. 

 

Figure 28 Tearing force (mN) as a function of energy (J) for F2A 
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Figure 29 Tearing force (mN) as a function of energy (J) for F2B 

 

Figure 30 Tearing force (mN) as a function of energy (J) for F8 
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Figure 31 Tearing force (mN) as a function of energy (J) for CB 

 

Figure 32 Tearing force (mN) as a function of energy (J) for PW 
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Figure 33 Tearing force (mN) as a function of energy (J) for YH 

Table 8 P-values for tearing force 

Source of Variation 
Material ID 

F2A F2B F8 CB PW YH 

Energy 0.3968 0.2597 0.0565 0.8662 0.0228 0.5300 

Weld Force <0.0001* <0.0001* <0.0001* 0.0664 0.0002* 0.6702 

Energy×Weld Force 0.0073 0.0722 0.5359 0.0625 0.0720 0.0525 

Amplitude 0.0068* 0.0016* 0.0303 0.0548 0.2091 0.0068* 

Energy×Amplitude 0.0008* 0.0028* 0.5107 0.8570 0.0686 0.0185 

Weld Force×Amplitude 0.0150 0.0058* 0.1183 0.8999 0.4163 0.1993 

Energy×Weld 
Force×Amplitude 

0.1786 0.5363 0.1000 0.2166 0.7200 0.6183 

*p-value < α, indicates significant difference in means 
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Conclusions 

The aim of this study was to identify the set of parameters that yielded the 

highest weld strengths. Three explanatory variables (independent)—energy, 

amplitude, and weld force—were investigated to determine whether any of them 

had a significant effect on peel strength, shear strength, or tearing force as well as 

the effect of the independent variables on the experimental error. All three 

explanatory variables were expected to have an inversely proportional relationship 

with weld strength. 

Results for all six materials were analyzed to determine whether a set of 

parameters resulted in high peel strength, shear strength, and tear resistance 

simultaneously. It as was seen that the 0.032 mm amplitude and 620 N weld force 

resulted in relatively high peel and shear strength as well as tear resistance for the 

majority of the materials. There was no single energy level that resulted in relatively 

high weld strengths for all responses. The 400 J level resulted in the highest peel 

strength welds for all materials, the 300 J setting had high shear strength outputs for 

half of the materials, and the highest tear resistance was recorded most often at the 

200 J level. In general the optimized weld parameters for all three response 

variables, would be an amplitude of 0.032 mm, weld force of 620 N, and weld energy 

of 300 J. 

The highest peel strength was found at high weld forces and high energies for 

all materials, and for select materials, high amplitudes resulted in even higher peel 

strength. Energy and weld force were significant factors for almost all materials. 
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Because higher energy and high force did not result in lower weld strength, it is 

suggested that the effects of excessive squeeze flow were not seen and the energy 

and force levels were below the critical value that would promote this adverse effect 

despite visual evidence of over weld. It is possible that the displacement of the 

metallized layer caused an exaggerated appearance of over weld. 

All independent variables were significant for different materials with 

respect to tear resistance. For the F2A, F2B, F8, and CB materials, the highest tear 

resistance was the result of high force, high amplitude, and mid-range energies, 

although none of the variables were statistically significant for the CB material. The 

YH material was strongest at higher amplitudes as well as mid-range force and 

energy levels. Despite having a statistically significant dependence on energy, 

results for the PW were largely indistinguishable. 

Both energy and weld force had significant effects on shear strength. For 

most combinations, results for shear strength did reflect the study predictions with 

the highest levels of shear strength recorded at the low energy and weld force levels. 

This may be because the shear strength trials had the least dramatic failures of the 

three analyses. Peel strength test specimens often exhibited signs of the layers 

pulling apart from each other (delamination), and the material was also known to 

break at the weld rather than peeling apart. Tear specimens sometimes tore 

obliquely or broke along the weld. Those volatile failure modes were audibly noisier 

than when a specimen tore or peeled cleanly. The sound that accompanied a failure 

was a release of energy, and that sudden release came as a result of being subjected 
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to maximum load. Further analysis could be completed in order to attempt to 

correlate the categorical failure mode with the explanatory variables and perhaps 

also the response variable to determine whether there was an additional 

relationship that had not yet been considered. 

In addition, all results were analyzed to determine whether statistically 

significant relationships existed between the independent variables and the 

coefficient of variance for each of the response variables. The tests were not found 

to be statistically significant for peel strength or tear resistance; however, energy, 

weld force, and an interaction effect between energy, weld force, and amplitude 

were found to be significant sources of variation for several of the materials. It is 

believed that some combinations of these parameters resulted in excessive heating. 

In this instance, over weld occurred and welds were weak. If this did not occur, 

strong welds were created consistently.
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CHAPTER 3. PEEL STRENGTH OF COEXTRUDED POLYOLEFIN BAGS CREATED 

IN A VERTICAL FORM, FILL, SEAL MACHINE WITH ULTRASONIC END SEALS 

Modified from a paper to be submitted to Packaging Technology and Science 

J. Riedl, D. Grewell, D. R. Raman1, M. Kessler2 

Abstract 

The peel strength of welds created on a vertical form, fill, seal (FFS) machine 

fitted with an ultrasonic horizontal end sealer was investigated in this study. Six 

different proprietary triple-layer, coextruded polyolefin films were tested over a 

number of machine settings, including two production rates, three energies, and 

three amplitudes. The aim of this study was to identify the set of parameters that 

yielded the highest weld strengths for the both top and the bottom end seals.  

It was observed that low energy and amplitude resulted in relatively high 

strength for the top weld of one material and low production rate resulted in high 

strength for the top weld of two materials as well as in the bottom weld for two 

materials. The peel strength for the fifth material was directly proportional to 

energy, and data for the sixth material were inconclusive. 

                                                        

 

1 Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50010 
2 Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50010 
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Introduction 

This research focuses on optimizing the strength of the end seals of bags 

made from six polyolefin films. Among other applications, bags of this type are 

commonly used to provide air, water, and chemical barrier packaging for foods such 

as potato chips. The industry standard for packaging such free-flowing products is 

using a FFS machine. 

In a FFS machine, a roll of packaging film is placed on a reel and fed through a 

series of rollers that align and provide tension to the material. The film is fed around 

a forming shoulder as shown in Figure 34. A tube of film is created by a vertical fin 

or overlap seal usually made with a heat bar. The end sealing jaws closes, and two 

horizontal seals are made simultaneously. The upper seal forms the bottom for the 

bag being created in this cycle.  The product to be packaged is dropped from a 

hopper down the tube into the bag. The film is advanced downward, and the end 

sealing jaws are activated again to create the top horizontal seal of the current bag 

as well as the bottom seal for the next bag above it. Finally, a blade slices between 

the top and bottom seals and the next cycle begins [3]. 
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Figure 34 Schematic of vertical form, fill, seal machine [3] 

The welds investigated in this study were created in a FFS machine equipped 

with ultrasonic end sealing, pneumatically controlled actuators. Similar to the study 

with the bench top plunge weld systems, weld quality can be controlled by varying 

standard ultrasonic machine factors such as horn size and shape, anvil size and 

shape, amount of energy delivered, amplitude, and frequency of vibration. However, 

additional process factors unique to producing bags also influenced weld strength. 

These process factors include, but are not limited to, production rate, open and close 
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rates of the end seal actuators, and machine timing factors. All process steps in a FFS 

system are timed by a virtual cam system. One cycle is represented by the virtual 

cam rotating through 360°. All process steps during a cycle start and stop at certain 

set points identified by degree. These processes include, but are not limited to, film 

advance, vertical seal, end seal, ultrasonic activation, and cool. 

Screening Experiments 

It is critical to identify a suitable combination of weld parameters in order to 

meet all design requirements and optimize the packaging process. Several sets of 

preliminary bags were created at Branson Ultrasonics Corporation (BUC) (Danbury, 

CT) from December 17-20, 2012 to identify the boundaries of an experimental 

design space to be investigated in more detail. Parameters examined in these 

screening experiments included production rate, ranging from 20 to 120 bags per 

minute (bpm), end seal start from 130° to 170°, energies from to 300 to 1800 J, and 

the entire range of allowable amplitudes from 0.016 to 0.032 mm. 

Bags created using this broad set of screening parameters were inspected 

visually for puckering or folds, as these would likely be unsatisfactory to a customer. 

In order to determine whether the chosen machine parameters created airtight 

seals, these early specimens were subjected to burst and vacuum testing. 

Burst testing was performed using a TM Electronics (Boylston, MA) BT 

Integra-Pack© test instrument. A needle was inserted into a bag and sealed to the 

bag with an adhesive O-ring as shown in Figure 35. Air was pumped into the bag 

through the needle and pressurized to 15.8 kPag. The machine measured pressure 
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drop and readings from 0% (no drop) to 50% drop were considered acceptable. 

Several bags were tested for the broad range of parameters described earlier and no 

bags passed the test. In most cases, a tear propagated where the needle penetrated 

the bag and created a leak. This test methodology was determined to be insufficient 

to detect leaks. 

 

Figure 35 (Left) Burst test needle; (Right) Tear propagation at needle location 

 

Figure 36 Vacuum chamber with specimen, lid, hose, and vacuum pump 
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Vacuum testing was then conducted to ensure that the sealing method 

provided the required airtight seals. Bags were placed into a vacuum chamber filled 

to approximately 3/4 with water. A plastic container with holes in the bottom was 

placed below the lid of the chamber to ensure the bags remained submersed. A 

small hose connected a hole in the lid of the chamber to a vacuum pump, all shown 

in Figure 36. The pump produced a 550 mmHg vacuum which was held for 20 

seconds. Again, many of the tested bags leaked. Upon further inspection, 

independent of energy and amplitude settings, the welds exhibited systematic over 

weld in the top right corner and under weld in the bottom left corner relative to the 

FFS machine as shown in Figure 37. 

Several attempts were made to better align the anvil; however, little success 

was achieved in producing more uniform welds. Also, it was not possible to adjust 

the regulator on the pneumatic line going to the end seal control because of machine 

design. In order to address this problem, representatives at BUC decided to replace 

the pneumatically controlled end seal actuators with actuators driven by servo 

motors. End seal jaws, shown in Figure 38, with servo motors provided more 

precise control of angular positioning than those with pneumatic actuators. This 

resolved the uniform heating issues. 
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Figure 37 Locations prone to over weld and under weld

 

Figure 38 FFS machine equipped with ultrasonic horizontal sealer 
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 A second set of preliminary bags was created at BUC on April 8-9, 2013, 

starting with the same parameters used in December 2012, production rates 

ranging from 20 to 120 bags per minute (bpm), end seal start from 130° to 170°, 

energies from to 300 to 1800 J, and the entire range of allowable amplitudes from 

0.016 to 0.032 mm. 

However, slow production rates (20 to 60 bpm) were eventually excluded 

from further investigation because any rate significantly lower than the industry 

standard of 100 bpm would likely not be accepted by a potential customer. 

Screening experiments showed that for the 80 to 120 bpm production rates an end 

seal start of 150° (on a 360° rotor) and greater was too late in the cycle for smooth 

machine operation. The 120 bpm speed was ultimately eliminated because the high 

coefficient of friction of the material caused bunching around the end seal and poor 

bag quality. In addition, it was seen in screening experiment specimens that the 

ultrasonic power supply did not have enough time in the fast cycle time to deliver 

energies as high as 1800 J. The highest peak energy delivery reported was only 853 

J. 

Creating high quality end seals at state-of-the-industry production rates was 

a key design requirement for this system. Therefore, the final set of experimental 

parameters for this study comprised two production rates of 80 and 100 bags per 

minute (bpm), a constant end seal start at 130°, three energies ranging from 300 to 

900 J, and the entire range of allowable amplitudes from 0.016 to 0.032 mm as 

shown in Table 9. Other processing factors such as frequency, weld force, and 
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machine timing were held constant. There were 18 total treatments in the full 

factorial experimental design and five bags of each of the six materials were made 

each treatment, resulting in a total of 540 bags. 

Table 9 FFS machine design of experiment 

Factors Levels 

Energy (J) 

900 

600 

300 

Amplitude (mm) 

0.032 

0.024 

0.016 

Production Rate (bpm) 
100 

80 

 

Both weld energy and amplitude were expected to directly impact weld 

strength, which is inversely proportional to squeeze flow [6]. While the intuitive 

choice of very low process parameters will avoid excessive squeeze flow, interfacial 

healing is critical. Therefore, the lowest sealable energy and amplitude settings were 

used at the highest feasible speed because industry would be interested in increased 

production. The objective of this study was to identify the set of parameters that 

yielded the highest weld strength. 

Experimental Procedure 

All welds for this study were produced at Branson Ultrasonics Corporation 

(Danbury, CT) April 9-11, 2013, using a FFS machine equipped with a 30 kHz 

Branson 2000 DCX power supply and 2000X balun stack. The stack consisted of a 
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two transducers with balun (balancing transformer), two boosters, and one horn. In 

the balun system, two transducers were energized in parallel, shown in Figure 39, to 

drive the large horn without significant heat losses in order to protect the 

piezoelectric material inside. The balancing transformer ensures that each 

transducer operated at the same amplitude, in phase, despite the manufacturing and 

material variances between the two converters [14]. 

 

Figure 39 Balun schematic [14] 

The stack included two 1:1.5 gain boosters and a single Branson Ultrasonics 

rectangular slotted riser back 1:3 gain horn made of uncoated titanium. It was 152.4 

mm long with a 12.7 mm wide front face and a 38.1 mm back stock. The system was 

set to the energy mode, meaning that the power supply monitored dissipated power 
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as a function of time and discontinued the weld cycle once a preselected value of 

energy had been delivered to the part [6]. The FFS machine in this study was 

equipped with servo motor end seal control. 

All rolls of film material were fed into the FFS machine such that the 

metallized OPP layer of the film was on the inside of the bag, at the faying surfaces. 

The machine was set to manual mode and a chain of five empty bags was created for 

each treatment. The blade that separates the bags was removed from the machine 

for safety reasons so the chain of bags was separated by a paper cutter with a sliding 

metal blade. Each bag specimen was labeled and material ID, cycle number, 

specimen number, production rate, energy, amplitude, peak power, peak energy, 

and ultrasonic on time were documented. 

Peel strength was determined by following the ASTM International D882-12 

Standard test method for tensile properties of thin plastic sheeting [9]. Elongation 

aspects of ASTM D882 were not used. Specimens were cut to the proper size and 

shape requirements outlined in ASTM D882. 

One 25 mm wide strip was cut from the left side of the vertical seal of each 

bag using a paper cutter with sliding metal blade as shown in Figure 40. The strip 

was subsequently cut in half crosswise with ceramic scissors and labeled so the top 

and bottom welds could both be analyzed. Specimen length varied from 65 to 150 

mm, and specimens of excessive length were trimmed using ceramic scissors. 
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Figure 40 Schematic of peel test specimen location from bag specimen 

Peel strength measurements were completed with an Instron (Norwood, MA) 

Model 4502 load frame with grip distance of 50 mm and crosshead speed of 25 

mm/min. Mechanical wedge action grips were used, and the grip surface itself was 

covered with 0.5 mm thick Nexcare Absolute Waterproof First Aid Tape to prevent 

slip and puncture of the specimens due to the sharp diamond serrated finish on the 

face of the jaw grips. 
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Figure 41 Diagram of specimen placement for peel strength testing 

Both legs of the sample were placed into the grips such that the weld was 

centered between the grips as shown in Figure 41. The bottom grip remained 

stationary, and the top grip traveled 20 mm upward or until the weld failed. The 

measured maximum load was documented. 

Results and Discussion 

There were three objectives of the experiments in the work, namely to 

determine 1) proper production rate, 2) proper amplitude, and 3) proper energy to 

produce relatively strong welds.  While it was anticipated that weld strength (peel 

strength) would be generally inversely proportional to weld energy and amplitude, 
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it was also anticipated that welds made with excessively low weld energy and 

amplitude would be weak as a result of under welding. Results ranged from 1.2 to 

14 N for peel strength of top welds and 1.7 to 17 N for bottom welds.  

The response variable, peel strength, was plotted as function of energy for 

the top and bottom welds of each of the six materials. Spline curve lines were added 

in all of the graphs and are shown for visualization only. While they approximate the 

response as a continuous curve across energy levels, response data only exists at 

discrete energy values. All error bars correspond to one standard deviation with a 

population of five samples. 

These results were then analyzed in JMP statistical software using 3-way 

Analysis of Variance (ANOVA) with replications to identify statistically significant 

relationships between the three single term and four cross term explanatory 

variables and the three response variables (see Table 10). Effects tests tables were 

created to determine the probability values, or p-values, for each explanatory 

variable. Low p-values, below the 0.05 level of significance adjusted for the total 

number of effects as shown in Equation (6), indicate that the means of the response 

variables were dependent on the explanatory variables. 

Table 10 Seven main and interaction effects for FFS welds 

Main Effects Interaction Effects 

Energy Energy and Amplitude 

Amplitude Energy and Production Rate 

Production Rate Amplitude and Production Rate 

 Energy, Amplitude, and Production Rate 
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       (6) 

Finally, all results were analyzed in JMP to determine if statistically 

significant relationships existed between the three single term and four cross term 

explanatory variables and the coefficient of variance,    
 

 
, for peel strength. That 

is to say, statistical tests were conducted to determine whether the independent 

variable affected the repeatability of the dependent variables. However, none of the 

tests were found to be statistically significant and those results are not detailed. 

Top Weld Results 

Table 11does not show significant effects for materials F2A or PW. The mean 

peel strength for materials F2B, PW, and YH were not differentiable for all of the 

welding parameters, and there was no relationship between peel strength and 

welding parameters, as shown in Figure 42 and Figure 46. 

The p-values for peel strength in Table 11 show evidence of a significant 

effect of production rate on peel strength for the F2B, F8, and YH materials. In 

Figure 43 and Figure 44, it is seen that the lower production rate, 80 bpm, 

consistently resulted in higher weld strength, regardless of energy or amplitude, for 

the top weld of materials F2B and F8, respectively. It is believed that slow 

production rates resulted in less vibration of the frame of the system and allowed 

the system to maintain proper alignment during the welding cycle. It is also seen 

that there is no general trend for peel strength as a function of amplitude or energy, 

other than at the slow rate and lower amplitude.  It is believed that the lower 



61 

 

amplitude resulted in long weld cycles, again allowing the system to stabilize, 

resulting in less machine frame vibrations. 

Although it is counterintuitive, peel strength of the top weld was generally 

proportional to production rate for the YH material. as shown in Figure 47. It is 

believed that this observation is an anomaly resulting from experimental error. 

Table 11 also indicates an interaction effect between energy and amplitude for the 

YH material. The relationship is seen in Figure 47 by the inversely proportional 

relationship between peel strength and energy for the lower amplitudes and the 

proportional relationship at the 0.032 mm amplitude. This suggests that this film 

required less energy to weld and that the high amplitude promoted the onset of 

burn through and over welding. 

As seen from Table 11, for material CB there was a statistically significant 

effect on peel strength as a function of energy, which is also seen in Figure 45. Here, 

peel strength is generally proportional to energy. This may have been the result of 

higher energies promoting better fusion and therefore higher weld strength; 

however, there was no evidence of reaching a critical energy value beyond which 

over welding was seen. 
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Figure 42 Peel strength (N) as a function of energy (J) for top weld of F2A 

 

Figure 43 Peel strength (N) as a function of energy (J) for top weld of F2B 
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Figure 44 Peel strength (N) as a function of energy (J) for top weld of F8 

 

Figure 45 Peel strength (N) as a function of energy (J) for top weld of CB 
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Figure 46 Peel strength (N) as a function of energy (J) for top weld of PW 

 

Figure 47 Peel strength (N) as a function of energy (J) for top weld of YH 
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Table 11 P-values for peel strength for top weld 

Source of Variation 
Material ID 

F2A F2B F8 CB PW YH 

Production Rate 0.9665 0.0005* <0.0001* 0.6601 0.0732 0.0041* 

Energy 0.1881 0.1351 0.7612 0.0070* 0.6781 0.3659 

Production Rate×Energy 0.7976 0.0295 0.0082 0.5610 0.4131 0.9842 

Amplitude 0.3295 0.7708 0.6645 0.4776 0.5441 0.0426 

Production Rate×Amplitude 0.8482 0.0482 0.5357 0.1483 0.3704 0.2498 

Energy×Amplitude 0.5062 0.1294 0.9379 0.9789 0.9190 0.0044* 

Production Rate×Energy 
×Amplitude 

0.4875 0.0405 0.0316 0.4141 0.7700 0.8268 

*p-value < α, indicates significant difference in means 

 

Bottom Weld Results 

P-values for all effects for the bottom weld of all materials are shown in Table 

12. Only three of the materials showed a significant difference in peel strength for 

any of the independent variables: those materials were F2A, F8, and CB. 

While there is no clear explanation as to why the bottom weld was less 

affected by welding parameters, it is suggested that this phenomenon was related to 

the weld configuration. More specifically, the top weld was subjected to a pulling 

action during the welding process as the material was folded and transported 

between the welding head.  The force helped promote burn through as the molten 

film was “ripped” apart when excessive energy was applied.  This pulling force was 

not seen (in our case where no food was in the bag) in the lower seal, making the 

process more robust and less affected by the welding parameters. 
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As indicated in Table 12 and seen in Figure 48 and Figure 50, peel strength is 

generally inversely proportional to production rate for materials F2A and F8.  The 

lower production rate, 80 bpm, consistently resulted in higher peel strength for 

these materials. Again, this was most likely the result of vibration within the 

machine frame. 

Similar to the results for the top weld, Table 12 showed a significant effect on 

peel strength as a function of energy for the bottom weld of the CB material. This is 

also seen in Figure 51, where peel strength is generally proportional to energy. This 

may have been the result of higher energy promoting better fusion and therefore 

higher weld strength. 

Table 12 shows no significant effects for materials F2B, PW, or YH. The mean 

peel strength for these materials were not differentiable for all of the welding 

parameters, and there was no relationship between peel strength and welding 

parameters, as shown in Figure 49, Figure 52, and Figure 53. 
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Figure 48 Peel strength (N) as a function of energy (J) for bottom weld of F2A 

 

Figure 49 Peel strength (N) as a function of energy (J) for bottom weld of F2B 
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Figure 50 Peel strength (N) as a function of energy (J) for bottom weld of F8 

 

Figure 51 Peel strength (N) as a function of energy (J) for bottom weld of CB 
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Figure 52 Peel strength (N) as a function of energy (J) for bottom weld of PW 

 

Figure 53 Peel strength (N) as a function of energy (J) for bottom weld of YH 
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Table 12 P-values for peel strength for bottom weld 

Source of Variation 
Material ID 

F2A F2B F8 CB PW YH 

Production Rate 0.0011* 0.0288 <0.0001* 0.0140 0.2252 0.3280 

Energy 0.8400 0.1917 0.7807 0.0048* 0.0182 0.8856 

Production Rate×Energy 0.1264 0.0088 0.3179 0.1980 0.8965 0.3423 

Amplitude 0.4832 0.2076 0.1284 0.1677 0.0375 0.4332 

Production Rate×Amplitude 0.8653 0.2885 0.6067 0.0685 0.1866 0.3641 

Energy×Amplitude 0.7972 0.3821 0.8227 0.6105 0.4414 0.8434 

Production Rate×Energy 
×Amplitude 

0.4875 0.6672 0.1151 0.5672 0.5355 0.5587 

*p-value < α, indicates significant difference in means 

Conclusions 

The aim of this study was to identify the set of parameters that yielded the 

highest peel weld strengths for ultrasonic end seal welds of coextruded polyolefin 

bags created on a FFS machine. Three explanatory variables—energy, amplitude, 

and production rate—were investigated to determine whether any of them had a 

significant effect on peel strength, shear strength, or tearing force. It was expected 

that excessive welding resulting from excessive energy and/or amplitude may result 

in lower weld strengths. 

 Materials CB and YH both exhibited unexplained effects in both end seals. 

Low energy levels resulted in low peel strength for both the top and bottom weld for 

the CB material. The slower production rate for the top weld of the YH material also 

correlated with lower peel strength. Furthermore, there was a significant 

interaction effect for the top weld of YH. The effect of energy on peel strength 
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changed for different amplitude levels. The lowest energy resulted in the highest 

peel strength for lower amplitude levels but in the lowest peel strength at high 

amplitudes. Not enough is known about either material to make definitive 

explanations for these peculiarities; however, neither of these materials was 

modified to lower coefficient of friction. It is possible that some of the slip modifier 

in the other materials may have migrated to the weld interface during welding, 

enhancing these effects. 

Neither lower energy nor amplitude resulted in significantly stronger welds. 

The only significant effect that behaved as predicted was the production rate for 

materials F2B and F8 for the top weld and materials F2A and F8 for the bottom 

weld. In both cases, lower production rate resulted in higher peel strength. 

The lower production rate, 80 bpm, is slightly slower than what is 

understood to be the industry standard, but it results in stronger welds for three of 

the materials. However, no weld peel strength standard has been provided so it is 

possible that even the lower strength welds are sufficient so long as they are 

reasonably airtight.
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CHAPTER 4. GENERAL CONCLUSIONS 

General Discussion 

The studies in both Chapters 2 and 3 involved ultrasonic welding of six 

coextruded polyolefin films. The goal of these studies was to identify the set of 

parameters that yielded the highest weld strengths and least amount of 

experimental error. Energy, amplitude, and weld force were varied on a bench top 

plunge welding system in the first study. In the second, energy, amplitude, and 

production rate parameters were varied in a vertical form fill seal machine used to 

create bags. It was expected that excessive welding resulting from excessive energy 

and/or force and/or amplitude could result in lower weld strengths. 

Welds made on the bench top system were evaluated using three measures 

of weld strength: peel strength, shear strength, and tearing force. Only the shear 

strength results behaved as predicted. Here, lower energy and weld force had a 

significant relationship with higher strength for all materials. Results for peel and 

tearing force, while including some significant effects, were not conclusive. Results 

were analyzed to determine whether a single set of parameters resulted in high peel 

strength, shear strength, and tear resistance simultaneously. It was seen that the 

0.032 mm amplitude and 620 N weld force resulted in relatively high peel and shear 

strength as well as tear resistance for the majority of the materials. There was no 

single energy level that resulted in relatively high weld strengths for all responses. 

The 400 J level resulted in the highest peel strength welds for all materials, the 300 J 
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setting had high shear strength outputs for half of the materials, and the highest tear 

resistance was recorded most often at the 200 J level. In general the optimized weld 

parameters for all three response variables, would be at amplitude of 0.032 mm, 

weld force of 620 N, and weld energy of 300 J. 

The second study evaluated the peel strength of top and bottom end seals of 

bags created on a high volume packaging machine. For the top weld, the highest peel 

strength did correlate with low energy and amplitude levels for material YH. The 

lower production rate also resulted in higher weld strength for the top weld of 

materials F2B and F8 and the bottom weld of materials F2A and F8. 

In addition, all the results were analyzed to determine whether statistically 

significant relationships existed between the independent variables and the 

coefficient of variance for each of the response variables. The tests were not found 

to be statistically significant for peel strength or tear resistance; however, energy, 

weld force, and an interaction effect between energy, weld force, and amplitude 

were found to be significant sources of variation in shear strength in the first study 

for several of the materials. It is believed that some combinations of these 

parameters resulted in excessive heating. In this instance, over weld occurred and 

welds were weak. If this did not occur, strong welds were created consistently.
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Although some clear trends were identified, results for the two studies are 

inconclusive because of inconsistent results. For example, in Chapter 2, high weld 

force resulted in high peel strength and very low shear strength for all materials and 

high tearing force for the “F” materials. This makes it difficult to determine an 

optimal weld force for overall strength defined by these three measurements. In 

Chapter 3, results were inconsistent between the top and bottom weld. These welds 

are made simultaneously with the same equipment and settings. A set of optimal 

parameters that would work for both top and bottom seal was not determined. 

 

Recommendations for Future Research 

The anonymous material provider originally wanted welds to be created and 

studied in all three possible joint configurations, variable OPP to variable OPP, 

variable OPP to metallized OPP, and metallized OPP to metallized OPP. Only the 

metallized OPP to metallized OPP arrangement has been studied thus far. The first 

recommendation is to conduct studies using the other two possible configurations. 

A second recommendation is to more thoroughly examine the differences in 

the variable layer of the six materials to determine how they impacted the results of 

these studies. For example, the three “F” materials oftentimes had similar results 

and the other three materials reacted much differently. However, it is known that 

some of the materials were modified to decrease the coefficient of friction. During 

welding it was also casually observed that some materials were noisier. Some fed 

through the FFS machine with more tension than others, causing bunching around 
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the forming shoulder and wrinkles at the end seals. Some films even caused the 

polyurethane film advance belts to shed small bits of material. Not enough is known 

about the materials at the time of publication to make an informed inference to 

explain any of these differences. 

 Finally, in the packaging industry cost, production volumes, and meeting 

customer requirements are key metrics. Maximizing weld strength may not be the 

highest priority for customers, such as convenience food manufacturers. However, 

on-the-shelf aesthetics are becoming increasingly important. The parameters that 

result in the best looking, most reliable, and fastest welds that meet the minimum 

strength criteria are more than likely going to be the ones chosen. A final 

recommendation for further research would be to investigate the influence of weld 

parameters on those other key performance criteria: aesthetics, reliability, and 

speed. 
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APPENDIX A. BENCH TOP WELDING PARAMETERS 

Weld Mode Energy 
Pretrigger Off 
Max Timeout 2.000 s 
External U/S Delay Off 
Cycle Aborts Off 
Ground Detect Abort Off 
Control Limits Off 
Collapse Cutoff Off 
Absolute Cutoff 1.0000 in 
Peak Power Cutoff Off 
Hold Time Off 
Afterburst Off 
Afterburst Delay 0.100 s 
Afterburst Time 0.100 s 
Afterburst Amplitude 100% 
Energy Braking Off 
Post Weld Seek Off 
Frequency Offset Off 
Digital Tune 30001 
Test Amplitude 100% 
Actuator Clear Output Off 
Distance 0.1250 in 
Missing Part Off 
Missing Part Abort Min Off 
Missing Part Abort Max Off 

 
Limits  

Reject Limits Off 
Reject Reset Required Off 
+ R Collapse Limit Off 
-  R Collapse Limit Off 
+ R Energy Limit Off 
-  R Energy Limit Off 
+ R Absolute Limit 0.9500 in 
-  R Absolute Limit 0.9000 in 
+ R Power Limit Off 
-  R Power Limit Off 
+ R Time Limit Off 
-  R Time Limit Off 
+ R Weld Force Limit Off 
-  R Weld Force Limit Off 
+ R Trigger Distance Limit Off 
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Visual Quality Limits 

Weld Time Min Off 
Energy Min Off 
Peak Power Min Off 
Weld Collapse Min 0.0140 in 
Total Collapse Min Off 
Total Absolute Min Off 
Weld Force Min Off 
Total Cycle Time Min Off 
Weld Time Max Off 
Energy Max Off 
Peak Power Max Off 
Weld Collapse Max 0.0180 in 
Total Collapse Max Off 
Total Absolute Max Off 
Weld Force Max Off 
Total Cycle Time Max Off 

 

  

-  R Trigger Distance Limit Off 
+ R Band Limit Off 
-  R Band Limit Off 
+ R Freq Limit 30229 Hz 
-  R Freq Limit 29537 Hz 
Suspect Limits Off 
Suspect Reset Required Off 
+ S Collapse Limit Off 
-  S Collapse Limit 0.0140 in 
+ S Energy Limit Off 
-  S Energy Limit Off 
+ S Absolute Limit Off 
-  S Absolute Limit Off 
+ S Power Limit Off 
-  S Power Limit Off 
+ S Time Limit Off 
-  S Time Limit Off 
+ S Weld Force Limit Off 
-  S Weld Force Limit Off 
+ S Trigger Distance Limit Off 
-  S Trigger Distance Limit Off 
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Aed/aod Settings 

Velocity  
Column Position  
Horn ~3:1 gain 
Booster Gold, 1:1.5 gain 
Downspeed Setting 1”/s 
Fixture  

 

Digital UPS 

Ramp Time 0.010 s 
Memory On 
Weld Status On 
Preset Name Defaut 
Seek Time 0.500 s 
Timed Seek Off 

 

System Information 

Calibration Factory 
Power Supply 1500 W 
Control Level F 
Frequency 30 kHz 
SW Version 10.30 
SBC SW Version 10.30 
Calibration Date Run 11/28/12 
Actuator aed/aod 
Cylinder Diameter 2.00 in 
Cylinder Stroke 4.00 in 
PS Lifetime Counter 9637 
Preset Count 25 
Overloads 510 
General Alarm 2895 
PS Serial Number xmh07032776 
Act Serial Number 06115490D 
Power Supply Digital 
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System Configuration 

Language English 
Units USCS 
Password Off 
Start Screen Main 
RS232 Host 
Baud Rate 9600 
General Alarm Reset 
Required 

Off 

Trigger Beeper On 
Error Beeper On 
Alarm Beeper On 
Amplitude Control Internal 
Extra Cooling Off 
Weld Scale 1X 
Test Scale 1X 
Digital Filter On 
Ext Presets Off 
Decimal Place 2 
Sequencing Presets Off 
J3-32 Input Select Preset1 
J3-33 Input Select Preset2 
J3-19 Input Select Preset4 
J3-17 Input Select Preset8 
J3-31 Input Display Lock 
J3-1 Input Ext Signal 
J3-36 Output Disabled 
J3-8 Output Disabled 
J3-22 Output Disabled 
User Inputs 0V 
Ext Start Dly 5.000 s 
Upper Limit 0V 
Ground Detect 0V 
Welder Addr Off 
Frequency Offset Internal 
Hand Held Off 
Distance Start Switch 
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Printer  

Printing On 
Weld Data on Sample Off 
Power Graph on Sample Off 
Amplitude Graph on Sample Off 
Frequency Graph on Sample Off 
Col Distance Graph on 
Sample 

Off 

Velocity Graph on Sample Off 
Force Graph on Sample Off 
Weld History on Sample Off 
Setup on Sample Off 
Weld Data on Alarm Off 
Power Graph on Alarm Off 
Amplitude Graph on Alarm Off 
Frequency Graph on Alarm Off 
Col Distance Graph on Alarm Off 
Velocity Graph on Alarm Off 
Force Graph on Alarm Off 
Weld History on Alarm Off 
Setup on Alarm Off 
X Axis Scale 0.500 s 
Welds per Page 50 
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APPENDIX B. FFS MACHINE PARAMETERS 

End Seal Control 

 Approach Seal Retract 
Distance 1.9950 inches 1.0000 inches 0.2500 inches 
Velocity 12 in/s 3 in/s 12 in/s 
Acceleration 500 in/s2 500 in/s2 500 in/s2 

Deceleration 500 in/s2 500 in/s2 500 in/s2 

Force Target 100.0%   
Force Feedback 0%   

 
Machine Timing 1 

 Start End 
Film Advance 0° 200° 
Vertical Seal Start 185° 
Vertical Seal Dwell 0.500 s (300 machine degrees) 
Vertical Seal Cool On 
Vertical Cool 0° 
End Seal 130° 355° 
Ultrasonic Start 175° 
Ultrasonic Dwell 1.000 s (600 machine degrees) 
Ultrasonic Cool Off 
Ultrasonic Cool 140° 230° 

 

Sealing Control 

Vertical Seal  Temp Actual 384°F 
 Temp Setpoint °F 
Ultrasonic Amplitude 100% 
 Energy 1000 J 
 Peak % Power 0 % 
 Current % Power 0 % 
 Peak Energy 0 J 
 Current Energy 0 J 
 Actual On Time 0.000 s 
 Force Feedback 0 % 
 Start Run On 
 Seek On 
 Tune On 
 Fault  
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APPENDIX C. INSTRON PARAMETERS 

Test Control 

Direction Up 
Channel Position 
Crosshead Speed 25 mm/min 
Speed Change None 
Peak 1 Level 0% 
Load Cell 10 kN 

 
Test Limit 

Break Detect 1 kN 

 

Absolute Limit 

High Load 9 kN 
High Extension 508 mm 

 
Limit Control 

Set method limit on console 
Data Sampling Rate 10 points/second 

 
Screen Calculations 

MAX.STR Max Stress (MPa) 
MAX.LOAD Maximum Load (kN) 
%STN.MAX Maximum Strain (%) 
TOUGHNESS Toughness (MPa) 
XDISP.MAX Maximum Displacement (mm) 
ENERGY1 Energy (J) 
ENERGY.BRK Energy at Break (J) 

 
Printer Calculations 

Stress at Max.Load Max Stress (MPa) 
Modulus (Aut Young) Young’s Modulus (MPa) 
Max % Strain Maximum Strain (%) 
Stress at User Break Stress at User Defined Break (MPa) 
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