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ABSTRACT 

 

Swine carcasses were composted using passively-aerated composting system 

designed by the Canadian Food Inspection Agency during the 2004 Avian influenza outbreak 

in British Columbia. In this system, swine carcasses were fully covered by plastic sheets due 

to biosecurity concerns and visual inspection of the swine carcasses was impossible. 

Monitoring volatile organic compounds (VOCs) released from carcasses was a promising 

approach to assess progress and completion of the carcass degradation. In this study, VOCs 

were sampled using solid phase microextraction (SPME). Samples were analyzed using 

multidimensional gas chromatography-mass spectrometry (MDGC-MS) (a) to develop a 

comprehensive chemical library of volatile organic compounds emitted during carcass 

composting, (b) to determine if specific compounds could be correlated with various phases 

of the composting process and therefore be used to determine completion of composting and, 

(c) to determine the effects of compost operating parameters on the chemical make-up of 

gaseous emissions.  

A completely new quantification method of measuring VOCs was developed with 

accuracy ranging from 79.04 to 98.53 % and method detection limits ranging from 0.01 to 

580 ppbv. Eighty five µm CAR/PDMS was shown to extract the highest amount of analytes 

at one hour sampling time. Dimethyl disulfide, dimethyl trisulfide, and pyrimidine were 

found to be produced during degradation of swine carcass tissues but not produced from 

decaying plant (envelope) materials. These compounds could serve as marker compounds of 

swine carcass degradation process. Laboratory studies showed that marker compounds 

cannot be detected in the headspace when the respiration rates of carcasses decrease to a 

level of 3.25 mg CO2-C/g VS*d (stable compost). Field studies showed that when carcass 

degradation was incomplete, detection of marker compounds was still possible in the eighth 



x 

week of the process. After eight week composting time, the highest concentrations of marker 

compounds were detected for the carcass samples with the highest respiration rates (least 

stabilization). No relation was observed between temperature data and degradation rates of 

carcasses. A better estimate of carcass degradation was made by measuring concentrations of 

the marker compounds. The highest concentrations of the compounds were detected from the 

swine carcasses with the highest respiration rates and lowest decomposition. Dimethyl 

disulfide, dimethyl trisulfide, and pyrimidine were produced from all compost units under 

various conditions regardless of the plant material, moisture content, porosity and 

temperature. These compounds were reliable marker compounds that could be followed to 

test completion of a swine mortality composting process when the carcasses were fully 

covered by plant materials and plastic sheets due to biosecurity reasons.  

 

Keywords 

Compost, Dimethyl disulfide, Dimethyl trisulfide, GC-MS, Mortality, Pyrimidine, SPME, 

Swine, VFA, VOC 
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CHAPTER 1. GENERAL INTRODUCTION 

 

1. Introduction 

Composting is gaining acceptance as a disposal method for animal mortalities. 

Improper disposal of carcasses, such as illegal dumping, has become a problem due to 

limited number of licensed landfills, incineration and rendering services (Bonhotal et al., 

2002). Biosecurity agencies in USA, Canada, Australia, and New Zealand have recognized 

the potential benefits of composting as an emergency management of mortalities (Wilkinson 

et al., 2007). Diseased mortality composting was first developed for the poultry industry 

(Spencer et al., 2004; Bendfeldt et al., 2006). During the 2004 Avian influenza outbreak in 

British Columbia (Canada), 1.25 million infected birds were disposed by burial, burning, and 

composting. At the beginning of the outbreak, carcasses were transported to other locations 

where they were buried and burnt. In the middle of the outbreak, the disposal strategy 

switched to on-farm composting. The first stage of the composting was conducted in the 

poultry houses. After 5 days, windrows were re-formed on a layer of heavy black plastic over 

wood shavings. Piles were passively aerated by black agricultural drainage pipe aligned 

across the plastic. The windrows were covered with vapor barriers, wood shavings, and 

finally black plastic. Studies have been conducted to adapt mortality composting for swine 

and cattle emergency disposal (Glanville et al., 2006a, 2006b; Ahn et al., 2007; Glanville et 

al., 2007). 

In biosecure composting applications, mortalities are fully covered and degradation of 

mortalities cannot be monitored by visual inspection. Thus, assessment methods for the 

completion of decay process are needed.  One promising approach is to monitor gases 

released by decaying mortalities. Composting operations generate VOCs including 
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oxygenated compounds (e.g., aldehydes, ketones, alcohols), nitrogen-containing compounds 

(e.g., pyrimidine), sulfur-containing compounds (e.g., mercaptans, sulfides), alkanes (e.g., 

pentane, hexane), alicyclic hydrocarbons (e.g., terpenes), and aromatic compounds (Golueke 

et al., 1954; Chanysak et al., 1982; Fisher et al., 1986; Koe and Ng, 1987; Derikx et al., 1990; 

Miller, 1993; Williams, and Miller, 1993; Day et al., 1998; Krzymien et al. 1999; Kim et al., 

2005a). An understanding of the chemical components released from animal mortality 

composting processes can give scientists insights into the completion of the degradation. 

Moreover, the composition of the exhaust air indicates the aeration status of the process and 

quality of the compost (Day et al., 1999; Romain et al., 2005).  

It can be challenging to analyze VOCs in air samples. Since air has a low density and 

VOCs have low concentrations (pg/L to µg/L), sample preparation for VOCs in air requires 

pre-concentration. SPME offers many advantages for air sampling such as high precision and 

sensitivity, applicability to high moisture samples, reusability, and compatibility with 

conventional analytical equipment (Pawliszyn, 1993; Mani, 1999; Wercinski, 1999; Jia et al., 

2000; Augusto et al., 2001; Pacolay et al., 2006). With SPME, there is no need for Tedlar 

bags or Summa canisters for sampling or extraction (Kim et al., 2005a). Kim et al (2002) 

described a method that utilizes two different SPME fiber coatings for the analysis of 

propanoic acid, butyric acid, and sulfur compounds from waste treatment systems. Davoli et 

al (2003) and Kim et al. (2005b) characterized volatile organic compound emissions (e.g., 

propanoic acid, butanoic acid, hexanoic acid and dimethyl disulfide) from landfills using 

SPME and GC-MS. Kim et al (2005a) identified headspace odorants (e.g., propanoic acid, 

butanoic acid, and dimethyl disulfide) from commercial composts of 14 different producers 

using SPME method. Akdeniz et al. (2007a and 2007b) identified VOCs (e.g., volatile fatty 

acids, dimethyl disulfide, dimethyl trisulfide, and nitrogen containing compounds) during 

biological decomposition of plant and animal materials utilizing SPME and GC-MS. Syringe 

pump injection is a convenient quantification method, which does not require preparing a 
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high number of standard analyte solutions (Koziel et al., 2004). Syringe pumps inject liquid 

standards into an air stream at a delivery rate ranging from 0.0010 µl/h to 8800 ml/h, 

depending on the syringe volume.  

Objectives of this study are (1) to develop an air sampling and analysis method for 

the quantification of VOCs from composting operations, (2) to test the applicability of the 

quantification method for a full scale biosecure swine mortality composting operation,  (3) to 

identify characteristic VOCs evolved from decaying envelope materials and swine tissues in 

order to find marker compounds of animal tissue biodegradation, (4) to develop calibration 

curves to quantify marker VOC emissions from decaying swine tissues, (5) to evaluate a 

potential usage of VOCs to test completion of the carcass degradation in laboratory scale 

composting operations, (6) to develop a comprehensive chemical library of VOCs emitted 

from full scale swine mortality compost materials surrounded by plastic bio-security barriers, 

(7) to determine if specific compounds can be correlated with different phases of the 

composting process and be used to determine completion of the process in full scale 

composting operations, and (8) to determine the effects of compost operating parameters on 

the chemical make-up of gases. 
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2. Thesis organization  

This thesis is consisted of a literature review followed by three journal papers: (a) 

Method for air sampling and analysis of VOCs from full scale mortality composting 

operations using SPME and GC-MS, (b) Evaluation of VOC emissions as biosecure markers 

of swine carcass degradation, (c) Identification, evaluation, and quantification of VOCs from 

full scale biosecure swine mortality composting operations, and a short communication paper: 

Sampling method of VOCs for biosecure composting operations. In addition, it contains a 

conclusion section where general conclusions and recommendations for future studies are 

discussed. Additional details on methods and results are presented as an appendix to the 

journal paper to which it applies.  
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CHAPTER 2. LITERATURE REVIEW 

1. Animal mortality disposal  

Iowa has led the US in swine production and pig inventory for one hundred twenty 

years (Honeyman and Duffy, 2006). In 2005, Iowa produced 28.4% (8 billion pounds) of all 

the swine in the U.S (Iowa Agricultural Statistics Bulletin). This intensive production of 

swine in one area inevitably results in production of high amount of piggery waste including 

animal carcasses. Animal carcasses, like all animal waste, contain useful nutrients which can 

be recycled into agricultural land. However, this recycling must be done in an 

environmentally sound, economically feasible and socially acceptable manner especially 

when carcasses are capable of spreading diseases in soil, plants, animals and humans 

(Imbeah, 1997, Kalbasi et al., 2005). Methods for disposal of swine carcasses include on-

farm disposal (i.e., burial, incineration, and composting) and off-farm utilization 

(i.e.,rendering and sanitary landfills). Animal mortality disposal methods are compared in 

table 1. 

Burial is the most basic method for the disposal of animal carcasses. In cold climates 

burial is not a practical option due to frozen ground (Gould et al., 2002). A burial pit can be 

fabricated from concrete block, monolithic concrete, or treated lumber. Pre-cast, open-bottom 

septic tanks can be delivered to the site. These offer the best way of developing a concrete 

disposal pit at relatively low cost. Burial has a limited usage due to the decline in ground 

water quality in the area of an open-bottom pit and the fact that residue remains after years of 

use (Blake et al., 2004). It is important to note that burial is not acceptable for disposal of 

animal by- products generated during butchering. Burial of large volumes of dead animals is 

not appropriate unless conducted under a Catastrophic Animal Mortality Management Plan 

(Gamroth et al., 2008). In Arkansas, legislation prohibited the use of burial pits as a method 

to dispose poultry carcasses beginning July 1, 1994. In Alabama, the State Veterinarian’s 
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Office banned burial pits for the disposal of poultry carcasses after July 1, 2000 (Blake et al., 

2004).  

Incineration is recognized as one of the biologically safest methods of animal carcass 

disposal. It eliminates the threat of disease and does not cause water quality problems. On the 

other hand, it can be slow, requires fuel and expensive equipment and can generate nuisance 

complaints from particulate air pollution and odors (Gould et al., 2002). Incineration uses 

forced air combustion, petroleum fuel and an insulated fire box to achieve the high 

temperatures needed to burn diseased carcasses without producing serious air pollution.  In 

the event of widespread animal disease, the unavailability of these equipments and high costs 

of burning can limit the use of this method (Glanville, 2006). 

Composting is controlled and natural decomposition of organic material into a stable 

and useful end-product. Composting is a viable alternative for the disposal of animal 

mortalities (Fulhage and Ellis, 1994; Glanville and Trampel, 1997). Mortality composting 

can be described as aboveground burial in a biomass filter where most of the pathogens are 

killed by high temperatures. As the microorganisms consume the most readily degradable 

material and grows in numbers, the temperature of the compost piles increases (Gould et al., 

2002). Properly designed composting operation will operate in all seasons and handle daily 

management of mortalities on farms as well as carcass disposal in emergency animal disease 

outbreak (Glanville, 2006). It has more recently been accepted as an option for dead animal 

management (Blake et al., 1992; Sims et al., 1992; Cummins et al., 1994; Stanford et al., 

2000; Fonstad, 2003).  

Rendering converts the nutrients contained in animal carcasses into a protein by-

product, which is included in pet food (Blake et al., 2004). The outbreak of Bovine 

Spongiform Encephalopathy (BSE) in the United Kingdom (1986) led to restrictions in 

rendering. Animal carcasses should be transported to a rendering facility within 24 hours if 

carcasses are not preserved. Freezing and fermentation are used as preservation techniques. 
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Preservation allows mortalities to be stored on the farm until amounts are sufficient to 

warrant the cost of transportation. Bio-security measures are required to minimize the spread 

of disease from farm to farm by rendering vehicles and personnel (Gould et al., 2002).  

In some areas, disposal of dead animals in a sanitary landfill is permitted. Some states 

require special licenses to transport dead animals (Gould et al., 2002). One of the major 

concerns with this method is possibility of disease transmission. Sound biosecurity at 

sanitary landfills is essential to prevent disease transmission (Blake et al., 2004).  

 

Table 1. Comparison of animal mortality disposal methods  

Disposal method Advantages Disadvantages 

 

Burial 

 

Capital limited to land and 
excavating equipment 

Nutrients contained in the dead animals 
are wasted, increases sanitary 
precautions to prevent disease 
transmission, land area becomes 
significant for large operations, not 
practical when ground is frozen 

 

Incineration 

 

Sanitary and safe 

Nutrients contained in the dead animals 
are wasted, initial cost, fuel and 
maintenance costs, potential air quality 
impairment 

 

Composting 

Conserves nutrients 
contained in the dead 
animals, low odor, 
environmentally safe 

High initial cost, labor intensive, regular 
monitoring and maintenance is required, 
cropland required 

 

Rendering 

Conserves nutrients 
contained in the dead 
animals, minimal capital 
interest, low maintenance 

Increases sanitary precautions to prevent 
disease transmission, storage of animal 
is required until pick-up, charges for 
pick-up, rendering service may not be 
available 

Sanitary 
landfills 

Simple and no capital cost Nutrients contained in the dead animals 
are wasted, few landfills accept dead 
animals, transportation is costly, no 
permit in many states 

(Source : Gould et al., 2002; Blake et al., 2004; Gamroth et al., 2008) 
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2. The composting process 

The process of carcass composting can be described as (a) temporarily burying dead 

animals above ground in a mound of supplemental carbon and (b) allowing decomposition by 

thermophilic microorganisms to (c) heat up the pile, (d) kill most of the pathogens and (e) 

digest the carcass tissues under predominantly aerobic conditions (Kalbasi et. al., 2005). 

The main products of aerobic decomposition are CO2, water vapor and heat. 

Metabolic end products of anaerobic decomposition are CH4, CO2 and numerous low 

molecular weight intermediates such as organic acids and alcohols. Anaerobic composting 

releases significantly less energy per weight of organic decomposed compared to aerobic 

composting. It has a higher odor potential because of the nature of many intermediate 

metabolites. For these reasons almost all engineered compost systems are operated under 

predominantly aerobic conditions (Haug, 1993). 

The first microorganisms to colonize the compost heap are mesophilic such as 

mesophilic bacteria, actinomycetes, fungi and protoza. They grow between 10 and 50 °C 

(Cooperband, 2000) and break down easily degradable components such as sugars and amino 

acids (Hellmann et al., 1997). Organic fresh material degradation starts as soon as the 

compost heap is made and temperature increases due to the oxidative action of 

microorganisms. Despite a drop in pH at the very beginning of composting, the degradation 

of acids brings about a pH increase (Peigne and Girardin, 2004). Thermophilic 

microorganisms replace mesophilic ones when the temperature reaches 45-50 °C (Hellmann 

et al., 1997). The second phase is called the thermophilic phase and can last several weeks. It 

is the active phase of composting where, most of the organic material is degraded and 

consequently most oxygen is consumed (Peigne and Girardin, 2004). Lignin degradation 

starts during this phase. Above 60 °C, thermophilic micro-fungi and actinomycetes cannot 

grow and lignin degradation is slow (Hellman et al., 1997). Important hydrolytic enzymes 

involved in the composting process include cellulases, hemicellulases, proteases, lipases, 
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phosphatases and arlylsulphatases. High levels of proteases, lipase and cellulose activities 

have been detected throughout this phase of composting (Herrman et al., 1993; Cunha Queda 

et al., 2002; Mondini et al., 2004). After the thermophilic phase that corresponds to a peak of 

degradation of fresh organic matter, the microbial activity and temperature decrease. This is 

called the cooling phase. The maturation phase begins when the compost temperature falls to 

that of the ambient temperature. More specifically mesophilic microorganisms continue to 

degrade complex organic compounds. This last phase is important because humus-like 

substances are produced to form mature compost (Cooperband, 2000).  

3. Factors affecting the composting process 

Factors affecting the composting process can be listed as aeration, nutrients (C: N 

ratio), moisture, porosity, structure, texture, particle size, and pH.  

3.1 Aeration 

Aerobic composting consumes large amounts of oxygen and rapidly metabolizes 

easily degradable organic materials during the initial days of composting. The need for 

oxygen and heat production is greatest at early stages and then decreases as the process ages. 

A minimum oxygen concentration of 5% within the pore spaces of the composting pile is 

necessary (Rynk et al., 1992). Proper aeration may be achieved by forcing air through 

compost materials, passive air exchange, mechanical turning, and combinations of these 

methods (Henry, 2003). Five days of aeration by turning the compost piles containing cow 

and horse carcasses coupled with a series of rainfall events resulted in temperature rise to 74 

ºC. Temperature remained above 55 ºC during three months (Mukhtar et al., 2003). 

Insufficient aeration causes anaerobic decomposition. Anaerobic decomposition is slower 

and less efficient than aerobic processes. Sufficient heat is not generated to evaporate water 

from organic materials. Anaerobic process causes offensive compound formation including 

methane, ammonia, hydrogen sulfide and organic acids. These compounds have strong odors 
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and present safety concerns. Maintaining aerobic conditions is important to avoid the 

offensive odors associated with anaerobic decomposition. In addition to providing oxygen, 

aeration is needed to remove extra heat, water vapor, and gases trapped inside the compost 

materials (Rynk et al., 1992, Haug 1993, Epstein 1997). 

3.2 Nutrients 

The primary goals of selecting materials for composting are to provide (a) the desired 

ratio of carbon and nitrogen, (b) a balanced diet of all the other essential nutrients, (c) the 

greatest possible biological diversity to inoculate the pile, (d) a mix of particle sizes that 

favors aeration in the pile, (e) materials that favor adequate but not excessive moisture 

retention (Biernbaum and Fogiel, 2004). Carbon (C), nitrogen (N), phosphorus (P), and 

potassium (K) are the primary nutrients required by microorganisms. Microorganisms use 

carbon for energy and growth.  Nitrogen is essential for protein and reproduction. As a rule 

of thumb, biological organisms need about 25 times more carbon than nitrogen. Thus, raw 

materials are blended to provide a C: N ratio of 25:1 or 30:1 for active phase (Rynk et al., 

1992). Different carbon feedstocks have different degradation rates. For instance, wood 

shavings and wood chips decompose very slowly due to the presence of lignin. Leaves are 

decomposed very quickly. Alfalfa hay is a good source of nitrogen, which is also rich in 

other essential nutrients. Animal manure and food wastes are also higher in nitrogen. It is 

preferable to have a higher C: N ratio than lower. The higher the C: N ratio, the slower 

degradation occurred and the less likelihood for the process to go anaerobic. This will 

prevent offensive odor formation. Available envelope materials can be listed as legume and 

grass hay, leaves, farm and garden plant residues, vegetable and fruit processing residue, 

corn silage, soybean stems, wood shavings, animal (sheep, horse, poultry, beef, dairy, swine) 

manure. Leaves, sawdust, straw, wood shavings, and wood chips are good sources of carbon 

(Biernbaum and Fogiel, 2004).  
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Envelope materials serve as biofilters, which (a) deodorizes the gases released  from 

carcasses, (b) prevents access by insects and birds and thus minimizes transmission of 

disease agents from mortalities to livestock or human (Mukhtar, 2004).  

3.3 Moisture 

Water provides the medium for chemical reactions, nutrient transportation, and 

microbiological activity. During composting, moisture level changes as water evaporates and 

added by rain and snow. Generally more water evaporates than is added. Thus, moisture 

content of compost materials tends to decrease as the process proceeds. Moisture levels 

should be kept at a level that materials are thoroughly wetted without dripping excessive 

water. As a rule of thumb, materials are too wet if water can be squeezed out by hand and too 

dry if moist is not felt when touched (Rynk et al., 1992). Moisture content also affects the 

physical structure. It is relatively easy to measure moisture content so it often serves as a 

proxy for other critical factors such as particle size, porosity, permeability, all of which limit 

oxygen transport in the high moisture range (Miller et al., 1993, Richard et al., 2002). 

Generally recommended values are in 50 to 70 % range (Bishop et al., 1983; Haug, 1993; 

Imbeah, 1997; Richard et al., 2002). As is evident from this relatively wide range of reported 

values, there is no universally applicable optimum moisture content for composting materials. 

Each material has unique physical, chemical and biological characteristics and these affect 

the relationship between moisture content and its water availability, particle size, porosity 

and permeability (Ahn et al., 2005). 

3.4 Porosity, structure, texture and particle size 

Porosity, structure, and texture are related to the physical properties of the materials 

including particle size, and shape (Rynk et al., 1992). They affect availability of oxygen, 

temperature, microbial activity, composting time, and bulk and packed densities. They can be 

adjusted by selecting raw materials and grinding or mixing. Materials added to adjust these 



 

15 

properties are called envelope materials. The porosity should be around 35% (volume) to 

facilitate the air penetration inside the pile and maintain microbial growth (Keener et al., 

2001; Looper 2002). In a composting process, aeration and degradability can be improved by 

reducing the particle size while increasing the surface area, as long as porosity remains 30% 

(Rynk, 1992).  

3.5 pH 

Alkaline or acidic environments are not well suited for carcass composting. A large 

amount of free carbon blended with the nitrogenous materials of carcasses helps nitrogen 

immobilization and prevents its loss by ammonification, maintains the pH of carcass pile at 

neutral (7.0) or slightly lower (Henry, 2003). Since the biochemical reactions release CO2 (a 

weak acid) and NH3 (a weak base), the compost process can buffer pH near the neutral range 

as composting proceeds (Haug, 1993).  

4. Production of gases 

Mineralization and humification occur simultaneously during composting and are the 

main processes of fresh organic material degradation. Many gases are emitted during 

composting including CO2, ammonia (NH3), nitrous oxide (N2O), methane (CH4), hydrogen 

sulfide (H2S), nitrogen oxides (NOx), and volatile organic compounds (VOCs) (Hellmann et 

al., 1997; Mahimairaja et al., 1995; Tamura et al., 1999). The number of volatile organic 

compounds that could be potentially produced during composting is virtually limitless. 

Composting operations generate VOCs including oxygenated compounds (e.g., aldehydes, 

ketones, alcohols), nitrogen-containing compounds (e.g., pyrimidine), sulfur-containing 

compounds (e.g., mercaptans, sulfides), alkanes (e.g., pentane, hexane), alicyclic 

hydrocarbons (e.g., terpenes), and aromatic compounds (Golueke et al., 1954; Chanysak et 

al., 1982; Fisher et al., 1986; Koe and Ng, 1987; Derikx et al., 1990; Miller, 1993; Williams, 

and Miller, 1993; Day et al., 1998; Krzymien et al. 1999; Kim et al., 2005a). 
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Carbon is transformed into CO2 and integrated into humus-like substances as a result 

of huminification (Peigne and Girardin, 2004). Depending on the oxygen concentration 

within the heap, CH4 can be formed (Lopez-Real and Baptista, 1996). During thermophilic 

phase, maximum O2 is consumed  by aerobic microorganisms, so reduction of the  O2 

concentration favors anaerobic conditions methanogenic bacteria to produce CH4 (Ott, 1990). 

Fatty acids are relatively long chained, monocarboxylic acids that occur in nature as 

constituents of fats, oils and waxes. The longer chained acids can be hydrolyzed to a lower 

molecular weight, volatile acids such as, acetic, propionic and butyric acids. Acetic acid, 

commonly known as vinegar, has an obvious and recognizable odor (Haug, 1993). They are 

produced in the environmental from bacterial decomposition of organic materials commonly 

under anaerobic conditions (Kaplovsky, 1951). Lynch et al (1980) has reported degradation 

of straw under anaerobic conditions forms as products acetic acid and smaller amounts of 

propanoic and butanoic acid. Problems with odor can arise when acidogenic bacteria produce 

VFAs faster than acetogic/ methanogic species can consume the acids (Zhu et al., 1999).  

Aromatic organics are all based on the benzene ring and may contain one or more 

cyclic groups. Aromatic compounds can be produced during aerobic composting from the 

breakdown of lignin which is usually abundant. Indole and skatole are examples of 

heterocyclic compounds that contain a benzene ring condensed with a second five-member 

ring containing nitrogen. Both have a very unpleasant odor and are produced during the 

anaerobic decomposition of protein matter (Haug, 1993).  

Hydrogen sulfide (H2S) produces the characteristic rotten egg smell and can be 

detected at a concentration of only 2 parts per billion (ppb) in air. H2S is produced by two 

principle pathways. First, it can be produced from the anaerobic decomposition of proteins or 

other S-containing organics. Second, under anoxic conditions with organics and sulfate 

present, the sulfate can be used as an electron acceptor and reduced to H2S. Hydrogen sulfide 

can be formed during composting if anaerobic conditions exit such as in the interior of poorly 
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aerated clumps of material (Haug, 1993). Mercaptans are the sulfur analog of alcohols, 

having the general formula R-SH. Their distinguishing physical characteristic is their vile 

and repulsive odor, which diminishes with increasing molecular weight. The nose can detect 

one part ethyl mercaptan in about 3 billion parts of air. The odor of skunks is largely due to 

butyl mercaptan. Alkyl sulfides with a formula R-S-R are the sulfur analog of the 

corresponding ethers. The nose can detect one part dimethyl sulfide in 1 billion parts of air. 

Mercaptans can be formed from S-containing amino acids under both aerobic and anaerobic 

conditions, both production under anaerobic conditions is greater. If oxygen becomes 

available, such as within a compost clump with some anaerobic zones, the mercaptan can be 

oxidized to dimethyl sulfide, dimethyldisulfide, and dimethyl trisulfide. Thus, it is likely that 

each of these compounds is being formed and degraded within the compost pile (Wilber and 

Murray, 1990; Shurson et al., 1998). Terpenes are cycloalkane derivatives having one or 

more carbon rings and are a class of naturally occurring, organic compounds. Limonene, α-

pinene and cineol are examples of terpenes. They are important for any compost process that 

uses wood chips or sawdust (Wilber and Murray, 1990). 

Ammonia (NH3) is produced from either aerobic or anaerobic decomposition of 

proteins and amino acids. Any substrate with a low C/N ratio (high protein substrates) will 

likely release excess ammonia into the vapor phase. Fortunately has a high threshold 

concentration and considered to be a relatively minor odorant (Haug, 1993).  

5. Mortality composting options 

 The main goals of animal mortality composting are (a) to prevent the transmission 

and dissemination of infection, (b) to minimize infectious materials to contaminate air, water, 

soil, and vegetation, (c) to convert carcasses to beneficial end products. Mortalities are 

usually layered into a pile with no mixing occurring until after the high rate sub-phase of 

composting has occurred and the carcasses are fully decomposed (Kalbasi et al., 2005). 
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5.1 Windrow composting 

In windrow composting system, a pile is constructed on a compacted soil with low 

liquid permeability or concrete pads. This technique is most popular for composting large 

carcasses. Carcasses and envelope materials are placed in specific orders and turned 

periodically ((Mukhtar et al., 2004). The required oxygen is supplied by natural ventilation 

resulting from the buoyancy of hot gases in the window to a lesser extent by gas change 

during turning (Haug, 1993). Glanville (2000) reported that during emergencies, a windrow 

system that remains unturned for 90 to 120 days can be used for cattle carcasses with an 

average weight of 1000 lb. Compost piles are usually located in open spaces and not 

protected from rain, wind, and sun. Aligning the uncovered stacks of carcass piles north to 

south and maintaining windrow with moderate side slopes maximizes solar warming and 

avoids accumulation of precipitation (Henry, 2003). 

5.2 Bin composting 

Bin composting is used for small (e.g., poultry) and medium (e.g., swine) sized 

mortalities. In this system, carcasses and plant (envelope) materials are filled in a container 

built by wooden and slatted walls with or without a roof (Kalbasi et al., 2005). Roofed bins 

are more expensive but have some advantages including reduced weather effects, better 

moisture control, lower leaching potential and better working conditions for operators 

(Fulhage, 1997). Except the installation cost, bin systems have advantages over windrow 

systems. Bin composting allows higher stacking of compost materials, better use of floor 

space, elimination of weather problems when a roof is used, control of odors, and better 

temperature control (Rynk et al., 1992). Temporary bins, which are constructed from large 

hay bales can be used for large (e.g., cattle) carcasses (Fulhage 1997; Looper, 2002; Mukhtar 

et al., 2003).  
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5.3 Rotating vessel 

Rotating vessels can be used for the first phase of carcass composting to minimize the 

time and management requirements (Kalbasi et al., 2005). This method (a) isolates 

mortalities from the surrounding environment, (b) provides protection from weather effects, 

(c) decreases the risk of odor production, and (d) produces a more uniform product allowing 

a better control over composting parameters such as temperature, moisture content, pH, and 

particle size (Rynk, 2003). Cawthon (2000) showed that when a blended mixture of poultry 

carcasses and sawdust are loaded into a rotating vessel and turned at a rate of 4 revolutions 

per hour, compost temperatures inside the vessel reaches to 60ºC within hours and stays for 

three days. Rynk (2003) indicated that rotating vessel followed by windrow composting 

reduces the composting time of swine carcasses by 60%.   

5.4 Other systems 

A decrease in the particle size of carcasses increased surface area of the degradable 

material and composting process takes place much faster, particularly if particle sizes of 

carcass and envelope materials are similar (Bagley, 1999; Looper, 2002). Kube (2002) 

studied two composting processes in a windrow system. The first system was ground 

Holstein steers (approximately 100 lbs) mixed with sawdust and the second one was whole 

carcasses covered with sawdust. The grinding process reduced the number of turns and 

decreased the composting time from twelve to six months.   

An in vessel system of composting organics using aerated synthetic tubes called 

EcoPOD (preferred organic digester) has been available for 10 years. These tubes are 

equipped with an air distribution system connected to a blower (Kalbasi et al., 2005). 

Cawthon (1998) used a blower to transfer and compost a mixture of hay, litter, and poultry 

carcasses. It is reported that temperatures inside the tube ranged from 70 ºC to 82 ºC within 5 

to 7 days of composting. Haywood (2003) indicated that the decomposition of medium to 
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large size carcasses inside tubes had gone anaerobic and end product was separated to solid 

and liquid portion.  

The Ag Bag system has been successfully used to compost bio-solids and mortalities. 

The finished product can remain in the bags long after composting is completed. Farrell 

(2002) used the Ag Bag system to compost bio-solids with grass clippings and chipped 

brush. The materials were composted in the bags for eight to ten weeks and temperatures 

reached to 70 ºC. Ag-Bag Environmental managed to aerobically compost over 100,000 

avian flu virus infected birds in West Virginia (Mukhtar et al., 2004).  

6. Diseased mortality composting 

6.1 Biosecurity of mortality composting 

Multiple mechanisms are known to be involved in the inactivation of pathogens 

during composting including (a) exposure to heat, (b) microbial antagonism, (c) production 

of organic acids and ammonia, (d) competition for nutrients (Epstein, 1997). Among these, 

temperature is considered as the most important factor in pathogen inactivation and is 

relatively easy to measure.  

Pathogenic bacteria are inactivated by high thermophilic temperatures in the active 

phase of the composting process. Inactivation is a function of temperature and length of 

exposure (Mukhtar et al., 2004). Haug (1993) reported that (a) clumping of solids, which can 

isolate material from the temperature effects, (b) non-uniform temperature distribution, 

which can allow pathogens to survive in colder regions, (c) re-introduction of pathogens after 

the high temperature phase can reduce actual pathogen inactivation during the composting 

process. The inactivation energy is between 50 and 100 kcal/mol for many spores and 

vegetative cells. Based on this, Haug (1993) calculated the heat inactivation of enteric 

pathogens by considering the conditions common to composting and reported that an average 
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temperature of 55 to 60 ºC for a day or two will provide this energy and is sufficient to 

reduce the pathogenic spores, viruses, bacteria, and protozoa to an acceptable level.  

Senne et al. (1994) investigated the effects of poultry carcass composting on the 

survival of HPAIV (highly pathogenic avian influenza virus) and reported that 10 days of 

composting completely eliminates both viruses. Glanville et al. (2006) investigated survival 

of vaccine strains of poultry viruses placed inside cattle compost piles. Survival times of the 

viruses were much shorter when they expose to the full range of environmental conditions 

compared to placing them inside vials. Mukhtar et al. (2004) and Keener et al. (2005) 

discussed the effect of site selection and layout on biosecurity of mortality composting.  

6.2 Use of mortality composting in outbreaks 

The avian influenza (AI) outbreak (H7N2) in the central Shenandoah Valley (USA) in 

2002 affected 197 poultry farms and cost US $ 211 million to eradicate (Bendfeldt et al., 

2005). Five different methods including on-farm burial, landfilling, incineration, slaughter, 

and composting were used to dispose AI infected carcasses. Initially carcasses were buried in 

the farm but soon stopped as adjoining landowners complained about the risk of 

contamination. Approximately 65 % of carcasses were landfilled. Landfilling was showed to 

be expensive and problematic due to the transport distance and lack of available trucks. 

Forty-three thousand birds were composted using Ag-Bag and windrow systems. The in 

house composting method reported to be more convenient due to logistical problems 

associated with Ag-Bag system.  

In AI outbreak in British Columbia (Canada) in 2004, 1.25 million infected birds 

were disposed by burial, burning, and composting. At the beginning of the outbreak, 

carcasses were transported to other locations and they were buried and burnt in these 

locations. In the middle of the outbreak, the disposal strategy switched to on-farm 

composting. The first stage of the composting was conducted in the poultry houses. After 5 
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days, the windrows were re-formed on a layer of heavy black plastic over wood shavings. 

Piles were passively aerated by black agricultural drainage pipe aligned across the plastic. 

The windrows were covered with vapor barriers, wood shavings, and finally black plastic 

(Spencer et al., 2004). Glanville et al. (2007) and Ahn et al. (2007) investigated application 

of the same composting system to diseased swine carcasses in case of an outbreak.  

7. Stability and maturity of animal composts 

Two key criteria in the determination of compost quality are stability and maturity. 

Maturity is related to phytotoxicity (Iannotti et al., 1993). Stability is associated with 

compost microbial activity. Stabilization of composts affects the response of plants to 

compost applications, potential for microbial activity, odor generation, and pathogen re-

growth (Zucconi et al., 1985; Miller 1993). Also, the degree of stability achieved within a 

certain time can be used to evaluate process performance (Stentiford, 1993). Stability is 

generally defined as a function of microbial activity and it can be determined by 02 uptake 

rate, CO2 production rate or heat release as a result of microbial activity (Chen and Inbar, 

1993; Wu et al., 2000). Respirometric techniques are currently widely used as stability 

indicators (Sadaka et al., 2006). The basis of these methods is that immature compost 

material has a higher 02 consumption and CO2 production rates due to rapid development of 

microorganisms as a consequence of the easily biodegradable compound (Gomez et al., 

2005). Thompson (2002) classified compost stability based on respiration rates as very stable 

(1 mg CO2-C/ g VS. d), stable (2-4 mg CO2-C/ g VS. d), moderately unstable (5-7 mg CO2-

C/ g VS. d), unstable raw compost (8-9 mg CO2-C/ g VS. d), raw compost (10-11 mg CO2-C/ 

g VS. d), and raw feedstock (>11 mg CO2-C/ g VS. d).  

8. Monitoring composting process  

Five parameters, temperature, moisture content, O2, CO2, and VOC production can be 

monitored to assess composting process. Temperature can be easily monitored during 
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composting. Thermocouples with 12’’ probes are available for under $20. The recommended 

location to test the internal temperature is 2/3rd down and 1/3rd in from the side. If 

temperature of a pile is not increasing, nutrient supply, moisture level or aeration may not be 

sufficient. Other reason of it may be over aeration of the pile which causes removal of the 

produced heat. Thus, a decline in temperature does not necessarily show the composting 

process is completely finished (Biernbaum and Fogiel, 2004). 

The moisture content of a compost material during active phase should be at a level 

that some water can be squeezed out by hand. However there is not any easy and affordable 

way to collect representative samples and accurately measure moisture content (Biernbaum 

and Fogiel, 2004). 

Aeration can be measured with O2 and CO2 probes. Oxygen levels should be above 

5% if compost is aerated properly. Oxygen and CO2 levels can be measured with a probe to 

test aeration status of a compost pile. However, O2 and CO2 levels do not indicate 

stabilization of the compost materials (Biernbaum and Fogiel, 2004). 

Measurement of VOC emissions is another alternative to test aeration and 

stabilization of the process (Kim et al., 2005a). Akdeniz et al. (2007a, 2007b) investigated 

VOCs evolved from decaying envelope materials and swine tissues using SPME and GC-MS. 

Further studies are needed to test VOCs as marker compounds of the carcass degradation 

process.  

9. Volatile organic compound sampling and analysis 

Volatile organic compounds (VOCs) receive great attention of scientists in different 

disciplines such as (a) food, flavor, and fragrances, (b) medical, pharmaceutical and forensic 

sciences, and (c) environmental sciences (Demeestere et al., 2007). In the literature a wide 

range of definitions can be found for VOCs. There is no universally accepted definition of 

VOC (Wang and Austin, 2006).  Kennes and Veiga (2001) define VOC as organic 
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compounds containing carbon atoms and having a boiling temperature below 373.15 K at 

101 kPa. The World Health Organization (WHO) defines VOCs as organic compounds 

sampled in a solid sorbent and having a boiling point range of 50-100 ºC to 240-260 ºC.  

VOCs cover a broad range of organic compounds including alkanes, alkenes, 

saturated/unsaturated alkyl halides, carbonyls, alcohols, aromatic and halogenated aromatic 

hydrocarbons. Methane is usually considered separately because of its stability in the 

troposphere. The acronym VOC often means “non-methane volatile organic compounds 

(NMVOC) (Wauters et al. 2000). In the dissertation, VOC is used to refer NMVOC.  

To gain knowledge about the VOCs in all fields of interest, precise and accurate 

analytical techniques are necessary. The most common analytical methods include separation 

by gas chromatography (GC) followed by on-line mass spectrometry (MS), flame ionization 

detector (FID), or electron capture detection (ECD). More recently, atomic emission 

spectroscopy (AES) has been recognized as a sensitive and highly selective detection system. 

In a limited number of cases high pressure liquid chromatography (HPLC) or ion 

chromatography (IC) is used for the analysis of derivatized compounds. Direct MS 

techniques such as membrane inlet MS (MIMS), atmospheric pressure chemical ionization 

MS (APCI-MS), and proton transfer reaction MS (PTR-MS) can be also used (Demeestere et 

al., 2007). 

Conventional VOC sampling methods use sorbent tubes, impingers, vacuum canisters, 

and gravimetric filters. A wide variety of organic and inorganic sorbents are available for 

VOC sampling. Inorganic sorbents include silica gel, alumina, and molecular sieves. These 

sorbents are considered more polar than organic porous polymeric adsorbents such as Tenax. 

However, they are rapidly inactivated in the presence of water, making sampling in humid 

conditions impractical (Wang and Austin, 2006). Collection of a sample of air into a 

container is an alternative to sorbent sampling. This is referred as “whole air sampling” (EPA, 

1988). Advantages of container sampling over sorbent methods include (a) whole-air 
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sampling, (b) no breakthrough of target compounds, (c) no thermal or solvent desorption 

requirement, (d) no need for field calibration. Potential problems associated with container 

sampling (a) possible sample instability by adsorption onto the walls of the container, (b) 

sample permeation in or out of the container in the case of bags, (c) no exclusion of non-

target compounds which may lead to sampling matrix effects or analytical interferences 

(Wang and Austin, 2006).  

There are difficulties in the analysis of VOCs particularly in environmental matrices, 

where VOC concentrations are at the level of pg/L to µg/L. In these cases, appropriate 

sampling and pre-concentration techniques are necessary to comply with the sensitivity of the 

analytical instruments. These methods require costly equipment, lengthy sample collection 

and preparation periods, and complicated cleaning and extraction procedures. SPME offers 

many advantages for air sampling such as high precision and sensitivity, applicability to high 

moist samples, reusability, and compatibility with conventional analytical equipment 

(Pawliszyn, 1997; Mani, 1999; Wercinski, 1999; Jia et al., 2000; Augusto et al., 2001; 

Pacolay et al., 2006).  

10. Solid phase microextraction 

10.1 SPME fiber coatings 

Solid phase microextraction (SPME) combines sampling, pre-concentration and the 

direct transfer of the analytes into a standard GC system (Pawliszyn, 1997). It is based on 

partitioning between the polymeric phase and the sample matrix.  

The common homogenous polymer coatings are polydimethylsiloxane (PDMS) and 

polyacrylate (PA).  PDMS is a nonpolar phase and extracts nonpolar analytes very well. 

However, it can be applied to polar compounds after optimizing extraction conditions. The 

PA phase is suitable for polar compounds. It is a low density solid polymer, which allows 

analytes to diffuse into the coating. Diffusion coefficients of PA are lower compared to 
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PDMS, resulting in longer extraction times for volatile analytes in the headspace. Mixed 

phase coatings such as Carboxen/PDMS and PDMS/DVB (divinylbenzene) have 

complementary properties compared to PDMS and PA. Since the majority of interaction is 

determined by adsorption process, they are more suitable for more volatile organic 

compounds (Pawliszyn, 1993). DVB can be classified as mesoporous with some macropores 

and micropores. DVB micropores are fairly large, relative to micropores in Carboxen 

particles. DVB pores are ideal for trapping C6-C15 VOCs. CAR/PDMS can be used to trap 

C2-C6 VOCs (Mani, 1999).  

10.2 SPME time  

Sampling time for SPME is typically determined by detector sensitivity and 

quantification requirements. Sampling times can change from a few seconds to days for 

assessment of short-term and long-term exposures (Koziel and Novak; 2002). In general, the 

objective of the SPME experiments is to reach distribution equilibrium in the system. At this 

condition, the system is stationary and a variation in the mass transfer does not affect the 

final results. The equilibration time is defined as the time after which the amount of extracted 

analytes remains constant. For adsorptive type fibers, after a certain time displacement of the 

adsorbed analytes can be observed. In these cases, shorter extraction times can be used. 

When using a shorter extraction time compared to equilibration time. Care must be taken to 

control the exposure time and the longest extraction time must be applied (Pawlizsyn, 1993).  

10.3 Quantification by SPME 

SPME has been showed as a useful air sampling technique for agricultural operations. 

Kim et al (2002) described a method that utilizes two different SPME fiber coatings for the 

analysis of propanoic acid, butyric acid, and sulfur compounds from waste treatment systems. 

Davoli et al (2003) and Kim et al. (2005b) characterized volatile organic compound 

emissions (e.g., propanoic acid, butanoic acid, hexanoic acid and dimethyl disulfide) from 
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landfills using SPME and GC-MS. Kim et al (2005a) identified headspace odorants (e.g., 

propanoic acid, butanoic acid, and dimethyl disulfide) from commercial composts of 14 

different producers using SPME method. Akdeniz et al. (2007a and 2007b) identified VOCs 

(e.g., volatile fatty acids, dimethyl disulfide, dimethyl trisulfide, and nitrogen containing 

compounds) during biological decomposition of plant and animal materials utilizing SPME 

and GC-MS.  

Development of quantification methods for SPME requires the use of reliable gas 

standards and accurate simulation of the sampling conditions. There are many ways to 

generate gas standards. In batch gas generation systems, standard liquids are injected and 

evaporate into a defined air volume (Koziel et al., 2004). Lee et al. (2002) utilized 1 L Tedlar 

bag to load a known amount of standard gas mixtures. Van Durme et al. (2007) used 118 mL 

glass bottles to insert liquid standards of the compounds. Continuous gas generation and flow 

through systems have advantages over batch systems, such as minimization of the effects of 

adsorption to surfaces of the sampling system and continuous range dilution (Koziel et al., 

2004). The common methods for continuous generation of VOCs can be listed as: (a) 

permeation method, (b) diffusion method, and (c) syringe pump injection. To quantitatively 

analyze VOCs in field air samples, Jia et al. (2000) prepared a standard gas generating device, 

which lets the flow pass through permeation tubes. Spinhirne and Koziel (2003) used 

permeation tubes to generate standard gases of volatile fatty acids (acetic, propanoic, 3-

methyl butyric, butyric, isovaleric, valeric, and hexanoic acids). The disadvantage associated 

with the permeation method is the need for periodic weight measurements of the tubes. 

Augusto et al. (2001) developed two portable devices to perform diffusion based SPME. 

Diffusion based standard gas generator provides a simple mean to quantify VOCs. The 

disadvantage of the diffusion method is that temperature has to be controlled within ±1 % 

accuracy. Syringe pumps are used for generation of standard gases in many applications 

including validation of direct reading air samplers and generation of pollution standards 
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(Koziel et al., 2004). Syringe pumps inject liquid standards into an air stream at a delivery 

rate ranging from 0.001 µl/h to 8824 ml/h, depending on the syringe volume. Syringe pump 

injection is a convenient quantification method, which does not require preparing a high 

number of standard analyte solutions. In this method, concentrations of the solutions are 

controlled by adjusting air flow rate of the system. 
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ABSTRACT 

 In biosecure composting, animal mortalities are fully isolated during the degradation 

process. Its completion cannot be monitored by visual inspection. One promising approach is 

to monitor volatile organic compounds including sulfur and nitrogen containing compounds 

released by decaying mortalities and to use them as biomarkers of the process status. A new 

method has been developed to quantitatively analyze dimethyl disulfide, dimethyl trisulfide, 

pyrimidine, acetic acid, propanoic acid, 3-methyl butanoic acid, pentanoic acid, and hexanoic 

acid from full scale mortality composting operations. Among the four SPME fiber coatings, 

85 five µm CAR/PDMS is shown to extract the highest amount of analytes at 1 h sampling 

time. Calibration curves with high correlation coefficients ranging from 96 to 99 % were 

obtained. The differences between theoretical and calculated concentrations were found to be 

ranging from 1.47 to 20.96 %. The applicability of the developed sampling method was 

tested to analyze samples prepared from a full scale swine mortality composting unit. It was 

showed that the calibration curves were valid for the highest possible concentration (in the 

headspace) that could be measured from a full scale composting operation.  

Keywords. Compost gas, GC-MS, Dimethyl disulfide, Dimethyl trisulfide, SPME. 

Volatile fatty acids 
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1. Introduction 

The development of new analytical techniques for volatile organic compounds 

evolved from agricultural operations receives great attention. Composting is gaining 

acceptance as a disposal method for animal mortalities. It can be used for the day-to-day 

management of mortalities on farms as well as carcass disposal in emergency animal disease 

outbreak (Wilkinson, 2007). In biosecure composting applications (Spencer et al., 2004; 

Bendfeldt et al., 2006), mortalities are fully covered and degradation of mortalities cannot be 

monitored by visual inspection. Thus, assessment methods for the completion of decay 

process are needed.  One promising approach is to monitor gases released by decaying 

mortalities. Composting operations generate VOCs including oxygenated compounds (e.g., 

aldehydes, ketones, alcohols), nitrogen-containing compounds (e.g., pyrimidine), sulfur-

containing compounds (e.g., mercaptans, sulfides), alkanes (e.g., pentane, hexane), alicyclic 

hydrocarbons (e.g., terpenes), and aromatic compounds (Golueke et al., 1954; Chanysak et 

al., 1982; Fisher et al., 1986; Koe and Ng, 1987; Derikx et al., 1990; Miller, 1993; Williams, 

and Miller, 1993; Day et al., 1998; Krzymien et al. 1999; Kim et al., 2005a). An 

understanding of the chemical components released from animal mortality composting 

processes can give scientists insights into the completion of the degradation. Moreover, the 

composition of the exhaust air indicates the aeration status of the process and quality of the 

compost (Day et al., 1999; Romain et al., 2005). Under aerobic conditions, specific 

compounds are released such as carboxylic acids and NH3 (Beck-Friis et al., 2001). One of 

the most common compounds that contributes to odors (approximately 90%) during 

composting is dimethyl disulfide (Chiumenti et al., 2005). Other significant compounds are 

dimethyl trisulfide, pyrimidine, and volatile fatty acids (VFAs). VFAs are associated with 

anaerobic degradation during composting and produced from carbohydrate fermentation 

(Epstein, 1997).  
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There are difficulties in sampling and analysis of air samples from composting 

operations. Conventional air sampling methods use sorbent tubes, impingers, vacuum 

canisters, and gravimetric filters. These methods require costly equipment, lengthy sample 

collection and preparation periods, and complicated cleaning and extraction procedures. 

SPME offers many advantages for air sampling such as high precision and sensitivity, 

applicability to high moist samples, reusability, and compatibility with conventional 

analytical equipment (Wercinski, 1999; Jia et al., 2000; Augusto et al., 2001; Pacolay et al., 

2006). SPME-GC-MS has been showed as a useful air sampling technique for agricultural 

operations. Kim et al (2002) described a method that utilizes two different SPME fiber 

coatings for the analysis of propanoic acid, butyric acid, and sulfur compounds from waste 

treatment systems. Davoli et al (2003) and Kim et al. (2005b) characterized volatile organic 

compound emissions (e.g., propanoic acid, butanoic acid, hexanoic acid and dimethyl 

disulfide) from landfills using SPME and GC-MS. Kim et al (2005a) identified headspace 

odorants (e.g., propanoic acid, butanoic acid, and dimethyl disulfide) from commercial 

composts of 14 different producers using SPME method. Akdeniz et al. (2007a and 2007b) 

identified VOCs (e.g., volatile fatty acids, dimethyl disulfide, dimethyl trisulfide, and 

nitrogen containing compounds) during biological decomposition of plant and animal 

materials utilizing SPME and GC-MS.  

Development of quantification methods for SPME requires the use of reliable gas 

standards and accurate simulation of the sampling conditions. There are many ways to 

generate gas standards. In batch gas generation systems, standard liquids are injected and 

evaporated into a defined air volume (Koziel et al., 2004). Lee et al. (2002) utilized 1 L 

Tedlar bag to load a known amount of standard gas mixtures. Van Durme et al. (2007) used 

118 mL glass bottles to insert liquid standards of the compounds. Continuous gas generation 

and flow through systems have advantages over batch systems, such as minimization of the 

effects of adsorption to surfaces of the sampling system and continuous range dilution 
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(Koziel et al., 2004). The common methods for continuous generation of VOCs can be listed 

as: (a) permeation method, (b) diffusion method, and (c) syringe pump injection. To 

quantitatively analyze VOCs in field air samples, Jia et al. (2000) and Ouyang et al. (2006) 

prepared a standard gas generating device, which lets the flow pass through permeation tubes. 

Spinhirne and Koziel (2003) used permeation tubes to generate standard gases of volatile 

fatty acids (acetic, propanoic, 3-methyl butyric, butyric, isovaleric, valeric, and hexanoic 

acids). The disadvantage associated with the permeation method is the need for periodic 

weight measurements of the tubes. Augusto et al. (2001) developed two portable devices to 

perform diffusion based SPME. Diffusion based standard gas generator provides a simple 

mean to quantify VOCs. The disadvantage of the diffusion method is that temperature has to 

be controlled within ±1 % accuracy. Syringe pumps are used for generation of standard gases 

in many applications including validation of direct reading air samplers and generation of 

pollution standards (Koziel et al., 2004). Syringe pumps inject liquid standards into an air 

stream at a delivery rate ranging from 0.001 µl/h to 8800 ml/h, depending on the syringe 

volume. Syringe pump injection is a convenient quantification method, which does not 

require preparing a high number of standard analyte solutions. In this method, concentrations 

of the solutions are controlled by adjusting air flow rate of the system.  

In this study, a method that utilizes syringe pump injection and SPME is described to 

simultaneously quantify dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), pyrimidine 

(PR), acetic (AA), propanoic (PRA), 3-methyl butanoic (MBA), pentanoic (PEA) and 

hexanoic (HA) acids from biosecure mortality composting operations. Physical properties of 

the compounds that are used in the development of the method are presented in table 2.  

The number of organic compounds that could be potentially detected during a 

mortality composting process is virtually limitless (Haug, 1993). Although other chemicals 

from the sulfur and volatile fatty acid classes or from other compound classes such as 

mercaptans, cresols, and indoles may be required to fully evaluate the status and completion 
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of  a mortality composting process, this study focuses on the quantification of DMDS, DMTS, 

PR, AA, PRA, MBA, PEA, and HA. It introduces a method for rapid measurement of the 

compounds from composting operations. The main objectives of the study are (a) to develop 

an air sampling and analysis method for the quantification of VOCs from mortality 

composting operations, and (b) to test the applicability of the quantification method for a full 

scale biosecure swine mortality composting operation.    

 

2. METHODOLOGY 

2.1 Standards and reagents 

High pressure liquid chromatography grade standards of DMDS, DMTS, PR and 

VFAs were purchased from Sigma-Aldrich (Milwaukee, WI). Air cylinder (99.995%) and 

ethanol (100 %) were purchased from Chemistry Store of Iowa State University. Standard 

solutions were daily prepared in ethanol. After preparation, the vial with standard mixture 

was manually agitated. Before using, glass sampling bulbs and other glassware were 

carefully washed and rinsed and then baked at 110 ºC overnight.  

2.2 Air flow and air relative humidity 

Air flow rates were controlled by using a mass flow controller and a mass flow meter 

(Aalborg, Oangeburg, NY). To test the humid conditions on the extraction efficiency of 

SPME fiber, a 15 ml humidifier (Supelco, Bellefonte, PA) was used (figure 1). The results 

were reported for both dry air and the maximum humid air that could be reached with the 

system (97 % relative humidity).   
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2.3 Sampling bulbs for SPME 

Two hundred fifty mL glass sampling bulbs (Supelco, Bellofonte, Pa) were used for 

SPME. Three sampling bulbs were connected in series to provide enough volume to 

homogenously mix the analytes before sampling. After each concentration change, the 

system was allowed to reach steady state and then PTFE stopcocks on the 3rd glass bulb were 

closed and air sample was captured in the bulb. The air sample was extracted from the 3rd 

sampling bulb using a SPME fiber (figure 1).  

2.4 Syringe pump injection 

A KD Scientific syringe pump (Model 200, Holliston, MA) and 100 µl gastight 

Hamilton syringe (Reno, NV) were used to deliver the solution of standard analytes through 

a Thermogreen LB-2 septum into a Swagelok mixing tee (Koziel et al., 2004) (figure 1). The 

injection rate was chosen as 0.1 µl/min. The standard gas method detection limit (MDL) was 

calculated for a signal to noise ratio of five from the standard deviation of 10 measurements 

and at 99 % confidence level (Wisconsin Department of Natural Resources). The theoretical 

analyte concentration for each analyte (in ppmv) was calculated using the following equation 

(Koziel et al., 2004): 
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Where Qanalyte is the total mixture delivery rate (µg/min), Qair the air flow rate (L/min), 

manalyte the mass of analyte of interest (µg), and mtotal is the total mass of mixture injected 

(µg), MWanalyte is the molecular weight of the analyte of interest.  

The syringe pump system was tested before starting experiments. In this study, 

injection tee was not heated. Since the injection tee was not heated, the possibility of 

condensation in the tee was checked. For this purpose, the mixing tee was replaced with a 
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glass sampling bulb, letting air with standard analytes pass through for 2 hours. Then, glass 

bulb was washed with ethanol. This washing ethanol was directly injected into GC-MS. 

None of the compounds were found in the washing ethanol. It is concluded that there is no 

condensation in the system. One of the other concerns was the accuracy of the syringe pump 

delivery rate, which was confirmed through two approaches. In the first approach, the pre-

weighed syringe was used to deliver the mixture for a specific period of time and then 

weighed again. In the second approach, the volume difference is recorded and delivery rate 

was calculated based on this. Only 0.01 % difference was found between the theoretical 

delivery rate and the delivery rates calculated from these two approaches. Another concern 

was homogenous mixing of air and standards before reaching the 3rd glass sampling bulb. 

The preliminary experiments showed that when 3 glass sampling bulbs were used, 

homogenous mixing was not achieved before reaching the 3rd glass bulb. Thus, pyrex 6 mm 

diameter glass beads (0.25 lb, Fisher Scientific) were used to provide homogenous mixing in 

the 3rd sampling bulb (figure 1). The last concern was a possible reaction between the mixed 

analytes. This was tested by direct injection of the mix into GC-MS. No new compounds 

were detected.  

2.5 SPME fiber selection 

Four commercially available SPME fibers were compared at 1 hour extraction time in 

terms of extraction efficiency by evaluating the peak area values (i.e. the amount of the 

analyte extracted by the fiber) (Juan et al., 2007). The tested fibers were 85 µm 

carboxen/polydimethylsiloxane (CAR/PDMS), 100 µm polydimethylsiloxane (PDMS), 65 

µm polydimethylsiloxane/divinylbenzene (PDMS/DVB), 85 µm polyacrylate (PA) (Supelco, 

Bellefonte, PA). New SPME fibers were first conditioned according to the manufacturer 

directions.  In addition, SPME fibers were inserted into the injection port of GC for five 

minutes to thermally desorb impurities on the fiber immediately before sampling.  
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2.6 Extraction time selection 

The extraction time was tested. For this purpose the extraction times of 1, 3, 10, 60, 

360 and 720 minutes were tested. Since the fiber reaches equilibrium after 60 min extraction 

time, the linearity was checked for 1, 3, 10, and 60 min extraction times.  

2.7 Demonstration of the quantitatively analysis 

An example of the quantitative analysis is demonstrated for the air samples collected 

from full scale swine mortality composting units. Details of the composting units are 

described in Ahn et al., 2007 and Glanville et al., 2007. Air samples were drawn from the 

center location of corn stalks units using SKC pumps (224-PCXR4, PA). Samples were 

collected in the 10th day of the process. It is known that VOC production is the most intense 

in the first 10 days of a composting process (Haug, 1993). This intense VOC production 

period was considered to collect VOC samples to be able to show the applicability of the 

prepared calibration curves for the possible highest concentrations of a full scale composting 

unit. The applicability of the calibration curves for the lowest concentrations are shown by 

calculating method detection limits. Air samples were captured inside 250 mL glass sampling 

bulbs. VOCs were sampled using the selected SPME fiber and time. 

2.8 Sample analysis 

All gas analyses were performed using integrated multi dimensional 6890N GC and 

5973 MS (Agilent Inc., Wilmington, DE) system. Ultrahigh pure (99.995 %) helium was 

used as the carrier gas at constant pressure. The injector and SPME fiber desorption 

temperature was 260 ºC. The initial temperatures of the GC oven were 40 ºC with 3 min 

holding time, followed by a ramp of 10 ºC/min until reaching 220 ºC, where it was held for 

10 min. Two capillary columns, connected in series, were used to separate compounds. The 

pre column was BP5 12 m × 0.53 mm I.D × 0.25 µm and the analytical column was BP20 25 
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m× 0.53 mm I.D. × 0.25 µm (SGE, Austin, TX). The heart-cut valve between the pre-column, 

and analytical column was opened between 0.05-28 min, and backflush of the pre-column 

was activated between 28-31 min to prepare the system for the following run. The MS 

mass/charge (m/z) ratio was set between 33 and 150 for the first eight minutes. After the first 

eight minutes, MS detection was between 34 and 280 m/z. The transfer line, quadrupole, and 

MS source temperatures were 240, 150, and 230 ºC, respectively.  

2.9 Data analysis 

Chromatography data acquisition software consisted of MSD ChemStation (Agilent) 

and BenchTop/PBM™ V. 3.2.4 (Palisade Corporation, Ithaca, NY) was used to analyze data. 

Separated compounds were identified using mass spectral matches with ChemStation’s NIST 

MS Library and PBM Benchtop MS libraries. Spectral matches and column retention times 

were compared with those of standard analytes.    

2.10 Statistical analysis 

Experiments were performed in triplicate (N=3). JMP v 6.0.2 package was used to 

run statistical tests. Data were subjected to one-way analysis of variance (ANOVA). 

Treatment means were compared using TUKEY’s honestly significant differences (HSD) test 

at 95 % confidence level.    

3. Results and discussion 

3.1 Fiber selection 

In order to select the most suitable fiber, SPME fibers were compared according to 

the amount of analytes they extracted at one hour sampling time (figure 2). The relative 

standard deviation of the data was ranging from 1 to 9 %. 85 µm CAR/PDMS provided the 

highest extraction efficiency and was found statistically significantly different than the other 
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fibers. Based on the amount of analytes extracted, efficiencies of the fibers can be ranked 

from the highest to the lowest as: CAR/PDMS> PDMS/DVB> PDMS ≈ PA (figure 2). These 

results can be explained by the characteristics of the fiber coatings. Mixed phase coatings 

(CAR/PDMS and PDMS/DVB) have complementary properties compared to homogenous 

phase coatings (PDMS and PA). Since the majority of interaction is determined by the 

adsorption process on porous surface, CAR/PDMS and PDMS/DVB are suitable for more 

volatile organic compounds than PDMS and PA fiber coatings (Pawliszyn, 1997). Thus, 

DMDS, DMTS, PR and VFAs were extracted at higher amounts by CAR/PDMS and 

PDMS/DVB than PDMS and PA (figure 2). DVB is mainly mesoporous and ideal for 

trapping C6-C15 analytes. Unlike DVB, CAR is microporous and traps C2-C6 analytes (Mani, 

1999). This explains the better extraction efficiency of CAR/PDMS compared to 

PDMS/DVB for the compounds ranging from C2-C6 (figure 2 and table 2).  

3.2 Extraction time selection 

Carboxen/PDMS is an adsorptive fiber coating. During fiber selection, the extraction 

time was chosen as 1 h. This extraction time might cause replacement of the compounds 

from the micropores of the CAR/PDMS coating. Six different extraction times were tested 

and the amounts of analytes extracted were shown in figure 3. The relative standard 

deviations of the data were ranging from 1 to 14 %. In 6 and 12 h extraction times, an 

increase in extraction time did not lead to an increase in the amount of analyte extracted. This 

is caused due to displacement of analytes. If an extraction time that corresponds to the linear 

range of the data is used, there will not be any risk of displacement. For this reason, graphs 

were plotted for 1, 3, 10, and 60 mins. Extraction times and linearity of the graphs was 

checked (figure 4). Correlation coefficients of the graphs were ranging from 96 to 99%. 

Since the linearity of the graphs were high, it was concluded that at one hour extraction time 



 

49 

there is no displacement of the compounds and one hour is a proper extraction time for 

CAR/PDMS fiber coating to sample DMDS, DMTS, PR, AA, PRA, MBA, PEA, and HA.  

3.3 Calibration curves and method detection limits 

The quantification of target VOCs was based on the calibration curves obtained under 

non-equilibrium conditions and 1 h sampling time. Calibration curves were prepared for both 

dry and humid (97% relative humidity) air conditions (table 3). The points have relative 

standard deviations ranging from 0.32 to 5.01 %.  

A comparison of theoretical concentrations with the concentrations calculated from 

the calibration curves of the dry and humid conditions is presented in table 4. The data is 

presented using ppbv units. The theoretical concentrations were chosen arbitrary but at low 

concentrations considering difficulties in analysis at low concentrations. The concentrations 

calculated were all above method detection limits and thus reliable (table 4). Measured 

concentrations were found to be different than the theoretical concentrations at a level 

ranging from 1.47 to 20.96 %. These differences are close to the ones reported in Koziel et al. 

(2004) and believed to be in an acceptable range. Koziel et al. (2004) compared theoretical n-

alkane concentrations with those measured using 100 µm PDMS fiber and reported 

differences in the concentrations ranging from 2 to 17 %. 

No significant difference was detected between dry and humid conditions for DMDS, 

DMTS, PR, and HA. However, significant differences were detected for AA, PRA, MBA, 

and PEA. Lower concentrations of acids (AA, PRA, MBA and PEA) were detected under 97 

% humid conditions. In a swine mortality composting operation, if air samples are collected 

in an early stage of the process, air samples are expected to have a very high relative 

humidity (approximately 100 %). However, in the following stages, compost materials will 

lose some of their moisture and air samples will have a relative humidity ranging from 0 to 



 

50 

100%. Thus, by using calibration curves prepared for dry and humid conditions a range of 

concentrations can be reported.   

3.4 Demonstration of the quantitatively analysis 

An example of total ion chromatogram of the air samples drawn from full scale swine 

mortality composting units is presented in figure 5. Concentrations of the VOC’s were 

calculated using the calibration curves of dry and humid (97 % relative humidity) conditions 

(table 5). Concentrations of the compounds were ranging from 0.06 to 7.39 ppmv in the 

headspace. It is shown that the prepared calibration curves are useful for the concentrations 

that can be detected from a full scale composting unit. The developed method considers both 

the dry and humid air conditions of the composting process and is applicable to quantitatively 

analyze VOC’s from full scale swine mortality composting operations.   

4. CONCLUSIONS  

A completely new method is developed to quantitatively analyze DMDS, DMTS, PR, 

AA, PRA, MBA, PEA, and HA from full scale mortality composting operations. Eighty five 

µm CAR/PDMS is shown to extract the highest amount of analytes at 1 h sampling time. It is 

observed that at this sampling time, there is no risk of analyte replacement. The prepared 

calibration curves have high correlation coefficients ranging from 96 to 99 %. The 

differences between theoretical and calculated concentrations are found to be ranging from 

1.47 to 20.96 %. These differences are close to the ones reported in other studies and 

believed to be acceptable. No significant difference is found for DMDS, DMTS, PR and HA 

concentrations extracted under dry and humid conditions. However, lower concentrations of 

AA, PRA, MBA, and PEA were detected under 97 % humid conditions compared to dry 

conditions. Some amounts of the compounds are lost with the humid air due to their high 

water solubility. In quantification of these compounds, if the relative humidity of the sample 

is not know, a range of concentrations can be reported using calibration curves of dry and 
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humid air conditions. The applicability of the prepared calibration curves is tested for air 

samples drawn from a full scale swine mortality composting unit. It is showed that the 

calibration curves are valid for the highest possible concentration (in the headspace) that can 

be measured from a full scale composting operation. The method detection limits are found 

to be ranging from 10-5 to 5.8*10-1 ppmv. SPME and standard gas generation using syringe 

pump injection are found to give good estimates of the concentrations of DMDS, DMTS, PR, 

AA, PRA, MBA, PEA, and HA. These techniques can be used for rapid quantitative analysis 

of volatile organic compounds from composting operations. This study will lead to other 

scientists to develop sampling and quantification method for the other volatile organic 

compounds of the mortality composting operations.  
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Table 2. Physical properties of the quantified compounds 

Compound 

name 

CAS # MW* Formula Density 

(g/mL)** 

Solubility 

in water 
Solubility 

in ethanol 

DMDS 624-92-0 94.20 C2H6S2 1.062 insoluble very soluble 
DMTS 3658-80-8 126.26 C2H6S3 1.202 insoluble very soluble 

PR 289-95-2 80.08 C4H4N2 1.016 miscible soluble 
AA 64-19-7 60.05 C2H4O2 1.049 soluble miscible 

PRA 79-09-4 74.07 C3H6O2 0.980 soluble miscible 
MBA 503-74-2 102.13 C5H10O2 0.931 soluble miscible 
PEA 109-52-4 102.13 C5H10O2 0.933 soluble soluble 
HA 142-62-1 116.15 C6H12O2 0.920 soluble soluble 

(Source: Lide, 2004; DMDS: dimethyl disulfide, DMTS: dimethyl trisulfide, PR: Pyrimidine, 

AA: acetic acid, PRA: propanoic acid, MBA: 3-methyl butanoic acid, PEA: pentanoic acid, 

HA: hexanoic acid, MW: molecular weight, density at 20ºC) 
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Table 3. Calibration curves with correlation coefficients, concentration ranges of the 

calibration curves and relative standard deviations (RSDs) of the points 
Compound 

name 

Calibration curves Concentration 

range (ppmv) 

RSD range 

(%) 

 Dry conditions Humid conditions   
DMDS y=1.78E+07x-6.17E+04 

R2= 0.998 
y=1.74E+07x-8.75+04 

R2= 0.998 
0.01-6.85 1.20-4.15  

DMTS y=1.51E+07x-3.33E+06 
R2= 0.990 

y=1.46E+07x-2.86E+06 
R2= 0.990 

0.02-5.95 1.07-4.73  

PR y=2.08E+07x+4.47E+06 
R2= 0.976 

y=2.03E+07x+3.49E+06 
R2= 0.979 

0.03-6.25 0.24-7.16  

AA y=5.17E+06x-1.54E+06 
R2= 0.993 

y=4.78E+06x-2.46E+06 
R2= 0.986 

0.2-15.64 0.96-11.40  

PRA y=9.92E+06x-4.87E+06 
R2= 0.967 

y=8.50E+06x-3.20E+06 
R2= 0.972 

0.16-13.25 0.72-14.77  

MBA y=2.24E+07x-9.09E+05 
R2= 0.985 

y=2.07E+07x-3.56E+06 
R2= 0.984 

0.11-6.12 0.57-11.22  

PEA y=2.51E+07x-2.81E+05 
R2= 0.995 

y=2.30E+07x-8.03E+05 
R2= 0.990 

0.11-7.24 0.40-7.26  

HA y=2.32E+07x-1.94E+06 
R2= 0.991 

y=2.28E+07x-2.55E+06 
R2= 0.991 

0.09-5.54 0.47-12.43  

(Dry condition ≈ 0 % relative humidity and humid condition ≈97 % relative humidity) 

 

Table 4. Comparison of theoretical and measured concentrations and method detection limits 

for dry and humid air conditions 

Compound 

name 

Theory 

(ppbv) 

SPME (ppbv) 

at dry conditions 

SPME  (ppbv) 

at humid conditions 

MDL (ppbv)* 

 

 Average % 
difference** 

Average % 
difference 

 

DMDS 28 30A*** 7.14 27A 3.57 1-1.1 
DMTS 23 20A 13.04 19A 17.39 5.7 – 5.5 

PR 2 2.1A 0.5 2A 0 0.01-0.011 

AA 430 789A 9.30 765B 12.09 520-551 
PRA 610 631A 3.44 601B 1.47 580-572 
MBA 225 251A 11.55 233B 3.55 120-180 
PEA 229 195A 14.87 181B 20.96 40-36 
HA 197 210A 6.59 202A 5.00 110-120 

(MDL: method detection limit at dry (left) and humid (right) conditions; % difference: % 

difference between the measured (average) and theoretical concentrations; average 

concentrations at dry and humid conditions are compared; means that are not connected with 

the same letter are significantly different) 
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Exhaust 

Glass sampling bulb 

Humidifier 

Control 
valve 

Syringe pump 

Syringe  

Air cylinder 

MFC 
MFM 

SPME fiber 

Glass beads 

Table 5. Calculated concentrations of the VOCs samples from a full scale swine composting 

system 

Retention time 
(min)* 

Compound name MS area counts 
(arbitrary units) 

Concentrations (ppmv) 
 

   dry 
conditions 

humid 
conditions 

5.55 DMDS 1.1E+07 0.593 0.60 
7.86 PR 4.7E+06 0.066 0.06 

12.10 AA 3.3E+07 6.84 7.39 
12.27 DMTS 9.9E+06 0.432 0.48 
13.78 PA 2.3E+07 2.76 3.02 
16.17 MBA 1.9E+07 0.88 1.08 
17.34 VA 8.5E+06 0.35 0.41 
19.10 HA 1.2E+07 0.64 0.66 

(Retention times of the compounds were matched with the standard analytes; dry condition ≈ 

0 % relative humidity and humid condition ≈97 % relative humidity) 

 

 

Figure 1. Schematic of the standard gas generation using syringe pump injection and SPME  

(MFC: Mass flow controller, MFM: mass flow meter) 
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Figure 2. Extraction efficiencies of different SPME fibers  

(SPME at room temperature at 60 min extraction time; means that are not connected with the 

same letter are significantly different; N=3; p≤0.05) 
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Figure 3. Extraction efficiencies at 1, 3, 10, 60, 360, and 720 minute extraction times  

(SPME at room temperature with 85 µm CAR/PDMS; N=3) 
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Figure 4. Extraction efficiencies at 1, 3, 10, and 60 minute extraction times  

(SPME at room temperature with 85 µm CAR/PDMS; N=3) 
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Figure 5. Total ion chromatogram of VOC sampled from full scale swine mortality 

composting units  

(SPME at room temperature with 85 µm CAR/PDMS at 1 h sampling time) 
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Appendix A. List of compounds identified from preliminary laboratory scale composting 

experiments  

(+ detected and – not detected from headspace) 

Compound name CAS # MW Corn silage 

composts 

Swine tissue 

composts 

Volatile fatty acids 

Acetic acid 64-19-7 60.05 + - 

Propanoic acid 79-09-4 74.07 + - 

Propanoic acid, 2-methyl 79-31-2 88.10 + - 
Butanoic acid 107-92-6 88.10 + - 

Butanoic acid, 3-methyl- 503-74-2 102.13 + - 
Pentanoic acid 109-52-4 102.13 + - 

Hexanoic acid 142-62-1 116.15 + - 

Phenolics 

Phenol, 2-methoxy- 90-05-1 124.13 + + 
Benzeneethanol 60-12-8 122.16 + - 

Phenol 108-95-2 94.11 + + 

Phenol, 4-methyl- 106-44-5 108.13 + + 
Phenol, 4-ethyl 123-07-9 122.16 + + 

Esters 

Butanoic acid, ethyl ester 105-54-4 116.15 + - 

Butanoic acid, propyl ester 105-66-8 130.18 + - 

Hexanoic acid, ethyl ester 123-66-0 144.21 + - 

Butanoic acid, 3-methylbutyl ester 106-27-4 158.23 + - 

Alcohols 

1-Hexanol 111-27-3 102.17 + - 

Ketones 

2-Butanone 78-93-3 72.10 + + 

2-Heptanone 110-43-0 114.18 + + 

Sulfur-containing compounds 

Disulfide, dimethyl 624-92-0 94.20 - + 

Trisulfide, dimethyl 3658-80-8 126.26 - + 

Methanethiol 74-93-1 48.10 - + 

Tetrasulfide, dimethyl 5756-24-1 158.33 - + 

Nitroge- containing compounds 

2-Piperidinone 675-20-7 99.13 - + 

Indole 120-72-9 117.14 - + 

1,3-Diazine 289-95-2 80.08 - + 
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Appendix B. Preliminary experiments to compare SPME fiber coatings 
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(Average total peak area of each chemical group is shown; N=3) 
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Appendix C. Preliminary experiments to compare SPME time 
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(Average total peak area of each chemical group is shown; N=3)  
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Appendix D. Calibration curves at dry (≈0% relative humidity) air conditions   
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Appendix E. Calibration curves at humid (97 % relative humidity) conditions 
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Appendix F. Sampling low molecular weight sulfur-containing compounds at different 

extraction times 
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(Methanethiol and ethanethiol sampled at 1, 10, 60, 360, 720 min extraction times; N=3) 
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Benjamin P. Crawford, D. Raj Raman, Anthony L. Pometto III, Sam Beattie 

 

ABSTRACT 

In case of an emergency disposal, to reduce the potential of spreading live viruses to 

the environment, a passively-aerated plastic wrapped mortality composting system has been 

designed. In this type of system visual inspection of the carcasses is not possible. Monitoring 

volatile organic compounds (VOCs) released by carcasses is a promising approach to assess 

progress and completion of the degradation process. In this study, to better understand VOC 

emissions from field scale mortality composting systems swine carcass tissues were 

composted using a laboratory set-up. The objectives of the study were to identify 

characteristic VOCs evolved from decaying swine tissues and to evaluate VOC emissions to 

test completion of the carcass degradation. Among forty three compounds, dimethyl disulfide, 

dimethyl trisulfide, and pyrimidine were found to be produced by decaying swine tissues and 

named as biosecure marker compounds of the degradation process. The highest emissions 

rates of the marker compounds were measured for the first three weeks and after the fifth 

week of the process they were not detected from the headspace. It was concluded that 

degradation process was completed and swine composts were completely stabilized. This 

finding was supported by respiration rates. Based on respirometric tests, swine tissues are 

categorized as stable compost with respiration rates of 3.25±0.12 mg CO2-C/ g VS*d.  

Keywords. Compost, Dimethyl disulfide, Dimethyl trisulfide, Pyrimidine, SPME, VOC 
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1. Introduction 

The safe disposal of carcasses during emergency animal disease (EAD) outbreaks is a 

significant issue (Wilkinson, 2007). Improper disposal of carcasses, such as illegal dumping, 

has become a problem due to limited number of licensed landfills, incineration and rendering 

services (Bonhotal et al., 2002). Biosecurity agencies in USA, Canada, Australia, and New 

Zealand have recognized the potential benefits of composting as an emergency management 

of mortalities (Wilkinson et al., 2007). Diseased mortality composting was first developed 

for the poultry industry (Spencer et al., 2004; Bendfeldt et al., 2006). Studies have been 

conducted to adapt mortality composting for swine and cattle emergency disposal (Glanville 

et al., 2006a, 2006b; Ahn et al., 2007; Glanville et al., 2007).    

In case of an emergency disposal, to reduce the potential of spreading live viruses to 

the environment, a passively-aerated plastic wrapped mortality composting system has been 

designed (Spencer et al., 2004; Ahn et al., 2007; Glanville et al., 2007). In this type of 

biosecure composting applications, carcasses are fully covered with envelope materials and 

plastic sheets. It is not safe to turn, mix, or expose the diseased carcasses to the environment 

until the carcass degradation is completed. Since visual inspection of the carcasses is not 

possible, a new method is needed to assess progress and completion of the degradation 

process. A promising approach is to monitor VOCs released by decaying mortalities.  

VOCs are a wide group of organic compounds including sulfur-containing 

compounds, nitrogen-containing compounds, alcohols, phenols, ketones, esters, volatile fatty 

acids, and terpenes (Pagans, et al., 2006). Since air has a low density and VOCs have low 

concentrations (pg/L to µg/L), sample preparation for VOCs in air requires pre-concentration 

(Dewulf and Van Langenhove, 2002; Clemitshaw et al., 2004). Ultraviolet differential 

absorption spectroscopy (UV-DOAS), Fourier transform infrared spectroscopy (FT-IR), and 

colorimetric method are the techniques that allow measurement of VOCs in air without 

sample preparation but the number of analytes that can be detected is limited (Cheng and Lee, 
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et al., 1999; Lin et al., 2004). Gas phase SPME coupled with GC-MS is a convenient method 

for measurement of VOCs in air. The analysis of VOCs can be done directly from SPME 

fibers without further sample handling. With SPME, there is no need for Tedlar bags or 

Summa canisters for sampling or extraction (Kim et al., 2005a). SPME has been reported for 

the analysis of VOCs in indoor air (Wei. et al., 2004; Larroque et al., 2006; Hippelein, 2006), 

gaseous industrial effluents (Domeno et al., 2004), lower troposphere (Mangani et al., 2003; 

Barro et al., 2004;) with low detection limits (LODs) below 1 ng/L. It has been used for 

identification of VOCs from landfills, commercial composts and decaying plant and animal 

materials (Davoli et al., 2003; Kim et al., 2005a, 2005b; Akdeniz et al., 2007a, 2007b; 

Akdeniz, 2008). During sampling, the major factors affecting SPME efficiency are fiber 

coating, extraction time and temperature. Mixed phase coatings, CAR/PDMS 

(carboxen/polydimethylsiloxane) and PDMS/DVB (polydimethylsiloxane/divinylbenzene), 

have complementary properties compared to homogenous phase coatings PDMS 

(polydimethylsiloxane) and PA (polyacrylate). Since the majority of interaction is 

determined by the adsorption process on porous surface, mixed phase coatings are proper for 

more volatile organic compounds than homogenous fiber coatings (Pawliszyn, 1997). DVB 

is mainly mesoporous and ideal for trapping C6-C15 analytes. CAR is microporous and traps 

C2-C6 analytes (Mani, 1999). For mixed phase coatings, headspace extraction is carried out in 

non-equilibrium conditions. Non-equilibrium conditions are required to avoid saturation of 

the fiber and competition between analytes (Pawliszyn, 1997; Roberts et al., 2000; 

Nongonierma et al., 2006). Temperature plays an important role in the way volatiles are 

released in the vapor phase. Although there are more compounds in the vapor phase when the 

temperature increases, amounts of volatiles adsorbed can decrease (Song et al., 1998; Jia et 

al., 1998; Demyttenaere et al., 2003). This can be explained by the fact that adsorption is an 

exothermic process (Pawliszyn, 1997). Also, adsorption induces heat release, which can 
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increase the temperature of the adsorbent and decrease the amounts of analyte adsorbed 

(Nongonierma et al., 2006).   

In this study, a laboratory scale composting system is prepared to simulate full scale 

biosecure composting systems. The objectives of the study are (a) to identify characteristic 

VOCs evolved from decaying envelope materials and swine tissues in order to find marker 

compounds of animal tissues, (b) to develop calibration curves to quantify marker VOC 

emissions from decaying swine tissues, (c) to evaluate a potential usage of emission 

measurements to test completion of the carcass degradation.  

2. Methods 

2.1 Experimental set-up 

A laboratory-scale composting system with aerobic and anaerobic test units was 

prepared to collect VOC samples from the headspace of envelope materials and swine tissues 

(figures 6 and 7). Envelope materials (corn silage, oat straw, alfalfa hay) were collected from 

central Iowa. Oat straw and alfalfa hay were chopped to approximately 10 cm lengths to 

prevent an excessively porous structure. A whole pig body (14 lbs) was shredded using an 

industrial grinder with its bones, internal organs and skin.  The initial moisture contents of 

the corn silage, oat straw, alfalfa hay, and pig tissues were 43.6, 37.7, 44.2, and 65 %, 

respectively. Moisture contents of the envelope materials were adjusted to 65 % by spraying 

deionized water to prevent any adverse effect of storage. Envelope materials were incubated 

at 30 ºC for 24 h to let the materials absorb the sprayed water (Ahn et al., 2005). Moisture 

loss during incubation was compensated.   

Approximately 70 dry grams of samples were placed inside 1 L glass jars (Mason, 

Wal-Mart, IA). Jars were washed with deionized water and baked at 110 ºC overnight to 

drive off volatile impurities. PTFE (polytetrafluoroethylene) liners with 1/32 inch thickness 

(USP, OH) were placed inside on the lids (inner side) to separate headspace of the jars from 
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tin lids. VOC sampling ports were made by drilling 5 mm holes in the middle of the lids and 

Thermogreen half-hole septa (Supelco, PA) were tightly placed in these holes. In all over the 

system, clean ¼ inch O.D. PTFE tubing (E&S Technologies, MA) and stainless steel fittings 

(Swagelok, KS) were used to prevent any contamination. All the test units were placed in 

same brand water baths (Fisher Scientific, IL). Temperatures of the water baths were 

adjusted every day manually (figure 8). Temperatures were increased up to 67 ºC and then 

decreased to 22 ºC. This is an average temperature profile of a warm season full scale 

biosecure swine mortality composting process. After temperature decreased to 22 ºC, it was 

increased again (figure 8) to check VOC emissions in case of a temperature increase after the 

composting process is completed.   

2.2 Aerobic test units 

Two oilless pumps (Combine Fluid Products, IL) were used to provide the necessary 

aeration for aerobic test units. Air was pumped through hydrocarbon traps (Supelco, PA) to 

prevent any contamination from the ambient air. Curved PTFE tubings with equal number of 

holes were used to aerate test units (figure 6). Air flow rate was set at 100±1.66 mL/min by 

using stainless steel 3-way needle valves (Swagelok, NE). Rynk et al. (1992) suggested air 

flow rates ranging from 25 to 100 cfm per dry ton. In this study, air flow rate was chosen as 

1.4 mL per dry g of compost material (50 cfm per dry ton) and kept constant in all test units. 

Air flow rate of each test unit was checked weekly from the outlet of the test units (figure 6). 

Aeration stopped and aerobic test units kept closed 1 h before SPME to let the VOCs reach 

equilibrium in the headspace.  

Humidified air was pumped through aerobic test units. Relative humidity at the outlet 

of the test units was calculated by measuring dry and wet bulb temperatures. Outlet of the 

test units were connected to small glass jars and dry/wet bulb temperatures were measured 

inside these jars using thermocouples (Omega Engineering, CT). Wetted gauze was used to 
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measure wet bulb temperatures (figure 6). A datalogger (Model CR10X, Campbell Scientific, 

USA) was utilized to record temperature data.  

2.3 Anaerobic test units 

Anaerobic conditions were provided by tightly closing the anaerobic test units and 

passing 99.995 % pure N2 (Chemistry Store, Iowa State University) through test units for two 

minutes. The O2 trap (Alltech Associates, IL) was used to prevent any O2 contamination.  

Mass flow of N2 was set at 1L/min and checked by a mass flow controller (Dry Cal, NJ).   

2.4 CO2 and O2 measurements 

The CO2 and O2 concentrations were measured on weekly basis from the outlet of the 

test units using a CO2 (Vaisala, CO) and O2 (Apogee, UT) probe. The CO2 and O2 

concentrations of the aerobic test units were recorded to test aeration status of the test units. 

O2 concentrations of anaerobic test units were measured in order to check a possible O2 

contamination. The CO2 and O2 probes were calibrated weekly using clean ambient air and 

gas mixtures (5% CO2-15 % O2 and 15 % CO2-5 % O2) prepared by Chemistry Store, Iowa 

State University.  

2.5 Headspace SPME and GC-MS analysis 

A 85 µm Carboxen/polydimethylsiloxane SPME fiber and 1 h extraction time was 

used to collect VOCs from the headspace of the test units. This fiber and extraction time was 

chosen based on previous studies (Akdeniz, 2008). Samples were run using a 6890N GC and 

5975 MS (Agilent Inc., DE). Pure helium (99.995 %) was used as the carrier gas at constant 

air flow (1.7 m/s). The injector and SPME fiber desorption temperature was 240 ºC. The 

initial temperatures of the GC oven were 40 ºC with 3 min holding time, followed by a ramp 

of 8 ºC/min until reaching 220 ºC, where it was held for 10 min. A polar capillary column 

(BP21, 60 m* 0.32 mm ID* 0.25 µm film thickness, SGE, TX) was used to separate analytes. 
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The MS mass/charge (m/z) ratio was set between 29 and 150 for the first eight minutes. After 

the first eight minutes, MS detection was between 34 and 280 m/z. The transfer line, 

quadrupole, and MS source temperatures were 240, 150, and 230 ºC, respectively. 

Chromatography data acquisition software including MSD ChemStation (Agilent) and 

BenchTop/PBM™ V. 3.2.4 (Palisade Corporation, Ithaca, NY) were used to analyze data. 

Separated compounds were identified using mass spectral matches with ChemStation’s NIST 

MS Library and PBM Benchtop MS libraries. Spectral matches and column retention times 

were compared with those of standard analytes.    

2.6 Measurement of emission rates 

Calibration curves were prepared to quantify MS detector response (peak area count) 

using the methodology developed by Akdeniz (2008). Akdeniz (2008) reported that there is 

no significant difference between dry and humid conditions (97% relative humidity) in 

quantification of dimethyl disulfide, dimethyl trisulfide, and pyrimidine. Therefore, 

calibration curves were prepared for only dry conditions. In this study, to simulate a full scale 

composting process, temperatures of the test units were changed on daily basis (figure 8). 

Thus, headspace VOCs were extracted at different temperatures. To be able to quantify MS 

detector response at different temperatures, calibration curves were prepared for 20, 30, 40, 

50, and 60 ºC. For this purpose after standard gases of marker compounds were generated 

and collected inside glass sampling bulbs as described in Akdeniz (2008), they were placed 

inside an oven (The Grieve Corporation, IL) with a temperature controller. Glass bulbs were 

kept inside the oven for 10 mins and headspaces were sampled for 1 h with 85 µm 

Carboxen/PDMS (polydimethylsiloxane) SPME fiber. Concentrations of the compounds 

were calculated using the calibration curve with the closest temperature to the sampling 

temperature. Emission rates of the marker compounds were calculated using the following 

equation (Xin, 2005): 
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Where ER is the emission rate (µg/min), Q is the air flow rate (L/min), C is the 

concentration of the analyte (ppmv), Wm is the molecular weight of the analyte (g/mol), Vm is 

the molar volume of the analyte at STP (L/mol), Tstd is the standard temperature (273.15 K), 

Ta is the ambient temperature (K), Pstd is the standard pressure (101.325 kPa), and Pa is the 

ambient pressure (kPa).  

2.7 Statistical analysis  

Experiments were run in triplicate (N=3). JMP v 6.0.2 package was used for 

statistical analysis. Data were subjected to one-way analysis of variance (ANOVA). 

Treatment means were compared using TUKEY’s honestly significant differences (HSD) test 

at 95 % confidence level (p≤0.05 and N=3).    

3. Results and discussion 

3.1 Air and moisture supply 

 Oxygen and carbon dioxide values of aerobic test units were found to be same with ambient 

air (0.03 % CO2, 20.94% O2). The O2 values of anaerobic test units were measured as zero. 

The CO2 values of anaerobic test units were lower than ambient air ranging from 0.01 to 

0.012%. It shows that there was no limitation in O2 supply to aerobic test units and no O2 

contamination to anaerobic test units. Moisture contents of the corn silage, oat straw, alfalfa 

hay, and pig tissues were decreased to 29.1±1.01, 31.1±1.25, 32.0±0.98, and 32.2±1.21 %, 

respectively. It can be concluded that aerobic test units were humidified properly during the 

process and over drying of the compost materials due to excessive aeration was prevented.  
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3.2 Identification of marker VOCs 

Forty three compounds including volatile fatty acids, esters, nitrogen-containing 

compounds, alcohols, phenols, ketones, sulfur-containing compounds and terpenes were 

identified from corn silage, oat straw, alfalfa hay and swine composts (table 6). Retention 

time and spectra of the compounds were matched with those of pure standards.  

Among the forty three compounds, only three compounds were found to be evolved 

by decaying swine tissues but not produced by any of the plant materials. These marker 

compounds were dimethyl disulfide, dimethyl trisulfide and pyrimidine. They were produced 

under both aerobic and anaerobic conditions. The main reason they are not produced by 

decaying plant materials during composting can be explained by slower microbial activity 

and degradation rate of plant materials due to their cellulose and lignin contents.  

Dimethyl disulfide and dimethyl trisulfide are believed to be produced from sulfur, 

which makes up about 0.15 % of a swine body. Sulfur is widely distributed throughout the 

body since proteins are present in every cell of a swine body and sulfur containing amino 

acids (e.g., methionine, cystine, and cysteine) are components of almost all proteins (0.6-0.8 

% of a protein) (Shurson et al., 1998). Dimethyl disulfide and dimethyl trisulfide are 

produced by microbial decomposition of sulfur containing amino acids under aerobic and 

anaerobic conditions. The mechanism would likely entail the sequential steps of the 

breakdown of protein to form peptides and degradation of the peptides to form free sulfur-

containing amino acids. Sulfur-containing amino acids are broken down to form methyl 

mercaptan, dimethyl disulfide and dimethyl trisulfide by oxidation and enzymatic activity 

(Kadota and Ishida, 1972; Shurson et al., 1998; Higgins et al, 2002; Tulio et al., 2003). In this 

study, methyl mercaptan was not detected from decaying swine tissues.  

Pyrimidine is a heterocyclic aromatic organic compound similar to pyrazine, 

containing two nitrogen atoms at positions 1 and 3 of the six member ring. There is not any 

information about the Pyrazines and furans were found to be the major Maillard reaction 
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products (Jenq et al., 1994). Although there is not any solid evidence, pyrimidine could be 

produced by Maillard reactions that occur between reducing sugars and amino acids.  

3.3 Quantification of marker VOCs 

SPME temperatures were compared according to the amount of analytes extracted at 

1 hour sampling time. The highest extraction efficiency was achieved at 20 ºC (figure 9). As 

the temperature increased, the extraction efficiency decreased due to the exothermic nature of 

the adsorption process. The amount of analytes extracted at 20, 30, and 40 ºC were found to 

be significantly different than each other and the ones extracted at 50 ºC and 60 ºC (figure 9). 

For this reason, calibration curves were prepared at 20, 30, 40, 50, and 60 ºC (table 7). The 

points have relative standard deviations ranging from 0.22 to 6.15 % and correlation 

coefficients ranging from 94.7 to 99.7 %.  The lowest and highest concentrations prepared 

for the calibration curves were 0.01 ppmv and 6.85 ppmv, respectively. Concentrations and 

then emission rates of the marker compounds were calculated using these calibration curves.  

3.4 Emission rates of marker VOCs 

Emission rates of the marker VOCs from aerobic and anaerobic test units were shown 

in figures 10 and 11. Marker compounds were not detected in the first week (2nd day) of the 

process. In the second week (9th day) of the process, marker compounds were found to be in 

the headspace of the test units. The highest emission rates were measured in the 3rd week of 

the process. After the 3rd week, emission rates were decreased gradually and after the 5th 

week, marker compounds were not detected from the headspace of the test units. Although 

temperatures of the test units were increased after composting process is completed (week 9), 

emission rates of the marker compounds were not increased and marker compounds were not 

detected from the headspace. This indicates that the emission rates of the marker compounds 

did not reduce due to a decrease in temperature and volatility. The amount of analytes 

reduced as most of the available nutrient sources are used and microbial degradation process 



 

79 

is completed. These results are supported by respiration rate measurements. Respiration rates 

of the swine tissues were decreased from 8.72±0.85 to 3.25± 0.12 mg CO2-C/g VS*d. 

Thompson classifies compost materials with 3.25 mg CO2-C/g VS*d respiration rates as 

stable composts.  

Emission rates of the dimethyl disulfide and dimethyl trisulfide were approximately 

12 times higher than emission rate of pyrimidine in both aerobic and anaerobic test units. It is 

hard to compare emission rates of aerobic and anaerobic test units since aerobic test units 

were sampled at dynamic conditions while sampling from anaerobic test units were 

completed at static conditions. The reason to keep anaerobic test units closed was to not 

disturb the anaerobic environment formed in the headspace.  

High correlations (correlation coefficients ranging from 83.7 to 99.6%) were found 

between emission rates of dimethyl disulfide, dimethyl trisulfide, and pyrimidine (table 8). 

This shows that these organic compounds are produced simultaneously in the presence of 

microbial activity. Since same aeration rate was used during the entire process same 

correlation coefficients can be reported for concentrations of the compounds. Although there 

is a doubt that pyrimidine is generated via non-enzymatic reactions, concentration or 

emission rate of pyrimidine can be used to estimate completion of the carcass degradation as 

well as dimethyl disulfide and dimethyl trisulfide as these compounds were found to be 

produced simultaneously.    

In further studies, correlations can be used to estimate emission rate of a marker 

compound when emission rate of another correlated compound is known.  

4. CONCLUSIONS 

Three compounds, dimethyl disulfide, dimethyl trisulfide, and pyrimidine were found 

to be produced by decaying swine tissues in a system simulating full scale swine mortality 

composting system. These compounds are found to be produced simultaneously and in the 



 

80 

first three weeks of the process. They are not detected after the fifth week of the process. The 

decrease in the emission rates is not caused by change in the volatility of the compounds. The 

main reason is the slower microbial activity due to limited nutrient sources and exposure to 

high temperatures. Concentration or emission rate of one of these three compounds can be 

used to estimate completion of the carcass degradation in biosecure swine mortality 

composting systems. In future studies, these compounds will be tested for a full scale swine 

mortality composting operation.  
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Table 6. Total VOCs identified specifically originating from swine carcass tissues   
Compound name CAS 

number 

Aerobic Anaerobic 

  Plant Animal Plant Animal 

  CS OS AH Pig CS OS AH Pig 

Volatile fatty acids 

Acetic acid 64-19-7 + - - - + + + - 
Propanoic acid 79-09-4 - - - - + + + - 

3-Methyl butanoic acid 503-74-2 - - - - + + + - 
Valeric acid 109-52-4 + - - - + + + - 

Hexanoic acid 142-62-1 - - - - + + + - 
Esters 

Methyl acetate 79-20-9 + - - - + + + - 
Ethyl acetate 141-78-6 - - - - + + + - 

Ethyl propanoate 105-37-3 - - - - + - - - 
Propyl acetate 109-60-4 - - - - + - - - 

Ethyl butanoate 105-54-4 - - - - + - - - 
Butyl acetate 123-86-4 - - - - + - - - 

Propyl butanoate 105-66-8 - - - - + - - - 
Isobutyl butanoate 539-90-2 - - - - + - - - 

Butyl butanoate 109-21-7 - - - - + - - - 
Butyl hexanoate 626-82-74 - - - - + - - - 
Ethyl octanoate 106-32-1 - - - - + - - - 

Nitrogen- containing compounds 

Pyrimidine 289-95-2 - - - + - - - + 
2-piperidinone 675-20-7 - - - - - - - + 

1H-Indole 120-72-9 - - - - - - - + 
Alcohols 

Ethanol 64-17-5 + + + + - + - - 
2-Propanol 67-63-0 - - - + - - - + 
2-Butanol 78-92-2 - - - +  - - - 
1-Hexanol 111-27-3 - - + - + - - - 
1-Heptanol 111-70-6 - + - - - - - + 
1-Octanol 111-87-5 + - - - - - - + 

2-Heptanol 543-49-7 + + + - - - - + 
Phenols 

2-Methoxy phenol 90-05-1 + - - - - - - - 
Phenol 108-95-2 + + + + + - - + 

4-Methyl phenol 106-44-5 - - - - + - - - 
4-Ethyl phenol 123-07-9 + - - - + - + - 

Ketones 

2-Butanone 78-93-3 + - - - - - - - 
2-Pentanone 107-87-9 + - - - - - - + 
2-Octanone 111-13-7 + - + + - - - - 
3-Octanone 106-68-3 + - + + - - + - 
2-Nonanone 821-55-6 + - - - - - - - 
2-Decanone 693-54-9 + - - - - - - + 
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Table 6 continues… 

Compound name CAS 

number 

Aerobic Anaerobic 

  Plant Animal Plant Animal 

  CS OS AH Pig CS OS AH Pig 

Sulfur-containing compounds 

Dimethyl disulfide 624-92-0 - - - + - - - + 
Dimethyl trisulfide 3658-80-8 - - - + - - - + 

Terpenes 

Camphene 79-92-5 - - + - - - + - 
α-Pinene 80-56-8 - - + - - - + - 
β-Myrcene 123-35-3 - - + - - - - - 

Delta 3-carene 13466-78-9 - - + - - - - - 
Limonene 138-86-3 - - + - - - + - 

(A: aerobic, An: anaerobic, CS: corn silage, OS: oat straw, AH: alfalfa hay, Pig: swine 

carcass tissue, (+) detected and (-) not detected in the headspace; retention times of all 

compounds are matched with pure standards; N=3)  
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Table 7. Calibration curves for SPME at five different sampling temperatures  

SPME 

temperature 

DMDS DMTS PR 

20 ºC y=2.72E+07x-3.70E+06 

R2= 9.95E-01 

y=1.88E+07x+5.58E+06 

R2= 9.83E-01 

y=2.34E+07x+9.99E+06 

R2= 9.47E-01 

30 ºC y=2.18E+07x-1.09E+06 

R2= 9.90E-01 

y=1.47E+07x+5.00E+06 

R2= 9.87E-01 

y=2.13E+07x+7.19E 

R2= 9.75E-01 

40 ºC y=1.78E+07x+1.34E+05 

R2= 9.93E-01 

y=1.43E+07x+4.31E+06 

R2= 9.89E-01 

y=1.95E+07x+4.80E+06 

R2= 9.68E-01 

50 ºC y=1.66E+07x+6.64E+05 

R2= 9.96E-01 

y=1.67E+07x+4.97E+06 

R2= 9.82E-01 

y=1.40E+07x+4.27E+06 

R2= 9.89E-01 

60 ºC y=1.66E+07x-2.64E+05 

R2= 9.97E-01 

y=1.67E+07x+3.87E+06 

R2= 9.84E-01 

y=1.39E+07x+3.70E+06 

R2= 9.93E-01 

(DMDS: dimethyl disulfide, DMTS: dimethyl trisulfide, PR: pyrimidine; N=3) 

 

 

Table 8. Correlations between emission rates of DMDS, DMTS, and PR  

Aerobic test units Anaerobic test units 

(DMTS)= 8.91E-01(DMDS) + 1.47-04 

R2= 9.86E-01 

(DMTS)= 1.43+00(DMDS) + 4.39E-05 

R2= 9.96E-01 

(PR)= 7.72E-02(DMDS) - 6.42E-06 

R2= 8.76E-01 

(PR)= 1.62E-01(DMDS)-2.98E-05 

R2= 8.52E-01 

(PR)= 7.72E-02(DMTS) - 6.42E-06 

R2= 8.37E-01 

(PR)= 1.15E-01(DMTS) + 2.29E-05 

R2= 8.87E-01 

(DMDS: dimethyl disulfide, DMTS: dimethyl trisulfide, PR: pyrimidine; N=3)
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Figure 6. Schematic of the aerobic test units and dry/wet bulb temperature measurements 

(Only 3 of the 12 test units are shown) 

 

 

 

 

 

 

 

 

 

Figure 7. Schematic of the anaerobic test units and O2/CO2 measurement  

(Only 3 of the 12 test units are shown) 
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Figure 8. Applied temperature profile to simulate a full scale warm season animal mortality 

composting process (Glanville et al., 2007) 
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Figure 9. Comparison of five different SPME temperatures at 1 h extraction time 

(Concentrations of DMDS 6.85 ppmv, DMTS 5.95 ppmv, and PR 6.25 ppmv; N=3) 

Composting process Heating 

 A 

B 

C 
D D A 

B BC C C 

A 
B 

C 

D D 



 

91 

 

0.0E+00

5.0E-03

1.0E-02

1.5E-02

1 2 3 4 5 6 7 8 9

Composting time (week)

20

45

70

95

120

DMDS DMTS PR

Temperature Relative humidity

T
e
m

p
e
ra

tu
re

 (
ºC

) 
a
n

d
 

re
la

ti
v
e
 h

u
m

id
it
y
 (
%

)

E
m

is
s
io

n
 r

a
te

 (
µµ µµ

g
/m

in
)

 

Figure 10. Emission rates of DMDS, DMTS, and PR from aerobic swine tissue composting 

test units  

(DMDS: dimethyl disulfide, DMTS: dimethyl trisulfide, PR: pyrimidine; N=3) 
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Figure 11. Emission rates of DMDS, DMTS, and PR from anaerobic swine tissue 

composting test units  

(DMDS: dimethyl disulfide, DMTS: dimethyl trisulfide, PR: pyrimidine; N=3) 
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Appendix A. Calibration curves of CO2 and O2 sensors 
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Appendix B. Calibration curves to quantify dimethyl disulfide (DMDS) at five different 

temperatures 
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Appendix C. Calibration curves to quantify dimethyl trisulfide (DMTS) at five different 

temperatures 
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Appendix D. Calibration curves to quantify pyrimidine (PR) at five different temperatures 
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Appendix E. Edlog (CR10) program code for CO2, O2 and temperature measurements  

 
; {CR10} 
*Table   1   Program 
   01:   10Execution Interval   (seconds) 
1:Batt Voltage   (P10) 
2:Temp   (107)   (P11) 
; O2 MEASUREMENTS 
3:Volt   (Diff)   (P2) 
; CO2 MEASUREMENTS 
4:Volt (Diff)   (P2) 
; ENABLE MULTIPLEXER 
5:Do   (P86) 
; BEGINGS MEASUREMENT LOOP 
6:Beginning of Loop   (P87) 
; CLOCK PULS 
7:Do   (P86) 
8:Excitation with Delay   (P22) 
; MEASURE 1 THERMOCOUPLE PER LOOP 
9:Thermocouple Temp   (DIFF)   (P14) 
; END MEASUREMENT LOOP 
10:End   (P95) 
; DISABLES MULTIPLEXER 
11:Do   (P86) 
; SAVE FINAL ARRAYS 
12:If time is   (P92) 
13:Set Active Storage Area   (P80) 
14:Real Time   (P77) 
15:Average   (P71) 
16:Totalize   (P72) 
17:Totalize   (P72) 
18:Average   (P71) 
 
* Table   2   Program 
   02:   0.0000 Execution Interval   (seconds) 
 
*Table   3   Subroutines 
End Program 

 
 
(PC208W 3.1a-datalogger software) 
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Appendix F. VOCs identified from mix compost of corn silage and pig tissues  

Compound name CAS # Aerobic Anaerobic 

Volatile fatty acids 

Acetic acid 64-19-7 + + 
Propanoic acid 79-09-4 - + 

3-Methyl butanoic acid 503-74-2 - + 
Valeric acid 109-52-4 + + 

Hexanoic acid 142-62-1 - + 
Esters 

Methyl acetate 79-20-9 + + 
Ethyl acetate 141-78-6 - + 

Ethyl propanoate 105-37-3 - + 
Propyl acetate 109-60-4 - + 

Ethyl butanoate 105-54-4 - + 
Propyl butanoate 105-66-8 - + 

Isobutyl butanoate 539-90-2 - + 
Butyl butanoate 109-21-7 - + 
Butyl hexanoate 626-82-74 - + 
Ethyl octanoate 106-32-1 - + 

Nitrogen-containing compounds 

Pyrimidine 289-95-2 + + 
2-piperidinone 675-20-7 - + 

1H-Indole 120-72-9 - + 
Alcohols 

Ethanol 64-17-5 + + 
2-Propanol 67-63-0 - + 
2-Butanol 78-92-2 + - 
1-Hexanol 111-27-3 - - 
1-Heptanol 111-70-6 + + 
1-Octanol 111-87-5 + - 

2-Heptanol 543-49-7 + + 
Phenols 

2-Methoxy phenol 90-05-1 + - 
Phenol 108-95-2 + + 

4-Methyl phenol 106-44-5 - + 
4-Ethyl phenol 123-07-9 + - 

Ketones 

2-Butanone 78-93-3 + - 
2-Pentanone 107-87-9 + + 
2-Octanone 111-13-7 + - 
3-Octanone 106-68-3 + - 
2-Nonanone 821-55-6 + - 
2-Decanone 693-54-9 + - 

Sulfur-containing compounds 

Dimethyl disulfide 624-92-0 + + 
Dimethyl trisulfide 3658-80-8 + + 

(Corn silage and pig tissues are mixed at the ratio of 15:1 (w/w); composted under aerobic 

and anaerobic conditions; temperature of a full scale composting process is simulated; N=3) 
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CHAPTER 5. IDENTIFICATION, EVALUATION AND 

QUANTIFICATION OF VOCS FROM FIELD SCALE 

BIOSECURE SWINE MORTALITY COMPOSTING 

OPERATIONS 

A paper to be submitted to Environmental Science and Technology 

 

Neslihan Akdeniz, Jacek A. Koziel, Hee-Kwon Ahn, Thomas D. Glanville, Benjamin 

P. Crawford, D. Raj Raman, Anthony L. Pometto III, Sam Beattie 

 

ABSTRACT 

Animal mortalities are composted by fully covering the nitrogen-rich carcasses with 

carbon-rich materials. In case of diseased swine mortality composting, special containment 

requirements are necessary to reduce the risk of spreading pathogens to the environment and 

subsequent disease transmission. These containment requirements and pathogen concerns 

make the monitoring and management of the process both more difficult and more crucial. 

The fundamental goal of this field scale composting study was to determine the potential of 

using VOCs to non-invasively monitor the state and completion of full scale swine mortality 

composting operations. The objectives of the study were to determine if specific compounds 

can be correlated with different phases of swine mortality composting process and to 

determine the effects of compost operating parameters on the chemical make-up of gaseous 

emissions. To this end, solid phase microextraction (SPME) coupled with gas 

chromatography (GC)-mass spectrometry (MS) was used to collect gas samples from 

diseased swine mortality composts. A total of 55 compounds were identified. Of these, three 

compounds, dimethyl disulfide, dimethyl trisulfide, and pyrimidine, were assessed as the 

marker compounds of swine mortality composting process. It was showed that VOC 

production decreases in the later stages of the process and was closely related to the 
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degradation rates of swine carcasses.The highest concentrations of the VOCs were detected 

from swine carcasses with the highest respiration rates and lowest degradation rates.  

Keywords. Compost, GC-MS, SPME, swine mortality, VOCs.    

1. Introduction 

1.1 Composting basics 

Composting is the aerobic or oxygen-requiring degradation process which takes place 

under controlled conditions (Rynk, 1992; Haug, 1993; Keener et al., 1993). Active 

composting generates considerable heat, water vapor, and large quantities of carbon dioxide 

and/or volatile organic compounds.  Composting also reduces the volume and mass of the 

raw substrate while transforming them into a valuable soil conditioner (Rynk, 1992).  During 

composting, many factors need to be controlled including moisture content, oxygen 

availability, carbon and nitrogen balance, and heat retention (Glanville, 2001). These factors 

affect odorous compound emissions and stability of the compost (Walker, 1993). A proper 

C/N ratio will result in a composting process that produces little odor and offers an 

environment where beneficial microorganisms can flourish (Keener et al., 2000). Poorly 

aerated and high moisture compost causes offensive odor release and decreases compost 

quality. Well aerated compost will improve the quality of the compost, but may lead to rapid 

drying of the compost before it has fully stabilized. Compost envelope materials are used to 

provide desired ratio of C and N, essential nutrients, biological diversity, adequate but not 

excessive moisture and aeration. The envelope materials that are often used include legume 

and grass hay, leaves, farm and garden plant residues, vegetable and fruit processing residue, 

chopped corn silage, soybean stems, straw and wood shaving bedding and animal manure 

(Biernbaum and Fogiel, 2004).  
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1.2 Diseased animal mortality composting 

Animal mortalities are composted by fully covering the nitrogen-rich carcasses with 

carbon rich materials. Mortalities are converted into humic acids, bacterial biomass, and 

compost (Harper and Estienne, 2003). Specific criteria must be met for animal mortality 

composting to assure human pathogenic bacteria are not present in the compost. A sufficient 

number of turns, with specific temperatures (131- 170ºF), in a certain period of time (3 days 

for static aerated pile and 15 days for windrow) are required (Biernbaum and Fogiel, 2004).  

However, in case of diseased animal mortality composting, special requirements will be 

necessary to reduce the risks of pathogen survival and disease transmission. One of the most 

important requirements is to not turn piles during decomposition to minimize the risk of 

releasing pathogens into the wind (Glanville 2006).  To further reduce the risks of pathogen 

release, the Canadian Food Inspection Agency used plastic bio-security barriers to compost 

poultry during 2004 avian influenza outbreak (Spencer et al., 2004).  

1.3 Stabilization of composts 

Stabilization of composts affects the response of plants to compost applications, 

potential for microbial activity, odor generation, and pathogen regrowth (Zucconi et al., 1985; 

Miller 1993). Also, the degree of stability achieved within a certain time can be used to 

evaluate performance of the process (Stentiford, 1993). Stability is generally defined as an 

indicator of microbial activity and it can be determined by 02 uptake rate, CO2 production 

rate or heat release (Chen and Inbar, 1993; Wu et al., 2000). Respirometric techniques are 

widely used as stability indicators (Sadaka et al., 2006). The basis of these methods is that 

immature compost has  higher 02 consumption and CO2 production rates due to high levels of 

microbial activity (Gomez et al., 2005). Thompson (2002) classified compost stability based 

on respiration rates as very stable (1 mg CO2-C/ g VS. d), stable (2-4 mg CO2-C/ g VS. d), 
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moderately unstable (5-7 mg CO2-C/ g VS. d), unstable raw compost (8-9 mg CO2-C/ g VS. 

d), raw compost (10-11 mg CO2-C/ g VS. d), and raw feedstock (>11 mg CO2-C/ g VS. d).  

1.4 Monitoring diseased animal mortality composting 

Four parameters including temperature, moisture content, oxygen/ carbon dioxide, 

and VOC production can be monitored to assess composting process. Temperature can be 

easily monitored during composting. There are four thermal phases. These phases are 

mesophilic starting phase, thermophilic phase, cooling phase and maturation phase (Peigne 

and Girardin, 2004). If temperature of a pile is not increasing, nutrient supply, moisture level 

or aeration may not be sufficient. Other reason may be over aeration of the pile which causes 

removal of the produced heat. Thus, a decline in temperature does not guarantee that the 

composting process is completed. The moisture content of a compost material during active 

phase should be at a level that some water can be squeezed out by hand (45-65%) (Haug 

1993). However there is not any easy and affordable way to collect representative samples 

from large compost piles. Oxygen levels should be above 5% if compost is aerated properly. 

Oxygen and CO2 levels can be measured with a probe to test aeration status of a compost pile 

(Biernbaum and Fogiel, 2004). However, O2 and CO2 levels do not indicate completion of a 

composting process since.  

Measurement of VOCs evolved from decaying mortalities is another alternative way 

to test aeration and status of a composting process (Kim et al., 2005). It is known that a wide 

variety of VOCs are produced during the process. These include volatile fatty acids (VFAs), 

ammonia, and other nitrogen compounds, inorganic, and organic sulfur compounds, ketones, 

aldehydes, alcohols, and terpenes (Golueke et al., 1954; Chanysak et al., 1982; Fisher et al., 

1986; Koe, and Ng, 1987; Derikx et al., 1990; Miller, 1993; Williams, and Miller, 1993; Day 

et al., 1998; Krzymien et al. 1999; Kim et al., 2005).  

Solid phase microextraction (SPME) coupled with GC-MS has been shown as a 

convenient method to detect VOC production in various matrices (Koziel et al., 1999; Kim et 
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al 2005; Koziel et al., 2006; Akdeniz et al., 2007a). Koziel et al. (1999) and Koziel (2006) 

used SPME for a wide scope of air monitoring including livestock odors. Kim et al. (2005) 

characterized headspace odorants from commercial composts of 14 different producers using 

SPME and GC-MS. Akdeniz et al. (2007a) identified VOCs evolved during biological 

decomposition of plant materials utilizing SPME and GC-MS. VOC emissions from swine 

mortality composting processes have not been identified or measured with any sampling 

technique. In this study, VOCs generated during degradation of swine mortality composts 

were identified and monitored on a weekly basis from two replicated field trials carried out 

using 6 different envelope materials.  

Objectives of the study were (a) to develop a comprehensive chemical library of 

VOCs emitted from swine mortality composts surrounded by plastic bio-security barriers, (b) 

to determine if specific compounds can be correlated with different phases of the composting 

process and be used to determine completion of composting, (c) to determine the effects of 

compost operating parameters on the chemical make-up of gases. 

2. METHODOLOGY 

2.1 Composting test units 

In this study, the emergency treatment used during the 2004 outbreak of avian 

influenza in British Columbia (Spencer et al., 2004; Stepushyn, 2004) were taken as a model 

and applied to swine mortalities. The experiments were conducted in May-October 2007 at 

Livestock Environment Building and Research Center of Iowa State University, Ames, Iowa. 

Test units were constructed on 2 m × 2 m platforms with 1.2 m high sidewalls.  Inside of the 

test units were covered with a synthetic rubber liner to capture and retain leachate. Test units 

were loaded with approximately 250 kg swine carcasses. The bottom 30 cm of the test units 

were filled with an envelope material and swine carcasses were placed on this envelope 

material. The same envelope material (60 cm) was used between and over the carcasses. 
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Outside of the test units were insulated with 5 cm thick Styrofoam (plastic barrier). Aeration 

of the test units was achieved by inserting three passive aeration tubes beneath swine 

carcasses. (Ahn et al., 2007; Glanville et al., 2007). The purpose of the plastic barrier was to 

minimize the risk of spreading pathogens to the surrounding. Vaccine strains of Avian 

encephalomyelitis (AE) and Newcastle disease virus (NDV) were placed inside the test units 

by another research group of the project to test pathogenic virus survival. Virus survival data 

is not included in this paper and will be reported separately.  

Six envelope materials including corn silage, oat straw, corn stalks, wood shavings, 

soybean straw, and alfalfa hay were tested. Except corn silage and wood shavings, all 

envelope materials were ground into 5 cm length to reduce their size, improve liquid and 

VOC absorbency and heat retention. Moisture contents of the envelope materials were not 

changed. Corn silage, oat straw and corn stalks test units were run in triplicate (N=3) from 

May 29th to July 29th, and wood shavings, soybean straw and alfalfa hay test units were run 

from August 20th to October 20th. Swine carcasses were composted for eight weeks since all 

the experiments were supposed to terminate during the warm season of Iowa (May 29th-

October 20th). 

Multi port gas and temperature sampling probe constructed of 3 cm diameter PVC 

(polyvinyl chloride) piping placed in the center of the test units to make measurements at 

bottom (envelope material), middle (swine carcass), and top (envelope material) layers 

(depths) of the test units. PTFE (polytetrafluoroethylene) air sampling tubings (0.62 cm I.D., 

E&S Technologies, Chelmsford, MA) and thermocouples (Omega Engineering, Stamford, 

CT) were tightly placed inside the sampling probes. An Apogee O2 sensor (Logan, UT) was 

used to measure O2 level.  
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2.2 Headspace SPME 

Air samples were drawn from the test units using SKC pumps (224-PCXR4, PA).  Air 

flow rate was 1.0 L/min and sampling time was chosen as 5 min (5 hydraulic residence times) 

to let the system to reach equilibrium. Air samples were passed through 250 mL glass 

sampling bulbs (Supelco, Bellofonte, PA). After 5 min sampling time, PTFE stopcocks of 

glass bulbs were closed and air samples were stored in the bulbs. Then, air samples were 

carried to Atmospheric Air Quality Laboratory where they were sampled using an 85 µm 

Car/PDMS SPME fiber (Supelco, Bellefonte, PA) and 1 hr extraction time. This fiber coating 

and extraction time was chosen based on previous studies (Akdeniz, 2008). New SPME 

fibers were first conditioned according to the manufacturer directions.  In addition, SPME 

fibers were inserted into the injection port of GC for 5 min to thermally desorb impurities on 

the fiber immediately before sampling. After this 5 min cleaning, all SPME fibers were 

analyzed as blanks for a possible carry-over and other impurities to minimize interferences.  

2.3 Sample analysis 

All gas analyses were completed using integrated multi dimensional GC-MS system 

consisting of a 6890N GC and 5973 MS (Agilent Inc., Wilmington, DE) system. Ultrahigh 

pure (99.9995 %) helium (Praxair, Danbury, CT) was used as the carrier gas at constant 

pressure. The injector and SPME fiber desorption temperature was 260 ºC. The initial 

temperatures of the GC oven were 40 ºC with 3 min holding time, followed by a ramp of 7 

ºC/min until reaching 220 ºC, where it was held for 11.29 min to complete the 40 min run. 

The analytes were separated on two capillary columns that were connected in series: a 12 m 

× 0.53 mm i.d. non-polar pre-column, and a 25 m × 0.53 mm i.d. polar analytical column 

(SGE, Austin, TX). The heart-cut valve between the pre-column, and analytical column was 

opened between 0.05-35 min, and backflush of the pre-column was activated between 36-40 

min to prepare the system for the following run. The MS mass/charge (m/z) ratio was set 
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between 33 and 150. For the first eight min scanning rate was 5.89 scan/s. After the first 

eight min, the m/z ratio was open between 34 and 280 m/z with 5.64 scan/s scanning rate. 

The transfer line, quadrupole, and MS source temperatures were 240, 150, and 230 ºC, 

respectively. The electron multiplier voltage was between 1000 and 1388 eV. Autotuning of 

MS was performed at least once a week.   

2.4 Data analysis 

Chromatography data acquisition software consisted of MSD ChemStation (Agilent) 

and BenchTop/PBM™ V. 3.2.4 (Palisade Corporation, Ithaca, NY) was used to analyze data. 

Separated compounds were identified using mass spectral matches with ChemStation’s NIST 

MS Library and PBM Benchtop MS libraries. Spectral matches and column retention times 

were compared with those of standard analytes. HPLC-grade standards of compounds were 

purchased from Sigma-Aldrich (Milwaukee, WI).  

MS detector responses (peak area count) were converted to concentrations (ppmv) 

using the calibration curves reported in Akdeniz (2008) for dry conditions. Akdeniz (2008) 

prepared calibration curves for dry and humid conditions. Since no significant difference was 

reported between dry and humid, dry condition calibration curves were used in this study.  

2.5 Respiration rate measurements 

Swine carcasses were composted for eight weeks. After eight week composting, 

plastic barriers of the test units were opened and it was observed that there was still 

remaining animal tissue. Respiration rates of the remaining animal tissues were measured. 

Samples were collected from each pig composted in the experiments. Twenty gram of 

homogenous soft tissue samples was prepared. Titration method was used to measure the 

evolved CO2 during respiration. The method is described in Sadaka et al., 2006. For 

respiration rate calculations, moisture content and volatile solids of the compost samples 

were analyzed using standard methods. Moisture content was determined by drying samples 
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at 105 ◦C for 24 h. Volatile solid contents of dried samples were measured by combusting at 

550 ◦C for 5 hrs (Ahn et al., 2005). 

2.6 Statistical analysis 

Experiments were conducted in triplicate (3 test units for each envelope material). Statistical 

tests were conducted using JMP v 6.0.2 package. Data were subjected to one-way analysis of 

variance (ANOVA). Treatment means were compared using Tukey’s honestly significant 

differences (HSD) test at the significance level p<0.05.   

3. Results and discussion 

3.1 Evaluation of sampling location 

Results from sampling probes placed in the center of the test units to collect air 

samples from bottom, middle and top layers (depths) of the test units are presented in figure 

12. It is noted that amounts of marker compounds extracted during eight week composting 

time was added and average of the three test units were presented. Relative standard 

deviation of the data was ranging from 3 to 18%. Dimethyl disulfide and pyrimidine amount 

in corn silage, wood shavings, soybean straw, and alfalfa hay test units, was found to be 

significantly different in middle layer compared to bottom and top layers. In the rest of the 

test units (oat straw and corn stalks test units), no significant difference was observed 

between middle and bottom layers, but remarkable differences were detected compared to the 

top layer. Highest amounts of dimethyl trisulfide were measured from the middle and bottom 

layers of the test units.  It is believed that marker compounds were produced during 

degradation of swine carcasses in the contaminated middle and bottom layers. The low 

amounts of compounds detected in the top layer can be explained by absorption of the 

compounds by overlying envelope materials. Since the highest amounts of marker VOCs 

were measured from the middle layer, this layer was decided to be the most representative 
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layer of the test units and results associated with this layer were presented in the following 

sections.  

3.2 Identification and evaluation of VOCs 

Fifty five compounds were identified from middle location (depth) of warm season 

swine mortality composting operations (table 9). Retention times and spectra of 35 

compounds were matched with those of pure standards and these compounds are verified. 

Compounds detected from all test units, regardless of the envelope material used, were 

dimethyl disulfide, dimethyl trisulfide, and pyrimidine. These compounds were considered as 

marker compounds of the swine mortality degradation due to two reasons. The first reason 

was these compounds were found to be produced during degradation of swine tissues in 

laboratory scale composting experiments. Akdeniz (2008) reported that dimethyl disulfide, 

dimethyl trisulfide and pyrimidine were not produced during degradation of corn silage, oat 

straw, and alfalfa hay but produced from decaying swine tissues. The second reason was 

these marker compounds were produced regardless of the plant (envelope) material used in 

the field trials. This evidence also suggests that these compounds were evolved from 

decaying swine carcasses. Dimethyl disulfide, dimethyl trisulfide and pyrimidine were used 

to monitor completion of the swine tissue degradation and composting process. Detection of 

these compounds from all 18 field test units indicates that these compounds can be produced 

and detected under different composting conditions (e.g., different envelope material, 

moisture content, temperature profile). In this sense, these three compounds are believed to 

be reliable markers of the swine carcass degradation process and can be used to evaluate 

completion of a swine mortality composting process.  

Volatile fatty acids (VFAs) and mercaptans are known to be produced during 

anaerobic degradation (Haug, 1993). In this study, several VFAs (acetic, propanoic, 3-methyl 

butanoic, pentanoic and hexanoic acids) and mercaptans (methanethiol and ethanethiol) were 
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detected from corn silage, oat straw and corn stalks test units. However, they were not 

detected from wood shavings, soybean straw and alfalfa hay test units. Oxygen levels of the 

test units can be potentially used to explain this difference. Oxygen levels of all test units are 

shown in figure 13.  Relative standard deviation of oxygen data was ranging from 0.19-45.1 

%. Oxygen levels of all test units were high and ranging from 13 to 20.9%. There was no 

evidence of anaerobic macro-environment formation. However, higher initial moisture 

contents of corn silage, oat straw and corn stalks (56.2-64.8%) than wood shavings, soybean 

straw and alfalfa hay (11.2-17.7%) may have caused anaerobic micro-environment formation.  

Anaerobic microenvironment formation can explain anaerobic VOC production in corn 

silage, oat straw and corn stalks test units. It can be concluded that VFAs and mercaptans can 

be used to evaluate aeration status of a composting system.  

3.3 Evaluation of carcass degradation 

Concentrations of the marker compounds measured from middle layer of the test units 

are shown in figures 14 through 19. In corn silage, oat straw and corn stalks test units, the 

highest concentrations were observed for the second and third weeks of the process (figures 

14, 15, and 16). After the third week, concentrations of the marker compounds decreased 

gradually. In wood shavings, soybean straw and alfalfa hay test units, the highest 

concentrations were measured for the first week and concentrations were decreased gradually 

after the first week. A gradual decrease in the concentrations of the marker compounds 

indicates that carcass degradation and marker VOC production slowed down. Akdeniz (2008) 

used a laboratory scale set-up and showed that dimethyl disulfide, dimethyl trisulfide, and 

pyrimidine were not detected from the headspace of swine tissue composts after the fifth 

week of the process. In replicated field trials, although concentrations of the marker 

compounds were decreased after eight week composting, they still continued to be detected 

from the test units. Concentrations of the compounds in the last week of the process are 
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shown in figure 20 with a lower scale compared to figures 14 to 19. Dimethyl disulfide was 

detected from all test units in the 8th week of the trial. Its concentration decreased from a 

range of 0.29-4.34 ppmv (during weeks 1 and 2) to 0.006-0.160 ppmv. Dimethyl trisulfide 

was detected in the 8th week of the trial from wood shavings, soybean straw, and alfalfa hay 

test units at concentrations of 0.43, 0.017, and 0.019 ppmv, respectively. Pyrimidine was 

only detected from wood shavings and alfalfa hay test units at concentration of 0.013 ppmv. 

It was concluded that composting process was not stabilized in any of the test units and 

needed to continue until concentrations of these cannot be detected from the middle layers of 

the test units. Since DMDS concentrations were lowest in corn stalks and oat straw test units, 

the highest degradation was found in these test units. Wood shavings and alfalfa hay test 

units were evaluated as the test units with the lowest degradation rate as all the three marker 

compounds were detected from these test units (figure 20). Based on the concentrations of 

the marker compounds in week 8 (figure 20), the carcass degradation in the test units was 

ranked from the highest to the lowest as: corn stalks≈oat straw> corn silage> soybean straw> 

alfalfa hay> wood shavings. This finding was supported by respiration rate measurements 

(table 10). Samples collected from corn silage, oat straw and corn stalks test units were 

classified as moderately unstable compost and samples collected from wood shavings, 

soybean straw and alfalfa hay test units were classified as unstable raw compost. The highest 

respiration rates (lowest degradation) were detected for wood shavings and alfalfa test units. 

It can be concluded that concentrations of the marker compounds are good indicators of 

carcass degradation and stabilization of the swine mortality composting process. These 

marker compounds can be used to evaluate completion of the swine mortality composting 

process.  

The incomplete carcass degradation can be explained by substantial loss of water 

from the test units, resulting in desiccation of carcasses and cessation of breakdown. Since 

test units were wrapped with plastic barriers, no additional water was added to the test units 
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during the process. Corn silage, oat straw and corn stalks were initially moistened by rain 

(56.2-64.8%) but there was strong evidence of excessive moisture loss due to over aeration. 

This problem was made worse in wood shavings, soybean straw, and alfalfa hay test units by 

the lower initial moisture contents (11.2 to 17.7%)  as well as by over aeration. The very low 

initial moisture contents of wood shavings, soybean straw, and alfalfa hay caused lower 

degradation of swine carcasses in these test units. Moreover, many terpenes (e.g., camphene, 

limonene, beta pinene, beta phellandrene) were detected from pine wood shaving and alfalfa 

hay test units. These compounds cause the specific odor of pine and alfalfa plants. These 

monoterpenes have been found to have antimicrobial effect on some pathogenic bacteria. 

Demirci et al. (2007) tested antimicrobial effect of Charephyllum libanoticum’s essential oil 

which is rich in monoterpenes including camphene, limonene, β-pinene and β-phellandrene. 

Results showed that common Gram (+) and Gram (-) human pathogenic bacteria including 

methicillin-resistant S. aureus and the yeast C. albicans survived exposure to the essential 

oil, , P. aeruginosa and S. epidermidis were reduced. The oil was defined as weak to 

moderate in antibacterial activities. This weak to moderate antimicrobial effect of terpenes 

may partially explain lower microbial activity, lower temperatures and higher respiration 

rates of remaining carcass tissues in wood shavings and alfalfa hay test units (figures 17, 19, 

20 and table 10).  

Temperature data collected from middle depth of the center sampling probe and 

ambient air temperature are presented in figures 14 through 19. Average of the three test 

units was reported. Relative standard deviations of the temperature data range from 0.86 to 

20.4%. The highest temperatures were measured during the 1st and 2nd weeks of the process. 

After the 2nd week, temperatures of the test units started to decrease. It is known that a 

decline in temperature does not necessarily show completion of the process (Biernbaum and 

Fogiel, 2004). In this study, it is also shown that there is no relation between the temperatures 

of the test units and the degradation (respiration) rate of swine carcasses. In the last week of 
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the process, the lowest temperatures (around 35 ºC) were observed for oat straw, soybean 

straw and alfalfa hay test units (figures 15, 18, and 19). Temperatures of corn silage, corn 

stalks, and wood shavings test units were around 55, 45, and 45 ºC, respectively (figures 14, 

16, and 17). Although higher final temperatures were recorded for corn silage, corn stalks 

and wood shavings test units compared to oat straw, soybean straw and alfalfa hay test units, 

the most complete carcass degradation was observed for corn silage and corn stalks test units. 

It was concluded that temperature data does not necessarily indicate the final extent of 

degradation of swine carcasses. A better estimate of carcass degradation can be made by 

measuring dimethyl disulfide, dimethyl trisulfide and pyrimidine concentrations in the last 

week of the process.  

4. CONCLUSIONS 

A comprehensive chemical library of VOCs was developed for swine mortality 

composts surrounded by plastic barriers. Dimethyl disulfide, dimethyl trisulfide and 

pyrimidine were shown to be marker compounds of the swine mortality composting process. 

These compounds were produced from all test units although different plant (envelope) 

materials at different moisture levels were used in each test unit. This indicates that these 

compounds can be produced under various conditions (e.g., different plant material, moisture 

content, porosity, temperature). In this study, swine mortalities were not composted until they 

were completely degraded. However, it is showed that VOC production decreases in the later 

stages of the process and are consistent with the final extent of degradation of the swine 

carcasses. No close relation was observed between the temperature data and degradation 

rates of carcasses. A better estimate of carcass degradation is made by measuring dimethyl 

disulfide, dimethyl trisulfide and pyrimidine concentrations in the last week of the process. In 

future studies, dimethyl disulfide, dimethyl trisulfide and pyrimidine can be monitored for 

swine or other livestock mortality composting operations where all the carcass degradation is 
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completed. Also, volatile fatty acids, methanethiol, and ethanethiol can be further 

investigated as indicators of insufficient aeration in animal mortality composting operations.   
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Table 9. VOCs identified from middle location (depth) of warm season swine mortality 

compost 
Compound name CAS number CSi OS CSt WS SS AH 

Volatile fatty acids 

Acetic acid* 64-19-7 + + + - - - 
Propanoic acid* 79-09-4 + + + - - - 

3-Methyl butanoic acid* 503-74-2 + + + - - - 
Valeric acid* 109-52-4 + + + - - - 

Hexanoic acid* 142-62-1 + + + - - - 
Esters 

Methyl acetate* 79-20-9 + - - + - + 
Ethyl butanoate* 105-54-4 + - - - - - 
Butyl butanoate* 109-21-7 + - - - - - 
Butyl hexanoate* 626-82-4 + - - - - - 

Nitrogen-containing compounds 

Pyrimidine* 289-95-2 + + + + + + 
Pyrazine* 290-37-9 + + + - + - 
Pyridine* 110-86-1 + + + - - - 

2-Methylpyrazine* 109-08-0 + + + - - - 
2,6-Dimethyl pyrazine 108-50-9 - - - - + - 

Pyrrole 109-97-7 - - - - + - 
Alcohols 

1-Octanol* 111-87-5 - - - + - + 
α-Fenchol 1632-73-1 - - - + - + 

1-Decanol* 112-30-1 - - - + - - 
Ketones 

2-Butanone* 78-93-3 + + + - + - 
3-Methyl 2-butanone* 563-80-4 + + + - - - 

2-Heptanone* 110-43-0 + + + + - - 
2-Octanone* 111-13-7 + + + - - - 
2-Nonanone* 821-55-6 + + + + - - 
2-Decanone* 693-54-9 - - - + - - 

Aldehydes 

Butanal 123-72-8 + + - - - - 
Isobutanal* 78-84-2 + + + - - - 

3-Methyl butanal* 590-86-3 + + + - - - 
Pentanal 110-62-3 + + + - - - 
Hexanal* 66-25-1 + + + - - - 
Myrtenal 23727-16-4 - - - + - - 
Safranal 116-26-7 - - - + - - 

Phellandral 21391-98-0 - - - + - - 
Sulfur-containing compounds 

Methanethiol* 74-93-1 + + + - - - 
Dimethyl sulfide* 75-18-3 + + + - - - 

Ethanethiol 75-08-1 + + + - - - 
Dimethyl disulfide* 624-92-0 + + + + + + 
Dimethyl trisulfide 3658-80-8 + + + + + + 

(CSi: corn silage, OS: oat straw, CSt: corn stalks, WS: wood shavings, SS: soybean straw, AH: 

alfalfa hay; (+) presence, and (-) absence of the compounds in the air sample) 
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Table 9 continues… 

Compound name CAS number CSi OS CSt WS SS AH 

Terpenes 

Camphene* 79-92-5 - - - + - + 
β-Pinene 127-91-3 - - - + - + 
β-Myrcene* 123-35-3 - - - + - - 

Delta 3-carene* 13466-78-9 - - - + - + 
α-Terpinene* 99-86-5 - - - + - + 
Limonene* 138-86-3 - - - + - - 
β-phellandrene 555-10-2 - - - + - + 
α-Terpinolene* 586-62-9 - - - + - + 

Fenchone 1195-79-5 - - - + - - 
Camphor* 76-22-2 - - - + - - 

α-Longipinene 5989-08-2 - - - + - - 
Copaene 3856-25-5 - - - + - - 

Isolongifolene 1135-66-6 - - - + - + 
α-Muurolene 24406-05-1 - - - + - + 
Calamenene 483-77-2 - - - + - + 
α-Calacorene 21391-99-1 - - - + - + 

Azulene 275-51-4 - - - + - - 

(CSi: corn silage, OSt: oat straw, CSt: corn stalks, WSh: wood shavings, SSt: soybean straw, AHa: 

alfalfa hay; (+) presence, and (-) absence of the compounds in the air sample; * retention time 

matched with standard analytes; N=3). 

 

Table 10. Respiration rates of the remaining carcass tissues 

Test units MC (%) mg CO2-C / g VS
-1

 d
-1

 Classification 

Corn silage 59.62±3.25 6.40±0.42D* moderately unstable compost 
Oat straw 48.59±1.25 5.52±0.3E moderately unstable compost 

Corn stalks 49.52±2.8 5.21±0.82E moderately unstable compost 
Wood shavings 53.26±3.2 9.25±0.85A unstable raw compost 
Soybean straw 37.57±4.9 7.85±0.65C unstable raw compost 

Alfalfa hay 52.80±4.7 8.56±0.38B unstable raw compost 

(Different letters are significantly different, α= 0.05; N=3) 
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Figure 12. Comparison of bottom, middle and top layers (depths) of the test units 

(DMDS: dimethyl disulfide, DMTS: dimethyl trisulfide, PR: pyrimidine; N=3) 
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Figure 13. Oxygen concentrations of the middle layer  

(Average of three test units; N=3) 
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Figure 14. Average concentrations of the marker compounds, test unit temperature, and 

ambient air temperature for corn silage test units  

(Concentrations and temperature values from middle layer; DMDS: dimethyl disulfide, 

DMTS: dimethyl trisulfide, PR: pyrimidine; N=3; composted during May 29th-July 29th) 
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Figure 15. Average concentrations of the marker compounds, test unit temperature, and 

ambient air temperature for oat straw test units  

(Concentrations and temperature values from middle layer; DMDS: dimethyl disulfide, 

DMTS: dimethyl trisulfide, PR: pyrimidine; N=3; composted during May 29th-July 29th) 
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Figure 16. Average concentrations of the marker compounds, test unit temperature, and 

ambient air temperature for corn stalks test units  

(Concentrations and temperature values from middle layer; DMDS: dimethyl disulfide, 

DMTS: dimethyl trisulfide, PR: pyrimidine; N=3; composted during May 29th-July 29th) 
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Figure17. Average concentrations of the marker compounds, test unit temperature, and 

ambient air temperature for wood shavings test units  

(Concentrations and temperature values from middle layer; DMDS: dimethyl disulfide, 

DMTS: dimethyl trisulfide, PR: pyrimidine; N=3; composted during August 20th-October 

20th) 
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Soybean straw
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Figure 18. Average concentrations of the marker compounds, test unit temperature, and 

ambient air temperature for soybean straw test units  

(Concentrations and temperature values from middle layer; DMDS: dimethyl disulfide, 

DMTS: dimethyl trisulfide, PR: pyrimidine; N=3; composted during August 20th-October 

20th) 
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Alfalfa hay
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Figure19. Average concentrations of the marker compounds, test unit temperature, and 

ambient air temperature for alfalfa hay test units  

(Concentrations and temperature values from middle layer; DMDS: dimethyl disulfide, 

DMTS: dimethyl trisulfide, PR: pyrimidine; N=3; composted during August 20th-October 

20th) 
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Figure 20. DMDS, DMTS, PR concentrations in week eight 

(Concentrations from middle layer; DMDS: dimethyl disulfide, DMTS: dimethyl trisulfide, 

PR: pyrimidine; N=3) 
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Appendix A. Photos of full scale swine mortality composting test units and air sample 
collection 
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Appendix B. Photos of test units and air sample collection 
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Figure 1. Multi port VOC, O2, CO2 and temperature sampling probe (a) and sampling 

locations inside a test unit (b) 
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Figure 2. Inside view of test units and multi port gas-temperature sampling probe (a), (b), (c) 
and plastic sheet wraps (d) 
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Figure 3.  Overview of test units, sampling tubings, glass sampling bulbs, SPME at 

Atmospheric Air Quality Laboratory and GC-MS analysis 
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Appendix C. Degradation rates of the swine carcasses in different test units1,2
 

Test units MC (%) Carcass 

decomposition (%) 

Corn silage 59.62±3.25 64.4±0.1 
Oat straw 48.59±1.25 71.8±0.6 

Corn stalks 49.52±2.8 74.8±0.9 
Wood shavings 53.26±3.2 63.6±5.1 
Soybean straw 37.57±4.9 71.0±1.9 

Alfalfa hay 52.80±4.7 64.3±3.3 

1Carcass decomposition rate (%) = {(Initial carcass weight-Final carcass weight) / (Initial 

carcass weight-Bone weight in initial carcass)}*100 

2Bone content about 12% of body weight 
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CHAPTER 6. SAMPLING METHOD OF VOCS FOR 

BIOSECURE COMPOSTING OPERATIONS 

A short communication paper to be submitted to Bioresource Technology 

 

Neslihan Akdeniz, Jacek A. Koziel, Hee-Kwon Ahn, Thomas D. Glanville, Benjamin, 

P. Crawford, D. Raj Raman, Anthony L. Pometto III, Sam Beattie 

 

Abstract  

Monitoring volatile organic compounds (VOCs) as biosecure markers of carcass 

degradation was reported to be a promising method to test progress and completion of the 

process. Three compounds, dimethyl disulfide, dimethyl trisulfide, pyrimidine, were found to 

be marker compounds of swine carcass degradation. In this study, different air sampling 

locations were compared for a full scale swine mortality composting system. The objectives 

of the study were (a) to test if passive aeration tubes (inlet and outlet) were practical 

sampling locations of marker VOCs and (b) to monitor VOC concentrations from passive 

aeration tubes in order to decide air flow direction of the test units. It was shown that marker 

VOC concentrations were significantly different in middle location (depth) and upper-

aeration duct compared to other locations. In case of an emergency swine disposal upper-

aeration duct could be used to collect air samples. However, upper aeration duct was not 

always a reliable sampling location as the air flow direction could change during the process. 

In the study, higher concentrations of the VOCs were measured from the upper aeration duct 

and this duct was claimed to be an outlet. Sampling VOCs could be used to evaluate air flow 

direction of passively aerated systems. Further studies are needed to show consistency of the 

findings.  

Keywords. Air flow, Biosecurity, Compost, SPME, Swine, VOC 
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1. Introduction 

Iowa has led the US in swine production and pig inventory for one hundred twenty 

years (Honeyman and Duffy, 2006). In 2005, Iowa produced 28.4% (8 billion pounds) of all 

the swine in U.S.A (Iowa Agricultural Statistics Bulletin). This intensive production of swine 

in one area inevitably results in production of high amount of piggery waste including animal 

carcasses. Animal carcasses, like all animal waste, contain useful nutrients which can be 

recycled into agricultural land. However, this recycling must be done in an environmentally 

sound, economically feasible, and socially acceptable manner especially when carcasses are 

capable of spreading diseases in soil, plants, animals, and humans (Imbeah, 1997, Kalbasi et 

al., 2005).  

In AI outbreak in British Columbia (Canada) in 2004, 1.25 million infected birds 

were disposed by burial, burning, and composting. At the beginning of the outbreak, 

carcasses were transported to other locations and they were buried and burnt in these 

locations. In the middle of the outbreak, the disposal strategy switched to on-farm 

composting. The first stage of the composting was conducted in the poultry houses. After 5 

days, the windrows were re-formed on a layer of heavy black plastic over wood shavings. 

Piles were passively aerated by black agricultural drainage pipe aligned across the plastic. 

The windrows were covered with vapor barriers, wood shavings, and finally black plastic 

(Spencer et al., 2004). Glanville et al. (2007) and Ahn et al. (2007) investigated application 

of the same composting system to diseased swine carcasses in case of an outbreak. In 

biosecure composting applications, carcasses are not allowed to be exposed to the 

environment. They are fully covered with plant materials and sometimes with plastic sheets. 

Akdeniz (2008) reported that monitoring VOCs as biosecure markers of carcass degradation 

is a promising method to test progress and completion of the process. Akdeniz (2008) 

indicated that three compounds, dimethyl disulfide, dimethyl trisulfide, pyrimidine, are 

marker compounds of swine carcass degradation. In this study, different air sampling 
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locations within full scale swine mortality composting test units are compared. The 

objectives of the study were (a) to test if passive aeration tubes (inlet and outlet) are practical 

sampling locations of marker VOCs and (b) to monitor VOC concentrations from passive 

aeration tubes in order to decide air flow direction of the test units. 

2. Methods 

2.1 Biosecure compost test units and VOC sampling locations 

In this study, the innovative composting system used during the 2004 outbreak of 

avian influenza in British Columbia (Spencer et al., 2004) was applied to compost swine 

mortalities. The experiments were conducted in April-June 2008 at Livestock Environment 

Building and Research Center of Iowa State University, Ames, Iowa. Three envelope 

materials were used including wood shavings, soybean straw, and alfalfa hay. The details of 

the system are given in Ahn et al. (2007), Glanville et al. (2007), Akdeniz (2008).  

Air samples were drawn from five different locations of test units in the 3rd week of 

the process. The first three weeks are known to be the most active phase of the process (Haug, 

1993).  Vertical PVC (polyvinyl chloride) piping placed in the center of the test units were 

used to collect VOC samples from bottom (envelope material), middle (swine carcasses), and 

top (envelope material) layers (depths) of the test units (figure 21). ¼ inch ID PTFE 

(polytetrafluoroethylene) tubes were tightly placed inside PVC pipes at bottom, middle and 

top depths. In addition, VOC samples were collected from upper and lower aeration ducts by 

placing PTFE tubings inside the ducts (figure 21).  

2.2 Sampling and analysis of VOCs 

Air samples were drawn using SKC pumps (224-PCXR4, PA) at 1.0 L/min air flow 

rate. Air samples were passed through 250 mL glass sampling bulbs (Supelco, Bellofonte, 

PA) during 5 minutes (5 hydraulic residence time). After 5 minute sampling, PTFE stopcocks 
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were closed and air samples were captured inside the bulbs. 85 µm SPME fiber and 1 h 

extraction time was used to extract VOCs in air samples. This fiber coating and extraction 

time was chosen based on previous published data (Akdeniz, 2008). After extraction, SPME 

fibers were kept in the refrigerator until inserting into the injection port of the GC. To test if 

there is any sample loss during transferring glass sampling bulbs to the laboratory, results of 

SPME in the field (just after capturing air samples) and SPME in the laboratory (after 

transferring glass bulbs to the laboratory) were compared.  

Glass sampling bulbs were used (a) to decrease sample collection time in the field, (b) 

to avoid damage on fiber in rough field conditions, and (c) to be able to do SPME in the 

laboratory at same conditions. Sample collection method using glass sampling bulbs was 

compared with dynamic sample collection using a SPME fiber in the field. For this purpose, 

samples were collected by inserting a SPME fiber inside a stainless steel bulkhead union, 

which was connected to the PTFE tubing from middle layer of the test unit in one end and 

sealed with a thermogreen septum in the other end. Air passed through tubings for 5 minutes 

before starting to sample and SPME were performed for 1 h. After sampling SPME fibers 

were immediately carried to Atmospheric Air Quality Laboratory at Iowa State University 

for the analysis and kept in the refrigerator until analysis.  

Samples were run using a 6890N GC and 5975 MS (Agilent Inc., DE). Pure helium 

(99.995 %) was used as the carrier gas at constant 1.7 m/s flow rate. The injector temperature 

was 240 ºC. The initial temperatures of the GC oven were 40 ºC with 3 min holding time. It 

followed by a ramp of 8 ºC/min until reaching 220 ºC, where it was held for 10 min. A 60 m 

polar capillary column (BP21, 0.32 mm ID* 0.25 µm film thickness, SGE, TX) was used to 

separate compounds. The MS mass/charge (m/z) ratio was set between 29 and 150 for the 

first 8 minutes. After the first 8 minutes, MS detection was between 34 and 280 m/z. The 

transfer line, quadrupole, and MS source temperatures were 240, 150, and 230 ºC, 
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respectively. Chromatography data acquisition software, MSD ChemStation (Agilent) and 

BenchTop/PBM™ V. 3.2.4 (Palisade Corporation, Ithaca, NY), were used to analyze data.  

2.3 Statistical Analysis 

Three test units were prepared for each envelope material and samples were collected 

from each test unit (N=3). JMP v 6.0.2 package was used for statistical analysis. Data were 

subjected to one-way analysis of variance (ANOVA). Treatment means were compared using 

TUKEY’s honestly significant differences (HSD) test at 95 % confidence level.    

3. Results and discussion 

The amounts of analytes extracted using a SPME fiber in the field (immediately after 

capturing air samples inside glass bulbs) and in the laboratory (after transferring sampling 

bulbs to the laboratory) are compared. The difference in MS area counts is found to be 

ranging from 0.1 to 1.3%. It is believed this difference is not significant and caused by the 

temperature change during transferring sampling bulbs to the laboratory. Relative standard 

deviation of the data is found to be ranging from 1.8 to 11.3%. Samples were drawn from 

replicated field trials and the difference between replicates is most likely to be caused due to 

the differences between test units. These low relative standard deviations show that sample 

loss during waiting in the refrigerator is minimal.  

The amount of analytes extracted was compared for two different sample collection 

methods. No significant difference was found between SPME in the field using bulkhead 

unions and SPME in the laboratory using glass sampling bulbs (figure 22). Although no 

significant difference was found, glass sampling bulbs are recommended to collect air 

samples. It is easier to handle with glass sampling bulbs compared to fragile SPME fibers in 

rough field conditions. Also, it will provide comparable data when the samples are collected 

at different ambient temperatures. The disadvantages could be carry over of the analytes if 

proper cleaning is not applied and cleaning might be time consuming.  
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Concentrations of the marker compounds sampled from different locations can be 

ranked from the highest concentration to the lowest as follows: middle ≈ upper aeration 

duct> top> bottom ≈ lower aeration duct (figure 23). The highest concentrations of dimethyl 

disulfide, dimethyl trisulfide, and pyrimidine were measured from middle layer and upper 

aeration duct of the test units. In all the test units, these locations were found to be 

significantly different than the other locations. The second highest concentrations of the 

marker compounds were measured from top layer and the lowest concentrations from bottom 

and lower aeration duct. It is hard to explain the difference in concentrations between top 

layer and upper-aeration duct. Although there is no solid evidence, it might be caused by a 

short circuiting of air flow in the top layer of the test units.  

It has been shown that the most reliable locations for VOC sampling are middle and 

upper-aeration duct. In case of an emergency composting, placing PVC pipes to collect air 

samples would not be a practical option. Thus, the upper aeration duct is recommended to 

collect VOC samples to test progress and completion of animal degradation without opening 

plastic bio-security barriers. The problem associated with sampling from aeration ducts is 

alteration in air flow direction during the process depending on the porosity, temperature of 

the test units, and maybe wind direction. In this study, lower aeration duct is found to be an 

inlet due to low concentrations of the VOCs in this location. Upper-aeration duct is indicated 

as an outlet as the highest concentrations of VOCs were measured from this location. It is 

showed that VOC concentrations can be used to decide air flow direction of a compost test 

unit. However, further studies are needed to show consistency of this finding. After deciding 

air flow direction, air samples can be collected from the outlet aeration tubing.  

In this type of composting systems, a downward air flow direction is not desirable. 

An upward air flow allows the volatile compounds emitted from carcasses to be filtered by 

top layer plant materials. An easy way of testing air flow direction by applying SPME would 

be helpful to have more control on passively aerated systems. Air flow direction might be 
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changed from downward to upward by employing aeration ducts at different heights, 

locations, and directions.  

4. Conclusions 

Glass sampling bulbs can be used to collect air samples from composting systems.  

Using glass sampling bulbs to capture air samples and applying SPME in laboratory 

conditions would be a practical option to analyze VOCs from composting operations. In the 

study, middle location where the carcasses are located and upper-aeration duct are 

recommended to collect air samples. The concentrations of the marker compounds were 

found to be significantly different than the other locations. In case of an emergency disposal 

of carcasses, upper aeration ducts can be preferred to collect air samples. However, upper 

aeration duct was not always a reliable sampling location as the air flow direction can change 

during the process. In the study, higher concentrations of the VOCs were measured from the 

upper aeration duct and this duct is claimed to be an outlet. Sampling location should be 

decided after air flow direction is figured out. Sampling VOCs has a potential to be a simple 

way of deciding air flow direction of passively aerated systems. Further studies are needed to 

show practical application of this finding.  
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Figure 21.  Schematic of the swine compost test units and sampling locations 
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Figure 22.  Comparison of VOC sample collection methods 

(N=3) 
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Figure 23. Comparison of different air sample collecting locations  

(N=3) 
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CHAPTER 7. GENERAL CONCLUSIONS 

1. General conclusions 

The following conclusions can be drawn from this research: 

• Solid phase microextraction is a powerful sample collection technique that can be 

used to analyze volatile organic compounds from headspace of laboratory and full 

scale swine mortality composting units. It overcomes the difficulties associated with 

VOC sampling at low concentrations.  

• Mass spectrometry is a useful detector to identify compounds from complex matrices 

such as mortality composting environments.    

• Eighty five µm CAR/PDMS is shown to extract the highest amount of analytes at one 

hour sampling time. One hour sampling time is the longest extraction time that does 

not cause replacement of the analytes.  

• The developed method to quantitatively analyze dimethyl disulfide, dimethyl 

trisulfide, pyrimidine, acetic acid, propanoic acid, 3-methyl butanoic acid, pentanoic 

acid and hexanoic acid gives accurate results. The percentage of the error is 

calculated to be ranging from 1.47 to 20.96 %, which is believed to be in an 

acceptable range. 

• It is possible to detect analytes at low concentrations. Method detection limits are 

ranging from 0.01 to 580 ppbv.  

• Relative humidity of the sampling environment does not affect the efficiency of 

dimethyl disulfide, dimethyl trisulfide, pyrimidine and hexanoic acid sampling. 

However, lower concentrations of acetic acid, propanoic acid, 3-methyl butanoic acid, 

and pentanoic acid are detected at 97% humid conditions compared to 0 % humid 

conditions. A range of concentrations can be reported for 0 and 97% relative humidity 

conditions, if the relative humidity of the sampling environment is not known. 
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• Dimethyl disulfide, dimethyl trisulfide, and pyrimidine are found to be produced 

during degradation of swine carcass tissues but not produced from decaying plant 

(envelope) materials. These compounds are marker compounds of swine carcass 

degradation process.  

• Marker compounds are produced in the first three weeks of the swine carcass process. 

After the first three weeks, their concentrations and emission rates are decreased 

gradually. Laboratory studies show that marker compounds cannot be detected when 

the respiration rates of carcasses decrease to a level of 3.25 mg CO2-C/g VS*d.  

• Field studies showed that when carcass degradation is incomplete, detection of 

marker compounds is still possible in the eighth week of the process. After eight 

week composting time, the highest concentrations of marker compounds are detected 

for the carcass samples with the highest respiration rates (least stabilization). No 

relation is observed between temperature data and degradation rates of carcasses. A 

better estimate of carcass degradation is made by measuring concentrations of the 

marker compounds.  

• Dimethyl disulfide, dimethyl trisulfide, and pyrimidine are produced from all 

compost units under various conditions regardless of the plant material, moisture 

content, porosity and temperature. These compounds are reliable marker compounds 

that can be followed to test completion of a swine mortality composting process when 

the carcasses are fully covered by plant materials and plastic sheets due to biosecurity 

reasons.  

• Volatile fatty acids, methanethiol and ethanethiol are detected from composting units 

with relatively high moisture contents (56.2-64.8%). These compounds can be further 

investigated as indicators of insufficient aeration in animal mortality composting 

operations. 
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• Using glass sampling bulbs to collect air samples and applying SPME in laboratory 

conditions can be a practical option to analyze VOCs from composting operations. 

• In case of an emergency disposal of carcasses, upper aeration duct can be proffered to 

collect air samples when upper aeration duct is an outlet.  

• Sampling VOCs has a potential to be a simple way of monitoring air flow direction of 

passively aerated systems. Higher concentrations of VOCs are detected in the outlet 

of the aeration ducts. Further studies are needed to show practical application of this 

finding.  

 

 

2. Recommendations for future studies  

Suggestions for future studies are presented in the following: 

• Usage of marker VOCs can be tested for swine carcass composting operations where 

the carcass degradation is completed. 

• Marker VOCs can be tested for poultry and livestock mortality composting operations 

and different composting systems (e.g., windrow, rotating vessel).  

• A portable device can be developed for field sampling of dimethyl disulfide, dimethyl 

trisulfide or pyrimidine.  

• Air flow rate of full scale composting units can be measured using an anemometer 

and these air flow rates can be compared with theoretical air flow rates. Theoretical 

air flow rates can be calculated by employing theoretical emission rates and measured 

concentrations of CO2, O2, H2O, and NH3. 

• Usage of VOCs to test inlet and outlet of passively aerated systems can be further 

investigated. The necessary sampling frequency can be searched for matrices with 

different properties (e.g., porosity, moisture content, temperature).  
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• The findings of the study can be modeled by including VOC concentrations, 

temperature, respiration rate, oxygen and moisture contents.  

• A possible usage of SPME coupled with GC-MS can be investigated to find marker 

compounds of other biological systems.  
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