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ABSTRACT 

 The main objective for this thesis was to develop techno-economic modeling tools to 

analyze two bioprocessing systems: anaerobic digestion and industrial fermentation. While 

both of these processes can be used to produce products that ultimately offset fossil fuels, 

there are fundamental differences between each process. Anaerobic digestion is a mixed 

culture process used for waste treatment – it uses a feedstock of low or sometimes negative 

value. In contrast, industrial fermentation is a pure culture process typically used to create 

high value products, requiring relatively expensive feedstocks and typically higher-

technology infrastructure to support. Understanding the cost structures of different 

bioprocesses helps engineers and scientists identify critical variables that should be targeted 

for reducing production costs. This thesis is prepared in the journal paper format and includes 

two papers that have been prepared for submission to a journal. 

 The objective for the first paper in this thesis was to develop a model to analyze farm-

scale anaerobic digestion. Anaerobic digestion is a biological process that can be used to treat 

animal waste, producing biogas and a nutrient-rich digestate. A spreadsheet model was 

developed to analyze economic and technical barriers to this technology, using operation size 

as the primary input and the cost for producing methane as the primary output. Trends in the 

methane cost ratio, or the ratio of the production cost for methane to the market value of 

natural gas, as a function of different process variables were evaluated, and recommendations 

for improving deployment rates were discussed. Results showed that moderate reductions in 

the interest rate are capable of making 1000-cow digesters economically feasible if high 

carbon credits values, high natural gas prices, and low gas clean-up costs can be achieved; 
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however, if carbon credit values are low as they currently are, more extreme modifications to 

the digester cost and interest rate, combined with increases in digester life and/or natural gas 

prices are required for smaller dairies to break-even when using anaerobic digestion.  

 The objective for the second paper was to develop a model to analyze the cost 

structure of industrial fermentation processes for producing biorenewable chemicals. As 

metabolic engineers develop improved microbial strains for industrial fermentation, 

understanding the tradeoffs between different kinetic parameters on the production cost is 

vital. A spreadsheet model was developed to provide an order-of-magnitude estimate of 

chemical production cost based on kinetic and operating parameters. Results showed that 

production cost is most sensitive to yield, fraction of product in the biomass, and substrate 

concentration. Feedstock cost makes up the largest portion of the production cost except 

under the most pessimistic fermentation conditions.  Minimizing fermentation costs is critical 

to making biorenewable chemicals cost competitive with their well-established petroleum-

derived competitors. 

  



1 
 

CHAPTER 1. GENERAL INTRODUCTION AND REVIEW OF 

LITERATURE 

 Fermentative bioprocesses date back to 6000 BC and have been utilized for food, 

beverage, energy, and chemical production throughout history (Scragg, 1988). After Anton 

van Leeuwenhoek discovered the existence of microorganisms in the seventeenth century, 

the field of biotechnology emerged as scientists learned how to harness and manipulate 

microbes to develop pharmaceuticals, chemicals, food products, and biofuels (Scragg, 1988 

and Cooney, 1983). As the Industrial Revolution progressed, industry shifted its focus to 

fossil-based resources for chemical, fuel, and energy production with the discovery of an 

inexpensive feedstock, oil. The 1970‘s oil crisis sparked a renewed interest in bioprocessing 

as the world recognized the finite and limited nature of fossil fuels; however, the challenge of 

developing bioprocesses that could compete economically with inexpensive fossil fuels 

hampered wide-spread deployment.  

 This thesis evaluates two different bioprocesses—farm-scale anaerobic digestion and 

industrial fermentation for biorenewable chemical production. While both of these processes 

can be used to produce products that ultimately offset fossil fuels, there are fundamental 

differences between each process. Anaerobic digestion is a mixed culture process used for 

waste treatment, and it uses a feedstock of extremely low (or even negative) value. In 

contrast, industrial fermentation is a pure culture process typically used to create high-value 

products, requiring relatively expensive feedstocks and typically higher-technology 

infrastructure to support. Each technology is explained in further detail below. 
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Anaerobic Digestion  

 Anaerobic digestion (AD) is a multiple stage process that utilizes bacteria to 

decompose organic waste such as manure in an oxygen-free environment (Speece, 1996). 

Hydrolysis and fermentation, the first stage of anaerobic digestion, converts complex 

carbohydrates to monosaccharides. Acidification, the second stage of AD, involves 

acetogenic bacteria that further degrade complex molecules in preparation for 

methanogenesis. During this stage, acetate and the hydrogen and carbon dioxide released 

during the previous stages are converted to methane and carbon dioxide (Speece, 1996). The 

gas released during AD is referred to as ―biogas‖ and can be directly used for heat, used in a 

generator to produce electricity, or purified to produce pipeline-quality natural gas (USDA 

NRCS, 2007). Another co-product of AD, digestate, contains minerals and nutrients 

beneficial in crop production and can be land applied as fertilizer (USDA NRCS, 2007). 

Additional benefits of this process may include odor reductions in the digestate and 

reductions in manure pathogenicity (Yiridoe et al., 2009). Despite the benefits of AD there 

are several challenges that have inhibited technology deployment in the US.  

 AD was first utilized at an industrial scale in Bombay in 1859; however, the 

mechanisms and conditions for anaerobic growth and biogas production were not understood 

until the 1930‘s (Monnet, 2003). As our understanding and knowledge of AD increased, the 

technology was further developed to process diverse waste streams. The US adopted AD for 

use in municipal sewage treatment plants during the 1940‘s and after World War II many 

other countries followed suit, using AD to generate a renewable fuel source and offset power 

generation costs (BC Ministry of Agriculture and Land, 2009). Interest in AD intensified 
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during the 1970‘s as a result of the oil crisis and manure-fed digesters were installed in the 

US and abroad. Between 1970 and 1990, approximately 70 farm-scale digesters were 

installed in the US; however, most of these are no longer in operation (USDA, 2008). 

Alternatively, Europe has seen tremendous growth in AD technology and 5,000 digesters are 

currently installed with another 15,000 expected by 2015 (BC Ministry of Agriculture and 

Land, 2009). This difference in growth may reflect government policies, differences in local 

resource and energy availability, and differences in the cost of energy. With increasing 

pressure in the US to identify renewable fuel sources and reduce our environmental impact, 

farm-scale AD is once again receiving serious attention from policymakers. The US 

Secretary of Agriculture announced an agreement with US Dairy Producers in December, 

2009 to reduce Greenhouse Gas (GHG) emissions from dairy farms by 25% before 2020, 

citing AD as the primary method for accomplishing this task (USDA, 2009). To achieve the 

deployment rates required to meet this goal, we must first understand the current state of 

anaerobic digestion and why operations have failed in the past. 

 According to the US Environmental Protection Agency‘s (EPA) AgSTAR program, 

151 digesters were in operation as of May 2010 (AgSTAR, 2010). Of these digesters, the 

majority are plug-flow digesters. In addition, 82% of the digesters utilize dairy manure as the 

primary feedstock (AgSTAR, 2010). Plug flow digesters are typically the least expensive 

type of digester, are simple in their design, and can be used for concentrated dairy manure 

streams (Burke, 2001). Based on these factors, farm-scale plug-flow digesters utilizing dairy 

manure as the primary feedstock are the main focus of our study. 
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 The hypothesis of our work is that the ratio of the AD methane production cost to the 

market natural gas price is an indicator of deployment rates for the technology. If this ratio, 

which we give the term, ―Methane Cost Ratio‖ or MCR, is greater than one, the production 

cost is too high and farmers are less likely to operate digesters. However, MCR rates of one 

or less than one illustrate scenarios when AD is economically competitive and times when 

we would expect to see higher deployment rates. The key concept behind MCR is return on 

investment. The University of Missouri completed a focus group study to analyze barriers in 

precision agriculture and found that the most important factor to producers was cost 

(Wiebold et al.). When farmers talked about cost during the focus group, they mentioned the 

capital cost, time required to effectively implement the technology, and the return on 

investment (Wiebold et al.). While anaerobic digestion is a different technology within the 

agricultural sector we believe that the same principle of return on investment still applies. For 

producers to implement AD, they expect to benefit from using the technology financially. In 

the case of AD, return on investment can also include non-monetary benefits such as odor 

reduction and GHG emissions reductions. These factors were also quantified and 

incorporated into the model as potential ―credits‖ that AD might receive with appropriate 

policies.   

Industrial Fermentation 

 While brewing was developed by the Sumerians in 6000 BC and other fermentation 

processes for making bread, cheese, and vinegar were introduced around 4000 BC, 

biotechnology and large-scale industrial fermentation for the production of chemicals only 

emerged in the early 1900s (Scragg, 1988). One of the first industrial fermentations was 
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acetone butanol (AB) fermentation. The process, developed by Weizmann in 1912, utilized 

Clostridium acetobutylicum to produce acetone, butanol, and ethanol from starch (Ezeji et al., 

2004). This process became critical during World War I for the production of cordite, a 

smokeless powder used in ammunition (Jones and Woods, 1986). After the war, AB 

fermentation continued to develop and was used in the automotive industry for producing 

solvents for quick-drying lacquers (Jones and Woods, 1986). AB fermentation expanded 

rapidly and new feedstocks and microbial strains were developed to increase yields and 

utilize glucose-based feedstocks in addition to starch. By the 1950s the primary feedstock for 

AB fermentation in the US was molasses. During the 1950s, the market value of molasses 

rose and competition increased with the petrochemical industry, leading to the decline of AB 

fermentation (Jones and Woods, 1986).  

 The history of AB fermentation is a prime example of the importance of economics in 

industrial fermentation. AB fermentation could not withstand the economic pressures that 

arose from the petrochemical industry due to the low cost of fossil-based fuels. While, the 

1970s oil crisis brought about a renewed interest in industrial fermentation and biorenewable 

chemical production (Qureshi and Blaschek, 2000), the issues that led to the decline of AB 

fermentation are still challenges that must be overcome. In the past 30 years, technologies 

have developed to aid in this effort (Nikolau et al., 2008).  

 With the invention of genomic sequencing, the field of metabolic engineering 

developed to study genomic data to better understand the structure and regulation of 

organisms on the genetic level (Nikolau et al., 2008). With this information, metabolic 

engineers have been able to transform the genetic makeup of organisms, improving yields, 
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productivity, and titer in fermentation processes, and enabling microorganisms to withstand 

environmental conditions that they previously could not survive in. As metabolic engineers 

develop new microbial strains, understanding the cost structure of fermentation processes and 

the impacts and tradeoffs between kinetic parameters is critical. Numerous studies have 

evaluated the economics of different fermentation processes and several software programs 

are available for process design and economic analysis (US DOE, 1993; Shanklin et al., 

2000; Qureshi and Blaschek, 2000; Akerberg and Zacchi, 2000). 

 One study that set the stage for research in biorenewable chemical production was 

completed by the DOE in 1993 (US DOE, 1993). The DOE developed a screening 

methodology to rank various chemicals based on potential biochemical production routes. 

The ranking calculation was based on the cost of the feedstock and the value of the products 

based on the theoretical yield and risk. While this method is good for identifying chemicals 

that would potentially be economically feasible, a new level of analysis is needed for 

metabolic engineers to better understand how their contributions impact the economics of 

industrial fermentation.    

 On the other-hand, detailed process models are also available to use for industrial 

fermentation analysis. Two common software packages on the market for industrial 

fermentation modeling include Aspen Batch Plus and Intelligen SuperPro. In each program, 

the user creates a process flow diagram and then characterizes different states throughout the 

process. The program then completes energy and material balances for the process and can 

be used to evaluate scheduling options and economic data (Shanklin et al., 2000). While 

these programs help engineers determine the costs for a project or optimize a process 



7 
 

schedule, they require several inputs and are therefore not suitable for first-level 

approximations to understand tradeoffs between kinetic variables. Several researchers have 

also developed specific process models to better understand economic tradeoffs. Qureshi and 

Blaschek (2000) developed a spreadsheet model to analyze butanol fermentation. While 

Microsoft Excel provides a good platform for techno-economic analyses as it is commonly 

available on windows computers, Qureshi and Blaschek‘s model required several process 

specific inputs, incorporating grain processing, fermentation, and recovery into the model. In 

addition, process-specific energy and material balances were used to add further detail to the 

model. While these detailed calculations are necessary in design work, our goal was to 

understand tradeoffs between kinetic variables to provide metabolic engineers with the data 

necessary to understand the economic impact of different genetic manipulations. Another 

model developed by Akerberg and Zacchi (2000) incorporated a kinetic and cost model to 

analyze lactic acid production cost. Using kinetic data creates a more dynamic model; 

however, as with Qureshi and Blaschek‘s model, Akerberg and Zacchi analyzed every step in 

the process from liquefaction to electrodialysis. These models incorporate so much detail that 

they mask trends in the overall cost structure and discourage economic analyses early in the 

design process. 

 Based on the models available for analyzing bioprocesses, there is a need for a 

simpler model that can be used early on in the research and development stages and 

incorporates kinetic parameters and economic data to predict trends in the cost based on 

experimental data.  
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Objectives 

The research objectives for this work were as follow: 

- To develop a spreadsheet model to analyze farm-scale dairy plug-flow anaerobic 

digestion  

- To provide recommendations to improve AD deployment rates  

- To develop a spreadsheet model using simple kinetic parameters to estimate the cost 

for producing biorenewable chemicals 

- To analyze trade-offs between substrate concentration, maximum specific growth 

rate, separation costs, and the fraction of the product in the biomass on fermentation 

production cost. 

Thesis Organization 

 This thesis contains a general introduction and literature review, two research articles, 

a general conclusion, and appendices containing specific modeling code and data. Included in 

the general introduction is a review of the literature for anaerobic digestion and industrial 

fermentation, the objectives for this project, and the author‘s role in each article. 

 The first article, entitled ―Development of a simplified framework for analyzing low 

deployment rates of Farm-Scale dairy plug-flow anaerobic digestion,‖ was submitted to the 

Transactions of the ASABE. This article makes recommendations for improving anaerobic 

digestion deployment rates and discusses the cost structure of digestion systems on farms. 

The second article, ―Fermentation modeling: kinetics and the bottom line,‖ will be submitted 

to Biotechnology and Bioengineering. This article discusses the cost structures of 
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fermentation processes and tradeoffs in cost resulting from different kinetic variable 

combinations. The references for each section are at the end of each chapter. 

Author’s Role 

 The primary author, with the support and guidance of the co-authors composed all of 

the articles presented in this thesis. In addition, the code and interface for each model was 

developed by the primary author with the guidance of the major professor. 

 Dr. D. Raj Raman (Associate Professor, Department of Agricultural and Biosystems 

Engineering, Iowa State University) conceived the original idea for the model in the first 

paper and provided guidance in the development of the model for the first paper. Dr. Robert 

T. Burns provided feedback on the model throughout development and assisted in writing 

and editing the paper. 

 Dr. Raj Raman conceived the original idea for the model described in the second 

paper and provided guidance in developing the interface for the model. Dr. Jackie Shanks, 

Dr. Robert Anex, and scientists at Grain Processing Corporation provided feedback on the 

model and its utility in metabolic engineering.  
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CHAPTER 2. DEVELOPMENT OF A SIMPLIFIED FRAMEWORK 

FOR ANALYZING LOW DEPLOYMENT RATES OF FARM-SCALE 

DAIRY PLUG-FLOW ANAEROBIC DIGESTION 

A paper submitted to Transactions of the ASABE Journal 

 

C. R. Faulhaber, D. R. Raman, R. T. Burns 

 

Abstract 

 Treating animal wastes through anaerobic digestion (AD) yields methane-rich biogas 

that can be used for power generation or heating, and a nutrient-rich digestate that can be 

land applied as fertilizer. Furthermore, AD reduces odors from stored and land applied 

manures. Despite these benefits, AD deployment rates in the United States (US) are only 5% 

for dairy farms identified as being suitable for AD by the US Environmental Protection 

Agency. The objective of this study was to analyze the economic and technical limitations of 

farm-scale anaerobic digesters using a simple model permitting insight into the fundamental 

constraints on the technology. A model was developed to determine the cost of methane 

produced via AD based on operation size. Dairy plug-flow systems were modeled because of 

their well-documented economic performance, and model validation used data from 

AgSTAR‘s Farmware program. The analysis shows how critical farm size is to making 

digestion-derived methane cost-competitive with natural gas. At low herd sizes (below 400 

animals), carbon credits and odor reductions alone appear insufficient to overcome the low 

commercial energy rates in the US. However, moderate reductions in digester cost and 

interest rate, coupled with moderate increases in amortization period, and/or natural gas 
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prices could make AD more competitive with commercial energy in the US even at relatively 

small herd sizes (ca. 400 animals). 

Introduction 

 Anaerobic digestion (AD) is a biological process that converts a portion of the 

organic material in a waste stream to biogas and produces digestate that can be land-applied 

as fertilizer (USDA NRCS, 2007; Tafrup, 1995). The biogas is composed of methane, carbon 

dioxide, and small amounts of other compounds such as hydrogen sulfide (Rasi et al., 2007). 

Anaerobic digestion of animal manure has multiple benefits, including renewable energy 

production, reductions in Greenhouse Gas (GHG) emissions, odor control, and reductions in 

manure pathogenicity (Yiridoe et al., 2009). Despite these benefits, AD deployment rates are 

low for US Farms (USDA NRCS, 2007). 

 Farm-scale AD was first adopted in the US during the oil crisis in the 1970s (USDA, 

2008). Despite technological advancements over the past 40 years, a 1998 study reported 

failure rates approaching 50% in manure-fed AD systems (NREL, 1998). In the past decade, 

policy changes and developments in AD technology have yielded only mild improvements in 

deployment rates. Kramer (2004) surveyed 23 digesters from 2002 to 2004, and found that 

five of the digesters that were operational in 2002 had ceased to operate by 2004. In 2006, 

AgSTAR reported a doubling in the number of digesters operating in the US between 2004 

and 2006 (AgSTAR, 2006). According to data reported by AgSTAR in 2009, however, AD 

deployment rates are far below 1% based on the number of total animal facilities, and 

approximately 2% based upon the number of facilities that the US Environmental Protection 

Agency (EPA) has identified as being suitable for AD (AgSTAR, 2010). 
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 In December, 2009 the US Secretary of Agriculture announced an agreement with US 

Dairy Producers to reduce GHG emissions from dairy operations by 25% before 2020; 

anaerobic digestion was cited as the primary method for meeting this goal (USDA, 2009). 

Such an increase in deployment will require us to understand and to develop methods for 

overcoming current barriers to AD deployment at dairies.  

 The University of Florida and the University of California, Davis, both have 

spreadsheet models available online to evaluate the economic feasibility of AD (Florida 

Dairy Extension, 2010 and California Biomass Collaborative). However, these models 

require the user to provide capital and operating costs, meaning that the models are not 

suitable for production of total costs based simply on operation size. AgSTAR has also 

developed a model to help farmers determine the economic viability of AD. The model 

requires several site-specific parameters which are critical to the prediction of costs at one 

location, but they also mask the larger economic realities of AD. To uncover these realities, a 

simple model that incorporates fewer site-specific inputs and that provides a first-level 

approximation accounting for odor and GHG benefits is needed. The goals of our work 

included creating such a model, which we call the Simplified Framework for Analyzing AD 

(S-FAAD), validating the model, identifying critical constraints, and making 

recommendations for improving AD deployment. 

Materials and Methods 

 The S-FAAD model was implemented in Microsoft Excel, with all computations 

being done using normal cell formulae. Visual basic for applications (VBA) code was written 

to enable ranges of input variables to be tested, to study the breakdown of costs, and to 

perform a sensitivity analysis. The S-FAAD model computes a price ($/m
3
) for the biogas 
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produced from AD, taking into account the capital and operating costs of the digester, as well 

as crediting cost avoidances due to odor and GHG abatement. By assuming a biogas energy 

density (GJ/m
3
), the cost of energy (as methane) in the biogas ($/GJ) is computed. This is a 

crucial value, because it allows us to compare the cost of AD-generated energy to its 

commercial competitor: natural gas. The comparison to natural gas may appear unfair, since 

AD brings multiple other benefits and possibilities, including, but not limited to, (1) GHG 

reductions, (2) odor reductions, and (3) the possibility to use the biogas in engine generators 

to produce electricity and heat. Regarding the first two issues, S-FAAD provides explicit 

dollar credits the AD system for GHG reductions, and for odor reductions. The final concern 

– that the economics of AD are improved if conversion to electricity is achieved – is only 

valid if renewable-energy tax credits or similar incentives are available. If such credits are 

not available, then conversion to electricity is unlikely to have any economic benefit, 

otherwise farms across the US would be purchasing low-cost natural gas and generating their 

own electricity on-site. 

 The endpoint of the S-FAAD model is computation of a value we term the methane 

cost ratio (MCR). The MCR is a dimensionless number, found by dividing the biogas energy 

cost (in $/GJ) by the commercial price of natural gas (also expressed in $/GJ). We posit that 

MCR is a key indicator of AD deployment: if MCR is above 1.0, commercial energy is 

cheaper than digestion-derived energy, making digester deployment and long-term operation 

unlikely. Conversely, if MCR is below 1.0, digester-derived energy is cost-competitive with 

commercial sources, making long-term operation of digesters more likely. To obtain the 

MCR, several operating parameters and costs are considered as shown below in figure 1. 



16 
 

 

 Figure 1. S-FAAD Flow Chart. 

Diamonds represent user inputs, ovals represent assumed values, rectangles represent 

computed values, dotted rectangles represent computed values based on assumptions 

not shown, and shaded rectangles indicate primary outputs. 

 Figure 1 summarizes the data flow in S-FAAD. The operation size and assumptions 

for digester operation and biogas production rates are used to calculate the cost for producing 

methane via AD. This value is then compared to the market natural gas prices to determine 

the MCR. The S-FAAD model can be broken down further into operating parameters and 

annual expenses and revenue sources. 

Operating Parameters and Assumptions 

 The principle assumptions for dairy manure and biogas production include the 

hydraulic retention time (HRT), influent strength, fraction of manure biodegraded, methane 
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concentration, daily biogas production per cow, and the energy density of manure solids. The 

S-FAAD model assumes a 20-d HRT which falls into the typical range for plug-flow 

digesters (Wilkie, 2005). Influent strength was assumed as 0.11 kg/L (total solids) which is 

based on a typical range of 0.11-0.14 kg/L for scrape collection systems for plug flow 

digesters (USDA, 2007). Manure solids were assumed to have the energy density of 

cellulose: 17 MJ/kg (GCEP, 2005). The fraction biodegraded assumed to be 26% (Martin et 

al., 2003; Cornell University, 2008), and a biogas production rate of 1.9 m
3
/cow-day was 

assumed (USDA, 2007) as was a biogas volumetric methane concentration of 60% (Ghafoori 

and Flynn, 2007). These key operating assumptions were used to calculate the annual biogas 

production, the power output based on the methane concentration and energy content of 

methane, the biodegradable loading requirement for the digester, the volumetric flowrate into 

the digester, and the required digester volume. 

Annual Expenses and Revenue 

 To determine the economic viability of AD, S-FAAD computes the capital costs, 

operating costs, carbon tax credits, and odor abatement savings.  For all these values, it is 

assumed that there is enough demand on the farm to use all the biogas produced. 

Capital Cost 

 The capital cost for the digester (CGC) is determined from the digester size using a 

standard scaling equation (eq. 1) (Brown, 2003):  

 
SF

DGC
VMC        (1) 

Where SF is a scaling factor and M is a multiplier. Although tabulated values of SF and M 

are available for many unit operations (e.g., Brown, 2003), we are unaware of such figures 
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being available for anaerobic digesters. However, AgSTAR (2009) compiled tables 

containing the grassroots capital costs for plug flow digesters built between 2005 and 2008, 

and used the data to find the following equation relating the capital cost to operation size (eq. 

2): 

 000,566617
opGC

SC
      (2) 

 AgSTAR‘s equation includes the digester cost as well as equipment, installation, and 

engineering costs. Because S-FAAD assumes that biogas is not used to generate electricity, a 

36% correction (reduction) was applied based on data presented in USDA (2008). Costs were 

corrected to 2010 USD, and a power equation was fit to the resulting data across operation 

sizes from 500 to 3000 (AgSTAR, 2009). The resulting scale factor and multiplier were 0.59 

and $13,575 ($/cow) respectively, with r
2
=1. It is interesting to note that plug-flow digester 

costs appear to follow a ―six-tenths‖ rule as is often seen in process equipment (Brown, 

2003). 

Operating Costs  

 The operating costs considered in S-FAAD include personnel costs and gas cleanup 

costs. Peters et al. (2003) provides typical labor requirements for continuous flow reactors. 

Using this value, the labor requirement is approximately 4 hours/day, or 50% of a full-time 

employee (FTE). The annual cost for one FTE is assumed to be $40,000. As the size of the 

digester and pumps increase, the operator time required is not expected to change 

significantly; thus in S-FAAD labor requirement is treated as independent of digester size. 

There are several levels of biogas cleaning, with the simplest typically involving moisture 

and hydrogen sulfide removal, and sophisticated cases removing carbon dioxide to create 
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pipeline quality natural gas. Gas cleanup costs that range from $0.03-$0.14 per cubic meter 

biogas are cited by USDA (2007) based on updated costs from Walsh et al. (1988). A gas 

cleanup cost of $0.03 per cubic meter biogas was used for the baseline calculations, but the 

impact of higher gas cleanup costs was also explored. 

Maintenance Costs 

 The maintenance cost was calculated based on the reactor cost.  According to Peters 

et al. (2003) maintenance costs run between 2%-11% of the fixed-capital investment cost 

each year depending on the process.  Based on this a value of 5% was selected.   

Carbon Credit Savings 

 Anaerobic digestion reduces GHG emissions in two ways: by reducing direct GHG 

emissions from a non-AD waste management method, and by avoiding fossil carbon burning 

through the use of digestion-generated methane instead of natural gas. US EPA (2009) was 

used to calculate GHG emissions reductions for using AD instead of a liquid slurry storage 

structure. The emissions offset by using AD methane instead of natural gas were then 

calculated from the CO2 emissions resulting from combustion. Note however that GHG 

emissions associated with digester construction as well as other indirect emissions were 

ignored in this analysis. To convert these GHG reductions into economic values, a carbon-

credit approach was used. Metcalf (2009) suggests that carbon credits in the US be valued at 

$15-$20/ton CO2. Therefore, a value of $20/ton CO2 equivalent was used as a baseline value 

in S-FAAD. 
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Odor Abatement Savings 

 To put an economic value on the odor reductions cause by AD, we credited the AD 

operation with the net increase in property values that would occur due to a reduction in odor 

emission. This required an estimate of the area (acres of property) adversely affected by odor 

prior to AD installation, and an estimate of the property devaluation that occurs due to odors. 

Odor set-back distances (PAAQL, 2006) were used to determine the impact area, and data 

from a hedonic study was used to estimate reductions in property values (Herriges et al., 

2005). The Herriges et al. (2005) work evaluated the impact of hog operations on property 

values in five counties in Iowa using a hedonic price model. No similar data was found for 

dairy manure odors; therefore, S-FAAD uses property devaluations based on the hog 

operation study. Reductions in property values varied with facility size, distance, and wind 

direction, but averaged 2% (Herriges et al., 2005). The set-back distance used was based on 

guidelines developed by Purdue University‘s Agricultural Air Laboratory (PAAQL, 2006). A 

simplified equation was obtained from average values assumed in the PAAQL model 

(equation 3) where the offset distance (D) is in miles and Sop is the operation size (number of 

cows). 

  op
SED 44.4       (3) 

 This equation assumes that no odor abatement technology is used. When AD is 

utilized for odor abatement, the impact distance is reduced by applying a correction factor of 

0.88 (PAAQL, 2006). We assumed a property rental rate of $14,000/ha/yr, and computed a 

cost benefit for AD based on a reduction in impacted area. 



21 
 

 The odor reduction estimates do not capture non-manure odor emissions on the farm 

and therefore, our cost estimates may be overly optimistic. Furthermore, although the 

economic benefits associated with odor reduction may be real, there are currently no 

mechanisms for these benefits to accrue to the digester operator, so their inclusion here is 

highly favorable toward AD. It was important to include this term to put an economic 

perspective on a commonly-claimed AD benefit (Wilkie, 2005). 

Sensitivity Analysis 

 To understand how the assumed values impacted the calculated MCR, a sensitivity 

analysis was completed. Sensitivity coefficients – that is, percent changes in output per 

percent change in inputs – were computed about the baseline value (Hamby, 1994). 

Results and Discussion 

Model Validation 

 To validate the model, FarmWare 3.4 was used as the standard, and a baseline 

scenario was developed to compare S-FAAD to FarmWare 3.4. Simulations in FarmWare 3.4 

assumed that the dairy farm is located in Iowa, cattle are confined in a freestall scraped barn, 

the method prior to AD used for manure management is a storage tank containing manure 

and milking center wastewater, and propane is the replacement fuel (natural gas not 

available). Data points were collected for 200, 400, 600, 800, and 1000 cow operations, with 

all costs in 2010 USD (Figure 2). 
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Figure 2. Capital Cost Comparison.  

 As showed in figure 2, the capital costs reported by FarmWare 3.4 and S-FAAD are 

very similar. For dairy farms with more than 600 cows, the capital cost reported by S-FAAD 

is almost the same (within 3%) as the value reported by FarmWare 3.4. For farms with 200 

or 400 cows, the percent difference between S-FAAD and FarmWare 3.4 increases slightly. 

Based on the operation size ranges discussed in AgSTAR (2009) which range from 500-3000 

dairy cows, it is reasonable that the difference in the values reported by FarmWare 3.4 and S-

FAAD would increase outside of the range originally surveyed by AgSTAR. Despite these 

differences for smaller farm sizes, figure 2 demonstrates that S-FAAD provides an accurate 

first-order estimate for the capital cost of AD using fewer site-specific parameters and inputs. 

Baseline Results 

 Using the baseline assumptions of 7% interest rate, 20 yr amortization period, 90% 

uptime, $20/Mg carbon value, and $0.03/m
3
 gas cleanup cost, and a natural gas energy cost 

of $5.29/GJ (based on a 2010 average), MCRs ranged from 1.4 for the 1000-head facility, to 

nearly 4.1 for the 200-head facility. The 1.4 value suggests that energy from anaerobic 

digestion would cost 140% of pipeline natural gas, making anaerobic digestion not 
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economically viable. Breakeven (i.e., MCR of 1.0) occurs around 1700 head under the 

baseline assumptions, which appears to be a reasonable value since the median herd-size at 

dairies using AD is 1300 (AgSTAR 2010). 

Impact of Interest Rate, Amortization Period, Uptime, Carbon Value, and Gas Cleanup 

Costs on MCR 

 The MCR was highly sensitive to interest rates, as shown in figure 3. Anaerobic 

Digestion becomes economically viable for farm sizes greater than 1000 as the interest rate 

approaches 1%, but interest rates alone are not sufficient for an 800-cow dairy to become 

economically feasible. 

 

Figure 3. Impact of Interest Rate on MCR. 

The dotted line illustrates the baseline value for interest rate and the solid black line 

illustrates the break-even point. 
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 Amortization period – which in S-FAAD is a surrogate for system life expectancy – is 

also a key driver of MCR, as shown in figures 4. While the amortization period alone doesn‘t 

provide an economically viable solution for any of the sizes evaluated, it is important to note 

that as the amortization period decreases, the MCR goes up significantly. This simply drives 

home the importance of well-designed and long-lived systems on overall process economics. 

 

Figure 4. Impact of Amortization period on MCR. 

The dotted line illustrates the baseline value for the amortization period and the solid 

black line illustrates the break-even point. 

  Well-designed systems should not only last a long time, they should be operational 

for a large fraction of the year. Figure 5 illustrates the enormous impact of uptime on the 

economic viability of AD systems. A 30% drop in the MCR results in a 50% increase in the 

MCR for operation sizes of 200. Multiple challenges to high uptime have been cited by farms 

running digesters, including equipment reliability, foam and crust formation in the digester, 

and proper temperature control (Cornell University, 2008). 
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Figure 5. Impact of Uptime on MCR. 

The dotted line illustrates the baseline value for the uptime and the solid black line 

illustrates the break-even point. 

 The base-case used a literature-suggested value for carbon credits in the US of 

$20/metric ton CO2 (Metcalf, 2009). However, CO2 market prices haven‘t exceeded 

$3.50/metric ton on the Chicago Climate Exchange (2010). Figure 6 shows how important 

carbon-values are to viable AD, in light of the relatively low commercial energy prices in the 

US. With carbon values near actual market values, and with all other inputs at base case 

levels, none of the scenarios tested is economically viable. The best case system is the 1000-

head system, with an MCR around 1.4.  



26 
 

 

Figure 6. Impact of CO2 Value on MCR. 

The dotted line illustrates the baseline value for the CO2 credit and the solid black line 

illustrates the break-even point. 

 As discussed in previous sections, the gas cleanup costs vary significantly based on 

the type of conditioning required. As shown in figure 7, if gas cleanup only involves 

hydrogen sulfide removal ($0.03/m
3
 biogas), then 1000 cow dairies are close to being 

economically viable; however, as the gas cleanup cost increases, so does the MCR.   
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Figure 7. Impact of gas cleanup cost on MCR. 

The dotted line illustrates the baseline value for gas cleanup costs and the solid black 

line illustrates the break-even point 

Cost Breakdown 

 To better understand the annual cost for installing and operating a digester, the 

percent of the total cash flow represented by each expense and cost benefit was determined. 

Figure 8 illustrates how costs breakdown over the range of operations studied. 
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Figure 8. Cost Breakdown vs. Operation Size. 

Revenue streams are shown on the graph as negative percentages and annual costs are 

shown as positive percentages. 

 Figure 8 shows that amortized capital costs dominate the overall cost of AD. As the 

operation size increases, this term drops slightly, but still remains above 30% for 1000-cow 

dairies. Based on these results, decreasing amortized capital costs appears to be the most 

effective way to improve AD deployment rates and decrease the MCR. Decreases in 

amortized capital costs can be realized in a multitude of ways, including: (1) improved 

structural design to reduce actual digester construction costs without sacrificing longevity 

and reliability, (2) improved structural design to increase expected lifetime and thereby 

lengthen amortization period, (3) provision of low-cost loans or matching funds for digester 

construction, or (4) improved bioprocess engineering to enable equal degradation at lower 
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retention times (thus decreasing reactor size and cost while maintaining gas production). It is 

important to emphasize that it is amortized capital cost, and not simply capital cost that must 

be decreased: digesters made using low-cost materials such as tubular polyethylene bags 

(Lansing et al., 2008) may require replacement after a few years and can only be compared to 

other systems on an amortized capital cost basis. 

 These graphs assume a gas cleanup cost of $0.03/m
3
 biogas. If CO2 is removed from 

the biogas at $0.14/m
3
 the gas cleanup cost overtakes capital cost for all operation sizes.  

 Another important variable to note is the natural gas price. Natural gas prices 

fluctuate significantly. In S-FAAD, the natural gas price is the denominator in the MCR and 

is directly tied to AD economics. If natural gas prices increase to the peak prices realized in 

2008, the outlook for AD becomes much brighter; however, as long as natural gas prices 

remain low, AD struggles to be an economically viable solution, especially on smaller 

dairies. 

Sensitivity Results 

 The terms with the highest sensitivity coefficients are shown in Figure 9. Sensitivity 

coefficients indicate the percent change in MCR resulting from a 1% increase in the variable 

listed: For example, a 1% increase in the operation size from the base case causes a -0.6% 

drop in MCR. The scale factor used in equation 1 had the greatest sensitivity coefficient, as 

expected. While this value cannot be readily adjusted to improve AD economics, its high 

sensitivity coefficient illustrates the importance of accurately estimating this term. The 

multiplier is the second most sensitive variable. Unlike the scale factor, this value could be 

changed via technological advancements improving AD digester design. The uptime for a 
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digester heavily impacts AD economics as shown below; we believe many operational AD‘s 

struggle with this. Unsurprisingly, the market natural gas price is also highly sensitive and 

market fluctuations in natural gas price can drastically change the economic outlook for AD. 

 

 

Figure 9. Sensitivity Analysis Results. 

Conclusions 

 The Simplified Framework for Analyzing Anaerobic Digestion (S-FAAD) reported 

here showed that digester capital costs dominate the overall cost of producing energy using 

anaerobic digestion. Using the $20/Mg carbon prices that have been suggested in the 

literature, achieving the US Secretary of Agriculture‘s GHG emissions reduction goals is 

feasible if the natural gas price is high. In reality, CO2 values are not as high as predicted and 
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gas cleanup costs may not be as low as predicted. Under these more realistic assumptions, S-

FAAD showed that the low commercial energy prices in the US mean that without price 

supports (in the form of carbon credits, or low interest loans, or grants), even at 1000 animal 

herd sizes, biogas from AD cannot compete with pipeline natural gas. Therefore, evaluating 

policy changes and technological advancements that could lead to increases in digester life 

and decreases in amortized digester cost and interest rates is recommended. 
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CHAPTER 3. FERMENTATION MODELING: KINETICS AND THE 

BOTTOM LINE 

 

A paper to be submitted to Biotechnology and Bioengineering 

C. R. Faulhaber, D. R. Raman 

 

Abstract 

 Advances in metabolic engineering enable increasing production of biorenewable 

chemicals and economic evaluations can provide insight into impacts of different kinetic 

parameters on the cost structure of fermentation. The Fermentation Economic Modeling Tool 

(FEMT) was developed to evaluate these critical factors with the primary output being an 

order-of-magnitude estimate for the product production cost. Results showed that three key 

kinetic and operating parameters – fraction of the product in the biomass, substrate 

concentration, and yield—have the greatest impact on the production cost. These results 

demonstrate the utility of simple models to provide insight into how fundamental bio-kinetic 

parameters influence production costs. 
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Introduction 

 Tremendous technological growth and advancement took place during the industrial 

revolution resulting in an increased demand for petroleum-based products, including energy, 

transportation fuels, and chemicals. Biochemical routes, previously used to produce 

chemicals, could no longer compete with their low-cost, fossil-based counterparts and these 

technologies faded away (Engel et al., 2008).  

 As the world population continues to rise, fossil-based resources are depleting more 

rapidly than they can be regenerated (Rojan et al., 2007). This realization has led scientists to 

reconsider biochemical production routes, namely industrial fermentation (Rojan et al., 

2007). New fields such as metabolic engineering have enhanced our understanding of 

fermentation processes and the microbial mechanisms that control these processes. This has 

led to new microbial strains with improved kinetic properties; however, improvements to 

microbial metabolism often involves tradeoffs (Huang and Tang, 2007), i.e., a 10% increase 

in substrate concentration may result in a 10% decrease in the maximum specific growth rate 

for an organism. The impact of kinetics and tradeoffs between kinetic variables on process 

economics is not well-documented. For industrial processes, kinetic parameters are 

considered proprietary and are not published (Sauer et al., 2007). Lab and pilot-scale studies 

for several chemicals are widely published and available; however, very few of these studies 

quantify process economics. Several studies use the term ―economics‖ loosely and state that 

a process is or is not economically feasible without providing detailed analysis or justifying 

this conclusion (e.g., Engel et al., 2008, Rojan et al., 2007, Stahmann et al., 2000, Li et al., 

2001). Numerous metabolic engineering papers describing improved microbial strains do not 

discuss process economics at all (Bellissimi and Ingledew, 2005, Kim et al., 2007). While 
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economic evaluations are often outside of the scope of a metabolic engineering effort, 

understanding which variables have the highest impact on the process economics and having 

a general understanding of these impacts during the metabolic engineering phase of research 

could lead to more directed research efforts and improve the likelihood of industrial 

deployment.  

 Studies that do incorporate process economics were also evaluated (e.g. Choi and 

Lee, 1997; Tao and Aden, 2009; Akerberg and Zacchi, 2000; Qureshi and Blaschek, 2000); 

however, some of these models did not provide a breakdown of the production costs and 

others were too complex and required site and process-specific parameters limiting general 

use for multiple processes. While models derived from programs like ASPEN provide 

detailed analysis for a specific process, they cannot be used to evaluate trends in cost over 

ranges of different variables and sizes for a variety of operations without extensive 

knowledge of different processes. 

 The goal of this work was to develop a relatively simple tool that allows insight into 

the key tradeoffs and cost trends between different fermentation variables. While this model 

is not suitable for specific site cost prediction, it provides first-level approximations that can 

be used by metabolic engineers to develop more efficient bacterial strains.  

Materials and Methods 

 The FEMT (Fermentation Economic Modeling Tool) was implemented in Microsoft 

Excel, with all computations being done using visual basic for applications (VBA) code. The 

FEMT utilizes a kinetic model that is integrated with economic calculations to function as a 
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simple dynamic model for first order approximation of the unit operation processing cost in 

terms of 2010 USD per kg product. Figure 1 illustrates the inputs and outputs for the FEMT.  

 

Figure 1. FEMT Flow Diagram. All inputs for the model are outlined in a thin solid 

line, all intermediate calculations in a thin dotted line, primary outputs are shown in a 

thick dotted line, and the product production cost is shown in a thick solid block. 

 The primary feedstock for the model is assumed to be glucose; however, the model 

could be adapted to other feedstocks. Glucose undergoes fermentation to produce a 

designated chemical or intermediate product of interest. The calculated cost for this 

fermentation product incorporates the feedstock cost, reactor rental rate, separation cost, and 

a first level approximation of energy and labor cost as shown: 
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       (1) 

 As shown in equation 1, the product production cost is the sum of the feedstock cost 

(FC $/kg product), fermentation rental rate (FRR, $/kg product), separation cost (SC, $/kg 

product), and other cost (OC, $/kg product). This total is then corrected to account for the 

percent inoculum (inoc) required in the reactor to determine the corrected product production 

cost (PPCC, $/kg product). Each variable in equation 1 is described in further detail below. 

Feedstock Cost 

 The feedstock cost for glucose is an input for the FEMT; however, the units are 2010 

USD per kg feedstock while PPCC is in 2010 USD per kg product. To account for this, the 

glucose cost (GC, $/kg glucose) is converted to 2010 USD per kg product using the fraction 

of product in the biomass (fpx,, %) and the product yield (Yxs, kg biomass/kg glucose) as 

shown in equation 2.  

         (2) 

Fermentation Rental Rate 

 The FRR is the amortized capital cost for the reactor (RC, $) divided by the annual 

production capacity (AP, kg product). Calculation of the fermentation rental rate (FRR) 

requires knowledge of the kinetic limitations of the microorganism used for fermentation and 

the process economics for computing the amortized capital cost. Each of these calculations is 

outlined below. 
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Annual Production capacity 

 To calculate the annual production capacity, the retention time, or time required for 

fermentation must be calculated.  

 Using a combination of the Monod equation, growth equation, and an equation for the 

yield of cell mass from substrate concentration as described for batch reactors by Shuler and 

Kargi (2002), the Logistic equation is formed as shown in eq. 3. 

    (3) 

 In this equation, we assume that the final titer, Xf (g/L), is equal to 95% of the 

maximum theoretical value given in Shuler and Kargi (2002), Yx/sSo+Xo. This expression can 

then be used to calculate the fermentation retention time, τ (hrs). The fermentation retention 

time is then corrected to account for downtime between loading and this corrected value is 

used in additional calculations relating to the production cost. Additionally, the inoculum 

requirement can be calculated by dividing the initial titer, Xo (g/L) by the final titer, Xf (g/L). 

The annual production capacity can then be calculated as shown below. 

         (4) 

 As shown in equation 3 the final titer (Xf kg product/m
3
) is multiplied by the fraction 

of product in the biomass (fpx, %) and reactor volume (V, m
3
) and then divided by the 

retention time (τ, converted to yr). 
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Annual Capital Cost 

 The annual capital cost accounts for the grassroots capital cost for installing the 

reactor as well and the interest rate and reactor life. The grassroots capital cost is computed 

using standard scale factors and multipliers as discussed in Brown (2003) and takes into 

account engineering, labor, materials, freight, and construction costs associated with a piece 

of equipment. The fermentation vessel is assumed to be a vertical process vessel with a unit 

cost of $7300/m
3
 (USD 2010), a scale factor of 0.71, a materials module factor of 1.04, and a 

labor module factor of 0.49. The amortized capital cost is then calculated based on a user-

specified reactor life and interest rate.  

Separation Costs 

 Separation costs vary significantly from one operation to another and without 

additional processing data, it is difficult to predict the separation cost. Therefore, the 

separation cost used in FEMT is given as a percentage relative to the annual reactor cost.  

Other Costs 

 Due to regional and processing differences in labor, electricity, cooling water, and 

natural gas prices, these variables were not considered specifically within the model; 

however, an ―Other‖ category was incorporated into the model as a first approximation for 

these variables. This category, like the separation cost, is also given as a percentage relative 

to the annual reactor cost.  
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Sensitivity Analysis 

 To understand how the assumed values impacted the calculated PPCC, a sensitivity 

analysis was completed. Sensitivity coefficients, or the percent changes in output per percent 

change in the inputs, were computed (Hamby, 1994).  

 

Results and Discussion 

 The FEMT is designed for metabolic engineers to use in evaluating a specific 

process; however, to review a single process, all of the kinetic and operating parameters used 

in the model should ideally come from a single source. A review of literature on batch 

fermentation processes for biorenewable chemical production was completed and no single 

sources were found containing all the necessary inputs. These findings illustrate the need for 

continuity and a reporting methodology in papers concerning microbial fermentation. While 

some papers reported the fermentation time and productivity, others reported the initial and 

final substrate concentration and the yield (Demain, 2009, Wingren et al., 2005, Altinas et 

al., 2002, Nakamura et al., 1996, Bai et al., 2008). One article discussed kinetic and 

economic results but never gave the reactor volume (Akerberg and Zacchi, 2000). Another 

article reported all of the necessary data, but it appeared that there was an error in one or 

more of the kinetic parameters reported (Heinzle et al., 2006). Without a clear and concise 

reporting system for kinetic data, comparisons between different papers and microbial strains 

cannot be made.  

 Because limited data was available in the literature for different fermentation 

processes, ranges of data were evaluated rather than individual values for a specific process. 
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Four variables were investigated initially, including the fraction of the product in the biomass 

(fpx), maximum specific growth rate (µmax), initial substrate concentration (So), and separation 

cost. An optimistic and pessimistic value was selected for each parameter and all 

combinations were evaluated as shown in Table 1. 

Table 1. Simulation Test Cases. 

  
fpx (kg product/ 

kg biomass) 
So (g glucose/ 

L broth) µm (hr-1) 
Separation 

Cost 

Case 1 2.7 100 1.5 200% 

Case 2 2.7 100 1.5 500% 

Case 3 2.7 100 0.1 200% 

Case 4 2.7 100 0.1 500% 

Case 5 2.7 10 1.5 200% 

Case 6 2.7 10 1.5 500% 

Case 7 2.7 10 0.1 200% 

Case 8 2.7 10 0.1 500% 

Case 9 0.8 100 1.5 200% 

Case 10 0.8 100 1.5 500% 

Case 11 0.8 100 0.1 200% 

Case 12 0.8 100 0.1 500% 

Case 13 0.8 10 1.5 200% 

Case 14 0.8 10 1.5 500% 

Case 15 0.8 10 0.1 200% 

Case 16 0.8 10 0.1 500% 

 

 Several different values for these variables are reported in literature, so most of the 

values shown are for ethanol production using Saccharomyces cerevisiae. Altintas et al. 

(2002) reported an fpx value of 2.7 for one of their batch experiment runs.  In some cases, an 

fpx value above one would not be reasonable, so a range of 0.8-2.7 was selected.  Junker 

(2004) reported a general glucose substrate concentration of 10-100 g/L and a µm range of 

0.2 to 0.5 hr
-1

 for yeast; however, several new fermentations being studied involve bacteria 



44 
 

which have a range of 0.9-2.1 hr
-1

 and researchers have reported values as low as 0.1 hr
-1

; 

therefore, a range of 0.1-1.5 hr
-1

 was selected.  Akerberg and Zacchi (2000) evaluated the 

cost breakdown of lactic acid produced via fermentation from wheat flour.  Their model 

predicted that the separations capital cost would be twice that of fermentation and that 

separations and recovery combined would be five times as great. Therefore, a range of 200-

500% was selected.    

 Other inputs for the model remained constant throughout the simulations. Table 2 

show the values used for each remaining variable. 

Table 2. Base-case Variables. 

Variable Value Reference 

Yxs (dimensionless) 0.115 Altintas et al. (2002) 

Fermenter Volume, V (m3) 1500   

Interest Rate 15% 
Keeling personal 
communication (2011) 

Reactor Life (years) 15 Rowe and Margaritis (2004) 

Downtime between runs (hrs) 10 
Christiansen personal 
communication (2011) 

Ks (kg/m3) 1 

Erickson and Stephanopoulos 
(1986) and Arellano-Plaza et 
al. (2007) 

Xo (kg/m3) 1 
Richard and Margaritas 
(2004) 

Other  80% Tao and Aden (2009) 

 

 Results were determined as ranges for each scenario based on the glucose cost as 

shown in figure 2. For example, Scenarios one and two illustrate the predicted processing 
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cost based on optimistic values of fpx, So, µm, and separation cost over the range of potential 

glucose prices.  

 

Figure 2. Impact of Glucose Cost on PPCC. The dotted line represents the 

approximate cost of commodity chemicals. 

 As shown in Figure 2, the most optimistic conditions are required for the production 

cost to fall in the commodity chemical range.  There are, however, some weaknesses in the 

model that need to be addressed to make a full comparison between commodity chemical 

prices and the production cost output by the FEMT.  The Monod-based kinetic model used in 

the FEMT does not account for substrate and product inhibition, a major factor in many 

industrial-scale fermentations.  Because of this, the fermentation times ranged from 0.6 hours 

to 25 hours.  This may be a reasonable estimate for some processes; however, simulations 

were completed based on values for ethanol which typically have longer fermentation times 
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(Okafor, 2007). Additionally, the productivities ranged from 8-48 which is significantly 

higher than productivity ranges reported in literature (Jarboe et al., 2010). Because of this, 

the annual production rate was inaccurate when compared to industrial scenarios, impacting 

the product cost reported by the FEMT. Because of this, some of the ranges shown above 

may be pessimistic and some may be optimistic.    

 The FEMT can also be used to evaluate the cost structures for different operations.  

Figure 3 illustrates how the cost structure changes at different scales. 

 

Figure 3. Cost Breakdown for different operation sizes. 
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As shown in figure 3, the cost breakdown varies greatly between the optimistic and 

pessimistic conditions. Under optimistic conditions, the glucose cost dominates the product 

cost in all scenarios; however, when the operating conditions worsen, the separation cost 

makes up the largest portion of the produced product cost. This is due to the production 

capacity. As the maximum specific growth rate, substrate concentration, and fraction of the 

product in the biomass decrease, the annual production does as well, leading to an increase in 

the fermentation rental cost ($/kg product) and therefore an increase in the separation cost.  

One variable not accounted for in the FEMT is the final product concentration.  As the 

product concentration in the broth decreases, the separations cost will increase further.  

While the separation cost ranges selected illustrate this change to some degree, this portion of 

the model is not dynamic, so the user needs to adjust the separation percentage based on their 

knowledge of the product concentration.    

 A sensitivity analysis was also completed as described in the materials and methods 

section. Figure 4 illustrates the sensitivity coefficient ranges for each variable based on the 

simulations described above. 
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Figure 4. Sensitivity Coefficients.  

 The sensitivity coefficients shown in figure 4 are illustrated based on their impact 

they have on PPCC. For example, Yxs and fpx have a significant impact on PPCC and as they 

increase, PPCC decreases. The fpx value displayed did not change under the different 

conditions that were evaluated and is therefore represented with a thin line; however, other 

terms like the glucose cost varied significantly based on the value used for the glucose cost 

and the operating parameters. In addition, the initial substrate concentration also significantly 

impacts the PPCC as expected based on the results described in figure 2. 

 One thing to note in Figure 4 is the impact of Xo on PPCC.  Based on the 

fermentation conditions there is an optimum value for Xo.  Xo remained constant over the 
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range of values evaluated; however, in some cases, it fell below the optimum value and in 

other cases was above the optimum value, impacting the PPCC positively or negatively. 

 Future Work 

 The results of this research illustrate the importance of yield and the fraction of the 

product in the biomass on the final production cost for a chemical of interest.  

 While FEMT provides reasonable cost estimations under optimistic conditions, 

additional research is needed to adjust the kinetic portion of the model so that it is more 

representative of realistic fermentations.  Many industrial fermentation operations are also 

simultaneous saccharification and fermentation operations or are fed-batch, allowing for 

more control over the glucose concentration in the broth and higher final product 

concentrations and productivities.  Looking into methods for allowing the user to select the 

type of fermentation method is also recommended so that the FEMT can more easily be 

adapted for different operations. 

 In addition, work is needed to compare FEMT to existing software programs like 

ASPEN to quantify the differences seen in the results. Understanding the true impact of 

scale-up on kinetic parameters and costs by completing a survey of industry would also 

greatly enhance the techno-economic and metabolic engineering research. The USDA 

completed a study of ethanol plants in 2002 to quantify the operating, capital, and labor costs 

for producing ethanol in the US (USDA, 2005). This study didn‘t reveal any company 

information or proprietary process data. A similar survey of biorenewable chemical 

companies would provide a link between research in academia and industrial operation to 



50 
 

help scientists develop targeted research projects leading to improved technology 

deployment.   
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CHAPTER 4. GENERAL CONCLUSIONS 

 

 Fermentation processes can be used to produce chemicals and energy from bio-based 

renewable resources and reduce dependence on fossil-fuel resources; however, cost remains a 

barrier to implementing many of these processes. In Chapter 2, anaerobic digestion (AD) was 

discussed and a framework for modeling the cost structure of AD for different operation sizes 

was presented. This model, S-FAAD, illustrated the importance of operation size on the cost 

of AD-produced methane. To reach higher deployment rates of AD, we hypothesized that the 

cost of AD-produced methane needs to compete with market natural gas prices. For larger 

operations, above 1000 dairy cows, this can be realized assuming $20/metric ton CO2 trade 

rates and lower interest rates based on our analysis; however, for smaller operations to 

succeed, more extreme changes in the capital cost, reactor life, interest rates, gas cleanup 

costs, and carbon credits are needed.  The fundamental challenge to AD deployment in the 

US is the relatively low commercial energy prices. 

 Chapter 3 modeled costs for industrial fermentation processes for biorenewable 

chemical production. The field of metabolic engineering has led to tremendous advances in 

microbial strains used for industrial fermentation. Scientists are able to target the genes that 

control cellular functions to improve the specific growth rates, yield, productivities, and 

substrate concentration; however, as one or more of these variables is adjusted, there are 

often tradeoffs in other variables. In a competitive industry where process economics 

determine technology deployment, understanding the economic impact of these kinetic 

tradeoffs is vital at the early stages of development. The FEMT was developed to evaluate 

the cost structures and tradeoffs in industrial fermentation systems. Results showed that the 
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yield, fraction of the product in the biomass, and substrate concentration have the greatest 

impact on changes in the product cost. Using FEMT we can illustrate that increases in 

substrate concentration resulting in decreases in the maximum specific growth rate result 

have a greater impact on the production cost than increases in maximum specific growth rate 

leading to reductions in the substrate concentration. Additionally, using fermentation for 

production of commodity chemicals will require high maximum specific growth rates and 

substrate concentrations as well as low separation costs. Research focusing on these areas is 

likely to have the greatest impact on process economics. FEMT also provides a consistent 

reporting methodology that can be used by metabolic engineers for increased continuity in 

literature.  

 Another important take-away from this research is best practices in spreadsheet 

model development. S-FAAD was developed using in-cell computations while FEMT was 

developed using VBA to complete and output all calculations results. There are advantages 

and disadvantages to each of these methodologies. While in-cell computations allow for 

immediate results and allow the user to see how the calculations are structured, they are not 

well suited for models with varying levels of analysis and can be changed by the user. VBA 

allows for a single interface to be used for multiple levels of analysis and gives the designer 

greater power over the model; however, any change in the analysis or results that are output 

requires additional time and programming that is not always trivial. For models that are well-

defined and that have specific sets of requirements using VBA to complete all calculations is 

recommended; however, in situations where the inputs, outputs, and analysis method may 

change in-cell computations are recommended. 
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Future Work 

 The use of biorenewable resources and products relies heavily on process economics. 

Evaluating the cost structures for different bioprocesses is an important step in deepening our 

understanding of different processes; however, additional work is needed to improve models 

and the technology at hand.  

 Our discussion of anaerobic digestion is limited to plug-flow digesters on dairy farms. 

While this type of digester provides a good foundation for understanding AD economics 

since is it well-documented and more widely used than other digesters, evaluating different 

substrates and digesters would be useful. In addition, our model did not incorporate kinetics.  

Using a kinetic model to calculate the biogas production for different retention times as well 

as different influent strengths would enhance the capabilities of the model. Additionally, 

research is needed in the area of reliability and digester construction for AD. The capital cost 

of AD systems remains high and is the most promising area for reducing the production cost. 

In addition, reliability remains in issue that hampers AD economics on farms. Developing 

training programs for AD operators or evaluating different digester designs to improve the 

life and reliability of a digester would improve the economic outlook for the technology. 

 One of the challenges in modeling industrial fermentation for biorenewable chemicals 

is the lack of available cost and kinetics information. Many companies have proprietary 

processes and do not share or publish production cost data, making it difficult to validate cost 

models. The USDA has published studies on ethanol production in the US using surveys for 

different companies to report data without exposing company information. A similar study 

surveying companies that currently produce biorenewable chemicals would provide baseline 

data that could be used in academia to strengthen existing cost models.  
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 In addition, comparing FEMT to an ASPEN model for a specific process and 

completing statistical analysis to determine which variables in the ASPEN model can be 

removed without compromising an order-of-magnitude cost estimate would validate the use 

of simpler models like FEMT. 

 Finding a balance between overly simplified models and complex models is another 

challenge.  The FEMT is very simple and easy to use; however, adding a slightly more 

complex kinetic model to the FEMT would enable it to more accurately portray industrial 

operating systems. 

 As we continue to deplete our fossil-fuel resource base, finding alternative resources 

for chemical, energy, and transportation fuel production is vital. Fermentation processes can 

be used to offset fossil-fuels and have been used on farms and in industry in the past. To 

exploit the benefits of fermentation, developing cost competitive products is necessary.  

 In the case of AD, evaluating different technologies to reduce the capital cost for 

installed systems appears to be one of the most promising methods for reducing the 

production cost. In addition, policies that reduce interest rates for farmers would also help 

improve deployment rates.  

 In industrial fermentation processes, economic evaluations should be introduced early 

on in the research and design stages to develop more targeted research projects that result in 

industrial deployment. 
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 APPENDIX 

Section A: S-FAAD MODEL CODE AND IMAGES 
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S-FAAD Figure and Code Description 

Figures A1-A2 below illustrates different spreadsheet tabs in the interface for S-FAAD.  

Figure A1 shows the main page which includes primary inputs and outputs, a single variable 

analysis program, simulation table, cost structure and sensitivity analysis programs, and a 

multiple variable test.  Figure A2 shows the odor and GHG calculations page.   

Code for each of these modules is included below the figures. 

 



61 
 

 

 

Figure A1. S-FAAD Main Page Interface
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Figure A2. Odor and GHG Interface
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Code for Main Page 

Private Sub CommandButton1_Click() 

' This code is designed to read in values provided by the user in the Simulation Values 

Section. 

' The code then changes the model accordingly and reads in the change in energy price and 

ratio of AD to Market Nat Gas Price 

' Finally data is output to the simulation results tab and used to create the graph seen on the 

user interface. 

' Author: Carol Faulhaber, Created 1/07/2010 

 

'Clear Contents from Previous Simulation 

Worksheets("Simulation Results").Range("A1:H2000").ClearContents 

 

ChangeFactor2 = Worksheets("Model").Range("F8").Value 

cell2 = Worksheets("Model").Range("F9").Value 

MinVal2 = Worksheets("Model").Range("F10").Value 

MaxVal2 = Worksheets("Model").Range("F11").Value 

StepSize2 = Worksheets("Model").Range("F12").Value 

 

B = 2 

 

'Start and MinVal 

InputVariable2 = MinVal2 

 

Do While InputVariable2 < MaxVal2 

     

    'InputVariable is output to model is designated cell 

    Worksheets("Model").Range(cell2) = InputVariable2 

     

    'Resulting Output is given a variable name 

    Out3 = Worksheets("Model").Range("E4").Value 

    Out4 = Worksheets("Model").Range("E5").Value 

    NRGPrice2 = Worksheets("Model").Range("F4").Value 

    NRGRatio2 = Worksheets("Model").Range("F5").Value 

     

    'Results and InputVariable are output to simulation results tab 

    Worksheets("Simulation Results").Range("A1") = ChangeFactor2 

    Worksheets("Simulation Results").Range("B1") = Out3 

    Worksheets("Simulation Results").Range("C1") = Out4 

    Worksheets("Simulation Results").Range("A" & B) = InputVariable2 

    Worksheets("Simulation Results").Range("B" & B) = NRGPrice2 

    Worksheets("Simulation Results").Range("C" & B) = NRGRatio2 

     

    B = B + 1 

    InputVariable2 = InputVariable2 + StepSize2 
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Loop 

 

End Sub 

 

Private Sub CommandButton2_Click() 

 

'This performs a What if analysis allowing to the user to vary multiple variables at once and 

see results 

'Author: Carol Faulhaber, March 16, 2010 

 

Dim Scenario(1000) As Double, CellRef(1000) As String, InputChange(10000) As String, 

OriginalValue(10000) As Variant 

Dim OpSize(1000) As Integer, Ratio(1000) As Double 

 

'Loops through columns until out of scenarios to test 

'set a to M 

a = 13 

Do While IsEmpty(Worksheets("Model").Cells(5, a)) = False 

  

    'loop through values to change 

    B = 5 

    c = 1 

    Do While IsEmpty(Worksheets("Model").Cells(B, a)) = False 

         

        'InputChange Variable name 

        InputChange(c) = Worksheets("Model").Cells(B, 13).Offset(0, -2).Value 

        CellRef(c) = Worksheets("Model").Cells(B, 13).Offset(0, -1).Value 

        Scenario(c) = Worksheets("Model").Cells(B, a).Value 

         

        'statement to read in initial values before making changes 

        'Only reads for fist loop through 

        If a = 13 Then 

            If Worksheets("Model").Range(CellRef(c)).HasFormula = "True" Then 

                OriginalValue(c) = Worksheets("Model").Range(CellRef(c)).Formula 

            Else 

                OriginalValue(c) = Worksheets("Model").Range(CellRef(c)).Value 

            End If 

        Else 

        End If 

         

        Worksheets("Model").Range(CellRef(c)).Value = Scenario(c) 

         

        c = c + 1 

        B = B + 1 
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    Loop 

             

    'Second Loop to go through Op Sizes 

    d = 1 

    f = B + 1 

    Do While IsEmpty(Worksheets("Model").Cells(f, 12)) = False 

     

        OpSize(d) = Worksheets("Model").Cells(f, 12).Value 

        Worksheets("Model").Range("C4").Value = OpSize(d) 

        Ratio(d) = Worksheets("Model").Range("F5").Value 

        Worksheets("Model").Cells(f, a).Value = Ratio(d) 

        'colors cells red or green based on > or < 1 

        If Ratio(d) < 1 Then 

            Worksheets("Model").Cells(f, a).Interior.Color = RGB(50, 205, 50) 

        Else 

            Worksheets("Model").Cells(f, a).Interior.Color = RGB(200, 34, 34) 

        End If 

         

        f = f + 1 

         

    Loop 

     

    a = a + 1 

 

Loop 

 

For e = 1 To c - 1 

 

    Worksheets("Model").Range(CellRef(e)).Value = OriginalValue(e) 

     

Next e 

         

         

End Sub 

 

Private Sub CommandButton3_Click() 

 

'Title: Multiple Variable Analysis 

'Author: Carol Faulhaber 

'Last Updated: April 11, 2011 

'Description: This program is designed to run through multiple sizes and variable ranges. 

'100 values are evaluated for each variable range listed by the user. 

'The resulting outputs are recorded and graphs are generated for each size specified. 

 

'Name and dimension variables 

'option explicit has not been used for this program, so counters are not dimensioned 
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Dim TestVar(1000) As Double, ColRef As Integer, RowRef As Integer, MinVal As Double, 

MaxVal As Double, Size(10) As Integer 

 

'Clear previous values 

Worksheets("Ratio Results").Range("A1:BB105").ClearContents 

 

'Establish the beginning row corresponding to values in the table 

RowCount = 53 

 

'This will run the program until no more values are found in the table, so the user can specify 

additional variables for evaluation 

ColCounter = 1 'establishes first column to output results into 

Do While IsEmpty(Worksheets("Model").Cells(RowCount, 5)) = False 

 

    'Read in the first set of variables for the multiple variable analysis 

    VarName = Worksheets("Model").Cells(RowCount, 5).Value 

    ColRef = Worksheets("Model").Cells(RowCount, 6).Value 

    RowRef = Worksheets("Model").Cells(RowCount, 7).Value 

    MinVal = Worksheets("Model").Cells(RowCount, 8).Value 

    MaxVal = Worksheets("Model").Cells(RowCount, 9).Value 

     

    'Record inital value in cell so that the variable after the simulation can be returned to the 

initial value 

    InitialVarVal = Worksheets("Model").Cells(RowRef, ColRef).Value 

     

    'begin loop to run through each size 

    SizeCounter = 53 

    Do While IsEmpty(Worksheets("Model").Cells(SizeCounter, 10)) = False 

     

        'Change size based on value 

        DairySize = Worksheets("Model").Cells(SizeCounter, 10).Value 

        Worksheets("Model").Range("C4").Value = DairySize 

                 

        'Create array of testing values based on min and max value with 100 variables 

        Call Simulation(TestVar(), MinVal, MaxVal) 

                 

        'Loop through each value and record result 

        For a = 1 To 100 

             

            'change variable of interest 

            Worksheets("Model").Cells(RowRef, ColRef).Value = TestVar(a) 

             

            'Record resulting ratio 

            MCR = Worksheets("Model").Range("F5").Value 

             

            'Output Results and titles 
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            Worksheets("Ratio Results").Cells(1, ColCounter).Value = VarName 

            Worksheets("Ratio Results").Cells(1, ColCounter + 1).Value = "MCR for " & 

DairySize 

            Worksheets("Ratio Results").Cells(a + 1, ColCounter).Value = TestVar(a) 

            Worksheets("Ratio Results").Cells(a + 1, ColCounter + 1).Value = MCR 

                              

        Next a 

         

        ColCounter = ColCounter + 2 'add 2 because first col is always test variable and second 

col is always result 

         

    SizeCounter = SizeCounter + 1 

    Loop 

     

    'Return test variable to initial value so that testing is standardized 

    Worksheets("Model").Cells(RowRef, ColRef).Value = InitialVarVal 

     

RowCount = RowCount + 1 

Loop 

 

 

End Sub 

 

Public Sub Simulation(ByRef SimArray() As Double, ByVal Min, ByVal Max) 

'Subroutine Description: This subroutine takes in an empty array, the minimum and max 

values and creates an array with 100 values 

 

Dim NumValues As Integer 

 

NumValues = 100 

 

'create an array for 100 values that can be used to run simulations 

stepsize = (Max - Min) / NumValues 

B = 1 

For a = Min To Max Step stepsize 

    SimArray(B) = a 

    B = B + 1 

Next a 

 

 

End Sub 

 

Private Sub CommandButton4_Click() 

'Description: Completes Sensitivity Analysis using sensitivity coefficients as described in 

Hamby (2004). 

'Author: Carol Faulhaber 
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'Date Updated: 4/11/2011 

 

'Read in the initial MCR Value 

MCR = Worksheets("Model").Cells(5, 6).Value 

 

RowCount = 18 'based on location of table 

'Loop through variables in table until no more are listed 

Do While IsEmpty(Worksheets("Model").Cells(RowCount, 11).Value) = False 

 

    'Read in values from table 

    ColRef = Worksheets("Model").Cells(RowCount, 12).Value 

    RowRef = Worksheets("Model").Cells(RowCount, 13).Value 

     

    'Read in initial variable value and apply change 

    InitialVarVal = Worksheets("Model").Cells(RowRef, ColRef).Value 

    VarChanged = InitialVarVal * 1.1 

    Worksheets("Model").Cells(RowRef, ColRef).Value = VarChanged 

    MCRChanged = Worksheets("Model").Cells(5, 6).Value 

     

    'Calculate Sensitivity Coefficient 

    ChangeIn = 0.1 

    ChangeOut = (MCRChanged - MCR) / MCR 

    SensitivityCoef = ChangeOut / ChangeIn 

     

    'Output Result to table and color based on sign 

    Worksheets("Model").Cells(RowCount, 14).Value = SensitivityCoef 

    If SensitivityCoef > 0 Then 

        Worksheets("Model").Cells(RowCount, 14).Interior.Color = RGB(50, 205, 50) 

    Else 

        Worksheets("Model").Cells(RowCount, 14).Interior.Color = RGB(200, 34, 34) 

    End If 

         

    'Replace initial value 

    Worksheets("Model").Cells(RowRef, ColRef).Value = InitialVarVal 

 

    RowCount = RowCount + 1 

     

Loop 

 

 

End Sub 

 

Private Sub CommandButton5_Click() 

'Title: Cost Structure Analysis 

'Author: Carol Faulhaber 

'Date Updated: April 13, 2011 
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'Description: Analyzes percent of total cost for different sizes 

 

'Dimension Variables 

Dim SizeChange As Integer 

 

'Loop to go through each size 

SizeCounter = 13 

Do While IsEmpty(Worksheets("Model").Cells(54, SizeCounter).Value) = False 

 

    'Read in the size and then input it into the model 

    SizeChange = Worksheets("Model").Cells(54, SizeCounter).Value 

    Worksheets("Model").Range("C4").Value = SizeChange 

     

    'Read in values and paste them 

    Worksheets("Model").Range("G17:G24").Select 

    Selection.Copy 

    Worksheets("Model").Cells(55, SizeCounter).Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

        :=False, Transpose:=False 

 

        SizeCounter = SizeCounter + 1 

Loop 

     

End Sub
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APPENDIX 

Section B: FEMT MODEL CODE AND IMAGES 
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Description of Figures and Code 

When FEMT was developed, three levels of analysis were completed in increasing 

complexity.  The Level 3 (L3) analysis, discussed in Chapter 3 is discussed in further detail 

below.  Three figures, A1, A2, and A3 are presented below to illustrate the interface of the 

FEMT L3 analysis. Figure A1 illustrates the inputs page for the analysis.  As shown in figure 

A1, in addition to the inputs selected, the user can also adjust the uncertainty in each input.  

Additionally, the sensitivity coefficients are also displayed next to each variable. Figure A2 

shows the intermediate calculations page.  Figure A3 shows the results page.  As shown in 

Figure A3, graphs for each input variable are displayed based on the uncertainty selected by 

the user.  The x-axis range for each graph is determined using the uncertainty selected by the 

user in terms of plus or minus ―X‖%.  Below the figures, the code used to complete all model 

calculations is displayed. 
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Figure A1. L3 Inputs Page. 
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Figure 2A. L3 Intermediate Calculations Page. 



74 
 

 

Figure 3A. L3 Results Page. 
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Level 3 Code 

Private Sub CommandButton1_Click() 

 

'Program Author: Carol Faulhaber 

'Date: 1.27.11 

'Program Description: this program completes a level 3 kinetic analysis and outputs results 

to the results page 

'Dimension variables 

Dim GArray(1000) As Double, G As Double, GU As Double, Gbest As Double, Gworst 

As Double 

Dim PBFArray(1000) As Double, PBF As Double, PBFU As Double, PBFbest As Double, 

PBFworst As Double 

Dim YArray(1000) As Double, Y As Double, YU As Double, Ybest As Double, Yworst 

As Double 

Dim FC As Double, FCbest As Double, FCworst As Double, FCSim As Double 

Dim V As Double, VU As Double 

Dim IR As Double, IRU As Double, IRBest As Double, IRWorst As Double, 

IRArray(1000) As Double 

Dim RL As Double, RLU As Double, RLbest As Double, RLworst As Double, 

RLArray(1000) As Double 

Dim Xf As Double, XfU As Double, XfBest As Double, XfWorst As Double, 

XfArray(1000) As Double 

Dim Tau As Double, TauU As Double, TauBest As Double, TauWorst As Double, 

TauArray(1000) As Double 

Dim RC As Double, RCbest As Double, RCworst As Double 

Dim FRR As Double, FRRBest As Double, FRRWorst As Double 

Dim So As Double, SoU As Double, SoArray(1000) As Double 

Dim Xo As Double, XoU As Double, XoArray(1000) As Double 

Dim ks As Double, ksU As Double 

Dim um As Double, umU As Double, umArray(1000) As Double 

Dim sep As Double, sepU As Double, sepArray(1000) As Double 

Dim inoc As Double, inocU As Double, inocArray(1000) As Double 

Dim Downtime As Double 

Dim Productivity As Double 

Dim GPPCArray(1000) As Double, PBFPPCArray(1000) As Double, YPPCArray(1000) 

As Double, IRPPCArray(1000) As  Double, RLPPCArray(1000) As Double 

Dim XfPPCArray(1000) As Double, TauPPCArray(1000) As Double, RCPPCArray(1000) 

As Double, SoPPCArray(1000) As  Double, XoPPCArray(1000) As Double 

Dim ksPPCArray(1000) As Double, umPPCArray(1000) As Double, sepPPCArray(100) 

As Double 

Dim FCArray(1000) As Double, FRRArray(1000) As Double, TotSepArray(1000) As 

Double, RCArray(1000) As Double 

Dim CorrectedTauArray(1000) As Double, ksArray(1000) As Double, inocTotArray(1000) 

As Double 
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Dim TPP As Double, TPPU As Double, TPPArray(1000) As Double 

Dim NRG As Double, NRGU As Double, NRGArray(1000) As Double 

Dim Lab As Double, LabU As Double, LabArray(1000) As Double 

Dim UPC As Double, UPCU As Double, UPCArray(1000) As Double 

Dim Other As Double, TotOther As Double, TotOtherArray(10000) As Double, 

OtherArray(1000) As Double 

Dim OtherPPCArray(10000) As Double 

 

'Clear intermediate calcs from previous run 

Worksheets("Intermediate Calculations").Range("E5:E45").ClearContents 

Worksheets("Intermediate Calculations").Range("H10").ClearContents 

Worksheets("Intermediate Calculations").Range("G16").ClearContents 

Worksheets("Intermediate Calculations").Range("G23").ClearContents 

 

'Read in variables for L3 Analysis 

G = Worksheets("Inputs").Range("C8").Value 'glucose cost 

GU = Worksheets("Inputs").Range("D8").Value 'uncertainty in glucose cost 

PBF = Worksheets("Inputs").Range("C9").Value 'product in biomass 

PBFU = Worksheets("Inputs").Range("D9").Value 'uncertainty in product in biomass 

Y = Worksheets("Inputs").Range("C10").Value 'yield 

YU = Worksheets("Inputs").Range("D10").Value 'yield uncertainty 

V = Worksheets("Inputs").Range("C13").Value 'reactor volume 

VU = Worksheets("Inputs").Range("D13").Value 'volume uncertainty 

IR = Worksheets("Inputs").Range("C14").Value 'interest rate 

IRU = Worksheets("Inputs").Range("D14").Value 'interest rate uncertainty 

RL = Worksheets("Inputs").Range("C15").Value 'reactor life 

RLU = Worksheets("Inputs").Range("D15").Value 'reactor life uncertainty 

ks = Worksheets("Inputs").Range("C17").Value 'half-life velocity constant 

ksU = Worksheets("Inputs").Range("D17").Value 'half-life velocity uncertainty 

So = Worksheets("Inputs").Range("C18").Value 'rate-limiting substrate concentration 

SoU = Worksheets("Inputs").Range("D18").Value 'substrate concentration uncertainty 

Xo = Worksheets("Inputs").Range("C19").Value 'initial cell concentration 

XoU = Worksheets("Inputs").Range("D19").Value 'cell concentration uncertainty 

um = Worksheets("Inputs").Range("C20").Value 'maximum growth rate constant 

umU = Worksheets("Inputs").Range("D20").Value 'growth rate constant uncertainty 

sep = Worksheets("Inputs").Range("C23").Value 'separation costs 

sepU = Worksheets("Inputs").Range("D23").Value 'sep cost uncertainty 

Downtime = Worksheets("inputs").Range("C16").Value 'downtime between loadings 

TPP = Worksheets("inputs").Range("C26").Value 

Other = Worksheets("inputs").Range("C27").Value 

OtherU = Worksheets("inputs").Range("D27").Value 

 

'-----------------------------Complete FC Calculations.  For L3 analysis PPC=FC+FR+SC-----

------------------------------------ 

 

'Calculations output to the inputs page 
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Tau = LogisticEq(ks, Y, So, Xo, um) 

Worksheets("Intermediate Calculations").Range("E15").Value = Tau 

CorrectedTau = Tau + Downtime 

Worksheets("Intermediate Calculations").Range("G16").Value = CorrectedTau 

 

'Titer Calculation 

Xf = 0.95 * ((So * Y) + Xo) 

Worksheets("Intermediate Calculations").Range("E33").Value = Xf 

 

'productivity 

Productivity = PBF * (Xf / Tau) 

Worksheets("Intermediate Calculations").Range("E28").Value = Productivity 

 

'corrected productivity 

ProductivityCorrected = PBF * (Xf / CorrectedTau) 

Worksheets("Intermediate Calculations").Range("E42").Value = ProductivityCorrected 

 

'inoculum 

inoc = Xo / Xf 

Worksheets("Intermediate Calculations").Range("E38").Value = inoc 

 

'------------------------------------Basecase Calculations 

'FC basecase 

FC = FeedstockCost(G, PBF, Y) 

Worksheets("Results").Range("C3").Value = FC 

Worksheets("Intermediate Calculations").Range("E5").Value = FC 

 

'FRR 

RC = ReactorCost(V, IR, RL) 

Worksheets("Intermediate Calculations").Range("H10").Value = RC 

Tau = LogisticEq(ks, Y, So, Xo, um) 

CorrectedTau = Tau + Downtime 

Xf = 0.95 * ((So * Y) + Xo) 

FRR = FermentorRRate(RC, Xf, PBF, V, CorrectedTau) 

Worksheets("Results").Range("C4").Value = FRR 

 

'Sep 

TotSep = sep * FRR 

Worksheets("Results").Range("C5").Value = TotSep 

 

'Other 

TotOther = Other * FRR 

Worksheets("Results").Range("C6").Value = TotOther 

 

 

'PPC 
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PPC = FC + FRR + TotSep + TotOther 

Worksheets("Results").Range("C7").Value = PPC 

 

'Inoc 

inoc = Xo / Xf 

Worksheets("Results").Range("C8").Value = inoc 

 

'CorrectedPPC 

CorrectedPPC = PPC / (1 - inoc) 

Worksheets("Results").Range("C9").Value = CorrectedPPC 

 

'Profit margin 

Pmargin = TPP - CorrectedPPC 

Worksheets("Results").Range("C10").Value = Pmargin 

 

'--------------------------------------------Begin Simulations-------------------------------------------

---------------------- 

'Assign Arrays for each input.  Each array will contain 100 values and is based on the 

uncertainty 

Call Simulation(GArray(), G, GU) 

Call Simulation(PBFArray(), PBF, PBFU) 

Call Simulation(YArray(), Y, YU) 

Call Simulation(IRArray(), IR, IRU) 

Call Simulation(RLArray(), RL, RLU) 

Call Simulation(ksArray(), ks, ksU) 

Call Simulation(SoArray(), So, SoU) 

Call Simulation(XoArray(), Xo, XoU) 

Call Simulation(umArray(), um, umU) 

Call Simulation(sepArray(), sep, sepU) 

Call Simulation(OtherArray(), Other, OtherU) 

 

'Loop through all data and output results to storage tab 

For i = 1 To 100 

 

    'glucose cost 

    FCArray(i) = FeedstockCost(GArray(i), PBF, Y) 

    inoctot = Xo / Xf 

    GPPCArray(i) = (FCArray(i) + FRR + TotSep + TotOther) / (1 - inoc) 'other 

    Worksheets("Storage").Cells(i + 1, 1).Value = GArray(i) 

    Worksheets("Storage").Cells(i + 1, 2).Value = GPPCArray(i) 

     

    'fraction of the biomass in the product 

    FCArray(i) = FeedstockCost(G, PBFArray(i), Y) 

    FRRArray(i) = FermentorRRate(RC, Xf, PBFArray(i), V, CorrectedTau) 

    TotSepArray(i) = sep * FRRArray(i) 

    TotOtherArray(i) = Other * FRRArray(i) 'other 
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    PBFPPCArray(i) = (FCArray(i) + FRRArray(i) + TotSepArray(i) + TotOtherArray(i)) / 

(1 - inoctot) 'other 

    Worksheets("Storage").Cells(i + 1, 3).Value = PBFArray(i) 

    Worksheets("Storage").Cells(i + 1, 4).Value = PBFPPCArray(i) 

     

    'yield 

    FCArray(i) = FeedstockCost(G, PBF, YArray(i)) 

    TauArray(i) = LogisticEq(ks, YArray(i), So, Xo, um) 

    CorrectedTauArray(i) = Tau + Downtime 

    XfArray(i) = 0.95 * ((So * YArray(i)) + Xo) 

    FRRArray(i) = FermentorRRate(RC, XfArray(i), PBF, V, CorrectedTauArray(i)) 

    TotSepArray(i) = sep * FRRArray(i) 

    TotOtherArray(i) = Other * FRRArray(i) 'other 

    inocTotArray(i) = Xo / XfArray(i) 

    YPPCArray(i) = (FCArray(i) + FRRArray(i) + TotSepArray(i) + TotOtherArray(i)) / (1 

- inocTotArray(i)) 'other 

    Worksheets("Storage").Cells(i + 1, 5).Value = YArray(i) 

    Worksheets("Storage").Cells(i + 1, 6).Value = YPPCArray(i) 

           

    'interest rate 

    RCArray(i) = ReactorCost(V, IRArray(i), RL) 

    FRRArray(i) = FermentorRRate(RCArray(i), Xf, PBF, V, CorrectedTau) 

    TotSepArray(i) = sep * FRRArray(i) 

    TotOtherArray(i) = Other * FRRArray(i) 'other 

    IRPPCArray(i) = (FC + FRRArray(i) + TotSepArray(i) + TotOtherArray(i)) / (1 - 

inoctot) 'other 

    Worksheets("Storage").Cells(i + 1, 7).Value = IRArray(i) 

    Worksheets("Storage").Cells(i + 1, 8).Value = IRPPCArray(i) 

     

    'reactor life 

    RCArray(i) = ReactorCost(V, IR, RLArray(i)) 

    FRRArray(i) = FermentorRRate(RCArray(i), Xf, PBF, V, CorrectedTau) 

    TotSepArray(i) = sep * FRRArray(i) 

    TotOtherArray(i) = Other * FRRArray(i) 'other 

    RLPPCArray(i) = (FC + FRRArray(i) + TotSepArray(i) + TotOtherArray(i)) / (1 - 

inoctot) 'other 

    Worksheets("Storage").Cells(i + 1, 9).Value = RLArray(i) 

    Worksheets("Storage").Cells(i + 1, 10).Value = RLPPCArray(i) 

         

    'half-velocity constant 

    TauArray(i) = LogisticEq(ksArray(i), Y, So, Xo, um) 

    CorrectedTauArray(i) = TauArray(i) + Downtime 

    XfArray(i) = 0.95 * ((So * Y) + Xo) 

    FRRArray(i) = FermentorRRate(RC, XfArray(i), PBF, V, CorrectedTauArray(i)) 

    TotSepArray(i) = sep * FRRArray(i) 

    TotOtherArray(i) = Other * FRRArray(i) 'other 
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    ksPPCArray(i) = (FC + FRRArray(i) + TotSepArray(i) + TotOtherArray(i)) / (1 - 

inoctot) 'other 

    Worksheets("Storage").Cells(i + 1, 11).Value = ksArray(i) 

    Worksheets("Storage").Cells(i + 1, 12).Value = ksPPCArray(i) 

     

    'substrate concentration 

    TauArray(i) = LogisticEq(ks, Y, SoArray(i), Xo, um) 

    CorrectedTauArray(i) = TauArray(i) + Downtime 

    XfArray(i) = 0.95 * ((SoArray(i) * Y) + Xo) 

    FRRArray(i) = FermentorRRate(RC, XfArray(i), PBF, V, CorrectedTauArray(i)) 

    TotSepArray(i) = sep * FRRArray(i) 

    TotOtherArray(i) = Other * FRRArray(i) 'other 

    inocTotArray(i) = Xo / XfArray(i) 

    SoPPCArray(i) = (FC + FRRArray(i) + TotSepArray(i) + TotOtherArray(i)) / (1 - 

inoctot) 'other 

    Worksheets("Storage").Cells(i + 1, 13).Value = SoArray(i) 

    Worksheets("Storage").Cells(i + 1, 14).Value = SoPPCArray(i) 

         

    'initial titer 

    TauArray(i) = LogisticEq(ks, Y, So, XoArray(i), um) 

    CorrectedTauArray(i) = TauArray(i) + Downtime 

    XfArray(i) = 0.95 * ((So * Y) + XoArray(i)) 

    FRRArray(i) = FermentorRRate(RC, XfArray(i), PBF, V, CorrectedTauArray(i)) 

    TotSepArray(i) = sep * FRRArray(i) 

    TotOtherArray(i) = Other * FRRArray(i) 'other 

    inocTotArray(i) = XoArray(i) / XfArray(i) 

    XoPPCArray(i) = (FC + FRRArray(i) + TotSepArray(i) + TotOtherArray(i)) / (1 - 

inocTotArray(i)) 'other 

    Worksheets("Storage").Cells(i + 1, 15).Value = XoArray(i) 

    Worksheets("Storage").Cells(i + 1, 16).Value = XoPPCArray(i) 

         

    'max specific growth rate 

    TauArray(i) = LogisticEq(ks, Y, So, Xo, umArray(i)) 

    CorrectedTauArray(i) = TauArray(i) + Downtime 

    XfArray(i) = 0.95 * ((So * Y) + Xo) 

    FRRArray(i) = FermentorRRate(RC, XfArray(i), PBF, V, CorrectedTauArray(i)) 

    TotSepArray(i) = sep * FRRArray(i) 

    TotOtherArray(i) = Other * FRRArray(i) 'other 

    umPPCArray(i) = (FC + FRRArray(i) + TotSepArray(i) + TotOtherArray(i)) / (1 - 

inoctot) 'other 

    Worksheets("Storage").Cells(i + 1, 17).Value = umArray(i) 

    Worksheets("Storage").Cells(i + 1, 18).Value = umPPCArray(i) 

     

    'separation costs 

    TotSepArray(i) = sepArray(i) * FRR 

    sepPPCArray(i) = (FC + FRR + TotSepArray(i) + TotOther) / (1 - inoctot) 'other 
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    Worksheets("Storage").Cells(i + 1, 19).Value = sepArray(i) 

    Worksheets("Storage").Cells(i + 1, 20).Value = sepPPCArray(i) 

     

    'other costs 

    TotOtherArray(i) = OtherArray(i) * FRR 

    OtherPPCArray(i) = (FC + FRR + TotSep + TotOtherArray(i)) / (1 - inoctot) 'other 

    Worksheets("Storage").Cells(i + 1, 21).Value = OtherArray(i) 

    Worksheets("Storage").Cells(i + 1, 22).Value = OtherPPCArray(i) 

     

Next i 

 

'Add titles to columns 

Worksheets("Storage").Cells(1, 1).Value = "Glucose Cost" 

Worksheets("Storage").Cells(1, 2).Value = "PPC" 

Worksheets("Storage").Cells(1, 3).Value = "fpx" 

Worksheets("Storage").Cells(1, 4).Value = "PPC" 

Worksheets("Storage").Cells(1, 5).Value = "Yield" 

Worksheets("Storage").Cells(1, 6).Value = "PPC" 

Worksheets("Storage").Cells(1, 7).Value = "Interest Rate" 

Worksheets("Storage").Cells(1, 8).Value = "PPC" 

Worksheets("Storage").Cells(1, 9).Value = "Reactor Life" 

Worksheets("Storage").Cells(1, 10).Value = "PPC" 

Worksheets("Storage").Cells(1, 11).Value = "Half-velocity constant" 

Worksheets("Storage").Cells(1, 12).Value = "PPC" 

Worksheets("Storage").Cells(1, 13).Value = "So" 

Worksheets("Storage").Cells(1, 14).Value = "PPC" 

Worksheets("Storage").Cells(1, 15).Value = "Xo" 

Worksheets("Storage").Cells(1, 16).Value = "PPC" 

Worksheets("Storage").Cells(1, 17).Value = "Max Specific Growth Rate" 

Worksheets("Storage").Cells(1, 18).Value = "PPC" 

Worksheets("Storage").Cells(1, 19).Value = "Separation Percent" 

Worksheets("Storage").Cells(1, 20).Value = "PPC" 

Worksheets("Storage").Cells(1, 21).Value = "Other" 

Worksheets("Storage").Cells(1, 22).Value = "PPC" 

 

'complete sensitivity analysis and output results to Inputs Tab 

Call Sensitivity(GArray(), GPPCArray(), 8, 5) 

Call Sensitivity(PBFArray(), PBFPPCArray(), 9, 5) 

Call Sensitivity(YArray(), YPPCArray(), 10, 5) 

Call Sensitivity(IRArray(), IRPPCArray(), 14, 5) 

Call Sensitivity(RLArray(), RLPPCArray(), 15, 5) 

Call Sensitivity(ksArray(), ksPPCArray(), 17, 5) 

Call Sensitivity(SoArray(), SoPPCArray(), 18, 5) 

Call Sensitivity(XoArray(), XoPPCArray(), 19, 5) 

Call Sensitivity(umArray(), umPPCArray(), 20, 5) 

Call Sensitivity(sepArray(), sepPPCArray(), 23, 5) 
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Call Sensitivity(OtherArray(), OtherPPCArray(), 27, 5) 

 

Worksheets("Results").Activate 

LabelEndCode: 

 

 

'------------------------------------------Chart Code-----------------------------------------------------

----------------------- 

'================================================================

================================================================ 

'This code is designed to adjust the charts so that the y-axes all have the same ranges 

 

Call GraphAdjustment("Chart 8", 1) 

Call GraphAdjustment("Chart 9", 3) 

Call GraphAdjustment("Chart 10", 5) 

Call GraphAdjustment("Chart 11", 7) 

Call GraphAdjustment("Chart 12", 9) 

Call GraphAdjustment("Chart 13", 11) 

Call GraphAdjustment("Chart 14", 13) 

Call GraphAdjustment("Chart 15", 15) 

Call GraphAdjustment("Chart 16", 17) 

Call GraphAdjustment("Chart 17", 19) 

Call GraphAdjustment("Chart 18", 21) 

 

End Sub 

 

Public Function FeedstockCost(ByVal Glucose As Double, ByVal ProductInBiomass As 

Double, ByVal Yield As Double) As  Double 

 ‗Function Description: This function calculates the feedstock cost for glucose in 

terms of the final product in kg 

     FeedstockCost = Glucose / (ProductInBiomass * Yield) 

End Function 

 

Public Function ReactorCost(ByVal Volume As Double, ByVal intrate As Double, ByVal 

life As Double) As Double 

 'Function Description: This function uses principles discussed in Brown's book to 

calculate the ammortized capital cost 

 'for a reactor based on a volume supplied by the user and scale factors and multipliers 

available for reactors in the book 

 'based on data from Brown's book the scale factor and multiplier were found 

     SF = 0.71 'from Brown book for vertical process vessel 

     M = 7273 'used vertical process vessel with M of 6000 in 2002 dollars and converted 

to 2010 dollars 

     

     'Using economies of scale the capital cost can be calculated 

     Cp = M * (Volume ^ SF) 
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        'Then using materials and labor values from Brown (Biorenewable Resources Book), 

the grassroots capital is calculated 

     MMF = 1.04 

     LMF = 0.49 

     'Materials for installation 

     CM = MMF * Cp 

         'Direct labor 

     CL = LMF * (Cp + CM) 

        'Direct capital cost 

     CD = Cp + CM + CL 

        'Indirect project Costs 

        'freight 

     CFIT = 0.08 * Cp 

    

     'Construction overhead 

     CO = 0.7 * CL 

      'engineering 

     CE = 0.15 * (Cp + CM) 

        CID = CFIT + CO + CE 

        'Bare Module Cost 

     CBM = CD + CID 

        'continguency 

  CCF = 0.18 * CBM 

        'total module cost 

     CTM = CBM + CCF 

         'Auxiliary facilities 

     CAF = 0.3 * CTM 

        'Grassroots Capital 

     CGR = CTM + CAF 

     

     'output CGR to intermediate calculations page 

     If Worksheets("Intermediate Calculations").Range("E10").Value = 0 Then 

          Worksheets("Intermediate Calculations").Range("E10").Value = CGR 

     End If 

             

     'The PMT function in excel can be used to calculate the amortized value 

     ReactorCost = Abs(Application.WorksheetFunction.Pmt(intrate, life, CGR)) 

 End Function 

 

Public Function FermentorRRate(ByVal RC As Double, ByVal Titer As Double, ByVal 

ProductInBiomass As Double, ByVal  Volume As Double, ByVal RetentionTime As 

Double) As Double 

  'Function Desctiption: This function outputs the fermenter rate cost which 

 

     'FRR here doesn't account for inoculum 

     If Worksheets("Intermediate Calculations").Range("E22").Value = 0 Then 
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          Worksheets("Intermediate Calculations").Range("E22").Value = Titer * 

ProductInBiomass * Volume * (1 /     RetentionTime) 

          Worksheets("Intermediate Calculations").Range("G23").Value = Titer * 

ProductInBiomass * Volume * (1 /     RetentionTime) * 24 * 350 

     End If 

     

     FermentorRRate = RC / ((Titer * ProductInBiomass * Volume * (1 / RetentionTime)) 

* 24 * 350) 

End Function 

 

Public Sub Simulation(ByRef SimArray() As Double, ByVal Value, ByVal uncertainty) 

 'Subroutine Description: This subroutine takes in an empty array, the initial value for 

a given variable and its uncertainty and 

 'outputs an array with 100 values that go from the lower to upper bounds based on the 

uncertainty 

 Dim NumValues As Integer, Up As Double, Low As Double 

 NumValues = 100 

 Up = Value * (1 + uncertainty) 

 Low = Value * (1 - uncertainty) 

 

 'create an array for 100 values that can be used to run simulations 

 StepSize = (Up - Low) / NumValues 

 B = 1 

 For A = Low To Up Step StepSize 

      SimArray(B) = A 

      B = B + 1 

 Next A 

End Sub 

 

 

Public Sub Sensitivity(ByRef InArray() As Double, OutArray() As Double, Row As 

Integer, Column As Integer) 

 'This subroutine completes the sensitivity analysis and outputs the results in the 

designated row and column of the inputs tab 

 'Red values are negative and green values are positive 

 

 Dim PercentChangeIn As Double, PercentChangeOut As Double, Slope As Double 

 

 PercentChangeIn = (InArray(50) - InArray(49)) / InArray(50) 

 PercentChangeOut = (OutArray(50) - OutArray(49)) / OutArray(50) 

 Slope = PercentChangeOut / PercentChangeIn 

 Worksheets("Inputs").Cells(Row, Column).Value = Slope 

 

 If Slope > 0 Then 

      Worksheets("Inputs").Cells(Row, Column).Interior.Color = RGB(51, 153, 

102) 'green 
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 Else 

     Worksheets("Inputs").Cells(Row, Column).Interior.Color = RGB(128, 0, 0) 

'red 

 End If 

End Sub 

 

Public Sub GraphAdjustment(ChartNum As String, ColRef As Integer) 

 'This subroutine is designed to adjust the graphs for L1 L2 and L3 analyses 

 ActiveSheet.ChartObjects(ChartNum).Activate 

 ActiveSheet.ChartObjects(ChartNum).Chart.Axes(xlValue).MaximumScale = 

Worksheets("Storage").Range("B107").Value 

 ActiveSheet.ChartObjects(ChartNum).Chart.Axes(xlValue).MinimumScale = 

Worksheets("Storage").Range("B106").Value 

 

 With ActiveChart.Axes(xlCategory, xlPrimary) 

      .MaximumScale = Worksheets("Storage").Cells(104, ColRef) 

      .MinimumScale = Worksheets("Storage").Cells(103, ColRef) 

 End With 

End Sub 

 

 

Public Function LogisticEq(ByRef HalfVelocity As Double, Yield As Double, SubstrateC 

As Double, CellC As Double, MaxSGR  As Double) As Double 

 'function description; this function outputs the fermenter reaction time based on a 

kinetic model described in Shuler and Kargi 

 Dim A As Double, B As Double, Term1 As Double, Term2 As Double, Xfinal As 

Double 

 

 A = HalfVelocity * Yield 

 B = SubstrateC * Yield 

 Xfinal = 0.95 * (B + CellC) 

 Term1 = ((A + B + CellC) / (B + CellC)) * 

Application.WorksheetFunction.Ln(Xfinal / CellC) 

 Term2 = (A / (B + CellC)) * Application.WorksheetFunction.Ln((B + CellC + 

Xfinal) / B) 

 LogisticEq = (Term1 - Term2) / MaxSGR 

End Function 
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Level 2 Analysis 

Level 2 Description 

In cases where not all of the kinetic parameters are available for an experiment, a simpler 

analysis was developed to allow insight into the economics of industrial fermentation (termed 

Level 2 Analysis).  While the Level 2 (L2) analysis incorporates some kinetic variables, it 

does not compute the fermentation time using the Logistic Equation.  For example, Xf, τ, and 

the inoculum required are inputs for the model rather than intermediate calculations.  Figures 

4A, 5A, and 6A illustrate the interface, intermediate calculations, and results page for the L2 

analysis. While figure 6A does not show the all of the graphs generated by a L2 analysis it is 

provided to show a magnified view of the results page in figure 3A.   
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Figure 4A. 2L Inputs Page. 
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Figure 5A. L2 Intermediate Calculations Page.
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Figure 6A. L2 Results Page.
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L2 Code 

Private Sub CommandButton1_Click() 

 

'Program Description: This program computes the corrected product production cost for a 

given compound of interest using glucose  as the feedstock. 

'This is a level 2 analysis that does not include kinetic variables. 

'Program Author: Carol Faulhaber 

'Date: 2/7/11 

 

'Dimension variables 

Dim GArray(1000) As Double, G As Double, GU As Double, Gbest As Double, Gworst 

As Double 

Dim PBFArray(1000) As Double, PBF As Double, PBFU As Double, PBFbest As Double, 

PBFworst As Double 

Dim YArray(1000) As Double, Y As Double, YU As Double, Ybest As Double, Yworst 

As Double 

Dim FC As Double, FCbest As Double, FCworst As Double, FCSim As Double 

Dim V As Double, VU As Double 

Dim IR As Double, IRU As Double, IRBest As Double, IRWorst As Double, 

IRArray(1000) As Double 

Dim RL As Double, RLU As Double, RLbest As Double, RLworst As Double, 

RLArray(1000) As Double 

Dim Xf As Double, XfU As Double, XfBest As Double, XfWorst As Double, 

XfArray(1000) As Double 

Dim Tau As Double, TauU As Double, TauBest As Double, TauWorst As Double, 

TauArray(1000) As Double 

Dim RC As Double, RCbest As Double, RCworst As Double 

Dim FRR As Double, FRRBest As Double, FRRWorst As Double 

Dim sep As Double, sepU As Double, sepArray(1000) As Double 

Dim inoc As Double, inocU As Double, inocArray(1000) As Double 

Dim Downtime As Double, DowntimeU As Double, DowntimeArray(1000) As Double 

Dim Other As Double, OtherU As Double, OtherArray(1000) As Double 

Dim Productivity As Double 

Dim GPPCArray(1000) As Double, PBFPPCArray(1000) As Double, YPPCArray(1000) 

As Double, IRPPCArray(1000) As  Double, RLPPCArray(1000) As Double 

Dim XfPPCArray(1000) As Double, TauPPCArray(1000) As Double, RCPPCArray(1000) 

As Double, SoPPCArray(1000) As  Double, XoPPCArray(1000) As Double 

Dim ksPPCArray(1000) As Double, umPPCArray(1000) As Double, sepPPCArray(100) 

As Double 

Dim FCArray(1000) As Double, FRRArray(1000) As Double, TotSepArray(1000) As 

Double, RCArray(1000) As Double 

Dim CorrectedTauArray(1000) As Double, ksArray(1000) As Double, inocTotArray(1000) 

As Double 

Dim OtherPPCArray(1000) As Double, TotOtherArray(1000) As Double 

Dim DTPPCArray(1000) As Double, inocPPCArray(1000) As Double 
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'=============================================================== 

'=============================================================== 

'===================Level 2 calculations=========================== 

Level2Calculations: 

 

'Read in variables 

G = Worksheets("L2 Inputs").Range("C8").Value 'glucose cost 

GU = Worksheets("L2 Inputs").Range("D8").Value 'uncertainty in glucose cost 

PBF = Worksheets("L2 Inputs").Range("C9").Value 'product in biomass 

PBFU = Worksheets("L2 Inputs").Range("D9").Value 'uncertainty in product in biomass 

Y = Worksheets("L2 Inputs").Range("C10").Value 'yield 

YU = Worksheets("L2 Inputs").Range("D10").Value 'yield uncertainty 

V = Worksheets("L2 Inputs").Range("C13").Value 'reactor volume 

IR = Worksheets("L2 Inputs").Range("C14").Value 'interest rate 

IRU = Worksheets("L2 Inputs").Range("D14").Value 'interest rate uncertainty 

RL = Worksheets("L2 Inputs").Range("C15").Value 'reactor life 

RLU = Worksheets("L2 Inputs").Range("D15").Value 'reactor life uncertainty 

Xf = Worksheets("L2 Inputs").Range("C16").Value 

XfU = Worksheets("L2 Inputs").Range("D16").Value 

Tau = Worksheets("L2 Inputs").Range("C17").Value 'retention time for fermentation 

TauU = Worksheets("L2 Inputs").Range("D17").Value 'uncertainty in retention time 

Downtime = Worksheets("L2 Inputs").Range("C18").Value 'downtime between loadings 

DowntimeU = Worksheets("L2 Inputs").Range("D18").Value 'downtime between loadings 

uncertainty 

inoc = Worksheets("L2 Inputs").Range("C19").Value 'inoculum required 

inocU = Worksheets("L2 Inputs").Range("D19").Value 'inoculum required 

sep = Worksheets("L2 Inputs").Range("C22").Value 'separation costs 

sepU = Worksheets("L2 Inputs").Range("D22").Value 'sep cost uncertainty 

Other = Worksheets("L2 Inputs").Range("C23").Value 'other costs 

OtherU = Worksheets("L2 Inputs").Range("D23").Value 'other cost uncertainty 

 

'-----------------------------Complete FC Calculations.  For L2 analysis PPC=FC+FR+SC-----

------------------------------------ 

'Calculations that output to inputs tab 

CorrectedTau = Tau + Downtime 

Worksheets("L2 Intermediate Calcs").Range("G16").Value = CorrectedTau 

Productivity = PBF * (Xf / Tau) 

ProductivityCorrected = PBF * (Xf / CorrectedTau) 

Worksheets("L2 Intermediate Calcs").Range("E28").Value = Productivity 

Worksheets("L2 Intermediate Calcs").Range("E42").Value = ProductivityCorrected 

 

 

'Basecase Calculations 
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FC = FeedstockCost(G, PBF, Y) 

Worksheets("L2 Intermediate Calcs").Range("E5").Value = FC 

RC = ReactorCost(V, IR, RL) 

Worksheets("L2 Intermediate Calcs").Range("H10").Value = RC 

'Capital Reactor cost inserted into intermediate calculations within function (total) 

FRR = FermentorRRate(RC, Xf, PBF, V, CorrectedTau) 

TotSep = sep * FRR 

TotOther = Other * FRR 

 

'WorstCase Calculations 

Gworst = G * (1 + GU) 

PBFworst = PBF * (1 - PBFU) 

Yworst = Y * (1 - YU) 

FCworst = FeedstockCost(Gworst, PBFworst, Yworst) 

IRWorst = IR * (1 + IRU) 

RLworst = RL * (1 - RLU) 

RCworst = ReactorCost(V, IRWorst, RLworst) 

XfWorst = Xf * (1 - XfU) 

DowntimeWorst = Downtime * (1 + DowntimeU) 

CorrectedTauWorst = Tau + DowntimeWorst 

FRRWorst = FermentorRRate(RCworst, XfWorst, PBFworst, V, CorrectedTauWorst) 

SepWorst = sep * (1 + sepU) 

TotSepWorst = SepWorst * FRRWorst 

OtherWorst = Other * (1 + OtherU) 

TotOtherWorst = OtherWorst * FRRWorst 

inocWorst = inoc * (1 + inocU) 

     

'BestCase Calculations 

Gbest = G * (1 - GU) 

PBFbest = PBF * (1 + PBFU) 

Ybest = Y * (1 + YU) 

FCbest = FeedstockCost(Gbest, PBFbest, Ybest) 

IRBest = IR * (1 - IRU) 

RLbest = RL * (1 + RLU) 

RCbest = ReactorCost(V, IRBest, RLbest) 

XfBest = Xf * (1 + XfU) 

DowntimeBest = Downtime * (1 - DowntimeU) 

CorrectedTauBest = Tau + DowntimeBest 

FRRBest = FermentorRRate(RCbest, XfBest, PBFbest, V, CorrectedTauBest) 

SepBest = sep * (1 - sepU) 

TotSepBest = SepBest * FRRBest 

OtherBest = Other * (1 - OtherU) 

TotOtherBest = OtherBest * FRRBest 

inocBest = inoc * (1 - inocU) 
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'Output baseline, best and worst case scenarios 

Worksheets("L2 Results").Range("C3").Value = FC 

Worksheets("L2 Results").Range("D3").Value = FCbest 

Worksheets("L2 Results").Range("E3").Value = FCworst 

Worksheets("L2 Results").Range("C4").Value = FRR 

Worksheets("L2 Results").Range("D4").Value = FRRBest 

Worksheets("L2 Results").Range("E4").Value = FRRWorst 

Worksheets("L2 Results").Range("C5").Value = TotSep 

Worksheets("L2 Results").Range("D5").Value = TotSepBest 

Worksheets("L2 Results").Range("E5").Value = TotSepWorst 

Worksheets("L2 Results").Range("C6").Value = TotOther 

Worksheets("L2 Results").Range("D6").Value = TotOtherBest 

Worksheets("L2 Results").Range("E6").Value = TotOtherWorst 

Worksheets("L2 Results").Range("C8").Value = inoc 

Worksheets("L2 Results").Range("D8").Value = inocBest 

Worksheets("L2 Results").Range("E8").Value = inocWorst 

 

 

'--------------------------------------------Begin Simulations-------------------------------------------

---------------------- 

'Assign Arrays for each input.  Each array will contain 100 values and is based on the 

uncertainty 

Call Simulation(GArray(), G, GU) 

Call Simulation(PBFArray(), PBF, PBFU) 

Call Simulation(YArray(), Y, YU) 

Call Simulation(IRArray(), IR, IRU) 

Call Simulation(RLArray(), RL, RLU) 

Call Simulation(XfArray(), Xf, XfU) 

Call Simulation(TauArray(), Tau, TauU) 

Call Simulation(sepArray(), sep, sepU) 

Call Simulation(OtherArray(), Other, OtherU) 

Call Simulation(DowntimeArray(), Downtime, DowntimeU) 

Call Simulation(inocArray(), inoc, inocU) 

 

'Loop through all data and output results to storage tab 

For i = 1 To 100 

    'glucose cost 

    FCArray(i) = FeedstockCost(GArray(i), PBF, Y) 

    GPPCArray(i) = (FCArray(i) + FRR + TotSep + TotOther) / (1 - inoc) 

    Worksheets("L2 Storage").Cells(i + 1, 1).Value = GArray(i) 

    Worksheets("L2 Storage").Cells(i + 1, 2).Value = GPPCArray(i) 

     

    'fraction of biomass in product 

    FCArray(i) = FeedstockCost(G, PBFArray(i), Y) 

    FRRArray(i) = FermentorRRate(RC, Xf, PBFArray(i), V, CorrectedTau) 

    TotSepArray(i) = sep * FRRArray(i) 
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    TotOtherArray(i) = Other * FRRArray(i) 

    PBFPPCArray(i) = (FCArray(i) + FRRArray(i) + TotSepArray(i) + TotOtherArray(i)) / 

(1 - inoc) 

    Worksheets("L2 Storage").Cells(i + 1, 3).Value = PBFArray(i) 

    Worksheets("L2 Storage").Cells(i + 1, 4).Value = PBFPPCArray(i) 

     

    'Yield 

    FCArray(i) = FeedstockCost(G, PBF, YArray(i)) 

    YPPCArray(i) = (FCArray(i) + FRR + TotSep + TotOther) / (1 - inoc) 

    Worksheets("L2 Storage").Cells(i + 1, 5).Value = YArray(i) 

    Worksheets("L2 Storage").Cells(i + 1, 6).Value = YPPCArray(i) 

     

    'Interest Rate 

    RCArray(i) = ReactorCost(V, IRArray(i), RL) 

    FRRArray(i) = FermentorRRate(RCArray(i), Xf, PBF, V, CorrectedTau) 

    TotSepArray(i) = sep * FRRArray(i) 

    TotOtherArray(i) = Other * FRRArray(i) 

    IRPPCArray(i) = (FC + FRRArray(i) + TotSepArray(i) + TotOtherArray(i)) / (1 - inoc) 

    Worksheets("L2 Storage").Cells(i + 1, 7).Value = IRArray(i) 

    Worksheets("L2 Storage").Cells(i + 1, 8).Value = IRPPCArray(i) 

     

    'Reactor Life 

    RCArray(i) = ReactorCost(V, IR, RLArray(i)) 

    FRRArray(i) = FermentorRRate(RCArray(i), Xf, PBF, V, CorrectedTau) 

    TotSepArray(i) = sep * FRRArray(i) 

    TotOtherArray(i) = Other * FRRArray(i) 

    RLPPCArray(i) = (FC + FRRArray(i) + TotSepArray(i) + TotOtherArray(i)) / (1 - inoc) 

    Worksheets("L2 Storage").Cells(i + 1, 9).Value = RLArray(i) 

    Worksheets("L2 Storage").Cells(i + 1, 10).Value = RLPPCArray(i) 

     

    'Titer 

    FRRArray(i) = FermentorRRate(RC, XfArray(i), PBF, V, CorrectedTau) 

    TotSepArray(i) = sep * FRRArray(i) 

    TotOtherArray(i) = Other * FRRArray(i) 

    XfPPCArray(i) = (FC + FRRArray(i) + TotSepArray(i) + TotOtherArray(i)) / (1 - inoc) 

    Worksheets("L2 Storage").Cells(i + 1, 11).Value = XfArray(i) 

    Worksheets("L2 Storage").Cells(i + 1, 12).Value = XfPPCArray(i) 

     

     'Tau 

    CorrectedTauArray(i) = TauArray(i) + Downtime 

    FRRArray(i) = FermentorRRate(RC, Xf, PBF, V, CorrectedTauArray(i)) 

    TotSepArray(i) = sep * FRRArray(i) 

    TotOtherArray(i) = Other * FRRArray(i) 

    TauPPCArray(i) = (FC + FRRArray(i) + TotSepArray(i) + TotOtherArray(i)) / (1 - inoc) 

    Worksheets("L2 Storage").Cells(i + 1, 13).Value = TauArray(i) 

    Worksheets("L2 Storage").Cells(i + 1, 14).Value = TauPPCArray(i) 
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    'separation costs 

    TotSepArray(i) = sepArray(i) * FRR 

    sepPPCArray(i) = (FC + FRR + TotSepArray(i) + TotOther) / (1 - inoc) 

    Worksheets("L2 Storage").Cells(i + 1, 15).Value = sepArray(i) 

    Worksheets("L2 Storage").Cells(i + 1, 16).Value = sepPPCArray(i) 

     

    'Other costs 

    TotOtherArray(i) = OtherArray(i) * FRR 

    OtherPPCArray(i) = (FC + FRR + TotSep + TotOtherArray(i)) / (1 - inoc) 

    Worksheets("L2 Storage").Cells(i + 1, 17).Value = OtherArray(i) 

    Worksheets("L2 Storage").Cells(i + 1, 18).Value = OtherPPCArray(i) 

     

    'Downtime 

    CorrectedTauArray(i) = Tau + DowntimeArray(i) 

    FRRArray(i) = FermentorRRate(RC, Xf, PBF, V, CorrectedTauArray(i)) 

    TotSepArray(i) = sep * FRRArray(i) 

    TotOtherArray(i) = Other * FRRArray(i) 

    DTPPCArray(i) = (FC + FRRArray(i) + TotSepArray(i) + TotOtherArray(i)) / (1 - inoc) 

    Worksheets("L2 Storage").Cells(i + 1, 19).Value = DowntimeArray(i) 

    Worksheets("L2 Storage").Cells(i + 1, 20).Value = DTPPCArray(i) 

     

    'inoculum 

    inocPPCArray(i) = (FC + FRR + TotSep + TotOther) / (1 - inocArray(i)) 

    Worksheets("L2 Storage").Cells(i + 1, 21).Value = inocArray(i) 

    Worksheets("L2 Storage").Cells(i + 1, 22).Value = inocPPCArray(i) 

     

Next i 

 

'Add titles to columns 

Worksheets("L2 Storage").Cells(1, 1).Value = "Glucose Cost" 

Worksheets("L2 Storage").Cells(1, 2).Value = "PPC" 

Worksheets("L2 Storage").Cells(1, 3).Value = "fpx" 

Worksheets("L2 Storage").Cells(1, 4).Value = "PPC" 

Worksheets("L2 Storage").Cells(1, 5).Value = "Yield" 

Worksheets("L2 Storage").Cells(1, 6).Value = "PPC" 

Worksheets("L2 Storage").Cells(1, 7).Value = "Interest Rate" 

Worksheets("L2 Storage").Cells(1, 8).Value = "PPC" 

Worksheets("L2 Storage").Cells(1, 9).Value = "Reactor Life" 

Worksheets("L2 Storage").Cells(1, 10).Value = "PPC" 

Worksheets("L2 Storage").Cells(1, 11).Value = "Titer" 

Worksheets("L2 Storage").Cells(1, 12).Value = "PPC" 

Worksheets("L2 Storage").Cells(1, 13).Value = "Tau" 

Worksheets("L2 Storage").Cells(1, 14).Value = "PPC" 

Worksheets("L2 Storage").Cells(1, 15).Value = "Separation Percent" 

Worksheets("L2 Storage").Cells(1, 16).Value = "PPC" 
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Worksheets("L2 Storage").Cells(1, 17).Value = "Other" 

Worksheets("L2 Storage").Cells(1, 18).Value = "PPC" 

Worksheets("L2 Storage").Cells(1, 19).Value = "Downtime" 

Worksheets("L2 Storage").Cells(1, 20).Value = "PPC" 

Worksheets("L2 storage").Cells(1, 21).Value = "inoculum" 

Worksheets("L2 storage").Cells(1, 22).Value = "PPC" 

 

'complete sensitivity analysis and output results to Inputs Tab 

Call Sensitivity(GArray(), GPPCArray(), 8, 5) 

Call Sensitivity(PBFArray(), PBFPPCArray(), 9, 5) 

Call Sensitivity(YArray(), YPPCArray(), 10, 5) 

Call Sensitivity(IRArray(), IRPPCArray(), 14, 5) 

Call Sensitivity(RLArray(), RLPPCArray(), 15, 5) 

Call Sensitivity(XfArray(), XfPPCArray(), 16, 5) 

Call Sensitivity(TauArray(), TauPPCArray(), 17, 5) 

Call Sensitivity(sepArray(), sepPPCArray(), 22, 5) 

Call Sensitivity(OtherArray(), OtherPPCArray(), 23, 5) 

Call Sensitivity(DowntimeArray(), DTPPCArray(), 18, 5) 

Call Sensitivity(inocArray(), inocPPCArray(), 19, 5) 

 

 

Worksheets("L2 Results").Activate 

 

Call GraphAdjustment("Chart 3", 1) 

Call GraphAdjustment("Chart 7", 3) 

Call GraphAdjustment("Chart 8", 5) 

Call GraphAdjustment("Chart 9", 7) 

Call GraphAdjustment("Chart 10", 9) 

Call GraphAdjustment("Chart 11", 11) 

Call GraphAdjustment("Chart 12", 13) 

Call GraphAdjustment("Chart 13", 15) 

Call GraphAdjustment("Chart 14", 17) 

Call GraphAdjustment("Chart 15", 19) 

Call GraphAdjustment("Chart 16", 21) 

 

End Sub 

 

 

Public Function FeedstockCost(ByVal Glucose As Double, ByVal ProductInBiomass As 

Double, ByVal Yield As Double) As  Double 

 'Function Description: This function calculates the feedstock cost for glucose in terms 

of the final product in kg 

 FeedstockCost = Glucose / (ProductInBiomass * Yield) 

End Function 
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Public Function ReactorCost(ByVal Volume As Double, ByVal intrate As Double, ByVal 

life As Double) As Double 

 'Function Description: This function uses principles discussed in Brown's book to 

calculate the ammortized capital cost 

 'for a reactor based on a volume supplied by the user and scale factors and multipliers 

available for reactors in the book 

  'based on data from Brown's book the scale factor and multiplier were found 

     SF = 0.71 'from Brown book for vertical process vessel 

     M = 7273 'used vertical process vessel with M of 6000 in 2002 dollars and converted 

to 2010 dollars 

    

  'Using economies of scale the capital cost can be calculated 

     Cp = M * (Volume ^ SF) 

        'Then using materials and labor values from Brown (Biorenewable Resources Book), 

the grassroots capital is calculated 

     MMF = 1.04 

     LMF = 0.49 

     'Materials for installation 

     CM = MMF * Cp 

        'Direct labor 

     CL = LMF * (Cp + CM) 

     

     'Direct capital cost 

     CD = Cp + CM + CL 

        'Indirect project Costs 

     'freight 

     CFIT = 0.08 * Cp 

    'Construction overhead 

     CO = 0.7 * CL 

     'engineering 

     CE = 0.15 * (Cp + CM) 

 CID = CFIT + CO + CE 

     'Bare Module Cost 

     CBM = CD + CID 

    'continguency 

     CCF = 0.18 * CBM 

    'total module cost 

     CTM = CBM + CCF 

   'Auxiliary facilities 

     CAF = 0.3 * CTM 

     'Grassroots Capital 

     CGR = CTM + CAF 

      'output CGR to intermediate calculations page 

     If Worksheets("L2 Intermediate Calcs").Range("E10").Value = 0 Then 

          Worksheets("L2 Intermediate Calcs").Range("E10").Value = CGR 

     End If 
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     'The PMT function in excel can be used to calculate the amortized value 

     ReactorCost = Abs(Application.WorksheetFunction.Pmt(intrate, life, CGR)) 

         

End Function 

 

Public Function FermentorRRate(ByVal RC As Double, ByVal Titer As Double, ByVal 

ProductInBiomass As Double, ByVal  Volume As Double, ByVal RetentionTime As 

Double) As Double 

 'Function Desctiption: This function outputs the fermenter rate cost which 

 'FRR here doesn't account for inoculum 

     If Worksheets("L2 Intermediate Calcs").Range("E22").Value = 0 Then 

          Worksheets("L2 Intermediate Calcs").Range("E22").Value = Titer * 

ProductInBiomass * Volume * (1 /      RetentionTime) 

          Worksheets("L2 Intermediate Calcs").Range("G23").Value = Titer * 

ProductInBiomass * Volume * (1 /      RetentionTime) * 24 * 

350 

     End If 

     

     FermentorRRate = RC / ((Titer * ProductInBiomass * Volume * (1 / RetentionTime)) 

* 24 * 350) 

End Function 

 

Public Sub Simulation(ByRef SimArray() As Double, ByVal Value, ByVal uncertainty) 

 'Subroutine Description: This subroutine takes in an empty array, the initial value for 

a given variable and its uncertainty and 

 'outputs an array with 100 values that go from the lower to upper bounds based on the 

uncertainty 

 Dim NumValues As Integer, Up As Double, Low As Double 

 

 NumValues = 100 

 Up = Value * (1 + uncertainty) 

 Low = Value * (1 - uncertainty) 

 'create an array for 100 values that can be used to run simulations 

 StepSize = (Up - Low) / NumValues 

 B = 1 

 For A = Low To Up Step StepSize 

      SimArray(B) = A 

      B = B + 1 

 Next A 

End Sub 

 

 

Public Sub Sensitivity(ByRef InArray() As Double, OutArray() As Double, Row As 

Integer, Column As Integer) 
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 'This subroutine completes the sensitivity analysis and outputs the results in the 

designated row and column of the inputs tab 

 'Red values are negative and green values are positive 

 Dim PercentChangeIn As Double, PercentChangeOut As Double, Slope As Double 

 

 PercentChangeIn = (InArray(50) - InArray(49)) / InArray(50) 

 PercentChangeOut = (OutArray(50) - OutArray(49)) / OutArray(50) 

 Slope = PercentChangeOut / PercentChangeIn 

 Worksheets("L2 Inputs").Cells(Row, Column).Value = Slope 

 

 If Slope > 0 Then 

      Worksheets("L2 Inputs").Cells(Row, Column).Interior.Color = RGB(51, 153, 

102) 'green 

 Else 

     Worksheets("L2 Inputs").Cells(Row, Column).Interior.Color = RGB(128, 0, 

0) 'red 

 End If 

End Sub 

 

Public Sub GraphAdjustment(ChartNum As String, ColRef As Integer) 

 'This subroutine is designed to adjust the graphs for L1 L2 and L3 analyses 

 ActiveSheet.ChartObjects(ChartNum).Activate 

 ActiveSheet.ChartObjects(ChartNum).Chart.Axes(xlValue).MaximumScale = 

Worksheets("L2  Storage").Range("B107").Value 

 ActiveSheet.ChartObjects(ChartNum).Chart.Axes(xlValue).MinimumScale = 

Worksheets("L2  Storage").Range("B106").Value 

 

 With ActiveChart.Axes(xlCategory, xlPrimary) 

      .MaximumScale = Worksheets("L2 Storage").Cells(104, ColRef) 

      .MinimumScale = Worksheets("L2 Storage").Cells(103, ColRef) 

 End With 

End Sub 

 

 

Public Function LogisticEq(ByRef HalfVelocity As Double, Yield As Double, SubstrateC 

As Double, CellC As Double, MaxSGR  As Double) As Double 

 'function description; this function outputs the fermenter reaction time based on a 

kinetic model described in Shuler and Kargi 

 Dim A As Double, B As Double, Term1 As Double, Term2 As Double, Xfinal As 

Double 

 

 A = HalfVelocity * Yield 

 B = SubstrateC * Yield 

 Xfinal = 0.95 * (B + CellC) 

 Term1 = ((A + B + CellC) / (B + CellC)) * 

Application.WorksheetFunction.Ln(Xfinal / CellC) 
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 Term2 = (A / (B + CellC)) * Application.WorksheetFunction.Ln((B + CellC + 

Xfinal) / B) 

 LogisticEq = (Term1 - Term2) / MaxSGR 

 

End Function 
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