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ABSTRACT 
 

 Robust modeling methods were implemented for the transfer of near-infrared 

calibration models in intra and inter-brand situations. A network of four instruments from 

two brands (Foss Infratecs and Bruins OmegAnalyzerGs) was used to implement spectral 

pretreatment methods, local and variable selection techniques, and orthogonal methods to 

transfer protein, oil, and linolenic acid models across instruments of the same brand and 

across instruments of different brands. A total of fifty seven techniques were implemented 

among which spectral filtering methods based on the smoothing of high frequency 

components of Fourier and wavelet transforms. A new approach to local similarity was 

introduced. Results showed that the effectiveness of the various methods was instrument, 

parameter, and validation set dependent. In some situations, no differences could be 

observed between master and secondary unit predictions. Local methods appeared to be the 

weakest methods, most likely due to a problem of over-fitting (specialization) of the 

calibration set. The transfer of calibrations across brands was possible with performances 

similar, or better, than in intra-brand calibration transfer. 
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CHAPTER 1. 

 

GENERAL INTRODUCTION 
 

 Today’s challenges for food quality and traceability have created the need for fast, 

inexpensive, and easy to use methods to control and certify industrial, pharmaceutical, and 

agricultural products. In the grain industry, near-infrared spectroscopy has become a tool of 

choice for screening, controlling, and assessing quality. It is an inexpensive analytical 

method based on the absorption of near-infrared light by organic molecules proportionally 

to their distribution. Near-infrared spectroscopy has been successfully used in many 

situations (i.e. proximate analysis, fatty acid, and amino acids profile determinations). 

 

 The development of a near-infrared application requires the constitution of a 

calibration (or prediction) model which will be used to interpret absorption spectra from 

samples to analyze. Through a calibration process, the relationship between absorption 

spectra and the compound of interest is established under the form of a linear or non-linear 

regression called a prediction model. After validation, these models are used in routine 

operations. In many cases, it is necessary to calibrate a network of instrument within the 

same factory or location and it is often not economically viable to recalibrate each 

instrument. The implementation of methods allowing the transfer of calibration models 

from a master unit to operational units is then necessary. 

 

 Three approaches exit for calibration transfer: optical methods that aim to modify 

spectra of the secondary units to match those on the master unit, post-regression correction 

methods that correct predicted values of the master’s model on the secondary unit to match 

master’s predictions, and robust methods that tune the calibration set to perform well in 

encountered situations. Robust modeling is a very interesting and satisfactory approach to 

calibration transfer since it aims to remove noise responsible for poor performances from 

the information available. In calibration transfer situations, inter-instrumental differences is 

what will most likely to be removed. 



 2

The literature provides numerous applications of optical and post-regression 

correction methods to calibration transfer. Robust modeling has been extensively studied in 

the last decade, but research available is not focused on calibration transfer. In addition, 

most of the studies deal with intra-brand calibration transfer while the possibility to transfer 

historical databases from brand to brand is one of the main issues of today’s near-infrared 

users. 

 

The following dissertation will present, propose, and apply numerous approaches to 

robust modeling for the development and transfer in intra and inter-brand situations of 

whole soybean grain for protein, oil, and linolenic acid models. In the second chapter, near-

infrared spectroscopy will be introduced in detail and a review of the current calibration 

transfer methods will be established. The third chapter will present the various 

standardization methods used in this study, while the fourth chapter will provide results. 

The last chapter will summarize the results and provide guidelines for robust modeling in 

near-infrared spectroscopy. 
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CHAPTER 2. 
 

UTILIZATION OF NEAR INFRARED SPECTROSCOPY FOR THE 

DETERMINATION OF PRODUCT PROPERTIES OF RAW AND 

PROCESSED MATTER 
 

 

 

 The need for traceability is increasingly important in globalized societies where a 

product can be ordered by a customer in Ames, Iowa and cross the world in plane, ship, or 

train from Europe, Asia or Africa to be delivered through a postal system employing trucks, 

cars, and sometime bikes or pedestrians. The traceability of food products is especially 

important because it directly impacts customers and their health. One certainly remembers 

the outbreak of Escherichia Coli on spinach in September 2006 where the consumption of 

bag-conditioned spinach was the source of a massive recall by a California company and 

was responsible for 199 cases of food borne infections (Food and Drug Administration, 

2007). In March 2007, pet-food was contaminated with melamine, a fire retardant, causing 

the death of 104 animals, mainly from kidney failures (Food and Drug Administration, 

2007). 

 

 Traceability has thus become an essential element of the control of the food quality. 

Since 9/11 and the terrorist attacks on North American territory, official acts, such as the 

PATRIOT Act, clearly state the necessity for companies to record and be able to provide, in a 

limited period of time, all necessary information to officials (The USA PATRIOT Act, 2005). 

 

 The control of the food quality is an essential parameter of traceability and is a 

critical part of any food product process. 
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2.1.  Control of the grain quality 
 

The world crop production represented 2,115 million metric tons of grain for the 

crop year 2007 (cotton not included). Corn (37%) and wheat (28%) were the two major field 

crops, followed by rice (20%), and soybean (10%). The other 5% were cereals such as barley, 

oats, rye, and other field crops: sorghum, cottonseed, peanut, sunflower seed, rapeseed, and 

copra. The United States of America (USA) produced 19.6% of the world’s crops. Among the 

major products, the USA produced 42% of the corn, 32% of the soybean, and 9% of the 

wheat. In addition to the production, the USA exports a significant part of its production 

(especially soybean, corn and wheat). In 2007 crop year, it exported 61% of its wheat, 44%of 

its soybean, and 18% of its corn (United State Department of Agriculture, 2007). 

 

 The production system as well as the importation/exportation system relies on the 

measurement of the grade and the quality of the grain at the different components of the 

chain. As mentioned by Hurburgh and Brumm (2004), “Description (grading) of grain by 

quality characteristics makes possible the trading of grain contracts with neither buyer nor 

seller personally inspecting the grain being traded”. The USDA has established a grading 

system based on the density, the quantity of broken grains, the presence of foreign material, 

and the grain moisture. In addition to the grade, a lot may be tested for additional 

parameters (protein, oil, starch, fiber …) to meet the quality standard of a specific 

application. In the grain system, as summarized in the figure 1, various analyses are 

performed along the chain.  

 

At the field level, the moisture is the principal parameter of quality that is controlled. 

Harvesting a grain too humid will require additional drying expenses either at the farm 

storage unit or at the elevator to maintain its quality during storage. Thus, farmers use 

moisture meters, usually based on conductance, that measure the ease with which electric 

current flows through the grain. At the elevator, the grade of the grain is determined and 

lots of similar qualities are accumulated into large silos. The determination of the grade 

involves the use of a Carter Dockage Tester (US Patent #1644872) for the determination of 
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damaged grains and foreign materials. Test weight and moisture are often determined by a 

single instrument based on conductance. Analytical instruments are approved by the 

national type evaluation program (NTEP) for use in the determination of the grade. From 

the elevator to the food companies or to exportation, additional information on the quality 

of the grain may be asked by buyers. In these cases, non-grade tests such as near infrared 

spectroscopy (NIRS) may be used to determine, for instance, protein, oil, fiber, and fatty 

acid profile for soybeans. 

 

NIRS is increasingly involved in the process of determination of the grain quality in 

the grain chain because several manufacturers are investigating the use of NIRS, in addition 

to spatial data, to model in real time the performances of a field (Brumm, 2007). In addition 

to the determination of the grade and the composition of the grain, the need for rapid and 

inexpensive methods for food safety screening of grain and foodstuff lots is becoming 

important. NIRS has shown interesting results in the determination of the contamination of 

grain by mold using ergosterol, a biomarker present in the nuclear membrane and vacuole 

(Levasseur, 2004) or in the quantification of the mycotoxical contamination (Kim et al, 2004; 

Berardo et al, 2005). The melamine in pet food was detected by NIRS, identifying that the 

nitrogen content was not from a protein form (Marcott, 2008). 
 

 

 

 

 

 

 

 

 

 

 
Figure 1: Summary of the grain system, from the field to the fork. 

 

Field 

Farm Storage System 

Elevator 

Food Companies Exportation 
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2.2. Near infrared spectroscopy 
 

Near infrared spectroscopy is widely used because of its ability to provide an 

inexpensive, fast, and real time control of industrial processes. It has shown its usefulness in 

the analysis of agricultural products and foodstuffs, polymers, textiles, pharmaceutical and 

medical sciences, soil, and petrochemicals (Williams and Norris, 2001; Siesler et al, 2002; 

Burns and Ciurczak, 2001;). 

 

2.2.1. Theoretical introduction 

 

Near infrared spectroscopy is a type of spectrochemical analysis that uses the near 

infrared part of the electromagnetic spectrum (770 – 2,500 nm or 1.2×1014 – 3.9×1014 Hz) to 

obtain information on the analyzed matter based on its absorption of the incident light 

(Ingle and Crouch, 1988). For absorption to occur, the frequency of the incident radiation 

must correspond to the energy difference between two energetic states of a chemical bound. 

Absorption is defined as 

0

log logA T Φ
= − = −

Φ  

where A, the absorbance, is a function of T, the transmittance, that corresponds to the ratio 

of the radiant power transmitted, Ф, to the incident radiation, Ф0. Figure 2 illustrates 

absorption in the basic setup of a transmission near infrared spectrometer. 

 
Figure 2: Simplified setup of a near infrared transmission spectrometer. The ratio transmitted radiation to 
incident radiation defines the transmittance of the sample. 
 

 

(1) 
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 The absorption of infrared energy causes bonds to vibrate and rotate. The vibration 

of a dipole can be seen on figure 3.A. It represents a diatomic oscillator that vibrates based 

on the energy level at which the dipole is. This theoretical model is called harmonic 

oscillator and can be expressed as 

21
2

V kx=
 

where V, the potential energy of the vibrating system, is a function of k and x, atom’s 

equilibrium position and the displacement of atoms from their equilibrium position 

respectively. 

 
Figure 3: Vibrational energy levels of the harmonic model (A) and the anharmonic model (B). Modified from 
Kovalenko, 2006. 
 

When an infrared beam is sent to the dipole, the energy level is raised and the dipole 

oscillates in the limits of the energy levels. When a dipole receives enough energy to raise its 

energy level from the ground vibrational level to the first vibrational energy level (defined 

by quantum energy), the molecule experiences a fundamental transition. Fundamental 

transitions are observed in the mid infrared region (2,500 – 50,000 nm) (Bokobza, 2002). 

 

The harmonic oscillator is not sufficient to explain all responses encountered in 

infrared spectroscopy because if only fundamental bands were existing, no absorption 

would be observed in the near infrared region. The ideal harmonic model is modified by 

two behaviors of real molecular vibrations: mechanical anharmonicity and electrical 
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anharmonicity. Mechanical anharmonicity is a consequence of the structure of atoms where 

nuclei, when close to each other, experience a strong repelling force that can lead to 

dissociation of the bond. In this situation, the displacement of atoms can be approximated 

by a higher-order equation than equation 2, such as the anhormonic oscillator proposed in 

figure 3.B. The electrical anharmonicity is a consequence of the non-linear relationship 

between dipole moment and atomic displacement. For a heteronuclear diatomic molecule, 

the maximal dipole moment is observed at an atomic separation slightly smaller than the 

equilibrium atomic separation (Miller, 2001). 

 

 This anharmonicity is at the origin of phenomena encountered in the near infrared 

region: overtone transitions, combination modes, and unequal distance between vibrational 

energy states. Overtone absorptions correspond to energetic changes where the molecule 

experiences an increase of its vibrational energy level to the second, third, or the fourth 

level. Raises to the fifth and higher vibrational energy levels are possible, but the energy 

absorption would be too weak to be useful for practical analysis (a consequence of the 

unequal distance between vibrational energy states). It is important to note that the energy 

needed to raise the vibrational energy level from the fundamental state to first or second 

overtones is between 10 and 1000 times weaker than the energy needed for the fundamental 

transition. The energy needed to raise the vibrational energy level to higher states 

corresponds to frequencies in the short wavelength of the mid infrared or in the near 

infrared region. “A fundamental carbonyl […] vibration at 1,750 cm-1 or 5,714 nm would 

have a first overtone at approximately 3,000 nm, a weaker second overtone at 2,100 nm, and 

a third, very weak overtone at 1,650 nm. The fourth overtone, at about 1,370 nm, would be 

so weak as to be analytically useless.” (Ciurczak, 2001). Absorption bands are often 

expressed in reciprocal centimeters (cm-1) that are directly proportional to the energy level. 

The conversion between nanometers and reciprocal centimeters is as follows 

 

1

1
nm

cm

wavelength
wavenumber −

=  

 

(3) 
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 In addition to the ability of an absorption band to be produced at two or three times 

the frequency of the fundamental vibration, vibrations have a tendency to combine to give a 

single absorption band by addition and subtraction of transition frequencies. Table 1 

presents a classical example of fundamental, overtones, and combinations frequencies for 

the sulfur dioxide molecule (Bokobza, 2002). 

 
Table 1: Assignment of some absorption bands of the sulfur dioxide molecule (modified from Bokobza, 2002). 

Vibrational frequency (nm) Assignment 
19,268 ν2 
16,502 ν1 - ν2 
8,688 ν1 
7,347 ν3 
5,344 ν2 + ν3 
4,355 2ν1 
4,002 ν1 + ν3 

 

 

 Thus, a molecule will present absorption bands from not only the fundamental 

transition (ν1) but also from overtone transitions (ν2 and ν3) and some combination bands 

(ν1 - ν2, ν2 + ν3, and ν1 + ν3). 

 

The vibrations of the molecule subject to a raise of its energetic state due to an 

infrared light can take various forms. Figure 4 shows the different vibration modes that 

sulfur dioxide can experience, depending on the energy state at which it is. Other vibration 

modes such as twisting, rocking, and wagging can be observed, depending on the energy 

state, on the structure of the molecule, and on the phase of the molecule. Rotation 

phenomena can mostly be observed in gas phase; peak broadening in solid and liquid 

phases cover the absorption due to rotation. 
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Figure 4: Vibration modes of sulfur dioxide. ν1 corresponds to a symmetric stretch at 8,688 nm; ν2 corresponds 
to a bending mode at 19,268 nm; ν3 correspond to a antisymmetric stretch at 7,357 nm (Bokobza, 2002). 
 

 

When the product of interest is mainly formed by C-H, N-H, and O-H functional 

groups with fundamental absorption between 4,000 and 2,500 nm, the near infrared region 

is mostly composed of overtones and combinations of these dipoles. Thus, the study of 

agricultural products is based on the analysis of absorption spectra of overtone and 

combination bands from C, H, O, and N bonds (Ciurczak, 2001). For a complex mixture, the 

near infrared spectrum will consist of an overlap of overtone and combination bands from 

the different functional groups present. A visual interpretation of complex mixture is then 

made impossible and statistical techniques called chemometrics methods are used to extract 

useful information. However, depending on the instrumental setup of the spectrometer, the 

type of analysis can vary. 

 

2.2.2. Near infrared instrumentation 

 

For developers, NIRS consists in collecting the absorbance spectrum of a sample to 

either compare it to databases in the case of qualitative studies, or perform calculations on 

absorbance values at each collected wavelength for quantitative applications. The spectrum 

is the fingerprint of the sample, an indirect indication of its chemical composition. In 

practice, this technique can appear very simple to end-users. Their role is to present the 

sample, prepared or not, to the instrument and start the analysis. A short time later (0.1 – 2.0 

min), results appear on the screen of the embedded computer and stored. Manufacturers 

ν1 ν2 ν3 
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have been working to improve hardware and software of their instruments to facilitate their 

use by people without engineering or chemistry backgrounds. 

 

Two types of near infrared spectrometers coexist; units based on transmission and 

units based on reflection (figure 5.A and Figure 5.B respectively). In transmission, the light 

is sent through the samples and the detector measures the remaining part of the light (the 

light intensity at each measured wavelength). A transmittance spectrum is obtained and 

transformed to absorbance units using equation 1. In reflection, the light is sent to the 

surface of the sample and a detector measures the light intensity that is reflected. In this 

situation, only the surface of the sample is scanned and thus requires a high homogeneity. 

The absorbance spectrum is obtained by changing the transmittance term to the reflectance 

analog in equation 1. The choice between these two techniques is mainly governed by the 

type of samples and the application. The treatment of the data remains the same. 

 

 

 

 

 

 

 
Figure 5: Basic near infrared spectrometer setups. (A) transmittance unit, (B) reflectance unit (modified from 
Kovalenko, 2006). 

 

In terms of equipment, a spectrometer is globally composed of a light source, a light 

diffraction system, a sample presentation system, a detector, an analog to digital converter, 

and an integration board with a firmware or software to appropriately process spectra. Each 

manufacturer offers different light sources, sample presentation systems, and detection 

techniques. Ingle et al (1988), Workman et al (2001), Kawata (2002), and McClure (2001) 

provide comprehensive chapters on these elements. An instrument can be dedicated to 

analyze absorption of a sample at specific wavelengths (filter instruments) or along a range 

of wavelengths. The first would output absorption values at selected wavelengths while the 

second would output absorption values, at each or every two, four, eight wavelengths 

Lamp Sample Detector 

(A) 

Sample Detector(s) Lamp 

(B) 
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(depending on the interpolation). Spectra have high collinearity, which greatly impacts the 

statistical methods employed. 

 

 While the treatment of the spectra is mostly transparent to end-users because 

performed by a firmware or software, it is one of the most challenging tasks for 

manufacturers and chemometricians. A spectrometer needs to be calibrated to provide 

useful information. The process of calibration and its management is, with the design of 

instruments, the largest area of research in NIRS.  

 

2.2.3. The Calibration Process 

 

The purpose of the calibration process is to establish a relationship between the 

absorbance spectrum of an “unknown” sample and the element(s) of interest in that sample. 

In NIRS, the establishment of this relationship requires several steps. First of all, a 

calibration set needs to be created. This pool of samples must be representative of the 

variability that the application will encounter. This wide range is necessary to ensure that 

the calibration model will be able to predict accurately and precisely new samples. The 

second step is the determination, for each sample selected in the calibration set, of the 

content in the element of interest by reference analysis. The third step consists of creating 

the prediction model or calibration. This is done by using multivariate regression methods. 

Once the prediction model is developed, it is necessary to validate it by using either an 

independent dataset or a validation technique on calibration samples. 

 

2.2.3.1. Data Collection 

 

Igne et al (2007a) presented a study of the development of a calibration model on a 

matrix (triticale grain) experiencing large changes from year to year, from breeding and 

annual variability due to climatic changes. Conclusions were that a constant adaptation of 

the calibration set must be performed to ensure that the best set of samples is present in the 

calibration pool to predict new samples. Chemometricians select samples on a yearly or 
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other periodic basis or by using programs that reevaluate the appropriateness of each 

sample in the calibration set. The software WinISI (Infrasoft International LLC., State 

College, PA) for instance, uses principal component analysis and Mahalanobis distance to 

determine if a new sample is appropriate to be added to the calibration. Samples bringing 

information already present in the calibration set can be left out. 

 

NIRS is a secondary technique. Performance of the calibration models is based on the 

quality of the reference measurement. The distribution of the reference values must be 

carefully controlled. Linear regression techniques (multiple linear regression, principal 

component analysis, partial least squares regression) can perform on both uniform and 

normal distributions of the data while non-linear regression methods (artificial neural 

networks regression and least squares support vector machines) can be successfully applied 

to datasets presenting other types of distributions. However, in terms of applicability of 

prediction models to “unknown” samples, prediction models developed on uniform 

distributions are more likely to provide the best estimation of the true concentration of the 

compound of interest. Calibration models developed with a normal distribution of the 

samples are subject to the “Dunne” effect and may cause predictions to regress toward the 

mean (Williams, 2001).  

 

The data collection procedure should include a detection technique for outliers. 

Outliers are samples that are different from the population of interest, and that do not 

represent features of analytical value in the future. This difference can come from hardware 

failures, a degradation of the sample influencing its chemical composition, or from the fact 

that the sample belongs to another population and cannot be included in the population of 

interest. The detection of such samples is typically performed through a principal 

component analysis with a Hotelling’s T2 test – a multivariate method that tests the 

membership of an observation to a group – at a given confidence interval. Samples that, 

during the regression process, present an abnormally large residual value can also be 

considered for being outliers. It is necessary to remove obvious outliers from the calibration 

set because they may influence the regression equation and degrade its future 

performances. However, chemometricians must be careful not to remove too many samples  
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or relevant samples because those “abnormal” samples can be representative of a new 

variability that should be included in the calibration set to ensure accuracy and precision in 

the prediction of future samples (Walmsley, 2006). 

 

2.2.3.2. Signal processing 

 

To maximize the relationship between reference values and spectral data, the signal-

to-noise ratio needs to be increased by reducing the noise level. In NIRS, the noise can have 

several sources: light scattering, spectral interferences (due to overlapping of absorption 

bands from different functional groups), and spectral distortions (baseline drift, noise in the 

hardware …).  

 

2.2.3.2.1. Noise and baseline effect 

 

The first type of spectral pretreatment method aims to limit the noise, offset, and 

baseline effects by removing the high and low-frequency interferences (additional noise and 

background information) using the collinear nature of the absorbance values. The main 

techniques are: 

 

(1) Offset correction – It consists of removing a constant from each spectrum 

ij ijX x C= −  

where Xij is the corrected spectrum at i row and j column, xik the original 

spectrum, and C the correction factor. This processing implies that the baseline is 

constant. 

 

(2) Weighted least squares baseline correction – A low order polynomial 

representing the background is approximated and subtracted to remove the 

background. It is an iterative method that fits a polynomial to each spectrum in 

order to approximate the baseline. Highly negative peaks are limited. This 

method may not apply to situations where all absorption values correspond to 

(4) 
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sample absorption (no part of the signal corresponding to baseline only) because 

it may remove signal and introduce variance in the dataset. 

 

(3) Detrend – It is a non weighted form of baseline removal where a polynomial of a 

given order is fit to the entire spectrum and subtracted. This technique works 

only when the background signal is constant, linear, or curved. 

 

(4) Smoothing – It is a low-pass filter (removes high frequency noise). It uses the 

collinearity between spectral variables to fit an nth-order polynomial to a limited 

number of spectral points. The larger the window and the lower the order, the 

bigger the smoothing. Smoothing can be very useful when dealing with noisy 

signals, but can delete poorly resolved peaks. 

 

(5) Derivative – It removes baseline and enhances peaks. It is often used after a 

smoothing (to limit the accentuation of noises) by subtracting the xij absorbance 

value (ith sample and jth variable) by the xij-1 for a first order derivative. For higher 

order derivatives, the similar operation is progressively repeated. The main 

disadvantage of derivative methods is that interpretation of the spectra is made 

more complicated. 

 

Figure 6 shows the impact of these filtering techniques on 50 soybean spectra 

collected on a Foss Infratec 1241 (spectral range from 850 nm to 1048 nm at 2 nm increments, 

FOSS North America, Eden Prairie, MN, USA). 

 

2.2.3.2.2. Normalization 

 

The second type of spectral treatment is normalization. The goal of normalization is to limit 

scaling differences that arise from pathlength differences (mostly present in whole sample 

analysis), from scattering (travel of the light in the sample that can be different depending 

on the size of the particles), and from hardware variations. Normalization methods “attempt 

to correct for these kinds of effects by identifying some aspects of each sample which should 
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be essentially constant from one sample to the next, and correcting the scaling of all 

variables based on this characteristic.” (Wise et al, 2006).  

 

The main normalization techniques are: 

 

(1) Normalize – It is a method that enhances the similarity among samples. The most 

common normalizations techniques transform samples to unit length or unit 

area. 
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Figure 6: Spectral processing using noise removal and filtering techniques. 
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(2) Standard Normal Variate (SNV) – It is a weighted normalization where each 

variable of a sample is subtracted by the sample mean and divided by the sample 

standard deviation across the spectral points. The formula is as follows: 

( )2

1

1

ij i
ij n

ij i
j

x x
X

x x

n
=

−
=

−

−

∑
 

where Xij is the corrected absorption value for the ith sample and the jth variable, 

xij, the raw absorption value, ix , the mean of the sample I, and n the number of 

variable for each sample. A complete description of SNV was provided by 

Barnes et al (1989). 

 

(3) Multiplicative Scatter Correction (MSC) – It works by regressing a spectrum 

against a reference spectrum (typically the average spectrum of the considered 

dataset) and each variable of the measured spectrum is corrected by the slope 

and the offset of the fit. 

 

Figure 7 shows the impact of normalization techniques on the 50 raw soybean 

spectra. The three methods of normalization were able to isolate one spectrum from the 49 

others while filtering techniques did not provide this information (except 2nd derivative at 

one peak (at 940 nm) on figure 6). This spectrum would certainly be removed as an outlier 

in a calibration process. 

 

 

 

 

 

 

 

 

 

(5) 
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Figure 7: Spectral processing using sample normalization techniques. Unit area method was used to normalize 
the data. 
 

 

2.2.3.2.3. Variable scaling 

 

 The third type of spectral processing technique concerns the scaling of variables. 

Most regression techniques assume that the magnitude of the measurement is proportional 

to its importance. This is not always true, especially in NIRS where baseline or noise effects 

can interfere with the sample absorption. Two techniques are often used: 

 

(1) Autoscaling – It is the equivalent of SNV but instead of averaging and measuring 

the standard deviation across samples, it is done across variables. The calculation 

is: 
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1
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where Xij is the corrected absorption value for the ith sample and the jth variable, 

xij the raw absorption value, jx the mean of the variable j, and n the number of 

variables for each sample. 

 

(2) Mean centering – It consists of subtracting the overall sample spectral 

mean ix from each sample xij. 

ij ij iX x x= −  

Figure 8 presents the impact of scaling methods on the 50 soybean spectra. 
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Figure 8: Spectral processing using variable scaling techniques. 

 

The use of spectral processing methods prior to the calibration development has 

been, and is still, a large area of research in NIRS. Often, several methods are coupled such 

as derivative + SNV or MSC + autoscaling. Fernandez-Cabanas et al (2006) published an 

extensive study on the use of preprocessing in feedstuffs. The authors were not able to 

determine clear conclusions on the ability of specific processing techniques to improve 

results. Igne et al (2006, 2007b) showed that the use of preprocessing techniques is 

instruments and parameter dependent. Their use is an iterative process to find the right 

method and the right settings to improve the regression model. However, a calibration is 

rarely developed without any prior treatment of the data. 

(6) 

(7) 
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A more complete description of spectral pretreatment techniques discussed above 

can be found in Næs et al (2002) and Wise et al (2006). 
 

2.2.3.3. Orthogonal filtering methods 

 

In addition to these classical techniques, new methods have been developed to 

remove, at the multivariate level, the noise and other interferences. Orthogonal methods 

aim to remove the variance that is orthogonal (not related) to the compound to predict from 

the spectral data (raw or preprocessed).  

 

Orthogonal methods can be used for both improving the signal to noise ratio and the 

transferability of calibration models. The theory behind these methods will be discussed in 

depth in section 2.2.6 since they present a large potential for removing instrumental 

differences. Nevertheless, it is important to note that orthogonal signal correction (OSC), 

orthogonal partial least squares regression (O-PLS), and dynamic orthogonal projection 

(DOP) can be used to remove unwanted signal and thus behave as preprocessing methods 

(Wold et al, 1998; Trygg et al, 2002; Zeaiter et al, 2006). 

 

2.2.3.4. Signal transforms 

 

A challenge in the early days of NIRS was to deal with a large amount of data with a 

very limited storage system and low calculation power. Signal compression methods have 

been developed, based on the conversion of the spectra (in the spatial/time domain) to 

periodigrams in the Fourier domain and approximation and detail compounds in the 

wavelet domain. The idea behind these methods being that some frequency components 

could be removed without altering the information contained in the original signal. 
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2.2.3.4.1. Fourier transform 

 

The Fourier transform defines a relationship between a signal and its representation 

in the frequency domain. During the transform, no information is created or lost; the 

original signal can be recovered from its Fourier transform (Jackson, 2001). The theory 

behind the Fourier transform is that any periodic function can be represented by a Fourier 

series of sine and cosine functions of different amplitudes and related frequencies (McClure, 

2008). A discrete spectrum in the wavelength domain could then be represented as follows: 

( )
1 1

0
1 1

2 2( ) cos sin cos
M M

k k M
k k

k kF a a b a
N N
π λ π λλ πλ

− −

= =

⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑  

where a0 is the average value of the spectrum, N ( λ =1,2, …, N) represents the wavelength 

index and M (k = 1, 2, …, M) corresponds to the Fourier index. The array a0, a1, b1, a2, b2, … , 

aM-2, bM-2, of Fourier coefficients is ordered, by pair, in increasing frequency to form a 

periodigram. Fourier coefficients represent only frequency components and do not possess 

any localization (spatial) information. An inverse Fourier transform can convert a 

periodigram to its corresponding spectrum.  

 

 Fourier coefficients are complex numbers and can be expressed in terms of 

magnitude and phase. The magnitude of a Fourier coefficient determines the amplitude of 

the contributing term. The relationship is as follows: 

 
jX X e θ= ×  

where X  is the magnitude and θ the phase angle. Also, because X is complex, it can be 

written in terms of real and imaginary part rX  and iX  respectively.  

 

 

 

 

 

(8) 

(9) 
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Relationships between X , θ, rX ,and iX  are as follows: 

2 2
r iX X X= +  

1tan i

r

X
X

θ − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

( )cosrX X θ=  

( )siniX X θ=  

 

 Figure 9 presents the periodigram of a near infrared spectrum, as well as its 

magnitude, phase angle, real and imaginary components. It is important to notice that the 

periodigram (figure 9.B) is symmetrical. For a spectrum of 100 data points, the first value of 

the periodigram represents the mean of the original spectrum (0 here). The next 50 are 

Fourier coefficients. Then, the end of the periodigram is the image of the 49 first Fourier 

coefficients with the mean omitted. This means that only 51 data points need to be stored for 

a complete reconstruction of the original spectrum from its Fourier transform. It is possible 

to use Fourier coefficients to develop calibration models (McClure, 2008). 

 

2.2.3.4.2. Wavelet transform 

 

The wavelet transform is similar, in many aspects, to the Fourier transform because 

the original spectrum is decomposed using wavelets, waveforms of specific shapes. A 

wavelet is a function,Ψ , with a zero average and normalized ( 1Ψ = ). The Fourier series 

can be considered as a specific family of wavelets using sine and cosine functions. 

(10) 

(11) 

(12) 

(13) 
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Figure 9: A spectrum and its Fourier transform. A: mean centered near infrared spectrum; B: Periodigram; C: 
Magnitude and Phase Angle components; D: Real and Imaginary components. 
 

The main difference between Fourier and wavelets is that while Fourier coefficients 

refer only to the frequency, wavelet coefficients have both frequency and position 

information. Wavelet coefficients can be expressed as follows: 

( ) ( ), ,j k j kc f t t dxψ
+∞

−∞

= ∫ ,  ,j k∈Z  

where ,j kΨ represents a generated function from a mother wavelet through scaling (j) and 

translation (k) and f(t), the original spectrum. Thus, a signal s can be decomposed into its 

waveform at a different scaling level j following the equation: 

 

, ,j j k j k
k

s c ψ=∑  

More practically, the wavelet transform consists of applying a low-pass and a high 

pass filter, respectively, called scaling filter (H) and wavelet filter (G) to the original signal. 

These filters are orthogonal, specific to each wavelet form and their outputs are known as 

(14) 

(15) 
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approximation and detail components respectively. Note that the scaling filter is a 

smoothing filter. At scaling level 1, the original signal S can be written as 

 
1A = SH  and 1D = SG  

where A is the approximation and D the detail component. For S of size m x n, A1 and D1 

are both of size m x (n/2). The decomposition can be carried on to higher scaling values by 

applying to the approximation component these same H and G filters. This is known as the 

Mallat’s pyramid algorithm (Mallat, 1999). The decomposition process is presented on 

figure 10. 

 

It is also possible to recompose approximation and detail components to get back to 

the original spectrum. Equation 17 presents the decomposition/reconstruction relationship 

for a 4th level decomposition. 

 
4 T 4 T 3 T 2 T 1 TS = A H + D G + D G + D G + D G  

where A4, D4, D3, D2, D1 are the approximations at scaling level 4 and detail at scaling levels 

4, 3, 2, 1 respectively. Note that =4 T 4 T 3 TA H + D G A H . 

 

 One of the advantages of such decomposition is that it is possible to zoom into 

specific regions of the time-frequency domain, and extract waveforms from a given signal 

which belong to a specific scaling (decomposition level) and different time intervals. Thus, it 

is possible to study a specific type of frequency occurring at a specific region of the 

spectrum. 

 

Various types of wavelet forms have been developed. Fear et al, 2003 studied the 

compression ability of wavelet transforms on near infrared spectra and determined that 

Daubechies 4 was the most adapted because of its smoothing abilities. Figure 11 presents the 

Daubechies family as well as the Coilflets and the symlets families, three very common 

wavelets for signal filtering in NIRS. 

(16) 

(17) 
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Figure 10: A spectrum and its wavelet decomposition using Daubechies 1. 
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Figure 11: Most common wavelets used in signal processing. 
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2.2.3.4.3. Fourier and wavelet transforms in NIRS 

 

As mentioned at the beginning of this section, frequency based methods have been 

primarily used for signal compression. Using Fourier transform, we have seen that only 51% 

of the data need to be kept to allow a complete reconstruction of the spectrum. Further 

compression can be made by implementing a low-pass filter and setting to zero high 

frequency components, susceptible to represent noise. With wavelets, a similar process can 

be done. Only parts representing information is kept and detail coefficients can be set to 

zero. This has the effect to keep only the element of interest and to remove the noise in a 

time-frequency manner. Fear et al (2003) showed that wavelet transform was generally the 

most efficient method.  

Methods dedicated to remove noise have also been developed. Alsberg et al (1997) 

used moving averages on the frequency components of pure infrared spectra. McClure 

(2008) mentions the use of boxcar, polynomial, and Fourier smoothing to reduce noise. 

However, there is no description of the effect on the prediction ability of calibration models 

developed on frequency smoothed spectra. 

 

2.2.3.5. Calibration development 

 

As mentioned by Kovalenko (2006), the “development of calibration model is the 

most important and complicated step […]. Due to its complexity and comparatively large 

number of available methods, modeling is as much an art as a science”. In the calibration 

process, the chemometrician’s goal is to develop a relationship between the spectral data 

(multiple independent variables) and the reference values (dependent variable). For linear 

models, this relationship takes the form of a set of regression coefficients while for non-

linear methods, such as artificial neural networks and least squares support vector 

machines, the relationship becomes a weighted structure. 

Spectroscopists have adapted techniques developed in various fields. A popular 

example concerns partial least squares regression that was originally developed by Herman 

Wolds in the late 1960s to solve econometrics problems.  It is now the basic technique for 
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full-spectrum (data presenting a high collinearity) regression situations. Currently in NIRS, 

three linear methods (multiple linear regression, principal component regression, and 

partial least squares regression) and two non-linear methods (artificial neural networks and 

least squares support vector machines) are used extensively. Næs et al (2002) and Wise et al 

(2006) provide a very good guide to calibration methods. The next subsections summarize 

these methods as well as more simple methods from which they have been developed. 

 

2.2.3.5.1. Classical least squares 

 

The assumption under the classical least squares1 model (CLS) is that a measured 

spectrum is a sum of pure component spectra weighted by the concentration of the analytes. 

The model can be written as follows 

+x = pS e  

where x, the measured spectrum, is function of p the weights (concentration for each 

element) and S a matrix of pure spectra plus an error term e. In a quantitative analysis, users 

are interested to know in which proportion each component is present in x and thus solve 
+p = xS  

with +S the pseudo inverse of S, defined such as ( )-1+ T TS = S S S . Thus, to determine p, the 

pure spectrum of each spectrally active component must be known or estimated. This is 

done by a calibration process involving, separately, each spectrally active component 

( )-1T T
estS = C C C x  

where an estimate of pure spectra Sest is function of the concentration of the active 

component and x a matrix of measured spectra. 

 

                                                      
1 The least squares loss function is an optimization system that tries to minimize the sum of the 

residuals (sum of differences between predicted and actual values) squared. This optimization 

function is particularly sensitive to outliers. (Abdi H., 2003). 

(19) 

(20) 

(18) 
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 The disadvantage of CLS lies in the difficulty to determine the pure component 

spectra of all spectrally active molecules for complex mixtures. The impact of noise and 

other hardware interferences can make this technique unstable. 

 

 An alternative to CLS is the inverse least squares method (ILS) that assumes that a 

regression vector can be used to determine the relationship between the y-matrix 

(dependent variable or the reference values) and the X-matrix (independent variable or 

optical data). 

 

2.2.3.5.2. Inverse least squares 

 

In the ILS situation, the relationship between the spectral data and the reference 

value is obtained by a set of regression coefficient b such that 

y = +xb e  

with x the spectrum and y its associated content in the parameter of interest; e being the 

error term. Those regression coefficients or beta coefficients are estimated as follows 

y+b = X  

with the pseudo inverse +X calculated in the most common cases with the multiple linear 

regression (MLR) method: 

( )-1+ T TX = X X X  

 MLR is used in NIRS in conditions where the collinearity among independent 

variables is limited and where the number of observations is larger than the number of 

optical variables. As a consequence, MLR fails to develop calibration models for instruments 

collecting wavelength absorptions at a very short interpolation because variables are highly 

correlated. Also, in full-spectrum situations, the number of recorded wavelength can vary 

from 100 (Foss Infratec 1241) to 872 (Foss NIRSystem 6500, Laurel, MD,  

USA) or 1750 (ASD LabspecPro, Analytical Spectral Devices, Boulder, CO, USA) and often, 

the number of samples collected for calibration is limited. Williams (2001) noted that MLR is 

subject to overfitting when the number of independent variable is too limited. 

(21) 

(22) 

(23) 
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 However, MLR has been successfully applied to discrete situations (filter 

instruments and situations where wavelengths were preselected (Fox et al, 2002)) and where 

the optical data were already treated to remove the collinearity (Pienado et al, 2006).  

 

 To cope with these various issues (collinearity among variables, sparse samples, 

tedious choice of the number of variable to include), chemometricians have been using data 

compression techniques followed by regression methods to first remove the collinearity and 

compress the data to a few relevant variables that explain most of the variance of the X-

matrix and secondly perform a regression on those transformed data.  

 

2.2.3.5.3. Principal component regression 

 

Esbensen (2004) defines principal component regression (PCR) as follows: “PCR can 

[…] be thought of as a two-step procedure: first a PCA is used to transform X. The resulting T-

matrix is then plugged directly into the MLR model […], now giving 

y = Tb + f  

instead of y = Xb + f ”. 

 

The first step of PCR is based on the decomposition of the original X-matrix in 

principal components by a principal component analysis (PCA). PCA is an exploratory 

statistical method that aims to reduce the dimensionality of the data to reduce the noise as 

well as identifying new meaningful underlying variables. In a PCA analysis, eigenvectors 

and eigenvalues are calculated for each sample. The first eigenvector is a vector that defines 

the direction of the maximum variance in the data. The first principal component (PC) is a 

linear projection defined by the first eigenvector. Eigenvalues are the orthogonal distances 

from each sample to the eigenvector (they give the variance of the data in the direction of 

the eigenvector). The second principal component is orthogonal to the first one and 

represents the direction of the second maximum variance. Scores T are the projections of the 

observations in the new space. Loadings P give information about the relationship between 

the original variables and the system of principal components. “Loadings construct the 

(24) 
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direction of each PC relative to the original co-ordinate system since the PCs can be viewed 

as a linear combination of the original unit vectors” (Esbensen, 2004). Thus, the X-matrix can 

be written as follows 

...+T T T T
1 1 2 2 k k r rX = t p + t p + ... + t p + t p  

where r is the rank of the matrix. The maximum number of PCs (value of r) is either m-1 or 

n-1, whichever is the smaller with m and n the number of observation and the number of 

variable of the X-matrix respectively.  

 Often, the PCA model is truncated to k PCs because after the few first PCs, the 

variance brought by additional PCs is often overcome by noise. The final form of X can be 

written as follows 
T T T

1 1 2 2 k kX = t p + t p + ... + t p + E  

 PCA then allows a compression of the data. The number of PCs included in a 

calibration model obviously depends not only on the matrix of interest (a simple mixture 

will require less PCs than a raw foodstuff) but also on the noise of the instrument. The 

number of PC to include in a calibration is part of the “art” mentioned by Kovalenko. 

Validation methods are often performed to determine the optimal number of PCs; the one 

that will maximize the precision and accuracy as well as limit overfitting. These methods 

will be discussed later. 

 At the end of the PCA, a matrix of scores and a matrix of loadings are obtained. PCs 

being orthogonal to each other, the scores do not present the collinearity problem that MLR 

suffered from when applied to full-spectrum situations. The new data are now ready to be 

plugged in a regression algorithm. This is what Esbensen meant in equation 24 where T 

signified the score matrix of X. When developing the MLR model, the pseudo inverse +X  in 

the system y+b = X can be written as follows 

( )-1+ T TX = P T T T  

where P is the loading matrix and T the score matrix. 

 

 PCR, as well as MLR, is included in every chemometrics suite. This is a very 

powerful technique that has been at the origin of the use of wide spectral ranges for the 

(25) 

(26) 

(27) 
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development of various applications in NIRS (Sun, 1996; Park et al, 2001). However, PCR 

remains tedious to use because of the possible error in choosing the appropriate number of 

PCs. Partial least squares (PLS) regression was developed to simplify this dilemma. 

 

2.2.3.5.4. Partial least squares regression 

 

Wise et al (2006) present the PLS regression as follows: “Partial Least Squares (PLS) 

regression […] is related to both PCR and MLR, and can be thought of as occupying a 

middle ground between them. PCR finds factors that capture the greatest amount of 

variance in the predictor (X) variables […]. MLR seeks to find a single factor that best 

correlates predictor (X) variables with predicted (Y) variables […]. PLS attempts to find 

factors which both capture variance and achieve correlation.” 

PLS, similarly to PCR, decomposes (compress) the original X-matrix into principal 

components. However, PLS determines its principal components by maximizing the 

covariance between the y-matrix and all possible functions of the X-matrix. Thus, PLS 

principal components are more directly related to the variability in the y-matrix than PCA 

principal components are. The X-matrix is decomposed in scores (T), loadings (P), and an 

additional set of vectors called weights (W). Weights are computed from X directly and are 

necessary to calculate T; they are required to keep scores vectors orthogonal to each other. 

In PCA, T = XP while in PLS T -1T = XW(P W) . As a consequence, the pseudo inverse +X  

in the system y+b = X can be written as follows 

( ) ( )-1 -1+ T T TX = W P T T T T  

where P is the loading matrix, T the score matrix, and W the weight matrix. More theoretical 

explanations of PLS can be found in Wold et al (1984), Geladi and Kowalski (1986), Lorber et 

al (1987), and Martens and Næs (1989). 

 

The main advantage of PLS over PCR is the reduction of the complexity of the 

models. Table 2 provides an example of calibrations developed with both methods and 

shows that while PCR needed eight PCs to explain 90% of the variability of X, PLS required 

only four factors. This has an impact on the future predictive ability of models since the 4-

(28) 
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factor model will be more robust (less influenced by noise). While with 94% of the 

variability, PLS could achieve the 90% predictive level, PCR required 99.7% of the spectral 

variance (Boysworth and Booksk, 2001). It is necessary to validate PLS models to ensure an 

appropriate selection of the number of PCs. 

 

MLR, PCR, and PLS are the three main linear methods used in NIRS. However, these 

techniques have difficulties in situations where the relationship between the independent 

variables and the dependent variable is non-linear or when the distribution of the residual is 

not normal. Chemometricians have been using techniques such as artificial neural networks 

(ANN) and support vector machines (SVM) to deal with non-linearity and outliers. 

 
Table 2: PCR and PLS comparison on the ability to extract data from X-matrix (Boysworth and Booksk, 2001). 

 

  PCR  PLS 

Factor  Cumulative % 
spectral variance 

Cumulative % 
predictive variance  Cumulative % 

spectral variance 
Cumulative % 

predictive variance 
1  88.21 3.53  82.54 13.96 
2  94.78 50.60  94.73 57.30 
3  96.94 50.61  95.58 83.58 
4  97.92 60.86  96.15 92.73 
5  98.68 62.93  97.94 93.58 
6  99.14 71.76  98.72 94.40 
7  99.45 72.10  99.33 94.84 
8  99.70 93.15  99.44 96.49 
9  99.81 93.16  99.66 96.83 
10  99.87 93.83  99.78 97.34 

 

 

2.2.3.5.5. Artificial neural networks 

 

Artificial neural networks have brought a whole new dimension to the development 

of near infrared calibrations. While unsuccessful on small datasets, ANNs have shown 

advantages over linear methods when dealing with large databases. Numerous publications 

show cases where ANNs provided more accurate and precise results than linear techniques 

(Wu et al, 1996; Dou et al, 2005; Kovalenko et al, 2006). Furthermore, some commercial 

prediction models are now ANN-based (Foss Infratecs). 
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As stated in its name, ANN mimics the functioning of biological neural networks by 

being constituted of individual neurons positioned on interconnected layers. A typical ANN 

has an input layer, one or more hidden layer(s), and an output layer. The number of neuron 

on the input and the hidden layer(s) can vary. Figure 12 presents an example of three-layer 

structure. Kecman (2001) provides a very good description of the ANN algorithm. 

 

 
Figure 12: ANN network structure: 2 neurons on the input layer, 3 neurons on the hidden layer, and a single 
output (Kecman, 2001). 

 

An activation function (or transfer function) is associated with each neuron of the 

hidden and output layers. In a biological neural structure, if the input intensity does not 

reach a threshold, no information is passed along. In an artificial neuron, an activation 

function is responsible for the transmitted value. Several functions exist, but in NIRS, the 

most used are the log-sigmoid, the tan-sigmoid, and the linear transfer function. Inputs are 

typically PCA or PLS scores (orthogonal vectors). The number of input neurons (number of 

PCs) has to be optimized for the application. This value is typically higher than the number 

of PCs used in linear models. Inputs are multiplied by a randomly defined weight and sent 

to all neurons of the first hidden layer. Inputs are summed and applied to the transfer 

function. In a three layer network, outputs of the hidden layer are multiplied by a weight 

and sent to the output layer where they are summed and applied to the transfer function to 

obtain predictions. These predictions are compared with reference values and a calibration 

error is determined. If the value is greater than a threshold set by the user, an optimization 
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process such as the backpropagation algorithm starts, consisting in adapting the weights to 

reduce the calibration error. 

 

In addition to the number of input neurons, the internal structure of the network, 

and the activation function, the user has many other parameters to set: algorithm to set the 

original weights, algorithm to adapt them. Also, depending on the learning rate (a small 

learning rate will modify weights moderately), an ANN can require a large number of 

epochs to converge. An epoch is a cycle of backpropagation and adaptation of the weight, 

from the output layer to itself. The momentum is another important parameter to set. It acts 

like a low-pass filter and allows the network to not stop its training on a local minimum. 

The training of a network can stop when it reaches the user’s set performance or when the 

error does not decrease during a defined number of epochs. Thus, a low momentum 

increases the risks to find a local minimum, but a too large momentum can cause the 

network to never converge. The training will then stop when the maximum number of 

epoch is reached, or when the allowed training time is exceeded. 

 

In terms of structure, most of the functions can be emulated with just one hidden 

layer. However, the number of neurons can vary. A good method consists of starting with 

many and prune (remove branches of the network with weights equal or close to zero) to 

simplify the network.  

 

Regarding the number of samples needed, two conditions exist regarding the 

structure of the network: 

 

 

 

 

with W the number of weights, a the desired accuracy and N the number of neurons. 

 

 

Necessary condition: 

(Number of samples) > 
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W
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 35

 ANN is particularly subject to overfitting. A good validation strategy must be used. 

ANN performs poorly when trying to predict values outside of the training range, while 

linear methods can extrapolate quite well. Also, it is almost impossible to develop the same 

model twice because of the random assignment of initial weights. This is a major issue of 

traceability because often, it is not possible to recreate a model and for heavily regulated 

environments such as pharmaceutical industries, ANN cannot be used. Also, no actual 

chemometrics suite supports ANN and it has to be used offline. 

 

 In the same logic of learning, least square support vector machines were developed 

to establish the relationship between independent and dependent variables presenting a 

non linear relation in the situation of limited data availability. 

 

2.2.3.5.6. Least squares support vector machines 

 

Support vector machines were originally developed for binary classification 

situations (Vapnik, 1995). The idea behind SVM is to determine samples that define the most 

appropriate cluster limits (support vectors) as well as reduce the misclassification rate. In 

regression situations, SVR (support vector regression) and LS-SVM (least squares support 

vector machines) try to find the best fit of the data by limiting the number of samples 

outside a range error (or insensitivity zone) set by the user (see figure 13).  

 

The difference between ANN and SVM is that while ANN is focusing only on the 

closeness of the model to the data (which implies risks of overfitting and poor 

extrapolation), SVM adds a structural risk minimization parameter which, in practice, signifies 

a unique solution to the problem (called capacity of the machine). This means a significant 

difference in treating the error between the two techniques. In ANN, the confidence interval 

on the prediction is fixed and the network learns how to minimize the training error. In 

SVM, the training error is fixed (equal to zero or an acceptable level) and the confidence 

interval is minimized. 
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In terms of algorithms, SVR and LS-SVM consist in solving the following 

optimization system: 

 

 

 

 

 

with W the weights, C the penalty factor, ε  the insensitivity zone, and ζ defined such as 

( , )y f x wζ ε= − −  for above the insensitivity zone and *ζ bellow. This optimization 

problem can be solved by a quadratic approach with constraints that ends in forming and 

solving a primal and dual Lagrangian (SVR) or by solving a set of linear equations (LS-

SVM).  In addition, the kernel “trick” allows a modification of the space to make the 

relationships between y and X linear.  The major kernel functions are polynomials (nth 

degrees) and radial basis functions (RBF). 

 

 
Figure 13: In SVR and LS-SVM, the minimization of the error is based on the size of the insensitivity zone (2×ε) 
and the cost given to “outside” individuals (Kecman, 2001). 
 

 

Thus, even if SVR and LS-SVM appear much more complex than ANN, their 

implementation is simpler because fewer parameters need to be set. The user must 

determine which kernel function he/she wants to use and its parameter (degree of the 

polynomial or shape of the bell for RBF). This has an impact on the shape of the regression 
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function. The regularization parameter C must also be set. However, numerous 

optimization systems have been developed to find the most appropriate set of parameters. 

Optimization functions such as the “gridsearch” function of the LS-SVMLab toolbox 

(Suykens et al, 2002) perform an exhaustive search of these elements. However, this 

optimization process is extremely time consuming and is exponentially dependent of the 

size of the dataset. An exhaustive search of the optimal parameters for a matrix with 1,000 

observations and 100 wavelengths per observation can take more than a day of calculation 

to terminate on a Windows based computer with a processor of 2.4 GHz and 2 GB of RAM. 

Some authors have suggested the use of subsets from the calibration set to perform the 

optimization process and then validation with an independent dataset once they have been 

applied to the entire calibration set (Fernandez, 2006; Igne et al., 2008). 

 

SVM is a relatively new method in NIRS even though the technique is as old as 

ANN. Several papers have demonstrated its good performances compared to PLS and ANN 

in situations of large but also reduced datasets (Chauchard et al, 2004; Kovalenko et al, 2006; 

Igne et al, 2008). On the contrary to ANN, LS-SVM models are reproducible and can be used 

in regulated environments. However, similarly to ANN, SVM is not included in any 

chemometrics package and it has to be employed offline, limiting its use by the NIRS 

community. 

  

2.2.3.5.7. Underfitting and overfitting 

 

An issue inherent to compression methods or based on compression methods such 

as PCA, PCR, PLS, and ANN is the choice of the appropriate number of principal 

components. Using too few PCs is called underfitting and results from not including enough 

variance from the calibration set into the model. With this situation, the model will be 

difficult to build and its predictions will be unstable. On the contrary, using too many PCs is 

called overfitting and results from including too much noise in the model. The model will be 

fit to the calibration samples, but will be unable to predict accurately new samples. A 

different type of error is associated with each situation, as presented on figure 14. The 

optimum is usually found between the two extremes. Using validation methods, such as 
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cross-validation, imbedded in the calibration algorithm, help to choose the best number of 

principal components to include. 

 

 

 

 

 

 

 

 

 

 

 
Figure 14: Representation of under and overfitting and the prediction error (Næs et al 2002). 

 

 

2.2.3.6. Validation methods 

 

The validation is the last step in the creation of a prediction model. Various forms of 

validations are used during the calibration process (i.e. choice of the number of PCs in PLS 

using a cross-validation, use of a “stop” set for ANN to limit overfitting). But a solid 

validation strategy must be employed to ensure the good functioning of the calibration. 

Three validation strategies are usually used in NIRS.  

 

The first consists of using cross-validation methods (Næs et al, 2002). Cross-

validation implies using samples of the calibration set in the validation process. Block cross-

validation isolates a sequence of samples from the calibration set, develops a calibration 

model on the remaining samples and validates the model on left apart samples. Validation 

performances are stored, validation samples return in the calibration set and another set of 

sample is isolated for validation. The process continues until all samples in the calibration 

set have been part of a validation set. Validation performances are averaged and constitute 
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the estimated validation parameters of the calibration model developed with all the 

samples. The size of the block can vary. The larger the block, the more realistic the 

validation, but in case of sparse samples, large blocks are difficult to use. An alternative to 

block cross-validation is leave-one-out cross-validation. It is actually a particular case of 

block cross-validation where only one sample is removed from the calibration set. Cross-

validation results are usually considered over-optimistic regarding the real performances of 

the calibration. 

 

The second method of validation consists of isolating, prior to the development of 

the prediction model, a part of the calibration samples to be used as validation set. This 

technique is a specific case of cross-validation, except that the error of prediction comes 

from only one prediction event. Such a method is perfectly suitable when samples in the 

calibration set and samples that will be analyzed in routine analysis are similar (as in the 

case of synthetic products). When dealing with agricultural products and other products 

that change from year to year because of the climate impact and the changes in genetics 

brought by breeders, a more adapted validation technique has to be implemented, such as a 

validation based on next year or another origin samples. 

 

Validation on another year or origin samples is the best validation method for NIRS 

in situations of extraneous variability brought by uncontrollable environmental and genetic 

changes. However, it is hard to implement because it is necessary to wait for the next crop 

year or new samples. 

 

Igne et al (2007b) compared these validation methods in the development of triticale 

calibrations. Authors showed that while cross-validation methods give an indication of the 

performances of the validation, the use of part of the calibration samples for validation was 

closer to the real performances given by the use of next year samples. 

 

Validation performances need to be evaluated in terms of precision and accuracy. 

Precision means the degree to which further measurements or calculations show the same 

or similar results. In NIRS, it is evaluated by the model fit (coefficient of determination (r2) 
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of the comparison between actual and predicted values on the validation set) and the 

standard error of prediction (SEP) or standard deviation of differences corrected for bias. 

Statistical definitions of these terms are: 
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where ŷ are the predicted values, y the actual values, and n the number of samples. It is 

worth mentioning here that 1.96 SEP± × provides a 95% confidence interval on the 

predictions (from a normal distribution), but since the standard deviation is almost never 

known, the rule of thumb states that a 95% confidence interval is 2 SEP± ×  (from a t-

distribution with moderate n value). 

 

On the other hand, the accuracy is the degree of conformity of a measured or 

calculated quantity to its actual (true) value. The bias is used to measure accuracy. It is 

calculated as follows: 

( )ˆ −
= ∑ y y

Bias
n

 

where ŷ are the predicted values, y the actual values, and n the number of samples. 
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(31) 
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 The relationship between SEP and Bias is given by the equation 32. 

 
2 2 2RMSEP SEP Bias≈ +  

 

RMSEP is the root mean standard error of prediction and is a measure of accuracy. It is the 

standard deviation of the differences between observed and predicted values, not corrected 

for bias. Exact equality is not obtained because RMSEP uses n at the denominator and not n-

1 as in SEP. 

 

A last term, specially developed for NIRS measurement, is often used to compare 

calibration models validated on the same validation set. It is called relative predictive 

determinant (RPD) and reveals the ability of a prediction model to be used for various 

applications (Williams, 2001). It is the ratio of the standard deviation of the actual values to 

the SEP. It shows how the calibration is able to predict the variation of a validation set. A 

scale allows an easy comparison between calibration models (see table 3). 

 
Table 3: RPD values and their practical applications (Williams, 2001). 

 

RPD values Classification Application 
0.0-2.3 Very poor Not recommended 
2.4-3.0 Poor Very rough screening 
3.1-4.9 Fair Screening 
5.0-6.4 Good Quality control 
6.5-8.0 Very good Process control 
8.1+ Excellent Any application 

 

  

To complete this section on validation, it is necessary to talk about the error of the 

reference laboratory. NIRS is based on the measurement of a samples parameter by a first 

analytical method, so the error of this analytical method must be as low as possible to 

ensure good prediction results.  

 

(32) 
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It is measured by the standard error of the laboratory (SEL) and expressed as 

follows: 
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where ijy  is the jth replicate of the ith sample, iy is the reference method mean value of all 

the replicates of the ith sample, n is the number of samples, and R is the number of 

replicates.  

 

A complete description of these validation parameters can be found in Williams 

(2001) and Næs et al (2002). 

 

 SEP is a function of SEL. When developing a prediction model, the error in the y-

matrix is incorporated in the error of the model. In the best situation, the error of a 

calibration model can be as low as the error of the reference laboratory. David Hopkins 

(2008) presents this relation as follows 

 
2 2 2 2

Instrument SampleSEP SEP SEP SEL= + +  

where he decomposes SEP in three elements, the error of the instrument (repeatability), the 

error of the sampling (sample representativity), and the error of the laboratory. These three 

elements are inherent to any NIRS prediction and can be quantified, minimized but not 

erased. 

 

 

 

 

 

 

 

(33) 

(34) 
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2.2.4. Optimization methods for calibration development 

 

At the end of the chapter on instrumentation, we discussed the fact that some 

instruments collect spectra with a very short interpolation (every 1 or 2 nm) over a large 

range while other units collect only fewer absorption values at specific wavelengths, 

selected for the application. Applications have been developed based on the selection of a 

few variables from a spectrum. For instance, Foss Analytical patented the use of four 

wavenumbers (1700, 1407, 1365, and 1238 cm-1 or 5882, 7107, 7326, and 8077 nm) to develop 

models for the prediction of acetone in milk (US Patent 6385549 – May 2002). Foss stated 

that these four wavelengths optimized the prediction of acetone in the infrared region. 

Variable selection is a type of optimization fairly common in NIRS. Another type of 

optimization is to use only the most appropriate samples in calibration, the samples that 

will provide the best fit for the new sample. These models are called local models. 

 

Both optimization methods aim to reduce the complexity of the model and can be 

coupled. In this section, these techniques to optimize NIRS prediction models are presented. 

 

2.2.4.1. Variable selection 

 

2.2.4.1.1. Exhaustive search 

 

Selecting the best variables for the prediction of a parameter is a tedious procedure. 

The most intuitive method consists in performing an exhaustive search. The problem of this 

approach is the time to perform the calculations. For an instrument collecting n 

wavelengths, the total number of possible combinations is 2n – 1. For n = 100, the total 

number of possible variable combination is 2100 -1 or 1.2677 x 1030. This number is large and, 

even with a powerful computer, the exhaustive search of the best variable combination 

takes very long to perform. A type of exhaustive search is Interval PLS (Norgaard et al, 

2000). Instead of selecting a single variable at a time, a group of adjacent variables are 

selected; they are called intervals. PLS models based on these intervals are developed and 
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their RMSECV (Root Mean Standard Error of Cross-Validation) is calculated. RMSECV is 

often computed with a block cross-validation. The interval presenting the best fitness value 

is selected. This interval is then combined to other intervals, one at a time. New PLS models 

are developed and the best combination of intervals is kept. The operation is carried on until 

the fitness value starts increasing. A reverse-interval PLS can be implemented where the 

first model is developed with all intervals and intervals are removed one at a time until the 

lowest fitness value is reached. Note that the number of PCs to use in each model is chosen 

by the user at the beginning of the optimization process. The main disadvantage of interval 

PLS is its calculation time. When the size of intervals is low and the number of variables 

large, the convergence time can become very high (hours). 

 

2.2.4.1.2. Genetic algorithms 

 

Alternatives to exhaustive search methods have been developed based on stochastic 

approaches. A stochastic method is a method involving some elements of randomness. 

Genetic algorithms are a family of methods using stochastic search to find the best solution. 

Genetics algorithms copy evolution. They use gene modification methods (combination and 

mutation) to progressively improve the breed, in this case the fit. To use genetic algorithms 

for variable selection, it is necessary to randomly determine individuals, subset of 

consecutive (or not) variables. PLS or PCR models are developed using each individual in 

calibration and RMSECV is used to evaluate the fit. The number of factors to use is 

predetermined by the user. At the end of this first step, a table representing, for each 

individual, its fitness and the variable ID is obtained. The flag yes/no of each variable that 

determine if a specific variable is part of an individual is called a gene. Table 4 presents such 

map of individual/gene. 

 

The second step discards individuals that have a fitness value (RMSECV) larger than 

the median. In the present example, individuals 1, 3, 4, 5, and 10 will be discarded. To 

“repopulate” the number of individuals, combinations are implemented and variability in 

the population is generated by mutations. 
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Table 4: Map of individuals with selected variables of a 30 wavelength spectrum (white squares represent 

selected variable). 

                                  

1                                          0.175

2                                     0.146

3                                      0.218

4                                       0.203
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For practicality, we will represent black squares with 0 and white squares with 1. 

Individuals 1 and 2 from the original population can then be represented as follows: 

 

Individual 1:  010110111011100111001110110011 

Individual 2:  110111101111011101111011101111 

 

A combination consists in exchanging parts of the parent genes to create new 

individuals. The cross-over can be single or double. In the single cross-over, a variable is 

selected and everything on the left of this variable will be crossed-over to the other 

individual. In a double cross-over, two parts of the individual are exchanged. Thus, using 

Individuals 1 and 2 as parents, we would obtain with a single cross-over at variable 21, the 

following two new individuals: 

 

New Individual 11:  010110111011100111001|011101111 

New Individual 12:  110111101111011101111|110110011 
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and with a double cross-over at variables 7 and 15, we would obtain: 

 

New Individual 11:  0101101|01111011|111001110110011 

New Individual 12:  1101111|11011100|101111011101111 

  

If only combinations were possible, offspring could not contain variables that were 

not selected during the initial random assignment. Mutations allow this by randomly 

converting a non-selected variable to a selected variable. Using individual 1 as parent, a 

mutation occurring at gene 10 would give: 

 

New Individual 11:  010110111111100111001110110011 

 

 The generation of offspring carries on until the population of individuals is back to 

its original size (10 here). RMSECVs are calculated, just like after the random initial 

population assignment. The optimization process carries on as long as some percentages of 

individuals use the same variables or that the total number of generation is reached (also set 

by the user). At the end, the selected variables can then be used to develop a calibration 

model, where the number of principal components can be carefully chosen. The cross-

validation process can also be replaced by an independent validation set to evaluate the real 

performance of the model. 

 

 Thus, through these five steps (1. random creation of individuals, 2. fitness 

evaluation, 3. individual removal, 4. population breeding, 5. population mutation), whose 

steps 2 to 5 are carried on until the algorithm stops, noisy variables (responsible for higher 

RMSECV) are discarded because less and less individuals are using them. 

 

The use of genetic algorithms requires the tuning of many parameters (the number 

of PCs to use in the automatically generated models, the nature of combination and the rate 

of mutation, the number of generations allowed …) and it is also a method subject to 

overfitting. A consistent validation strategy should be implemented. 
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 Genetic algorithms have been used for twenty years in NIRS, but the main issue that 

developers are facing is that few instrument have software able to implement them (only 

available in statistical suites). However, they can be easily applied into instruments because 

regression coefficients of non selected variables can simply be set to zero. The literature 

reports successful applications over full spectrum methods for soluble solid content in apple 

(Shi et al, 2008) and grains (Davies, 1987; Leardi et al, 1992). 

 

 The manual of the PLS_toolbox (Eigenvector Research, Wenatchee, WA, USA) is a 

very good reference for the theoretical and practical use of genetic algorithms. 

 

2.2.4.1.3. Particle swarm optimization 

 

 Another stochastic approach for variable selection is particle swarm optimization 

(PSO).  PSO represents a family of algorithms that mimic the behavior of social insects. They 

were introduced by James Kennedy and Russell Eberhart in 1995 and are based on three 

sociocognitive underpinnings: Evaluate, Compare, and Imitate. For variable selection, the 

use of PSO is quite similar to GAs since it is a binary combinatory problem. Continuous 

versions of PSO exist, but will not be discussed here. At the time this literature review was 

written, only one NIRS-based article has been published on the subject (Xu et al, 2004). But, 

PSO has been used for the optimization of ANN (to replace the back propagation algorithm) 

and this technique generates a lot of interest in the NIR community (Kennedy and Eberhart, 

2001). 

 

 In PSO, each particle (individual in GA) – a subset of variables among the variable 

population – is provided with a velocity. At each generation, the fitness of each particle is 

compared and its velocity is updated in function of its performance at generation n and 

earlier, the best global particle, and the best neighboring particles. Thus, the best performing 

particles will be imitated by other particles and the process will carry on until the 

performance criterion is reached. 
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 The pseudo code of PSO is provided below. 

 

1-   Loop 

2- For i = 1 to Number of Particle 

3-  If Fitness(Particle i)  < Fitness(Historical Best) 

4-   For d = 1 to Dimensions 

5-    Particleid = New Bestid 

6-   Next d 

7-  End If 

8-  g = i 

9-  For j = indexes of Neighbors 

10-           If Fitness (Neighbors j) < Fitness (New Best) 

11-     Then g = j 

12-           End If 

13-  Next j 

14-  For d = 1 to number of Dimensions 

15-           νid(t) = νid(t-1) x Wi + φ1 x rand() x (New Bestid – … 

16-   Particleid (t-1)) + φ2 x rand() X (Best Neighborgd – … 

17-   Particleid (t-1)) 

18-           If ρid< s(νid(t))  

19-     Then Particleid (t) = 1 

20-     Else Particleid (t) = 0 

21-           End If 

22-  Next d 

23- Nest i 

24-   Until criterion 

 

where νid represents the velocity of the particle i and dimension d at step t or t-1, Wi is the 

inertia weight for the particle i, φ1 and φ2 are learning factors whose sum is 2.0, and ρ is a 

random vector between 0 and 1. νid(t) is the parameter that determines if a dimension d will 

take the value 0 or 1 (0 meaning the variable is not selected, and 1, the variable is selected).  

 

 

 

Step 1: 

Adapt based on 

best overall 

Step 2: 

Find best in 

neighbors 

Step 3: 

Update velocity 

and particles 
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To obtain values between 0 and 1 the velocity is scaled using a sigmoid function. 
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 Since PSO looks for the best performing particles in the entire population and best 

previous state of the particle, the convergence is often quicker than for GA. The fitness 

parameter is usually the RMSECV. 

 

 Since few studies have used PSO for variable selection, it is not possible to tell which 

method, PSO or GA, performed better for NIR spectra. More theory on PSO can be found in 

Kennedy and Eberhart (2001). 

 

2.2.4.1.4. Other methods 

 

Other optimization methods have been implemented to select variables. We can 

mention simulated annealing and evolutionary programming. We will not discuss these 

techniques, but their use is increasing in NIRS (Luke, 1994; Swierenga et al, 1998; Lu et al, 

2004; Shen et al, 2004). 

 

2.2.4.2. Local regression 

 

Local models aim to optimize the prediction model statistics by choosing only the 

most appropriate samples to include in the calibration set. A model is generated each time a 

new sample is scanned for prediction. Tom Fearn (2001) stated that “A local calibration is 

one in which the equation used to predict for a given unknown sample is derived from only 

a subset of the available training samples, this subset having been chosen because the 

spectral data for the samples it contains resembles the spectral data for the unknown in 

some particular way”. 

(35) 
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Local models have been developed to deal with clustering issues or non linearity 

issues. We briefly mentioned, when presenting ANN and SVM, the non-linearity problem. 

A parameter can be non-linearly related to the spectral data and the use of linear regression 

methods will not provide the best prediction. Figure 15.A presents the relationship between 

a parameter, y, and a univariate X. A clear non-linear pattern exists. However, as displayed 

by figure 15.B, it is possible to select only a reduced range of data, and still be able to use 

linear regression methods to perform an accurate prediction over this range. 
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Figure 15: Non-linearity issues. Plot A shows a non-linear relationship between two variables X and y. Plot B 
presents a possible data range where local regression with linear regression method is possible. 
 

The implementation of local models globally follows the same steps, no matter the 

algorithm used:  

1. Creation of  a calibration set 

2. Collection of a new sample spectrum to be predicted 

3. Selection of samples the “closest” or the most “similar” from the 

calibration set to the sample to predict 

4. Prediction of the new sample based on the “local” model. 

 

First, it is necessary to possess a large library of samples. Enough samples should be 

present in the neighborhood of the new samples to ensure its precise and accurate 

prediction. It is then necessary to select the most appropriate samples from the available 
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database to develop a local calibration set. Depending on the algorithm, different methods 

are used to find the closet samples. Here, the three most common techniques used in NIRS 

will be presented (CARNAC, LOCAL, and locally weighted regression). 

 

In the method CARNAC (Davies et al, 1988; Davies et al, 2006), standing for 

Comparison Analysis using Restructured Near-infrared And Constituent data, the database, 

as well as the new sample to predict, is compressed using Fourier or wavelet transform and 

a similarity index is determined. This index is defined as 

2

1
(1 )

s
r

=
−

 

where r2, the coefficient of determination, exposes the similarity of the new sample with 

those in the database. The number of samples to include can be set by either using a 

threshold on s or by selecting a fixed number of samples, among the closest. The algorithm 

LOCAL (Shenk et al, 1997) performs similarly by determining the correlation coefficient (r) 

between the spectra in the database and the new spectrum (US Patent 5798526 – August 

1998). Spectra can be raw or pretreated, but no compression method is used. Similarly, the 

number of samples to keep is determined by a threshold or a fixed number of samples to 

include.  

 

The locally weighted regression (LWR) algorithm (Cleveland et al, 1988, Næs et al, 

1990) uses a different approach to find the closest spectra. A PCA compresses the database 

and the sample to predict. The closest samples are determined by calculating Euclidian or 

Mahalanobis distances between scores of the new sample and scores of the calibration set. A 

modification to LWR (LWRY) introduced the possibility to add information from the Y-

matrix in the distance calculation (Chang et al., 2001).  

 

The Mahalanobis distance was replaced with a more complex distance expression: 

 

( )1-i i iD Yd Xdα α= +  

(34) (36) 

(37) 
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where iXd  is the Mahalanobis distance for sample i to predict, α is a weighting factor and  

Yd is a normalized chemical distance calculated as follows: 

 

( )
,

,max
i l

i
i l

y y
Yd

y y

−
=

−
 

where y , the estimated unknown property estimated by a global regression and ,i ly is the 

reference value of each local sample. 

 

 The next step consists of developing the local model and predicting the new sample. 

CARNAC is particular because it does not use any regression method, but the prediction of 

the new sample is determined by a weighted average of the y values of the selected samples. 

The logarithm of the similarity index is used as a weighting factor. LOCAL and LWR 

methods, however, predict the y value of the new spectrum using a regression method (PLS 

or PCR). In LOCAL, several models are developed for different PCs and the final prediction 

is a weighted average of all predictions. LOCAL algorithm automates the choice of the 

number of PCs. The weight associated with each prediction is:  

 

1
k

residual BetaCoef

W
X RMS

=
×

 

where kW is the weight associated with the kth PC, residualX , the difference between the 

reconstructed spectra (from PLS or PCR decomposition) and the true spectrum to be 

predicted, and BetaCoefRMS , the root mean square of the regression coefficient. The best 

principal component will present the best reconstructed spectra and the smoothest 

regression coefficient and will thus maximize the weighting factor ( residualX decreases while 

BetaCoefRMS increases with the number of PCs). For LWR, the determination of the best PC is 

not automated. However, a weighting function is applied to each selected sample using a 

cubic weight function (figure 16) based on the distance of the sample to predict with the 

local calibration samples (the farthest is scaled to have a distance of 1).  

 

(39) 

(38) 
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The weighting function is as follows: 

( )331SW d= −  

where SW is the weight associated with a calibration sample and d, the scaled distance 

between the new sample to predict and the calibration sample.  
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Figure 16: Cubic weight function. 

  

Like every calibration procedure, the last step in the development of a local method 

should be a validation procedure. All validation strategies presented in section 2.3.5. are 

applicable to local models. 

 

 Local strategies have their pros and cons. They can be as accurate as global models, 

robust, and able to deal with non-linear relationships. However, they are time consuming, 

have little instrumental support (mostly offline applications), and cannot be approved in 

heavy regulatory environments. From a local model point of view, no calibration can be 

approved because each model is different. However, this regulatory issue could be solved 

by approving the sample database, since the database is fixed for each new sample (Cogdill 

et al, 2002). 

 

 

(40) 
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2.2.5. Standardization 

 

Calibration models are often developed using spectra of a single instrument called a 

master unit. This master unit should be chosen among other units of the network of 

instrument available to the chemometrician because of its precision and accuracy (Siska et 

al, 2001). However, the master unit is often located in the research laboratory and does not 

participate to the actual online processes or quality controls. The model needs to be 

transferred to these instruments. This is called standardization and is an essential part of the 

implementation of NIRS. 

 

Three types of standardization techniques exist: 

- Optical standardization or calibration transfer by adaptation of the 

secondary unit’s spectra to match master’s spectra 

- Post regression correction or standardization by correction of the 

predicted values of the secondary units using calibration developed on 

master unit. 

- Robust models or standardization by calibration model adaptation 

 

2.2.5.1. Optical standardization techniques 

 

Optical standardization techniques try to adjust secondary unit’s spectra to the 

spectra of the master unit. The intent is for the calibration model to perform as well as if a 

sample was scanned on the master unit. To perform the spectral modifications, a set of 

samples, called standardization samples, need to be run on both master and secondary 

units. Bouveresse and Massart (1996) presented a comprehensive description of the selection 

and the use of standardization samples in their review of standardization techniques.  This 

can be done with a high leverage method proposed by Wang et al (1991) or the Kennard-

Stone algorithm (Kennard et al, 1969). Bouveresse et al (1994) presented two simple 

techniques to select standardization samples. The first consisted in selecting samples that 

were the best predicted among the validation set. The second consisted in using samples 
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from a different source but of similar nature (not artificial samples). When dealing with 

several prediction models, using the same standardization samples for all factors is often 

convenient, but may not result in the best standardization since a sample may be predicted 

well for a factor but not for another. 

 

Several techniques exist to match spectra. Five of the best known techniques will be 

presented here. Other methods have been developed, but remain marginal in their use 

because their lengthy calculations do not bring real improvements compared to existing 

methods. Examples of complex techniques are ANN based standardization (Despagne et al, 

1998; Duponchel et al, 1999), maximum likelihood PCA (Andrews et al, 1997), positive 

matrix factorization (Xie et al, 1999), Kalman and Wiener filters (Teppola et al, 1999 and 

Siska et al, 2001 respectively), and other standardization of the regression coefficient 

techniques (Wang et al, 1991). 

 

2.2.5.1.1. Single wavelength standardization 

 

This method, developed by Shenk and Westerhaus (Paynter et al, 1983; Shenk et al, 

1985), consists of correcting, for each wavelength, the absorbance shifts (adjust the intensity 

differences between instruments). It is done by regressing, one at a time, the absorption 

values of a standardization set scanned on the master unit against the one obtained when 

the same set is scanned on the secondary unit. A slope and an offset are obtained and the 

secondary unit is corrected. This simplistic technique is applicable only when a limited shift 

in the X-axis (wavelength) exists.  

 

Figure 17 shows the application of this technique in standardizing two Foss Infratec 

units (master unit: Infratec 1241, secondary unit: Infratec 1229). Twenty soybean 

standardization samples were used and the wavelength of interest was 852 nm. More 

information about the material can be found in Chapter 3.  
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The secondary unit had a lower intensity in its measurements and the correction 

function at this wavelength would be: 

 
852 8520.88 0.19Scor SW W= × +  

where 852
ScorW corresponds to the corrected value of the secondary unit at 852 nm, 852

SW  is the 

original value of the secondary unit, and 0.88 and 0.19 are the slope and the offset values 

respectively obtained when fitting a first order polynomial to the data. 

 

The quality of the standardization samples is critical because a wrong approximation 

of the correction factors at each wavelength can have a large impact on the final SEP. 
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Figure 17: Single wavelength standardization. An offset and a slope need to be applied to this wavelength to 
correct the signal. 
 

 

 

(41) 
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2.2.5.1.2. The patented algorithm – Shenk and Westerhaus 

 

An updated version of the single wavelength standardization included the 

possibility to correct for shifts in the X-axis. This method has been patented and is used by 

the chemometric package WinISI (US Patent 4866644 – September 1989). Shenk et al (1993) 

and Bouveresse et al (1994) describe the functioning of the algorithm.  

 

It is divided into two steps. The first step is called wavelength index correction and 

consists in correcting the X-axis shifts while the second part corrects the intensity 

differences. Standardization spectra are preprocessed using a first derivative treatment. For 

each wavelength of the master, a spectral window of neighboring wavelength on the 

secondary instrument is chosen and for each wavelength of the window, the correlations 

with the master are computed. A quadratic model is fit to the correlation values to estimate 

more precisely the position of the wavelength that produces maximum correlation.  The fit 

is between the wavelength that has the highest correlation and its two neighboring 

wavelengths. The new locations obtained from the quadratic model (inflection points of the 

windowed quadratic equation) are recorded and a new spectrum is built. A second 

quadratic model is developed to relate the master wavelength to the matching wavelength 

on the modified secondary unit spectra. Definitive values for the secondary unit 

wavelengths corresponding to the master wavelengths are obtained. This process is called 

the wavelength index correction. The modified secondary unit spectra are then interpolated. 

Wavelengths of the secondary unit are shifted to the corresponding master wavelength, at 

each wavelength (similar to what was implemented in the single wavelength 

standardization method) using a linear regression. A slope and an offset for each 

wavelength are obtained and are used to correct spectral intensity. 

 

The wavelength index and the spectral intensity correction factors are stored and 

applied to new spectra scanned on the slave instrument.  This method is adapted to many 

standardization situations involving similar instruments. When facing instruments with 

more complex differences like a peak broadening, the patented algorithm is not sufficient 
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because it “assume that no relationship exists between neighboring correction models” 

(Feudale et al, 2002). 

 

2.2.5.1.3. Direct standardization 

 

Wang et al (1991) introduced two standardization techniques able to cope with peak 

broadening. Both methods imply that spectra from the master and the secondary unit are 

linearly related and this relation can be described by a transformation matrix such as 

M SS = S F  

where MS is a spectra scanned on the master unit, SS a spectra scanned on the secondary 

unit, and F the transformation matrix. 

 

 In direct standardization (DS), the transformation matrix is simply estimated as 
+

S MF = S S  

where +
SS is the pseudo inverse of SS . With F calculated, any new spectra NS can be 

modified to the original measurement space so that the calibration will predict it 

appropriately using 

Ntrans NS = S F  

where NtransS is the new spectrum modified to the original measurement space. NtransS is then 

applied to the calibration model developed on the master unit. 

 

 The computation of F assumes that the difference between instruments is due to 

instrumental variations. However, the variation in the chemical composition (due to non-

complete sample homogeneity) is also modeled and may be a source of error. Also, because 

the number of samples used to create F (standardization samples) is smaller than the 

number of channels to evaluate, DS is subject to overfitting. F is typically estimated using 

PCR or PLS to obtain a least squares solution.  

 

(42) 

(43) 

(44) 
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Another approach to limit overfitting is to reduce the number of channels estimated 

at a time. This is the purpose of piecewise direct standardization (PDS). 

 

2.2.5.1.4. Piecewise direct standardization 

 

In DS, each wavelength of the master unit is related to all the wavelengths of the 

secondary unit. PDS is a local alternative to DS. Influence of shifts of the X-axis between 

instruments is limited to certain spectral regions and does not impact the standardization of 

other wavelengths.  

 

PDS performs the same calculations as DS but at a local level. The user defines a 

window size and transformation coefficients are calculated to relate one wavelength of the 

master unit with several wavelengths on the secondary unit: 

j j jr = R b  

where jr is the absorption value at wavelength j from the master unit, jR  is the absorption 

value at wavelength j from the secondary unit, and jb  is the vector of transformation 

coefficients for wavelength j. The size of the window usually varies between 3 and 5 

wavelengths and a wavelength on the secondary unit is used several times to explain 

different wavelength on the master unit (moving window, one master wavelength at a 

time). For each window, transformation coefficients are estimated and assembled to form a 

banded diagonal matrix F according to 

( )T T T T
1 2, ,..., ,...,j kdiag=F b b b b  

where k is the number of wavelengths.  

 

 Thus, the transfer matrix relates the response of a number of wavelengths (size of the 

window) of the secondary unit to a single wavelength of the master unit (figure 18). 

(45) 

(28) (46) 
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Figure 18: Structure of the transformation matrix (Wise et al, 2006). 

 

 PDS is often used as reference method for other standardization techniques. Many 

authors have used it successfully, but few instruments are able to use a transfer matrix 

onboard (Perten DA (Perten Instruments AB, Huddinge, Sweden) can use PDS with a 

window size of 1). The standardization using DS or PDS has to be done offline. This 

situation is similar to the use of the patented algorithm except that Foss NIRSystems 

instruments are equipped with software that can accommodate the standardization 

parameters. Notice that a PDS with a window size of 1 is equivalent to single wavelength 

standardization. The difference is that in PDS, coefficients are estimated using a PCR or PLS. 

  

 To carry on the example introduced with single wavelength standardization, table 5 

presents the transformation matrix for wavelength at 850 nm, 852 nm, and 854 nm when a 

window size of 3 is used on the secondary unit. With each wavelength a bias is associated. 

In this particular case, they are -0.0114, -0.0074, and -0.0077 for 850 nm, 852 nm, and 854 nm 

respectively. With these parameters, the calculation of the corrected absorption value of a 

spectrum collected on a secondary unit for the wavelength at 852 nm would be: 

 
852 850 852 8540.3601 0.3601 0.3589 ( 0.0074)Scor Sraw Sraw SrawW W W W= × + × + × + −  

 

The reason for coefficients to be so similar is that there is no shift in the wavelength 

axis. 

 

 

(47) 
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Table 5: Structure of the transformation matrix for the example using a window size of 3 wavelengths. 

 
  Master Unit 

  

  
850 852 854 … 

      

850 0.5420 0.3601   

852 0.5401 0.3601 0.3614  

854  0.3589 0.3601 … 

856   0.3589 … 

Se
co

nd
ar

y 
U

ni
t 

…    … 

  

An attempt to use DS and PDS on spectra transformed in the wavelet domain was 

published by Tan et al (2001). They showed that the standardization at the approximation 

level with PDS and the detail level with DS was more robust and reliable than using DS or 

PDS only. 

 

2.2.5.2. Post regression correction techniques 

 

This second type of model transfer method does not modify the spectra. It adjusts 

predictions made on the secondary unit by the model developed on the master unit. Post 

regression correction techniques are easily implemented by every embedded software or 

firmware and are also easier to understand (for users).  

 

Often called slope and bias correction, this technique is widely used among very 

similar instruments (one can note the misuse of the term bias which in reality corresponds 

to term intercept). In this technique, a standardization set is scanned on all instruments (the 

secondary units as well as the master units) and predictions are compared to the reference 

values (Bouveresse et al, 1996). A linear regression is implemented and the slope and 

intercept of the trend line are determined. These parameters are then used to systematically 

correct predictions from the secondary instrument using the prediction equation developed 

on a master unit. This is a very simple approach that requires only that the range of the 

standardization samples cover the range of the calibration samples.  
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A special case of slope and intercept correction is bias only correction. Bias, as 

defined by equation 31, is calculated from standardization samples predictions and 

reference values and is added to the future predictions. This situation is suitable only when 

the slope is significantly equal to one. This signifies that the difference between the two 

units is mainly based on absorption intensities differences and not a shift in the X-axis. The 

slope in post regression correction appears when the wavelength alignment between the 

instruments is not correct. 

 

 As an example, predictions of the standardization set by a protein model developed 

on Infratec 1241 and run on Infratec 1229 are compared with the reference measurements. 

Figure 19 shows the relationship between the two units as well as the slope and intercept 

necessary to implement slope and bias correction and the bias for bias only correction. 
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Figure 19: Post-regression correction results for protein. Slope and intercept or bias only correction can be used 

to correct the measurements. 
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In this situation, using slope and bias post regression correction, the prediction on the 

secondary unit should be corrected as follows: 

 

ˆ ˆ0.982 0.595Sec Sec
Cor RawX X= × +  

And using bias only correction, it would look like: 

 

ˆ ˆ ( 0.059)Sec Sec
Cor RawX X= + −  

 

2.2.5.3. Robust standardization techniques 

 

Robust statistics are statistics that do not rely as much as classical statistics on 

assumptions. Many of the classical techniques require a normal or uniform distribution of 

the data. It is the case of MLR, PCR, and PLS while ANN and SVM are robust methods. 

They are more tolerant to outliers and emulate classical methods. However, the term robust, 

in robust standardization techniques, represents the idea of being resistant to outliers, but 

does not always involve the use of robust statistic techniques.  

Several robust standardization methods have been developed, but few papers have 

been published on the topic. 

 

2.2.5.3.1. Spectral preprocessing 

 

A possibility to make a calibration robust is to use pretreatment methods to remove 

instrumental interferences. But these methods do not work if there is a shift in the X-axis 

among instruments (Perten DA instruments uses MSC to standardize diode array 

instruments). Standardization by preprocessing is fairly easy, but cannot cope with large or 

inconsistent instrumental differences. 

 

 

 

 

(48) 

(49) 
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2.2.5.3.2. Variable selection 

 

It is also possible to make a model robust by selecting wavelengths that are not 

subject to shifts (isonumeric wavelengths (Mark and Workman, 1988)) and to develop 

models using MLR. However, it is necessary to correct for intensity differences (Dean and 

Isaksson, 1993). 

 

2.2.5.3.3. Including external variability 

 

This family of robust methods consists in scanning all or part of the calibration set on 

all the instruments of the network and by developing a calibration based on all the spectra. 

This way, the calibration algorithm does the standardization work by adapting the model to 

each instrument. Fearn (2001) noted that “The resulting calibration will almost certainly be 

less accurate than a calibration for a single instrument, but this may be a price worth 

paying”. Often preprocessing methods are used to help remove the instrumental 

interferences. 

 

2.2.5.3.4. Orthogonal-based techniques 

 

These methods are based on the statistical theory that the column space of the X-

matrix (set of all possible linear combination of column vectors) is “the sum of two 

subspaces, among which only one contains information useful for the model “(Roger et al, 

2003). Thus, by doing the appropriate projection, one can develop a model based only on the 

adequate X-matrix. There exists two ways of estimating the “parasitic” subspace. The first 

consists of finding the space orthogonal to y. This is what orthogonal signal projection 

(OSC) and orthogonal projections to latent structures (O-PLS) are doing. The second 

approach estimates the space in which the external factor occurs. Transfer by orthogonal 

projection (TOP), dynamic orthogonal projection (DOP), and error removal by orthogonal 

subtraction (EROS) are the most popular techniques to find and remove the orthogonal 

space. 
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• Orthogonal signal correction 

 

OSC was introduced by Wold et al in 1998. The idea is to compute loading weights, 

w, such that the scores t calculated from t = Xw describe as much variance as possible. The 

decomposition into scores is similar to the one used to develop PLS. The constraint is that 

this variance is not correlated to y. It is possible to repeat the process and remove more 

orthogonal factors from the t matrix. This corrected t matrix is then used to develop a PLS 

model.  

 

• Orthogonal projections to latent structures 

 

Trygg and Wold introduced a variation of OSC in 2002. Instead of removing the 

orthogonal signal from the t matrix prior to calibration development, the O-PLS method 

removes the orthogonal information from the PCs calculated by PLS. The reconstructed X-

matrix can then be used to develop a calibration model. O-PLS was reported to perform 

better than OSC. 

 

 OSC and O-PLS are, as mentioned, in section 2.3.3, preprocessing methods. Their 

primary goal is to remove noise. Authors reported that systematic variations could be 

successfully removed by the methods. These variations can be due to scattering or baseline 

effects, but from a standardization standpoint, the removal of systematic variations can 

correspond to deleting instrumental signatures and thus improve model transferability. 

 

• Transfer by orthogonal projection 

 

  Andrew and Fearn (2004) published an orthogonal technique aiming to remove the 

interfering components from the X-matrix in the situation of calibration transfer. 

Standardization samples are measured on both master and secondary units. A difference 

spectrum is obtained by subtracting standardization samples from both units and a PCA is 

performed on the difference matrix D. The first k loadings of D are used to form the matrix 
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P representing the direction of main variation between units. P is orthogonalized on the X-

matrix to obtain a corrected X-matrix (Xcorr) for between-instrument differences using 

 

( )T
corrX = X I - PP  

where I is the identity matrix. Xcorr is then used to develop calibration models. 

  

TOP requires the use of standardization samples. But in certain situations, collection 

of samples is not possible and orthogonalization is performed using the DOP method. 

 

• Dynamic orthogonal projection 

 

In DOP (Zeaiter et al, 2006), standardization samples are replaced by virtual 

standards. These standards are chosen to represent a variation to be removed. In calibration 

transfer situations, a few samples collected from the secondary instruments ( tX ) are used to 

create virtual standards using a kernel function. Equation 51 demonstrates how virtual 

standards are created using the calibration set (X and y) and the reference value of the 

samples collected on the secondary unit (yt): 

 

ˆ
tX AX=  with  ( )

tiij y ja F y=  

where ˆ
tX are the virtual standards, 

tiyF is a Gaussian kernel function centered on tiy for the 

ith sample and the jth variable. A difference matrix D is calculated (D = ˆ
tX - tX ) and similarly 

to TOP, the first k loadings from a PCA are selected to form P. The X-matrix is then 

orthogonalized similarly to TOP using equation 50. 

 

 By not requiring the same samples run on both master and secondary unit, DOP is 

more flexible, especially for on-line applications. 

 

 

 

(50) 

(51) 
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• Error removal by orthogonal subtraction 

 

EROS (Zhu et al, 2008) is based on the same principles as TOP and DOP. The 

difference arises from the way the P matrix is calculated. In EROS, the difference matrix D is 

mean centered and a new matrix W representing the difference between measurements is 

calculated as follows: 

 

( )1

Tm
i i

i

D DW
r m=

=
−∑  

where r is the total number of spectra in the D matrixes and m is the number of samples 

(also the number of D matrixes). W represents the pooled within-sample covariance matrix 

of the replicate spectra. The k first PCA loadings of W are selected and used to form the 

matrix P, used to orthogonalize the X-matrix using equation 50. 

 

 Orthogonal methods need to be tuned. The number of times orthogonal components 

are removed for OSC and O-PLS need to be optimized. Similarly, TOP, DOP, and EROS 

require tuning k, the number of factors to orthogonalize. 

 

TOP, DOP, and EROS have the advantage of being embedded in the calibration 

model (the regression algorithm will not take into account the orthogonal signal and the 

beta coefficients will emphasis the orthogonalization by not taking into account the 

orthogonal part of the signal in prediction mode). Thus, these methods are implemented 

during the calibration process. Validation samples do not need any orthogonalization step 

on the contrary to all other preprocessing and standardization methods. They have the 

tremendous advantage to be useable by all instrument software settings (even firmware). 

These same methods can be used to remove other interferences than instrumental 

differences such as temperature, batch effects, and other unwanted external effects 

presenting a repetitive effect across samples (Zeaiter et al, 2006). 

 

 

(52) 
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2.2.5.4. Summary 

 

Choosing amongst the different standardization methods presented here is often 

guided by the capacities of the instrumentation. While post-regression correction and some 

orthogonal methods can be used by all instruments, very few can actually implement DS, 

PDS, and advanced preprocessing methods. When working off-line, all methods are 

available, but the competency of the user is challenged when not guided by any software 

suite. Only the patented algorithm does not require any input from the user (except spectra). 

The software performs all calculations and provides an “easy to use” standardization file. 

Other optical, post regression, and robust methods rely on the capacity of the programmer 

to write the appropriate code (in Excel (Microsoft Corporation, Redmond, WA, USA), in 

MATLAB (The MathWorks, Inc., Natick, MA, USA), or in R (The R Foundation for Statistical 

Computing, Vienna, Austria)) and to tune the parameters. Even post regression methods 

can be tedious to use, because using a slope different from one may have important 

consequences (under-predicting low values and over-predicting high values, or the 

contrary). It also acknowledges the fact that a possible shift in the wavelength axis exists 

between both units.  

 

In addition, it may be necessary to combine standardization methods (PDS to correct 

shift of the wavelength and bias only correction to increase accuracy). Finally, the quality of 

the prediction model is of importance. A calibration model presenting limited accuracy and 

precision will be difficult to transfer to secondary units without increasing the error. 

 

Anthony M.C. Davis, a pioneer of NIRS wrote, in 2007, in a forum dedicated to 

diffuse reflectance spectroscopy: “If it ain’t broke. It don’t need fixing” which was here to 

remind the users that implementing a calibration transfer implies that the results it provides 

are better than they were before (when applying the model directly to the secondary unit 

spectra). The use of standardization methods is not systematic; however, a control of the 

calibration models is necessary. 
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2.2.6. Conclusions 

 

In this second chapter, we introduced the challenges that traceability constitutes, in 

terms of risk management and instrumentation. Near infrared spectroscopy was presented 

as a tool of choice for traceability because of its quick, non-destructive, cheap, and 

manipulation-free analysis. Basic physical and chemical theories were discussed as well as 

typical instrument settings. The treatment of the spectral data and the issue of instrument 

standardization were presented.  

Fearn (2001) noted the limited literature available on the comparison of 

standardization methods and never discussed the standardization among instrument 

brands. At the time this literature review was created, only three studies had been published 

on the subject (Heckman et al, 1987; Shenk et al, 1993, and Wang et al, 1993). The need for 

being able to transfer historical databases to newer technologies (i.e. diode array detection, 

LED light source) is tremendous. Because of the complexity of the differences between 

technologies, many techniques presented here may have difficulties to integrate all the 

instrumental differences. Many instrumentation companies have developed methods to use 

databases from other instrument brands on their machines (Perten DA 7200 can use spectra 

from NIRSystem units, FOSS North America, Eden Prairie, MN, USA), but very few have 

been published. 

 

 In the following chapters, we will investigate the use of commonly used 

standardization methods in a situation of inter-brand calibration transfer (two brands). This 

will help to fill the lack of literature in the comparison among standardization methods. 

Then, robust methods will be tested using spectral preprocessing methods in the spatial and 

the Fourier and wavelet domains. These approaches will be compared with the 

development of new local chemometrics techniques (selection of both samples and 

variables) and the implementation and the modification of orthogonal methods, in an effort 

to increase robustness of calibration models (removing from the X-matrix the information 

bringing instability) when performing in both intra and inter-brand situations. 
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CHAPTER 3. 

 

MATERIAL AND METHODS 
 

 This third chapter describes databases, validation strategies, and algorithms used in 

this dissertation. In a first section, samples, instruments, and reference analysis are 

presented. In a second section, the experimental design is outlined as well as the various 

methods tested from the literature, developed during the doctoral research, and the 

underlying framework structuring this dissertation. Finally, software used to perform 

calculations is described. 

3.  

3.1. Spectral data 
 

3.1.1. Samples 

 

Approximately 630 whole soybean samples scanned during crop years 2002 to 2005 

were included in the calibration set. These samples were collected over the years by the 

Grain Quality Laboratory of Dr. Charles R. Hurburgh Jr. at Iowa State University, Ames, 

Iowa. They represent the genetic, climatic, and environmental variability encountered in the 

USA. They have been collected over the years through national surveys, variety trials, and 

service operations. 

 

3.1.2. Instruments 

 

All samples were scanned on four near infrared spectrometers. The network of 

instruments was composed of two Foss Infratec Grain Analyzers (FOSS North America, 

Eden Prairie, MN, USA):  Infratec 1229 (s/n: 553075) and Infratec 1241 (s/n: 12410350) and 

two Bruins OmegAnalyzerGs (Bruins Instruments, Puchheim, Germany): OmegAnalyzerG 

(s/n: 106110 and 106118). 
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These instruments were chosen because both models (Infratec, OmegAnalyzerG) are 

approved by the National Type Evaluation Program (NTEP) and are entitled to perform 

legal analysis in the USA. They are transmittance units with a spectral range from 850 nm to 

1048 nm with an increment of 2 nm. OmegAnalyzerGs scan 741 wavelengths from 730 nm 

to 1100 nm, but a software option allows the reduction of the spectra to the same 100 

datapoints as the Infratec units. This is the instrumental set up approved by NTEP.  

 

A fixed pathlength of 30 mm was used. Samples were run at room temperature. Each 

sample was analyzed simultaneously on the four instruments. The number of samples was 

not always the same for all four units; a sample identified as an outlier for a unit could be 

well predicted by another unit. Also, not all instruments had the possibility to scan the 

smaller samples without changing the number of subsamples collected (Infratecs 1229 

collected 10 subsamples, Infratec 1241 collected 10 subsamples, OmegAnalyzerGs collected 

16 subsamples). With small samples, OmegAnalyzerGs and Infratec 1241 stop the analysis 

and ask for refill while Infratec 1229 reports an error. This situation was considered closer to 

a field experiment than reducing to exactly the same samples in all four calibration sets. 

 

A subsample corresponds to a single reading of the absorption of a sample. A 

spectrum is generally composed by the average of several subsamples. The number of 

subsamples is set by the manufacturers or the Grain Quality Laboratory for being optimal in 

terms of spectral quality and time needed to perform the analysis. 

 

3.1.3. Validation sets 

 

In order to evaluate calibration model performances in terms of precision and 

accuracy, two validation sets were created. A first set of 20 samples chosen from the 

calibration set was used to determine the ability of the various models to predict the sample 

variability present in the calibration set. The 20 samples were not included in the calibration 

set used to develop models. This set was called “set of known variability”. 
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A second set of 40 samples from crop year 2006 was chosen to determine the ability 

of the various models to predict new variability. These samples underwent different 

environmental conditions than those in the calibration set and the genetic present may be 

different. The 40 samples were not included in the calibration set used to develop models. 

This set was called “set of unknown variability”. 

 

3.1.4. Reference methods 

 

The present study considered three soybean parameters. Protein content was 

determined by combustion (AOAC 990.03); oil content was determined by ether extract 

(AOCS Ac 3-41); both by Eurofins Scientifics, Inc., Des Moines, IA, USA. Linolenic acid 

content was determined by gas chromatography using the method described by Hammond 

(1991), in the Department of Agronomy at Iowa State University, Ames, Iowa. Summary 

statistics for the calibration and validation sets are presented in table 6. 
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Table 6: Summary statistics of the calibration and validation sets. 

 
      

Parameter Instruments 
(serial) n 

Average 
Concentration 

(%) 

Range 
(%) 

Standard 
Deviation 

(%) 

Protein (13% moisture basis)     
 Infratec 1229 (s/n: 553075) 638 36.06 29.74 - 46.50 2.80 
 Infratec 1241 (s/n: 12410350) 624 36.04 29.74 - 46.50 2.76 
 OmegAnalyzerG (s/n: 106110) 628 36.10 27.48 - 46.50 2.86 
 OmegAnalyzerG (s/n: 106118) 625 36.09 27.48 - 46.50 2.92 
 Validation set 1 20 36.72 30.65 - 45.43 3.32 
 Validation set 2 40 37.61 33.78 - 41.92 2.14 
      

Oil (13% moisture basis)     
 Infratec 1229 (s/n: 553075) 629 18.42 11.89 - 22.52 1.78 
 Infratec 1241 (s/n: 12410350) 635 18.40 11.89 - 22.52 1.80 
 OmegAnalyzerG (s/n: 106110) 655 18.51 11.89 - 22.52 1.73 
 OmegAnalyzerG s/n:  (106118) 638 18.38 11.89 - 22.48 1.80 
 Validation set 1 20 18.55 15.27 - 21.68 1.57 
 Validation set 2 40 18.46 13.82 - 21.63 1.83 
      

Linolenic Acid (% of oil)     
 Infratec 1229 (s/n: 553075) 741 6.21 0.89 - 11.08 2.53 
 Infratec 1241 (s/n: 12410350) 713 6.30 0.90 - 11.08 2.48 
 OmegAnalyzerG (s/n: 106110) 701 6.19 0.89 - 11.08 2.56 
 OmegAnalyzerG (s/n: 106118) 696 6.20 0.89 - 11.08 2.56 
 Validation set 1 20 4.31 1.03 - 10.56 3.52 
 Validation set 2 40 6.12 1.72 - 8.94 1.91 
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3.2. Experimental design and methodology 
 

The present dissertation aims to test existing methods and develop new approaches 

to solve the calibration transfer issue for near infrared spectrometers. Using the four 

instruments of the selected network, four calibration transfer strategies were implemented.  

In a first step, instrumental differences between the four units of the network will be 

studied and a master unit for each network will be chosen. Then, a comparison of common 

standardization methods will be presented. These results will be compared with the 

implementation of (i) new spectral preprocessing methods based on the modification of 

high frequency components in the Fourier and wavelet domains, (ii) new variable selection 

and local chemometrics techniques, and (iii) orthogonal methods. 

 

3.2.1. Benchmark models – each instrument on its calibration set 

 

All four instruments of the network were first calibrated on their own calibration set. 

This allowed the selection of a master unit for each brand and also the determination of 

benchmark results for comparison with other techniques since these results represented the 

best performances obtainable from each instrument, using standard calibration practices. 

These original models, as well as every other model developed in this study, used partial 

least squares regression. Spatial pretreatments were also common to all calibrations (second 

derivative (Savitzky-Golay – 25-point window and 5th order polynomial for protein, 3rd 

order polynomial for oil, 5-point window and 3rd order polynomial for linolenic acid), 

normalization to unit area under the curve, and autoscaling (zero mean, unit standard 

deviation)). Prediction performances were evaluated in terms of precision with SEP and 

RPD and accuracy with bias. RPD was often preferred to SEP because of its resolution 

power. For a small change in SEP, a larger change in RPD can be observed and allow a 

better comparison between methods. 

 

Master units were then used for the development of intra-brand and inter-brand 

standardization strategies. In intra-brand situations, models of the master units were 
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transferred on the secondary unit of the same network while in inter-brand situations, 

master unit models were transferred onto the two units of the other instrument brand. 

 

3.2.2. Common calibration transfer techniques 

 

A first approach compared six common calibration transfer strategies from the 

literature. 

 

These methods were: 

1. Signal filtering in the spatial domain – Robust method 

2. Piecewise Direct Standardization (PDS) – Optical method 

3. Direct Standardization (DS) – Optical method 

4. Joint master calibration sets – Robust method 

5. Slope and Bias – Post-regression correction 

6. Bias only – Post-regression correction 

 

Standardization samples used by four of these methods were taken from the 

calibration set (before creation of the models). Ten subsets of twenty samples each were 

randomly selected. Their protein, oil, and linolenic concentration ranges were checked to 

match the ranges of the remaining calibration samples. New random subsets were created if 

the ranges were not adequate. A calibration for each parameter was developed without one 

of the subset at a time and the subset taken apart was predicted with the calibration (similar 

to block cross validation). The subset that presented the lowest SEP and bias for all three 

parameters (equally weighted) was chosen as standardization set. It was then removed from 

the final calibration set. 

 

 The ability of these six methods to transfer the model of master units to the 

secondary unit of their network and the two units of the other network brand was 

evaluated. While for methods 1, 2, and 3, only the predictions of secondary units were 

modified, methods 4, 5, and 6 modified the predictions of the master units as well as the 
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secondary units. Joint calibration set regrouped the calibration set of both master units and, 

as a consequence, the prediction performances of the master units were modified. Similarly, 

post-regression corrections being done against reference measurements on the 

standardization samples, predictions of the master units were also adjusted. 

 

 Method 1 – Signal filtering in the spatial domain – featured the use and the 

combination of spectral preprocessing methods for the reduction of spectral differences 

between units and brands. All four categories of spectral pretreatment methods were used: 

baseline correction (smoothing, derivative, detrending, and weighted least squares 

baseline), normalization and scattering correction (normalization, standard normal variate, 

and multiplicative scatter correction), interference removal (orthogonal signal correction 

and generalized least squares weighting), and scaling methods (mean-centering and 

autoscaling). All meaningful and reasonable combinations were evaluated (n = 75). Only the 

five best combinations were reported. 

 

Finally, the use of PDS involved the choice of a window size on the secondary unit 

spectra for which absorption values of the master unit were approximated. Window sizes of 

1, 3, 5, 7, and 9 were tested and only the results with the best settings were reported. 

 

3.2.3. Frequency components filtering 

 

This second approach featured three new ways to filter near infrared spectra.  They 

are spectral pretreatment methods used prior to spatial pretreatment methods. 

 

3.2.3.1. Fourier smoothing 

 

The Savitzky-Golay algorithm was used to develop a smoothing filter for the high 

frequency components on outputs from a fast Fourier transform. The smoother was applied 

to a range of Fourier index representing high frequency components. An iteratively search 

of the best range of Fourier coefficients that could be altered by the smoothing process and 
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still provide similar of better performances than on non filtered data was performed. 

Frequency filtered spectra were obtained after an inverse fast FT and were used to develop 

calibration models. The possibility to apply the smoother to the validation sets or not was 

investigated. 

 

A filter with a window size of 25 points and a 5th order polynomial was applied to 

the periodigram. Savitzky-Golay smoothing was preferred to moving average and boxcar 

methods because they tend to preserve spectral features (Savitzky and Golay, 1964). 

 

 Fourier smoothing can be summarized as follows: 

1. Transform data into the Fourier domain 

2. Apply smoother to high frequency components 

3. Inverse fast Fourier transform 

with the optimization process consisting of finding the appropriate filter parameters 

(window size, polynomial order) and the starting point (first Fourier index at which the 

smoother is applied). Note that since all spectra consisted of 100 absorption values, the last 

Fourier coefficient corresponded to the 50th sine coefficient. 

 

3.2.3.2. Fourier fitting 

 

A cubic polynomial was used to fit the magnitude components of the high frequency 

components from a FT of the calibration set. Fourier coefficients were converted into 

magnitude and phase angle. The third order polynomial was fit to the magnitude 

components of a range of Fourier coefficients representing high frequency components. 

Similarly, as in Fourier smoothing, the search of the starting point is an iterative process. 

The last point of the fit was always the 50th sine coefficient. The possibility to apply the fit to 

the validation sets or not was also investigated. 

The polynomial coefficients were found by fitting a cubic polynomial on the average 

spectrum of the twenty standardization samples. Polynomial fitting was chosen to remove 

local features and contrast with the Savitzky-Golay smoothing. 
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 Fourier fitting can be summarized as follows: 

1. Determine a fit pattern (mean spectrum of standardization set) 

2. Transform fit pattern and calibration sets to the Fourier domain 

3. Create polynomial on magnitude signal from fit pattern 

4. Apply fit to calibration set 

5. Inverse fast Fourier transform 

with the optimization process consisting in finding the appropriate fit pattern, polynomial  

order, and starting point. 

 

3.2.3.3. Wavelet smoothing 

 

The Savitzky-Golay algorithm was used to develop a smoothing filter for the high 

frequency components on outputs from a wavelet transform using a Daubechies 4 wavelet. 

The detail components of the first level decomposition were smoothed. The smoother used a 

3-point window and a 2nd order polynomial. The size of the windows was dictated by the 

shape of the signal; while FT high frequency components were very smooth, WT detail 

components were very noisy. Frequency filtered spectra were obtained after an inverse WT 

and were used to develop the calibration models. 

 

 Wavelet smoothing can be summarized as follows: 

1. Calculate detail components from first level decomposition 

2. Apply smoother to the detail components 

3. Inverse wavelet transform 

with the optimization process consisting in finding the appropriate filter parameters 

(window size, polynomial order). 

 

Fourier smoothing, fit, and wavelet smoothing preprocessed spectra were then 

preprocessed in the spatial domain with second derivative, normalization, and autoscaling 

(similar setting as benchmark calibration models). The ability of these three methods to 

transfer the model of the master unit to the secondary unit of their network, and the two 

units of the other network brand was evaluated. It was possible to update and compare 
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benchmark results by applying these high frequency-based smoothing methods in the 

situation of developing and validating each instrument on its own calibration samples. 

 

3.2.4. Robustness enhancement by sample and variable selection 

 

This third approach to calibration transfer featured the use of local chemometrics 

methods as well as variable selection and their combinations. 

 

3.2.4.1. Sample selection 

 

Along with LWR, LWRY, and LOCAL, two new approaches, with a similarity index 

based on Euclidian distance among Fourier coefficients at a specific Fourier index, were 

developed. 

 

3.2.4.1.1. Fourier distance index for local similarity 

 

A new method was implemented to select similar samples to the samples to predict 

for the development of local regression models. Sample selection is based on the 

determination of an index of similarity that orders calibration samples in relation to the new 

sample to predict. In LOCAL, sample similarity is based on the coefficient of correlation 

between spectra. In LWR, the mahalanobis distance between principal component scores is 

measured. A new index of similarity was calculated by measuring the Euclidian distance 

between the phase angles of the spectrum to predict and the calibration set spectra. Samples 

are first transformed into the Fourier domain with a fast Fourier transform algorithm and 

distances were measured at a specific Fourier index. The selection of the Fourier index is an 

iterative process. In this study, the fifths cosine coefficient was chosen because it belongs to 

the first pair of parameters to not undergo low frequency variations from sample to sample. 

 

The number of samples to include in the local model, as well as the number of 

principal components to include in the PLS model is chosen by the end user. Selected 
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samples were weighted using a cubic weight function similar to the one used in the LWR 

algorithm. 

 

3.2.4.1.2. Fourier distance index for local similarity semi automated 

 

Fourier Distance Index for Local Similarity Semi Automated (FDILS_SA) is an 

alternative to FDILS where the choice of the number of principal component to include is 

automatically determined. In the same fashion as LOCAL, a weight function is applied to 

the predictions of a range of selected PCs and the median of the weighted predictions is 

chosen for final output.  

The weight function is based on the behavior of the root mean square error of 

calibration (RMSEC) and the RMSECV that should respectively go lower and lower and go 

higher and higher, with an increasing number of PCs. The difference between the first 

derivative of RMSEC and the RMSECV was calculated and used in the weight function 

( )( )ˆ ˆ 1W i iy median y W= × +  

where ˆWy , the weighted prediction is a function of ˆiy , the predicted value for PC i and the 

difference of first derivatives iW  at the same PC. 

 

FDILS and FDILS_SA can be summarized as follows: 

1. Transform sample to predict and calibration set in the Fourier domain 

2. Measure Euclidian distance between sample to predict and calibration set 

samples based on the 10th Fourier coefficient (mean value included) 

3. Sort sample of the calibration set by increasing distance 

4. Select only the kth samples following user inputs 

5. Apply cubic weight function and develop PLS model 

 

FDILS      FDLIS_SA 

6. User choose the appropriate PC  6.   Calculate weight function 

7. Output predicted value   7.   Output median value of weighted 

      predictions 

(53) 
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The ability of these four local chemometrics methods to transfer the model of master 

units to the secondary unit of their network and the two units of the other network brand 

was evaluated. It was also possible to update and compare benchmark results by applying 

these local chemometrics methods in the situation of developing and validating instruments 

on their own calibration samples. 

 

3.2.4.2. Variable selection 

 

The ability of GA and PSO to select spectral features was evaluated. In addition, a 

modification to PSO was proposed where pid (the best state of the particle so far) was 

replaced by the state of the best neighboring particle. The use of neighboring particles is a 

protection against overfitting. This modification, suggested by Kennedy and Eberhart 

(2001), was named Neighboring PSO (NPSO). Lines 15, 16, and 17 of the pseudo code were 

then modified into 

( ) ( ) ( )( ) ( )( )1 21 1 1id t id id id id idv t W v t n x t g x tϕ ϕ= × − + − − + − −  

where nip represents the state of the best neighboring particle of particle i for variable d.  

 

For all three methods, the optimization process was performed iteratively by 

modifying the number of initial individuals/particles, the number of selected variables in 

each, and the crossover/mutation rates and the learning factors for GA and PSO 

respectively. It was possible to update and compare benchmark results by applying these 

techniques in the situation of developing and validating instruments on their own 

calibration samples. 

 

3.2.4.3. Combination of feature and sample selection 

 

For completeness, sample selection and variable selection were combined. Variable 

selection was used prior to sample selection to mimic the use of filter instruments. Again, it 

was possible to update and compare benchmark results for all units. 

 

(54) 
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3.2.4.4. Wavelength matching 

 

To cope with possible differences in the wavelength axis among units (in inter-brand 

situations), three wavelength matching methods were implemented. The first method was a 

piecewise direct standardization with windows size of one which consisted in scanning 

standardization samples on all units and correcting each secondary unit absorption values 

with a slope and an offset based on a linear regression of both master and secondary units 

absorption for the specific wavelength. The second method consisted in a simplistic copy of 

the patented algorithm of Shenk and Westerhaus (1985), where each variable of a transfer 

set from the master unit was matched up with the variable in the neighborhood of the same 

variable on the secondary unit (window size of 5) that had the closest absorption value as 

illustrated by figure 20. The variable in black on the master unit was approximated by the 

closest gray variable (crossed) from available variables from the secondary unit. On this 

specific example, a wavelength shift of 2 nm can be observed. The third method 

implemented post regression correction where validation set predictions on the secondary 

units were corrected with either a slope and offset or a bias calculated by doing a regression 

on the standardization set predicted values of the same model from both the master and the 

secondary units. 

 

 The ability of these three spectral matching methods to improve calibration transfer 

was evaluated. To limit calculations, only the best spectral matching method was 

implemented in combining feature and sample selection. 
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Figure 20: Variable matching for wavelength axis selection by closest selection. 

 

3.2.5. Orthogonal based robustness enhancement methods 

 

This fourth, and last, approach to the enhancement of calibration robustness 

employed orthogonal methods. OSC, O-PLS, TOP, DOP, and EROS were compared in their 

ability to remove the influence of instrumental differences. Standardization samples were 

employed to form the matrix P used to orthogonalize the X-matrix prior calibration for TOP, 

DOP, and EROS.  

 

A modification to DOP was also evaluated. Instead of taking into consideration only 

the parameter of interest (protein or oil) when creating the virtual standards, both 

parameters were used either at the same time or one after the other to form the matrix D. 

They were respectively named DOP 2y block and DOP 2y sequential. In DOP 2y block, the 

D matrix was formed by concatenating difference spectra for protein and for oil while in 

DOP 2y sequential, the calibration set was first orthogonalized for differences in protein, 

then for differences in oil. This was an attempt to increase the robustness of models by 

considering more variability than present for one parameter alone.  
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This process was done in to ways: 

- Orthogonalization of X for one parameters then for the other (method 

named DOP 2y sequential) 

- Orthogonalization of X for both parameters at the same time (method 

named DOP 2y block) 

 

Since samples in the calibration set were collected over four years, an attempt to 

model instrumental changes was done. Instrument aging differently, if the inter-annual 

variability could be removed, the transfer of calibration models might be made easier. A set 

of twenty samples scanned every year by the Grain Quality Laboratory for control purposes, 

different from calibration, validation, and standardization sets, were used to perform TOP 

and EROS. These samples had the particularity to have been scanned the same years 

calibration samples were collected and reflected instrumental variations over the years. 

They were used to form the difference matrix D. They were called TOP 4years and EROS 

4years. 

  

3.2.6. Conclusions 

 

The comparison between common standardization methods and the various 

attempts of robustness enhancement methods developed in this study (spectral filtering in 

Fourier and walevet domain, variable or/and sample selection, and orthogonal based 

methods) will provide the NIRS community with a consequent library of results for grain 

based calibration model transfer.  

To help the reader, table 7 summarizes all calculations performed in this dissertation. 

For each approach, instruments for which standardization methods can be implemented are 

displayed. Also, benchmark updates are notified when each instrument can be calibrated on 

its own calibration set. To simplify the table, notations 1229, 1241, 106110, and 106118 were 

used for Infratec 1229, 1241, and OmegAnlyzerG 106110 and 106118 respectively. Also, 

Infratec 1241 and OmegAnalyzerG 106118 comport a tag (star) on the first row meaning 

they were designated network masters (see chapter 4. for more details). 
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Table7: Framework of the dissertation. Calibration and standardization performances are calculated when instrument’s serial numbers are displayed. 
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3.3. Software 
 

All calculations were performed with MATLAB R2008a (The MathWorks, Natick, 

MA, USA). The PLS_toolbox v. 4.2.1 was used to develop all calibration models, GA, and 

spatial preprocessing (Eigenvector Research, Wenatchee, WA). Coefficients of the cubic 

polynomial in the Fourier fit filtering method were determined with the Curve Fitting 

Toolbox v. 1.2. Statistical analyses were performed in JMP v. 6.0.0 (SAS Institute Inc., Cary, 

NC). 
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CHAPTER 4. 

 

RESULTS AND DISCUSSION 
 

 In this chapter, results of calibration development and transfer will be presented in 

the order in which they were introduced in the previous chapter: common standardization 

methods, filtering in Fourier and wavelet domains, variable and local chemometrics 

optimization, and orthogonal based methods. But before, instrumental differences are 

detailed and network masters selected. 

4.  

4.1. Instrumental differences across the network on NIR units 
 

Figure 21 shows the difference between the average spectra of the standardization 

samples of instrument of the same brand and of both brands. Spectra were pretreated with a 

second derivative treatment (Savitzky-Golay 5-point window, 3rd order polynomial) to 

enhance differences and remove baseline effects. 

 

Within the Infratec network (figure 21.a.), we could observe a difference in 

absorption intensities at almost every peak. No shift in the wavelength axis was visible, but 

some peaks appeared to have a different area (peak 6 or 8). OmegAnalyzerG spectra (figure 

21.b.) were very similar with only slight differences from intensity absorption. In figure 

21.c., Infratec 1241 and OmegAnalyzerG 106118 were compared. A wavelength axis shift, a 

difference in absorption intensity, and differences in peak areas could be observed. In terms 

of variation in the X-axis, there was no shift at peak 1 and 2, a shift of 2-wavelengths at 

peaks 3, 4, 5, 6 and a 4-wavelength shift at peaks 7 and 8. In addition to this non-linearity, 

differences in peak areas could be observed at peaks 3 and 5.  

 

Figure 22.a. shows a PCA score plot of the calibration sets of Infratec 1241 and 

OmegAnalyzerG 106118 preprocessed with second derivative (25 point windows, 3rd order 
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polynomial) only. The two instruments could be easily differentiated with samples from 

Infratec 1241 in the right cluster. Instrumental differences could be successfully reduced 

when additional preprocessing methods were applied (second derivative - 25 point 

windows, 3rd order polynomial, normalization to unit area and scaled to mean zero, unit 

variance); these clusters were reduced (figure 22.b.). 

 

Information present in one instrument could thus be used to predict unknown 

samples from the second instrument. This further supports the possibility to implement 

inter-brand standardization scenarios using spectral preprocessing (spatial and Fourier, 

wavelet domains) and also local methods.  
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Figure 21: Spectral differences among and across instrument brands. Raw scans of standardization samples were averaged and preprocessed with second 
derivative (Savitzky-Golay 5-point window, 3rd order polynomial). 
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Figure 22: Principal component score plots of the calibration sets of Infratec 1241 (crosses) and OmegAnalyzerG 106118 (squares). (a) represents PCA 
scores on unpreprocessed spectra. (b) represents PCA scores on preprocessed spectra (second derivative, normalization)
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4.2. Master unit selection for each instrument brand 
 

Table 8 presents validation results when each instrument was calibrated on its own 

calibration set. To select master units, a method proposed by Fearn (1996) and originally 

created by Pitman (1939) to compare regression techniques when predicting the same 

validation set was used. This method compares the two sets of prediction errors with a t-test 

to determine the significance of the difference. 

 

For the prediction of the first validation set (of known variability), Foss Infratec 1241 

and Bruins OmegAnalyzerG (s/n: 106118) were significantly more precise within their 

brand (α = 0.05). For the second validation set, results were similar across instruments 

except for the prediction of oil where OmegAnalyzerG (s/n: 106110) predicted significantly 

lower contents than OmegAnalyzerG 106118 (α = 0.05). In terms of accuracy, results were 

more heterogeneous. It is interesting to notice that while for protein and oil, no clear pattern 

could be observed within each instrument brand, Foss Infratec 1241 and Bruins 

OmegAnalyzerG (s/n: 106118) gave significantly lower biases for linolenic acid. 

 

 Because of their better precision and equivalent accuracies, Foss Infratec 1241 and 

Bruins OmegAnalyzerG (s/n: 106118) were designated masters of their respective 

instrument brand network. 
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Table 8: Validation results of calibration models developed on their own calibration set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

   
Validation set 1 (n = 20) 

(known variability)  
Validation set 2 (n = 40) 

(unknown variability) 
          

Instruments 
(Serial) Parameters  Protein 

13%mb 
Oil 

13%mb 

Linolenic 
acid 
%Oil 

 Protein 
13%mb 

Oil 
13%mb 

Linolenic 
acid 
%Oil 

          

RPD  10.41 4.98 4.02  3.89 4.22 0.88 Infratec 1229  
( s/n: 553075) Bias (% pt.)  0.16 -0.62 0.20  0.11 -0.44 -1.45 
          

RPD  11.25 6.52 4.31  4.64 4.97 1.18 Infratec  1241  
( s/n: 12410350) Bias (% pt.)  0.20 -0.25 0.33  0.06 -0.40 -1.52 
          

RPD  9.29 5.17 3.77  4.17 5.55 0.94 OmegAnalyzerG  
( s/n: 106110) Bias (% pt.)  0.12 -0.16 1.31  0.17 -0.48 -1.53 
          

RPD  11.41 5.90 4.26  4.54 5.35 0.98 OmegAnalyzerG  
( s/n: 106118) Bias (% pt.)  0.12 -0.23 0.66  0.16 -0.47 -1.38 
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4.3. Evaluation of common standardization methods 
 

4.3.1. Intra-brand calibration transfer 

 

Validation results from the six standardization methods were compared to when 

each instrument was calibrated on its own calibration set. Infratec 1241 and 

OmegAnalyzerG (s/n: 106118) were masters of their respective networks. 

 

Five spectral pretreatment combinations gave significantly higher RPDs than all 

other combinations. Since they were not significantly different, their results were averaged. 

They were: 

 

- Second derivative (25 point window, 3rd order polynomial) + 

normalization (unit area) + autoscaling 

- SNV + Second derivative (25 point window, 3rd order polynomial) + 

normalization (unit area) + autoscaling 

- MSC + Second derivative (25 point window, 3rd order polynomial) + 

normalization (unit area) + autoscaling 

- Second derivative (25 point window, 3rd order polynomial) + 

normalization (unit area) + OSC + autoscaling 

- Second derivative (25 point window, 3rd order polynomial) + GLSW + 

normalization (unit area) + autoscaling 

 

Notice that the first combination was already the set of pretreatment methods that 

was used to develop benchmark calibrations. This reinforces the validity of the initial 

calibration process choices. 

 

Figure 23 shows, for each validation set and each product, RPDs obtained from the 

various standardization methods. 
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 Differences in precision existed between the two validation sets. Except for oil, 

validation results for protein and linolenic acid were significantly lower when predicting 

the second set than with the first. Validation results for linolenic acid on validation set 2 

were poor. The limited range and precision of the models when applied to a new variability 

probably explain these validation statistics. However, this could signify that an element 

which is hard to calibrate might be harder to standardize consistently due to the poor 

performance of the calibration on standardization samples. 

 

 For the validation set 1, DS and PDS gave significantly lower RPDs than other 

methods (α = 0.05). The other four standardization methods and the original individual 

models were not significantly different. Preprocessing methods used in the model 

development (similar for original models and models) resolved the baseline absorption 

differences between units of the same brand. All standardization methods (except optical 

techniques) gave equal or better results than when the instrument was calibrated on its own 

database. Thus, it is possible to improve the prediction ability of an instrument by 

transferring from a higher quality model. Choosing a network master is one of the most 

important steps in the constitution of a network. 

 

 For the validation set 2, DS and PDS were significantly poorer than other methods 

for the prediction of protein but not for oil and linolenic acid. There was no difference 

among other standardization methods, and the original models. Except for oil, predictions 

of transferred models were again equal or better than those from models developed on an 

instrument’s own database. 

 

 In all cases, the simplest methods (joint calibration sets, post regression correction 

and spatial preprocessing) gave equivalent results to the original instrument models. No 

simple standardization method was significantly better than the others. 

 

 Surprisingly, DS and PDS gave the lowest RPDs. The implementation of these 

methods requires that the exact same sample be scanned on both instruments. The 

variability within the samples could be solved as suggested by Bouveresse et al. (1994) by 
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using sealed cup to ensure that the scans of the standardization samples correspond on each 

instrument to exactly the same sample. However, from instrument to instrument, the use of 

such cups is not always possible (which was our case). The increase of the error for DS/PDS 

could also be due to the estimation of additional parameters (the F matrix) which inevitably 

adds error. This is consistent to the methods used to estimate F since DS, which involves 

only singular value decomposition, performed globally better than PDS, which requires the 

development of numerous local PCR or PLS models. 
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Figure 23: Validation of the different standardization methods in an intra-brand situation. 
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4.3.2. Inter-brand standardization 

 

Figures 24 and 25 present the prediction results when the calibration models of the 

two masters were transferred to the two instruments of the other brands (Infratec 1241 to 

OmegAnalyzerG instruments and OmegAnalyzerG (s/n: 106118) to Infratec instruments 

respectively). 

 

Again, PDS and DS gave significantly lower RPDs while there were no significant 

differences between the other four standardization methods (α = 0.05). For protein and oil, 

among the four methods that performed well (spectral preprocessed models, robust models, 

slope and bias, and bias only), three – robust models, slope and bias and bias only – gave 

equal or better results than when each instrument was calibrated on its own calibration set. 

 

 For linolenic acid, the results were different because for validation set 1, only robust 

models gave satisfactory results. In both situations (Infratec and OmegAnalyzerG masters of 

the network), PDS, DS, and slope and bias methods gave significantly poorer results than 

other techniques. When Infratec 1241 was master of the network, “spectral pretreatment” 

and “bias only” methods were not significantly different from the original results. When 

OmegAnalyzerG (s/n: 106118) was master, only the robust model was statistically similar to 

original results. For validation set 2, when Infratec 1241 was master, PDS and slope and bias 

gave significantly lower RPDs than other methods (consistent with what was observed for 

set 1). However, when OmegAnalyzerG (s/n: 106118) was master of the network, there 

were no significant differences among standardization methods. 
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Figure 24: Validation of the different standardization methods in an inter-brand situation with Foss Infratec 1241 
master of the network. 
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Figure 25: Validation of the different standardization methods in an inter-brand situation with Bruins 
OmegAnalyzerG (s/n: 106118) master of the network. 
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4.3.3. Standardization methods precision and accuracy 

 

 The standardization process should preserve a precision similar or better than when 

a model is developed on each instrument. AACC method 39.00 allows in increase of 0.5 x 

SEP between the master and the secondary unit, which implies a 10% decrease in precision. 

In the present study, no statistical difference existed among standardization methods except 

for the optical techniques. 

 

Calibration transfer should also output a bias as close as possible to the observed 

bias on the master unit. Table 9 presents the average bias per standardization method and 

per parameter, among master and secondary units, for intra-brand situations. Biases for 

inter-brand were similar to those of intra-brand. There were no significant differences 

between biases of masters and secondary units. Standardization methods had an impact on 

the precision but not the bias, in the conditions of this study (α = 0.05). This would imply 

that two transfer methods, one for precision and one for accuracy may be appropriate. 
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Table 9: Average biases for intra-brand standardization situation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Validation set 1  Validation set 2 

   Protein 
(% pt) 

Oil 
(% pt) 

Linolenic 

acid (% pt)
 Protein 

(% pt) 
Oil 

(% pt) 
Linolenic 

acid (% pt)
          

Master units         
 Benchmark results  0.16 -0.24 0.48  0.11 -0.43 -1.45 
 Robust models  0.11 -0.21 0.29  0.08 -0.44 -1.47 
 Slope and offset  0.23 -0.21 0.40  0.18 -0.41 -1.47 
 Bias only  0.09 0.27 0.57  0.04 -0.46 -1.30 
          

Secondary units         
 Benchmark results  0.14 -0.15 0.75  0.14 -0.45 -1.49 
 Spectral preprocessing  0.24 -0.32 -0.08  0.25 -0.55 -2.09 
 Robust models  0.11 -0.21 0.29  0.08 -0.44 -1.47 
 PDS  -0.13 -0.08 -1.17  0.18 -0.56 -1.52 
 DS  0.20 -0.16 1.70  0.03 -0.44 -1.51 
 Slope and offset  0.23 0.10 0.77  0.25 -0.40 -1.26 
 Bias only  0.07 -0.20 -0.93  0.07 -0.51 -2.94 
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4.3.4. Conclusions 

 

The transfer of calibration from Foss Infratec to Bruins Instruments OmegAnalyzerG 

was possible. Except for optical methods, standardization methods were able to cope with 

the various instrumental differences between brands. The simplest methods performed well 

in both intra and inter-brand situations. Thus, post-regression correction methods and 

robust models provided the most satisfactory results, of the most commonly used methods. 

In terms of accuracy, transferred models gave similar biases than those calculated for the 

master units. Post-regression correction methods, while providing results as precise as 

original validation results, were, for the most part, not able to erase the bias. The example of 

linolenic acid, a parameter difficult to measure by both near infrared spectroscopy and the 

reference method, showed that a model with poor performances is also difficult to transfer. 

 

 These results show that consistency can be achieved by the appropriate methods. 

Even though the two brands in this study were of similar hardware design, differences in 

absorption intensities and wavelength axis shifts were overcome. 
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4.4. Frequency components filtering 
 

The previous section showed the difficulty of applying standardization methods to 

unstable prediction models such as linolenic acid calibrations. From this point on, this 

parameter was given up since it would not bring anything new from the calibration transfer 

point of view. The study carried on with protein and oil. 

 

4.4.1. Smoothing and fitting method performances in calibration  

 

Figure 26 compares validation results for precision when each instrument was 

calibrated on its own calibration set (validation set not filtered). “Original” represent results 

obtained with spatial preprocessing only while “Fourier Smoothing”, “Wavelet Smoothing”, 

and “Fourier Fitting” results represent the use of the various frequency modification 

methods in addition to spatial preprocessing methods. 

 

 No significant difference existed between original results and the various Fourier 

and wavelet domain filtering-based methods. Among these methods, wavelet performed 

significantly worse than the two others for oil and validation set 2. No difference could be 

observed between filtered or not filtered validation samples. However, an improvement of 

calibration precision was observable in 81% of the situations (except for OmegAnalyzerGs 

oil – validation set 1 and Infratec 1241 protein – validation set 2).  

 

 The modification of frequency components in addition to spectral preprocessing 

appears to be insensitive to year to year variability. The information removed was most 

likely to be noise and not signal. These methods appeared highly dependent on the 

parameter and the instrument. 
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Figure 26: Effect of smoothing and fitting methods in calibration situation. 

 

 

4.4.2. Intra-brand standardization situation 

 

Predictions models of each instrument’s masters were transferred to the secondary 

unit of the respective brand. Master model predictions were compared with original 

predictions and with models transferred with and without frequency modifications. Figure 

27 presents the results (when validation sets were not filtered). 

 

All secondary unit predictions were improved by one or more transfer methods but 

not significantly. In several situations, transferred models performed better on the 

secondary unit than on the master unit. This may signify that the noise source is similar 



 104

from instrument to instrument of the same brand. Master and secondary unit predictions 

were significantly different for validation set 2 (protein and oil). 

 

These results show that the appropriate processing of the spectra can, in most cases, 

avoid implementing additional standardization methods. However, results tend to show 

that it is not possible to generalize the use of preprocessing methods (both spatial and 

frequency based). Their use remains an iterative process, instrument and parameter 

dependent. Also, differences between master and secondary units were not completely 

removed even when secondary unit precisions were improved. 
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Figure 27: Evolution of secondary unit precision in intra-brand situation. Infratec 1241 was master unit of Infratec 
1229. OmegAnalyzerG 106118 was master unit of OmegAnalyzerG 106110. 
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4.4.3. Inter-brand standardization 

 

Models of the master of each instrument brand were transferred onto the two 

instruments of the other brands. Figure 28 compares each master’s performances with 

secondary unit performances when models were transferred with and without frequency 

pretreatment (validation sets were not filtered). 

 

 With Foss Infratec 1241 master of both Bruins units, Fourier filtering and fitting gave 

significantly higher RPDs than wavelet filtering for protein. There was no difference 

between master and secondary units. The process of applying all three filtering methods to 

the validation set did not provide better results. An improvement of the secondary unit 

performances was observable in all situations relative to models developed on their 

respective calibration sets. The use of frequency filtering and fitting methods was suitable to 

transfer calibrations from Infratecs to Bruins. In some situations, transferred models 

performed better than the master unit. 

 

 With Bruins OmegAnalyzerG 106118 master of the inter-brand network, 

similar results were obtained than when Infratec 1241 was master. Wavelet filtering 

performed poorly for protein, and filtering validation samples did not make a 

difference. However, the difference between the OmegAnalyzerG master unit and 

the secondary units was not removed for protein and validation set 2. The use of 

frequency filtering and fitting methods was again suitable to transfer calibrations 

from OmegAnalyzerGs to Infratecs with secondary units performing better than the 

network master. However, the use of these methods remained parameter and 

instrument dependent. 
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Figure 28: Evolution of secondary unit precision in inter-brand situation. Infratec 1241 was master unit of both 
OmegAnalyzerGs and OmegAnalyzerG 106118 was master unit of both Infratec units. 
 

 

4.4.4. Effect on accuracy 

 

When models were developed on the calibration set of each instrument and models 

were transferred to secondary units on the same brand, no significant differences could be 

observed on the bias (data not presented). All processing methods (with and without 

frequency modifications) had only an effect on precision, not accuracy. 

 

However, when models were transferred across brands, there was a significant 

increase of bias. The loss in accuracy was significantly more important when models were 
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transferred from OmegAnalyzerG 106118 onto Infratecs than the opposite. Inter-brand 

transfer would require an additional standardization step such as a post-regression 

correction. 

 

4.4.5. Conclusions 

 

Smoothing and polynomial fitting were a good option to improve calibration 

precision. Similar to other common preprocessing methods, they appeared to be instrument 

and parameter dependent. The transfer of calibration models from instrument to instrument 

of the same brand and of different brands was possible. The yearly variability did not 

impact standardization results. Filtering in the Fourier domain gave better results, but 

testing with other wavelets and different filtering or fitting methods could allow the wavelet 

transform to perform better. 

 

These results show that the transfer of calibrations in intra and inter-brand situations 

can be done by modifying the signal before calibration, for similar or better results to those 

obtained on the master unit. This would avoid the use of standardization methods such as 

optical techniques (direct standardization and piecewise direct standardization …) or post-

regression corrections (slope and offset, bias correction). However, when performing inter-

brand standardization with frequency filtering techniques, it will be necessary to check and 

correct accuracy (bias). 
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4.5. Robustness enhancement by sample and variable selection 

 

4.5.1. For the development of calibration models 

 

4.5.1.1. Local models 

 

Figures 29.a and 29.c present validation results for both parameters and both test sets 

obtained with all five local methods. Bars named Original correspond to when all samples 

were used in the calibration set (results from table 8). A significant difference (α = 0.05) 

could be observed between both validation sets for protein. This shows that the variability 

brought by next year samples impacted protein more than oil. Significant differences could 

be observed between Original results and all five local methods for protein and validation 

set 2 (all samples models performing better than selected samples). None of the sample 

selection methods did better than the global calibration set. This may mean that in complex 

scenarios, when samples to predict are different from the calibration pool, using all available 

information can provide the best results, no matter the amount of extra-noise included into 

the model. 

 

A significant difference existed between master units and secondary units except for 

oil and validation set 2. This was expected because secondary unit results on Original 

calibrations were better than selected master unit for the OmegAnalyzerG network. This 

observation is of great importance regarding the choice of network master’s units. If 

improperly chosen, the efficiency of an entire network can be jeopardized. Performances of 

good instruments will be lowered by a model created on a poorer dataset. Finally, Original 

and LOCAL performed significantly worse than other methods for oil and validation set 1 

among secondary units while FDLIS and FDLIS_SA did better than all other methods for oil 

and validation set 2 among master units (α = 0.05). 

 

 These results show that only in restrained situations, local methods performed better 

than when using all available samples. However, even though non significant, it was 
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possible to observe large improvements: for protein and validation set 1, LWR gave a 

decrease in SEP of 27% (from 0.30% pt. to 0.22% pt.); for oil and validation set 1, FDLIS gave 

a decrease in relative SEP of 29% (from 0.24% pt. to 0.17% pt.). When comparing precision 

between Original models and local methods, an improvement could be observed in 95% of 

the cases for protein and validation set 1, 70% of the cases for oil and validation set 1, 15% 

for protein and validation set 2, and 60% for oil and validation set 2.  

 

Local chemometrics can bring a real improvement to applications where the 

variability to predict is known. However one must ensure that the calibration set is 

exhaustive enough to include the variability of new samples, since the risk taken by using 

local methods is higher than with global calibration models (protein and validation set 2). 

The variability needed to successfully predict that set was not fully included in the 

calibration set; local methods performed significantly worse than global models. 

 

4.5.1.2. Feature-selected models 

 

Figures 29.b and 29.d present validation results for protein and oil and both test sets 

for the use of variable selection methods. Original calibration results (all variables) were 

provided for comparison. Many of the observations made for local methods were true for 

variable selection methods as well. A significant difference could be observed between 

validation sets for protein. A significant difference existed between master and secondary 

units but for validation set 1 only. Finally, among masters, PSO performed significantly 

better than other methods but for protein and validation set 1 only. These results show that 

the use of featured selected calibration models did provided better results. Thus, in 83% of 

the situations, local methods did similarly or better than Original models for protein and 

validation set 1, 92% for oil and validation set 1, 33% for protein and validation set 2, and 

92% for oil and validation set 2. The implementation of feature-selected models did provide 

precision improvements with a decrease of 20% relative SEP for protein and validation set 1 

(from 0.3% pt. to 0.24% pt. with PSO) and of 14% for oil and validation set 1 (from 0.24% pt. 

to 0.21% pt. with PSO). 
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Selecting variables in this situation did provide an improvement, even though not 

significant, when predicting known variability and was not as sensitive to new variability as 

local chemometrics methods were. Thus, removing noise or variables not directly related to 

the parameter of interest can improve calibration models. The risk taken with feature-

selected models is also lesser since the model is not subject to recreation based on local 

interferences.   
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Figure 29: Validation results for local methods (top graphs) and feature-selected techniques (bottom graphs) for 
both parameters and validation sets when each instrument was calibrated on its own calibration set. 
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4.5.1.3. Local, featured-selected models 

 

Improvement brought by local chemometrics and feature selection in certain 

situations motivated the development of combined models where variable selected samples 

were paired with local methods to predict both validation sets. All three variable selection 

methods were combined with all five sample selection methods. Due to the large amount of 

results available, only those for protein and validation set 1 are displayed as example (figure 

30). The combination of methods can be powerful for precision improvement in certain 

situations.  

 

 Master units gave significantly better results than secondary units for protein and 

both validation sets. No combination performed differently on master units. However, 

when distinguishing between masters and secondary units, we found that among secondary 

units, all combinations with FDLIS and FDLIS_SA gave significantly better results for oil 

and validation set 1. When considering master units only, all combinations of FDLIS, 

FDLIS_SA, and LOCAL performed significantly better than others for oil and validation set 

2.  

 

 These results show that, in certain situations, the use of these methods or a 

combination of methods is beneficial. For example, the combination NPSO-FDLIS_SA for 

protein with Infratec 1241 predicting validation set 1 provided an RPD of 17.45, a decrease 

in SEP of 37%. This situation, however, was not true for other parameters and validation 

sets. 

 

 This first set of results provided us with some very interesting information on the 

power of using local methods for sample and variable. Even though not generalizable to all 

parameters, validation sets, and instruments, a careful optimization of a calibration model 

can provide users with more precise results more global models. However, the risk is large 

and should be precisely evaluated. 
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Figure 30: Validation results for combined local and feature selection methods for protein and validation set 1 
only. 
 

 

4.5.2. For the calibration transfer 

 

4.5.2.1. Intra-brand situations 

 

Figures 31 and 32 present intra-brand validation results for both validation sets and 

parameters for local and feature-selection methods respectively. Original performances are 

compared to network masters and transferred models on secondary units. For the use of 

local methods in calibration transfer situations (figure 31), no significant differences existed 

among algorithms. Thus, it is possible to transfer a local calibration model without loss of 

precision with these methods. Furthermore, there were no significant differences between 

master’s results and secondary units’ except for oil and validation set 1. This shows that in 

most situations, performances of master units were transmitted to secondary instruments. 

For the use of feature selection models (Figure 32), no significant differences were found 
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among methods. However, master and secondary units were still different on validation set 

1 (both parameters). Feature selection methods could transfer calibration models across 

units of the same brand but not as well as local methods. No combined methods performed 

differently than others. A significant difference remained between prediction of master and 

secondary units for protein (results not shown). 

 

 These results provided the possibility to transfer calibration models developed on a 

master unit to secondary units of the same brand when the model has been tuned for either 

samples, variables or both. Local chemometrics methods appear more suitable, with a 

reduction of the difference between master and secondary units. Transferred local methods 

improved RPD compared to Original results in 60% of the cases; for variable selection 

techniques, improvement occurred in 79% of the situations; and for combined methods, 67% 

of the transferred models had a higher precision than models developed directly on 

secondary instruments. No trend was observable among local and variable selection 

methods. As in calibration, performances of the various algorithms were parameter, 

validation set, and instrument dependent. 
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Figure 31: Validation results for local methods: both parameters and validation sets. Master units performances 
are compared to transferred models on secondary units of the same brand. 
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Figure 32: Validation results for feature selection methods: both parameters and validation sets. Master units 

performances are compared to transferred models on secondary units of the same brand. 
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4.5.2.2. Inter-brand  situations 

 

The ability of local methods, variable selection techniques, and their combinations to 

produce a model that can successfully be transferred across instrument brands was 

investigated: calibration models of Foss Infratec 1241 were transferred onto both Bruins 

instruments (figure 33) and Bruins OmegAnalyzerG models were standardized onto 

Infratec units (figure 34). On both figures, wavelength matching was indirectly performed 

by slope and bias for variable selection methods. 

 

4.5.2.2.1. With local methods 

 

When Foss Infratec 1241 was master of the network (figure 33.a), no significant 

difference could be observed between original results and transferred models performances 

on secondary units except for two cases. For protein and validation set 2, all local models 

performed poorly compared to original validation results and for oil and validation set 2, 

FDLIS_SA performed as well as Original and significantly better than all other techniques. 

In addition, validation results for secondary units and the master were not different. 

 

 When Bruins OmegAnalyzerG 106118 was master of the network (figure 34.a), 

FDLIS performed better than other methods for protein and validation set 1. For validation 

set 2, LWR did poorer than other method. LOCAL provided significantly lower results than 

other methods for oil and validation set 1. For three methods (LOCAL, FDLIS, and LWR), 

differences between master and secondary units existed for both validation set for protein 

and validation set 1 for oil. 

 

 The tuning of calibration model with sample selection by local chemometrics 

developed models transferable onto other instrument brands without loss of precision. 

However, it seemed that Bruins OmegAnalyzerG models were harder to transfer into 

Infratec units than the contrary. 
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4.5.2.2.2. With feature selection methods 

 

The use of feature selection methods in the situation of calibration transfer where 

units underwent a wavelength shift required the evaluation of the impact of these non-

matching variables. A simple matching system based on picking the closest variable, a slope 

and bias correction at the variable level (PDS window size 1), and post regression correction 

methods (slope and offset, bias) were evaluated in their ability to transfer feature selected 

models in comparison with no treatment. 

 

 When Foss Infratec 1241 was master of the network (figure 33.b), there was no 

difference when comparing variable selection methods, no matter the spectral matching 

technique used. All methods provided results similar to its own calibration set. Among 

matching methods, PDS performed significantly worse in all situations (parameters and 

validation sets). A difference between master unit and secondary units could be observed 

for PDS and closest variable selection method for both validation sets for protein and all 

variable selection methods. 

 

 When Bruins OmegAnalyzerG 106118 was master of the network (figure 34.b), PSO 

and NPSO performed poorly for protein and validation set 1. All methods did worse than 

original methods for protein and validation set 2, and GA gave lower RPD for oil and 

validation set 1. PDS and closest variable selection method gave significant differences 

between master and slaves for both validation sets for protein and all variable selection 

methods.  

 

 Calibration models tuned for variable selection could be successfully transferred 

across brands without loss of accuracy, no matter the wavelength selection method, when 

using no spectral matching correction and post-regression correction methods. All methods 

impacting the absorption values performed poorly compared to other techniques. It is also 

surprising that no correction of the wavelength axis gave similar results as when each model 

was developed on the calibration set of each instrument. This could be due to the high 
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collinearity among variables. Methods artificially modifying spectral trends deteriorated the 

relationship among variables and gave poorer results. The difficulty for OmegAnalyzerG 

models to be transferred onto Infratec units, which appeared with local models, was not 

present with variable selection methods. 
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Figure 33: Validation results for local methods (top graphs) and feature-selected techniques corrected with slope 
and bias (bottom graphs) for both parameters and validation sets when Foss Infratec 1241 was master of both 
Bruins units. Bullets represent performances of master units. 
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Figure 34: Validation results for local methods (top graphs) and feature-selected techniques corrected for slope 
and bias (bottom graphs) for both parameters and validation sets when Bruins OmegAnalyzerG 106118 was 
master of both Infratec units. Bullets represent performances of master units. 
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4.5.2.2.3. By combining local and variable selection methods 

 

For this last set of calibration transfer results, the combinations of methods without spectral 

matching were compared. When Foss Infratec 1241 was master of the network, 

combinations PSO – FDLIS, PSO – FDLIS_SA, and PSO – LWR gave significantly higher 

results than other methods for protein and validation set 1. For validation set 2, NPSO – 

LWR only gave similar results to original calibration results, all other methods did poorer. 

PSO – FDLIS_SA, PSO – LWR did better than other methods for oil and validation set 2. 

When looking at the difference between master and slave results, four out of five 

combinations with GA (FDLIS_SA, LWR, LWRY, and LOCAL) were significantly different 

for protein (both sets), and two out of five for oil and validation set 2 (FDLIS and LOCAL). 

 

 When Bruins OmegAnalyzerG 106118 was master of the network, there were two 

combinations that did perform as well as original results for validation set 1 and both 

parameters (PSO – FDLIS, PSO – FDLIS_SA, NPSO – FDLIS, and GA - FDLIS. There was 

difference between master and secondary units for three of the five GA based combinations 

(FDLIS_SA, LWRY, and LOCAL). 

 

4.5.2.2.4. Conclusions 

 

Calibration transfer can successfully be done by either local methods or variable 

selection or both but that again, performances of the various algorithms were parameter, 

validation set, and instrument dependent. Spectral differences between brands were easily 

overcome by the various methods, but no clear winner could be determined. Among 

variable selection methods, it was harder to transfer calibration models from 

OmegAnalyzerGs to Infratecs than the contrary. 
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4.5.3. Evaluation of selected variables 

 
Variable selection methods provided good results in calibration and in intra-brand 

calibration transfer situations. However, they showed limitations in inter-brand situations. 

Figure 35 presents selected variables from all three methods for protein models. Among 

selected variables, there were 45% common between PSO and NPSO, 44% between NPSO 

and GA, and 34% between PSO and GA. There was no significant difference among all three 

methods even though they were based on three very different variable patterns. It appears 

that all main chemical families are present in each selections (CHs, H2O, ROH, and RNH2), 

but not with the same relative importance. Each algorithm was able to select a set of variable 

that “worked well”, but that did not necessarily constitute the optimal selection. 

 

 Local methods may not be the most appropriate methods to consider with the type 

of data used in this study. The chance to find local optima is high with instability of the final 

model. 

 

4.5.4. Model accuracy 

 
Model accuracy (bias) is also of importance when considering the use of calibration 

and standardization methods. In this study, all methods tested did not have a significant 

effect on accuracy. They all performed as well as original calibrations. 
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Figure 35: Variables selected by the three variable selection methods implemented in this study (PSO: particle 
swarm optimization, NPSO: neighboring particle swarm optimization, and GA: genetic algorithms). Selected 
variables are represented in black. 
 

 

4.5.5. Concluding remarks 

 

In this section, we evaluated the ability of local chemometrics methods, variable 

selection techniques, and their combination for calibration development and transfer in intra 

and inter-brand situations. Even though no clear trends could be found, all methods 

provided, in certain circumstances, precision improvements in calibration or 

standardization or both. Optimization methods were instrument, parameter, and situation 

dependent. Local and variable selection algorithms can be used for calibration and 

calibration transfer, but it is necessary to evaluate the variability of future samples. FDLIS 
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and FDLIS_SA were as competitive local methods versus existing algorithms, and NPSO 

performed similarly to PSO and GA.  

 

 Risks taken must be evaluated when using these methods. Local chemometrics for 

sample and variable methods are attractive, but can be the source of instability and 

erroneous results if performed in uncontrolled situations. The robustness they bring is 

relative to the variability within the calibration set, due to the specialization they create. 
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4.6. Orthogonal based robustness enhancement methods 

 

4.6.1. Intra-brand calibration transfer 

 

Figure 36 presents, for each parameter and brand network, validation results on both 

validation sets. Performances of models developed on master units and transferred onto 

secondary unit are compared with their respective master units. Dotted lines serve as 

reference for master results since they were unchanged (and were omitted on the figure) by 

all orthogonal methods except O-PLS and OSC. 

 

Validation sets were different for protein (α = 0.05) but not for oil. The limited range 

for protein in validation set 2 was most likely responsible for these results along with new 

variability brought in by 2006 crop year. 

 

For protein, TOP and EROS gave significantly lower RPDs than other techniques for 

validation set 1 (true for both brands). The seven other methods did not give different 

results. For the validation set 2, there was no difference. For oil and both validation sets, 

there were also no significant differences. Even though results were not significant, not all 

methods behaved the same way. Tables 10 and 11 summarize the performance of the 

methods. Many of them gave better precisions than original models (table 10). A couple of 

situations provided secondary units with better performances than the master unit (table 

11). This is an indication that removing the uninformative space representing the difference 

between instruments can have a beneficial effect. This also shows that not all methods are 

appropriate for all parameters and samples. A strong validation strategy must confirm the 

appropriateness of the method to the situation of interest. It is interesting to notice that TOP 

4years and EROS 4years did not perform better than other methods even though they were 

designed to remove the variability through years. Sequential and block DOPs performed 

well, especially for the Bruins network, while DOP did not do well for that same network. 

The inclusion of more variability into the difference matrix helped to remove the external 

information. Validation set 1 was less well predicted than validation set 2. This could be 
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explained by the fact that, since the validation set 1 and the calibration set are very close, too 

much informative dimensions were removed, limiting the predictive ability of the model. 

However, the model robustness was enhanced when predicting samples different from 

those in the calibration set. This was particularly true for oil. This could mean that 

orthogonal methods trend to remove informative information causing model to underfitting 

the data. This can be beneficial or a significant constraint depending on the application. 

 

In the present situation, TOP and EROS, as well as TOP 4years and EROS 4years 

respectively gave the same results. Figure 37 presents the first four loadings of the D matrix 

between Infratec 1229 and Infratec 1241, after a PCA decomposition obtained from TOP 

(figure 37.a) and EROS (figure 37.b). Both methods provided the same correction space. In 

TOP, the internal difference within classes (a class being a sample collected on several 

instruments) is used to form a matrix whose variance is analyzed while in EROS, the 

variance for each class is calculated, summed, and that sum is analyzed. In situations where 

classes are the same, TOP and EROS provide the same results. TOP/EROS and TOP/EROS 

4years will be used from now and on to represent these methods. 
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Figure 36: Validation of the standardization methods in an intra-brand situation (Infratec 1241 is the master unit 
for Infratec 1229; OmegAnalyzerG (s/n: 106118) is the master unit for OmegAnalyzerG (s/n: 106110)). Dotted 
lines correspond to benchmark results. 
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Table 10: Precision gain or loss provided by each standardization method compared to original calibrations. 
 
 

  
Protein  Oil 

 Number of latent 
variables 

 

Number of 
component 

removed 

Method Instrument 
Val. 
set 1 

Val. 
Set 2  

Val. 
set 1 

Val. 
Set 2  Protein Oil  Protein Oil 

             

DOP             
 Infratec 1229 + +  - -  10 12  1 1 
 OmegAnalyzerG 106110 + -  - -  11 9  1 3 
TOP             
 Infratec 1229 -* +  + -  12 11  1 1 
 OmegAnalyzerG 106110 -* -  - +  12 11  1 1 
EROS             

 Infratec 1229 -* +  + -  12 11  1 2 
 OmegAnalyzerG 106110 -* -  - +  12 11  1 1 

DOP 2y sequential            
 Infratec 1229 - =  - -  12 12  1 1 
 OmegAnalyzerG 106110 + +  + +  12 12  1 1 

DOP 2y block            
 Infratec 1229 + -  - -  11 12  1 1 

 OmegAnalyzerG 106110 + -  + +  11 11  1 1 
TOP 4years            
 Infratec 1229 - -  - -  9 10  2 3 
 OmegAnalyzerG 106110 + =  - -  10 11  1 3 
EROS 4years            
 Infratec 1229 - -  - -  9 10  2 3 
 OmegAnalyzerG 106110 + =  - -  10 11  1 3 
O-PLS             
 Infratec 1229 - =  - +  12 9  2 1 
 OmegAnalyzerG 106110 - +  - +  12 8  2 3 
OSC             

 Infratec 1229 + +  + =  10 9  1 1 
 OmegAnalyzerG 106110 + +  - +  11 12  1 1 
             

 

+  result of the transferred secondary unit greater than the original secondary unit 

-  result of the transferred secondary unit lower than the original secondary unit 

=  results equivalent between transferred and original models  

* marks significance 
 
 

 



 128

 

Table 11. Precision gain or loss provided by each standardization method compared to network masters. 
 
 

  Protein  Oil 

Method Instrument 
Val. 
set 1 

Val. 
Set 2  

Val. 
set 1 

Val. 
Set 2 

       

DOP       
 Infratec 1229 = -  - - 
 OmegAnalyzerG 106110 - -  - - 
TOP       
 Infratec 1229 - -  - - 
 OmegAnalyzerG 106110 - -  - + 
EROS       

 Infratec 1229 - -  - - 
 OmegAnalyzerG 106110 - -  - + 

DOP 2y sequential      
 Infratec 1229 - -  - - 
 OmegAnalyzerG 106110 - +  - + 

DOP 2y block      
 Infratec 1229 + -  - - 

 OmegAnalyzerG 106110 - -  - + 
TOP 4years      
 Infratec 1229 - -  - - 
 OmegAnalyzerG 106110 - -  - - 
EROS 4years      
 Infratec 1229 - -  - - 
 OmegAnalyzerG 106110 - -  - - 
O-PLS       
 Infratec 1229 - -  - + 
 OmegAnalyzerG 106110 - =  - + 
OSC       

 Infratec 1229 - -  - - 
 OmegAnalyzerG 106110 - =  - + 
       

 
+  result of the transferred secondary unit greater than the master unit 

-  result of the transferred secondary unit lower than the master unit 

=  results equivalent between transferred and master models 
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Figure 37: Loading vectors of the difference matrix D between Infratec 1229 and Infratec 1241 from a TOP 
decomposition (figure 37.a) and an EROS decomposition (figure 37.b). 
 

 

4.6.2. Inter-brand calibration transfer 

 

Figures 38 and 39 respectively present, for each parameter and validation set, the 

performances of an Infratec model to be transferred onto Bruins units and vice-versa. For 

both situations (Infratec 1241 and OmegAnalyzerG master of the global network), and for 

both parameters, there is always a method that will provide satisfactory calibration transfer 

results. The transfer of calibration models across brands is possible and provides results as 

good as or better than if models were developed on their own calibration sets. 

 

For Foss Infratec 1241 master of the Bruins OmegAnalyzerG network, there were no 

significant results for protein and validation set 1, but DOP, DOP 2y block, and OSC 

performed the best. For validation set 2, only TOP/EROS provided as good results as the 

original model with all six other methods significantly less precise (α = 0.05). For oil and 

validation set 1, TOP/EROS, DOP 2y sequential and DOP block provided significantly 

lower RPDs than other methods while TOP/EROS 4years, and OSC provided 

OmegAnalyzerG 106118 with significantly higher results (α = 0.05). Finally, DOP 2y block 

performed again less precisely than other orthogonal methods (α = 0.05). 
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For Bruins OmegAnalyzerG 106118 master of the Foss Infratec network (Figure 4), 

there was no significant difference for both parameters and validation sets. Depending on 

the situations, different methods performed better than others, but this was not consistent 

from parameter to parameter and validation set to validation set. 
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Figure 38: Validation of the standardization methods in an inter-brand situation with Foss Infratec 1241 master 
of the network. Bars represent secondary units while triangles are the performances of the master unit. Dotted 
lines correspond to benchmark results. 
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Figure 39: Validation of the standardization methods in an inter-brand situation with Bruins OmegAnalyzerG s/n 
106118 master of the network. Bars represent secondary units while triangles are the performances of the 
master unit. Dotted lines correspond to benchmark results. 
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4.6.3. Evolution of the accuracy 

 

Improving or maintaining model precision is only part of the calibration transfer 

work. Keeping the accuracy (mean difference between predicted and reference values) as 

good as on the master unit is also challenging. In this study, intra-brand calibration transfer 

scenarios did not impact accuracy. Models performed as accurately on the master unit as on 

the secondary units. However, in inter-brand scenarios, orthogonal methods improved 

model accuracy which was not the case for exhaustive calibration methods and slope and 

bias ones (data not shown). This may signify that a two-step calibration transfer process 

may be needed: one to maintain precision and a second to correct for bias loss. 

 

4.6.4. Conclusions 

 

This section compared the use of orthogonal methods with other common 

standardization techniques for the transfer of calibration models between instrument of the 

same brand and across brands. Orthogonal methods were shown to perform similarly to 

secondary units when calibrated on their own calibration sets. While no method 

outperformed others, no beneficial effect was observed when using a collection of years 

representing instrumental variability present in the calibration set (TOP/EROS 4years). 

Modifications to DOP provided good results and orthogonal methods using information in 

the Y matrix (O-PLS and OSC) performed better than most of other methods. However, the 

later require the transformation of the validation samples and may not be suitable for all 

instrumental setups. 

 

The transfer of calibration models from brand to brand was shown possible, with an 

improvement of initial model precision. A control of model fidelity must be performed to 

ensure proper predictions. The two validation strategies finally showed that it is necessary 

to evaluate the transferred models with the variability that it will encounter, different 

transfer methods performing better on different types of spectral variations. 
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CHAPTER 5. 

 

GENERAL DISCUSSION 
 

 

 At the end of chapter two, a quote from Anthony M.C. Davis reminded the readers 

that the implementation of standardization methods is only beneficial if an improvement is 

observed. A successful calibration transfer can either mean that prediction performances of 

the secondary units are lower, but within specific limits, similar or better than those on the 

master unit, or that prediction performances of the secondary units are similar or better than 

when models are developed directly with secondary unit spectra. The choice of the master 

unit is consequently of importance. A wrong choice of this unit can bring a decrease of 

overall network performance since a low quality model will not perform as well as a high 

quality model could on lower quality instruments. 

 

 AACC method 39.00 states that the standardization error should not be larger than 

10% of the original precision. Throughout this study we have seen that in many cases 

(depending on the method used, the instrument, and the validation set), there was no 

significant difference between master and secondary unit predictions (α = 0.05). Also, in 

many situations, the comparison between benchmark results and standardized results 

showed that most methods gave similar or better results than when each instrument was 

calibrated on its own calibration set. 

 

Chapter 2, 3, and 4 presented, developed, compared, and applied fifty-seven 

calibration transfer methods of which thirty-five could be used in calibration development 

(these methods modified the calibration set and not only the prediction results on the 

secondary units). For each family of methods (common techniques, high frequency 

components filtering, sample and variable selection techniques, and orthogonal methods), 

there was no significant difference between benchmark results and transferred models for 

most of the methods except for two common techniques (DS and PDS). However, 
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performances themselves were not compared. Table 12 presents for the two secondary units 

in intra and inter brand situations, the percentage of cases where the 10% decrease in SEP 

rule was met. For all fifty-seven calibration transfer scenarios, the SEP obtained after 

transfer was compared with network masters and benchmarks. Large variability existed 

among methods, which was impacted by validation sets, parameters, and instruments. 

Satisfactory results were obtained when compared with benchmark, but the comparison 

with the network master showed that in some situations, the 10% rule was met by only very 

few methods. 
  
Table 12: Percentage of cases where the 10% decrease in SEP was met (includes all 57 methods). 

 

 

To further detail these results, changes in precision were presented and compared 

for all methods used in this study. Figures 40 to 49 present calibration and standardization 

results for intra and inter-brand scenarios. These figures use RPD and not SEP. But since the 

relation between both parameters is dependent on the standard deviation of the validation 

set, observations made with RPD are comparable to those made with SEP. 

 

Figures 40 and 41 present the results of the thirty-five methods that could be used in 

calibration. For protein and Infratec 1229, precision was equal or better in 97% of the cases 

for validation set 1 and in 66% of the cases for validation set 2. For OmegAnalyzerG 106110, 

RPD was increased or remained constant in 91% and 49% of the cases for validation set 1 

  Intra-brand scenario  Inter-brand scenario 

Instrument Validation set 
Compared to 

network master 
Compared to 

benchmark results  
Compared to 

network master 

Compared to 

benchmark results 
Protein 1 46% 91%  7% 25% 
Protein 2 51% 86%  33% 74% 
Oil 1 30% 91%  46% 72% 

Infratec  

1229 
Oil 2 5% 82%  5% 81% 

       
Protein 1 11% 89%  16% 84% 
Protein 2 86% 70%  39% 51% 
Oil 1 33% 88%  16% 81% 

OmegAnalyzerG  

106110 
Oil 2 95% 91%  82% 82% 
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and 2 respectively. The impact of the shorter range and lower standard deviation of 

validation set 2 was greater for OmegAnalyzerG 106110 than for Infratec 1229. Differences 

mainly occurred when local methods were used (with or without variable selection 

methods). It is difficult to explain these differences, but it is possible to say that the way 

“local” samples are selected may not be completely appropriate in cases of validation sets 

with a sample distribution different from the one of the calibration set. More work on 

creating a homogeneous database should be done. For oil, while Infratec 1229 gave equal or 

higher precision in 97% of the cases for validation set 1, it was the case of only 66% of the 

situations for OmegAnalyzerG 106110. Globally, OmegAlyzerG 106110 did not react well to 

frequency filtered spectra and orthogonal methods. For validation set 2, the situation was 

inversed since Infratec 1229 did well in 83% of the cases while OmegAnalyzerG 106110 

performed better in 91% of the scenarios. This is certainly due to the removal of too much 

information when filtering noise. 

 

It is difficult to draw conclusions from such variable results. There was not a method 

that performed worse in all situations (instrument, parameter, validation set), but also none 

that performed better. However, in specific situations, large decreases in prediction error 

occurred. Chemometricians should be aware of these variations and address various 

experimental situations with the appropriate method or combinations of methods through 

an iterative optimization process. 
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Figure 40: Comparison of calibration process for Infratec 1229 (using Infratec 1229 calibration and validation sets). V stands for when validation sets were 
preprocessed. 
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Figure 41: Comparison of calibration process for OmegAnalyzerG 106110 (using OmegAnalyzerG 106110 calibration and validation sets). V stands for when 
validation sets were preprocessed. 
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The next four figures compare prediction precisions for all fifty-seven methods when 

each instrument was calibrated on its own calibration set for intra-brands (figures 42 and 43) 

and inter-brand (figures 44 and 45) calibration transfer scenarios. 

 

 In intra-brand situations, the comparison of each method with the benchmark 

showed that filtering methods along with most local and variable selection methods 

performed well for both protein and oil for Infratec 1229. The use of y based orthogonal 

methods gave better results than X only based methods. For OmegAnalyzerG 106118, 

improvements were not as large and some combinations of local and variable selection 

methods did not perform well for protein. For oil, frequency based methods as well as local 

and variable selection technique improved benchmark results. 
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Figure 42: Comparison of intra-brand calibration transfer for Infratec 1229 (Infratec 1241 master) with original calibration results. V stands for when validation 
sets were preprocessed. 
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Figure 43: Comparison of intra-brand calibration transfer for OmegAnalyzerG 106110 (OmegAnalyzerG 106118 master) with original calibration results. V 
stands for when validation sets were preprocessed. 
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In inter-brand situations, similar observations to intra-brand calibration transfer 

could be made. Except for protein and Infratec 1229, where almost all methods performed 

poorly compared to benchmark results, trends observed on figure 42 and 43 were confirmed 

in inter-brand standardization. Frequency and sample/feature selection based methods 

performed well. Results from orthogonal methods varied with instruments and parameters. 
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Figure 44: Comparison of inter-brand calibration transfer for Infratec 1229 (OmegAnalyzerG 106118 master) with original calibration results. V stands for 
when validation sets were preprocessed.  
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Figure 45: Comparison of inter-brand calibration transfer for OmegAnalyzerG 106110 (Infratec 1241 master) with original calibration results. V stands for 
when validation sets were preprocessed.  
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 Figures 46 to 49 present the comparison between network masters and transferred 

models in intra-brand (figures 46 and 47) and in inter-brand (figures 48 and 49) calibration 

transfer scenarios. 

 

 In intra-brand situations, protein appeared to be easier to transfer than oil for 

infratec 1229 while it was the contrary for OmegAnalyzerG 106110. A larger difference 

between validation sets was observable for OmegAnalyzerG 106110 which might mean that 

while instruments appeared closer than Infratecs, a possible environmental effect impacted 

standardization trials. Large differences existed between master and secondary units with 

sample and variable selection techniques. On the contrary to some orthogonal methods that 

gave poor transferred performances, local and variable selection based methods differences 

arose from a large improvement of the calibration models on the master units and an 

obvious over-fitting that limited the transferability of the models. Many RPD were larger 

than 15.  
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Figure 46: Comparison of intra-brand calibration transfer for Infratec 1229 with network master performances (Infratec 1241 master). V stands for when 
validation sets were preprocessed. 
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Figure 47: Comparison of intra-brand calibration transfer for OmegAnalyzerG 106110 with network master performances (OmegAnalyzerG 106118 master). V 
stands for when validation sets were preprocessed. 
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In inter-brand situations, very similar observations could be made with intra-brand 

calibration transfers. Local and variable selection methods suffered from over-fitting and 

their transfer abilities were limited.  

 

 Among all, local methods appeared to be the most unstable for calibration transfer. 

Even though they gave the best results in calibration development, they specialized 

calibration sets and limited the ability to perform successfully in external validation 

situations. The inherent risk they carry is too large for calibration transfer situations. Other 

methods such as spatial and frequency based filtering methods and orthogonal techniques, 

should be considered when designing intra and inter calibration transfer processes. 
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Figure 48: Comparison of inter-brand calibration transfer for Infratec 1229 with network master performances (Infratec 1241 master). V stands for when 
validation sets were preprocessed. 
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Figure 49: Comparison of inter-brand calibration transfer for OmegAnalyzerG 106110 with network master performances (OmegAnalyzerG 106118 master). V 
stands for when validation sets were preprocessed. 
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CHAPTER 6. 

 

GENERAL CONCLUSION 
 

 In this study, we evaluated the possibility to filter, select samples and/or variables, 

and remove orthogonal signal for the calibration development and transfer of protein, oil, 

and linolenic acid models. The use and effectiveness of most methods was parameter, 

instrument, and validation set dependent. Large improvements were observed in calibration 

development where local methods provided the best performances. Models were 

transferable across units of the same brand and of different brands. However, the loss of 

precision was larger for local models and optical methods. Local models tent to over-fit the 

calibration set and reduced the capacity of the models to handle a different variability than 

the one present in the calibration set. 

 

 The variety of techniques presented, developed, and applied in this dissertation 

provides the literature with a comparison of calibration and standardization in intra and 

inter-brand situations. It also creates the possibility for public and private organizations to 

evaluate the inclusion of new instruments in their historical. Compiled in a toolbox, these 

tools could be used to evaluate the possibility to transfer a calibration model on different 

instrument brands and would also provide chemometricians with knowledge about the 

methods they should avoid with specific types of instruments. 

 

 However, the complexity of some of the methods used (Fourier and wavelet 

transform, some spatial pretreatments) restrains their direct use. For instance, none of the 

four units considered in this study could operate local methods, and all the methods 

involving the modification of the samples to predict (orthogonal methods based on y, 

advanced spatial preprocessing). They would require custom made software to extract 

spectra and predict in real time. Instrument manufacturers will need to provide 

chemometricians with tools that can handle advanced calculations to be efficiently used in 

demanding applications. 
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