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CHAPTER 1.  GENERAL INTRODUCTION 

Introduction 

Terrain modeling is one of the prime approaches that can be used to assess the spatial 

variability of agricultural fields and their surrounding ecosystems (Franklin et al., 2000; 

Mackey et al., 2000; Fried et al., 2000). The representation of terrain in the form of digital 

elevation models (DEMs) can be used to help the implementation of the applications of 

precision conservation management practices. For example, terrain analysis models can use 

DEM-based topography to identify runoff-contributing areas and calculate slopes for use in 

field-runoff and buffer-filtration models (Dosskey et al. 2005). DEMs also were used to 

calculate topographic factor for soil erosion (Renschler et al., 2002; Renschler and Flanagan, 

2008) and pollution predictions in watersheds (Binger and Theurer, 2001). Similarly, Murthy 

et al. (2004) used DEMs to derive the path taken by surface runoff at each DEM grid to 

develop rainfall-runoff models to provide data for un-gauged catchments, and for scenario 

analysis. They demonstrated that, with effective utilization of spatial information 

technologies such as geographic information systems (GIS), the understanding of the spatial 

distribution of run-off derived from DEMs can be used to effectively conserve soil and water 

in their study area.  

Given the important role of DEMs in precision conservation, the availability of 

sufficiently-accurate topographic data, however, can be a particularly important and 

challenging problem to address. Generally, raw elevation data or field surveys and the 

equipment necessary to process these data are not readily available to potential users of a 

DEM. Commonly available data sources such as 30-m digital elevation models from 
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government agencies such as United State Geological Survey (USGS) provide a starting 

point, but more accurate data can yield much better results for a broader range of 

applications. Currently, aircraft−or satellite−based remote sensing techniques such as 

photogrammetry, synthetic aperture radar (SAR; Evans and Apel, 1995), and light detection 

and ranging (LiDAR) are used more often for topographic development. Although new 

remote sensing technologies like LiDAR could provide high accuracy measurements, aerial 

survey techniques are cost-effective only over large areas. In addition, remotely-sensed data 

in raw format not only contains geometrical distortion requiring complicated georeferencing 

correction processes, but such massive data set will also require substantial computational 

resources and processing time (Agarwal et al., 2006; Kim et al., 2006, Maune, 2007).  

The publicly-available Global Positioning System (GPS) provides new and affordable 

opportunities for not only researchers but also agricultural producers to gather elevation data 

to develop agricultural field DEMs. The widespread advancement of GPS technology such as 

real-time kinematic differential GPS (RTK-DGPS), which offers higher accuracy of 

topographic measurements (centimeter level position accuracy) makes the effort of using this 

technology for field DEM generation more reliable (Clark and Lee, 1998; Renschler et al, 

2002; Westphalen et al., 2004).  

With an increasing proportion of agricultural vehicles equipped with GPS systems for 

such applications as yield monitoring (Pelletier and Upadhyaya, 1999; Witney et al., 2001; 

Vellidis et al., 2001) and auto guidance (Will et al, 1998; Billingsley, 2000; Reid et al., 

2000), measurement of elevation data during normal farm operations has become more 

practical for producers. GPS equipped farm vehicles enable farm managers to gather more 
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accurate elevation measurements which have the potential to be used in addition to or as 

substitute for commonly available USGS topographic data sources.  

The development of a DEM is likely to involve spatial interpolation techniques to 

estimate values at unsampled locations. It is important to keep in mind that these estimates 

contain deviation from the ground truth or error. Commonly, higher accuracy data sources 

were used as the 'true values' to calculate error and quantify the accuracy of DEMs. By 

comparing with higher accuracy data, measures such as standard deviation or Root mean 

square error (RMSE) are typically used to represent the DEM quality. However, such non-

spatial statistics are global measures and specifically do not provide an accurate assessment 

of how precise each grid in a DEM represents a true topographical parameters (Hunter and 

Goodchild, 1995; Wise, 1998; Wechsler, 2007). For example a 10-m US Geological Survey 

(USGS) DEM consists of 160 thousands elevation points has a stated vertical accuracy 

(RMSE) of 15 m. This value was computed from an external ground survey of 28 co-located 

points (representing 0.0175% of the dataset). USGS assures 95% of the data deviates from 

the surveyed elevation by less than ± 15 m. However, five percent of the values (eight 

thousands points) could deviate by ±15 m to ±30 m. If for example a farmer would like to 

use just a small area of the DEM representing a 63 ha field (6241 points from the 10-m 

USGS DEM that coincide with his agricultural field), the adequacy of the RMSE is 

questionable.  

Despite the fact that the DEMs contain errors, in practice, DEMs are often assumed to 

be the true representation of elevation. In agricultural applications, errors in DEM propagate 

through its derived parameters and provide uncertainty in the implementation results 

(Oksanen and Sarjakoski, 2005). To date, information about DEM uncertainty is not readily 
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available and often neglected by the DEM users (Weschler, 2007). While the development of 

more accurate field DEMs are possible with the help of GPS, the uncertainty in DEM 

estimates must be assessed so that the propagation of these errors can be accounted for in the 

subsequent studies (Hunter et al., 1995; Holmes et al., 2000; Endreny and Wood, 2001; 

Wang et al., 2006; Weschler and Kroll, 2006).  

The papers contained in this dissertation will investigate procedures of utilizing 

elevation data for the development of agricultural field DEMs and assessing the DEM 

uncertainty. Overall, through this work, my study can be useful in a variety of ways. In one 

case, it could help land users, such as farmers adopting precision agricultural practices, to 

utilize more accurate topographic information available from typical farm operations to 

improve their farming applications. Additionally, a better understanding in the uncertainty in 

elevation estimates could be used for designing more efficient sampling strategies that could 

benefit agricultural producers. Last of all, this study could help decision makers improve 

their predictions in environmental management by better understanding the effect of DEM 

uncertainty on applications. 

Objectives 

The overall goal of this study was to provide methods for landowners and producers 

to develop field DEMs to help agricultural applications.  In order to accomplish this goal the 

following objectives were set: 

1. Develop a methodology of combining repeated GPS surveys from field operations  

2. Develop a targeted sampling method based on spatial uncertainty of prior measurements 

for topographic mapping. 
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3. Assess the uncertainty in field DEMs elevation estimates and their effect on soil loss 

prediction. 

Dissertation Organization 

The process of developing DEMs is likely to involve estimating elevation at un-

sampled locations and assessing the uncertainties of the estimates.  Summaries of the theory 

needed for understanding the implementation of the kriging technique for interpolation, and 

the geostatistical technique of stochastic simulation for uncertainty assessment used in this 

work were described in the Chapter 2.  

Chapter 3 of this thesis contains a paper entitled Utilizing Repeated GPS Surveys 

from Field Operations for Development of Agricultural Field DEMs. In the paper, the 

baseline methods for combining repeated elevation surveys of agricultural fields obtained 

from field operations for DEM development were presented. Kriging interpolation was used 

to generate field DEMs from different surveys. The methods use the kriging variance as the 

measure of confidence in the elevation estimates before combining multiple estimates 

calculated from different surveys. Fuzzy logic, weighted averaging and grid-wise averaging 

techniques were investigated for combining survey measurements.  This paper has been 

submitted to Transactions of the ASABE for publication and is currently in the review 

process.  

Chapter 4, entitled Targeted Sampling of Elevation Data Based on Spatial 

Uncertainty of Prior Measurements reports on investigations into the design of targeted 

sampling of field elevation based on the DEMs uncertainties resulting from prior field 

measurements. The uncertainty and spatial distribution of elevation estimates from prior 
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measurements was used as a rational basis for a future sampling plan to improve the accuracy 

of field DEMs. The uncertainty of elevation estimates across the DEMs was assessed using a 

geostatistical simulation technique to delineate the regions in the field that needed to be re-

sampled. Additional samples were targeted and obtained from specified locations rather than 

re-sampling the whole field which reduced the time required for data collection and resulted 

in DEMs with relatively low RMSE. The preliminary results of this paper were presented at 

ASABE Annual International Meeting, 2007 in Providence, RI. This paper will be submitted 

to Transactions of the ASAE in the near term.  

Chapter 5, Assessing the Effects of DEM Uncertainty on Soil Loss Estimation in an 

Agricultural Field is focused on DEM uncertainty and analyzing its effect on soil loss 

prediction in the field. This study compared the soil loss prediction of an agricultural field 

using a 7.5-minute USGS DEM, and DEMs developed using RTK-DGPS and dual frequency 

(DF)-DGPS field surveys. Spatial prediction and DEMs uncertainty analysis was carried out 

using a sequential Gaussian simulation technique to assess the effects on the predicted soil 

loss across the study area.  This paper will be submitted to Transactions of the ASAE in the 

near term.  

The final chapter of this dissertation is a summary of the work contained in Chapters 

3, 4 and 5. This section outlines the findings and general conclusions from the studies and 

ends with suggestions for future work.  
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CHAPTER 2.  THEORY AND BACKGROUND 

Geostatistics is a means to describe spatial patterns and to predict the values of spatial 

attributes at unsampled locations, where a sample is expected to be affected by its position 

and relationships with its neighbors. The basic concept in geostatistics is that the spatial 

correlation between two sample points depends only on the distance of the sample points, not 

their locations. It is an intuitive concept that locations close to one another to have values 

more alike than locations that are farther away. The goal of this chapter is to provide a 

summary of the theory needed for understanding the implementation of the geostatistical 

methods, realized as part of this work. Detailed descriptions of the theory of geostatistics are 

given, for example, by Cressie (1989); Isaaks and Srivastava (1989); Journel and Huijbregts 

(1978); and Goovaerts (1997) and Olea (1999). 

The development of a DEM involves spatial interpolation techniques to estimate 

values at unsampled locations using the elevation measurements taken at surveyed locations. 

A key feature of topographical data is each observation relates to a particular location in 

space. Geostatistics is suitable for elevation data because elevation is generally expected to 

present a high spatial dependence that has a high data similarity at closer locations than 

distant locations. The semivariogram is a widely used-tool for investigating the spatial 

continuity of spatial data in geostatistics.  Details description about semivariogram analysis is 

discussed in this chapter. 

Mostly, the contents of this research are confined to the application of geostatistics 

using an interpolation technique known as kriging to predict the value at unsampled location 

for DEM development. Kriging is a powerful spatial interpolation technique and is widely 
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used throughout the earth and environmental sciences. The estimation at an unsampled 

location is given as the linearly weighted sum of its surrounding points. Calculation of the 

weighting factors is done by minimizing the error variance of a given or assumed model of 

the spatial continuity for the data with regard to the spatial distribution of the observed data 

points.  Other than kriging, geostatistics also provide a method of determining alternative, but 

equally probable, realizations of elevation estimates in a DEM. This method is known as 

conditional stochastic simulation which was used to assess the uncertainty in the DEM 

estimates. In this chapter, the theory of basic kriging and conditional stochastic simulation 

methods was discussed. 

Spatial Continuity 

Geostatistical interpolation estimates elevation values at unsampled locations based 

on available sample data and a model of spatial continuity of the data. Consider x and x+h to 

be locations where measurements, Z(x) and Z(x+h), were taken. The locations x+h and x are 

separated spatially by a distance, called the lag distance, h. Under first order stationarity, the 

mean of the sample data is assumed to be constant over the region. A covariance function 

describes the relation between the samples variance and distance, h as: 

  ( ) { }{ }∑
=

−+−
Ν

=
N(h)

1

)()( 
)(

1

i
ii hxZxZ

h
hC µµ   (1) 

where  N(h) is the number of data pairs separated by a distance h, and µ is the mean of the 

data. The spatial relationship of the samples also can be described using a semivariogram.  A 

semivariogram describes the average dissimilarity between data separated by a distance h as: 
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where γ(h) is called semivariance computed as half the average squared difference between 

the components of every data pair. The relation between covariance function and 

semivariogram γ(h) is  

     ( ) )()0( hCCh −=γ     (3) 

where C(0) is the variance of the data and C(h) is the covariance at distance h. The 

covariance function requires an assumption of stationarity in the data while semivariance 

function does not require the stationarity assumption (Metheron, 1973). Although 

geostatisticans eventually solve the basic kriging equation in terms of covariance, most of 

initial calculations are done in term of semivariance (Isaaks and Srivastava, 1989). 

A covariance function starts at the variance σ
2 of the data and decreases with 

increasing distance h. Theoretically, a semivariogram starts at zero and increases as distance 

h increases; however in practice, the semivariogram does not necessarily starts zero where 

often there is often a discontinuity at the origin of the semivariogram (a non-zero value at lag 

distance zero) (Fig. 1). This phenomenon is called nugget effect and is due to sampling or 

measurement error and short scale variability which cause sample values separated by 

extremely small distance to be dissimilar.  

As shown in Fig. 1(a), pairs of locations which are closer have smaller semivariance 

as compared to pairs of locations which are farther apart. The variance gradually increases 

until it plateaus at a particular separation distance called the range. The range is the 

maximum distance at which significant spatial correlation exists between two points. Once 

the distance between two points is beyond the range, the variance becomes independent of 
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the distance and maintains a constant value. The maximum semivariance value is called the 

sill (Fig. 1). 

 

Figure 1: Graph of a typical (a) semivariogram and (b) covariogram.  

 

Usually, data that varies smoothly like elevation are generally expected to present a 

high spatial dependence with semivariograms that have a shallow slope near zero distance 

(high data similarity at short distances) (Burrough , 1987; and Valeriano et al., 2006). 

Topographic data also typically have an increase in semivariance with increasing distances 

because elevation has the potential to become more and more variable over larger distance 

due to surficial process (i.e. the semivariogram hardly reach a sill) (Holmes et al, 2000). 

The semivariogram developed by calculating the semivariance from the sampled data 

is called the experimental semivariogram and exists as a discrete and irregularly sampled 

function. The experimental semivariogram need to be fit with a continuous parameter model 

for applications.  The following are the four most frequently used basic semivariogram 

models:  
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Linear model:  

   ( ) ,0 phch +=γ   if ah<      (4) 

Exponential model:  

  ( ) ( )[ ]ahcch /3exp10 −−+=γ     (5)  

Spherical model:  

  ( ) ( ) [ ][ ]


 −

=
,

,/5.0/5.1 3

c

ahahc
hγ     

if

if

ah

ah

≥

≤
  (6)  

Gaussian model:  

   ( ) ( )[ ]22
0 /3exp1 ahcch −−+=γ    (7) 

where p is the slope of the linear model,  a is the semivariogram range, c0 the nugget 

component of the semivariogram, and c is the positive variance contribution or sill.  

In terrain analysis, a Gaussian semivariogram model (Fig. 2) is often used to model 

the spatial continuity in elevation because a Gaussian model presents a region of low slope 

near the zero distance, which is suitable for data that varies smoothly like elevation. 

 

Figure 2: An experimental semivariogram of elevation data from a study field (dotted) 
fit with a Gaussian model (solid line). 
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Kriging 

The most well-known family of interpolation methods in geostatistics is based on 

kriging. Kriging is an interpolation method named after a South African mining engineer 

named D. G. Krige who developed the technique in an attempt to more accurately predict ore 

reserves. The advantage of kriging over other interpolation methods such as Inverse Distance 

Weighting (IDW) is that kriging estimates a value at unsampled locations using a minimized 

estimation variance derived from a semivariogram model, accounting for spatial correlation 

in the samples (Deutsch and Journel 1998). Over the past several decades kriging has become 

a fundamental tool in the field of geostatistics.  

In general, kriging is a linear interpolation technique, where the estimated value is a 

weighted average of the surrounding sampled values. The value of variable Z at an 

unmeasured location0x , Z*(x0) is estimated as 

    ( ) ( )∑
=

=
n

i
ii xZwxZ

1
0*     (8) 

where Z(xi) are the values at neighboring sampled locations and wi are the weights assigned 

to these values. The weights wi are determined to minimize the error variance 

     ( ) ( ){ }00
*2 xZxZVarE −=σ     (9) 

under the constraint of unbiasedness (i.e. mean prediction error is zero): 

     ( ) ( )[ ] 000
* =− xZxZE     (10) 

Generally, the kriging weights depend on the semivariance model, which is derived 

from the available data. As expected, the kriging weights decrease as the sample locations get 

farther from the estimated location. However, for a particular data configuration or sampling 
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pattern, the changes may drastically vary, depending on the shape of the semivariogram 

model. Under an undesirable condition, when a semivariogram entails a complete lack of 

spatial correlation (pure nugget effect or very small range), the weights all become 1/n and 

the estimation procedure becomes the mean of the available data samples. The aspect of 

kriging weights and its relation to semivariogram model is thoroughly discussed in Goovaerts 

(1997) and Isaaks and Srivastava (1989). 

The values at the neighboring sampled location used for estimation are restricted by 

the search neighborhood. Intuitively, maximizing the radius of the search neighborhood, 

hence taking as many sample values as possible would lead to the most accurate solution. In 

practice, however, limiting the search neighborhood into a smaller radius is necessary 

because: 

• For large distances, the spatial correlation between data as defined by the 

semivariogram function is usually unreliable because of the low number of data pairs 

available for inference at such large distance. Moreover, with increasing distance, the 

spatial correlation is decreasing. Therefore the associated kriging weights are very 

small and hence do not necessarily improve the estimation. 

• Restricting the search neighborhood allows one to account for local departure from 

stationarity over the area and the estimation is therefore more representative. 

• The size of the matrix in computing the kriging weights increases with the number of 

points in the search neighborhood. The computation time drastically increase with the 

number of data retained, approximately in proportion to [N(h)]3.  
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Basic types of kriging 

There are a number of different versions of kriging. The most important ones are: 

simple kriging, ordinary kriging, cokriging and universal kriging. In cokriging, the estimation 

of a variable is not only based on its own auto-covariance function, but also on its spatial 

relationship to another variable or parameter. This can be useful if a variable is sparsely 

sampled but has a similar spatial relationship as extensively sampled variable. Another 

common kriging procedure is universal kriging, in which the sample data are assumed not to 

be stationary, but to follow a trend. The drawback of universal kriging is the need to specify 

the model of the trend, in which there is no direct statistical test to guide the analysis (Olea, 

1999). The most common kriging versions are simple kriging and ordinary kriging, which are 

both discussed in some detail below and have been implemented in this study. 

Simple Kriging  

Simple kriging estimates an un-sampled value Z at location x0, as a linear 

combination of n sampled values Z(xi) plus a regional mean m which considered to be  

constant throughout the estimation region: 

   ( ) ( ) mwxZwxZ
n

i
i

n

i
iiS 








−+= ∑∑

== 11
0

* 1    (11) 

where wi is the kriging weight at location xi with the sampled value Z(xi). The simple kriging 

weights wi can be solved in term of data covariances so that:     

   ( ) ( )0
1

xxCxxCw i

n

i
jii −=−∑

=
 .,...,1 nj =   (12) 
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where C(xi - x0) is the data-to-estimation covariance and  C(xi - xj) is the data-to-data 

covariance. As the location x0 being estimated gets further away from sample locations, the 

data-to-estimation covariances decrease and the data-to-data covariances remain unchanged. 

Consequently the simple kriging weights wi tend to decrease, hence the estimates ( )0
* xZ S  

gets closer to the stationary mean m. This equation (Eqn. 12) can be written in a matrix form 

as:      D . C =w      (13) 

where C is the matrix of covariances between data points, with elements Ci,j = C(xi -xj), D is 

the vector of covariances between the data points and the estimation point, with elements 

given by Di =C(xi - x0), and w is the vector of simple kriging weights for the surrounding data 

points. Then the kriging weights are obtained by:  

     .DC-1=w      (14) 

A kriging system not only accounts for distance in term of covariances (matrix D), 

but also accounts for clustering among the points. The clustering information is represented 

in the data-to-data covariances in the matrix C. Multiplying D by C-1 will reduce the 

influence of points falling in clusters relative to isolated points at the same distance. Once the 

weights are retrieved, the minimum error variance of the estimation can be expressed by:  

    ( ) ( ) ( )∑
=

−−=
n

i
iiS xxCwCx

1
00

2 0 σ   (15) 

where C(0) is the covariance of the random variable Z(x0) with itself which equal to the 

variance of the data. In the case where the location x0 being estimated coincides with a data 

location xi, the simple kriging estimator honors the data value Z(xi) at that location. This can 

easily be shown from equation 12, where as xi = x0, the corresponding weight at that location 
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is uniquely solved as 1; entails that the weights elsewhere are zero. Hence, solving the 

equation 11, the estimate ( )0
* xZS will be equal to Z(xi). Then from equation 15, the estimation 

variance at that location will be zero as C(xi - x0)= C(0). This exactitude property leads to 

kriging being known as an exact interpolator. 

Ordinary Kriging  

For ordinary kriging, rather than assuming that the mean is constant over the 

estimation region, the mean is assumed constant in the local neighborhood of each estimation 

point. From equation 11, the mean m is filtered from the linear estimator by requiring that the 

kriging weights sum to 1 to ensure the unbiassedness. The ordinary kriging estimator is thus 

written as:  

  ( ) ( )∑
=

=
n

i
iiR xZwxZ

1
0

*   with   ∑
=

=
n

i
iw

1

1   (16) 

In order to minimize the error variance 2Eσ subject to the unit-sum constraint on the 

weights, the system calls for the definition of Lagrangian, which is a function of data weights 

wi and an additional term involving a Lagrange parameter, µ:     

   ( ) 







−+== ∑

=

n

i
iEi wniwL

1

2 12 2;,...,1, µσµ   (17) 

The minimization with respect to the Lagrange parameter forces the constraint to be 

obeyed:  

    01 
2

1
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=−=
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In this case, the system of equations for the kriging weights turns out to be:  

   

( ) ( )










=

−=+−

∑

∑

=

=
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i
i

i

n

i
jii

w

xxCxxCw

1

0
1

1

µ

.,...,1 nj =   (19) 

Similar to simple kriging, a set of ordinary kriging weights wi is also designed to 

account for distance in term of data-to-estimation covariances C(xi - x0); and clustering 

defined by covariances among the points C(xi - xj). Once the kriging weights (and Lagrange 

parameter) are obtained, the ordinary kriging variance is given by:     
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=
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i
iiR xxCwCx

1
00

2 0   (20) 

Like simple kriging, ordinary kriging also hold the exactitude property where the 

estimator honors the data values at their location. The difference between the two kriging is 

only the assumption about the mean. Intuitively, simple kriging yields estimates that are 

close to a constant mean, away from the data, because of the assumption of stationary mean. 

In contrast, ordinary kriging yields estimates that better follow the data fluctuations because 

of the use of local estimation of the mean within search neighborhood (Goovaerts, 1997). 

Kriging Variance 

Kriging produces the estimates of the unknown value at un-sampled locations with 

minimum error- variance (kriging variance) at each location based on the underlying 

semivariogram model. A clear understanding on the fundamental features of kriging variance 

is necessary for the application of this study.  
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First, the kriging variance only accounts for relative geometry of data locations and 

their distances to the location being estimated. Hence the kriging variance is zero at data 

locations and increases away from the data (Fig. 3b). Second, the kriging variance is 

independent of data values. For a given semivariogram model, any locations surrounded by 

data at similar distances will have similar error variances no matter what the data are. Where 

intuitively, however, we would expect location x1 surrounded by similarly valued data has 

lower variance than x2 which surrounded by data that are very different (Fig. 3). The link 

between kriging variance and data values is just through the semivariogram which only gives 

a ranking index of data geometry and not a measure of the local spread of error of the 

predictions (Goovaerts, 1997).  

Thus, a smaller kriging variance indicates that the kriging estimate at unsampled 

location is more strongly supported by the sample data and higher kriging variance indicates 

that the estimate is less supported by the sample data. In this study, the information about 

kriging variance were used as a measure of confidence in estimates when generating field 

DEM using different field surveys.  

Conditional Stochastic Simulation 

In predicting a value at un-sampled locations, kriging provides an estimate with 

minimum kriging variance at each location. However, kriging typically tends to smooth out 

local detail of the spatial variation of the estimate, with small values typically overestimated 

and large values underestimated (Fig. 4; Isaaks and Srivastava, 1989). This is a serious 

shortcoming for example if the estimates of elevation were used for risk assessment in 

environmental studies such as predicting soil erosion and pollutant concentration.  
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Figure 3: (a) Ordinary kriging estimates and (b) the associated kriging variances. 
Ordinary kriging was used to estimate value in between uniform sample points along an 

elevation transect in a USGS DEM of Boxholm, IA. 

 

Geostatisticians address the limitations inherent in kriging by means of conditional 

stochastic simulation. Conditional stochastic simulation techniques offer the possibility of 

deriving various simulated estimates (realizations) from a given source model, which is built 

from the geostatistical information inferred from sampled observations. All realizations have 

an equal likelihood of being the real value since each simulation employs the same known 

(a) 

(b) 
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data. The multiple equal-probable realizations provide all the information necessary to 

approximate the distribution of any variable at un-sampled location, consequently allow one 

to quantify the uncertainty of estimates. 
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Figure 4: Real and estimated (kriging) profiles of elevation on a USGS DEM of 
Boxholm, IA. The kriging estimate smoothed the fluctuations of the real data. 

 

Among many other stochastic simulations techniques, sequential Gaussian simulation 

(SGS) is widely used to estimate continuous variables like elevation; because of the inherent 

structure of the Gaussian model makes model determination fairly straight forward. The 

basic idea of SGS is very simple. Recall that kriging gives us an estimate and error variance 

of the variable at each location of interest. Using the estimate and error variance provided by 

kriging, we could represent the variable at each location as a random variable following a 

Gaussian distribution. Rather than choosing the mean as an estimate at each node, SGS 

chooses a random deviate from this Gaussian distribution, selected according to a uniform 

random number representing the probability level. For example, in estimating elevation 

values on a gridded area, kriging gave an estimate of 322.93 m with an error variance of 0.24 

m2 (standard deviation of 0.49 m) at a grid location. By using the kriging estimate, the 
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cumulative normal probability function (cdf) is generated. In this case, if we happened to 

generate a uniform random number of p=0.665 for this grid location, the corresponding value 

of the cdf would be 323.14 m (Fig. 5). This value is then assigned as the simulated elevation 

value at that location.  

 

 

Figure 5: The cumulative normal distribution function of an elevation estimate 
developed using mean and standard deviation provided by kriging. A uniform random 
number of p=0.665 was generated to draw a simulated elevation value for that location. 

 

The idea is to use the previously simulated estimate at each location as "data" in order 

to preserve the proper covariance structure between the simulated values. The procedures to 

perform SGS involve: 

1. Justifying the appropriateness of the standard normal (Gaussian) distribution 

assumption using normal score transformation on the original data. The normal score 

transform adjusts each sample value by mapping them from their original cumulative 
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frequency to the standard-shaped curve corresponding to a normal distribution with 

mean value of 0 and a standard deviation of 1 (Fig. 6a).  

2. Performing the sequential simulation on the normal score data as follows: 

a. A random path was generated so that each location to be estimated is visited 

only once. 

b. At each location, the parameters (an estimate and its standard deviation) for 

the Gaussian conditional cdf are found using simple kriging with the normal 

score semivariogram model. The estimation was based on surrounding normal 

score data values and values simulated at previously visited grids. 

c. Then a value was selected at random from the corresponding cdf and added to 

the data set. 

d. The two previous steps were repeated until all locations were visited.  

3. Back-transforming the simulated normal scores into simulated values of the original 

variable by mapping the normal scores to the original cumulative frequency of the 

variable (Fig. 6b). Detailed description of normal score transformation and back-

transformation can be found in Goovaerts, 1997. 

Repeating SGS N times will result in N equal-probable realizations at each location. 

Each time the SGS is carried out, a random path is used to visit all the locations to avoid 

artifacts induced by walking through the grid in a regular fashion. Using N realizations of 

equal-probable value at each location, simple statistics such as mean and variance of the 

estimates can be calculated. The mean at each location calculated by averaging the N 

realizations, also known as conditional mean or E-type estimate (Journel, 1987), will exhibit 

similar value predicted using kriging if N is large enough (Fig. 7). Unlike kriging variance, 
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the variance of N realizations calculated at each location also known as conditional variance 

will represent the variability of the estimated parameter (Fig. 8). The dispersion of the 

estimates from the mean also can be quantified such as using standard deviation or 

confidence interval. This statistics can be used to represent the local uncertainty of the 

estimated data. 

 

 
Figure 6: (a) Graphical procedure for transforming the cumulative distribution of 

original elevation values into standard normal distribution or called normal score and 
(b) back-transforming the normal score into simulated elevation values. The original 

elevation data depicted by the black dots are retrieved exactly. 
 

(a) 

(b) 
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Kriging versus Simulation 

Unlike kriging, conditional stochastic simulation does not aim at minimizing a local 

error variance but focuses on the reproduction of statistics such as sample histogram or the 

semivariogram model in addition to honoring of data values. For example using elevation 

data from gstat library in R statistical software (Free Software Foundation, Inc., Boston, 

MA), the histogram of the simulated estimates had a similar shape relative to the sample 

histogram of elevation data. On the other hand, the histogram of the kriged estimated does 

not exhibit the sample variogram where the variance of kriged estimates is much smaller than 

the sample variance (Fig. 9). Also, as illustrated in Fig. 10, the semivariogram of the kriging 

estimates has a smaller sill than the semivariogram model depicted by solid line, which 

reflects the underestimation of short-range variability of the estimated values. The 

semivariogram of the simulated estimate on the other hand is more similar to the model 

semivariogram.  

Simulation techniques provide models that show no smoothing, but it is in the nature 

of simulations that every repetition gives uncertain estimations, so the repetition of hundreds 

of simulations will very likely give hundreds of different realizations at each estimation 

point. For this reason, simulations do not provide good local estimators but they provide 

good measures to describe spatial uncertainty. If a modeler wants good local estimators, 

kriging remains the best choice since kriging provides a single numerical value that is “best” 

in some local sense (Deutsch and Journel, 1998). On the other hand, the simulation technique 

is preferred if one wants to study the dispersion of spatial variability of the data. 
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Figure 7: (a)Elevation map of ordinary kriging estimates, (b) a simulated realization; 
(c) mean of 10 simulated realizations and (d) mean of 100 simulated realizations over a 

study area from meuse data set in gstat library in R statistical software library (R 
statistical software; Free Software Foundation, Inc., Boston, MA). As the number of 
simulation increased, the simulated map becomes more similar to the kriging map. 

(b) 

(c) 

(a) 

(d) 
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Figure 8: (a) Real elevation profile on a USGS DEM of Boxholm, IA and the 10th 
simulated elevation along the profiles from 50 SGS. (b) Unlike kriging variance, the 

associated conditional variances of the 50 SGS elevations describe the variability in the 
elevation profile. SGS does not provide good local estimators but they provide good 

measures to describe the spatial variability of the elevation data. 

 

 

(a) 

(b) 
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Figure 9: (a) Histogram of elevation data of a study area from meuse data set in gstat 
library in R statistical software library (R statistical software; Free Software 

Foundation, Inc., Boston, MA). Bottom graphs illustrate the (b) histogram of the 50th 

simulated estimates from 100 SGS and (c) histogram of the kriged estimates (right). The 
variance of the kriged estimates is much smaller than the variance of the original 

sample data σ2 = 1.12. 

(b) 

(a) 

(c) 
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Figure 10: (a) Experimental and model (solid line) semivariogram for elevation data of 
a study area from meuse data set in gstat library (R statistical software; Free Software 
Foundation, Inc., Boston, MA).  (b) The semivariograms of their kriged and simulated 
estimates. Note the smoothing effect of kriging leads to underestimation of the short-

range variability of the elevation values. 

 

Chapter Summary 

The growing interest of scientists in geostatistics arises because they increasingly 

realize that quantitative spatial prediction must incorporate the spatial correlation among 

observations. Also, geostatistics offers an increasingly wide palette of techniques well suited 

to the diversity of problems and information scientists have to deal with. For interpolation 

problem, kriging is known as the technique that provides an estimate with a minimum error-

variance at each prediction location. In this study, kriging was used to predict elevation value 

of agricultural field DEMs from repeated field surveys. Kriging variance was used to 

measure the confidence of the estimates from different surveys, before combining the 

estimates to develop an accurate field DEM. 

(a) (b) 
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There is necessarily uncertainty about the estimated value at an unsampled location, 

and its assessment is critical for some applications. For uncertainty assessment, SGS is 

known as the method that could generate multiple possible realizations that honor the data 

and reproduce aspects of the patterns of spatial dependence in the data. In this study, SGS 

was used to assess DEMs uncertainty and its effect on agricultural applications such as 

designing sampling strategy and estimating soil loss.  
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CHAPTER 3.  UTLIZING REPEATED GPS SURVEYS FROM FIELD 

OPERATIONS FOR DEVELOPMENT OF AGRICULTURAL FIELD 

DEMS 

A paper submitted to the Transaction of ASABE 

S. Abd Aziz, B. L. Steward, L. Tang, M. Karkee 

Abstract 

Topographic data collected using RTK-DGPS-equipped farm vehicles during field 

operations could add additional benefits to the original capital investment in the equipment 

through the development of high accuracy field-DEMs. Repeated surveys of elevation data 

from repeated field operations may improve DEM accuracy over time. However, minimizing 

the amount of data to be processed and stored is also an important goal for practical 

implementation. A method was developed to utilize repeated GPS surveys acquired during 

field operations for generating field-level DEMs.  Elevation measurement error was corrected 

through a continuity analysis. Fuzzy logic (FL) and weighted averaging (WA) methods were 

used to combine new surveys with past elevation estimates without requiring storage and 

reprocessing of past survey data. After 20 surveys were included, the DEM of the study area 

generated with FL and WA methods had an average RMSE of 0.08 m, which was 

substantially lower than the RMSE of 0.16 m associated with the DEM developed by 

averaging all data points in each grid. With minimum control of errors in elevation 

measurements, the effect of these errors can be reduced with appropriate data processing 
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including continuity analysis, fuzzy logic and weighted averaging. Two years of GPS surveys 

of elevation data from field operations could reduce elevation error by 50% in field DEMs. 

Introduction 

In agricultural practices, accurate representation of field topography is required to 

implement precision agriculture management for more efficient production systems.  

Topographical information is important because it provides derived parameters such as slope, 

aspect, topographic index and flow accumulation that are critical for agricultural 

conservation planning. For example, the movement of sediment, soil particles and 

agricultural chemicals (Maidment, 1996), and crop residue cover (Brown, 2008) are closely 

linked to soil topography and slope. In practice, topographic maps in the form of digital 

elevation models (DEMs) have been used to assess transport of constituents such as sediment 

and surface runoff from forested and an agricultural watersheds (Ghidey et al.,2001; Ouyang 

et al., 2005; and Sarangi et al., 2007), derive potential flow accumulation to assess soil 

moisture patterns and soil texture changes in field (Schmidt and Persson, 2003), and estimate 

soil erosion for appropriate farm management and soil water conservation planning (de Jong 

et al., 1999; Oost et al., 2000; Lin and Lin, 2001; and Ritsema et al., 2001). In spite of the 

importance of DEMs in agriculture, it is nevertheless a challenge to obtain elevation data cost 

effectively with sufficient accuracy and resolution.   

A DEM is a digital representation of land topography representing elevations on the 

earth’s surface. A DEM can be represented by one of three data structures: (1) gridded 

models, where elevation is estimated for each point on a regular grid; (2) triangulated 

irregular networks (TIN), where terrain elevation is represented in a network of 
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nonoverlapping irregular triangles; and (3) contour-based networks, where landscape is 

divided into small, irregularly shaped polygons based on natural contour lines and their 

orthogonals (Wilson and Gallant, 2000). The square-grid (gridded) model is the most 

common form of DEM because of its simplicity and ease of computer implementation (Wise, 

1998). This paper is therefore focused on developing gridded DEMs and, for simplicity, the 

term DEM will be used to refer to them. 

Traditionally, DEMs were developed using elevation data collected from 

conventional surveying techniques such as theodolite and level surveys. Currently, remote 

sensing techniques, such as traditional aerial photogrammetric surveys, airborne laser 

scanning (Ackermann, 1999), synthetic aperture radar (SAR; Evans and Apel, 1995) and 

light detection and ranging (LiDAR; Vaze and Teng, 2007) are often used. Remote sensing 

techniques require less labor, but using these data sources to represent the topography of a 

particular site is often too expensive and may require considerable technical and computer 

expertise for appropriate data handling and processing. Usually DEMs can be purchased 

from a service provider such as the U.S. Geological Survey (USGS) which sells DEMs at 

varying levels of accuracy. USGS 7.5-minute DEMs, with grid spacing of 10 m or 30 m, are 

the most accurate, with RMSE of 7 m and 15 m, respectively and have been produced by 

interpolating elevations from vectors or digital line graph hypsographic and hydrographic 

data.  

The advent and widespread use of Global Positioning System (GPS) in agriculture 

provides new and affordable opportunities for farmers to collect elevation data. Every time 

GPS-equipped vehicles are operated in the field, elevation data can be recorded. The ability 

to obtain elevation data using GPS-equipped farm vehicle offers great advantages as surveys 
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can be done during the course of other field operations, and thus do not require any 

additional time or labor to collect the data. In 1992, real-time kinematic differential GPS 

(RTK-DGPS) became commercially available with measurement capabilities within 1- 4 cm 

accuracy (Buick, 2006). RTK-DGPS is becoming more widely adopted as many applications 

in precision agriculture require high accuracy and consistent positional data. Auto guidance 

systems used in row crops, for example, require high accuracy positional measurements 

where cultivation, strip-tillage, and harvesting must follow the planted rows precisely. In 

addition, the use of GPS receivers in agriculture will shift toward RTK-DGPS as greater 

coverage of RTK networks comes available. 

Several studies have investigated the feasibility of using vehicle-mounted RTK-

DGPS receivers to acquire topography data during typical field operations to generate DEMs. 

Clark and Lee (1998) compared DEMs produced from stop-and-go measurements with 

DEMs developed from kinematic measurements collected using an RTK-DGPS receiver 

mounted on a moving vehicle. They showed that kinematic measurements produced DEMs 

with slightly higher error (3 to 8 cm), but the increase was minimal relative to the amount of 

additional effort required to collect stop-and-go (error of 2 to 3 cm) measurements. 

Westphalen et al. (2004) used RTK-DGPS receivers and an inertial measurement unit (IMU) 

mounted on an agricultural sprayer to measure vehicle attitude and elevation data to generate 

DEMs. With the combination of IMU and the kinematic GPS measurements, the root mean 

square error (RMSE) of the DEMs ranged from 10 to 15 cm.  

As a growing proportion of agricultural vehicles are equipped with GPS receivers, 

elevation data may be gathered continuously during common field operations. The accuracy 

of elevation data and any derived parameters can be improved using repeated surveys and 
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averaging GPS point locations over several years (Renschler et al., 2002). Repeated GPS 

surveys of elevation data from field passes of agricultural vehicles could be advantageous in 

improving the accuracy of the DEM. However, with repeated surveys comes the challenge of 

handling increasingly larger amounts of data, particularly if all of the data are required for 

improving DEM accuracy. Moreover, vertical and horizontal position measurement errors 

might occur in each survey due to device inaccuracies and human error during data 

collection.  

To address these issues, algorithms were developed to combine repeated GPS surveys 

improving elevation estimates of agricultural fields. We proposed a process that would 

minimize user input and intervention and as well as expertise requirements for generating 

field level DEMs as a by-product of GPS equipped field operations. The goal of this research 

was to develop a methodology of combining repeated GPS surveys from field operations for 

the development of agriculture field DEMs. The specific objectives of the research were: 1) 

to compare fuzzy logic, weighted averaging, and grid-wise averaging techniques for 

combining repeated GPS surveys and 2) to observe the effect of combining multiple GPS 

surveys over several years on DEM accuracy. 

Data Simulation and Collection 

The methods proposed in this study were tested using elevation data from two 

sources: 

• Simulated RTK-DGPS Elevation Surveys: RTK-DGPS elevation surveys were 

simulated to provide datasets for the development of the methodology in the study. 

Elevation values were interpolated from a USGS DEM along predefined field 
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operation paths to simulate the GPS surveying process. RTK-DGPS errors were 

modeled and added to these simulated measurements.  Simulated survey data were 

used to focus on the effects of GPS errors inherent in GPS measurements. With these 

data, it was assumed that the USGS DEM was the best elevation representation for 

that area and was thus used as the true surface for validation. 

• Experimental RTK-DGPS Field Surveys: To test the algorithm on measured data, 

multiple GPS surveys were conducted on a test field by driving an agricultural 

vehicle with RTK-DGPS receivers mounted on it.  Another set of GPS surveys was 

collected using a RTK-DGPS receiver mounted on a sled pulled by a utility vehicle. 

The measurements this latter set of surveys were used as reference measurements for 

validation. They were collected closer to the ground to minimize the errors due to 

vehicle dynamics and geometry associated with the test measurements.  

Simulated RTK-DGPS Elevation Surveys  

A test field was modeled using a 7.5-minute USGS DEM of Winneshiek County, 

Iowa with 10 m grid spacing.  The USGS DEM was acquired from an online GIS data 

provider (GeoCommunity, 2007). Most of the area in the Winneshiek County consists of 

farm land (380,034 acres; 86% of the total area). A 120 m by 120 m area with elevation 

ranged from 1117 to 1124 m (around 8 m elevation difference) was selected (Fig. 1) for the 

study because it contained some topographical relief, but did not contain features such as 

streams, rivers or lakes that would prevent contiguous farm operations. To simulate surveys 

occurring during field operations, vehicle travel paths were predefined based on four field 

operations (tillage, planting, spraying and harvesting) typical of a corn-soybean rotation in 
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Iowa (Fig. 2). Then, elevation values were interpolated at each sampling location on the 

defined paths using inverse distance weighting (IDW) interpolation. Data were sampled 

along straight North-South paths for planting, spraying, and harvesting operations; and 

diagonal Northeast-Southwest paths for tillage operations. The swath spacing was 6.1 m for 

planting, harvesting and tillage operations, and 27.43 m for spraying operations (Table 1).  

The distance between data points along the path was 0.5 m, based on a 5 Hz measurement 

rate with 9.7 km/h (6 mph) vehicle speed. For each dataset, the sampling path started near the 

southwest corner of the field where the first sample point of the path was generated at 

random distance off of a fixed starting point (normally distributed with σ = 0.5 m). Thus, the 

location of the sampling path was in general different for each dataset. This variation was 

added because the field operations were assumed to be non-controlled traffic operations 

where the exact positions of the track operations will vary each year. At each simulated 

sampling location, a five dimensional vector was generated consisting of easting, northing, 

elevation, DGPS station ID number, and sampling time. A total of 20 simulated GPS 

measurement surveys (corresponding to 5 years of field operations) from the area were 

generated with simulated GPS noise added to the datasets. This process was replicated three 

times for analysis.  

Table 1: Machine and track specifications used in simulating the elevation data. 

Machines Track width, m Track direction 

Chisel plow tillage 6.10 Diagonal (Northeast-Southwest) 

Planter (8 row, 30 inch spacing) 6.10 Straight (North-South) 

High Clearance Sprayer  27.43 Straight (North-South) 

Harvester (8 row, 30 inch spacing) 6.10 Straight (North-South) 
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Figure 1. Digital elevation model for the study area from Winneshiek County, Iowa. 
The standard USGS Universal Transverse Mercator (UTM) format was used with 

UTM grid zone of 15N for the coordinate projection using North American Datum 1983 
(NAD1983). 
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Figure 2. Diagonal (Northeast-Southwest) sampling path for (a) tillage and straight 
(North-South) sampling patterns for (b) planting, (c) spraying and (d) harvesting 

operations on the study area. 

 

Vehicle-based RTK-DGPS system accuracy relies on the GPS signal quality and 

continued availability of differential correction signal. Loss or interruption of the DGPS 

correction signal will affect the GPS positioning measurement, which introduces errors in the 

range of centimeters (Scherzinger et al., 2007). Errors may also occur when satellites appear 

or leave the field of view during the GPS data collection. In our previous work when the 

RTK-DGPS receiver lost the correction or satellite signal, the receiver mode automatically 

changed from fixed to float DGPS correction solution (lower accuracy) which introduced 

large discontinuities in the measurements along the vertical and horizontal planes.  We 

a b

c d
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modeled this noise using pseudorange error statistics for a dual frequency p code DGPS 

receiver. This noise together with the kinematic DGPS position errors are usually represented 

as stochastic errors that are correlated in time (Farrell and Barth, 1999). In this study, Gauss-

Markov processes (James, 1994) were used to model the errors, because their exponential 

time-correlation function holds the properties of the errors.  The Gauss-Markov terms were 

modeled as: 

    εi = εi-1e
-∆T/τ + wi      (1) 

where;  

εi is ith error,  

εi-l is the (i-1)th error, 

wi is the RTK-DGPS measurement noise represented as random process drawn from a 

normal distribution, and 

∆T is the sampling interval. 

These processes can be described as an exponential autocorrelation function with variance, 

σ
2, and time constant, τ (Table 2): 

    R(t) = σ2e-|t|/τ      (2) 

Three independent random number generators were used to produce normally 

distributed random noise. The first random number generator provided the Gauss-Markov 

noise related to RTK-DGPS errors. The second random number generator produced the 

Gauss-Markov noise for the discontinuity errors. The discontinuity noise was turned on for 

six to 10 times at five second intervals by generating random numbers indicating when the 

noise would occur in the samples (Fig. 3). The third random number generator produces the 

GPS measurement noise wi, with standard deviation, σ = 0.316 m when the discontinuity 
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noise was turned on and σ = 0.0038 m when the discontinuity noise was turned off (James, 

1994). These error models were added to the simulated elevation surveys. Errors were 

modeled independently along each X, Y and Z measurement axis. The survey simulation 

algorithm was written in Matlab version 7.0 (The Mathworks, Natick, MA). 

 

Figure 3: Algorithm for producing error in X axis. (Y and Z axes are similar; James, 
1994). 

 

Table 2: Pseudorange error statistics for DGPS error modeling (James, 1994) 

 Gauss-Markov Noise Measurement Noise 

Std. Dev., σ  

(meter) 

Time, τ 

(sec) 

Std. Dev., σ  

(meters) 

RTK-DGPS position error 0.096 600 0.0038 

Discontinuity error (Dual frequency) 1.030 600 0.3160 

 

Experimental RTK-DGPS Field Surveys 

Multiple GPS surveys were collected from a small portion of a field in Ames, Iowa. 

The field of interest covered an area of 0.23 ha (36.56 m wide by 60.96 m long) grassy field 

and had a 0 to 8 degree slope which was oriented at the south-west. The elevation ranged 

from 323 m to about 326 m (about 3 m elevation difference). Elevation data were collected 
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using a self-propelled high clearance agricultural sprayer (ASAE standards, 2005) equipped 

with real-time kinematic differential GPS (RTK DGPS) receivers (StarFire RTK, Deere & 

Co., Moline, III) operating at 1 Hz with a vertical static root-mean-squared error (RMSE) of 

less than 1.5 cm. The GPS receivers were mounted at a height of 3.81m above the field 

surface. The vehicle was driven across the field at a speed between 3.2 to 14.5 km/h (3 to 9 

mph) along passes that were 3.05 m (10 ft) apart (Fig. 4). Correction signals were sent from 

local base station via a radio link (Pacific Crest Corp., Santa Clara, Cal.) The base station 

was located at 61 m (200 ft) northwest of the test field. A total of 16 datasets of field surveys 

were collected.  

Another set of independent surveys across the entire field were also collected for 

validation. These reference measurements were acquired using a RTK-DGPS receiver 

operating at 5 Hz on a custom-built sled. A John Deere utility vehicle (GatorTM, Deere & Co., 

Moline, Ill) was driven to pull the sled in the field at around 6.4 to 9.7 km/h. These 

measurements were collected closer to the ground to eliminate the errors caused by the 

vehicle dynamics contained in the test data.  In general, as a vehicle travels over a field’s 

topography, weight transfer leads to changes in vehicle pitch or roll angles relative to the 

slope based on the suspension stiffness. As such, these elevation measurements have an 

additional error source associated with the vehicle suspension system and geometry. Since 

the reference measurements were collected using a GPS receiver mounted on a sled, these 

errors were minimized.  

Since the raw data were in the format of a geographic coordinate system consisting of 

longitude, latitude, and altitude, the data were converted into a projected coordinate system. 

Projection was required for spatial data analysis using units of length in the horizontal plane. 
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The standard USGS Universal Transverse Mercator (UTM) format was used (UTM grid zone 

15N; North American Datum 1983; NAD1983).  
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Figure 4. Data collection tracks in the study area. (a) using agricultural sprayer with 1 
Hz  RTK-DGPS receiver and (b)using custom-developed sled pulled using John Deere 

utility vehicle with 5 Hz RTK-DGPS receiver which was used as the validation set. 

 

Methods 

A custom-developed program was written in Matlab version 7.0 (The Mathworks, 

Natick, MA) to implement the methodology for generating field DEMs using repeated GPS 

surveys. The procedure consisted of the following steps: 

Discontinuity Detection: When a RTK DGPS receiver lost the correction signal, the 

receiver mode changed from fixed to float mode solution (lower accuracy) and 

introduced discontinuous measurements in the dataset. A GPS discontinuity error 

correction algorithm was developed to correct these discontinuities.  

a. b. 
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DEM Generation: Next, kriging interpolation was used to interpolate GPS 

measurements into gridded DEMs. A DEM was developed from each GPS elevation 

survey. 

DEM Combination and Reduction: This study was based on the hypothesis that 

field DEM accuracy can be improved by combining the DEM estimates over several 

surveys.  However, simply averaging the DEM estimates from different surveys may 

not be the best approach because one measurement survey may contain more error 

than the other.  Hence, two data combination algorithms were developed; one using a 

fuzzy logic (FL) approach and the other using a weighted average (WA) approach to 

combine data. Both methods only kept the current grid elevation estimates and their 

standard deviation and did not require data from previous surveys to be stored and 

reprocessed every time new GPS survey data came available. This feature is essential 

for practical implementation. DEMs were also developed through averaging the 

elevation at each grid (grid-wise averaging) to compare with the FL and WA results 

(Fig. 5). Finally, a control method was used to develop a control DEM through grid-

wise averaging without discontinuity analysis. Detailed explanations of each step are 

provided in the following sections. 
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Figure 5. Overview of DEM development process using repeated surveys of elevation 
measurements. Each new measurement survey is combined with the existing DEM to 

improve the elevation estimate while reducing the amount of data to be stored. 

 

Discontinuity Detection 

An algorithm was developed to detect measurement discontinuities noise for data 

correction. In previous studies, when the RTK-DGPS receiver introduced large 

discontinuities in the measurements, the DGPS reference station ID number also changed 

indicating a change from a fixed solution to a float solution. Hence, discontinuities were 

identified by finding the changes in the station ID. The points with a float solution ID were 

characterized as the discontinuities noise. Then the discontinuities in X and Y axes were 
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corrected by adjusting the coordinates to follow the coordinates direction of the vehicle path. 

The discontinuities in the elevation were corrected by re-estimating the value using the mean 

of eight nearest continuous neighboring points (points with fixed solution ID). To ensure the 

discontinuities were minimized, the differences between adjacent elevation points along the 

path were computed. The discontinuities were minimized if the differences between the 

adjacent points along the path were within two standard deviations of the mean elevation 

differences. The result of this process can be seen through inspection of the elevation plot 

(Fig. 6). 

 

Figure 6. Elevation measurements (a) before and (b) after discontinuity analysis on a 
measurement survey collected at the study area. 

 

Kriging Interpolation 

After discontinuities were removed, cleaned elevation measurements were 

interpolated to generate a DEM. DEM grid locations were pre-defined so that each DEM 

developed using measurements from a new survey would use the same grid locations. 
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Elevation measurements were interpolated into gridded DEM using ordinary kriging, which 

was chosen because it is commonly used and is shown, based on geostatistical theory, to be 

an unbiased estimator that minimizes error variance (Isaaks and Srivastava, 1989). In 

addition, visual inspection of the data indicated no large trends, and ordinary kriging is 

known to be quite robust (Trangmar et al., 1985). A Matlab kriging toolbox (Sidler, 2003) 

was used with the von Kármán covariance model (von Kármán, 1948) instead of a common 

semivariogram model to describe the spatial structure of the data. For our implementation 

where sampled data were located preferentially and had a high possibility of outliers due to 

uncertainty in GPS measurements, the covariance model was appropriate. In a deterministic 

framework, where available sample information is interpolated within the same domain, 

direct estimation of the covariance model is better than the traditional semivariogram 

approach because the covariance estimator is less sensitive to extreme values, skewed 

distributions and clustered sampling than the traditional semivariogram estimator (Isaaks and 

Srivastava, 1998).  

For the simulated GPS surveys, data were fit with an exponential covariance model 

with a 20 m range.  Data points were interpolated to 10 m grids using a minimum of 16 data 

points. For experimental field surveys, data points were interpolated to 1 m grids with similar 

kriging parameters. The range distance, grid size, and number of data points represented a 

trade off between interpolation support and computation time.  Anisotropy was taken in 

account as the search neighborhood was defined as an ellipse centered on location being 

estimate and rotated with the major axis in the vehicle path direction. The kriging elevation 

estimate and kriging variance for each grid were stored. 
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Data Combination and Reduction 

After the kriging interpolation, the DEM estimates from different GPS surveys were 

combined using FL and WA methods. Both methods were developed for improving 

statistical estimates as new information comes available while not requiring storage of all 

prior measurements.  

Fuzzy Logic Method 

The process of combining the elevation estimates from two DEMs used a fuzzy logic 

algorithm to take into account the uncertainty at each grid represented by the kriging variance 

at each grid. Specifically, the algorithm adjusted the elevation estimate of a grid with higher 

kriging variance to be at least within two standard deviations of the grid estimate with a 

lower kriging variance from the other DEM. Kriging variance is the minimized estimation 

error variance under the condition of unbiasedness. The error variance is estimated based on 

the underlying semivariogram model. A smaller kriging variance indicates that the kriging 

estimate is more strongly supported by elevation measurements and thus more accurately 

represents the true elevation. Hence, the purpose of adjusting the higher variance grid 

estimate to within two standard deviation of that with a lower variance is to improve the 

accuracy of the DEM in the sense that the elevation estimate with lower kriging variance is 

better supported by measurements than that with a higher kriging variance.  

The lower kriging variance grid estimate was used as the base estimate, x1. Then the 

grid estimate from the other DEM, x2, was categorized into low, average and high 

uncertainty fuzzy classes using a set of fuzzy membership functions developed in a similar 
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approach (Zhang and Han, 2002). The fuzzy membership functions represented the 

difference between two grid kriging estimates (Fig. 7):  
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where µL, µA, and µH are the degrees of membership (DOM) for the low, average and high 

fuzzy classes respectively and σx1 and σx2 are the standard deviations associated with the grid 
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kriging variance from the two DEMs. The average class indicated that the estimate is within 

two standard deviations of the kriging estimate of the lower kriging variance grid and data 

correction may not be necessary. Elevation estimates with high degrees of membership in the 

high or low classes, however, can be corrected by shifting them to be similar to the kriging 

estimate of the grid with lower variance.     

 

Figure 7.  Graphical representation of fuzzy membership functions for low, average and 
high elevation for estimate x2 in relation to estimate x1 in a grid; with standard 

deviation, σx1. 

 

The DOMs were used as the inputs to a fuzzy model to produce a crisp output to be used as a 

weight for data correction. The membership functions of the fuzzy output classes consisted of 

trapezoid and triangle shapes where the output variable u was between -1 and 1 (Fig. 8). The 

inference of input to the output was based on the following rules: 

 If elevation estimate, x2 is Low, then the output, u is Negative Shift. 

 If elevation estimate, x2 is Average, then the output, u is Small Shift. 

  If elevation estimate, x2 is High, then the output, u is Positive Shift. 
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Figure 8.  Fuzzy output model for determining the weight for data correction based on 
the degrees of membership )(uµ  and output variable u . 

The crisp output from this fuzzy model was determined using the centroid 

defuzzification technique defined as: 
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where µi(u) is the DOM of the output membership function. The fuzzy output was then used 

as a weight in the correction function defined as:  

   12

*
22 xxDuxx −⋅−=′      (7) 

where; 

x'2 is the corrected estimate, 

x2 is the kriging estimate of a grid, 

u* is the weight obtained from fuzzy logic algorithm, 

D x2 - x1 is the absolute differences between x2 and x1. 
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After data correction using fuzzy logic, the estimates x'2 and x1 were averaged and 

stored. Since the accuracy of x2 estimates were improved using the fuzzy algorithm relative 

to x1 estimate, the variance of the combined estimates was represented by σx1, the kriging 

variance associated with x1. This variance was passed along to be used for analysis when the 

next DEM was available. This process was repeated for all the grids of the study area. The 

process kept the current estimate of the elevation in each grid and its associated variance, and 

thus no additional prior data were required for future DEM recombination with new survey 

measurements. 

Weighted Averaging Method  

In the WA method, DEMs were combined grid-wise using a weighted average 

function defined as: 

  222

2

122

2

21

1

21

2 xxx
xx

x

xx

x















+
+















+
=

σσ

σ

σσ

σ
µ     (8) 

where xµ is the new estimate (combination) of the elevation of the grid, x1 and x2 are the 

estimates from the two DEMs.  

The variance of the combined estimate, σµ 
2
, was then defined as: 
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From equation (9), the updated variance is less than the smallest input variance since:  
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The averaging function weighted the estimate based on the kriging variance, so if the 

kriging variance of a particular grid from DEM 1, x1, is greater than that from DEM 2, x2, 

then x2 contributes more than x1 to xµ. From equation (10), the standard deviation σµ is less 

than either σ x1 or σx2, which implies the uncertainty in the estimate decreases by combining 

the two pieces of information. This process was repeated for all the grids of the study area, 

and the same procedure was used when new surveys were acquired. The process only kept 

the current estimate of the elevation in each grid and its associated variance. It did not require 

all previous data to be stored and reprocessed every time new surveys were acquired.  

Accuracy of DEM Elevations 

Root mean squared error (RMSE), a typical measure of DEM error (Wise, 1998; 

Bishop and McBratney, 2002; Wilson et al., 2005; Westphalen et al., 2004), was used to 

measure the performance of the various methods in producing accurate DEMs. For the 

simulated GPS surveys, the original USGS DEM data were used as the validation value for 

each DEM grid, and error was calculated by subtracting the elevation estimates from the 

USGS DEM values. For the DEMs developed using multiple GPS surveys, error was 

calculated by subtracting the DEM estimates from the nearest reference measurement value. 
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Results and Discussions 

DEMs Developed From Simulated RTK-DGPS Elevation Surveys  

The contour map of the DEMs produced using the control method exhibited many 

artifacts (Fig. 9a). The artifacts were mainly due to the discontinuity noise in the 

measurements, which was not removed in the control process. The RMSE of the DEM 

developed using the control method was substantially high with average maximum value of 

1.38 m when a single simulated elevation survey was used to generate the DEM. The average 

RMSE from three replications decreased to 0.40 m after 20 simulated surveys were used 

(Fig. 9b).  With proper data processing techniques, errors in the field measurements could be 

reduced to improve the DEMs accuracy. 
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Figure 9. (a) Contour map of 10-m DEM of the test area from Winneshiek County 
produced by regularly averaging all data points in each grid without discontinuity 

error detection (control method) (b) RMSE of the DEM as multiple GPS surveys were 
combined as they become available using the control process.  

 

a. b. 
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The contour maps generated with data from the original USGS DEM of the test field 

(Fig. 10a) was compared with contour maps of the DEMs produced from the simulated 

surveys (Fig. 10b, c, and d). The contour map of the grid-wise averaging DEM (Fig. 10b) 

exhibited similar contour lines with a few artifacts.  However, with the FL and WA DEMs,, 

most of the artifacts were removed (Fig. 10d and c). These topographic maps had contour 

lines similar to the original USGS DEM contour map. It is obvious that data processing is 

needed in order to generate acceptable topographic maps from these simulated surveys. 
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Figure 10. (a) Reference contour map compared to contour maps from DEMs produced 
by (b) grid-wise averaging method, (c) WA method, and (d) FL method. 

c. d. 

b. a. 
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The mean RMSE obtained from the DEM accuracy analysis for over three simulated 

measurement surveys decreased as the number of elevation surveys increased (Fig. 11).  

DEMs developed using the grid-wise averaging method with discontinuity error detection 

had higher RMSE compared to DEMs developed using the FL and WA methods. Overall, 

from this plot, the RMSE for all methods decreased as the number of simulated elevation 

surveys increases. For the grid-wise averaging method, the average RMSE from three 

replications decreased from 0.34 m to 0.14 m after 20 surveys were used. For FL and WA 

methods, the average RMSE decreased from 0.28 m to 0.07 and 0.08 m respectively as the 

number of elevation surveys used increased. For the first three surveys, the differences in 

RMSE between the FL and WA methods were very small. However, the RMSE from the 

WA method dropped lower than the FL method as more simulated elevation surveys were 

added. This lower error was due to how the variance was handled in each method. As more 

surveys were added, the WA method reduced the estimation variance through Eqn. 9, while 

FL method retained the minimum variance.  
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Figure 11. RMSE of DEMs as multiple simulated RTK-DGPS elevation surveys were 
combined using the methods developed for this study. RMSE were averaged from three 

independent replications. 
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DEMs Developed From Experimental RTK-GPS Field Surveys 

Similar analysis was done with the GPS surveys collected from the study area. Due to 

the discontinuity noise in the measurements, which was not removed in the control process, 

the contour map of the DEMs produced using the control method exhibited many artifacts 

(Fig. 12a). The RMSE of the DEM developed using the control method was substantially 

high with average maximum value of 0.83 m. The RMSE varied substantially with a lower 

number of elevation surveys and became more stable at approximately 0.6 m as the number 

of surveys increased to five and above (Fig. 12b).   
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Figure 12. (a) Contour map of 1-m DEM of the study field by averaging all data points 
in each grid without discontinuity error detection (control process) (b) RMSE of the 

DEM as multiple  RTK-DGPS surveys were combined as they become available using 
the control process.  

 

DEMs developed using grid-wise averaging method (Fig. 13b) had a smoother 

contour lines compared to the contour map produced using the reference measurements (Fig. 

13a). This may indicate that some of the topographical details in the terrain were not captured 

in the DEM developed using the grid-wise averaging method. On the other hand, the contour 

a. b. 
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maps from DEMs developed using the FL and WA methods (Fig.13c and b) were very 

similar to that of the reference measurements. 
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Figure 13. (a) Reference contour map compared to contour maps from DEMs produced 
by (b) grid-wise averaging method, (c) WA method, and (d) FL method. 

 

The algorithm robustly handled the error inherent in GPS measurements, the three 

methods had similar performance (Fig. 14) as that observed with the simulated surveys. The 

DEMs developed using the grid-wise averaging method had substantially higher RMSE 

compare to DEMs developed with the FL and WA methods. The RMSE for the grid-wise 

averaging method decreased from 0.21 m to 0.13 m after 20 surveys were used. The RMSE 

of DEMs developed using the FL and WA methods decreased from 0.20 m to 0.08 m as the 

a. b. 

c. d. 



 58 

 

number of surveys used increased (Fig. 14). The differences in RMSE between these two 

methods were very small. However, the RMSE of FL method DEM varied more than that of 

the WA method as new surveys were used.  

Possible causes of other errors were the field conditions and vehicle dynamics. As the 

vehicle traveled over the field surface, it interacted with micro-topography – small scale 

variance in the field surface.  There are also variations in weight distribution of the vehicle 

from test to test as data collections were conducted on the same vehicle path repeatedly. The 

soil became more compacted and compressed lower than the soil around it as more passes 

were made. The temperature variation during data collection might also have caused changes 

in the air suspension system stiffness.  

The effects of these errors were reduced when the DEMs were developed using FL 

and WA methods. For the FL and WA methods, kriging produced an estimate by optimally 

weighting surrounding measurements. The grid-wise averaging method, however, is sensitive 

to outliers because it produced estimates by giving each measurement in a grid the same 

weight. Beyond initial estimation, the FL and WA methods were robust to outliers because in 

the data combination process, the kriging variance was passed along as measure of 

confidence in the estimates based on prior sampling configurations. A smaller kriging 

variance indicated that the elevation estimate was more strongly supported by elevation 

measurements and thus should be more representative of the true elevation. When the 

estimates from different DEMs were combined, the FL method adjusted the estimate with 

less measurement support relative to that with more support before combining.  The WA 

method weighted the estimates based on the confidence in the estimates during combination. 

Hence, these two methods were more robust to measurement errors and resulted in improved 
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performance over the grid-wise averaging method. This study demonstrates the importance 

of passing along a measure of estimate confidence in the process as measurements from new 

surveys are added.     
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Figure 14. RMSE of DEMs as repeated RTK-DGPS surveys were combined using the 
methods developed for this study.  

 

Conclusions 

GPS data surveys for the development of the field DEMs were simulated using publically 

available USGS DEM and acquired using GPS-equipped farm vehicles. Repeated GPS 

surveys of elevation data improved the DEM accuracy over time. This paper presented two 

methods for the development of field DEMs as a by-product of GPS-aided farm operations. 

These methods provided means to reduce the amount of raw elevation data passed on 

between measurements and combined them for improved elevation estimate. From this work, 

the following conclusions can be drawn: 
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• The DEMs from the experimental RTK-DGPS field surveys developed using the FL 

and WA methods had average RMSE of 0.08 m after using 16 surveys which was 

substantially lower than RMSE of 0.60 m associated with DEM developed by 

averaging all data points in each grid without discontinuity error detection. Overall, 

two years of GPS surveys of elevation data from field operations could improve the 

accuracy of the field DEM by 50% relative to the first DEM. 

• With minimum control of errors in elevation measurement surveys, the effect of these 

GPS errors can be reduced with appropriate data processing to reduce the effect of 

discontinuities and combine multiple survey data using methods that take into 

account the confidence in estimates based on their measurement support. 

• With a large number of measurement surveys, fuzzy logic and weighted averaging 

methods had about the same performance; however, DEM error associated with the 

weighted averaging method decreased more consistently as more measurement 

surveys were used. 
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ON SPATIAL UNCERTAINTY OF PRIOR MEASUREMENTS 
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Abstract  

Field sampling can be a major expense for planning within-field management in 

precision agriculture.  An efficient sampling strategy should address knowledge gaps, rather 

than exhaustively collect redundant data. Modification of existing schemes is possible by 

incorporating prior knowledge of spatial patterns within the field. In this study, spatial 

uncertainty of prior DEM estimates was used to locate targeted sampling regions in the field. 

An agricultural vehicle equipped with RTK-DGPS was driven across a 2.3 ha field area to 

measure the field elevation in a continuous fashion. A geostatistical simulation technique was 

used to simulate field DEMs using measurements with different pass intervals and to 

quantitatively assess the spatial uncertainty of the DEM estimates. The high uncertainty 

regions for each DEMs were classified using image segmentation methods and targeted 

sampling was performed on those regions. The addition of targeted measurements 

significantly reduced the time dedicated for the re-sampling effort and resulted in DEMs with 

lower RMSE. For the widest interval between sampling passes, the RMSE of 0.46 m of the 

DEM was reduced to 0.25 m after adding the targeted measurements which was close to the 

0.22 m RMSE of DEM with whole field re-sampling. The estimated sampling time for 

targeted sampling was more than 50% lower than re-sampling the whole field. The results 
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show that spatial uncertainty models are useful to design targeted sampling to help reduce the 

cost while maintaining the accuracy of the measurements. The method is not limited to map 

elevation data but can be extended for mapping other spatial data. 

Introduction  

Precision agriculture is a farming system aims on improving yields and product 

quality while reducing input cost and minimizing environmental impact. The important key 

to efficient and effective precision agriculture is to match resource inputs to the spatial and 

temporal variability of attributes within farm fields through site-specific management. In the 

past, managers used estimates of average conditions of farm attributes for the whole field and 

treated farm fields uniformly as single units. Site-specific management, however, requires an 

understanding of spatial variability within the field, and hence sampling is needed to estimate 

attributes at a finer than whole-field scale. 

Field sampling can be a major expense for planning within-field management in 

precision agriculture. Locating the samples inappropriately or taking more samples than are 

needed can result to extra expense. Taking too few samples on the other hand, may not help 

understanding the variability within the field. Conventionally, grid sampling was used in 

gathering field attributes. Sample points were located at the nodes or centers of square, 

rectangular or other regular shaped grids on the field, where the locations can be established 

and maintained using GPS. Gridded schemes are convenient to locate and analyze, but, like 

traditional simple random sampling schemes, may be inefficient to precisely capture the 

spatial variability of the attributes and somewhat ignores actual local variability. 
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Recently, continuous vehicle-based sampling has been widely investigated due to 

proliferation of automatic guidance systems on agricultural vehicles with high-accuracy GPS 

capability and advance sensor technology. It requires less labor and offers a rapid and 

relatively easy way for producers to obtain field data. Example includes vehicle-mounted 

GPS systems to collect elevation data (Clark and Lee, 1998; Westphalen et al., 2004; 

Schmidt et al., 2003), continuous soil sampling systems to sample soil attributes on-the-go 

(Kataoka et al., 2004), an autonomous underground Soil Scout for monitoring soil properties 

like moisture, temperature, nutrient level and pH (Tiusanen, 2006) and electrical conductivity 

(EC) mobile sensors to measure soil EC continuously in the field (Grisso et al., 2007; Ehsani 

and Sullivan, 2006). Vehicle-based sampling is characterized as highly dense data along the 

travel path and no samples between the paths. Again, like grid sampling, the question comes 

back to where exactly to sample to efficiently capture the variability in the field.  

An efficient sampling strategy should address knowledge gaps rather than 

exhaustively collect redundant data. Hence, a “smart sampling” plan should be conducted for 

efficient data collection and improve estimates of the variability. Modification of existing 

schemes is possible by incorporating prior knowledge of spatial variability within the field. 

Field elevation in the form of digital elevation models (DEMs) is among the most important 

attributes that can provide information relating the spatial variability in the field 

(Kravchenko, A. N. and Bullock, 2000; Kaspar et al., 2003; Rampant and Abuzar, 2004; 

Jiang and Thelen, 2004). This paper reports on research to investigate a method to efficiently 

implement vehicle-based sampling to collect elevation data in the farm fields.  

Many studies have sought to quantify DEM accuracy and compare the accuracy of 

DEMs produced using different data sources and production methods. By comparing with 
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higher accuracy data sources, measures such as standard deviation or root mean square error 

(RMSE) are typically used to represent the DEM quality. Such non-spatial statistics are 

global measures and specifically do not provide an accurate assessment of how precise each 

grid in a DEM represents a true elevation (Wise, 1998; Wechsler, 2007). Moreover, in the 

absence of higher quality data, it is impossible to quantify such measures. A number of 

authors recognized that spatial simulation methods can be used for uncertainty assessment of 

DEM quality (Hunter et al., 1995; Holmes et al., 2000; Carlisle, 2005; Wechsler and Kroll, 

2006). The simulation process accounts for spatial correlation in the data to produced 

multiple estimates (realizations) for each particular location in the DEM. These realizations 

provide a range within which the true estimate lies (Wechsler, 2007). The variance of the 

elevation realizations for each DEM grids can be used as an uncertainty measure of the 

estimate in the grids. 

In this paper, the uncertainty and spatial distribution of elevation estimates from prior 

measurements was used as a rational basis for a future sampling plan to improve the accuracy 

of field DEMs. The uncertainty of elevation estimates across the DEMs was assessed using 

geostatistical simulation technique to delineate the regions in the field that needed to be re-

sampled. Additional samples can be targeted and obtained from specified locations rather 

than re-sampling the whole field. The objective of this study is to develop a targeted 

sampling method based on spatial uncertainty of prior measurements for topographic 

mapping. 
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Methodology 

Field Study and Data Preparation 

Data were collected from a portion of 6.5 ha (16-acre) field that had been chisel-

plowed after the previous corn crop had been harvested. Elevation data were collected using 

a self-propelled agricultural sprayer (model 4710, Deere & Co., Moline, Ill.) equipped with 

real-time kinematic differential GPS (RTK DGPS) receivers (StarFire RTK, Deere & Co., 

Moline, III) operating at 1 Hz with a vertical static RMSE of less than 1.5 cm. The GPS 

receiver was mounted at a height of 3.81m above the field surface. The vehicle was driven 

over a 2.3 ha (5.7-acre; 247.55 m wide by 294.96 m long) area of the field at a speed between 

6.4 to 9.7 km/h (4 to 6 mph) along northwest-southeast in a headland pattern with opposite 

travel directions on adjacent paths (Westphalen et al., 2004). The passes were 3.05 m (10 ft) 

apart. 

Since the raw data is in the format of a geographic coordinate system consisting of 

longitude, latitude, and altitude, data projection was done to convert the raw data set into a 

projected coordinate system. Projection was required for spatial data analysis so that analysis 

proceeded using units of length in the horizontal plane. The standard USGS Universal 

Transverse Mercator (UTM) format was used with UTM grid zone of 15N for the coordinate 

projection with all units for easting, northing and elevation in meters.  

Vehicle-based RTK-DGPS accuracy relies on the continued availability of 

differential corrections broadcast from dedicated base station receivers. Loss or interruption 

of the DGPS correction signal will affect the GPS positioning and attitude measurement, 
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which introduces errors in the range of centimeters. Errors may also occur when satellites 

appear or leave the field of view during the GPS data collection. 

An algorithm was developed to detect measurement discontinuities for data 

correction. Discontinuity correction in the horizontal plane was accomplished by shifting 

sequential measurements to minimize discontinuities along the vehicle path. The 

discontinuities in elevation measurements were corrected by re-estimating the value using the 

mean of the nearest high accuracy neighboring points. 

Every other measurement point along the travel passes was sub-sampled and used as 

the calibration group. The remaining measurements were used as validation group to measure 

the quality of the simulated elevation. To simulate the calibration data group was jackknifed 

into seven separate sub-groups by skipping data along passes at a regular interval. It started 

with skipping every one pass to produce measurement consisted of every second pass of 

vehicle measurements. Consequently the number of passes skipped was increased until the 

widest interval of every eighth pass (seven passes skipped). These subgroups corresponded to 

intervals of 6.10 m, 9.15 m, 12.20 m, 15.25 m, 18.30 m, 21.35 m and 24.40 m between 

passes, respectively. These seven datasets became the initial-sampling data from which the 

field DEMs were simulated to assess the uncertainty in the elevation estimates. 

Uncertainty Assessment 

The spatial uncertainty of the elevation is modeled using a conditional geostatistical 

simulation method. The simulations model the uncertainty in the elevation spatial distribution 

based on the data sources available near each point of the DEM grids. Likely realizations of 

elevation estimates were randomly drawn from the possible distribution of the elevation 
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provided by the local conditional cumulative distribution function (ccdf) for each grid. The 

advantage of using this technique is that it preserves the nature of real world variability and 

spatial correlation in the estimates without the smoothing of the interpolated estimates which 

usually occur in kriging (Goovaerts, 1997). Among many other conditional simulations 

techniques, sequential Gaussian simulation (SGS) is by far the most widely used to estimate 

continuous variable like elevation; because of the inherent structure of the Gaussian model 

makes determining local ccdf fairly straight forward. Using this technique, simple kriging is 

used within the simulation routine to establish uncertainty models of elevation estimates at 

every DEM grid location. Multiple realizations of elevation estimates were randomly drawn 

from the ccdf derived based on the kriging estimate and its associated variance. The sample 

variogram of the data was fit with a linear variogram model with a 20 m lag distance and 

zero nugget effect. The search radius of the kriging estimator was set to the range of the 

variogram and a minimum of 16 data points. A total of 100 simulations were run resulting in 

100 realizations in each DEM grid. The average of the realizations in each grid was 

calculated to produce the mean estimate which is also known as E-type estimate of the grid. 

The E-type estimate across the DEM was used to produce the map of DEM estimates. The 

variance of the realizations also known as conditional variance was used to quantify the 

uncertainty of the DEM estimates. Detailed descriptions of SGS algorithm can be found in 

Goovaerts (1997). The gstat program in R statistical software (Free Software Foundation, 

Inc., Boston, MA) was use to perform the SGS. 
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Targeted Sampling 

The conditional variance quantified in each grid from the simulation process was used 

as the uncertainty estimate of the DEM. This produced conditional variance maps which 

were used to characterize the regions that need to be re-sampled. In Matlab (The Mathworks, 

Natick, Mass.), an image segmentation algorithm was performed using a simple thresholding 

technique, for our study we chose the estimation variance threshold to be 0.04 m2 because the 

histogram of the variances showed a distinguished separation at 0.04 m2. Region 

classification was performed on the conditional variance maps to classify the regions that 

exceed the threshold value. This is done by allocating a binary value equal to 1 in every grid 

in that region. Zeros binary value were assigned to the region that has value less than the 

threshold value. The process essentially transformed the DEM into a binary image by 

allocating every grid cell in the DEM as either black or white, depending on their value. The 

algorithm proceeded with morphological operations to filter segmentation noise and scattered 

unconnected pixels. Scattered unconnected pixels may correspond to random noise 

introduced from SGS and should not be considered a valid region of interest. The Matlab 

morphological operations function bwmorph was used to perform a 'cleaning' operation, 

followed by 'filling' and 'removing' operations to remove the noise. 

In the application of targeted sampling, new samples should be taken only in the 

regions of interest. Hence, unused measurement passes that fell in the regions that exceed the 

estimation variance threshold were added to each initial-sampling sub-group. Only one 

unused pass in between initial measurement passes in the delineated region were used to 

uniformly simulate the effect of adding new targeted sample data within the division of data 
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sub-groups. Then SGS was performed on the new sampling sets to produce an improve DEM 

estimates, as well as its associated uncertainty. 

For comparison purposes, non-targeted sampling was conducted for each data sub-

groups. Unused passes were added in between initial measurement passes across the whole 

study area. Again, only one unused pass in between initial measurement passes was used to 

uniformly simulate the effect of adding new non-targeted sampled data within the division of 

data subgroups. 

Data Analysis 

Sampling Time 

The amount of time spent to collect data for each sub−group within each sampling 

type was estimated based on the travel distance and the vehicle speed used for travelling 

along the passes as well as making turns. As the speed when traveling along the passes was 

in the range of 6.4 to 9.7 km/h (4 to 6 mph), the minimum speed, 6.4 km/h was used to 

estimate the travel time. The speed which making turns between passes was slower and 

estimated around 3.2 km/h (2 mph). 

DEM error Estimation 

Each generated DEM from each sampling types and calibration sub-groups was 

compared to the validation dataset from the validation group which had not been used to 

simulate the surface. RMSE, the typical measure of DEM error (Wise, 1998), was calculated 

by subtracting the elevation of the nearest estimated point from that of each validation point. 
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The DEMs produced from initial-sampling were used as the control to evaluate the effect of 

adding new targeted and non-targeted sample data in mapping the field elevation. 

Slope Estimation 

One of the common needs in quantitative DEM interpretation is to determine the 

slope which is the rate of elevation change in the direction of the steepest descent. DEM 

slope is frequently used to determine water flow direction in hydraulic analysis or surface 

erosion and environmental impact in agricultural and environmental studies. To study the 

effects of sampling procedures on slope prediction, the slope derivatives from each generated 

DEMs were calculated using ArcGIS (Version 9.2, ESRI, Redlands, Cal.). The DEMs were 

imported into ArcGIS and a slope calculation extension was used in the ArcMap Spatial 

Analyst to automatically calculate the slope. The accuracy of the slope was quantified by 

comparing the estimated value with the slope derived from the DEM developed using 

validation data. The RMSE was calculated by subtracting the estimated slope in each grid 

from the slope value in the corresponding grid of the validation DEM.  

Slope Uncertainty 

Calculation of slope in ArcGIS is based on the first partial derivatives of elevation, z 

(Burrough and McDonell, 1998): 
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where p is the change of height in the directions of x (easting) and q is the change of height 

in the direction of y (northing) axes. The values of the partial derivatives were in 3 x 3 

neighborhoods of elevation points approximated using equations 3 and 4. The top row of the 

3 x 3 neighborhood points are represented by z1, z2, z3, the middle row by z4, z5, z6 and the 

bottom row by z7, z8, z9. The distance between adjacent points or the grid size is denoted by 

w. 
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The slope, S of a grid was calculated as a change of height within the distance unit shown in 

equation 5. 

     22 qpS +=       (5) 

Based on this formulation, the uncertainties in the slope, ∆S were calculated using the 

sensitivity coefficients with respect to the nine neighboring estimates, zi, each with their own 

uncertainty, ∆zi (obtained from the conditional simulation method): 
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The uncertainty of the derived slope for each DEM was visually assessed using a 

contour plot of the mean elevation and the variance. 
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Results 

The conditional variance maps produced using SGS reveal clear correlation of the 

uncertainties in DEM with the slope of the land surface (Figure 1). A visual inspection of the 

maps shows conditional variance is larger at the steepest area (northeast) of the fields where 

elevation values change the most. The variance values ranged from 0.1 to 0.16 m2 in this 

area. The uncertainty is small in the south and northwest of the study area where elevation is 

flatter (plain region). The variance ranged from 0 to 0.04 m2 in this area. 

 

Figure 1: (a) The E-type estimates map and its corresponding (b) conditional variance 
map of DEM generated from SGS using measurements with 6.05 m pass intervals. 

 

The histograms of the values of the grids in the conditional variance maps across 

measurements subgroup were plotted to verify the appropriateness of the chosen threshold 

value (Figure 2). The histograms show a strong multimodality because the simulation process 

relies not only on the variability of the elevation values but also on the distance to the 

sampling measurements. As the measurements were collected systematically along parallel 
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passes, the simulation process seemed to capture the pattern. In all cases, the mode with the 

highest frequency had values ranging from 0 to 0.04 m2 and was clearly separated from the 

other modes. This distribution corresponded to grids that have little change in elevation and 

were situated closer to sampling measurements. The sub-group with 6.05 m2 measurement 

intervals has variances distribution in the smallest range, from 0 to 0.19 m2, relative to other 

measurement sub groups. As the measurement interval increased, the distribution of the 

variances spread to larger ranges. Thus the 0.04 m2 variance threshold was adequate to 

classify the variance estimates into high and low uncertainty classes. 

 

Figure 2: Histograms of SGS variance estimates using measurements passes at (a) 6.05 
m, (b) 15.25 m and (c) 24.40 m intervals. 



 78 

 

After segmentation and morphological operations, the field was classified into high 

uncertainty and low uncertainty regions. Intuitively, the sparser the measurement passes, the 

more uncertain the estimated values were. Visually, the DEM developed using measurements 

with passes interval of 24.4 m has the largest high uncertainty region (Figure 3 (c)). The high 

uncertainty region for DEM developed using measurements with passes interval of 6.10 m 

was smaller and located at region where elevation values change the most (Figure 3(a)). In 

this case, the SGS captured the actual elevation variability. 

 

Figure 3: The conditional variance maps for measurements at (a) 6.05 m, (b) 15.25 m 
and (c) 24.40 m passes intervals were transformed into binary images. Targeted regions 

(white) were classified using the image thresholding technique in Matlab followed by 
the Matlab morphological operations functions such as ‘cleaning’, ‘filling’ and 

‘removing’. 

 

The size of the high uncertainty regions decreased as the interval width of 

measurements passes used in data sampling decreased (Figure 4). This result shows that 

besides elevation variability, the uncertainty also depends on the distance between the 

estimates and the sampling locations. For this study field, the sampling measurements with 
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interval width less than 10 m adequately captured the spatial variability in the elevation and 

have uncertain regions of about 3,500 m2. Although the number of measurement passes for 

9.15 m was substantially lesser than 6.10 m sub-group, the high uncertainty region area was 

about the same for both interval sub-groups (Table 1). This result shows that given this 

information, one might want to sample at 9.15 m interval rather than 6.10 m interval because 

both would capture similar variability of the field. With interval widths larger than 10 m, the 

high uncertainty regions ranged from 8,700 to 12,400 m2.  The substantial jump of uncertain 

region area between 9.15 m and 12.2 m in the graph was due to the effect of skipping the 

measurement passes. Skipping three or more measurement passes resulting to substantially 

lesser measurement passes for analysis (Table 1). 

Table 1: Number of measurement passes used for each measurement interval sub-
group. 

Interval Subgroup Number of passes skipped Number of measurement passes 
used for analysis 

6.10 m 1 13 
9.15 m 2 9 
12.20 m 3 6 
15.25 m 4 6 
18.3 m 5 5 
21.35 m 6 4 
24.4 m  7 3 
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Figure 4: Targeted regions characterized based on conditional variance of DEMs 
increases as the interval width between passes increases. 

 

For each measurement subgroup, targeted sampling was located in the high 

uncertainty regions by adding a measurement pass in between the initial (first) measurement 

passes (Figure 5). 

 

Figure 5: Measurements passes at (a) 6.05 m, (b) 15.25 m and (c) 24.40 m intervals with 
additional targeted measurements between the passes. 
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The collection time to additionally targeted and non-targeted sample was estimated 

across measurement subgroups. For both cases, the estimated time decreased as the distance 

between passes increased (Figure 6). The estimated time ranged from around 16 minutes to 

an hour for measurements with additional non-targeted sampling and around 11 to 35 

minutes for measurements with additional targeted sampling. Targeted sampling significantly 

reduced the time for re-sampling. This reduction is important in minimizing the cost of data. 

The RMSE of DEMs developed using measurements subgroups and with additional 

targeted and non-targeted measurements between the passes increased as the distance 

between passes increased (Figure 7). Additional targeted and non-targeted sampling 

significantly reduced the RMSE of the DEMs developed using the initial (first) 

measurements. For the smallest measurement interval of 6.10 m, the RMSE of the DEM was 

0.08 m and decreased to 0.07 and 0.05 m with additional targeted and non-targeted 

measurements respectively. For the widest measurement interval of 24.40 m, the RMSE of 

the DEM was 0.45 m and decreased to 0.25 and 0.22 m with additional targeted and non-

targeted measurements respectively. Although the RMSEs of DEM developed with 

additional targeted measurements are slightly higher than with the additional non-targeted 

measurement, the estimated time spent for targeted sampling was substantially lower than 

non-targeted sampling. For distance between passes of 15.25 m, the RMSE for sampling with 

additional targeted and non-targeted measurements were not much different from each other 

(0.14 and 0.13 m respectively). However, the estimated sampling time was more than 50% 

lower than for non-targeted sampling. The targeted sampling method could help reduced the 

data collection time which may result in lower cost while maintaining the accuracy of the 

measurements. 
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Figure 6: Estimated time to collect the elevation data with additional targeted and non-
targeted measurements across distance between passes. 
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Figure 7: RMSE of DEMs developed using measurements across different passes 
intervals and with additional targeted and non-targeted measurements between the 

passes. 
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The RMSE of the slope estimates increased as the interval distance between 

measurements passes increased (Figure 8). Additional measurements slightly improved the 

slope estimation for smaller measurement intervals, and more significant improvement was 

observed for larger measurement intervals. For the smallest measurement interval of 6.10 m, 

the RMSE of the slope derived from the DEM was 1.6% and decreased to 1.5 and 1.4% with 

additional targeted and non-targeted measurements respectively. For the widest measurement 

interval of 24.4 m, the RMSE of the slope derived from the DEM was 2.8% and decreased to 

about 2.2% with additional targeted or non-targeted measurements. The difference of slope 

RMSE between DEMs with additional targeted and non-targeted measurement was very 

small, hence the targeted sampling which requires less time for data collection is preferable. 
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Figure 8: RMSE of slope derived from DEMs developed using measurements across 
different passes interval and with additional targeted and non-targeted measurements 

between the passes. 
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Generally, the additional re-sampled measurements led to better estimation of the 

field DEM and its derived slope parameter. The quantitative results were confirmed by visual 

inspection of contour plots and generated from the DEMs at different passes intervals (Figure 

9). The addition of measurements either through the targeted or non-targeted sampling led 

higher spatial frequency content in the contour lines. This higher frequency content may 

indicate that these DEMs are resolving on real topographic features as confirmed by the 

statistical error measures in some cases. For the DEMs developed using measurement passes 

at 24.4 m interval, the sparcity of data led to substantial distortion in the DEM interpolated 

from the first sampling. The distortion was reduced with the addition of measurements either 

through the targeted or non-targeted sampling.  

The calculated slope ranged from 0 to about 13% (Figure 10). The maps of the slope 

show clear pattern of surface changes related to the DEMs. The pattern of the slope changes 

was visibly more related to the DEM as the additional targeted or non-targeted measurements 

were added. The estimated uncertainty of the slope derivation exhibits a pattern similar to the 

estimated conditional variance of the DEM. For measurement passes at 15.5 m intervals, the 

slope uncertainty ranged to around 0.05%. The addition of measurements passes either 

through the targeted or non-targeted sampling substantially reduced the uncertainty of the 

derived slope (Figure 10). The information about uncertainty in the slope derivatives may be 

useful to study the propagation of error induced from deriving the parameter from the 

simulated elevation estimates. 
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Figure 9: Plots of 0.35 m contours of DEMs using measurements at (a) 6.05 m, (b) 15.25 
m and (c) 24.40 m passes intervals. 
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Figure 10: (a) Plots of slope using measurements at 15.25 m passes intervals (top) and 
its associated uncertainty maps (bottom). Additional targeted and non-targeted 

measurements were added to generate maps in (b) and (c) respectively. 

 

Conclusions 

From this study, a few conclusions can be drawn: 

• Uncertainty assessment using SGS quantified the variability of attributes in the 

field based on available sampled data. The information may aid producers in 

designing a more efficient sampling strategy by targeting only regions of interest 
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in the field for re-sampling consideration. Over all interval widths of the 

measurement passes, the introduction of targeted measurements reduced the time 

required for data collection and resulted in DEMs with relatively low RMSE 

values. Use of targeted sampling procedure may efficiently aid farm attribute 

estimation for site specific management practice. 

• The addition of targeted measurements significantly reduced the RMSE of slopes 

derived from DEMs generated using measurement passes at different interval 

widths. The information about uncertainty in spatial attribute estimation is useful 

to study error propagation induced from deriving parameters of interest related to 

the attributes. 
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CHAPTER 5.  ASSESSING THE EFFECTS OF DEM UNCERTAINTY 

ON SOIL LOSS ESTIMATION IN AGRICULTURAL FIELD 

A paper to be submitted to Transactions of the ASAE. 

S. Abd Aziz, B. L. Steward, M. Karkee 

Abstract  

The slope length and steepness (LS) factor is one of the factors in the Revised 

Universal Soil Loss Equation (RUSLE) needed to predict average annual soil loss. The LS 

factor is often derived from digital elevation models (DEM). DEM errors and uncertainty 

could affect LS factor estimation and consequently soil loss prediction. However, DEM 

uncertainties were not always accounted for and the effects were not always evaluated in soil 

loss prediction. This study compared the soil loss prediction of a 62.81 ha agricultural crop 

area using a 7.5-minute US Geological Survey (USGS) DEM and DEMs developed using 

RTK-DGPS and dual frequency (DF)-DGPS field surveys. Spatial prediction and uncertainty 

analysis was carried out using sequential Gaussian simulation (SGS).  A total of 50 

equiprobable DEM realizations were produced using SGS to assess DEM uncertainty and 

quantify its effect in the soil loss prediction. DEM uncertainty substantially affects the 

resulting soil loss prediction. The uncertainty of the annual soil loss estimates across the 

study field was represented as the 95% confidence interval (CI). For DF- DGPS DEM and 

USGS DEM, the percentage of the field that have soil loss CI value greater than two 

tons/acre/year were 20% and  30% which were substantially larger than the percentage area 

in RTK DEM (0.41%). Average annual soil loss map showed that USGS DEM contained 
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artifacts and underestimated the soil loss prediction in many areas of the field. The results 

suggested that higher accuracy DEMs such as generated using RTK-DGPS measurements are 

more appropriate for soil loss prediction in an agricultural field. Quantification of the DEMs 

uncertainty and its effect on the soil loss prediction was useful to better judge the reliability 

of the result. 

Introduction  

Erosion is one of the most important agricultural management problems. Soil erosion 

due to water occurs through detachment and transport of soil from land by water, including 

runoff from melted snow and ice. Topography is a major factor affecting soil erosion by 

water (Fangmeier et al., 2006). Naturally, the steeper the slope of a field, the greater amount 

of soil loss due to erosion by water. Soil erosion by water also increases as the slope length 

increases due to the greater accumulation runoff.  

In 1960s, the Universal Soil Loss Equation (USLE) was developed to predict soil 

erosion by water primarily for croplands. The USLE is based on simple empirical 

relationships, implemented through the use of tables, figures, and homographs of data 

collected over years from 1940s to the 1970s (Wischmeier and Smith, 1965). Later, the 

Revised Universal Soil Loss Equation (RUSLE1), a software version of a greatly improved 

USLE for any land uses was released in the early 1990s (Renard et al., 1997) followed by 

RUSLE2 in 2003 (USDA, 2008). Generally, RUSLE predicts longtime average annual soil 

loss, based on six factors including rainfall erosivity, soil erodibility, slope length and 

steepness, cover management, and support practice. RUSLE accounts for topographic effects 

through the product of the slope length, L, and steepness, S, sub-factors, which when 



 92 

 

combined are called the topographic factor or the LS factor. The LS factor represents the 

ratio of soil loss on a given slope length and steepness to soil loss from a slope that has a 

length of 22.13 m, and a uniform steepness of 9% where all other factors are the same 

(McCool et al., 1971). 

An important data layer for estimating soil erosion is topography which is often 

extracted from digital elevation models (DEM). Many environmental studies used DEMs to 

derive LS factor in erosion risk prediction. Lu et al. (2004) for example, mapped soil erosion 

risk in a large area of the Brazilian Amazonia forest using RUSLE with a 30-m DEM 

digitized from a 1:100 000 topographic map. They found that the majority of the study area 

had LS values less than 2.5 and most of the forest area had low erosion risk. Hoyos (2005) 

created a 25-m resolution DEM from a contour map of a 52 km2 coffee-growing region in 

Columbia to calculate the LS factor for soil erosion prediction in that area. They found that 

the relationship between LS factor and soil erosion potential had a correlation coefficient 

(Spearman r) ranging from 0.57 to 0.59; indicating an evidence of topography influence on 

soil erosion potential in that area. Lee and Lee (2006) generated a 20-m resolution DEM of 

274 km2 Bosung basin, Korea by digitizing and interpolation contour lines in a 1:5000 scale 

topographic map. They used the DEM as a parameter input to RUSLE. Their study implied 

that the topographic LS factor, which is directly derived from the DEM, is sensitive to grid 

size, and the optimal resolution to quantify soil loss in the RUSLE model for the study site 

was 125 m.  

These studies demonstrated the use of DEMs for soil erosion prediction in 

environmental studies over large scale (watershed-scale) areas. For a relatively small scale 

(field-scale), a reliable field DEM is vital because estimation of LS from an unreliable DEM 
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would propagate error into soil loss predictions, which could potentially lead to a poor 

conservation practices in the agricultural field. A field DEM can be generated using existing 

publically available US Geological Surveys (USGS) DEMs or more accurate measurements 

collected from GPS-aided farm operations (Renschler and Flanagan, 2008). Depending on 

data sources, methods and procedures to generate the field DEMs, the DEM estimates 

contain errors (Holmes et al., 2000; Wechsler and Kroll, 2006; Weschler, 2007). DEMs 

errors affect LS factor prediction (Renschler et al., 2001) or any other DEM derived 

parameters (Weschler, 2007). Though this is well known, the DEMs are often used as the 

true field surface, and the topographical uncertainty is not always accounted for in 

applications. 

The Root Mean Square Error (RMSE), the typical global measure of DEM accuracy 

does not provide an accurate assessment of how precise each grid in a DEM represents 

topographical features (Wise, 1998; Wechsler, 2007). Hence a number of researchers have 

investigated spatial simulation methods to assess the uncertainty of elevation estimates in 

each DEM grid (Hunter et al., 1995; Holmes et al., 2000; Carlisle, 2005; Wechsler and Kroll, 

2006). The simulation process accounts for spatial correlation in the data to produce 

equiprobable estimates (realizations) for each particular grid in the DEM. These realizations 

provide a range within which the true estimate lie and can be used to quantify the uncertainty 

at each particular DEM grid (Wechsler, 2007).  

 It is important to assess the uncertainty associated with DEM elevation estimates, so 

that the propagation of these errors can be accounted for in the other derived parameters or 

models. In this study, a 7.5-minute USGS DEM and GPS field measurements were used to 

develop DEM from which LS factors were calculated and average annual soil loss was 
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predicted for an agricultural field. The objectives of this study were to 1) assess the 

uncertainty in field DEMs elevation estimates and their effect on soil loss prediction; and 2) 

compare soil loss prediction uncertainty calculated using a USGS DEM and DEMs 

developed using GPS field measurements. 

Materials and Method 

Elevation Data 

The study field was located in Boxholm, Iowa and covered an 62.81 ha (795 m wide 

by 790 m long) agricultural crop area. The field had an elevation range of 1140 m to 1162 m 

(22 m elevation difference) and a 0 to 16.74 degree slope. Elevation data was collected 

during a seeding operation using an agricultural implement equipped with a real-time 

kinematic differential GPS (RTK-DGPS) receiver (StarFire RTK, Deere & Co., Moline, III) 

with a vertical static root-mean-squared error (RMSE) of less than 0.025 m. Another set of 

elevation measurements was collected using a dual frequency (DF) DGPS receiver (StarFire 

SF2, Deere & Co., Moline, III) mounted on a John Deere harvester during a harvesting 

operation. The DF-DGPS receiver has vertical static RMSE of around 0.1 m. For both field 

operations, the vehicle traveled along 10 m swaths in the West-East direction. 

A 7.5-minute USGS DEM of Boxholm located in Boone County, Iowa was acquired 

from an online GIS data provider (GeoCommunity, 2007). This DEM covered an area of 

147.11 km2, has a 30 m cell resolution and generated by contour digitization, either 

photogrametrically or from existing maps with vertical root mean square error (RMSE) of 7.0 

m to 15.0 m. At least 28 test points (20 interior points, 8 along the edges) located on bench 

marks, spots elevation, or points on contour from existing source maps were used by USGS 
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to calculate the RMSE (US Geological Survey, 1987). The DEM has an absolute vertical 

elevation error tolerance of 50 m for any grid node when compared to the test points. USGS 

also has set a standard that any array of points in the DEM cannot encompass more than 49 

contagious elevations to have error greater than 21 m. The elevation data in the USGS DEM 

within the boundary of the study field (0.63 km2) was used in this study. 

Exploratory data analysis 

The GPS measurements histograms were slightly skewed to the left though the 

distribution is generally normal, indicating that a small percentage of measurements have 

high elevations (Fig. 1b, d). The RTK-DGPS measurements (7097 points) ranged from 

1139.74 to 1162.01 m with a mean of 1149.62 m and standard deviation of 4.36 m. The DF-

DGPS measurements (6874 points) had very similar elevation values, ranged from 1139.65 

to 1161.88 m with a mean of 1149.24 m and standard deviation of 4.32 m. The USGS dataset 

histogram revealed a strongly multimodal distribution as a result of sparse pattern of 

elevation data points which failed to capture the continuity and surficial detail in the field 

topography. There were low elevation patterns in the middle and southwest of the field study 

that were smoothed in the USGS dataset (Fig. 1e). The USGS dataset also underestimated the 

elevation, as the elevation values ranged from 1121 m to 1136 m; about 20 m lower than 

GPS measurements. This may due to systematic errors as the result of the procedures used in 

the USGS DEM generation process that cause bias in the elevation. The USGS DEM was co-

registered with the RTK-DGPS elevation measurements. From this point forward, USGS co-

registered elevations were used for further analysis. 
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Figure 1: Contour maps and histograms of the (a, b) 7097 points RTK-DGPS, (c, d) 
6874 points DF-DGPS measurements and (e, f) 704 points USGS DEM dataset.   
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DEM Development 

Using each elevation dataset, the field-level DEMs were developed. This process 

included interpolating the GPS measurements and the 30-m USGS DEM into 10-m gridded 

DEMs. The grid size of 10-m was chosen as a trade-off between sufficient resolution and 

required computation time. For synchronization, the locations of the DEM grids were pre-

defined so that each DEM developed using different datasets would use the same grid 

locations. This was done to ensure that the raster grids for various DEMs overlay precisely 

on each other and that the values can be compared to each other in the later analysis.  

Elevation data were interpolated using ordinary kriging to generate the DEMs of the 

field. Ordinary kriging was chosen because it is a commonly used unbiased estimator that 

seeks to minimize error variance (Isaaks and Srivastava, 1989) which provides the best 

estimate of the value based on the available data. In addition, visual inspection of the data 

indicated no large trends, and ordinary kriging is known to be quite robust (Trangmar et al., 

1985). The gstat program in R statistical software (Free Software Foundation, Inc., Boston, 

MA) was use to perform the interpolation.  

First, the semivariograms of the elevation data were constructed. Usually, data that 

varies smoothly like elevation are generally expected to present a high spatial dependence 

with semivariograms that have a shallow slope near zero distance (high data similarity at 

short distances) (Burrough , 1987; and Valeriano et al., 2006). Topographic data also 

typically have an increase in semivariance with increasing distances (Fig. 2) because 

elevation has the potential to become more and more variable over larger distances due to 

surficial process (i.e. the semivariogram does not reach a sill; Holmes et al., 2000). The 

semivariograms from the GPS datasets showed a slightly larger increase in variance with lag 
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distance (steeper  slope) because the large number of point measurements gave higher 

variance and details in the elevation within a small lag. A slightly slower increase (shallow 

slope) in semivariance for USGS dataset was due to the underestimation of elevation and 

smoothed elevation variation at the middle and southwest of the field. The USGS dataset was 

also more sparse, thus fewer data points were used to calculate the semivariance at each lag 

distance.  

The sample semivariogram of each dataset was fit with a Gaussian semivariogram 

model because a Gaussian model presents a region of low slope near the zero distance, which 

is suitable for data that varies smoothly like elevation. The semivariogram models for RTK 

and DF-DGPS measurements were similar with a small nugget value of 0.1 m2. For the 

USGS DEM data, the semivariogram had a nugget value of 0.6 m2 (Fig. 2). The nugget 

values provide an indication of the amount of local variation in the dataset or an indication of 

the micro-spatial variability at a scale below the sampling resolution.  

  

Figure 2: Semivariograms of RTK-DGPS and DF-DGPS measurements and USGS 
DEM data. Solid line on each semivariogram is the semivariogram model generated 

using the gstat program in R statistical software. 

 



 99 

 

Using the semivariogram models, elevation data from each dataset were interpolated 

to 10 m common grids. A fixed radius of 60 m and a minimum of 30 data points were used to 

ensure enough interpolation support within an applicable computation time.  

Error Simulation in Lower Accuracy DEMs 

Errors were added to each of the interpolated DEMs because although kriging gave 

estimates with minimized error variance, it contains errors and under uncertain conditions is 

assumed to be one of an infinite number of equiprobable elevation realizations. Error 

simulation enables quantification of uncertainty associated with elevation estimates and 

derived parameter in each DEM grid. In this section, the procedure to assess elevation 

estimates uncertainty is discussed. 

Researchers have used error measured at discrete points (such as from GPS surveys 

or data of higher resolution) to estimate and investigate DEM error and the spatial structure 

of the DEM error (Holmes et al., 2000; Carlisle, 2005). In this study, DF-DGPS 

measurements and USGS datasets had lower accuracy relative to the RTK-DGPS 

measurements. Therefore, RTK-DGPS elevation measurements were used as reference 

measurements to calculate errors contained in lower accuracy datasets. The error was 

calculated by subtracting the interpolated elevation at each DF-DGPS and USGS DEM grid 

from the nearest neighbor RTK elevation measurement.  

The DF-DGPS errors had no visible spatial patterns (Fig. 3a). The histogram of the 

error values from DF-DGPS dataset had a roughly normal distribution, with a mean of 0.44 

m, a median of 0.42 m and a standard deviation of 0.69 m, indicating that on average over the 

study area the DF-DGPS DEM underestimated the elevation by 44 cm (Fig. 3b). The 
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maximum error value of 3.14 m and minimum of -4.76 m however, showed there are large 

differences from RTK measurements in some areas. The semivariogram of the DF-DGPS 

error data showed spatial correlation, and there was a slight trend of increasing variance with 

distance to a 200 m range (Fig. 3c).  

The USGS DEM error exhibited spatial patterns; particularly visible was the large 

region with negative error values to around -8 m showing a topographic depression (Fig. 3d). 

There were also several small regions in which positive error was observed.  These regions 

were typically larger than the underlying 30 m spatial resolution of the original DEM.  The 

USGS co-registered DEM error histogram was slightly skewed to the right indicating that a 

high percentage of grids underestimated the elevation value.  The across the field, the mean 

error was 0.11 m, the median was 0.25 m and standard deviation was 2.28 m. The maximum 

(7.04 m) and the minimum (-8.45 m) error values show that there are significant differences 

in some areas. The semivariogram of the USGS DEM error data shows spatial correlation 

with a substantial increase in variance with increasing distance to a 200 m range (Fig. 3f). 
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Figure 3: Plots and histograms of (a, d) 6874 points DF-DGPS measurement error and 

(b, e) 704 points USGS DEM error with their corresponding (c, f) semivariogram. 

 

Many studies showed that DEM error is spatially variable (Ehlschlaeger and 

Shortridge, 1997; Hunter and Goodchild, 1997; Carlisle, 2005) and spatially correlated. 

Therefore a model of DEM error should not be random, but spatially dependent.  In this 

study, the magnitude and spatial distribution of error in the DEMs was evaluated using a 

geostatistical method which recognized to be a realistic approach for DEM error modeling 

because it provides alternative plausible representations of possible spatial distribution of 

errors in a DEM (Holmes et al., 2000).  

Sequential Gaussian simulation (SGS) was used to produce multiple realizations of 

the error value at each DEM grid based on available error data and spatial distribution of the 
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error. Detailed descriptions of SGS algorithm can be found in Goovaerts (1997). The SGS 

was implemented using gstat program in R (Free Software Foundation, Inc., Boston, MA). 

Prior to the simulation process, the normal scores transform, a non-linear transform that 

remaps any distribution to a normal distribution (Goovaerts, 1997), was applied to the error 

datasets to map the error distribution into a standard normal distribution. This was done to 

meet the format requirement of Gaussian simulation, which is that the univariate distribution 

of the error data be standard normal (Fig. 4a, and c). The semivariogram of the normal score-

transformed error data was modeled for simple kriging estimation used in the simulation 

routine. Using gstat, the DF-DGPS normal score transformed error data was fit with a 

spherical semivariogram model with a nugget effect of 0.8 m2, lag distance of 180 m, and sill 

of 1.0 m2 (Fig. 4b). The USGS normal score transformed error data was fit with a spherical 

semivariogram model with a nugget of 0.3 m2, lag distance of 200 m, and sill of 1.2 m2 (Fig. 

4d).   

SGS models the uncertainty in the error data based on the normal score transformed 

data available near each point of the DEM grids. The simple kriging estimates (kriging 

prediction and its associated kriging variance) were used to establish the local conditional 

cumulative distribution function (ccdf) of the error estimates at every DEM grid location. 

Within the simulations, multiple realizations of error predictions were randomly drawn from 

the ccdf. Once the simulations of the normal score values have been produced, each 

realization must be back-transformed to the original error distribution. This process 

essentially consists of taking the inverse of the normal scores transform to remap the normal 

score distribution to the original error histogram.  
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Figure 4: Histograms of the normal score-transformed of  (a) 6874 points DF-DGPS 
measurements error and (c) 704 points USGS DEM  error with their corresponding (b, 

d) semivariograms. Solid line on each semivariogram is the semivariogram model. 

 

A total of 50 simulations were run resulting in 50 realizations of each DEM error 

map. The minimum number of needed simulations was determined when the percent 

difference in standard deviation of simulated errors between subsequent simulations was 

below 1 % and reached a steady state. The final step of the uncertainty analysis was to add 

the simulated error realizations of each dataset to its original kriged DEM. This created 50 

equiprobable DEM realizations for each dataset to be used for soil loss prediction. These 

realizations provide a range within which the true estimate lies and can be used to quantify 

elevation uncertainty associated with each DEM and its effect on soil loss prediction. 
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Errors Simulation in RTK-DGPS DEM 

For RTK-DGPS measurements, the vertical RMSE of the receiver was stated to be 

less than 0.025 m by the GPS receiver manufacturer. Typically, in the absence of higher 

accuracy data to calculate error values, a global accuracy measure such as RMSE is the only 

statistic available.  When RMSE is the only information available, DEM error are often 

modeled based on a random process of error values with standard deviation equal to the 

RMSE value (Weschler, 2006), which means the DEM error is assumed to be spatially 

uncorrelated. This assumption is generally not appropriate for modeling error in DEMs 

because higher error is expected in areas of more rugged terrain (Hunter and Goodchild, 

1997). Indeed a number of authors reported that the DEM errors could be larger on steep 

slopes (Hunter and Goodchild, 1997; Carrara et al., 1997), lower in less complex terrain 

(Gao, 1997), correlated with terrain ruggedness (Kyriakidis et al., 1999) and gradient and 

could be related to other elevation features (Ehlschlaeger and Shortridge, 1997). As RTK-

DGPS measurements were collected using a moving vehicle, the assumption that the 

elevation errors were related to terrain variability seems appropriate because measurement 

errors due to vehicle dynamics resulted from the vehicle interaction with field topography or 

variability in the field surface.   

Hence, the methodology presented here is intended to model the RTK-DGPS DEM 

errors based on the known RMSE and relate it to the elevation variability. The spatial 

distribution of RTK-DGPS DEM error related to the elevation variability was assessed using 

SGS. The normal score transform of the RTK-DGPS elevation measurements were used 

within the simulation to produce 50 realizations of elevation values at each DEM grid. First, 

the spatial correlation in the normal score transformed data were modeled using a Gaussian 
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semivariogram model with a nugget value of 0.1 m2, similar to that of the original elevation. 

After simulation, the elevation realizations were back-transformed to the original elevation 

data distribution. This produced 50 DEM realizations which were then subtracted from the 

mean realizations to produce 50 realizations of error maps. Each error map provides a 

plausible representation of possible spatial distribution of errors in the DEM which the 

spatial structure related to elevation variability was accounted within the SGS routine (Fig. 

5). As the RMSE of the RTK DGPS measurements was 0.025 m, the error maps were 

rescaled to have mean value equal to zero and standard deviation equal to the RMSE of 

RTK-DGPS measurements of 0.025 m. The rescaled error maps were added to the previously 

kriged RTK DEM to produce 50 equiprobable RTK DEM for soil loss prediction. These 

realizations provide a range within which the true estimate lies and can be used to quantify 

the RTK-DEM uncertainty and its effect on soil loss prediction. 

 

Figure 5: Semivariogram showing the spatial correlation of RTK-DGPS DEM errors 
produced using sequential Gaussian simulation. 
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Soil Loss Prediction Using RUSLE 

LS topographical factor estimates were derived from the 50 realizations of DEMs 

from each dataset using ArcView (Version 3.3, ESRI, Redlands, Cal.) within the ArcViewTM 

Spatial Analyst extension. The calculation was done using an Avenue script of RUSLE3D, an 

improved method for RUSLE calculation within GIS (Mitasova et al., 2001). The 

computation of LS factor at a point r  = (x, y) is given by: 

  LS(r ) = 1.8 * [A(r ) / 22.13]0.4 [sin b(r ) / 0.09]1.4     (1) 

where A(r )  is the upslope contributing area per unit contour width (m2m-1) and b is the slope 

in degrees. In this equation L and S factors were combined by substituting the parameter of 

slope length with upslope contributing area. The LS factor was calculated in vector-grid 

approach within Spatial Analyst operations.  

This resulted to 50 LS factor maps for each dataset which were used to produce 50 

equiprobable maps of the average annual soil loss of the field. The annual soil loss maps 

were generated by multiplying the LS factor maps with other RUSLE factors as followed: 

    E=R*K*LS*C*P     (2) 

where; 

E = the estimation of average annual soil loss in tons per acre per year caused by sheet 

and rill erosion, 

R = the rainfall erosivity factor of 160 (hundreds of foot-tonf-inch per acre- year) for 

Boone County, IA, 

K = the soil erodibility factor of 0.032 (tons-acre-hour per hundreds of foot-tonf-inch) for 

Clarion loam soil type, 

LS = the slope length and steepness factor maps calculated in ArcViewTM, 
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C = the cover and management factor of 0.24 for spring tillage, corn-soybean rotation, 

P = the support practice factor of 1 indicating no soil conservation practice. 

DEM and Soil Loss Uncertainty Estimation 

Using 50 elevation and 50 soil loss realizations from the three DEM sources, the 

uncertainty of the estimates in each grid was quantified. The elevation and soil loss 

uncertainty in each grid was based on the dispersion of the estimates from their mean. The 

dispersion was estimated by calculating the 95% confidence interval (CI) of the estimate in 

each grid; indicating 0.95 probability of the estimates fall in that interval. The 95% CI was 

calculated as the standard deviation multiplied by the critical two-tailed value of 1.96 for a 

standard normal distribution (Sheskin, 2004):   

    
iσ×±= 96.1 zi
      (3) 

where zi refers to the  lower and upper 95% CI of the estimates in the ith grid with i as the 

indexing number of the grid across the map and σi refers to the standard deviation of the 

estimates in ith grid. The 95% CI estimator provides an indication of statistical dispersion of 

the predicted parameters which can be used to quantify the uncertainty of the predicted 

parameter at each grid location. An estimate with a small CI value is more reliable than the 

estimate that has a high CI value. By calculating the CI value in each grid estimate across the 

map, the estimate spatial uncertainty at any particular location can be observed and studied. 
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Results and Discussions 

Field DEMs  

Contour plots of the DEMs developed using each elevation dataset showed that 

generally the field has lower elevations at the edge of southeast, northeast, and northwest of 

the field (Fig. 6). There were some common patterns with dense contour lines in several 

spots indicating high elevation gradients (Fig. 6a and b). These patterns appeared differently 

in the 10 m DEM developed with the USGS data (Fig. 6c). The low resolution USGS DEM 

data missed many topographical details in the field. Errors as the result of the procedures 

used in the USGS DEM generation process created artifacts specifically in the middle and 

southwest of the field.  

In the simulation process, 50 simulated error realizations were added to the kriged 

DEMs to created 50 equiprobable realizations of the DEMs. The average elevations across 

the field study were calculated by taking the average of all the grid mean elevations across 

the DEM. Overall for each of the DEMs, the average estimated elevation was very similar, 

around 1149.74 m to 1149.95 m (Table 1).  The elevation range across the field was 21.84 m 

for USGS DEM, 21.57 m for DF-DGPS DEM and 21.63 m for RTK DEM. The differences 

in elevation ranges indicate the differences in predicted field DEM elevations from each of 

the dataset.  
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Figure 6: Contour map of the kriged DEM developed using (a) RTK-DGPS 
measurements, (b) DF-DGPS measurements and (c) USGS DEM dataset. 

 

Uncertainty Estimates of DEM  

Grayscale maps of the 95% CI of the elevation estimates in each grid were 

constructed to describe the uncertainty in the estimated elevation of the DEMs (Fig. 7). 

Darker color indicates higher CI values which signify higher uncertainty in the estimates. For 

the DEMs simulated from RTK-DGPS measurements, the 95% CI values of the grid 

elevations were very small, with a maximum of 0.15 m (Fig. 7a). The small uncertainty was 

mainly related to the variability in the RTK-DGPS elevation measurements around the grid 

which the magnitude was defined by the accuracy of the RTK-DGPS receiver. The 

uncertainty can also be related to vehicle dynamics resulting from the vehicle interaction 

with the micro-scale variability in the field surface. For the DEMs simulated from DF-DGPS 

measurements, the uncertainty of the simulated elevations in each grid was relatively higher 

than the RTK DEM with 95% CI values up to 3.12 m (Fig. 7b). A few dark patches in some 

spots of the 95% CI map show that there was a substantial deviation of the DF-DGPS 

elevations from the RTK DEM which indicated high degree uncertainty in the that area. The 

uncertainty in the elevation estimates was more clearly distinguished in the 95% CI map of 
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the DEMs simulated from the USGS dataset (Fig. 7c). The high value of 95% CI in grid 

elevation estimates was clearly observed in the area that has large elevation error as 

computed in the error analysis. These areas were characterized in northeast, middle and 

southwest regions of the study field with 95% CI value ranged to 4.33 m. Small predicted 

elevation CI in RTK DEM grids show that the degree of certainty in the grid elevation was 

higher using the RTK measurements compared to the DF-DGPS measurements and USGS 

dataset. The uncertainty estimates could give some insight to the modeler as to whether they 

might improve the elevation dataset based on the uncertainty of the grid elevations, and thus 

be better suited to understand the uncertainty in the output of their models. 

 

Figure 7: Contour map of 95 % CI for 50 equiprobable DEMs elevations using (a) 
RTK-DGPS measurements, (b) DF-DGPS measurements and (c) USGS DEM dataset. 

 

Overall across the study field, the average uncertainty of the grid elevation estimate 

was higher for USGS DEM (Table 1). The average 95% CI estimates of the simulated 

elevation values in each grid across the field study for RTK DEM, DF-DGPS DEM and 

USGS DEM were 0.08 m, 1.35 m and 1.72 m respectively. The range of  CI values across the 

field was 0.14 m for RTK DEM, 2.93 m for DF-DGPS DEM and 3.48 m USGS DEM. 

Although the difference in elevation between SF2 DEM and RTK DEM was smaller 
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compared to the difference in elevation between USGS DEM and RTK DEM (Fig. 3), the 

range of 95% CI across SF2 DEM was relatively high indicating there was high uncertainty 

in some areas. 

It is the responsibility of the modeler to determine whether the uncertainty in these 

DEMs will affect the results of their applications that utilize the parameters derived from the 

DEMs. The effect of the DEM uncertainty on average annual soil loss prediction of the field 

was discussed in the following section. 

Predicted Average Annual Soil Loss  

The predicted average annual soil loss for kriged DEMs using GPS measurements 

were similar to each other (Fig. 8a, b). Generally, most of the sloped areas in the field show 

denser contour lines which signify high values of estimated soil loss.  The high soil loss 

values appeared in a few spots with the highest peak at the west of the field.  The contour 

pattern of soil loss estimates derived from the kridged DF-DGPS DEM (Fig. 8b) shows 

similarity with the soil loss pattern from RTK DEM (Fig. 8a), though most of the high soil 

loss areas were underestimated. For the USGS DEM, a contour map of the soil loss estimates 

lost a lot of detail in the patterns compared to soil loss from RTK DEM (Fig. 8c). The areas 

that have high uncertainty of elevation values characterized in the previous section (in 

northeast, middle and southwest regions) were the areas that have the most differences in soil 

loss prediction relative to the soil loss estimates derived from RTK DEM. The contour map 

of soil loss for simulated USGS DEM shows sparser contours which indicate that the soil 

loss values were underestimated in many areas of the study field compared to RTK DEM. 
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Figure 8: Contour map of soil loss calculated from kriged DEMs using (a) RTK-DGPS 
measurements, (b) DF-DGPS measurements and (c) USGS DEM dataset. 

 

The mean of simulated average annual soil loss across the field study was calculated 

by averaging all the mean soil loss values across the entire DEMs. For each of the DEM, the 

average annual soil loss for the whole field study was very similar, ranged from 0.60 to 0.62 

tons/acre/year (Table 1). However, the range of average annual soil loss across the field study 

for RTK DEM was 8.29 tons/acre/year, higher than 5.31 tons/acre/year for DF-DGPS DEM 

and 5.76 tons/acre/year for USGS DEM. For the RTK-DGPS DEM, 95% of the grid soil loss 

values were smaller than 2.11 tons/acre/year.  For DF-DGPS DEM and USGS DEM, 95% of 

the grid soil loss values were smaller than 1.52 tons/acre/year.  Smaller range of soil loss 

estimates in DF-DGPS and USGS DEM signify that DF-DGPS DEM and USGS DEM 

underestimated the soil loss value at some areas in the field compared to RTK DEM.  

The estimate of soil loss errors relative to soil loss predicted from the kriged 

(undisturbed) RTK DEM were calculated by subtracting the soil loss values for each 

simulated DEM from the soil loss value of the undisturbed RTK DEM . The percentage of 

the areas that have mean error value greater than 2 tons/acre/year were estimated (Figure 9). 

About 3%, 5% and 7% of the study field area has soil loss error greater than 2 tons/acre/year 
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for RTK, DF-DGPS and USGS DEM respectively. Mostly, the areas that have error greater 

than 2 tons/acre/year were located in the sloping areas. The error estimates from DF-DGPS 

and USGS DEM were higher than RTK DEM, though the differences were not substantial 

because when adding the simulated elevation errors to each of the DEM, the process 

essentially corrected the DEM to be similar to kriged RTK DEM. However, the corrected 

errors have uncertainties associated with them which were not usually accounted for in 

applications.  

 

Figure 9: The soil loss error estimates greater than 2 tons/acre/year calculated by 
subtracting soil loss estimate from simulated (a) RTK DEM, (b) DF-DGPS DEM and (c) 

USGS DEM from soil loss predicted from kriged (undisturbed) RTK DEM. 

 

Uncertainty Estimates of Predicted Soil Loss 

The grayscale map of the 95% CI of the 50 equiprobable soil loss value in each grid 

was constructed to describe the uncertainty in the soil loss prediction (Fig. 10). For the 

DEMs simulated from RTK-DGPS measurements, the 95% CI values of the grid soil loss 

were generally small across the field, with only a few spots that have high CI value ranged to 

3.40 tons/acre/year (Fig. 10a). For the DF-DGPS DEMs, the uncertainty of the predicted soil 

loss in each grid was relatively higher across the whole field with 95% CI values up to 4.98 
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tons/acre/year in (Fig. 10b). Some dark patches in many spots of the 95% CI map indicated 

high degree uncertainty in the estimates. The uncertainty in the soil loss estimates was more 

clearly distinguished in the 95% CI map of the predicted soil loss from the USGS DEM (Fig. 

10c). The high value of 95% CI in soil loss estimates was clearly spotted in the area that has 

large elevation error as computed in the error analysis. These areas were characterized in 

some northeast, middle and southwest regions of the field study with 95% CI value up to 

7.53 tons/acre/year. Low 95% CI of soil loss estimates from RTK DEM show that the degree 

of certainty in the soil loss estimates was higher using the RTK-DGPD DEM compared to 

the DF-DGPS DEM and USGS DEM.  

 

Figure 10: Contour map 95% CI of soil loss estimates calculated using 50 simulated 
DEMs using (a) RTK-DGPS measurements, (b) DF-DGPS measurements and (c) USGS 

DEM dataset. 

 

Similar to the average uncertainty of the elevation estimates, the average uncertainty 

of the soil loss factor estimate across the study field was higher for USGS DEM (Table 1). 

Quantitatively, the average 95% CI estimate of the soil loss values across the field study for 

RTK DEM, DF-DGPS DEM and USGS DEM were 0.23,  1.51 and 1.65 tons/acre/year  

respectively. Although the errors in DF-DGPS DEM were smaller than the errors in USGS 
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DEM, the impact of the errors on soil loss prediction for DF-DGPS DEM was substantially 

high as of in the USGS DEM. This shows that even a small amount of elevation error in 

DEMs greatly affected the result of the soil loss estimation. 

Table 1. Summary statistics of 50 equiprobable elevations and soil loss across the study 
field 

  Elevation across field  
(m) 

Soil loss across field 
(Tons/acre/year) 

Statistics 
of 50 

estimates 
Dataset Avg. (µ) Range 5th% 95th% Avg. (µ) Range 5th% 95th% 

Mean RTK 1149.95 21.63 1143.05 1156.23 0.60 8.29 0.00 2.11 
 DF -DGPS 1149.93 21.57 1143.01 1156.22 0.59 5.31 0.03 1.52 
 USGS 1149.74 21.84 1142.69 1156.07 0.62 5.76 0.05 1.52 

95% CI RTK 0.08 0.14 0.04 0.11 0.23 3.40 0.00 0.89 
 DF-DGPS 1.35 2.93 1.05 1.62 1.51 4.98 0.21 2.98 
 USGS 1.72 3.40 1.16 3.30 1.65 7.53 0.27 3.74 

 

To compare the uncertainty of average annual soil loss estimates from different 

DEMs, the percentage of the areas that have 95%CI value greater that 2 tons/acre/year were 

estimated. Only 0.41% of the area in the soil loss map predicted from RTK DEM has 95% CI 

values more than two tons/acre/year (Fig. 11a).  The percentages of the area that has soil loss 

95% CI value greater than two tons/acre/year for DF-DGPS DEM and USGS DEM were 

substantially higher, 20% and 31% respectively (Fig. 11b,c).  These areas were generally 

located on the slopping area of the field. Overall, the errors in USGS DEM greatly affect the 

soil loss prediction derived from the DEM.  The uncertainty estimators such as the 95% CI 

value of the soil loss estimates which were calculated on grid by grid basis enable 

quantification and visualization of the impacts of the DEM errors in the soil loss prediction.  
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Figure 11: Shown in black are the areas that have 95% CI estimates greater than two 
tons/acre/year for soil loss calculated using (a) RTK-DGPS DEMs, (b) DF-DGPS DEMs 

and (c) USGS DEMs. 

 

Conclusion  

The uncertainty in the estimated DEMs affected the result of soil loss prediction in 

this study. From this study, several conclusions can be drawn: 

1.  The average uncertainty value for DF-DGPS DEM (95% CI = 1.35 m) and USGS 

DEM (95% CI = 1.72 m) were significantly higher than the uncertainty of RTK DEM 

(95% CI = 0.08 m). Although the errors in DF-DGPS measurements were smaller 

(ranged from -4.76 m to 3.14 m) than the errors in USGS DEM dataset (ranged from -

6.88 m to 8.78 m), the impacts of DEM errors on the DEM elevation estimates were 

substantial. 

2. Even small errors in the DEM elevation produced large deterioration of the annual 

soil loss prediction in the study field. The percentage of the areas that have 95% CI of 

the annual soil loss estimates greater than two tons/acre/year were 20% and 30% for 



 117 

 

DF-DGPS and USGS DEM which were significantly higher than the percentage area 

of 0.41% for RTK DEM.  

3. The quantification of uncertainty estimator such as 95% CI values in each grid enables 

a thorough assessment of the prediction uncertainty. The uncertainty estimators which 

were calculated on grid by grid basis provide visualization of the impacts of the DEM 

errors in the soil loss prediction. 

Thorough evaluation of the uncertainty in the elevation is needed for appropriate 

conclusion on the impact of the DEM errors on soil loss prediction. The quantification of the 

uncertainty estimators in grid by grid basis enables more precise assessment of reliability of 

the predicted estimates across the study area. The impact of the DEM uncertainty on soil loss 

prediction can also be discerned through visualization of the estimator grids like 95% CI 

maps as shown in this study.  

The need for use of accurate DEMs in soil loss estimation is evident. For accurate LS 

factor estimation to be used in RUSLE equation for soil erosion prediction, high accuracy 

DEM such as using RTK-DGPS measurements is required. Otherwise, one would like to take 

into account the prediction uncertainty such as using the quantified uncertainty estimators to 

classify the areas that has unreliable prediction, which provide guidelines for error reduction 

and management planning.  
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CHAPTER 6.  GENERAL CONCLUSSIONS 

This research provides the basis of field DEMs development and the assessment of 

their uncertainty.  One of the objectives was to develop a methodology for utilizing repeated 

elevation field surveys during typical farming operations for the development of field DEMs 

as a by-product of GPS-aided farm operations. Repeated GPS surveys of elevation data 

improved the DEM accuracy over time. This research presented two methods for combining 

the measurements of multiple surveys, one was using fuzzy logic and another was using 

weighted averaging technique. These two methods were more robust to measurement errors 

and resulted in improved performance over the grid-wise averaging method. This study 

demonstrates the importance of passing along a measure of estimate confidence in the 

process as measurements from new surveys are added.  

The second objective was to develop a targeted sampling method based on spatial 

uncertainty of prior measurements for topographic mapping. Uncertainty assessment using 

SGS quantified the variability of attributes in the field based on available sampled data. The 

information may aid producers in designing more efficient sampling strategies by targeting 

only regions of interest in the field for re-sampling consideration. The introduction of 

targeted measurements reduced the time required for data collection and resulted in DEMs 

with relatively low RMSE. Use of targeted sampling procedure may efficiently aid farm 

attribute estimation for site specific management practice. 

The information about uncertainty in spatial attribute estimation is useful in 

understanding error propagation induced from deriving parameters of interest related to the 

attributes. The third objective of the study was to assess the uncertainty in field DEMs 
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elevation estimates and their effect on soil loss prediction. Using SGS, the quantification of 

the uncertainty estimators on a grid by grid basis enables more precise assessment of 

reliability of the predicted soil loss estimates across the study area. The impact of the DEM 

uncertainty on soil loss prediction can also be discerned through visualization of the 

estimator grids like 95% CI maps as shown in this study.  

The need for accurate DEMs in soil loss estimation is evident. For accurate LS factor 

estimation to be used in RUSLE equation for soil erosion prediction, high accuracy DEM 

such as using RTK-DGPS measurements is required. Otherwise, one should take into account 

the prediction uncertainty such as using the quantified uncertainty estimators to classify the 

areas that has unreliable prediction, which provide guidelines for error reduction and 

management planning. 

Summary  

GPS-equipped farm vehicles enable landowners to utilize elevation data during 

normal field operations for the development of agricultural field DEM. Generation of DEMs 

from measurements acquired with such systems provided users with additional benefits from 

the original capital investment in the equipment. This research provided extensive but useful 

guidance on appropriate procedures involved in the development of field DEMs for land 

users to take full advantage of the existing technology. The DEMs can be further integrated 

into existing operational environment such as yield mapping and auto-guidance systems 

where topographic information can be a great support. 

Digital elevation models, like other maps, are models that deviate from reality. 

Depending on process, methods and procedures to generate the DEMs, the topographic 
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parameters derived from a DEM contain uncertainties. In this study, the uncertainty of DEM 

estimates was assessed and found to be useful to enhance the sampling strategy in improving 

the accuracy of the DEMs.  The effect of DEM uncertainty on topographic parameters was 

investigated and found that DEM uncertainty has a substantial impact on soil erosion 

prediction which may affect the consequence management decisions such as the decision on 

how much biomass need to be removed from the field for conservation practice. Many users 

particularly farmers, may not be knowledgeable about the theory, so they will appreciate the 

guidance about appropriate analysis that helps them make good choices for their data and 

applications. 

Suggestions for Future Work 

This research has a great potential to be expanded to make the DEMs application 

feasible and more profitable. The resulting field DEMs developed using repeated GPS 

surveys over many years may change if the topography or elevation changes due to excessive 

soil erosion or other disturbance. The analysis and method to detect the effect of topography 

or elevation changes due to excessive soil erosion or other disturbance on DEM development 

is an interesting point of future work. This work could incorporate external data support such 

as rainfall intensity and soil erosivity maps to produce more accurate prediction of DEMs 

elevation. 

The procedure for designing targeted sampling based on spatial uncertainty of prior 

measurements can be extended to applications over larger and more complex agricultural 

area. The result of the analysis on a larger and more varying terrain fields may be more 

interesting to be investigated to study the effect of terrain complexity and the robustness of 
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the method. The application of the methodology on other spatial sampling applications such 

as soil and yield sampling could also be a valuable future work.  

The method of investigating DEM uncertainty propagation through the intermediate 

estimates of slope and upslope contributing area need to be developed for better 

understanding of the impact on soil loss prediction within GIS. With better understanding of 

the error propagation, the resulting soil loss estimation from a field DEM can be tested and 

integrated into application such as automated systems for biomass harvest equipment for 

conservation practices. A thorough procedure and methodology is needed to study the effect 

of the estimation uncertainty on such agricultural application for better farm management 

decisions. 

Based on the experience gained from this work, following future work is 

recommended: 

1. Make the DEM development algorithm more robust by taking into account 

of more exceptional cases such as elevation changes or disturbance. 

2. Apply the procedure for designing targeted sampling over larger and more 

complex agricultural area. 

3. Test the procedure for designing targeted sampling for soil and yield 

mapping. 

4. Run extended statistical analysis investigating DEM uncertainty 

propagation through slope and upslope contributing area for soil loss 

prediction within GIS. 

5. Incorporate the field DEMs on automated systems in biomass harvest 

equipment for conservation practice. 



 126 

 

References 

Agarwal, P. K., L. Arge and A. Danner. 2006. From point cloud to grid DEM: A scalable 

approach. In Progress in Spatial Data Handling. 12th International Symposium on Spatial 

Data Handling 771-788. A. Riedl, W. Kainz, and G. Elmes, eds., Springer Berlin 

Heidelberg. 

Billingsley, J. 2000. Automatic guidance of agricultural mobiles at the NCEA. Industrial 

Robot: An International Journa: 27(6): 449-457. 

Bingner, R.L., and F. D. Theurer. 2001. Topographic factors for RUSLE in the continuous-

simulation, watershed model for predicting agricultural, non-point sources pollutants 

(AnnAGNPS). ASAE Paper No: 701P0007. ASAE, St.Joseph, MI. 

Burrough, P.A., 1995. Spatial aspects of ecological data. In Data Analysis in Community and 

Landscape Ecology, 213–251. R. H., Jongman, C. J. F. ter Braak, O. F. R. Van Tongeren, 

eds. Wagenigen, The Netherlands: Cambridge University Press. 

Clark, R. L., and R. Lee. 1998. Development of topographic maps for precision farming with 

kinematic GPS. Trans. ASAE 41(4): 909−916. 

Cressie, N., 1989. Geostatistics. The American Statistician 43(4): 197-202. 

Deutsch, V. D., and A. G. Journel. 1998. GSLIB geostatistical software library and user's 

guide. Oxford, London: Oxford University Press. 

Dosskey, M.G, D.E. Eisenhauer, and M.J. Helmers. 2005. Establishing conservation buffers 

using precision information. J. Soil and Water Cons. 60(6):  349-354. 

Endreny, T. A., and E. F. Wood. 2001. Representing elevation uncertainty in runoff 

modeling and flowpath mapping. Hydrol. Process. 15: 2223-2236. 



 127 

 

Franklin J., P. McCullough, and C. Gray, 2000.  Terrain Variables Used for Predictive 

Mapping of Vegetation Communities in Southern California. In Terrain Analysis: 

Principles and Applications 331-53. J. P. Wilson and J. C. Gallant, eds., New York, John 

Wiley & Sons 

Fried, J.S., D.G. Brown, M.O. Zweifler, and M.A. Gold. 2000.  Mapping contributing areas 

for stormwater discharge to streams using terrain analysis. In Terrain Analysis: Principles 

and Applications 183-203. J. P. Wilson and J. C. Gallant, eds., New York, John Wiley & 

Sons. 

Goovaerts, P. 1997. Geostatistics for natural resources evaluation. Oxford Uni. Press, New 

York. 

Holmes, K. W., O. A. Chadwick, and P. C. Kyriakidis. 2000. Error in a USGS 30-meter 

digital elevation model and its impact on terrain modeling. Journal of Hydrology 233: 154-

173.  

Hunter, G. J., M. Caetano, and M. F. Goodchild. 1995. A methodology for reporting 

uncertainty in spatial database products. URISA Journal 7(2): 11-21. 

Hunter, G. J., and M. F. Goodchild. 1995. Dealing with error in spatial databases: a simple 

case study. Photogrammetric Eng. & Remote Sensing 61(5): 529-537.   

Isaaks, E. H., and R. M. Srivastava. 1989. An Introduction to Applied Geostatistics. New 

York, N.Y.: Oxford University Press. 

Journel, A. G., and CH. J. Huijbregts. 1978. Mining Geostatistics. New York, N.Y.: 

Academic Press. 

Kim, H., J. R. Arrowsmith, C. J Crosby, E. Jaeger-Frank, V. Nandigam, A. Memon, J. 

Conner, S. B. Badden and C. Baru. 2006. An Efficient Implementation of a Local Binning 



 128 

 

Algorithm for Digital Elevation Model Generation of LiDAR/ALSM Dataset. 

Lidar/ASLM Knowledge Base, Tempe, AZ.; Active Tectonics Research Group, Arizona 

State Univ. Avaiable at: http://lidar.asu.edu/knowledgebase.html. Assessed 28 October, 

2008.  

Mackey, B.G, I. C. Mullen, K. A. Baldwin, J. C. Gallant, R. A. Sims, and D. W. Mckenney. 

2000. Toward a Spatial Model of Boreal Forest Ecosystems: The Role of Digital Terrain 

Analysis. In Terrain Analysis: Principles and Applications 391-423. J. P. Wilson and J. C. 

Gallant, eds., New York, John Wiley & Sons. 

Matheron, G. 1973. The intrinsic random functions and their applications, Adv. In  Appl. 

Probability. 5(439-468). 

Maune, D. F. 2007. Digital elevation model technologies and applications: The DEM Users   

 Manual, 2nd Edition. Bethesda, Maryland: ASPRS. 

Murthy, A. R., I. V. Murali Krishna and M. S. R. Murthy. 2004. Precision Conservation of 

Natural Resources for Sustainable Development. Proceedings of Geosciences and Remote 

Sensing Symposium 2004: 4605-4608. IEEE, Piscataway, NJ. 

Oksanen, J. and T. Sarjakoski. 2005. Error propagation of DEM-based surface derivatives. 

Computer & Geosciences 31(8): 1015-1027. 

Olea, R. A. 1999. Geostatistics for Engineers and Earth Scientists. Norwell, MA: Kluwer 

Academic Publishers. 

Pelletier, G., and S. K. Upadhyaya. 1999. Development of a tomato load/yield monitor. 

Computers and Electronics in Agriculture 23(2): 103-117. 

Reid, J. F., Q. Zhang, N. Noguchi, and M Dickson. 2000. Agricultural Automatic Guidance 

Research in North America. Computers and Electronics in Agriculture 25: 155-167. 



 129 

 

Renschler, C. S., and D. C. Flanagan. 2008. Site-specific decision-making based on RTK 

GPS survey and six alternative elevation data sources: Soil erosion predictions. Trans. 

ASABE 51(2): 413-424. 

Renschler, C. S., D. C. Flanagan, B. A. Engel, L. A. Kramer, and K. A. Sudduth. 2002. 

Site−specific decision−making based on RTK GPS survey and six alternative elevation 

data sources: Watershed topography and delineation. Trans. ASAE 45(6): 1883−1895. 

Valeriano, M. M, T. M. Kuplich, M. Storino, B. D. Amaral, J. N. Mendes Jr. and D. J. Lima. 

2005. Modeling small watersheds in Brazilian Amazonia with shuttle radar topographic 

mission- 90 m data. Computer and Geosciences 32: 1169-1181.  

Vellidis, G., C. D. Perry, J. S. Durrence, D. L. Thomas, R. W. Hill, C. K. Kvien, T. K. 

Hamrita, and G. Rains. 2001. The peanut yield monitoring system. Tran.  ASAE 44(4): 

775–785. 

Wang, P., J. Du, X. Feng, and S. Hu. 2006. Effect of DEM uncertainty on distributed 

hydrological model TOPMODEL. Proceedings of Geosciences and Remote Sensing 

Symposium 2006: 1074-1077. IEEE, Piscataway, NJ. 

Wechsler, S. P. 2007. Uncertainties associated with digital elevation models for hydrologic 

applications: a review. Hydrol. Earth Syst. Sci. 11: 1481-1500. 

Wechsler, S. P., and C. N. Kroll. 2006. Quantifying DEM uncertainty and its effect on 

topographic parameters. Photogrammetric Engineering & Remote Sensing 72(9): 1081-

1090. 

Westphalen, M. L., B. S. Steward, and S. Han. 2004 Topographic mapping through 

measurement of vehicle attitude and elevation.  Trans. ASAE 47(5): 1841−1849. 



 130 

 

Will, J., Stombaugh. T., Benson, E., Noguchi, N., Reid. J.F., 1998. Development of a flexible 

platform for agricultural automatic guidance research. ASAE Paper  No: 983202. ASAE, 

St.Joseph, MI. 

Wise, S. M. 1998. The effect of GIS interpolation errors on the use of digital elevation 

models in geomorphology. In Landform Modelling and Analysis, 139−164. S. N. Lane, K. 

S. Richards, and J. H. Chandler, eds. Chichester, U.K.: John Wiley and Sons. 

Whitney, J. D., J. D., Q. Ling, W. M. Miller, and T. A. Wheaton. 2001. A DGPS yield 

monitoring systems for Florida citrus. Applied Engineering in Agriculture:  17(2): 115–

119. 


	2008
	Development of digital elevation models (DEMs) for agricultural applications
	Samsuzana Abd Aziz
	Recommended Citation


	Microsoft Word - $ASQ3448_supp_A4704636-BA8E-11DD-B336-A520D352ABB1.doc

