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Abstract 

 

The flood frequency analysis at or nearby the confluence of two tributaries is of 

interest because it is necessary for the design of the highway drainage structures, which often 

are located near the confluence point and may be subject to inundation by high flows from 

either stream or both. The shortage of the hydrological data of the confluence point which are 

necessary to the univariate flood frequency analysis makes the flood estimation at the 

confluence challenging. This thesis presents a practical procedure for the flood frequency 

analysis at the confluence of two streams by multivariate simulation of the annual peak flow 

rate of the tributaries based on joint probability and Monte Carlo simulation.  

Four steps are involved in the proposed approach, the distribution identification of 

annual peak flow rate of the tributary streams, the identification of joint probability 

distribution of the tributary stream flows, the generation of the synthetic annual peak flow 

rate at the confluent point by using Monte Carlo simulation, and identification of the flood 

frequency of the confluent point by the univariate flood frequency analysis.  

Due to the difficulty identifying the joint probability distribution of two specified 

marginal distributions, an easy and practical method for the identification of joint probability 

distribution is needed. Copulas method is introduced and several often used copulas are 

employed to identify the joint probability.  

Two case studies are conducted and the results are compared with the flood frequency 

of the confluence point obtained by the well accepted univariate flood frequency analysis 

based on the observation data. The results are also compared with the ones by the National 

Flood Frequency program developed by United State Geological Survey. It is found out that 

the results by the proposed model are very close to the results by the unvariate flood 

frequency analysis, while the National Flood Frequency program tends to underestimate the 
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flood for a certain return period, especially when the return period is less than 50 or 100 

years, and when the river basin is getting larger.  

Keywords: Flood frequency analysis, goodness-of-fit, Chi-square test, Kolmogorov-

Smirnov test, joint probability, Monte Carlo simulation, confluence point, copulas 
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Chapter 1 Introduction 

1.1 Introduction 

The ability to adequately define the magnitude and frequency of floods is necessary 

for the regulation, planning, and design of activities along rivers and streams. One of the first 

considerations in the safe and economical design of drainage structures is the magnitude and 

frequency of the design flood or the maximum peak flow that can safely pass through the 

structure, many of which are located at or near the confluence point of the tributaries. The 

most desirable basis for selection of the design discharge is a flood-frequency analysis of a 

long-term records of flood that have occurred at or near the site, but long-term flood records 

are rarely available for the site where they are needed, for example, the confluence of the 

tributaries. 

This thesis presents a flood frequency analysis for the confluent point of the 

tributaries based on the joint probability distribution and Monte Carlo simulation. Copula 

method is introduced to obtain the joint probability distribution with specified marginal 

distributions, which plays a key role in the proposed model but usually very difficult to be 

identified since there are no general approaches available or addressed in relative detail in 

engineering area. 

1.2 Background and Problem Identification 

Highway drainage structures and water management facilities are often located near 

the confluence of two or more streams (see Figure 1-1 ), where they may be subject to 

inundation by high flows from one stream or all.  These structures are designed to meet 

specified performance objectives for floods of a specified return period (e.g., the 100-year 

flood). Because the flooding of structures on one stream can be affected by high flows on the 

other stream, it is important to know the relationship between the coincident exceedence 
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probabilities on the confluent stream pair (i.e., the joint probability of the coincident flows). 

Accurate estimates of the joint probability of design flows at stream confluences are a crucial 

element in the design of efficient and effective highway drainage structures and water 

management facilities. No accurate generally accepted estimation procedure for determining 

coincident flows currently exists for use in the design of highway structures and water 

management facilities at the confluence of the tributary. A practical procedure for the 

determination of joint probabilities of design flows at stream confluences is needed. 

 

 

 

 

 

 

 

 

 

 

Figure 1-1  River basin illustration 

1.3 Review of literature 

1.2.1 Flood Frequency Analysis 

Flood frequency analysis is a key issue in hydrology. The main objective of flood 

frequency analysis is to relate the flood magnitude of extreme events to their frequency of 

occurrence. The results of flood flow frequency analysis can be used for many engineering 

purposes: for the design of dams, bridges, culverts, and flood control structures; to determine 
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the economic value of flood control projects; and to delineate flood plains and determine the 

effect of encroachments on the flood plain (Chow et al., 1988).  

All the proposed flood frequency analysis methods may be roughly classified into 

three categories depending on the availability and the length of observed flood data for the 

site: regional analysis, stream-based analysis and time series analysis. Regional analysis and 

stream-based analysis are more often used. The well established univariate flood frequency 

analysis based on the annual peak flow rate distribution is employed in the case that a long 

enough flow records are available, while for the un-gauged stream, the regional analysis 

currently seems the only effective method to apply that relates the flood magnitude to the 

hydrologic characters of a specified region, such as rainfall, drainage area, and so on. Some 

researchers, i.e. Rao and Hamed (2000) consider the time series a special case of stream-

based analysis, which is proposed in Flood Studies Report (1975). It is separated from the 

stream-based analysis in this thesis based on the time interval length of the flood 

observations. Annual peak flow rate is mainly used in most stream-based analysis while the 

daily flow rate is preferred in the time series method.  

In the time series method, the flow hydrograph is considered to be a time series in 

which the flows are represented by a series of ordinates at equally spaced intervals of time 

(days). To use the time series models, relatively long records are required and the data 

requirements are greater than for univariate flood frequency analysis. Rao and Hamed (2000) 

described the time series method as follows: 

“Ideally, if a hydrograph is considered to be a stochastic process in continuous time, 

properties of such a series can be deduced from those of the parent process. If Q(t) is the 

flow on day t, and time series model may be written as the sum of trend, seasonal, and 

stochastic components. Estimation of model formulation and parameters proceed together 

through the three components beginning with trend and ending with the stochastic 

component. ” 
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Flood frequency analysis of a single variable has been discussed since 1950’s to 

relate the magnitude of extreme events to their frequency of occurrence by using the 

probability distributions (Chow et al., 1988). It has been well established and accepted in 

academic and engineering field, which is called univariate flood frequency analysis (UFF) in 

this thesis. Many literatures about the development and application of this approach have 

been addressed (Tod, 1957; Burkhardt and Prakash, 1976; Linsley, 1986, Sigh and Sigh, 

1985; Rossi et al, 1984; Moharran et al,1993). Rao and Hamed (2000) summarized the 

conventional flood frequency analysis in detail and presented many examples for different 

stream discharge distributions and with different parameter estimations. 

The flood frequency analysis based on the distribution is preferred to use when an 

adequate observation record of annual flood is available, such as 30 years or more of flood 

records. The most commonly used model of this approach is annual maximum series model. 

The annual peak flow rate data are used to establish a probability distribution that is assumed 

to describe the flooding process, and that can be evaluated by using data to determine the 

flood magnitude at any frequency. This approach has many advantages and also 

disadvantages. All the impact factors on the flood frequency, such as rainfall, are taken into 

account in the procedure so it is relatively easy to use. However, this approach may miss 

some information. For example, the second and third peak within a year may be greater than 

the maximum flow in other years and yet they are ignored (Kite, 1977; Chow et al. 1988; 

Rao and Hamed, 2000). This means this approach may underestimate or overestimated the 

true flood. Another disadvantage is that sometimes not all the existing data are available for 

the use of this approach for some reasons. For example, due to land use changes or the 

watershed characters change or the construction of the water management facilities in the site 

or upstream, i.e., a dam, the hydrologic characteristics may change. This change may result 

in the change of the trend of corresponding annual peak flow rate and this may make the 

annual flow data prior to the hydrologic condition changes are irrelevant to the future flood 
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prediction. This actually reduces the available data from the existing record, and may bring 

some estimation error if not enough attention is paid on this. So although this approach has 

been well established and popular in academic and engineering, sometimes the dilemma 

exists when it is employed. Generally, the longer stream discharge record the studied stream 

has, the more accuracy UFF approach brings, while there are situations sometimes that no 

discharge flow record available or not long enough for UFF to obtain a accurate result, i.e. 

near of at the confluence of stream tributaries, or in some underdeveloped area with shortage 

of the historical hydrologic data.    

The second approach, regional analysis is based on the concept of regional 

homogeneity and often used for the flood frequency estimation, especially valuable at 

ungauged sites. It is also used to enhance the flood estimation at gauged sites where historical 

records are short. This approach often based on the rainfall data. The rainfall-runoff routing 

process may be involved to convert the rainfall into flood discharge in this case, and the 

rainfall-runoff model provides the link between the rainfall data and the flood frequency 

estimation. This approach is relatively complex and time consuming. The U.S. Geological 

Survey (USGS) developed a set of regression equations by statistically relating the flood 

characteristics to the physical and climatic characteristics of the watersheds for a group of 

gauging stations within a region that have virtually natural stream flow conditions, with a 

format of b c d
TQ aX Y Z= , for rural area flood estimation in every state of U.S., where QT is 

the T-year rural flood-peak discharge, X, Y, Z are watershed or climatic characteristics, and 

a, b, c, d are regression coefficients. Drainage area or contributing drainage area is used as 

independence variable for the regression in almost all the regression equations for the 50 

states of US. The other most frequently used watershed and climatic characteristics are main-

channel slope and mean annual precipitation. The nationwide urban flood estimation 

regression equations based on multiple regression analysis of urban flood-frequency data 

from 199 urbanized basins are also provided in which more variables are included, such as 
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drainage area, main channel slope, rainfall, basin storage, and so on. In the 1990’s, a 

computer program called the National Flood Frequency Program (NFF) was developed, 

which compiled all the USGS available regression equations for estimating the magnitude 

and frequency of floods in the United States and Puerto Rico ( USGS, 2002).  

NFF is probably the most often used model and one of the very few models available 

for the ungauged site flood frequency estimation in US from the author’s knowledge. It is 

relatively easy to use; however, it is inconvenient most time. In this approach all the states in 

US are divided into multiple hydrologic regions determined by using major watershed 

boundary and/or some other hydrologic characteristics, i. e., the mean elevation of watershed. 

A series of regression equations of T-year flood (T=2 , 5, 10, 25, 50, 100, 200 and 500 year) 

associated with each hydrologic region  are developed in terms  of hydrologic characteristics 

based on the gauged site records. One has to determine the hydrologic region of the interest 

site first among all the hydrologic regions and then pick up the developed regression 

equations to perform the flood frequency analysis. Moreover, some equations in this 

approach have high errors, for example, some equations generated for the western part of the 

US have standard error greater than 100 percent, although the average standard error of NFF 

is between 30 and 60 percent (USGS, 2002).  

Based on the above review, one accurate and practical approach for ungauged 

confluence flood estimation that can overcome the shortages of UFF and NFF model is 

needed. The desire approach can use the available stream discharge records around the study 

site, which may be obtained relatively easily. Also the desire approach should be convenient 

for use. A joint probability approach is proposed in this thesis that may meet the two criteria.  

1.2.2 Bivariate Flood frequency analysis 

The research on bivariate distribution has been of interest of statisticians for a long 

time and many methods have been proposed to derive the joint distribution functions with the 
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same or different margins (Molenberghs and Lesaffre, (1997); Ronning, 1977). With the 

recognition that the complex hydrological events such as floods are always affected by one or 

more correlated events and that an accurate estimate of the joint probability of the correlated 

events plays an important role for hydrology analysis, much attention has been paid on the 

bivariate and even multivariate flood frequency analysis since 1980s.  

Sackl and Bergmann (1987),  Chang et al. (1994), Yue (1999), and Beersma and 

Buishand (2004) used the bivariate normal distribution to perform the flood frequency 

analysis and hydrology events analysis. Krstanovic and Singh (1987) derived the multivariate 

Gaussian and exponential distributions by the principle of maximum entropy and applied the 

bivariate distributions for the analysis of flood peak and volume. Goel et al. (1998) employed 

a multi-variate normal distribution to perform flood frequency analysis after normalizing the 

peak flow data, volume and duration. Yue (2001a) applied the bivariate lognormal 

distribution for multivariate flood events analysis and described the relationship of flood 

peaks and volumes as well as flood volumes and durations by joint distribution and the 

corresponding conditional distribution. 

Hashino (1985), Choulakian et al. (1990), Singh and Singh (1991), Bacchi et al.  

(1994), and Ashkar et al. (1998) investigated and applied bivariate exponential distributions 

for the hydrological events analysis.  Bacchi et al. (1994) proposed a numerical procedure for 

the estimation of parameters of a bivariate exponectial model used to simulation the storm 

intensity and duration simultaneously. 

Buishand (1984), Yue et al. (2001b) applied bivariate extreme value distributions to 

analyze multivariate flood/storm events. Yue and Wang (2004) compared the performance in 

flood analysis between two bivariate extreme value distributions, the Gumbel mixed model 

and the Gumbel logistic model. Shiau et al (2007) derived a joint probability distribution 

with a mixture of exponential and gamma marginal distribution to simulate the relationship 

between drought duration and drought severity. 
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Some researchers used bivariate gamma distribution for the flood frequency analysis 

(Moran, 1970; Crovelli, 1973; Prekopa and Szantai, 1978; Clarke, 1980; Yue, 2001b, 2001c; 

Yue, et al. 2001). Among them, Yue (2001c) investigated the applicability of the bivariate 

gamma distribution model to analyze the joint distribution of two positively correlated 

random variables with gamma marginals. Yue (2001b) reviewed three bivaraite gamma 

distribution models with two gamma marginal distributions. Durrans et al (2003) presented 

two approximate methods for joint frequency analysis using Pearson Type III distribution to 

estimate the joint flood frequency analyses on seasonal and annual basis. Nadarajah and 

Gupta (2006) developed exact distribution of intensity-duration based on bivariate gamma 

distribution.  

Wang (2001) developed a procedure for record augmentation of annual maximum 

floods by applying the bivariate extreme value distribution for annual maximum floods at 

gauged stations with generalized extreme value distribution. Yue and Rasmussen (2002) 

discussed the concepts of bivariate hydrology events and demonstrated the concepts by 

applying a bivariate extreme value distribution to represent the joint distribution of flood 

peak and volume from a basin. Johnson et al. (1999) reviewed some techniques for obtaining 

bivariate distributions and presented the properties of some bivariate models, such as 

bivariate Weibull distribution, bivariate inverse Gaussian distribution, bivariate SBB 

distribution and bivariate normal-lognormal distribution.  

Zhang and Singh (2006) derived bivariate distributions of flood peak and volume, and 

flood volume and duration by using copula method. In the paper, four often used one 

parameter Archimedean copulas are introduced, the corresponding parameter estimation is 

described and the criteria of copula selection are addressed.  

Most of the researchers just applied bivariate or multivariate distribution with the 

same type of marginal distributions, either two normal distributions or two gamma marginal 

distributions, and so on. Only a few of them, i.e., Zhang and Singh (2006) and Wang (2001) 
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employed bivariate distribution with two different types of distribution. Although many 

researchers performed flood frequency analysis with the bivariate distributions, most of them 

focused more on identifying the relationship of different hydrologic variables, such as flood 

peak and volume, and flood volume and duration. In their researches, the flow discharge 

records of the site of interest are usually required. A bivariate distribution approach is 

presented in this thesis to estimate the flood and frequency at the confluence of the tributaries 

without the requirement of records of the studied sites.  

1.4 Objective and scope of work  

This research is to develop practical procedures for the flood frequency analysis for 

the confluence of the tributaries where many drainage structures are located but the long-

term flood records may be unavailable sometimes, and guidelines for applying the 

procedures. The estimation of joint probabilities of the stream peak flow of the tributary 

streams is the key task in the research. The scope of this research is limited to riverine areas 

and does not include coastal areas. 

A whole procedure for the design coincident flows at stream confluences is 

introduced first, which comprises of the following four steps, the identification of the each of 

the tributary using the USGS gauge station data, the estimation of the joint probability of the 

two tributary flows based on the identified marginal annual peak flow distributions of the two 

tributaries, the synthesis of the confluence flows based on the joint probability, and the 

univariate flood frequency analysis based on the synthetic flows at the confluence. Then  two 

case studies in Iowa and Georgia, respectively are conducted to demonstrate the proposed 

approach.   

Due to the difficulty identifying the joint probability, a simply method is needed. The 

copula method is introduced and the application procedure is addressed. Two case studies are 

also presented for the demonstration.   
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1.5 Format and content 

This thesis is organized as follows. Chapter 2 presents the practical procedures of 

estimating the flood coincidence of the flood at the confluence. Chapter 3 presents the 

concepts and application of copula method for the joint probability estimation, which is the 

key task in the proposed joint probability approach for the estimation of confluence flood 

analysis. Chapter 4 summarizes the work presented in this thesis and outlines the 

opportunities for the future work beyond the scope of this thesis. 
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Chapter 2 A Joint Probability Approach for Confluence 
Flood Frequency Analysis 

Abstract 

This paper presents a practical procedure for the flood frequency analysis at the 

confluence of two streams based on the flow rate data from the upstream tributaries. Four 

steps are involved in the approach, the distribution identification of annual stream peak flow 

of the tributary streams, the identification of joint probability distribution of the tributary 

stream flows, the generation of the synthetic stream flow at the confluent point by using 

Monte Carlo simulation, and identification of the flood frequency of the confluent point by 

the univariate flood frequency analysis. Two case studies are conducted and the results are 

compared with the flood frequency obtained by the univariate flood frequency analysis based 

on the observation data, and with the ones by National Flood Frequency Program developed 

by United State Geological Survey. It shows that the results by the proposed approach are 

much closer to flood estimated by the univariate flood frequency analysis based on the 

observation data than the results by the national flood frequency program, especially when 

the return period is less than 50 or 100 years. 

Keywords: Flood frequency analysis, goodness-of-fit, Chi-square test, Kolmogorov-

Smirnov test, joint probability, Monte Carlo simulation, confluence point 

2.1 Introduction  

The flood frequency analysis at or nearby the confluence of two tributaries is of 

interest because it is necessary for the design of the highway drainage structures, which often 

are located near the confluence point and may be subject to inundation by high flows from 

either stream or both. These infrastructures are designed to meet specified performance 

objectives for floods of a specified return period (e.g., the 100-year flood). The shortage of 
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the hydrological data of the confluence point which are necessary to the univariate flood 

frequency analysis makes the flood estimation at the confluence challenging. An accurate 

and practical approach for the flood frequency estimation for this situation is needed.  

To estimate the flood without discharge records, the flow routing may be performed 

which usually involves complicated numerical scheme and tedious of computation. 

Currently, the National Flood Frequency Program (NFF) (US Geology Survey, 2002) 

developed by US Geology Survey (USGS) based on the regional analysis probability is 

probably the most popular method for the ungauged site flood estimation, and could be 

employed for the flood estimate at the confluence. Although many researchers have proposed 

many regional flood analysis approaches, in NFF model all the states in US are divided into 

multiple hydrologic regions by using major watershed boundary and/or some other 

hydrologic characteristics, i. e., the mean elevation of watershed. It is assumed that the 

hydrologic characteristics are homogeneous in each region so that the flood at the ungauged 

sites can be estimated by the gauged sites.  A series of regression equations of T-year flood 

(T=2 , 5, 10, 25, 50, 100, 200 and 500 year) associated with each hydrologic region  are 

developed in terms  of hydrologic characteristics based on the gauged site records. All the 

sites in each region share the same regression equation for the flood estimation associated 

with a specified return period.  However, some equations in this approach have high errors; 

for example, some equations generate standard errors greater than 100 percent for the 

western part of the US, although the average standard error of NFF is between 30 and 60 

percent (USGS, 2002).  

He et al. (2007) derived a time coefficient of flood discharge model and a kinetic 

wave routing model based on the flood events on a long cycle to evaluate the flood behaviors 

at a confluence of the middle Yellow River in China by considering the flood frequency, 

intensity and duration. This model requires relative detail historic flood events information of 

the river basin which is unavailable sometimes.  
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Because the flooding of structures on one stream could be affected by high flows on 

the other stream, it is important to know the relationship between the coincident exceedence 

probabilities on the confluent stream pair (i.e., the joint probability of the coincident flows). 

It is reasonable to assume that an accurate flood estimation approach may be developed 

based on the joint probability of the coincident flows of the tributary streams. In the proposed 

approach in this search, accurate estimates of the joint probability of design flows at stream 

confluences are a crucial element in the design of efficient and effective highway drainage 

structures. With the recognition that the complex hydrological events such as floods are 

always affected by one or more correlated events and that an accurate estimate of the joint 

probability of the correlated events plays an important role for hydrology analysis, much 

attention has been paid on the bivariate and even multivariate flood frequency analysis since 

1980s.  

The research on bivariate distribution has been of interest of statisticians for a long 

time and many methods have been proposed to derive the joint distribution functions with the 

same or different margins (Molenberghs and Lesaffre, (1997); Marshall and Olkin, 1988; 

Schucany and Michael, 2002; Blachnell, 1994; Ronning, 1977).Sackl and Bergmann (1987), 

Chang et al. (1994), Yue (1999), and Beersma and Buishand (2004) used the bivariate 

normal distribution to perform the flood frequency analysis and hydrology events analysis. 

Krstanovic and Singh (1987) derived the multivariate Gaussian and exponential distributions 

by the principle of maximum entropy and applied the bivariate distributions for the analysis 

of flood peak and volume. Goel et al. (1998) employed a multivariate normal distribution to 

perform flood frequency analysis after normalizing the data of flood peak, volume and 

duration. Hashino (1985), Choulakian et al. (1990), Singh and Singh (1991), Bacchi et al.  

(1994), and Ashkar et al. (1998) investigated and applied the bivariate exponential 

distributions for the hydrological events analysis.  Buishand (1984), Raynal and Salas (1987), 

Yue (2001a) applied bivariate extreme value distributions to analysis multivariate 
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flood/storm events. Yue and Wang (2004) compared the performance in flood analysis 

between two bivariate extreme value distributions, the Gumbel mixed model and the Gumbel 

logistic model. Many researchers used bivariate gamma distribution for the flood frequency 

analysis (Moran, 1970; Prekopa and Szantai, 1978; Clarke, 1980; Yue, 2001b). Among them, 

Yue (2001b) investigated the applicability of the bivariate gamma distribution model to 

analyze the joint distribution of two positively correlated random variables with gamma 

marginals. Yue et al (2001) reviewed three bivariate gamma distribution models with two 

gamma marginal distributions. Durrans et al (2003) presented two approximate methods for 

joint frequency analysis using Pearson Type III distribution to estimate the joint flood 

frequency analyses on seasonal and annual bases. Nadarajah and Gupta (2006) developed 

exact distribution of intensity-duration based on bivariate gamma distribution. Shiau et al 

(2007) derived a joint probability distribution with a mixture of exponential and gamma 

marginal distribution to simulate the relationship between drought duration and drought 

severity. Wang (2001) developed a procedure for record augmentation of annual maximum 

floods by applying the bivariate extreme value distribution for annual maximum floods at to 

gauging stations with generalized extreme value distribution. Yue and Rasmussen (2002) 

discussed the concepts of bivariate hydrology events and demonstrated the concepts by 

applying a bivariate extreme value distribution to represent the joint distribution of flood 

peak and volume from an actual basin. Johnson et al. (1999) reviewed the some techniques 

for obtaining bivariate distributions and presented the properties of some bivariate models 

that include bivariate Weibull distribution, bivariate inverse Gaussian distribution, bivariate 

SBB distribution and bivariate normal-lognormal distribution.  

Although many of above researchers performed flood frequency analysis with the 

joint probability approach, most of them focused more on the determination of the 

relationship of different hydrologic variables, such as flood peak and volume, and flood 

volume and duration, where the flow discharge records of the site of interest are usually 
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required. No one has applied the joint probability approach for the flood estimation at the 

ungauged sites, especially ungauged confluence point of the tributaries. A joint probability 

approach is presented in this paper to estimate the flood and frequency at the confluence of 

the tributaries without the requirement of records of the studied site.  

2.2 Methodology  

2.2.1 The procedure of the approach 

Four steps are involved in the approach, stream flow distribution identification of the 

tributary streams, identification of joint probability distribution of the tributary stream flows, 

identification of the synthetic stream flow at the confluent point by using Monte Carlo 

simulation, and identification of the flood frequency of the confluent point by the 

conventional flood frequency analysis. The flow chart for the procedure is seen in Figure 2-1. 

Step 1. Stream flow distribution identification of the tributary streams 

In the step, the historical annual stream peak flow data of the two tributary streams 

are collected first, the parameters associated with the assumed distributions are estimated by 

method of moment, method of maximum likelihood, or method of probability weighted 

moments, and then the test of goodness-of-fit is performed to identify the annual stream peak 

flow distributions of the two tributary streams. Chi-square test and Kolmogorov-Smirnov (K-

S) are used in this step. 

Step 2. Identification of joint probability distribution of tributary stream flows 

In this step, the correlationship of the annual stream peak flow data of the two 

tributaries is identified first by calculating the correlation coefficient, and then the joint 

probability distribution of the tributary stream flow is identified based on the annual peak 

flow distributions of the two tributary streams identified in the first step and the 

correlationship of the annual peak flow data of the tributary streams. If the correlationship is 

small enough, say, less than 0.2, it is reasonable to assume that the two set of data are 
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independent, in other words, the annual peak flow of the two tributary streams are 

independent. In this simplified case, the joint probability distribution of the stream annual 

peak flow of the two tributary streams is simply the multiplication of the annual peak flow 

distributions of the tributary streams. Otherwise the joint probability needs to be estimated by 

an appropriate method, such as well established empirical bivariate distributions equations. 

The conditional annual peak flow distribution is also identified in this step based on which 

the Monte Carlo simulation will be performed in the next step. 

Step 3. Monte Carlo simulation 

In this step, Monte Carlo simulation is performed to obtain the synthetic annual peak 

flow of the two tributary streams, based on the annual peak flow distributions of the tributary 

streams and the conditional annual peak flow distribution. The synthetic annual peak flow at 

the confluence point is assumed to be the summation of the annual peak flow and the two 

tributary steams. 

Step 4. Conventional flood frequency analysis 

In this step, the distribution of the synthetic annual stream peak flow is identified by 

the test of goodness-of-fit first, and then the peak flows corresponding to specified return 

periods are calculated by using frequency factors or inverse method, based on the synthetic 

annual peak flow at the confluence in the previous step. 

2.2.2 Distribution identification of the tributary streams  

The distribution identification of the tributary streams involves parameter estimation 

and goodness-of-fit test.  

2.2.2.1 Parameter estimation  

There are many methods to estimate the parameters of a distribution; however, the 
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Figure 2-1 Flow chart of the procedure of proposed approach
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three most often used methods are the method of moments (MOM), the method  of maximum 

likelihood ( ML) and the probability weighted moments method (PWM). The advantages and 

disadvantages of the three methods are addressed by Rao and Hamed (2000) as follows, 

“The maximum likelihood method (ML method) is considered the most efficient 

method since it provides the smallest sampling variance of the estimated parameters, and 

hence of the estimated quantiles, compared to other methods. However, for some particular 

cases, such as the Pearson type III distribution, the optimality of the ML method is only 

asymptotic and small sample estimates may lead to estimates of inferior quality ( Bobee and 

Ashkar, 1991). Also the ML method has the disadvantage of frequently giving biased 

estimates, but these biases can be corrected. Furthermore, it may not be possible to get ML 

estimates with small samples, especially if the number of parameters is large. The ML 

method requires higher computational efforts, but with the increased use of high-speed 

personal computers, this is no longer a significant problem. 

The method of moments (MOM) is a natural and relatively easy parameter estimation 

method. However, MOM estimates are usually inferior in quality and generally are not as 

efficient as the ML estimates, especially for distributions with large number of parameters 

(three or more), because higher order moments are more likely to be highly biased in 

relatively small samples. 

The PWM method (Greenwood et al,. 1979; Hosking, 1986) gives parameter 

estimates comparable to the ML estimates, yet in some cases the estimation procedures are 

much less complicated and the computations are simpler. Parameter estimates from small 

samples using PWM are sometimes more accurate than the ML estimates (Landwehr et al., 

1979). Also, in some cases, such as the symmetric lambda and Weibull distributions, explicit 

expressions for the parameters can be obtained by using PWM, which is not the case with the 

ML or MOM methods.”  
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For the convenience of application, the often used distributions and the associated 

parameter are listed in Appendix A.  

2.2.2.2  Test of goodness-of-fit  

The choice of distribution to be used in flood frequency analysis has been a topic of 

interest for a long time ( Rao and Hamed, 2000). When a theoretical distribution has been 

assumed, the validity of the assumed distribution may be verified or disproved statistically by 

goodness-of-test ( Ang and Tang, 1975a). Chi-square test and Kolmogorov-Smirnov (K-S) 

test have been typically used to identify the stream flow distributions for flood frequency 

analysis.  

Chi-square test 

In Chi-square test, the observed values of the relative frequency or the cumulative 

frequency function are compared with the corresponding value of the assumed theoretical 

distribution to test the goodness of fit of a probability. In the test, the data are divided into k 

class intervals (k is recommended to be more than 5). The statistic Chi-square ( 2χ ) is given 

by 
2

2

1

( )k
i i

i i

O E
E

χ
=

−
=∑                                                           Eq.  2.1 

where iO is the observed number of events in the class interval i, iE is the number of events 

that would be expected from the summed theoretical distribution and k is an arbitrary number 

of classes to which the observed data are divided. The above equation can also be written as 

follows,  
2

2

1

[( ( ) ( )]
( )

k
s i i

i i

n f x p x
p x

χ
=

−
=∑                                                 Eq.  2.2 

where n is total number of observations, ( )s if x is the observation relative frequency function, 

which is defined as ( ) /s i if x n n=  where in is the number of observations in interval i, and 
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( )ip x is the incremental probability function, which is defined as 1( ) ( ) ( )i i ip x F x F x −= − , 

where ( )iF x is the cumulative probability ( )iP X x≤ . 

 If 2
1 , fc αχ −< , where 1 , fc α−  is the value of the Chi-square distribution with f degree 

of freedom, at the cumulative probability 1 α− , the assumed theoretical distribution is 

accepted at the significance level of α . Otherwise, the null hypothesis that the assumed 

distribution fits the data adequately is rejected at the significance level ofα . A typical value 

for the significance level is 0.05. The values of 1 , fc α− can be looked up in most statistics 

textbooks. 

Kolmogorov-Smirnov test 

Kolmogorov-Smirnov (K-S) test is another widely used goodness-of-fit besides Chi-

square test. K-S test is based on the deviation of the sample distribution function from the 

specified continuous hypothetical distribution function, providing a comparison of a fitted 

distribution with the empirical distribution. The test statistic is the maximum vertical distance 

between the empirical and hypothetical cumulative distribution function (CDF), which is 

defined as follows, 

( ) ( )supn n
x

D F x S x= −                                                      Eq.  2.3 

where ( )F x are the estimated values by the proposed theoretical distribution, and ( )nS x is 

denoted by 

1

n 1

0
S ( ) /

1
k k

n

x x
x k n x x x

x x
+

<⎧
⎪= < <⎨
⎪ ≥⎩

                                              Eq.  2.4 

where 1, 2,  ...  ... k nx x x x  are the values of the increasingly ordered sample data and n is the 

sample size.  

Theoretically,  nD  is a random variable whose distribution depends on n. In K-S test,  

the value of nD  must be less than the critical value nDα  at a specified significance level α  in 
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order to accept the proposed distribution at the specified significance level α ; otherwise, the 

assumed distribution would be rejected at the specified significance level α .  
For larger sample sizes (n>30), the approximate critical value nDα

 is expressed by the 

equation ( )
n

cD
n

α α
= , where c(α) is the coefficient associated with the significant level α , 

which is given by Table 2-1. 

Table 2-1  Critical D value for K-S test  

α 0.10 0.05 0.25 0.01 0.005 0.001 
Critical value nDα  1.22 1..36 1.48 1.63 1.73 1.95 

The advantage of the K-S tests over the Chi-square test it that it is not necessary to 

divide the data into bins; hence the problems associated with the chi-square approximation 

for small number of intervals would not appear with the K-S test ( Ang and Tang, 1975a). 

In the proposed approach of identification of distribution, the assumed distribution is 

required to be appraised by both chi-square test and K-S test. 

2.2.3. Joint probability identification 

Many researchers have dealt with bivariate flood frequency analysis (Kite 1978; 

Zhang 2006, Durrans 2003;Yue,1999, 2001,2000,2001a,2001b). In the statistical literature, a 

few bivariate or multivariate distribution models have been developed and studied (Gumbel 

and Mustafi, 1967; Buishand, 1984). Unfortunately, there are currently no well established 

general methods to derive the joint probability from the marginal distributions directly. 

However, some empirical formulas for the joint distributions with certain specified margins 

work well. Some often used joint CDFs and/or joint PDFs are listed in this paper, which 

include bivariate normal distribution, bivariate exponential distribution, bevariate gamma 

distribution, bivariate extreme value distribution, and so on.  

The bivariate normal PDF have been well developed and used in many areas for a 

long time, which is given by 
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where X and Y are two variables; yand xσ σ  are the standard deviation of the sample data of 
variable X and Y, respectively; yand xμ μ  are the mean of sample data of X and Y, 
respectively; ρ  refers to the correlation coefficient of X and Y 

Stuart and Ord (1987) presented the joint PDF and cumulative density function (CDF) 

for two exponential distributions. Given two exponential distribution  

 ( ) 1 ,  x 0,a>0;  ( ) 1 ,  y 0,b>0ax by
X YF x e F y e− −= − ≥ = − ≥                             Eq.  2.6 

 , ( , ) [( )( ) ] ax by cxy
x yf x y a cy b cx c e− − −= + + −                                                   Eq.  2.7 

, ( , ) 1 ax by ax by cxy
X YF x y e e e− − − − −= − − +                                              Eq.  2.8 

where a and b are the parameters of the exponential distribution of variable X and Y, 

respectively; c denotes a parameter describing the joint variable of the variates, which is 

related to the correlation coefficient of X and Y,  0 c ab≤ ≤  

Smith et al. (1982) pointed out the joint PDF and CDF of two positively correlated 

random variables X and Y with gamma marginal distributions as follows:  

1

0 02

X

( ) ( )  if >0
( , )

( ) ( )                             if 0

j j k
jk x y

j k

Y

K c x y
Kf x y
f x f y

β ηβ ρ

ρ

∞ ∞
+

= =

⎧
⎪= ⎨
⎪ =⎩

∑∑                                                    Eq.  2.9 

0 0,

X

( , ) ( , )  if >0;
1 1( , )

F ( ) ( )                                                        if =0

jk x y
j kX Y

Y

x yJ d H j H j k
F x y

x F y

γ γ ρ
η η

ρ

∞ ∞

= =

⎧
+ + +⎪ − −= ⎨

⎪
⎩

∑∑                     Eq.  2.10 

where 

11
1K ( ) ( ) exp( )

1
yx x y

x y

x y
x y γγ β β

β β
η

−− +
= −

−
                                                  Eq.  2.11 

2 (1 ) ( ) ( )x
x y xK γη γ γ γ= − Γ Γ −                                                                     Eq.  2.12 



 

 

27

 

 

2

( )
(1 ) ( ) ! !

j k
y x

jk j k
y

k
c

j k j k
η γ γ
η γ

+

+

Γ − +
=

− Γ + +
                                                               Eq.  2.13 

y

x

γ
η ρ

γ
=                                                                                    Eq.  2.14 

(1 )
( ) ( )

y

x y x

J
γη

γ γ γ
−

=
Γ Γ −

                                                                  Eq.  2.15 

( )
( ) ! !

j k
y x

jk
y

k
d

j k j k
η γ γ

γ

+ Γ − +
=
Γ + +

                                                             Eq.  2.16 

1

0
( , )

z a tH a z t e dt− −= ∫                                                                      Eq.  2.17 

1

0

( ) z tz t e dt
∞

− −Γ = ∫                                                                              Eq.  2.18 

! ( 1)( 2) 3 2 1k k k k= − − ⋅⋅⋅ i i                                                            Eq.  2.19 

where H is the incomplete gamma function, ( )Γ ⋅ is the gamma function, η is the association 

parameter between X and Y, and ρ is  the product-moment correlation coefficient of X and 

Y and is estimated from the sample data: 

[( )( )x y

x y

E x M Y M
S S

ρ
− −

=                                                                 Eq.  2.20 

in which ( , ) and ( , )x x y yM S M S  are the sample mean add standard deviations of he variable 

X and Y respectively,. ( , )x xβ γ  and ( , )y yβ γ  are the scale and shape parameters of the single-

variable gamma distributions of X and Y respectively. The PDF, ( ) and ( )X Yf x f y  of the 

marginal distributions of X and Y are respectively given as follow: 

11( )
( )

x x x x
X x

x

f x x eγ γ ββ
γ

− −=
Γ

                                                          Eq.  2.21 

11( )
( )

y y y y
Y y

y

f y y eγ γ ββ
γ

− −=
Γ

                                                          Eq.  2.22  

Yue (2001b) applied the bivariate gamma distribution to perform the flood analysis 

for a river in Canada, with the data of flood volume, flood days and flood flow.   
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Wang (2001) derived a format of joint probability function for two extreme value 

distributions as follows. Given the generalized extreme value (GEV) distributions for 

variable X, 

1/xp{ [1 ( ) / ]  0
( )

exp[ ( ) / ]                  0

x
x x x x

X
x x x

e x
F x

x

κκ ξ α κ
ξ α κ

⎧ − − − ≠⎪= ⎨
− − =⎪⎩

                                   Eq.  2.23 

with a density function 

1/ 11

( ) /1

( )( ) [1 ( ) / ]  0
( )

( )( )                         0

x

x x

X x x x x x
X x

X x x

F x x
f x

F x e

κ

ξ α

α κ ξ α κ

α κ

−−

− −−

⎧ − − ≠⎪= ⎨
=⎪⎩

                        Eq.  2.24 

where xκ , xξ , and xα  are parameters.  Similarly CDF and PDF for Y, then the joint PDF is 

derived as follows, 

1 1
, ,( , ) ( , )[( ( )] [( ( )]X Y U V x x x y y yf x y f u v x yα κ ξ α κ ξ− −= − − − −                  Eq.  2.25 

Where  
1( ) ln(1 ( ) / ]    0

( ) /                                =0 
x x x x x

x x x

x
u

x
κ κ ξ α κ
ξ α κ

−⎧− − − ≠⎪= ⎨
−⎪⎩

                                              Eq.  2.26 

1( ) ln(1 ( ) / ]    0

( ) /                                =0 
y y y y y

y y y

y
v

y

κ κ ξ α κ

ξ α κ

−⎧− − − ≠⎪= ⎨
−⎪⎩

                                             Eq.  2.27 

1/
, ( , ) exp[ ( ) ]mu mv m

U VF u v e e− −= − +                                                                  Eq.  2.28 

( ) 2 1/ 2 1/
, ,( , ) ( , ) ( ) [ 1 ( ) ]m u v mu mv m mu mv m

U V U Vf u v F u v e e e m e e− + − − − + − − − += + ⋅ − + +            Eq.  2.29 

(Gumbel and Mustafi, 1967; Johnson and Kotz, 1972) 

where U and V are independent of each other when m=1 and completely dependent of each 

other when m = ∞ . In general 2
, 1U V mρ = − , where ,U Vρ  is the correlation coefficient 

between U and V (Gumbel and Mustafi, 1967) 

Papadimitriou et al. (2006) introduced an analytical framework for analyzing the 

arbitrarily correlated trivariate Weibull distribution in a very complicated formation. A joint 

probability function for three Weibull distributions was expressed in that paper. 
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2.2.4. Multivariate Monte Carlo simulation 

Monte Carlo simulation is required for the problems involving random variables with 

assumed (or known) probability distributions (Ang and Tand, 1975b). The key task in Monte 

Carlo simulation procedure is to generate the appropriate values of the variables in 

accordance with the specified probability distribution. In the proposed confluence flood 

frequency analysis approach, the key task of Monte Carlo simulation is the generation of 

jointly distributed random numbers in accordance with the respectively prescribed joint 

probability distributions.  

There are several commonly used methods of generating multivariate random 

numbers, conditional distribution approach, transformation approach, rejection approach, and 

Gibbs approach. Conditional distribution approach is to generate random numbers for a 

marginal distribution, and then to generate random numbers for a sequence of condition 

distributions. Another way to generate multivariate random number is to generate a vector of 

identically independent distribution variates, and then apply a transformation to yield a 

vector from the specified multivariate distribution. An example of this method for the 

random number generation of multivariate normal distribution was addressed by Gentle 

(1998). Gibbs method is an iterative method used to generate multivariate random numbers. 

The conditional distribution approach is adopted in this study since it is relatively easy to 

apply and the results by this approach seem better than those by the other approaches based 

on our observation. 

The conditional approach reduces the problem of generating a multi-dimensional 

random vector into a series univariate generation problems (Johnson, 1987).  

Let 1 2, , ..., nX X X  be a set of n random variables. The joint PDF is 

1 2 1 2 1 1 2 1, , ..., 1 2 1 2 1 1 2 1  , ...( ,  , ..., ) ( ) ( ) ( ,  , ..., )
n n nX X X n X n nX X X X X Xf x x x f x f x x f x x x x

− −= ⋅⋅⋅  Eq.  2.30 
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where ( )
iX if x  is the marginal PDF of ( [1, ])iX i n∈ , and 

1 2 1 1 2 1 , ... ( ,  , ..., )
i i i iX X X Xf x x x x

− − is the 

conditional PDF of  ( [1, ])iX i n∈  given 1 1 2 2 1 1, , ..., i iX x X x X x− −= = = .  And the 
corresponding joint CDF is  

1 2 1 2 1 1 2 1, , ..., 1 2 1 2 1 1 2 1  , ...( ,  , ..., ) ( ) ( ) ( ,  , ..., )
i i iX X X i X i nX X X X X XF x x x F x F x x F x x x x

− −= ⋅⋅⋅  Eq.  2.31 

where ( )
iX iF x  is the marginal CDF of ( [1, ])iX i n∈ , and 

1 2 1 1 2 1 , ... ( ,  , ..., )
i i i iX X X XF x x x x

− − is the 

conditional CDF of  ( [1, ])iX i n∈  given 1 1 2 2 1 1, , ..., i iX x X x X x− −= = = . 

If the 1 2, , ..., nX X X  random variables are statistically dependent, the conditional 

approach involves the following steps: 

• A set of uniformly distributed random numbers between 0 and 1, ( 1 2,  , ..., nu u u ) are 

generated. 

• A value of 1x  is determined as
1

1
1 1( )Xx F u−= .  

• With the value of 1x  and the conditional CDF of 2X , 2 2 1( )XF x x , a value of 2x  may 

be determined from 
2

1
2  2 1( )Xx F x x−=  

• Similarly, the value of ix  can be determined from 1
1 2 1( ,  , ..., )

ii X i ix F x x x x−
−=  

In the case that the 1 2, , ..., nX X X  random variables are statistically independent, the 

random numbers for each variate can be generated separately and independently from the 

marginal PDF of each variate, 1( )i ix F x−= . 

2.2.5. Univariate flood frequency analysis 

The probability of non-exceedence ( )TF x  of an even for a specified return period T 

is defined as, 

1( ) 1 ( ) 1T TF x p x x
T

= − ≥ = −                                                           Eq.  2.32 

Hence the flood of magnitude TX for a given return period, can be solved 

1 1(1 )Tx F
T

−= −                                                                                     Eq.  2.33 
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This is straight forward and the basis for estimating a flood. However, some probability 

distribution functions cannot be expressed directly in the inverse from the 

equation ( ) 1 1/TF x T= − . In this case, indirect methods or numerical methods are needed to 

estimate the flood at a specified return period corresponding to given value of probability F. 

Chow (1951) proposed the following equation to calculating Tx , 
'
1 2T Tx u K μ= +                                                                                  Eq.  2.34  

where '
1u is the sample mean from the observation data, 2μ is the standard deviation, and TK  

is called frequency factor which is a function of the return period and the parameters of the 

distribution. In this method, the parameters in the equation are calculated by the MOM. TK  

and the equations in the direct method for the commonly used distributions in hydrology are 

listed in Appendix B..  

2.2.6. Evaluation 

Five numeric evaluation criteria may be used, which include: 

Ratio of standard deviation of predicted to observed discharges: The ratio of standard 

deviation of predicted and observed discharges would indicate a better model as it 

approaches to 1. 

( )
( )

2

2
f f

o o

y y
CO

y y

−
=

−

∑
∑

                                                                                         Eq.  2.35 

 Root-mean-square error (RMSE): The RMSE would indicate a better model as the 

value approaches zero. 

1
S.E.

RMSE =

n

i

N
=
∑

                                                                                        Eq.  2.36 

Ratio of the mean error to the mean observed discharge: The ratio of the mean error 

to the mean observed discharge would indicate a better model when it approaches zero. 
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yy

R
⋅

−
= ∑

                                                                                         Eq.  2.37 

Square of the Pearson product moment correlation coefficient: The square of the 

Pearson product moment correlation coefficient would indicate a better model as it 

approaches 1. 

( )( )
( ) ( )

2

22

2

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−−

−−
=

∑ ∑
∑

yyxx

yyxx
r

                                                              Eq.  2.38 

Mean of Percent Error (PE): The PE indicates a better model when its value 

approaches zero. 

( )

N
y

yy

EP N o

of∑ ⎥
⎦

⎤
⎢
⎣

⎡ −

=

100*
..

                                                                         Eq.  2.39 
where, yo and yf are the observed and forecasted discharges, respectively. N is the total 

number of data points involved. The bar above each parameter indicates the arithmetic mean. 

2.3 Application examples 

2.3.1 Case study 1 

The proposed joint flood frequency analysis is applied to the Des Moines River basin 

in Iowa. The task is to estimate the flood at the site of USGS 05481300 (Station C) by the 

proposed joint probability approach, assuming there is no gauge station at this site. Still the 

data from the downstream station C are collected and the univariate flood analysis is 

performed for this site for the demonstration of the proposed approach.  

Two upstream USGS gauge stations, USGS 05480500 (Station A) and USGS 

05471000 (Station B), are selected, and 38 years (1968-2005) annual peak flow records of 
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the two gauge stations are collected. The gate station names and locations are shown in Table 

2-2 and Figure 2-2.    

Table 2-2  USGS Gauge Stations located in the Des Moines River basin 

Station A B C 

Station Name Des Moines River at 
Fort Dodge, IA 

Boone River near 
Webster City, IA 

Des Moines River 
near Stratford, IA 

USGU Station No. 05480500 05481000 05481300 

For station A, by performing the two tests of goodness-of-fit, Chi-square test and K-S test, 

after the parameter estimation by maximum likelihood method, among the assumed 

distributions of exponential distribution, normal distribution, log-normal distribution, 3-

parameter log-normal distribution, and 3-parameter gamma distribution, only 3-parameter 

log-normal and 3-parameter gamma distributions fit the data at a 0.05 of significant level. 

However, there is some difficulty in the parameter estimation using maximum likelihood 

method for the 3-paramter gamma distribution based on the data of Station A. The Newton-

Raphson iteration cannot converge even after 50 iterations. Probability weighted moment 

method may need to be applied for the parameter estimation. Here we choose 3-parameter 

log- normal distribution as the distribution for station A. The probability plot for Station A, B 

and C are shown in Figure 2-3, Figure 2-4 and Figure 2-5. 

Similarly, we can identify the distribution for station B and C. The goodness-of-fit 

test shows the 3-parameter log-normal and 3-parameter gamma distributions fit the data of 

station B and C. Here we pick up 3-parameter log-normal for Station B and both 3-parameter 

log-normal and 3-parameter gamma distributions for Station C for comparison. The  
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Figure 2-2   Location of USGS Gauge Stations in the Des Moines River Basin  
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Figure 2-3  Probability plot for Station A in Des Moines River basin 
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Figure 2-4  Probability plot for Station B in Des Moines river basin 
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Figure 2-5  Probability plot for Station C in Des Moines river basin 

 

Table 2-3  Gauge station data distribution information of Des Moines basin 

  Station A Station B Station C 
Data Mean 13087.1 6303.42 18564.7 

Data Standard deviation 7063.02 3432.53 9402.36 
Correlation coefficient of A and 

B 0.804  

Location 9.96384 8.98548 10.46668 
Scale 0.31125 0.39657 0.25572 

3-parameter 
log-normal 

Threshold -9203.6 -2323.1 -17719 
Shape 3.09469 5.38697 
Scale 2004.594 4109.859 

3-parameter 
gamma 

Threshold 
 

99.82 -3574.96 
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statistics and the parameters of the distributions for station A, B and C are shown in Table 

2-3.  

For the annual peak flow in Station A (random variable X), we use the following 

form of 3-paramter log-normal distribution.  

PDF:  21 1( ) exp[ ( ) ]
22

y

yy

y
f y

μ
σπσ

−
= −                                                             Eq.  2.40 

CDF:  21 1( ) exp[ ( ) ]
22

x y y

yy

y
F y dydx

μ
σπσ −∞ −∞

−
= −∫ ∫                                            Eq.  2.41 

where ln( )y x γ= − , yμ , and yσ  are the mean and standard deviation of y, respectively, and 

γ  is the threshold parameter.  

For annual peak discharge data of Station C, 3-paramter gamma (Pearson III) 

distribution is adopted and the following format is used in this research, 

PDF: 
1 ( ) /1( ) ( )    x

( )
          

xf x x eβ γ α
β γ γ

α β
− − −= − ≥

Γ                                           Eq.  2.42 

CDF: 
1 ( ) /1( ) ( )    x

( )
          

x xF x x e dxβ γ α
β γ

γ γ
α β

− − −= − ≥
Γ ∫                                    Eq.  2.43 

whereα , β  and γ  are the shape parameter, scale parameter and threshold parameter, 

respectively.  

The bivariate normal distribution can be expressed by, 

2
22

2

1 1( , ) exp{ [( ) 2 ( )( )
2(1 )2 1

              ( ) ]}                  ;

yx x

x x yx y

y

y

yx xf x y

y
x y

μμ μρ
ρ σ σ σπσ σ ρ

μ
σ

−− −
= − −

−−

−
+ −∞ < < ∞ −∞ < < ∞

         Eq.  2.44 

where xμ , xσ  yμ , yσ  , and ρ  the mean and standard deviation of x, the mean and standard 

deviation of y, and the correlation coefficient of X and Y, respectively.  
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Figure 2-6  Joint PDF of the tributary discharge of Des Moines River basin 
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Figure 2-7  Joint CDF of the tributary discharge of Des Moines River basin 
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In the 3-parameter log-normal case, the following transformation can be performed in 

order to use the above equation for bivariate normal distribution. Introduce two random 

variables T and S, such that ln( )xs x γ= − and ln( )yt y γ= − , where xγ  and yγ donate the 

threshold parameters of the random variable X and Y, respectively. Therefore, the bivariate 

3-parameter log-normal distribution can be expressed by the following equation, 

2
22

2

1 1( , ) exp{ [( ) 2 ( )( )
2(1 )2 1

( ) ]}

s t s

s t ss t

t

t

s t sf s t

t

μ μ μρ
ρ σ σ σπσ σ ρ

μ
σ

− − −
= − −

−−

−
+

              Eq.  2.45 

where ρ  is the correlation coefficient of S and T. The joint PDF and CDF of the annual peak 

flow of A and B are shown in Figure 2-6 and Figure 2-7.  

After the joint probability distribution is identified, the Monte-Carlo simulation can 

be performed to obtain the synthetic annual peak flow at the confluence. The conditional 

distribution is identified as follows. Given the PDF of the bivariate normal 

distribution , |( , ) ( | ) ( )S T T S Tf s t f t s f s= , thus the conditional PDF is 

,
| 2 2

( , ) ( / )( )1 1( | ) exp[ ( ]
( ) 22 1 1

S T t t s s
T S

T s t

f s t t sf t s
f s

μ ρ σ σ μ

πσ ρ σ ρ

− − −
= = −

− −
      Eq.  2.46. 

By arranging the above equation, it is   the above the conditional distribution of T given S is 

also a normal distribution with the conditional mean of T given S. The conditional mean of T 

is 

( | ) ( )t
t s

s

E T s sσμ ρ μ
σ

= + −                                                          Eq.  2.47 

 and the conditional standard deviation of T is 

|

21
T S sσ σ ρ= − −                                                                        Eq.  2.48 

An i.i.d. number is generated first from the marginal distribution of S with sμ  and sσ , 

and then a value of t is generated from the above conditional distribution with the above 
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conditional mean and standard deviation. In this research 10000 random annual peak 

discharge values are generated from Monte Carlo simulation for each of T and S. The 

synthetic downstream annual peak flow Z can calculate by z s t= + . 

For the synthetic z, the test of goodness-of-fit indicates that 3-parameter log-normal 

and 3-parameter gamma distributions fit the data at the significant level of 0.05. The 

parameters are listed in Table 2-4. We select 3-parameter log-normal distribution in this 

study. It should be noted that the parameters for the synthetic flow rate of Station C may vary 

slightly when the model is run every time due to variation of the random numbers generated 

by MC simulation. 

Table 2-4  Distribution parameters of synthetic annual peak flow at the confluence of 

Des Moines River 

 Synthetic data From 
MC 

Observation data of 
Station C 

Data Mean 19341.0 18564.7 
Data Standard deviation 10245.1 9402.36 

Location 10.27151 10.46668 
Scale 0.32870 0.25572 3-parameter log-

normal Threshold -11156 -17719 
Shape 5.13091 5.38697 
Scale 4490.22071 4109.859 3-parameter 

gamma Threshold -3697.88 -3574.96 

 Perform the flood frequency analysis for the synthetic annual peak flow at the 

downstream station, the flood corresponding to the return period of 2, 5, 10, 25, 50, 100, and 

200 year are listed in Table 2-5 and Figure 2-8. 

To verify the model, the flood frequency analysis is performed based on the 

observation data of Station C. NFF model is also employed and the results are listed in the 

table for comparison with the proposed model. The regression equations of flood frequency 

analysis for the Des Moines River basin Stratford, IA are given by 
0.656

2 33.8Q DA=  
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0.658
5 60.8Q DA=  

0.660
10 80.1Q DA=  

0.663
25 105Q DA=  

0.666
50 123Q DA=  

0.669
100 141Q DA=  

0.672
200 159Q DA=  

where QT  =  discharge for a return period of T-years (cfs) 
           DA =  the drainage area corresponding to that gauge station (USGS 05481300) 
                  = 5452 sq.mi 
 

Table 2-5  Comparison of simulation results with the observation data and NFF model 
results: Des Moines River 

Note: Relative error = 0

0

ex x
x
−  where xe is the predicted value, x0 is the observed value. 

           Total relative error = , 0,

1 0,

n
e i i

i i

x x
x=

−
∑  

Flood estimated by the 
proposed model 

Flood by NFF model 
 Return 

Period 
(yr) Food 

(cfs) 

Relative error to 
observation data 

(Pearson III) 

Food 
(cfs) 

Relative error  to 
observation data 

(Pearson III) 

Flood  
estimated from 
Station C data 
based on log-
normal (cfs) 

Flood  
estimated from 
Station C data 

based on 
Pearson III (cfs) 

2 17741 0.031 9550 -0.445 17406 17211 

5 26951 0.039 17500 -0.325 25841 25941 

10 32880 0.050 23400 -0.253 31028 31328 

25 40222 0.066 31500 -0.165 37241 37727 

50 45603 0.080 37900 -0.103 41670 42230 

100 50924 0.094 44600 -0.042 45958 46533 

200 56229 0.109 51600 0.018 50152 50685 
Total 

relative 
error 

 0.469  1.351   
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Figure 2-8  Simulation results by joint probability model, NFF model and univariate 
flood frequency analysis based on observation data
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2.3.2 Case study 2 

The proposed approach is applied for the Altamaha River basin also where Oconee 

Rive at Dublin, GA and Ocmulgee River at Lumber City, GA are two tributary streams and 

Altamaha River near Baxley, GA is the confluent stream. The gauge station information for 

the three streams is shown in  and Figure 2-9. The annual peak discharge of the two 

tributaries USGS 0223500 and USGS02215500 are collected, and the task is to estimate the 

flood frequency for the confluence point of the tributaries by assuming the annual peak 

discharge data of Station C are not available. Totally 35 year data (1971 through 2005) of 

each of the three stations are used in this research.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2-9  Location of USGS Gauge Stations in Altamaha River basin, GA 
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The test of goodness of fit indicates that both Station A and Station B fit 3 parameter 

normal distribution (See Figure 2-10 and Figure 2-11) and 3-paramter gamma distribution at 

0.05 level of significant, with the parameters as shown in Table 2-7. In this research, the 3-

parameter lognormal distribution is selected for both Station A and Station B. The joint PDF 

and conditional distribution can be obtained by Eq. 2.45 and Eq. 2.46. The plot of the joint 

PDF and CDF are shown in Figure 2-13 and Figure 2-14.The synthetic annual peak 

discharges for the confluence are then generated from the Monte Carlo simulation based on 

the conditional probability of binormal distribution. The test of goodness of fit indicates that 

the 3-parameter gamma distribution fits the synthetic flow rate at a level of 0.05 significant 

level, with a shape, scale and threshold parameter of 4.89260, 13438.12 and -3634.72, 

respectively.  

To verify the performance of the joint probability approach, the observation data of the gauge 

station at the confluence, USGS 02205000, are also collected and the conventional flood 

frequency analysis is performed. The goodness of fit test for the observation data of Station C 

shows that the annual peak flow follows a 3-parameter gamma distribution or a 3-parameter 

lognormal distribution, with parameters as shown in Table 2-7. The 3-parameter gamma 

distribution is selected in this research. Also the result from NFF model is employed here for 

the comparison with the joint probability model. 

The univariate flood frequency analysis is performed for the confluence and the results are 

shown in Table 2-8 and Figure 2-15. The NFF model is also employed to estimate the flood 

at the confluence for the comparison with the joint probability model, as shown in Table 2-8 

and Figure 2-15. In NFF model the Station C is located in the Region 3 in GA and the 

drainage area is 11600 mi2, and the regression equations for Region 3 are given by 

Q2 = 76A0.620 

Q5 = 133A0.620 

Q10 = 176A0.621 
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Table 2-6    USGS Gage Stations located in the Altamaha River basin in GA 

Station Tributary A Tributary B Confluence C 

Station Name Oconee River at 
Dublin, GA 

Ocmulgee River at 
Lumber City, GA 

Altamaha River 
Near Baxley,  GA 

USGU Station No. 02223500 02215500 02225000 

Table 2-7    Data distribution information of Altamaha River basin in GA 

  Station A Station B Station C 
Data Mean 32315.4 29612.3 58671.4 

Data Standard deviation 17024.9 16956.3 25488.2 
Correlation coefficient of A and B 0.6404  

Location 10.67145 10.32607 11.56073 
Scale 0.36144 0..46212 0.22866 

3-parameter log-
normal 

Threshold -13667 -4353 -49010 
Shape 2.68265 2.58517 8.58058 
Scale 10755.08 10124 8528.94931 

3-parameter 
gamma 

Threshold 3463 3438 -145119 
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 Figure 2-10  Probability plot of Station A in Altamaha River basin, GA 
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Figure 2-11  Probability plot of Station B in Altamaha River basin, GA 

 

Figure 2-12  Probability plot of Station C in Altamaha River basin, GA
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Figure 2-13  Joint PDF of the tributary streamflow of Altamaha River basin, GA  
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Figure 2-14  Joint PDF of the tributary streamflow of Altamaha River basin, GA
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Q25 = 237A0.623 

Q50 = 287A0.625 

Q100 = 340A0.627 

Q200 = 396A0.629 

Where A is the drainage area, 11600 mi2.  

2.3.3 Discussion 

Since the annual peak discharge may fit more than one distribution, as is shown in 

this study, the annual peak discharges in Station B and C fit both 3-parameter lognormal and 

Pearson III distributions based on the test of goodness of fit. From the observation of the 

Station C, the results from different distributions shows just slightly difference in the flood 

estimate. From the empirical practice, the Pearson III and log-Pearson III distribution are 

recommended by USGS, which agree with the observation of about 30 other streams 

throughout the US in this research. It is found out that a distribution with a large number of 

parameters always fits the data better than the distribution with a small number of 

parameters. However, when size of the sample data is relative small, the distribution with 

smaller number of parameters may be preferred if it is accepted by the test of goodness of fit.  

The results of two case studies show that the proposed model can simulate the flood 

frequency very well, especially when the return period is getting small. Its results agree with 

the results by the univariate flood frequency analysis based on the observation data of Station 

C. The largest error occurs at the 200 year of return period, which is around 10% for the 

smaller river basin and 20% for the larger river basin, relative to the result by the univariate 

flood frequency analysis based on Pearson III distribution. The model performs best at the 

smallest return periods for both small river basin and large river basin. The model always 

tends to overestimate the flood and the overestimation is getting larger (around 20% relative 

to the observation data) when the river basin is getting large. However, the relative error  
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Table 2-8    Data distribution information of Altamaha River basin in GA 

        

Note: Relative error = 0

0

ex x
x
−

 where xe is the predicted value, x0 is the observed value. 

          Total relative error = , 0,

1 0,

n
e i i

i i

x x
x=

−
∑
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Flood  by NFF model 
 

Return 
Period 

(yr) Food 
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error to 

observation 
data 

(Pearson III) 

Food 
(cfs) 

Relative error  
to observation 
data (Pearson 

III) 

Flood  
estimated from 
Station C data 

based on 
Pearson III (cfs) 

2 57690 0.03 25200 -0.55 55890 

5 84960 0.09 44000 -0.44 78150 

10 101910 0.11 58800 -0.36 91600 

25 122140 0.14 80700 -0.25 107530 

50 136420 0.15 99600 -0.16 118760 

100 150100 0.16 120000 -0.07 129550 

200 163320 0.16 143000 0.02 140030 

Total 
relative 

error 
 0.84  1.85  
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Figure 2-15  Simulation results comparison with NFF model and univairate flood 
frequency analysis based on observations at confluence of Altamaha River basin 
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tends to be stable when the return period is over 100 years. Several factors may cause the 

accuracy loss in Altamaha River basin in GA. The station A is very far away from the 

confluence point. There may be some relatively large water quantity gain or loss between 

Station A and the confluence while is not taken into account in the synthetic confluence 

annual peak flow by just summation of the generated peak flow of station A and B by MC 

method. Another possible reason is that the Station C is also far away from confluence, so the 

real difference of the flood between Station C and confluence might be a little large. 

The NFF model developed by USGS also works well, especially when the return 

period is larger than 100 years. However, it seems that the NFF model underestimates the 

flood when the return period is smaller than 100 year, and the smaller the return period is, the 

larger the underestimation is. The relative error is also getting larger with the increase of the 

river basin. The largest error occurs in the smallest return period, which maybe more than 

50% relative to the observation data. The NFF model works best when the return period is 

large enough, say no smaller than 100 year.  

2.4 Conclusion and future work 

This research proposed a joint probability approach that provides a practical way for 

the confluence flood frequency analysis with an acceptable accuracy. The approach performs 

better for the smaller river basin than for the larger river basin. The relative error tends to get 

larger with the increase of return period and river basin. This error could be reduced by using 

variance reduction techniques, such as control variate method, or with more accurate mass 

balance estimate in the synthetic confluence flow, in stead of only summation of the 

synthetic upstream flow rate. 

The procedure is discussed in the paper which is comprised of four steps, the 

distribution identification of annual stream peak flow of the tributary streams, the 

identification of joint probability distribution of the tributary stream flows, the generation of 
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the synthetic stream flow at the confluent point by using Monte Carlo simulation, and 

identification of the flood frequency of the confluent point by the conventional univariate 

flood frequency analysis. 

It is also could be extended to the confluence flood frequency analysis with more than 

two tributary streams by the same token of estimating a multivariate distribution of the 

annual peak discharge of the statistically dependent tributaries or transferring the multivariate 

problem to several bivariate probability problems and then performing the Monte Carlo 

simulation as addressed in the paper. The proposed model also provides an alternative 

method for the ungauged flood frequency beside the NFF model, especially when the return 

period is no more than 100 year within which the proposed model can perform better than 

NFF model. 

However, it should be noted that the most challenging part of the approach is to 

estimate accurately the joint probability distribution. There are no well established methods 

reported that can meet this requirement although there are many bivariate or multivariate 

distributions reported in the literature. Most of them focus on the bivariate normal 

distribution, bivariate exponential distribution, or biavariate gamma distribution. Given the 

observation that the gamma distribution or Pearson III or log-Pearson III can fit many or 

even most of the streams in US, as recommended by the U. S. Water Resources Council for 

flood flow frequency studies (U. S. Water Resources Council, 1981), the reported empirical 

biavariate model should be capable of handling the most cases. It is still necessary to develop 

a more general and more efficient method for the bavariate distribution estimate.  
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Chapter 3 A copulas-based joint probability approach 
for confluence Flood Frequency Analysis 

 

Abstract 

Joint probability approach shows the capablity of estimating the flood frequency 

accurately. But it is difficult to estimate the joint probability distribution in the approach, 

especially when the joint probability has different type of margins, which is the key task in 

joint probability approach. Copulas provide a way to construct multivariate distribution 

functions. This paper reviews the joint probability approach for confluence flood frequency 

analysis, and introduces mainly the copulas which can be used to construct multivariate 

distribution with any type of margins. The method of constructing copulas and the often used 

Archimedean copulas are introduced. And the dependent parameter and the copula evaluation 

are also presented in the paper.  

Keywords: Flood frequency analysis, copula, joint probability, Monte Carlo 

simulation, confluence point 

3.1 Introduction 

The flood frequency analysis at or nearby the confluence of two tributaries is of 

interest because it is necessary for the design of the highway drainage structures, which often 

are located near the confluence point and may be subject to inundation by high flows from 

either stream or both. The univariate flood frequency analysis approach is not applicable for 

this sometimes because of the shortage of the hydrological data at the confluence point. 

Currently, the National Flood Frequency Program (NFF) (US Geology Survey, 2002) 

developed by US Geology Survey (USGS) based on the regional analysis probably is the 

most popular model for the ungauged site flood estimation, and could be employed for the 
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flood estimate at the confluence. In NFF model each state in US are divided into multiple 

hydrologic regions by using major watershed boundary and/or some other hydrologic 

characteristics, i. e., the mean elevation of watershed. It is assumed that the hydrologic 

characteristics are homogeneous in each region so that the flood at the ungauged sites can be 

estimated by the gauged sites.  A series of regression equations of T-year flood (T=2 , 5, 10, 

25, 50, 100, 200 and 500 year) associated with each hydrologic region  are developed in 

terms of hydrologic characteristics based on the gauged site records. All the sites in each 

region share the same regression equation for the flood estimation associated with a specified 

return period.  However, some equations in this approach have high errors; for example, 

some equations generate standard errors greater than 100 percent for the western part of the 

US, although the average standard error of NFF is between 30 and 60 percent (USGS, 2002).  

To avoid the flow routing procedure which is usually time and effort consuming, a 

practical approach for the flood frequency estimation for this situation is needed. An 

approach based on the joint probability may be developed for the confluence flood 

estimation. 

Bivariate or multivariate flood frequency analysis has received much attention 

recently. Sackl and Bergmann (1987), Chang et al. (1994), Goel et al. (1998), Yue (1999, 

2000), and Beersma and Buishand (2004) used the bivariate normal distribution to perform 

the flood frequency analysis and hydrology events analysis. Krstanovic and Singh (1987) 

derived the multivariate Gaussian and exponential distributions by the principle of maximum 

entropy and applied the bivariate distributions for the analysis of flood peak and volume. Yue 

(2000) applied the bivariate lognormal distribution multivariate flood events analysis and 

described the relationship of flood peaks and volumes as well as flood volumes and durations 

by joint distribution and the corresponding conditional distribution. 

Hashino (1985), Choulakian et al. (1990), Singh and Singh (1991), Bacchi et al.  

(1994), and Ashkar et al. (1998) investigated and applied the bivariate exponential 
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distributions for the hydrological events analysis. Bacchi et al. (1994) proposed a numerical 

procedure for the estimation of parameters of a bivariate exponectial model used to 

simulation the storm intensity and duration simultaneously. 

Buishand (1984), Raynal and Salas (1987), Yue et al. (1999) and Yue (2001a) applied 

bivariate extreme value distributions to analysis multivariate flood/storm events. Yue and 

Wang (2004) compared the performance in flood analysis between two bivariate extreme 

value distributions, the Gumbel mixed model and the Gumbel logistic model. 

Bivariate gamma distribution is also widely used for the flood frequency analysis 

(Moran, 1970; Prekopa and Szantai, 1978; Yue, 2001). Among them, Yue (2001b) 

investigated the applicability of the bivariate gamma distribution model to analyze the joint 

distribution of two positively correlated random variables with gamma marginals. Yue et al 

(2001) reviewed three bivaraite gamma distribution models with two gamma marginal 

distributions.  

Durrans et al (2003) presented two approximate methods for joint frequency analysis 

using Pearson Type III distribution to estimate the joint flood frequency analyses on seasonal 

and annual bases. Nadarajah and Gupta (2006) developed exact distribution of intensity-

duration based on bivariate gamma distribution.  

Yue and Rasmussen (2002) discussed the concepts of bivariate hydrology events and 

demonstrated the concepts by applying a bivariate extreme value distribution to represent the 

joint distribution of flood peak and volume from an actual basin. 

Johnson et al. (1999) reviewed the some techniques for obtaining bivariate 

distributions and presented the properties of some bivariate models that include bivariate 

Weibull distribution, bivariate inverse Gaussian distribution, bivariate SBB distribution and 

bivariate normal-lognormal distribution.  

The existing techniques for estimating joint distributions of hydrology data often 

require some assumptions, for example, the same type of the marginal distribution are always 
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assumed. The estimation and inference for data that are assumed to be multivariate normal 

distributed are highly developed, but general approaches for joint nonlinear modeling of 

nonnormal data are not well developed, and there is a frequent tendency to consider 

modeling issues on a case-by-case basis. This research explores the copula approach for 

hydrology modeling of joint parameter distributions, providing a way to perform flood 

frequency analysis at the confluence in the river basin. The copula approach involves 

specifying marginal distributions of each random variable along with a function (copula) that 

binds them together. Although theoretical foundations of copulas are complex, this paper 

demonstrates that practical implementation and estimation is relatively straightforward. One 

of the properties of copulas that are very useful in implication is that the same copula can be 

used for the joint distribution of (ln , ln )X Y as the copula for the joint distribution of 

( , )X Y .This is useful because it may be more convenient for the analysis to express the 

hydrology data in natural unit. 

Although well known in the statistical literature for more than 40 years, applications 

of the copula theory in statistical modeling are a more recent phenomenon.Very few 

applications have been reported in hydrology area (Wang, 2001; Zhang, 2006; Shuiau; 2006).  

Zhang and Singh (2006) derived bivariate distributions of flood peak and volume, and 

flood volume and duration by using copula method. In the paper, four often used one 

parameter Archimedean copulas are introduced, the corresponding parameter estimation is 

described and the criteria of copula selection are addressed. Wang (2001) developed a 

procedure for record augmentation of annual maximum floods by applying the bivariate 

extreme value distribution (Gumbel-Hougaard copula) for annual maximum floods at two 

gauging stations with generalized extreme value distribution. Shiau et al (2007) applied 

copulas with a mixture of exponential and gamma marginal distribution to simulate the 

relationship between drought duration and drought severity.  
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This study aims to review the joint probability approach for the confluence flood 

frequency analysis and introduce the copulas into the application for the joint probability 

approach. The concept of copula, the construction of copula, parameter estimation for the 

copulas and the criteria for copula selection is presented. The copula-based joint probability 

approach is applied to estimate the flood in two river basins to demonstrate the proposed 

approach.  

3.2 Methodology  

3.2.1 Review of the joint probability approach  

In the section, the proposed copula method is applied in the joint probability approach 

for the confluence flood analysis. The joint probability approach for the confluence flood 

estimate involves the following steps, (1) stream flow distribution identification of the 

tributary streams, (2) identification of joint probability distribution of the tributary stream 

flows,(3) identification of the synthetic stream flow at the confluent point by using Monte 

Carlo simulation, and (4) identification of the flood frequency of the confluent point by the 

conventional flood frequency analysis. Figure 3-1 shows briefly the procedure of the joint 

probability approach for flood frequency analysis. In this approach, the accurate estimate of 

the joint probability of the upstream tributaries plays a key role and probably is the most 

challenging part.  

3.2.2 Copulas  

Copulas are defined by Nelson (2006) “functions that join or “copula” multivariate 

distribution functions to their one-dimensional marginal distribution functions”. The biggest 

advantage of copula method is that it is capable of determining the multivariate distribution 

in an easy way regardless of the marginal distributions, compared to the other methods which 

may involve either very complicated derivation or have some strict requirement, i.e. the  
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Figure 3-1  Flow chart of joint probability approach for confluence flood  
frequency analysis

Collect annual peak 
 discharge data   X and Y 

Identify the CDF  of X an Y  
as F(x) and F(y) 

Generate X from F(x) 
and  Y from F(y) 

Determine the joint CDF  
F(x,y)  

ρ <0.2? 

Synthesis the confluent annual 
 peak flow z=x+y 

Generate X and Y from F(x,y) 

Yes 

NO 

Identify the CDF of Z and perform  
conventional Flood analysis 



 

 

66

 

 

margins are the same type of distribution. 

3.2.2.1 Concept of copula 

The term of “copula” was first employed by Sklar (1959), and then developed and 

addressed by many researchers (Galambos, 1978; Genest and Mackay, 1986; Schweizer, 

1991; Genest and Rivest 1993; Joe, 1997; Shih and Louis, 1995; and Nelson, 2006). 

To demonstrate the copula method of deriving multivariate distribution function with 

multi univariate distributions, the Sklar’s theorems, developed by Sklar (1959) are introduced 

as follows, by assuming the following assumption holds that a distribution function (CDF) is 

a function  F with domain R ([ , ]−∞ +∞ ) such that (1) F is nondecreasing and (2) ( ) 0F −∞ =  

and ( ) 1.F +∞ =  

Sklar’s theorem.  Let H be a joint distribution function with margins F and G. Then 

there exists a copulas C such that for all x, y in R ([ , ]−∞ +∞ ),  
( , ) ( ( ), ( ))H x y C F x G y=  

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on 

RanF×RanG. Conversely, if C is a copula and F and G are distribution functions, then the 

function H defined by the above equation is a joint distribution function with margins F and 

G, where RanF (=I=[0,1])and RanG (=I=[0,1] donate the range of F and the range of G, 

respectively.   

Sklar’s theorem in n-dimensions. Let H be an n-dimensional distribution function 

with margins 1 2, , ..., nF F F , then there exists an n-copulas C that for all x in nR ,  

1 2 1 2( , ,..., ) ( ( ), ( ),..., ( )).n nH x x x C F x F x F x=  
If 1 2, , ..., nF F F  are all continuous, then C is unique; otherwise, C is uniquely determined 
on 1 2 nRanF  RanF RanF× ×⋅⋅⋅× . Conversely, if C is an n-copula and 1 2, , ..., nF F F are 
distribution functions, then the function H defined by the above equation is an n-dimensional 
distribution function with margins 1 2, , ..., nF F F .  

According to the Sklar’s theorems, the joint CDF or n-dimensional multivariate joint 

CDF can be determined if the marginal CDFs are know and the copula or the n-dimensional 
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copula can be determined. By splitting the marginal behaviors from the dependence relation, 

the copulas method allows very flexible joint distributions.  

The following theorem can be proved. 
Theorem For 2n ≥ , let 1 2, , ..., nX X X  be continuous random variables with margins 

1 2, , ..., nF F F . Then  
1. 1 2, , ..., nX X X  are independent if and only if the n-copula of 1 2, , ..., nX X X  is nΠ , and  
2. each of the random variables 1 2, , ..., nX X X  is almost surely a strictly increasing function 
of any of the others if and only if the n-copula of 1 2, , ..., nX X X  is nM , where 

nΠ = 1 2  ...  nF F F× × × , and nM = 1 2min( , , ..., )nF F F . 

3.2.2.2 Methods of copula generation 

Method of Inversion 

According to Sklar’s theorem, for random variable X and Y with continuous 

margins ( )F x and ( )G y , respectively, and the joint continuous distribution function ( , )H x y , 

there exists a unique copula C which can be generated by  

( , ) ( ( ), ( ))H x y C F x G y=                                                                 Eq. 3.1 

Let ( ) and ( )u F x v G y= = , where u and v are standard uniform variables, and we can 

express X and Y as 1 1( ) and y ( )x F u G v− −= = , respectively, where 1F − and 1G−  are the 

inverse functions of F and G, respectively. Then the above equation can be wroten as  

1 1( , ) ( ( ), ( ))C u v H F u G v− −=                                                                Eq.  3.2 

Example (Nelsen, 2006) 

Consider the Gumbel’s bivariate exponential distribution (Gumbel 1960), which is 

given by  
( )1           , 0 

( , )
0                                            , 0 

x y x y xye e e x y
H x y

x y

θ− − − + −⎧ − − + ≥
= ⎨

<⎩
                              Eq.  3.3 

For given marginal distributions ( ) 1 xu F x e−= = −  and ( ) 1 yv G y e−= = − , where θ  

stands for a parameter in [0,1].Thus,  



 

 

68

 

 

1( ) ln(1 )F u u− = − −                                                                              Eq.  3.4 

1( ) ln(1 )G y v− = − −                                                                               Eq.  3.5 

Therefore, the copula C can be obtained by 
1 1 1 1 1( ) ( ) ( ( ) ( ) ( ))

ln(1 )ln(1 )

( , ) 1
1 (1 )(1 )

F u G v F u y F u G v

u v

C u v e e e
u v u v e

θ

θ

− − − − −− − − + −

− − −

= − − +

= + − + − −
                                      Eq.  3.6 

The inversion method is straight forward; however, in this method the joint 

distribution is required to derive the copula. This limits the usefulness of the method for 

applications in which the joint distribution is often unknown. 

Geometric methods 

Geometric methods is related to the following property of copula, 1) for every u, v in 

I, ( ,0) (0, ) 0C u C v= =  and ( ,1)C u u=  and (1, )C v v= ; 2) For every u1, u2, v2, v2, in I such 

that 1 2u u≤ and 1 2v v≤ , 2 2 2 1 1 2 1 1( , ) ( , ) ( , ) ( , ) 0C u v C u v C u v C u v− − + ≥ . 

Consider the parameter θ  as an observation of a continuous random variable Ζ  with 

distribution function ( )zθΛ .{ }zC is a finite collection of copulas. In the geometric methods, the 

copula is derived from the integration 

( )
( , ) ( , ) ( )

Z
C u v C u v d zθ θ= Λ∫ ZR

                                           Eq.  3.7 

( , )C u vθ  are called the convex sum of { }zC with respect to ( )zθΛ . This equation can be extended 

by replacing the ( , )C u vZ by more general bivarition distribution functions. Set  

0
( , ) ( ) ( ) ( )z zH u v F u G v d zθ

∞
= Λ∫                                            Eq.  3.8 

where (0) 0θΛ = . 

Example  
Marshall and Olkin (1988) provided an example how convex sums can lead to 

copulas constructed from Laplace transforms of distribution functions.Let ( )tϕ  denote the 

Laplace transform of the mixing distribution ( )zθΛ , i.e., 
0

( ) ( )ztt e d zϕ
∞ −= Λ∫ . Let F and G be the 

marginal distributions given by 
1 ( )( ) uF u e ϕ−−=  and 

1 ( )( ) vG v e ϕ−−= , then 
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 { }

1 1( ) ( )

0

1 1

0
1 1

( , ) [ ] [ ] ( )

          exp [ ( ) ( )] ( )

[ ( ) ( )]

u z v zH x y e e d z

z u v d z

u v

ϕ ϕ
θ

θϕ ϕ

ϕ ϕ ϕ

− −∞ − −

∞ − −

− −

= Λ

= − + Λ

= +

∫
∫                                       Eq.  3.9 

Marshall and Olkin (1988) showed this is a joint distribution of X and Y. Thus, 

1 1( , ) [ ( ) ( )]C u v u vϕ ϕ ϕ− −= +                                                       Eq.  3.10 

and 1 1[ ( ) ( )]u vϕ ϕ ϕ− −+  is also called Archimedean copula.  

Algebraic methods 

Algebraic methods use the algebraic relationship between the joint probability and its 

univariate margins to derive the copulas. Then this relationship can be expressed in terms of 

a dependence parameter. Nelsen (2006) addressed two examples of copulas generation with 

this methods, Plackett and Ali–Mikhail–Haq distributions.  

Example 1 Placekett Distributions 

Consider two random variables X and Y with margins ( )F x and ( )G y , respectively, and 

let the joint continuous distribution function be ( , )H x y , the copula be C, and θ  be the 

dependence parameter. Consider Table 3-1,  

Table 3-1     2×2 contingency table for Algebraic methods 

  Y variable 
 y Y≤  y Y>  

x X≤  a B X variable 
x X>  c D 

It holds that  

( , ) ( , )a P x X y Y H x y= ≤ ≤ =                                                                     Eq.  3.11 

( , ) ( ) ( , )b P x X y Y F x H x y= ≤ ≥ = −                                                           Eq.  3.12 

( , ) ( ) ( , )c P x X y Y G y H x y= > ≤ = −                                                         Eq.  3.13 
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( , ) 1 ( ) ( ) ( , )d P x X y Y F x G y H x y= ≤ ≤ = − − +                                      Eq.  3.14 

The dependence parameter θ  is defined as the cross product ratio, or odds ration, 

( , )[1 ( ) ( ) ( , )]
[ ( ) ( , )][ ( ) ( , )]

ad H x y F x G y H x y
bc F x H x y G y H x y

θ − − +
= =

− −
                                              Eq.  3.15 

Using the relationship ( ) and ( )u F x v G y= = and Skar’s theorem, the equation can be rewrite 

as 

( , )[1 ( , )]
[ ( , )][ ( , )]
C x y u v C x y

u C x y v C x y
θ − − +
=

− −
                                                                         Eq.  3.16 

Solving the above equation for C, 

2[1 ( 1)( )] [1 ( 1)( )] 4 ( 1)
    1( , ) 2( 1)

                                                                                       1

u v u v uv
C u v

uv

θ θ θ θ
θ

θ
θ

⎧ + − + − + − + − −
≠⎪= ⎨ −

⎪ =⎩

      Eq.  3.17 

Example 2 Ali–Mikhail–Haq distributions 

First suppose variable X and Y are independent, then ( , ) ( ) ( )H x y F x G y= .The odds ratio is 

defined as 

1 ( , ) 1 ( ) ( ) 1 1 1
( , ) ( ) ( ) ( ) ( )

1 ( ) 1 ( )[1 ][1 ] 1
( ) ( )

1 ( ) 1 ( ) 1 ( ) 1 ( )
( ) ( ) ( ) ( )

H x y F x G y
H x y F x G y F x G y

F x G y
F x G y

F x G y F x G y
F x G y F x G y

− −
= = −

− −
= + + −

− − − −
= + +

                                Eq.  3.18 

Based on the odds ratio in the independent case, Ali, Mikhail, and Haq (1978) proposed a 

generalized bivariate ratio with a dependence parameterθ , 

1 ( , ) 1 ( ) 1 ( ) 1 ( ) 1 ( )(1 )
( , ) ( ) ( ) ( ) ( )

H x y F x G y F x G y
H x y F x G y F x G y

θ− − − − −
= + + −                          Eq.  3.19 

thus, using the relationship ( ) and ( )u F x v G y= = and Skar’s theorem, the equation can be 

rewrite as  
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1 ( , ) 1 1 1 1(1 )
( , )
C x y u v u v

C x y u v u v
θ− − − − −

= + + −                                            Eq.  3.20 

Solving C from the equation, the copula C can be obtained  

( , )
1 (1 )(1 )

uvC x y
u vθ

=
− − −

                                                                     Eq.  3.21 

3.2.2.3 Archimedean copulas 

Archimedean copulas have been used in a wide range of application because they are 

easily generated and are capable of capturing wide ranges of dependence. 

Consider continuous function ϕ  with the properties, 1) (1) 0ϕ = ; 2) (0)ϕ = ∞ ; 

3) ' ( ) 0tϕ < ; 4) '' ( ) 0tϕ > , for all (0,1]t∈ . These properties ensure ϕ  to be a decreasing 

convex function and the inverse function 1ϕ−  exits. The bivariate Archimedean copulas take 

the form: 1( , ) [ ( ) ( )]C u v u vθ ϕ ϕ ϕ−= + , where θ  refers to the dependence parameter. 

The joint density function c can be derived by differentiating with respect to the two 

variables U and V.  
2 ( , )( , ) u vc u v
u v

∂
=

∂ ∂
                                                                            Eq.  3.22 

It can also be expressed in term of x and y,  

( , ) ( , ) u vf x y c u v
x y
∂ ∂

=
∂ ∂

                                                                       Eq.  3.23 

The conditional joint function takes the form of  

,
( , )( ) V vU V v

C u vC u V v
v

θ
θ ==

∂
= =

∂
                                                           Eq.  3.24 

,
( , )( )U V

C u vC u V v
v

θ
θ ≤ =                                                                        Eq.  3.25 

Many copulas have been reported in the literature. Nelsen (2006) summarized the 

bavariate copulas and their corresponding properties. Here just the often used four copulas in 

empirical application are discussed. See Nelsen (2006) for the description of more copulas. 

Ali-Mikhail-Haq copula 
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Let (1 )( ) ln tt
t
θϕ −

= , then Ali-Mikhail-Haq copula and the joint density function take the 

form of  

( , )     [-1,1)
1 (1 )(1 )

uvC u v
u vθ θ

θ
= ∈

− − −
                                                          Eq.  3.26 

3

[1 (1 )(1 )](1 ) 2( , )     [-1,1)
[1 (1 )(1 )]

u v uvc u v
u vθ

θ θ θ θ
θ

− − − − +
= ∈

− − −
                                 Eq.  3.27 

Clayton copula  

Let 1( ) tt
θ

ϕ
θ

− −
= , the Clayton copula and the joint density function can be expressed as 

1/( , ) ( 1)     0C u v u vθ θ θ
θ θ− − −= + − ≥                                                        Eq.  3.28 

1 21( , ) ( ) ( 1)( 1)c u v uv u vθ θ θ θ
θ θ

− −− − − −= + + −                                               Eq.  3.29 

This copula is also called Cook and Johnson family (Nelsen, 2006). As θ  approaches 

zero, the marginals become independent. The Clayton copula cannot account for negative 

dependence. It shows strong left tail dependence and relatively weak right tail dependence. 

When correlation between two events is strongest in the left tail of the joint distribution, 

Clayton is an appropriate modeling choice. 

Frank copula 

Let 1( )
1

tet
e

θ

θϕ
−

−

−
= −

−
, the Clayton copula and the joint density function can be expressed as 

1 ( 1)( 1)( , ) ln 1      0
1

u ve eC u v
e

θ θ

θ θ θ
θ

− −

−

⎡ ⎤− −
= − + ≠⎢ ⎥−⎣ ⎦

                                    Eq.  3.30 

( )

( ) 2

( 1)( , )
( )

u v

u v u v

e ec u v
e e e e

θ θ

θ θ θ θ θ

θ − + −

− + − − −

−
=

− −
                                                          Eq.  3.31 

When θ  approaches zero, the marginal distributions are independent. The Frank 

copula permits both negative and positive dependence between the marginals and the 

dependence is symmetric in both tails. Because of it properties, the Frank copula have been 

widely used in empirical applications. 
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Gumbel-Hougaard copula 

Let ( ) ( ln )t t θϕ = − , the Clayton copula can be expressed as 

{ }1/
( , ) exp ( ln ) ( ln )     1C u v u v

θθ θ
θ θ⎡ ⎤= − − + − ≥⎣ ⎦                               Eq.  3.32 

Similar to the Clayton copula, Gumbel copula does not allow negative dependence, but it 

contrast to Clayton, Gumbel exhibits strong right tail dependence and relatively weak left tail 

dependence. If outcomes are known to be strongly correlated at high values but less 

correlated at low values, then the Gumbel copula is an appropriate choice. 

3.2.2.4 Parameter estimation of copulas 

Several methods for the copula parameters estimation have been proposed and 

applied, which include the maximum likelihood approach (ML), the sequential two-step 

maximum likelihood method (TSML), inference function for margins (IFM),Bayesian 

approach, and the approach based on the rank correlation.  

Maximum likelihood approach (ML) 

ML is a direct method to estimate the parameters, which involves the following steps, 

1. For the two variables X and Y, pick the PDF ( ; )Xf x α  and ( ; )Yf y β , respectively, 

where α  and β  are the parameters of ( )Xf x  and ( )Yf y , which include 

1 2, ,... ,... ,  [1, ]i m i mα α α α ∈  and 1 2, ,... ,... ,  j [1, ]j n nβ β β β ∈ ,respectively, where m and 

n are the number of the parameters in ( )Xf x  and ( )Yf y , respectively. In this step, 

just the type of marginals are needed to identified but it is no need to estimate the 

parameters α  and β  in this step.  

2. Select an assumed copula, and express the copula ( , ; , , )C u vθ α β θ in terms of α ,β , 

θ , u, and v, where θ  is the dependence parameter in copula, u and v are the CDF of 

X and Y, respectively. 

3. Derive the copula density function 
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, ( , ; , , ) ( , : , , ) ( , ; , , ) ( ; ) ( ; ) X Y X Y
u vf x y c u v c u v f x f y
x yθ θα β θ α β θ α β θ α β∂ ∂

= =
∂ ∂

 Eq.  3.33 

where 
2 ( , )( , ; , , ) u vc u v
u vθ α β θ ∂

=
∂ ∂

                                                                         Eq.  3.34 

4. Write the log-likelihood function, 

,
1 1

ln [ ( , ; , , )] ln ( ( ; ), ( ; ); ) [ln ( ; ) ( ; )]
K K

X Y X k Y k X k Y k
k k

L f x y c F x F y f x f yθα β θ α β θ α β
= =

= + +∑ ∑                         

Eq.  3.35 

where K is the number of the observations,  

5. Let ( , , )α β θΩ = , solve  

,ln [ ( , ; , , )]
0X YL f x y α β θ∂

=
∂Ω

                                                      Eq.  3.36 

for ( , , )α β θΩ = . Therefore, the parameters are determined. 

This method is efficient and consistent. However, in most time, the method involves 

solving of the nonlinear system and numerical algorithms need to be used.  

Maximization-by-parts approach 

Song et al. (2005) proposed modified maximum likelihood estimation, called 

maximization-by-parts (MBP) approach, by estimating the parameters for a bivariate 

Gaussian copula. The following steps are involved in this approach. 

1. By observing the log-likelihood function,  

2. ,
1 1

ln [ ( , ; , , )] ln ( ( ; ), ( ; ); ) [ln ( ; ) ( ; )]
K K

X Y X k Y k X k Y k
k k

L f x y c F x F y f x f yθα β θ α β θ α β
= =

= + +∑ ∑
      Eq. 3. 3-1 

it can be rewrite as , 1 2ln [ ( , ; , , )]X YL f x y L Lα β θ = +  

where  

1
1
[ln ( ; ) ( ; )]

K

X k Y k
k

L f x f yα β
=

= +∑                                                       Eq.  3.37 

2
1
ln ( ( ; ), ( ; ); )

K

X k Y k
k

L c F x F yθ α β θ
=

=∑                                               Eq.  3.38 
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It can seen that in L1, just α  and β  are involved, and in L2, allα , β  and θ  are involved. 

Let =( , )α βΡ , and Solve 1 0L∂
=

∂Ρ
 for Ρ . 

3. Using the result of Ρ  as initial estimate 0Ρ  , solve 

, 0ln [ ( , ; , )
0X YL f x y θ

θ
∂ Ρ

=
∂

 for 0θ                                                        Eq.  3.39 

4. Plug 0θ  into the log-likelihood function and obtain , 0ln [ ( , ; , , )]X YL f x y α β θ , solve for 

1Ρ  based on  

, 0ln [ ( , ; , )]
0X YL f x y θ∂ Ρ

=
∂Ρ

                                                         Eq.  3.40 

5. Plug 1Ρ  into the log-likelihood function and solve for 0θ .  

By this pattern, the parameters can be estimated.  

Bayesian approach 

Wang (2001) proposed this approach for the parameter estimation for a bivairate 

extreme value distribution, in the inference analysis of the flood at two stations in Australia. 

See Wang (2001) for detail of this approach.  

Two-step likelihood method 

For the two variables X and Y, the empirical CDFs ( )XF x  and ( )YF y are computed. 

Let 1 1( ),..., ( ),  i [1,N]X i X iu F x u F x= = ∈ , 1 1( ),..., ( ),  i [1,N]Y i Y iv F y v F y= = ∈ . Give u and v, 

for a specified copula, the estimate θ̂  of dependence parameter θ  can be obtained by 

1

ˆ arg max ln ( , ; )
N

i i
i

C u v
θ

θ θ
=

= ∑                                                      Eq.  3.41 

Inference function for margins (IFM) 

Joe (1997) proposed this method and Shiau (2006) employed this method to estimate 

the copula with exponential and gamma margins in the drought duration and severity analysis 

for a gauge station in Taiwan. The basic idea of this method is to separate the estimation of 

the dependence parameter from the estimation of marginal parameters. So it is easy to 

employ and saves computation effort, especially when the ML is difficult to solve all the 
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parameters simultaneously, for example, when there is a large dimension of parameters.  

Basically, the following two steps are involved, 

1. Based on the log-likelihood functions of the two margins, the parameters of  α  and 

β  are estimated for the PDF of PDF ( ; )Xf x α  and ( ; )Yf y β , respectively, where α  

and β  are the parameters of ( )Xf x  and ( )Yf y , which may include 

1 2, ,... ,... ,  [1, ]i m i mα α α α ∈  and 1 2, ,... ,... ,  j [1, ]j n nβ β β β ∈ ,respectively, 

2. Using the estimated α  and β , solve the full log-likelihood function  

,
1 1

ln [ ( , ; , , )] ln ( ( ; ), ( ; ); ) [ln ( ; ) ( ; )]
K K

X Y X k Y k X k Y k
k k

L f x y c F x F y f x f yθα β θ α β θ α β
= =

= + +∑ ∑  

for the dependence parameter θ .  

Approach based on the rank correlation 

This approach is on the basis of the relationship between the dependence parameter θ  

and the rank correlation coefficient. The two commonly used measures of correlation are 

Kendall’s tau τ and Spearman’s rho sρ , both of which have a range between -1 and 1. 

Kendall’s tau and Spearman’s rho can be calculated by the following equations. 

For random variable X and Y, let { }1 2, ,..., nx x x and { }1 2, ,..., ny y y donate n 

observations of X and Y, respectively, then 
-1 -1n n

τ= ( )   or    τ= sign[( )( )]  i,j [1,n]
c cc d i j i j

i j
n n x x y y

<

⎛ ⎞ ⎛ ⎞
− − − ∈⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑          Eq.  3.42 

where cn and dn are the number of concordance pairs and discordance pairs, respectively, and 

n is the number of observations.  

2

1
1/ 2 1/ 2

2 2 2 2

1 1

1( ) ( ) ( )
2( , )

1 1( ) ( ) ( ) ( )
2 2

n

i i
i

s n n

i i
i i

nR x R y n
x y

n nR x n R y n
ρ =

= =

+
−

=
⎛ ⎞ ⎛ ⎞+ +

− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑ ∑
                     Eq.  3.43 

where ( )R x  and ( )R y  are the ranks (ascendingly ordered) of a pair of variables (x and y).   
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Nelsen (2006) expresses the Kendall’s tau and Spearman’s rho in terms of copulas as 

follows, 

2I
4 ( , ) ( , ) 1C u v dC u vτ = −∫∫                                                          Eq.  3.44 

Table 3-2    Kendall’s tau and Spearman’s rho for the often used four copulas 

Copula 
type Kendall’s tau Spearman’s rho 

Ali-
Mikhail-

Haq 

23 2 2 1(1 ) ln(1 )
3 3
θτ θ
θ θ
−

= − − −

 
[(5 8ln 2) / 3,1/ 3] or

     [-.1817,0.3333]
τ ∈ −

 

2

2

12(1 ) di log(1 )

24(1 ) 3( 12)ln(1 )

s
θρ θ

θ
θ θθ

θ θ

+
= −

− +
− − −

 

2[33 48ln 2,4 39] or 
       [-0.2711, 0.4784]

sρ π∈ − −
 

Clayton 
2

θτ
θ

=
+

 Complicated form 

Frank 1
41 [1 ( )]Dτ θ
θ

= − −  1 2
121 [ ( ) ( )]s D Dρ θ θ
θ

= − −  

Gumbel-
Hougaard 

1θτ
θ
−

=  No closed form 

Note: 1. ( )kD x is the Debye function, for any positive integer k, 

              2 0
( )

1

kx

k t

k tD x dt
x e

=
−∫  

          2. 
1

lndilog( )=
1

x tx dt
t−∫  

For Archimedean Copulas, Kendall’s tau takes the form of 
1

'0

( )1 4
( )
t dt
t

ϕτ
ϕ

= + ∫ , where ( )tϕ is 

the generator function. And the Spearman’s rho is given by 

2I
12 ( , ) 3s C u v dudvρ = −∫∫                                                           Eq.  3.45 

Based on the relationship between Kendall’s tau, Spearman’s rho and the copulas, the 

dependence parameter can be determined. Table 3-2 shows some of the dependence 

parameters by Kendall’s tau and Spearman’s rho. 

Zhang and Singh (2006) employed this approach to estimate several copulas for the 

bivariate flood frequency analysis for one river in Canada and one river in US.  
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3.2.2.5 Copula selection 

How to select an appropriate copula that fits the data best among the many copulas 

becomes an issue when the copulas are constructed or picked up from the proposed family 

and the parameters are estimated. Because copulas separate marginal distributions from 

dependence structures, the appropriate copula for a particular application is the one which 

best captures dependence features of the data. To identify a copula, two steps are basically 

involved. First, the univariate marginal distributions need to be identified appropriately with 

the technique of goodness-of-fit test, and the corresponding parameter need to be estimated 

with a appropriate technique, i.e. maximum likelihood method. The better the fit of the 

marginal, the more precisely the model can fit the dependence structure (Trivedi and 

Zimmer, 2005). Second, a specified copula needs to be identified. Several methods have been 

discussed in the literature, some of which are addressed here.  

Genest and Rivest method 

Genest and Rivest (1993) described a procedure for selection among bivariate 

Archimedean copulas. For random variables X and Y of size n, with CDF ( )XF x  and ( )YF y , 

respectively, the corresponding copula is C(u,v) ,where u, v are the CDF of X and Y, 

respectively. The following steps are involved in Genest and Rivest method: 
1. Let the random variable Z=Z(x,y) which had the property ( ) Pr( )K z Z z= ≤ , 

where K(z) is defined as '

( )( )
( )
zK z z
z

ϕ
ϕ

= −   

where ( )zϕ is the generator function and ' ( )zϕ donates the derivative of ( )zϕ with respect 

to z. The appropriate generator function needs to be identified so as to identify the 

appropriate copula.  

2. calculate the empirical copula, ˆ ( )K z ,  

 Define the variable 

number of ( , ) such that  and 
  , 1, 2,...,

1
j j j i j i

i

x y x x y y
z i j n

n
< <

= =
−

              Eq.  3.46 
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Set the estimate of K such that ˆ ( ) the portion of 's iK z z z= ≤  

3. Calculate Kendall’s tau by  
-1n

 τ= sign[( )( )]  i,j [1,n]
c i j i j

i j
x x y y

<

⎛ ⎞
− − ∈⎜ ⎟

⎝ ⎠
∑                                    Eq.  3.47 

Calculate the dependence parameter θ  according to the relationship between θ  and 

Kendall’s tau, and then the generator function ( )zϕ  corresponding to each copula is 

obtained for a specified copula. 

4. Using ( )zϕ , calculate a parametric estimate of K by '

( )( )
( )
zK z z
zϕ

ϕ
ϕ

= −  

corresponding to each generator function.  

5. Compare the ( )K zϕ with the nonparametric estimate ˆ ( )K z , and choose the 

generator function that has the closest difference between ( )K zϕ  and ˆ ( )K z  as the 

appropriate one. This is can be determine by employing Q-Q plot or by minimizing 

the distance function ˆ ˆ( ) ( ) ( )K z K z dK zϕ −∫  

AKaike information criterion (AIC) 

AKaike information criterion (AIC) (Akaike, 1974) is also often applied to identify 

the appropriate copula, which is defined as  

( ) 2 log(maximum likelihood of the model)+2mAIC m = −                       Eq.  3.48 

where m is the number of parameter being estimated, which is determined by the type of 

univariate marginal distributions and the copula parameters. The AIC has another format,  

( ) ln(MSE)+2mAIC m n=                                                            Eq.  3.49 

where n is the number of observations, m donates the number of fitted parameters, and MSE 

is the mean square error,  

2
0 , 0,

1

1MSE=E( ) [ ]
n

c c i i
i

x x x x
n m =

− = −
− ∑                                           Eq.  3.50 
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where ,c ix and 0,ix donate the i-th theoretic value by the copula and the i-th observed value, 

respectively.  

and Zhang (2006) applied AIC for copula identification.  

Quadratic distance criterion  
Define the empirical copula Ĉ as   

{ },
1

1ˆ ( , ) 1
t t t tx y

T
yx

x x y y
t

ttC
T T T ≤ ≤

=

= ∑                                                    Eq.  3.51 

where { }1 A  is the indicator function that equals 1 if the event A occurs, 
xt

x  and 
yt

y  are the xt -

th and yt -th order statistics of X and Y variable, and T is the number of observations. The 

empirical copula is the proportion of elements from the sample that satisfies 
xt tx x≤ and 

xt ty y≤   

The quadratic distance between two copulas C1 and C2 in a set of bivariate points A = {a1, a2, 

…, am} is defined as: 

[ ]
1/ 2

2
1 2 1 2

1

( , ) ( ) ( )
m

i i
i

d C C C a C a
=

⎧ ⎫
= −⎨ ⎬
⎩ ⎭
∑                                  Eq.  3.52 

Among the estimated parametric copulas Ci, the one closest to the empirical copula is the 

most appropriate choice.  

3.3 Application examples 

Two river basins are studied in this paper, Des Moines River near Stratford, IA, and 

Altamaha River near Baxley, GA.  

3.3.1  Application for the Des Moines River basin near Stratford, IA 

Two USGS gauge stations, USGS 05480500 (Station A) and USGS 05471000 

(Station B), located in the upstream of Des Moines River basin near Stratford, IA, Des 

Moines River at Fort Dodge, IA and Boone River near Webster City, IA, are selected and 38 

years (1968-2005) annual peak flow records for the two gauge stations are collected in order 
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to estimate the flood at the confluence using the joint probability approach. The gate station 

names and locations are shown in Table 3-3. Near the confluence point of the tributaries, 

there is a gauge station located in Des Moines River basin near Stratford, IA, USGS 

05481300 (Station C). The data from Station C are also collected and the conventional flood 

frequency analysis is performed based on the discharge data of the Station C for the 

verification of copula method application in the joint probability approach.  

The test of goodness of fit indicates that the annual peak discharge of Station A 

follows a 3-parameter lognormal distribution and the annual peak discharge of Station B 

follow a 3-paramter gamma (Pearson III) distributions. The parameters associated with the  

Table 3-3    USGS Gauge Stations located in the Des Moines River Basin 

Station A B C 

Station Name Des Moines River at 
Fort Dodge, IA 

Boone River near 
Webster City, IA 

Des Moines River 
near Stratford, IA 

USGU Station No. 05480500 05481000 05481300 

distribution of each Station are shown in Table 3-4. The 3-parameter lognormal distribution 

and the 3-parameter gamma distribution are given by the following PDF and CDF. 

3-paramter log-normal distribution.  

PDF:        21 1( ) exp[ ( ) ]
22

y

yy

y
f y

μ
σπσ
−

= −                                                  Eq.  3.53 

CDF:       21 1( ) exp[ ( ) ]
22

x y y

yy

y
F y dydx

μ
σπσ −∞ −∞

−
= −∫ ∫                                  Eq.  3.54 

where ln( )y x γ= − , yμ , and yσ  are the mean and standard deviation of y, respectively, and 

γ  is the threshold parameter.  

3-paramter gamma distribution is adopted and the following format is used in this research, 

PDF:                 
1 ( ) /1( ) ( )    x

( )
          

xg x x eβ γ α
β γ γ

α β
− − −= − ≥

Γ                               Eq.  3.55 
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CDF:                   
1 ( ) /1( ) ( )    x

( )
          

x xG x x e dxβ γ α
β γ

γ γ
α β

− − −= − ≥
Γ ∫                     Eq.  3.56 

whereα , β  and γ  are the shape parameter, scale parameter and threshold parameter, 

respectively.  

Table 3-4    Annual peak flow distribution information of Des Moines river basin 

  Station A Station B Station C 
Data Mean 13087.1 6303.42 18564.7 

Data Standard deviation 7063.02 3432.53 9402.36 
Correlation coefficient of A and 

B 0.804  

Location 9.96384 
Scale 0.31125 

3-parameter 
log-normal 

Threshold -9203.6 
  

Shape 3.09469 5.38697 
Scale 2004.594 4109.859 Pearson III 

Threshold 
 

99.82 -3574.96 

The four one-parameter copula families are assumed and the corresponding 

dependence parameters listed in Table 3-5. The Kendall’s tau is calculated first and the 

Ali_Mikhail-Haq copula is denied since the Kendall ‘s tall of this copula need to be within 

the range of [-0.18, 1/3] while the Kendall’s tau is 0.6885 in this research. The IFM method 

with the rank correlation method is applied for the parameter estimation. The parameters for 

the margins are estimated as shown in Table 3-4 and then the dependence parameter is 

estimated from Kendall’s tau. And AIC criterion is adopted for the copula selection, as show 

in Error! Reference source not found.. AIC value shows that Frank copula fits the data best 

among Clayton copula, Frank copula and Gumbel-Hougaard copula. So the joint CDF is 

given by Frank copula as follows 

1 ( 1)( 1)( , ) ln 1      9.3428
1

u ve eC u v
e

θ θ

θ θ θ
θ

− −

−

⎡ ⎤− −
= − + =⎢ ⎥−⎣ ⎦

                         Eq.  3.57 
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where u=F(x) and v=G(y), where F(x) is the CDF of 3-parameter lognormal distributions and 

G(x) is the CDF of 3-parameter gamma distribution. The corresponding conditional copula is 

given by Eq. 3.25.  

Table 3-5    Dependence parameter for each copula and AIC values 

 Ali-Mikhail-
Haq Clayton Frank Gumbel-

Hougaard 
Kendall’s tau 0.6472 
Dependence 
parameter Not available 3.6689 9.3428 2.8345 

ML value Not available 15.98 21.96 18.15 
AIC Not available -3.54 .-4.18 -3.80 

Based on the conditional copula, the Monte Carlo simulation is performed and 5000 

pairs random number of u and v are generated first for Station A and B. The stream annual 

peak discharge is then calculated from x=F-1(u) and y=G-1(v). The synthetic confluent annual 

discharge is then given by z=x+y. The test of goodness fit implies that the synthetic 

confluence discharge follow a Pearson III distribution with the scale, shape and threshold 

parameter of 4.83202, 4553.2963 and -2703.5513, respectively. The simulation flood can be 

obtained by the conventional flood frequency analysis for the confluence point with the 

values of z.   

To verify the joint probability model, the conventional flood frequency analysis is 

performed for the Station C based on the observation data. The goodness-of-fit test shows the 

Pearson III distributions fits the observation data of station C with the corresponding 

parameters shown in Error! Reference source not found..  The estimation results are given 

in Error! Reference source not found.and Error! Reference source not found.. The 

results from NFF model by USGS are also included in this study for the comparison with the 

joint probability model by using copula method, as shown in Error! Reference source not 

found.and Error! Reference source not found.. 
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Flood Frequency Analysis for USGS station 05481300 in 
Des Moines River by copula-based joint probability model 
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Figure 3-2  Simulation results by joint probability approach and comparison with 

NFF model, empirical bivariate approach and Copula: Des Moines River
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Table 3-6    Simulation results comparison with NFF model and observation data 

 

 

 

 

 

 

 

 

 

 

 

 
 

                    Note: Relative error = 0

0

ex x
x
−  where xe is the predicted value, x0 is the observed value. 

                  Total relative error = , 0,

1 0,

n
e i i

i i

x x
x=

−
∑  

Flood by the joint 
probability model based 
on empirical bivariate 

normal distribution 

Flood by the copula-based 
joint probability model Flood  by  NFF model 

Return 
Period 

(yr) Flood 
(cfs) 

Relative error  
to observation 
data (Pearson 

III) 

Flood 
(cfs) 

Relative error  
to observation 
data (Pearson 

III) 

Flood (cfs)

Relative error  
to observation 
data (Pearson 

III) 

Flood  
estimated 

from 
Station C 
data based 
on Pearson 

III (cfs) 
 

2 17741 0.031 17800 0.034 9550 -0.445 17211 

5 26951 0.039 26984 0.040 17500 -0.325 25941 

10 32880 0.050 32701 0.044 23400 -0.253 31328 

25 40222 0.066 39525 0.048 31500 -0.165 37727 

50 45603 0.080 44345 0.050 37900 -0.103 42230 

100 50924 0.094 48963 0.052 44600 -0.042 46533 

200 56229 0.109 53426 0.054 51600 0.018 50685 
Total 

relative 
error 

 0.469  0.322  1.351  
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3.3.2 Application for the Altamaha River basin near Baxley, GA 

The second cased study is to apply the copula-based joint probability mode for the 

Altamaha River basin which is much larger than Des Moines River basin. In the Altamaha 

River basin, Oconee Rive at Dublin, GA and Ocmulgee River at Lumber City, GA are two 

tributary streams and Altamaha River near Baxley, GA is the confluent stream.The gauge 

station information for the three streams is shown in Table 3-7. The annual peak discharge of 

the two tributary gauge stations USGS 0223500 and USGS02215500 are collected, and the 

task is to estimate the flood frequency for the confluence point of the tributaries by assuming 

the annual peak discharge data of Station C are not available. Totally 35 year data (1971 

through 2005) of each of the three stations are used in this research.     

Table 3-7    USGS Gage Stations located in the Altamaha River basin 

Station Tributary A Tributary B Confluence C 

Station Name Oconee River at 
Dublin, GA 

Ocmulgee River at 
Lumber City, GA 

Altamaha River 
Near Baxley,  GA 

USGU Station No. 02223500 02215500 02225000 

Table 3-8    Annual peak discharge distribution parameters: Altamaha River basin 

  Station A Station B Station C 
Data Mean 32315.4 29612.3 58671.4 

Data Standard deviation 17024.9 16956.3 25488.2 
Correlation coefficient of A and B 0.6404  

Location 10.67145 
Scale 0.36144 

3-parameter log-
normal 

Threshold -13667 
  

Shape 2.58517 8.58058 
Scale 10124 8528.94931 Pearson III 

Threshold 
 

3438 -145119 
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The test of goodness of fit indicates that both Station A and Station B fit 3 parameter 

normal distribution and Pearson III distribution, respectively, with the parameters as shown 

in Table 3-8. 

Following the same token with the Des Moines River basin, four one-parameter 

copula families are assumed and the corresponding dependence parameters listed in Table 

3-9. Ali_Mikhail-Haq copula is not applicable for this case since the Kendall’s tau is out of 

its normal range of [-0.18, 1/3].  The IFM method with the rank correlation method is applied 

for the parameter estimation. The parameters for the margins are estimated as shown in Table 

3-8. and then the dependence parameter is estimated from Kendall’s tau. And AIC criterion is 

adopted for the copula selection, as show in Table 3-9. AIC value shows that Frank copula 

fits the data best among Clayton copula, Frank copula and Gumbel-Hougaard copula. So the 

joint CDF is given by Frank copula as follows 

Table 3-9    Dependence parameter AIC value for each copula 

 Ali-Mikhail-
Haq Clayton Frank Gumbel-

Hougaard 
Kendall’s tau 0.6885 
Dependence 
parameter Not available 4.3981 10.9208 3.2103 

ML value Not available 13.88 23.54 14.44 
AIC Not available -3.26 .-4.32 -3.34 

1 ( 1)( 1)( , ) ln 1      10.9208
1

u ve eC u v
e

θ θ

θ θ θ
θ

− −

−

⎡ ⎤− −
= − + =⎢ ⎥−⎣ ⎦

                           Eq.  3.58 

where u=F(x) and v=G(y), where F(x) is the CDF of 3-parameter lognormal distributions and 

G(x) is the CDF of Pearson III distribution. The corresponding conditional copula is given by 

Eq. 3.25. 

Based on the conditional copula, the Monte Carlo simulation is performed and 5000 

pairs random number of u and v are generated first for Station A and B. The stream annual 

peak discharge is then calculated from x=F-1(u) and y=G-1(v). The synthetic confluent annual 



 

 

88

 

 

 

discharge is then given by z=x+y. The test of goodness fit implies that the synthetic 

confluence discharge follow a gamma distribution with the scale and shape parameter of 

3.89691 and 15709.72, respectively. The simulation flood can be obtained by the 

conventional flood frequency analysis for the confluence point with the values of z. 

To verify the performance of the joint probability approach, the observation data of 

the gauge station at the confluence, USGS 02205000, are also collected and the conventional 

flood frequency analysis is performed for this site for the verification of the results by the 

joint probability model. Also the result from NFF model and from the joint probability mode 

based on the bivariate normal distribution is employed here for the comparison with the joint 

probability model, as shown in Table 3-10and Figure 3-3. 
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Figure 3-3  Flood simulation results comparison by the copula-based joint 

probability model and NFF model and the estimation from 
observation data for Altamaha River near Baxley, GA 
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Table 3-10    Flood simulation results comparison by the copula-based joint probability model and NFF model 

 and the estimation from observation data: 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Note: Relative error = 0

0

ex x
x
−  where xe is the predicted value, x0 is the observed value. 

                 Total relative error = , 0,

1 0,

n
e i i

i i

x x
x=

−
∑  

 

Flood by the joint 
probability model based 
on the bivariate normal 

Flood by the copula-based 
joint probability model Flood  by NFF model 

Return 
Period 

(yr) Flood 
(cfs) 

Relative 
error to 

observation 
data 

(Pearson III) 

Flood 
(cfs) 

Relative error 
to observation 
data (Pearson 

III) 

Flood 
(cfs) 

Relative error 
to observation 
data (Pearson 

III) 

Flood  
estimated from 
Station C data 

based on 
Pearson III (cfs) 

2 57690 0.03 56070 0.003221 25200 -0.55 55890 

5 84960 0.09 84660 0.083301 44000 -0.44 78150 

10 101910 0.11 102790 0.122162 58800 -0.36 91600 

25 122140 0.14 124660 0.159304 80700 -0.25 107530 

50 136420 0.15 140230 0.180785 99600 -0.16 118760 

100 150100 0.16 155220 0.198147 120000 -0.07 129550 

200 163320 0.16 169770 0.212383 143000 0.02 140030 

Total 
relative 

error 
 0.84  0.959303  1.85  
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3.3.3 Discussion 

It is seen that the simulation results of the copula-based joint probability model for 

the Des Moines river basin is better than the results of the joint probability model based on 

the bivariate normal distribution of Station A and Station B, and the total relative error is 

much smaller than that of the NFF model. The largest error occurs at flood estimation for the 

largest return period; the accuracy is getting higher with the decrease of the return period. 

The performance of the copula-based joint probability model for the large river basin, such as 

Altamaha River basin in GA, is a little worse than that of the empirical bivariate normal 

distribution model. Still the relative error of the estimation for the large river basin is smaller 

than that of the NFF model that has a high tendency of underestimating the flood for both 

small river basin and large river basin when the return period is small, especially when the 

return period is smaller than 100 years. The accuracy of the copula-based joint probability 

model for large river basins could be increased by the following ways (1) carefully selecting 

the marginal distributions of the tributary streams, (2) selecting the best copulas from a wider 

range instead of from the only four often used copulas discussed in this study, (3) estimating 

more accurate parameters for the copulas by using a more consistent method, such as the 

maximum likelihood method for all the parameters including the parameters in the marginal 

distributions,  (4) employing the variance reduction techniques.  

Among the four copula families discussed in this study, Frank copula performs the 

best for the two cases studies of flood estimate using joint probability approach, while Ali-

Mikhail-Haq is not applicable for the two cases at all due to the limit range of Kendall’s tau 

and the high rank correlationship of the two tributaries in the two river basins.  

3.4 Conclusion 

A joint probability approach for the confluence flood frequency analysis is introduced 

briefly, and a method of multivariate distribution function estimation, Copula method is 
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introduced in this paper which is one of the key part in the joint probability approach and 

could be very useful I hydrologic research. The joint probability approach provide a 

straightforward way to estimate the confluence flood at a acceptable accuracy without the 

discharge records needed for the mainstream and without tedious computation like flow 

routing. Copula method for the multivariate distribution function is more powerful in that it 

release the assumption in most empirical multivariate distribution functions that the margins  

follow the same type of distributions are, and it avoid the complex format of the multivariate 

distribution functions in many empirical formulas. The copulas are also easy to apply.  

The four often used Archimedean copulas are introduced and applied in a small river 

basin and one large river basin for the joint probability estimation in the joint probability 

approach for the confluence flood frequency analysis. Frank copula and Gumbel-Hougaard 

copula perform better the other two, while Ali-Mikhail-Haq is not applicable in the study of 

the two river basins, because the high rank correlationship is beyond its Kendall’s tau range. 

The case study shows that the copula-based joint probability approach for the confluence 

flood estimation performs well for the small river basin but has a relative large error when 

applied for the large river basin. Several techniques may be used to reduce the error, which 

include but not limited, (1) a more accurate estimation of the marginal distributions; (2) a 

more consistent and accurate estimation of the parameters in the copulas; (3) copula selection 

from a wider range options; and (4) variance reduction techniques.  

Although several criteria have been proposed for the selection of a appropriate copula 

among several candidacies, there is no general criteria to verify the validity of the copulas, 

like the goodness-of-fit test for the univariate distributions, well developed, widely accepted, 

and widely applied in engineering. There is the possibility that none of the assumed the 

copulas perform well enough so that some other copulas need to be examined. So a general 

verification criterion is needed to verify the validity of the proposed copulas in application.  
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Chapter 4  Summary and Future Work 

4.1   Summary 

This thesis introduces a joint probability model of the confluence flood frequency 

analysis and the straight forward practical procedure is presented. Due to the difficulty 

estimating the joint probability and the limitation of the current often used empirical 

formulas for the joint probability estimation, which usually need to assume the marginals 

follow the same type of the distribution or just can handle limited case-by-case situations, a 

general method is addressed in this thesis for the joint probability estimation.  

The performance of the model is examined by the application studies in two river 

basins and the results are compared with the observation data and the NFF model. It shows 

that the proposed model performs well, especially for the smaller river basin. The results 

from the model are very close to the observation data, especially at the low return periods. It 

has a tendency to overestimate the flood for each of the specified return period and lose the 

accuracy with the return periods getting large and the river basin getting large. NFF model 

works very well for the large return periods situation, especially when the return period is 

larger than 100 years. However, it tends to underestimate the flood for the relatively low 

return period, say less than 50 years.  

The copula method provides a way to release the restriction of the empirical approach 

for the joint probability estimation and a more accurate estimation if an appropriate copula is 

used.  

4.2   Future work 

As found in the application examples in the thesis, the proposed model loses the 

accuracy when the river basin scale is getting large. Techniques to improve the accuracy by 

the joint probability model, especially for the large scale river basin is needed. The possible 
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means may include but not limited: (1) carefully selecting the marginal distributions of the 

tributary streams, (2) selecting the best copulas from a wider range of copulas, (3) estimating 

more accurate parameters for the copulas by using a more consistent method, such as the 

maximum likelihood method for all the parameters including the parameters in the marginal 

distributions, (4) employing the variance reduction techniques, (5) using a two-parameter 

copula.  

Currently annual peak flow data from the observation gauges are used for the flood 

frequency analysis; however, as discussed in chapter 1 and by other researchers (Kite, 1977; 

Rao and Hamed, 2000), this approach may miss some peak flow information. So the 

performance of flood frequency analysis based on the monthly discharge peak flow may be 

necessary to be examined. 

Copulas have been studies for more than 40 years in statistics; however, the 

application of copulas just has a short history. Many concept of copula, the method to 

structure a copula have been well established. However, the selection of a valid copula from 

a bunch of reported copula seems an issue. Many researchers have proposed some methods 

and criteria for selecting a copula that fit the observation data best, which are commonly used 

currently, but it is just can identify the best performed copula among the predicted one, 

instead of a general criteria. Some researchers extended the Chi-square test from univariate 

distribution to multivariate distribution which may be employed to verify the validity of 

copulas, but there are not enough applications to demonstrate these criteria. Criteria to verify 

the validity of the predicted copulas is needed to be developed. 
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Appendix A. Methods for parameter estimation 
Method of moments (MOM) 

The j-th sample moment of a random variable is defined as, 

                  
1 1

1 1( ) ( )i i

n n
j j j j

i i
E x x E x x

n n= =

= =∑ ∑                                                       Eq.  A.1 

where x are the sample observation values, n is the sample size.  

The j-th moment of a random variable of a distribution with probability distribution 

function (PDF) of f(x), is defined as, 

( ) ( ) ( ) ( )j j j jE x x f x dxE x x f x dx
+∞ +∞

−∞ −∞

= =∫ ∫                                         Eq.  A.2  

If there are k parameters to be estimated for the distribution, the following system of 

equations can be obtained based the equation of j-th moment, 

     
1

1( ) ( )    1, 2,...,i

n
j j j

i

E x x f x dx x j k
n
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=−∞

= = =∑∫                                             Eq.  A.3 

The k unknown parameters can be obtained by solving the above system of equations 

simultaneously.  

Method of maximum likelihood (ML) 

For a distribution with a PDF given by f(x) and parameters 1 2 k, , ...α α α , the 

likelihood function is defined as  

1 2 k 1 2 k
1

( , ,  ..., ) ( ; , ,  ..., )
n

i
i

L f xα α α α α α
=

=∏                                      Eq.  A.4  

The best value of a parameter should be the value that maximizes the likelihood L of 

occurrence of the observed sample; hence, the parameters 1 2 k, ,  ..., α α α  can be estimated by 

solving the following system of partial differentiation equations,  

1 2 k( , ,  ..., )
0;  j= 1, 2, ..., k

j

L α α α
α

∂
=

∂
                                          Eq.  A.5 

In many cases, it is more convenient to work with the log-likelihood function 
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1 2 kln ( , ,  ..., ) 0;  j= 1, 2, ..., k
j

L α α α
α

∂
=

∂
                                          Eq.  A.6 

Method of probability weighted moments (PWM) and L-moments 

Greenwood et at. (1979) initiated the probability weighted moments for a random 

variable X with CDF F(x), or simply F, as , , [ (1 ) ]p r s
p r sM E x F F= − , where p, r and s are real 

numbers. As it can be seen, ,0,0pM represents the conventional p-th moment of X. When p is 

a non-negative number while r or s is zero, two special cases, 1,0,sM  and 1, ,0rM , are often 

considered,  
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hence 
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The L-moments are defined as *
1[ ( )]r rE xP Fλ −= , where *( )rP i  is the r-th shifted Legendre 

polynomials. Hosking (1990) were initially introduced the relationship between L-moments 
and PWMs by the equation. L-moments are related to probability weighted moments by the 
equation   
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                                                                  Eq.  A.10 

For an ordered sample x1 <= x2 <= ... <= xn, n>r and n>s, unbiased estimators of rα , rβ  and 

1rl + (sample L-moments) by the following equations, 
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In particular, 

1 0 0

2 0 1 1 0
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6 6                6 6
12 30 20 20 30 12

λ α β
λ α α β β
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= − = −
= − + = − +
= − + − = − + −

                              Eq.  A.14 

Estimates based on PWMs and L-moments are generally superior to standard 

moment-based estimates. The L-moment estimators have some desirable properties for 

parameter estimation. In particular, they work well with small sample and the bias tends to be 

small. L-moment estimators can often be used when the maximum likelihood estimates are 

unavailable, difficult to compute, or have undesirable properties. They may also be used as 

starting values for maximum likelihood estimates. 

L-moment ratios are defined by Hosking (1990) as  

2 1

2

/
/   r 3r r

τ λ λ
τ λ λ
=
= ≥

                                                                                    Eq.  A.15 

where 1λ  is a measure of location, τ  is a measure of scale and dispersion ( vL C− ), 3τ is a 
measure of skewness ( sL C− ), and 4τ is a measure of kurtosis ( kL C− ). 

L-moment ratios can be estimated by the sample L-moments 
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ˆ /
ˆ /   r 3r r r

t l l
t l l

τ
τ

= =
= = ≥

                                                                             Eq.  A.16 

Some useful L-moments ratios for the commonly used distributions in hydrology are 

given by Hosking (1993) and some other researchers, 

Normal distribution: 3 0τ = , 4 0.1226τ =  

Lognormal distribution (two and three paprameters): 
2 4 6 8

4 3 3 3 30.12282 0.77518 0.12279 0.13638 0.11368τ τ τ τ τ= + + − +  

Exponential distribution: 3 1/ 3τ = , 4 1/ 6τ =  
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Gamma and Pearson III distributions:  
2 4 6 8

4 3 3 3 30.1224 0.30115 0.95812 0.57488 0.19383τ τ τ τ τ= + + − +  

Generalized Extreme Value distribution 
2 3 4 5 6

4 3 3 3 3 3 30.10701 0.11909 0.84838 0.06669 0.00567 - 0.04208 0.03763τ τ τ τ τ τ τ= + + − + + Gu
mbel distribution: 3 0.1699τ = , 4 0.1504τ =  

Weibull distribution: 

( )

τ
τ

τ
2ln

1ln

3
3123

−

−
−=  

Normal distribution 
The probability density function (PDF) of a normal distributed variable X ( 1 2 n, x ,  ... , xx ) is 
given by 

21 1( ) exp[ ( ) ]     
22

xf x xμ
σπσ
−

= − −∞ < < ∞                                             Eq.  A.17 

where μ and σ are the parameters of the normal distribution. The equations for the 

estimation for normal distribution are given by Table A-1. 

Table A-1    Equations for normal distribution parameter estimation 

Parameters MOM ML PWM 

μ  
1

1ˆ
n

i
i

x
n

μ
=

= ∑  
1

1ˆ
n

i
i

x
n

μ
=

= ∑  1ˆ lμ =  

σ  2 2

1

1ˆ ˆ( )
n

i
i

x
n

σ μ
=

= −∑  2 2

1

1ˆ ˆ( )
n

i
i

x
n

σ μ
=

= −∑  2ˆ lσ π=  

Two-parameter lognormal distribution 

The probability density function (PDF) of a Two-parameter lognormal distributed variable X 

( 1 2 n, x ,  ... , xx ) is given by 

2ln1 1( ) exp[ ( ) ]     0
22

y

yy

x
f x x

x
μ

σπ σ

−
= − >                                                    Eq.  A.18 

where yμ  and yσ  are the mean and standard deviation of lny x= . The equations for the 

estimation for normal distribution are given by Table A-2. 



  

 

109

Table A-2    Equations of lognormal distribution parameter estimation 

Parameters MOM ML PWM 

μ  
1

1ˆ ln
n

y i
i

x
n

μ
=

= ∑  
1

1ˆ ln
n

y i
i

x
n

μ
=

= ∑  
2

1ˆ ln
2
y

y l
σ

μ = −  

σ  2 2

1

1ˆ ˆ( )
n

i
i

x
n

σ μ
=

= −∑  2 2

1

1ˆ ˆ( )
n

i
i

x
n

σ μ
=

= −∑  1 2

1

ˆ 2 ( )lerf
l

σ −=  

Note: 1l and 2l  donate the first and second L-moments. 

Three-parameter lognormal distribution 

The probability density function (PDF) of a Three-parameter lognormal distributed variable 

X ( 1 2 n, x ,  ... , xx ) is given by 

2ln( )1 1( ) exp [ ]      
22 ( )

y

yy

x a
f x x a

x a
μ

σπ σ

⎧ ⎫− −⎪ ⎪= − >⎨ ⎬
− ⎪ ⎪⎩ ⎭

                                   Eq.  A.19 

where yμ  and yσ  are the mean and standard deviation of y=ln(x-a), a is the shift of 

variable X. The equations for the estimation for 3-parameter normal distribution are given by 

Table A-3. 

Table A-3    Equations for 3-parameter lognormal distribution parameter estimation 

Parameters MOM ML PWM 

μ  2
2 2 2

1ˆ ln( / ) ln( 1)
2y m z zμ = − + See the 

note 

2
2ˆ ln[ ]

( / 2) 2
y

y

l
erf

σ
μ

σ
= −  

σ  2 2
2ˆ ln( 1)zσ = +  See the 

note 

3

5

ˆ 0.999281 0.006118
0.000127

z z
z

σ = −

+

a '
1 2 2ˆ /a m m z= −  See the 

note 

2

1ˆ ˆexp( )
2
y

ya l
σ

μ= − +  

Note:  

1. '
1m  represents the sample mean; 

2.  2m is the second order of central sample moment ' 2
2 1

1

1 ( )
n

i
i

m x m
n =

= −∑  

3. 
2/3

2 1/ 3

1 wz
w
−

=  where 
2 1/ 2

1 1( 4)
2

w γ γ− + +
=  where 1γ is the coefficient of skewness of the 

sample X. 
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4  l1and l2 donate the first and second L-moments. 

5  -1 318 ( )
3 2

tz +
= Φ  

6. for the MML estimation, numerical approach is needed to solve the following system of 

equations, which in some cases a solution may not exist.  

1

1ˆ ln( )
n

y i
i

x a
n

μ
=

= −∑                                                                                      Eq.  A.20 

2 2

1

1ˆ ˆ[ln( ) ]
n

y i y
i

x a
n

σ μ
=

= − −∑                                                                        Eq.  A.21 

1 2

1 1

ln( )ˆ ˆ( ) ( )
( )

n n
i

i y y
i i i

x ax a
x a

μ σ−

= =

−
− − =

−∑ ∑                                                          Eq.  A.22 

Exponential distribution 

The probability density function (PDF) of an exponential distributed variable X 

( 1 2 n, x ,  ... , xx ) is given by 

( ) /1( )    x

          

xf x e ε α ε
α

− −= ≥                                                                            Eq.  A.23 

The equations for the estimation for exponential distribution are given by Table A-4. 

Table A-4    Equations for exponential distribution parameter estimation 

Parameters MOM ML PWM 
α  2ˆ mα =  '

1 1( )ˆ
1

n m x
n

α −
=

−
 2ˆ 2lα =  

ε  '
1ˆ ˆmε α= −  '

1 1ˆ
1

nx m
n

ε −
=

−
 1 2ˆ 2l lε = −  

Note: 1x  represent the minimum observed value of X.  

Two-parameter Gamma distribution 

The probability density function (PDF) of an two-parameter Gamma distributed variable X 

( 1 2 n, x ,  ... , xx ) is given by 

1 /1( )    x 0
( )

          

xf x x eβ α
βα β

− −= ≥
Γ                                                                  Eq.  A.24 
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The equations for the estimation for gamma distribution are given by Table A-5 

Table A-5    Equations for gamma distributions parameter estimation 

Parameters MOM MML PWM 

α  2
'
1

ˆ m
m

α =  See the 
note 1

ˆˆ /lα β=  

β  
' 2
1

2

( )ˆ m
m

β =  See the 
note 

2

2 2 2 2 3

1 0.3080 1ˆ  for t (0, )
0.05812( ) 0.01765( ) 2

t
t t t

πβ
π π π

−
= ∈

− +
2 2 2

2 2 2

0.7213 0.5947( )  1ˆ  for t [ ,1)
1 2.1817 1.2113( ) 2

t t
t t

π πβ
π π
−

= ∈
− +

 

Due to the difficulty of solving the system of differential equations in ML estimation, the 

following procedure developed by Bobee and Ashkar (1991) is often used. Let A represents 

the arithmetic mean of the sample and G represents the geometric mean of the sample, and 

set ln lnU A G= − , then 

For 0 0.5772U≤ ≤             21ˆ (0.5000876 0.1648852 0.054427 )U U
U

β = + −  

For  0.5772 17.0U≤ ≤        
2

2

8.898919 9.059950 .09775373ˆ
(17.7928 11.968477 )

U U
U U U

β + +
=

+ +
 

And α̂ can be estimated by ˆˆ /Aα β=  

Pearson III distribution 

The probability density function (PDF) of an Pearson III distribution with variable X 

( 1 2 n, x ,  ... , xx ) is given by 

1 ( ) /1( ) ( )    x
( )

          

xxf x eβ γ α
β

γ γ
α β α

− − −−
= ≥

Γ                                          Eq.  A.25 

The equations for the estimation for Peason III distribution are given by Table A-6Table A-6.  

Matlas and Wallis (1973) proposed an iterative numerical solution to the equation; 

however, they noticed a solution may not always exist, especially for very small sample skew 

values.  

Log-Pearson III distribution 
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The probability density function (PDF) of an log-Pearson III distribution with 

variable X ( 1 2 n, x ,  ... , xx ) is given by 

1 (ln ) /1 ln( ) ( )    lnx
( )

          

xxf x eβ γ α
β

γ γ
α β α

− − −−
= ≥

Γ                                                     Eq.  A.26  

One indirect method to estimate the parameters of the log-Pearson III distribution is 

to transfer the variable to lnZ X= , and then estimate the parameters as for a Pearson III 

distribution. Another method is to direct application of MOM, MML and PWM. Due to the 

complication of solving the moment equations, the numerical effort required for the ML 

estimation, and the fact that no direct application of the PWM method to log-Pearson III 

distribution has been reported until now, the indirect method is recommended. 

Generalized Extreme Value (GEV) distribution 

The PDF of Generalized Extreme Value (GEV) distribution has the form of  
1/(1 )1/ 11( ) exp(1 )

kxkkxf x k e
μ

αμ
α α

−
− −−−

= −                                                     Eq.  A.27 

If 0k = ( 1.1396sC = ), The GEV distribution is called Extreme Value Type I 

distribution (EV1), which is of the form  

1( ) exp[ exp( )]    - < x xf x xμ μ
α α α

− −
= − − ∞ < +∞                                     Eq.  A.28 

and      
x--( )

F(x) = 1-e
kμ

α                                                                                            Eq.  A.29 

If 0k < ( 1.1396sC > ), The GEV distribution is called Extreme Value Type II distribution 

(EV2). If 0k > ( 1.1396sC < ), The GEV distribution is called Extreme Value Type III 

distribution (EV3).  EV3 is not often used in flood frequency analysis because in this case the 

variable x becomes upper upper bounded ( /x kμ α−∞ < < + ).When k=0 (Cs=1.1396), GEV 

distribution reduces to Type 1 extreme value distribution (EV1). The equations for the 

estimation for EV1 are given by Table A-7. 
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Table A-6    Equations for Pearson III distribution parameter estimation 

Parameters MOM MML PWM 

α  
1/ 2

2
ˆˆ ( / )mα β=

 
See the note 2

ˆ( )ˆ ˆ( 1/ 2)
l βα π

β
Γ

=
Γ +

 

β  2ˆ (2 / )sCβ =  See the note 

For 3 m 3L-moment ratio t 1/ 3,  let t 1 t≥ = −
2 3

2 3

0.36067 0.5967 0.25361ˆ
1 2.78861 2.56096 0.77045

m m m

m m m

t t t
t t t

β − +
=

− + −
 

For 2
3 m 3L-moment ratio t 1/ 3,  let t 3 tπ< =   

2 3

1 0.2906ˆ
0.1882 0.0442

m

m m m

t
t t t

β +
=

+ −
 

 

γ  
'

1 2
ˆˆ m mγ β= −

 
See the note 1

ˆˆ ˆlγ αβ= −  

Note: sC is the coefficient of skewness, 1sC γ=  

The MML estimation involves solving the following system of equations simultaneously.  

2
1

1 0
n

i
i

n x γ
β
α α −

=

− =∑                                                                                                Eq.  A.30 

1
( ) log 0

n
i

i

xn γψ β
α=

−
− + =∑                                                                                      Eq.  A.31 

1

1( 1) 0
n

i i

n
x

β
α γ=

− − =
−∑                                                                                           Eq.  A.32 

where  
'ln ( ) ( )( )
( )

β βψ β
β β

∂ Γ Γ
= =

∂ Γ
 

Table A-7    Equations for EV 1 distribution parameter estimation 

Parameters MOM MML PWM 
α  

1/ 2
2

6ˆ mα
π

=  
See the note 2ˆ / ln 2lα =  

μ  ' 1/ 2
1 2ˆ 0.45005m mμ = −

ˆ/

1

ˆˆ ln
i

n
x

i

n

e α
μ α

−

=

=

∑
1 ˆˆ 0.5772157lμ α= −  
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Note: The numerical approach is involved to solve the differential equation in the ML 

estimation for the parameterα . By using Newton’s method, the equation can be simplified as 

'
1 ( ) / ( )n n n nF Fα α α α+ = −                                                                           Eq.  A.33 

where   

/ /

1 1 1

1( ) ( )i n i n

n n n
x x

n i i n
i i i

F x e x e
n

α αα α− −

= = =

= − −∑ ∑ ∑                                             Eq.  A.34 

 / / /' 2
' 2

1 1 1

( ) 1 1( )
( )

i n i n i n

n n n
x x xn

n i
i i in n n

dFF x e e e
dF

α α ααα
α α α

− − −

= = =

= = + +∑ ∑ ∑         Eq.  A.35 

Weibull distribution 

( )
1PDF  ( ) ( )    x 0

xxf x e
μ β

αββ μ
α α

−
−

−−
= ≥                                                      Eq.  A.36 

x--( )
CDF  F(x) = 1-e   

βμ
α                                                                                Eq.  A.37 

The equations for the estimation for Weibull distribution are given by Table A-8 

Table A-8    Equation for the Weibull distribution parameter estimation 

Parameters MOM MML PWM 

α  
1/ 2

2
2

2 1/[ (1 ) (1 )]ˆ ˆmα
β β

⎧ ⎫
= Γ + −Γ +⎨ ⎬
⎩ ⎭

 ˆ1/
2

ˆˆ /[ (1 1/ )(1 2 )]a l ββ −= Γ + −  

β  See the note 
ˆ 1/(7.8590 2.95Cβ = +

 
μ  '

1
ˆˆˆ (1 1/ )mμ α β= − Γ +  

See 
the 
note 

 

1
ˆˆˆ (1 1/ )lμ α β= − Γ +  

Note: in the PWM, 
3

2 ln 2
3 ln 3

C
t

= −
−

 where 3t  is the estimated L-moment ratio  

For the estimation ofβ  by MOM, the numerical method is used to solve the equation 

3

3
3/ 2

2 3/ 22

3 1 2 1( 1) 3 ( 1) ( 1) 2 ( 1)

2 1[ ( 1) ( 1)]
sC μ β β β β

μ
β β

Γ + − Γ + Γ + + Γ +
= =

Γ + −Γ +
                          Eq.  A.38 

the following iteration equation is used.  
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'
1

1 1 1 1( ) ( ) ( ) / ( )n n n nF F
β β β β+ = −                                                     Eq.  A.39 

For the ML estimation of the parameters, a numerical scheme to solve the following 

equations is proposed by Jenkinson (1969). 

For the detail discussion on this topic, please refer to Rao and Khaled (2000) and Chow et al 

(1988). 
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Appendix B. Flood frequency factor 

Table B-1  KT and direct flood estimation equations 

Distribution Frequency factor Direct equation 
Normal See the note Not available 
Two-

parameter 
lognormal 

2

2

ˆ ˆ / 2

ˆ 1/ 2

1
( 1)

y y

y

u

T
eK

e

σ σ

σ

− −
=

−
 ˆ ˆˆ y yu

Tx eμ σ+=  

Three-
parameter 
lognormal 

2

2

ˆ ( 1) / 2

ˆ 1/ 2

1
( 1)

y

y

u

T
eK

e

σ

σ

− −
=

−
 ˆ ˆˆ y yu

Tx a eμ σ+= +  

Exponential ln 1TK T= −  ˆˆ ˆ ˆ( ) (ln 1)Tx a a Tε= + + −  

Two-
parameter 
Gamma 

2 2
4

s
T

s

CK
C

χ
= −  

See the note 
Not available 

Pearson 
Type III 

2 2
4

s
T

s

CK
C

χ
= −  

ˆˆ ˆˆ (ln 1)T Tx K Tαβ γ= + + −  
See the note 

ˆˆ ˆ ˆ( ) (ln 1)Tx a a Tε= + + −  

Log-
Pearson 
Type III 

2 2
4

s
T

s

CK
C

χ
= −  

ˆˆ ˆˆ ˆ(ln 1)T Tx K a Tαβ γ= + + −  
See the note 

Not available 

GEV 
ˆ

2 1/ 2

1ˆ ˆ(1 ) [ ln(1 )]

ˆ ˆ ˆ[ (1 2 ) (1 )]

k

T

k k
TK

k k k

Γ + − − −
=

Γ + −Γ +
 

ˆ
ˆ 1ˆ 1 [ ln(1 )]ˆ

k

Tx u
Tk

α ⎧ ⎫= + − − −⎨ ⎬
⎩ ⎭

 

Extreme 
Value I 

10.45 .7797 ln[ ln(1 )]TK
T

= − − − −  1ˆ ˆ ln[ ln(1 )]Tx
T

β α= + − −  

Weibull 
1/

2 1/ 2

(ln ) (1/ 1)
[ (2 / 1) (1/ 1)]

b

T
T bK

b b
−Γ +

=
Γ + −Γ +

 ˆ1/ˆˆ (ln ) b
Tx m Tα= +  

Note: 
1. For normal distribution, TK  can be calculated by using the value of z which is given by 
Abramowitz and Stegun (1965), 
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2
0 1 2

2 3
1 2 3

( )
1

C C w C wz w p
d w d w d w

ε+ +
= − +

+ + +
                                          Eq.  B.1 

where  
1/ 2

1/ 2

( 2 ln )         for 0.5
[ 2 ln(1 )]   for 0.5

w p p
p p

= − ≤

= − − <
                                                      Eq.  B.2 

and ( )pε is the error which is less than 44.5 10−×  

2. For two-parameter gamma distribution, sC is the skewness coefficient of the data. 

3
3/ 2

2
sC μ

μ
=                                                                                               Eq.  B.3 

and 2χ  is calculated by 

2 32 2(1 )
9 9

uχ
υ υ

= − +                                                                           Eq.  B.4 

where u is the standard normal variate corresponding to a probability of non-exceedence of 

F=1-1/T, and υ  is the degree of freedom.It should be noted that the flood needs to be 

evaluated by ˆˆ ˆˆ ˆ(ln 1)T Tx K a Tαβ γ= + + − , instead of the equation addressed earlier. 

3.For log-Pearson Type III, sC and 2χ  are the same as those in the frequency factor equation 

in two parameter gamma distribution, and can be calculated by the same equations. The 

magnitude of the flood is estimated by ˆˆ ˆˆ ˆ(ln 1)T Tx K a Tαβ γ= + + − , instead of the equation 

addressed earlier. 

Standard error of estimate 

The standard error was defined by Cunnane (1989) to measure the variability of the 

estimated value.  

2ˆ ˆ[ ( )]T T Ts E x E x= −                                                                            Eq.  B.5 

The standard error of estimate depends in general on the method of parameter 

estimation (Rao and Hamed, 2000). The most efficient method gives the smallest standard 

error of estimate.  
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For a given three-parameter distribution with parameters ,  and α β γ , the standard 

error of estimate can be calculated by using the formula 

2 2 2 2( ) var( ) ( ) var( ) ( ) var( )

2( )( ) cov( , ) 2( )( ) cov( , ) 2( )( ) cov( , )

T
x x xs

x x x x x x

α β γ
α β γ

α β α γ β γ
α β α γ β γ

∂ ∂ ∂
= + + +

∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

+ +
∂ ∂ ∂ ∂ ∂ ∂

            Eq.  B.6 

The partial derivatives in the equation can be calculated from the relation 1 1(1 )Tx F
T

−= −  

or '
1 2T Tx u K μ= + . 


	2007
	A joint probability approach for the confluence flood frequency analysis
	Cheng Wang
	Recommended Citation


	A joint probability approach for the confluence flood frequency analysis
	by
	Cheng Wang
	A thesis submitted to the graduate faculty
	in partial fulfillment of the requirements for the degree of
	MASTER OF SCIENCE
	Major:  Environmental Science 
	Program of Study Committee:
	Ramesh S. Kanwar, Major Professor
	Roy Gu, Co-Major Professor
	U. Sunday Tim
	Iowa State University
	Ames, Iowa
	2007
	Copyright © Cheng Wang, 2007.  All rights reserved   Table of Contents
	List of Tables iv
	List of Figures v
	Acknowledgements vi
	Abstract vii
	Chapter 1 Introduction 1
	1.1 Introduction 1
	1.2 Background and Problem Identification 1
	1.3 Review of literature 2
	1.2.1 Flood Frequency Analysis 2
	1.2.2 Bivariate Flood frequency analysis 6
	1.4 Objective and scope of work 9
	1.5 Format and content 10
	References 10
	Chapter 2 A Joint Probability Approach for Confluence Flood Frequency Analysis 15
	Abstract 15
	2.1 Introduction 15
	2.2 Methodology 19
	2.2.1 The procedure of the approach 19
	2.2.2 Distribution identification of the tributary streams 20
	2.2.3. Joint probability identification 25
	2.2.4. Multivariate Monte Carlo simulation 29
	2.2.5. Univariate flood frequency analysis 30
	2.2.6. Evaluation 31
	2.3 Application examples 32
	2.3.1 Case study 1 32
	2.3.2 Case study 2 43
	2.3.3 Discussion 48
	2.4 Conclusion and future work 51
	References 52
	Chapter 3 A copulas-based joint probability approach for confluence Flood Frequency Analysis 60
	Abstract 60
	3.1 Introduction 60
	3.2 Methodology 64
	3.2.1 Review of the joint probability approach 64
	3.2.2 Copulas 64
	3.3 Application examples 80
	3.3.1 Application for the Des Moines River basin near Stratford, IA 80
	3.3.2 Application for the Altamaha River basin near Baxley, GA 86
	3.3.3 Discussion 90
	3.4 Conclusion 90
	References 92
	Chapter 4 Summary and Future Work 96
	4.1 Summary 96
	4.2 Future work 96
	References 97
	References 98
	Appendix A. Methods for parameter estimation 105
	Appendix B. Flood frequency factor 116
	 List of Tables 
	Table 2 1  Critical D value for K-S test 25
	Table 2 2  USGS Gauge Stations located in the Des Moines River basin 33
	Table 2 3  Gauge station data distribution information of Des Moines basin 36
	Table 2 4  Distribution parameters of synthetic annual peak flow at the confluence of Des Moines River 40
	Table 2 5  Comparison of simulation results with the observation data and NFF model results: Des Moines River 41
	Table 2 6    USGS Gage Stations located in the Altamaha River basin in GA 45
	Table 2 7    Data distribution information of Altamaha River basin in GA 45
	Table 2 8    Data distribution information of Altamaha River basin in GA 49
	Table 3 1     2×2 contingency table for Algebraic methods 69
	Table 3 2    Kendall’s tau and Spearman’s rho for the often used four copulas 77
	Table 3 3    USGS Gauge Stations located in the Des Moines River Basin 81
	Table 3 4    Annual peak flow distribution information of Des Moines river basin 82
	Table 3 5    Dependence parameter for each copula and AIC values 83
	Table 3 6    Simulation results comparison with NFF model and observation data 85
	Table 3 7    USGS Gage Stations located in the Altamaha River basin 86
	Table 3 8    Annual peak discharge distribution parameters: Altamaha River basin 86
	Table 3 9    Dependence parameter AIC value for each copula 87
	Table 3 10    Flood simulation results comparison by the copula-based joint probability model and NFF model 89
	Table A 1    Equations for normal distribution parameter estimation 108
	Table A 2    Equations of lognormal distribution parameter estimation 109
	Table A 3    Equations for 3-parameter lognormal distribution parameter estimation 109
	Table A 4    Equations for exponential distribution parameter estimation 110
	Table A 5    Equations for gamma distributions parameter estimation 111
	Table A 6    Equations for Pearson III distribution parameter estimation 113
	Table A 7    Equations for EV 1 distribution parameter estimation 113
	Table A 8    Equation for the Weibull distribution parameter estimation 114
	Table B 1  KT and direct flood estimation equations 116
	 List of Figures
	Figure 1 1  River basin illustration 2
	Figure 2 1 Flow chart of the procedure of proposed approach 21
	Figure 2 2   Location of USGS Gauge Stations in the Des Moines River Basin 34
	Figure 2 3  Probability plot for Station A in Des Moines River basin 35
	Figure 2 4  Probability plot for Station B in Des Moines river basin 35
	Figure 2 5  Probability plot for Station C in Des Moines river basin 36
	Figure 2 6  Joint PDF of the tributary discharge of Des Moines River basin 38
	Figure 2 7  Joint CDF of the tributary discharge of Des Moines River basin 38
	Figure 2 8  Simulation results by joint probability model, NFF model and univariate flood frequency analysis based on observation data 42
	Figure 2 9  Location of USGS Gauge Stations in Altamaha River basin, GA 43
	Figure 2 10  Probability plot of Station A in Altamaha River basin, GA 45
	Figure 2 11  Probability plot of Station B in Altamaha River basin, GA 46
	Figure 2 12  Probability plot of Station C in Altamaha River basin, GA 46
	Figure 2 13  Joint PDF of the tributary streamflow of Altamaha River basin, GA 47
	Figure 2 14  Joint PDF of the tributary streamflow of Altamaha River basin, GA 47
	Figure 2 15  Simulation results comparison with NFF model and univairate flood frequency analysis based on observations at confluence of Altamaha River basin 50
	Figure 3 1  Flow chart of joint probability approach for confluence flood  frequency analysis 65
	Figure 3 2  Simulation results by joint probability approach and comparison with NFF model, empirical bivariate approach and Copula: Des Moines River 84
	Figure 3 3  Flood simulation results comparison by the copula-based joint probability model and NFF model and the estimation from observation data for Altamaha River near Baxley, GA 88
	 Acknowledgements
	I would like to take this opportunity to express my thanks to Dr. Ramesh Kanwar, and Dr. Roy Gu for their guidance and financial support during my graduate study. I would also like to thank Dr. Sunday Tim for his efforts and contributions to this work.
	I am indebted to my family for their support and encouragement that enable me to successfully complete this work. Especially, I am grateful to my wife Lili for her love, support and encouragement during my study. I would also like to thank my sons, Daniel and Eric, who brighten my life.
	 Abstract
	The flood frequency analysis at or nearby the confluence of two tributaries is of interest because it is necessary for the design of the highway drainage structures, which often are located near the confluence point and may be subject to inundation by high flows from either stream or both. The shortage of the hydrological data of the confluence point which are necessary to the univariate flood frequency analysis makes the flood estimation at the confluence challenging. This thesis presents a practical procedure for the flood frequency analysis at the confluence of two streams by multivariate simulation of the annual peak flow rate of the tributaries based on joint probability and Monte Carlo simulation. 
	Four steps are involved in the proposed approach, the distribution identification of annual peak flow rate of the tributary streams, the identification of joint probability distribution of the tributary stream flows, the generation of the synthetic annual peak flow rate at the confluent point by using Monte Carlo simulation, and identification of the flood frequency of the confluent point by the univariate flood frequency analysis. 
	Due to the difficulty identifying the joint probability distribution of two specified marginal distributions, an easy and practical method for the identification of joint probability distribution is needed. Copulas method is introduced and several often used copulas are employed to identify the joint probability. 
	Two case studies are conducted and the results are compared with the flood frequency of the confluence point obtained by the well accepted univariate flood frequency analysis based on the observation data. The results are also compared with the ones by the National Flood Frequency program developed by United State Geological Survey. It is found out that the results by the proposed model are very close to the results by the unvariate flood frequency analysis, while the National Flood Frequency program tends to underestimate the flood for a certain return period, especially when the return period is less than 50 or 100 years, and when the river basin is getting larger. 
	Keywords: Flood frequency analysis, goodness-of-fit, Chi-square test, Kolmogorov-Smirnov test, joint probability, Monte Carlo simulation, confluence point, copulas
	 
	 
	Chapter 1 Introduction
	1.1 Introduction

	The ability to adequately define the magnitude and frequency of floods is necessary for the regulation, planning, and design of activities along rivers and streams. One of the first considerations in the safe and economical design of drainage structures is the magnitude and frequency of the design flood or the maximum peak flow that can safely pass through the structure, many of which are located at or near the confluence point of the tributaries. The most desirable basis for selection of the design discharge is a flood-frequency analysis of a long-term records of flood that have occurred at or near the site, but long-term flood records are rarely available for the site where they are needed, for example, the confluence of the tributaries.
	This thesis presents a flood frequency analysis for the confluent point of the tributaries based on the joint probability distribution and Monte Carlo simulation. Copula method is introduced to obtain the joint probability distribution with specified marginal distributions, which plays a key role in the proposed model but usually very difficult to be identified since there are no general approaches available or addressed in relative detail in engineering area.
	1.2 Background and Problem Identification

	Highway drainage structures and water management facilities are often located near the confluence of two or more streams (see Figure 1 1 ), where they may be subject to inundation by high flows from one stream or all.  These structures are designed to meet specified performance objectives for floods of a specified return period (e.g., the 100-year flood). Because the flooding of structures on one stream can be affected by high flows on the other stream, it is important to know the relationship between the coincident exceedence probabilities on the confluent stream pair (i.e., the joint probability of the coincident flows). Accurate estimates of the joint probability of design flows at stream confluences are a crucial element in the design of efficient and effective highway drainage structures and water management facilities. No accurate generally accepted estimation procedure for determining coincident flows currently exists for use in the design of highway structures and water management facilities at the confluence of the tributary. A practical procedure for the determination of joint probabilities of design flows at stream confluences is needed.
	  
	Figure 1 1  River basin illustration
	1.3 Review of literature
	1.2.1 Flood Frequency Analysis


	Flood frequency analysis is a key issue in hydrology. The main objective of flood frequency analysis is to relate the flood magnitude of extreme events to their frequency of occurrence. The results of flood flow frequency analysis can be used for many engineering purposes: for the design of dams, bridges, culverts, and flood control structures; to determine the economic value of flood control projects; and to delineate flood plains and determine the effect of encroachments on the flood plain (Chow et al., 1988). 
	All the proposed flood frequency analysis methods may be roughly classified into three categories depending on the availability and the length of observed flood data for the site: regional analysis, stream-based analysis and time series analysis. Regional analysis and stream-based analysis are more often used. The well established univariate flood frequency analysis based on the annual peak flow rate distribution is employed in the case that a long enough flow records are available, while for the un-gauged stream, the regional analysis currently seems the only effective method to apply that relates the flood magnitude to the hydrologic characters of a specified region, such as rainfall, drainage area, and so on. Some researchers, i.e. Rao and Hamed (2000) consider the time series a special case of stream-based analysis, which is proposed in Flood Studies Report (1975). It is separated from the stream-based analysis in this thesis based on the time interval length of the flood observations. Annual peak flow rate is mainly used in most stream-based analysis while the daily flow rate is preferred in the time series method. 
	In the time series method, the flow hydrograph is considered to be a time series in which the flows are represented by a series of ordinates at equally spaced intervals of time (days). To use the time series models, relatively long records are required and the data requirements are greater than for univariate flood frequency analysis. Rao and Hamed (2000) described the time series method as follows:
	“Ideally, if a hydrograph is considered to be a stochastic process in continuous time, properties of such a series can be deduced from those of the parent process. If Q(t) is the flow on day t, and time series model may be written as the sum of trend, seasonal, and stochastic components. Estimation of model formulation and parameters proceed together through the three components beginning with trend and ending with the stochastic component. ”
	Flood frequency analysis of a single variable has been discussed since 1950’s to relate the magnitude of extreme events to their frequency of occurrence by using the probability distributions (Chow et al., 1988). It has been well established and accepted in academic and engineering field, which is called univariate flood frequency analysis (UFF) in this thesis. Many literatures about the development and application of this approach have been addressed (Tod, 1957; Burkhardt and Prakash, 1976; Linsley, 1986, Sigh and Sigh, 1985; Rossi et al, 1984; Moharran et al,1993). Rao and Hamed (2000) summarized the conventional flood frequency analysis in detail and presented many examples for different stream discharge distributions and with different parameter estimations.
	The flood frequency analysis based on the distribution is preferred to use when an adequate observation record of annual flood is available, such as 30 years or more of flood records. The most commonly used model of this approach is annual maximum series model. The annual peak flow rate data are used to establish a probability distribution that is assumed to describe the flooding process, and that can be evaluated by using data to determine the flood magnitude at any frequency. This approach has many advantages and also disadvantages. All the impact factors on the flood frequency, such as rainfall, are taken into account in the procedure so it is relatively easy to use. However, this approach may miss some information. For example, the second and third peak within a year may be greater than the maximum flow in other years and yet they are ignored (Kite, 1977; Chow et al. 1988; Rao and Hamed, 2000). This means this approach may underestimate or overestimated the true flood. Another disadvantage is that sometimes not all the existing data are available for the use of this approach for some reasons. For example, due to land use changes or the watershed characters change or the construction of the water management facilities in the site or upstream, i.e., a dam, the hydrologic characteristics may change. This change may result in the change of the trend of corresponding annual peak flow rate and this may make the annual flow data prior to the hydrologic condition changes are irrelevant to the future flood prediction. This actually reduces the available data from the existing record, and may bring some estimation error if not enough attention is paid on this. So although this approach has been well established and popular in academic and engineering, sometimes the dilemma exists when it is employed. Generally, the longer stream discharge record the studied stream has, the more accuracy UFF approach brings, while there are situations sometimes that no discharge flow record available or not long enough for UFF to obtain a accurate result, i.e. near of at the confluence of stream tributaries, or in some underdeveloped area with shortage of the historical hydrologic data.   
	The second approach, regional analysis is based on the concept of regional homogeneity and often used for the flood frequency estimation, especially valuable at ungauged sites. It is also used to enhance the flood estimation at gauged sites where historical records are short. This approach often based on the rainfall data. The rainfall-runoff routing process may be involved to convert the rainfall into flood discharge in this case, and the rainfall-runoff model provides the link between the rainfall data and the flood frequency estimation. This approach is relatively complex and time consuming. The U.S. Geological Survey (USGS) developed a set of regression equations by statistically relating the flood characteristics to the physical and climatic characteristics of the watersheds for a group of gauging stations within a region that have virtually natural stream flow conditions, with a format of  , for rural area flood estimation in every state of U.S., where QT is the T-year rural flood-peak discharge, X, Y, Z are watershed or climatic characteristics, and a, b, c, d are regression coefficients. Drainage area or contributing drainage area is used as independence variable for the regression in almost all the regression equations for the 50 states of US. The other most frequently used watershed and climatic characteristics are main-channel slope and mean annual precipitation. The nationwide urban flood estimation regression equations based on multiple regression analysis of urban flood-frequency data from 199 urbanized basins are also provided in which more variables are included, such as drainage area, main channel slope, rainfall, basin storage, and so on. In the 1990’s, a computer program called the National Flood Frequency Program (NFF) was developed, which compiled all the USGS available regression equations for estimating the magnitude and frequency of floods in the United States and Puerto Rico ( USGS, 2002). 
	NFF is probably the most often used model and one of the very few models available for the ungauged site flood frequency estimation in US from the author’s knowledge. It is relatively easy to use; however, it is inconvenient most time. In this approach all the states in US are divided into multiple hydrologic regions determined by using major watershed boundary and/or some other hydrologic characteristics, i. e., the mean elevation of watershed. A series of regression equations of T-year flood (T=2 , 5, 10, 25, 50, 100, 200 and 500 year) associated with each hydrologic region  are developed in terms  of hydrologic characteristics based on the gauged site records. One has to determine the hydrologic region of the interest site first among all the hydrologic regions and then pick up the developed regression equations to perform the flood frequency analysis. Moreover, some equations in this approach have high errors, for example, some equations generated for the western part of the US have standard error greater than 100 percent, although the average standard error of NFF is between 30 and 60 percent (USGS, 2002). 
	Based on the above review, one accurate and practical approach for ungauged confluence flood estimation that can overcome the shortages of UFF and NFF model is needed. The desire approach can use the available stream discharge records around the study site, which may be obtained relatively easily. Also the desire approach should be convenient for use. A joint probability approach is proposed in this thesis that may meet the two criteria. 
	1.2.2 Bivariate Flood frequency analysis

	The research on bivariate distribution has been of interest of statisticians for a long time and many methods have been proposed to derive the joint distribution functions with the same or different margins (Molenberghs and Lesaffre, (1997); Ronning, 1977). With the recognition that the complex hydrological events such as floods are always affected by one or more correlated events and that an accurate estimate of the joint probability of the correlated events plays an important role for hydrology analysis, much attention has been paid on the bivariate and even multivariate flood frequency analysis since 1980s. 
	Sackl and Bergmann (1987),  Chang et al. (1994), Yue (1999), and Beersma and Buishand (2004) used the bivariate normal distribution to perform the flood frequency analysis and hydrology events analysis. Krstanovic and Singh (1987) derived the multivariate Gaussian and exponential distributions by the principle of maximum entropy and applied the bivariate distributions for the analysis of flood peak and volume. Goel et al. (1998) employed a multi-variate normal distribution to perform flood frequency analysis after normalizing the peak flow data, volume and duration. Yue (2001a) applied the bivariate lognormal distribution for multivariate flood events analysis and described the relationship of flood peaks and volumes as well as flood volumes and durations by joint distribution and the corresponding conditional distribution.
	Hashino (1985), Choulakian et al. (1990), Singh and Singh (1991), Bacchi et al.  (1994), and Ashkar et al. (1998) investigated and applied bivariate exponential distributions for the hydrological events analysis.  Bacchi et al. (1994) proposed a numerical procedure for the estimation of parameters of a bivariate exponectial model used to simulation the storm intensity and duration simultaneously.
	Buishand (1984), Yue et al. (2001b) applied bivariate extreme value distributions to analyze multivariate flood/storm events. Yue and Wang (2004) compared the performance in flood analysis between two bivariate extreme value distributions, the Gumbel mixed model and the Gumbel logistic model. Shiau et al (2007) derived a joint probability distribution with a mixture of exponential and gamma marginal distribution to simulate the relationship between drought duration and drought severity.
	Some researchers used bivariate gamma distribution for the flood frequency analysis (Moran, 1970; Crovelli, 1973; Prekopa and Szantai, 1978; Clarke, 1980; Yue, 2001b, 2001c; Yue, et al. 2001). Among them, Yue (2001c) investigated the applicability of the bivariate gamma distribution model to analyze the joint distribution of two positively correlated random variables with gamma marginals. Yue (2001b) reviewed three bivaraite gamma distribution models with two gamma marginal distributions. Durrans et al (2003) presented two approximate methods for joint frequency analysis using Pearson Type III distribution to estimate the joint flood frequency analyses on seasonal and annual basis. Nadarajah and Gupta (2006) developed exact distribution of intensity-duration based on bivariate gamma distribution. 
	Wang (2001) developed a procedure for record augmentation of annual maximum floods by applying the bivariate extreme value distribution for annual maximum floods at gauged stations with generalized extreme value distribution. Yue and Rasmussen (2002) discussed the concepts of bivariate hydrology events and demonstrated the concepts by applying a bivariate extreme value distribution to represent the joint distribution of flood peak and volume from a basin. Johnson et al. (1999) reviewed some techniques for obtaining bivariate distributions and presented the properties of some bivariate models, such as bivariate Weibull distribution, bivariate inverse Gaussian distribution, bivariate SBB distribution and bivariate normal-lognormal distribution. 
	Zhang and Singh (2006) derived bivariate distributions of flood peak and volume, and flood volume and duration by using copula method. In the paper, four often used one parameter Archimedean copulas are introduced, the corresponding parameter estimation is described and the criteria of copula selection are addressed. 
	Most of the researchers just applied bivariate or multivariate distribution with the same type of marginal distributions, either two normal distributions or two gamma marginal distributions, and so on. Only a few of them, i.e., Zhang and Singh (2006) and Wang (2001) employed bivariate distribution with two different types of distribution. Although many researchers performed flood frequency analysis with the bivariate distributions, most of them focused more on identifying the relationship of different hydrologic variables, such as flood peak and volume, and flood volume and duration. In their researches, the flow discharge records of the site of interest are usually required. A bivariate distribution approach is presented in this thesis to estimate the flood and frequency at the confluence of the tributaries without the requirement of records of the studied sites. 
	1.4 Objective and scope of work 

	This research is to develop practical procedures for the flood frequency analysis for the confluence of the tributaries where many drainage structures are located but the long-term flood records may be unavailable sometimes, and guidelines for applying the procedures. The estimation of joint probabilities of the stream peak flow of the tributary streams is the key task in the research. The scope of this research is limited to riverine areas and does not include coastal areas.
	A whole procedure for the design coincident flows at stream confluences is introduced first, which comprises of the following four steps, the identification of the each of the tributary using the USGS gauge station data, the estimation of the joint probability of the two tributary flows based on the identified marginal annual peak flow distributions of the two tributaries, the synthesis of the confluence flows based on the joint probability, and the univariate flood frequency analysis based on the synthetic flows at the confluence. Then  two case studies in Iowa and Georgia, respectively are conducted to demonstrate the proposed approach.  
	Due to the difficulty identifying the joint probability, a simply method is needed. The copula method is introduced and the application procedure is addressed. Two case studies are also presented for the demonstration.  
	1.5 Format and content

	This thesis is organized as follows. Chapter 2 presents the practical procedures of estimating the flood coincidence of the flood at the confluence. Chapter 3 presents the concepts and application of copula method for the joint probability estimation, which is the key task in the proposed joint probability approach for the estimation of confluence flood analysis. Chapter 4 summarizes the work presented in this thesis and outlines the opportunities for the future work beyond the scope of this thesis.
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	Chapter 2  A Joint Probability Approach for Confluence Flood Frequency Analysis
	Abstract

	This paper presents a practical procedure for the flood frequency analysis at the confluence of two streams based on the flow rate data from the upstream tributaries. Four steps are involved in the approach, the distribution identification of annual stream peak flow of the tributary streams, the identification of joint probability distribution of the tributary stream flows, the generation of the synthetic stream flow at the confluent point by using Monte Carlo simulation, and identification of the flood frequency of the confluent point by the univariate flood frequency analysis. Two case studies are conducted and the results are compared with the flood frequency obtained by the univariate flood frequency analysis based on the observation data, and with the ones by National Flood Frequency Program developed by United State Geological Survey. It shows that the results by the proposed approach are much closer to flood estimated by the univariate flood frequency analysis based on the observation data than the results by the national flood frequency program, especially when the return period is less than 50 or 100 years.
	Keywords: Flood frequency analysis, goodness-of-fit, Chi-square test, Kolmogorov-Smirnov test, joint probability, Monte Carlo simulation, confluence point
	2.1 Introduction 

	The flood frequency analysis at or nearby the confluence of two tributaries is of interest because it is necessary for the design of the highway drainage structures, which often are located near the confluence point and may be subject to inundation by high flows from either stream or both. These infrastructures are designed to meet specified performance objectives for floods of a specified return period (e.g., the 100-year flood). The shortage of the hydrological data of the confluence point which are necessary to the univariate flood frequency analysis makes the flood estimation at the confluence challenging. An accurate and practical approach for the flood frequency estimation for this situation is needed. 
	To estimate the flood without discharge records, the flow routing may be performed which usually involves complicated numerical scheme and tedious of computation. Currently, the National Flood Frequency Program (NFF) (US Geology Survey, 2002) developed by US Geology Survey (USGS) based on the regional analysis probability is probably the most popular method for the ungauged site flood estimation, and could be employed for the flood estimate at the confluence. Although many researchers have proposed many regional flood analysis approaches, in NFF model all the states in US are divided into multiple hydrologic regions by using major watershed boundary and/or some other hydrologic characteristics, i. e., the mean elevation of watershed. It is assumed that the hydrologic characteristics are homogeneous in each region so that the flood at the ungauged sites can be estimated by the gauged sites.  A series of regression equations of T-year flood (T=2 , 5, 10, 25, 50, 100, 200 and 500 year) associated with each hydrologic region  are developed in terms  of hydrologic characteristics based on the gauged site records. All the sites in each region share the same regression equation for the flood estimation associated with a specified return period.  However, some equations in this approach have high errors; for example, some equations generate standard errors greater than 100 percent for the western part of the US, although the average standard error of NFF is between 30 and 60 percent (USGS, 2002). 
	He et al. (2007) derived a time coefficient of flood discharge model and a kinetic wave routing model based on the flood events on a long cycle to evaluate the flood behaviors at a confluence of the middle Yellow River in China by considering the flood frequency, intensity and duration. This model requires relative detail historic flood events information of the river basin which is unavailable sometimes. 
	Because the flooding of structures on one stream could be affected by high flows on the other stream, it is important to know the relationship between the coincident exceedence probabilities on the confluent stream pair (i.e., the joint probability of the coincident flows). It is reasonable to assume that an accurate flood estimation approach may be developed based on the joint probability of the coincident flows of the tributary streams. In the proposed approach in this search, accurate estimates of the joint probability of design flows at stream confluences are a crucial element in the design of efficient and effective highway drainage structures. With the recognition that the complex hydrological events such as floods are always affected by one or more correlated events and that an accurate estimate of the joint probability of the correlated events plays an important role for hydrology analysis, much attention has been paid on the bivariate and even multivariate flood frequency analysis since 1980s. 
	The research on bivariate distribution has been of interest of statisticians for a long time and many methods have been proposed to derive the joint distribution functions with the same or different margins (Molenberghs and Lesaffre, (1997); Marshall and Olkin, 1988; Schucany and Michael, 2002; Blachnell, 1994; Ronning, 1977).Sackl and Bergmann (1987), Chang et al. (1994), Yue (1999), and Beersma and Buishand (2004) used the bivariate normal distribution to perform the flood frequency analysis and hydrology events analysis. Krstanovic and Singh (1987) derived the multivariate Gaussian and exponential distributions by the principle of maximum entropy and applied the bivariate distributions for the analysis of flood peak and volume. Goel et al. (1998) employed a multivariate normal distribution to perform flood frequency analysis after normalizing the data of flood peak, volume and duration. Hashino (1985), Choulakian et al. (1990), Singh and Singh (1991), Bacchi et al.  (1994), and Ashkar et al. (1998) investigated and applied the bivariate exponential distributions for the hydrological events analysis.  Buishand (1984), Raynal and Salas (1987), Yue (2001a) applied bivariate extreme value distributions to analysis multivariate flood/storm events. Yue and Wang (2004) compared the performance in flood analysis between two bivariate extreme value distributions, the Gumbel mixed model and the Gumbel logistic model. Many researchers used bivariate gamma distribution for the flood frequency analysis (Moran, 1970; Prekopa and Szantai, 1978; Clarke, 1980; Yue, 2001b). Among them, Yue (2001b) investigated the applicability of the bivariate gamma distribution model to analyze the joint distribution of two positively correlated random variables with gamma marginals. Yue et al (2001) reviewed three bivariate gamma distribution models with two gamma marginal distributions. Durrans et al (2003) presented two approximate methods for joint frequency analysis using Pearson Type III distribution to estimate the joint flood frequency analyses on seasonal and annual bases. Nadarajah and Gupta (2006) developed exact distribution of intensity-duration based on bivariate gamma distribution. Shiau et al (2007) derived a joint probability distribution with a mixture of exponential and gamma marginal distribution to simulate the relationship between drought duration and drought severity. Wang (2001) developed a procedure for record augmentation of annual maximum floods by applying the bivariate extreme value distribution for annual maximum floods at to gauging stations with generalized extreme value distribution. Yue and Rasmussen (2002) discussed the concepts of bivariate hydrology events and demonstrated the concepts by applying a bivariate extreme value distribution to represent the joint distribution of flood peak and volume from an actual basin. Johnson et al. (1999) reviewed the some techniques for obtaining bivariate distributions and presented the properties of some bivariate models that include bivariate Weibull distribution, bivariate inverse Gaussian distribution, bivariate SBB distribution and bivariate normal-lognormal distribution. 
	Although many of above researchers performed flood frequency analysis with the joint probability approach, most of them focused more on the determination of the relationship of different hydrologic variables, such as flood peak and volume, and flood volume and duration, where the flow discharge records of the site of interest are usually required. No one has applied the joint probability approach for the flood estimation at the ungauged sites, especially ungauged confluence point of the tributaries. A joint probability approach is presented in this paper to estimate the flood and frequency at the confluence of the tributaries without the requirement of records of the studied site. 
	2.2 Methodology 
	2.2.1 The procedure of the approach


	Four steps are involved in the approach, stream flow distribution identification of the tributary streams, identification of joint probability distribution of the tributary stream flows, identification of the synthetic stream flow at the confluent point by using Monte Carlo simulation, and identification of the flood frequency of the confluent point by the conventional flood frequency analysis. The flow chart for the procedure is seen in Figure 2 1.
	Step 1. Stream flow distribution identification of the tributary streams
	In the step, the historical annual stream peak flow data of the two tributary streams are collected first, the parameters associated with the assumed distributions are estimated by method of moment, method of maximum likelihood, or method of probability weighted moments, and then the test of goodness-of-fit is performed to identify the annual stream peak flow distributions of the two tributary streams. Chi-square test and Kolmogorov-Smirnov (K-S) are used in this step.
	Step 2. Identification of joint probability distribution of tributary stream flows
	In this step, the correlationship of the annual stream peak flow data of the two tributaries is identified first by calculating the correlation coefficient, and then the joint probability distribution of the tributary stream flow is identified based on the annual peak flow distributions of the two tributary streams identified in the first step and the correlationship of the annual peak flow data of the tributary streams. If the correlationship is small enough, say, less than 0.2, it is reasonable to assume that the two set of data are independent, in other words, the annual peak flow of the two tributary streams are independent. In this simplified case, the joint probability distribution of the stream annual peak flow of the two tributary streams is simply the multiplication of the annual peak flow distributions of the tributary streams. Otherwise the joint probability needs to be estimated by an appropriate method, such as well established empirical bivariate distributions equations. The conditional annual peak flow distribution is also identified in this step based on which the Monte Carlo simulation will be performed in the next step.
	Step 3. Monte Carlo simulation
	In this step, Monte Carlo simulation is performed to obtain the synthetic annual peak flow of the two tributary streams, based on the annual peak flow distributions of the tributary streams and the conditional annual peak flow distribution. The synthetic annual peak flow at the confluence point is assumed to be the summation of the annual peak flow and the two tributary steams.
	Step 4. Conventional flood frequency analysis
	In this step, the distribution of the synthetic annual stream peak flow is identified by the test of goodness-of-fit first, and then the peak flows corresponding to specified return periods are calculated by using frequency factors or inverse method, based on the synthetic annual peak flow at the confluence in the previous step.
	2.2.2 Distribution identification of the tributary streams 

	The distribution identification of the tributary streams involves parameter estimation and goodness-of-fit test. 
	2.2.2.1 Parameter estimation 

	There are many methods to estimate the parameters of a distribution; however, the
	Figure 2 1 Flow chart of the procedure of proposed approach 
	three most often used methods are the method of moments (MOM), the method  of maximum likelihood ( ML) and the probability weighted moments method (PWM). The advantages and disadvantages of the three methods are addressed by Rao and Hamed (2000) as follows,
	“The maximum likelihood method (ML method) is considered the most efficient method since it provides the smallest sampling variance of the estimated parameters, and hence of the estimated quantiles, compared to other methods. However, for some particular cases, such as the Pearson type III distribution, the optimality of the ML method is only asymptotic and small sample estimates may lead to estimates of inferior quality ( Bobee and Ashkar, 1991). Also the ML method has the disadvantage of frequently giving biased estimates, but these biases can be corrected. Furthermore, it may not be possible to get ML estimates with small samples, especially if the number of parameters is large. The ML method requires higher computational efforts, but with the increased use of high-speed personal computers, this is no longer a significant problem.
	The method of moments (MOM) is a natural and relatively easy parameter estimation method. However, MOM estimates are usually inferior in quality and generally are not as efficient as the ML estimates, especially for distributions with large number of parameters (three or more), because higher order moments are more likely to be highly biased in relatively small samples.
	The PWM method (Greenwood et al,. 1979; Hosking, 1986) gives parameter estimates comparable to the ML estimates, yet in some cases the estimation procedures are much less complicated and the computations are simpler. Parameter estimates from small samples using PWM are sometimes more accurate than the ML estimates (Landwehr et al., 1979). Also, in some cases, such as the symmetric lambda and Weibull distributions, explicit expressions for the parameters can be obtained by using PWM, which is not the case with the ML or MOM methods.” 
	For the convenience of application, the often used distributions and the associated parameter are listed in Appendix A. 
	2.2.2.2  Test of goodness-of-fit 

	The choice of distribution to be used in flood frequency analysis has been a topic of interest for a long time ( Rao and Hamed, 2000). When a theoretical distribution has been assumed, the validity of the assumed distribution may be verified or disproved statistically by goodness-of-test ( Ang and Tang, 1975a). Chi-square test and Kolmogorov-Smirnov (K-S) test have been typically used to identify the stream flow distributions for flood frequency analysis. 
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