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ABSTRACT 

 

The goal of this dissertation was to investigate the potentials of ozone as a sustainable 

alternative to the soil fumigant methyl bromide and to synthetic pesticides. Three pathogens 

were selected for this research, given their economic importance, and the spectrum variety 

that they represent: Phytoparasitic nematodes, important pests that cause severe crop yield 

losses; Phytophthora sojae, a predominant soybean pathogen that causes root and stem rot, 

and pre- and post-emergence damping-off of soybean; and Fusarium oxysporum, which 

causes Fusarium wilt, an economically important disease in hydroponic systems. 

Soil samples that were naturally infested with nematodes were treated with different 

levels of gaseous ozone at 21 ºC and 5 ºC. A medium level of ozonation (2.1 g O3 kg-1 for 10 

min at a rate of ozonation 0.21 g O3 kg-1min-1) and low temperature (5 ºC) resulted in 96% 

nematode inhibition. Regression analysis showed that nematode viability was a function of 

the level of ozonation (P = 5.1E-07) and the soil temperature (P = 4.4E-08; Adjusted R-

square = 0.65). 

Assays of artificially inoculated soil samples with P. sojae were treated with different 

doses of gaseous ozone. This study showed that a dosage of 0.47 g O3/kg soil, totally 

prevented root and stem rot disease symptoms caused by P. sojae.  

Samples of conidial suspensions of F. oxysporum were treated with incremental doses 

of ozone from either oxygen feed with high gas-phase concentration (GPC) or air feed with 

low GPC. Trials resulted in non-viability of the pathogen at high ozone GPC with a dose of 

0.84 mg O3/L for 3 seconds. The optimal conditions for F. oxysporum treatment with ozone 

were high GPC (oxygen feed), and low temperature (5 ºC). 
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Given these promising results, and since ozone degenerates quickly to oxygen, the 

findings of this research clearly indicate that ozone may be an efficient and sustainable 

alternative to methyl bromide and to: 

1. nematicides in the treatment of nematodes in the soil, 

2. fungicides in the inhibition of Phytophthora diseases in the soil, and 

3. fungicides in the treatment of Fusarium wilt in hydroponic nutrient solutions.
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CHAPTER I 

GENERAL INTRODUCTION AND LITERATURE REVIEW 

Root Health and Methyl Bromide 

Root health is essential for plant vigor, that can lead to higher yield with less costly 

agricultural inputs, hence higher profits. Soilborne diseases and pests attack plant roots, and 

by weakening these vital plant parts for support, nutrient and water uptake, nutrient storage, 

undermine plant productivity and in sever cases crop survival. Methyl bromide (MeBr) is a 

wide-spectrum soil fumigant, used efficiently in the treatment of soilborne phytopathogens, 

pests and weeds (Ragsdale et al., 1995) of many high-input, high-value crops in U.S. 

agriculture, including vegetables, nursery plants, ornamentals, fruit trees, strawberries and 

grapes (Zasada et al., 2010). It provides broad-spectrum pest control, and has higher efficacy 

compared to other fumigants (McKenry, 1994), since its volatility allows it to penetrate the 

treated soil sufficiently (Duniway, 2002). For this reason, some crop production systems such 

as strawberries and fresh market tomatoes are highly dependent on MeBr. Such dependence 

lead to reductions in crop rotation and in diversification of production practices (Braun and 

Supkoff, 1994). In 1992, MeBr was one of the five most used pesticides in the United States 

(UNEP, 2000). In the early 1990’s, approximately 25,000 to 27,000 tons of methyl bromide 

was applied annually (USDA, 1995), with pre-plant soil fumigation constituting more than 

75% of its use (UNEP, 1992). The economic viability of specific crops in Florida, California, 

North Carolina, and other states could be affected by the loss of this compound if no 

alternatives are available (Spreen et al., 1995; USDA, 1993). 
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Methyl Bromide, a ‘Substance that Depletes the Ozone Layer’ 

Ozone plays a key function in moderating the climate of Earth by absorbing 

ultraviolet radiation from the sun below a wavelength of 320 nm. Stratospheric ozone plays 

the role of a reactive filter that prevents many negative environmental impacts by UV 

radiation like sunburn, skin cancer, crop damage, and others (Robock, 1996). Absorption of 

UV radiation by ozone in the Earth’s stratosphere also moderates the Earth’s temperature 

(World Meteorological Organization, 1994). Bromine is a potent ozone depletory, and is 50 

times more reactive than chlorine in depleting ozone (Anderson et al., 1989). MeBr is the 

major carrier of bromine to the stratosphere (Penkett et al., 1985). When MeBr reaches the 

stratosphere, it breaks down to form bromine, which participates in a series of ozone-

depleting cyclical reactions (Cox et al., 1995; and UNEP, 1992). Estimates of sources of 

MeBr from soil fumigation range from 16 to 47.3 Gg per year (World Meteorological 

Organization, 1994). Substantial retention and degradation of MeBr within agricultural soils 

is unlikely, and most of it is released into the atmosphere following soil fumigation (Gan et 

al., 1994; Yagi et al., 1993; and Yates et al., 1996). Concern over ozone depletion led to 

negotiations among countries that resulted in the 1987 drafting of the Montreal Protocol on 

“Substances that Deplete the Ozone Layer” (Gushee, 1996; and UNEP, 1995). An ozone 

depletion potential (ODP) index is used to measure a substance’s relative potential to deplete 

stratospheric ozone (Ristaino and Thomas, 1997). The ODP represents the amount of ozone 

destroyed by the emission of 1 kg of a chosen gas over a particular time scale compared with 

chlorofluorocarbon-11 (CFC-11), a major ozone depletory (UNEP, 1992). The UNEP 

calculated that MeBr had an ODP of 0.6, or 60% of CFC-11’s ODP, and the atmospheric 

lifetime was calculated at 1.7 years (Mellouki et al., 1992; and Solomon et al., 1992). 
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Accordingly, MeBr was scheduled under the Montreal Protocol to be completely phased-out 

by 2005 in developed countries and 2015 in developing countries. Nevertheless, as of 2008, 

the fumigant was still being used in the United States, Australia, Canada, and Japan (Zasada 

et al., 2010) because the protocol allows for critical use exemptions (CUE) to MeBr ban if 

“(a) there are no technically and economically feasible alternatives that are acceptable from 

a regulatory and bystander exposure perspective, and (b) the use is considered crucial to 

avoid a significant market disruption of selected commodities” (UNEP, 2000). In 2008, the 

United States accounted for 91% of the total global CUE approvals for high-value crops 

(Brennen, 2008). 

 

The Conflict Between Economic Profits, and Environmental and Human Health Risks 

in Implementing MeBr Phaseout 

The National Pesticide Impact Assessment Program (NAPIAP) estimated annual 

economic losses of $1.3 to 1.5 billion if a ban of MeBr use occurred in the United States 

(USDA, 1993). Most of the losses estimated were due to loss of soil fumigation ($800 to 900 

million), mostly occurring in tomatoes and strawberries (USDA, 1993). Hence, it is expected 

that the most challenged productions in managing soilborne pathogens and pests without 

MeBr, are the U.S. high-value crops relying on its use. These loss estimates assumed that few 

or no efficient alternatives would be available or used (Ristaino & Thomas, 1997). In contrast 

to the merely economic assessment, the EPA conducted a cost-benefit analysis of the 

elimination of MeBr (unpublished data), taking in consideration the environmental, 

ecological and health implications of MeBr use, and resulted in an estimated $1.2 to 2.3 

billion in losses if the MeBr phase-out did not occur. Additionally, the EPA evaluated the 
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likely health effect costs of MeBr use, and estimated that between $244 and $952 billion in 

benefits would result primarily from a reduction in 2,800 skin cancer deaths over the period 

from 1994 to 2010. Indirect costs of MeBr use include negative human health effects from 

increased UV-B (Slaper et al., 1996), detrimental effects of increased UV-B on global 

photosynthetic rates (Robock, 1996), health effects from exposure of workers to MeBr 

(Ragsdale & Wheeler, 1995), increased pest control expenses resulting from pesticide-related 

destruction of beneficial organisms (Menge et al., 1978), yield reductions due to 

phytotoxicity (Menge et al., 1978), groundwater contamination (Braun & Supkoff, 1994), 

and governmental expenditures to reduce the environmental and societal costs of the use of 

the pesticide, including alternative research and development in the United States and 

developing countries (Ristaino & Thomas, 1997). 

 

Justifications for the Need to Identify Efficient and Environmentally Safe Alternatives 

to MeBr 

Since MeBr has provided a reliable and feasible treatment for soilborne pests, many 

high-value commodities became highly MeBr-dependent. These commodities have 

standardized their production practices on the use of this pesticide, hence they will be 

negatively impacted upon MeBr outright phase-out if effective and economical alternatives 

were not identified (Zasada et al., 2010). The repercussions of total MeBr ban without 

identifying efficient and feasible alternatives, would be reduced production levels, higher 

prices for consumers, and possible use of more toxic compounds by growers (Zilberman et 

al., 1991). In 1997, over 95% of the tomato fields in Florida were still fumigated with MeBr 

due to problems from soilborne diseases including the root-knot nematode, Fusarium, and 
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bacterial wilt diseases (USDA, 1995). If a single treatment method that is environmentally 

safe, efficient and feasible could be identified as alternative to MeBr, it would be rapidly 

adopted by growers (Ragsdale and Wheeler, 1995). Currently, there is no single alternative 

pesticide or treatment for all the uses of MeBr (Messenger and Braun, 2000). In addition, the 

non-chemical alternatives that are implemented, are considered partial alternatives to MeBr, 

which necessitates integrating them with complementing treatments and control measures to 

fully cover the efficacy spectrum of MeBr. Alternatives like cultural practices, genetic 

resistance, and integrated pest management, require more biological knowledge of pests than 

with MeBr, to achieve satisfactory results. 

 

Methyl Bromide Current Alternatives 

Due to the concerns associated with the use of MeBr on the ozone layer, human 

health and the environment, which enjoined its phaseout plan, this necessitated the 

development of alternative treatments. Alternatives vary between chemical treatments and 

non-chemical control measures. Chemical alternatives include chloropicrin, dazomet, 1,3-

dichloropropene, methyl iodide and metam sodium. Non-chemical alternatives include steam 

and aerated steam, soil solarization, crop rotation, biological control, resistant plant varieties, 

cover crops, organic amendments and compost. Chemical and non-chemical options could be 

grouped under integrated pest management (IPM), to increase their efficacy and complement 

each other’s spectrum. However, none of these alone proved as single alternative to methyl 

bromide. In addition, each of these alternatives has some drawbacks on the environment 

(especially synthetic chemicals), feasibility or efficacy. 
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Non-chemical alternatives 

Non-chemical alternatives, such as steam and aerated steam soil treatments are 

efficient at controlling soil pathogens and weeds (King and Greene, 2000), but are very 

expensive and are only practical and feasible in greenhouse settings (Gullino and Lodovica, 

1992). In addition, steaming creates a biological “vacuum” in the soil by impairing its 

microbial balance and/or killing beneficial microorganisms, which renders the soil readily re-

infested by phytopathogens (Mus and Huygen, 1992). 

Soil solarization on the other hand could be practical only in hot locations (Carpenter 

et al., 2000), and it is inefficient on some weeds (e.g. nut sedge) and fungi that are located 

deeply in the soil (i.e. Armillaria spp.; Anonymous, 1993). Beside these drawbacks, soil 

solarization is too labor-intensive, and necessitates covering the soil with tarp or plastic 

material for 6 to 8 weeks, leaving it unproductive for this duration (Messenger and Braun, 

2000). 

Crop rotation depends on alternating between susceptible and resistant crops to a 

pathogen, which decreases inoculum in the infested field (Cook and Baker, 1989). However, 

when the pathogen has long-lasting spores, such as microsclerotia of Verticillium dahliae 

(Huisman and Ashworth, 1976a; and Huisman and Ashworth, 1976b) that can survive for up 

to 20 years in the soil, or when it subsists in the soil as a saprophyte (survives on dead plant 

parts), this practice fails to control the targeted pathogen. Also, crop rotation often 

necessitates the rotation with non-cash crops, and requires to be applied for years to be 

efficient, which decreases the farm income (Mukhopadhyay, 1990). 
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Biological control of soilborne pathogens, hinges on controlling a pest or pathogen by 

the use of its antagonist organism(s), and the success of this method is limited and sometimes 

unpredictable, due to the complexity of the soil ecosystem. 

As for the use of resistant plant varieties, its major drawback is that resistance genes 

are usually pathogen- and sometimes race-specific (Messenger and Braun, 2000). In addition, 

the development of resistant varieties takes time, yet sometimes the developed variety 

becomes useless when the targeted pathogen mutates and changes its virulence traits. 

Genetically engineered plants to express pesticidal traits, known as “genetically 

modified pest-protected plants”, are associated with possible environmental and human 

health risks (National Research Council, 2000). 

Finally, cover crops, organic amendments and compost, although efficient in some 

applications, have weaknesses. Cover crops for example are not omnipotent in the 

suppression of nematodes: a cover crop would control some nematode species, but not the 

others. Organic amendments are only partial alternative to MeBr (Jarvis, 1992; Linderman, 

1989), and even could cause damage to some plants roots, like in the case of field and 

greenhouse grown lettuce seedlings (Phillips et al., 1971). Similarly, compost soil 

amendment provides many benefits to the soil and the planted crop, as it increases nutrient 

availability, enhances drainage, boosts the proliferation of beneficial microorganisms, which 

result in pathogens suppression and increased plant vigor. However, compost use necessitates 

proper preparation and usage, with special attention being given to the build-up of heavy 

metals and soluble salts in the soil, putting crop growth and ultimately human health at risk 

(Bevacqua and Mellano, 1993). 
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Chemical Alternatives 

The main synthetic alternatives to MeBr are metam sodium, dazomet, 1,3-

dichloropropene (1,3-D), chloropicrin, and methyl iodide. These pesticides have a narrower 

spectrum of efficacy in comparison with MeBr, hence, they are mostly used in different 

combinations to reach the desired broad-spectrum control (Zasada et al., 2010). In addition, 

they are associated with detrimental environmental and human-health concerns, and when 

mixed together to reach higher efficiency, the risks accrue even more. 

Metam sodium is an effective nematicide, but it is not as efficient as MeBr in the 

control of root-knot nematodes, or Fusarium and Verticillium spp. (Anonymous, 1993b). In 

addition, metam sodium has limited soil penetration capacity and poor dispersal, which 

prevents its uniform distribution in the soil (Gullino, 1992; Martin, 2003; McKenry, M.V. 

1994; Mus and Huygen, 1992), and limits its efficiency in the control of soilborne pathogens 

of deep-rooted trees and shrubs. Accordingly, metam sodium is applied with large quantities 

of water (Munnecke and van Gundy, 1979) to homogenize its dispersal in the soil, which 

increases the cost of its application and may result in groundwater contamination (Kim, 

1988). Another limitation of metam sodium is its phytotoxicity, which necessitates waiting 

after its application for long period before planting (Gerstl et al., 1977). Metam sodium is 

carcinogen, a developmental toxin, and an air contaminant (Kelley and Reed, 1996). 

Likewise, dazomet has reduced disease control and slow diffusion (Parochetti and 

Warren, 1970), it requires a 60-day re-entry period after application (Anonymous, 1993a) 

and causes groundwater contamination (Anonymous, 1992; Kim, 1988). 

The fumigant 1,3-D is a nematicide that can reduce nematode populations in the soil 

for up to 6 years (Carpenter et al., 2000), however it does not control soil fungi or insects 
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(Anonymous, 1989). Beside its limited pesticidal range, dazomet is listed as a carcinogen and 

groundwater contaminant (Office of Environmental Health Hazard Assessment, Cal/EPA). 

Conversely, chloropicrin is an effective fungicide but does not control weed and 

nematode (Anonymous, 1993b; Duniway, 2002). Hence, for higher pesticidal control, 

chloropicrin is usually mixed with MeBr and applied to the soil (Sances and Ingham, 1999). 

In addition, chloropicrin has a slower dispersion into soil and evaporation after application 

than MeBr (Smelt and Leistra, 1974), which necessitates a longer waiting time before 

planting to prevent phytotoxicity. Another drawback of chloropicrin is that it is a potential 

groundwater contaminant. 

Finally, methyl iodide is comparable or even superior to MeBr in efficiency as a soil 

fumigant, however it could not be considered as a safe alternative to MeBr because it is a 

known carcinogen (Office of Environmental Health Hazard Assessment, Cal/EPA). 

 

Approaches to Improve Fumigants Efficacy 

The minimum distribution of synthetic fumigants in soil and their loss through 

atmospheric emission, have been addressed in numerous studies that have aimed to increase 

their efficacy and reduce environmental pollution resulting from their use. Fumigants tend to 

diffuse quickly out of the soil after application due to their high volatility. Emissions from 

soil fumigation can range between 20% and 90% of the fumigant after application (Yates et 

al., 2002). This characteristic encounters many repercussions: (i) it reduces the time of 

fumigant residence in the soil, which decreases its interaction with soil pests and leads to 

lower pest control efficacy, (ii) and it increases air pollution. Approaches found to alleviate 

fumigant emission include: applying the fumigant with irrigation water (Ajwa et al., 2002; 

Papiernik et al., 2004; Schneider et al., 2008; Sharon et al., 2004), increasing the depth of 
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underground application through drip irrigation from 15 to 30 cm (Schneider et al., 2008; 

Sharon et al., 2004), and covering the soil with virtually impermeable film (Nyezepir and 

Rodriguez-Kabana, 2007) or HDPE (Sharon et al., 2004). Water decreases gas-phase 

diffusion in the soil, which decreases the fumigant’s atmospheric emission (Ajwa et al., 

2002). Yates et al. (1997) showed that increasing soil water content decreased the 

atmospheric emission of methyl bromide. In addition, water enhances the uniformity of 

fumigant distribution in the soil (Ajwa et al., 2002). However, caution should be taken with 

the application of irrigation water, as El Hadiri et al. (2003) showed that irrigating after the 

fumigation with 1,3-D or methyl isothiocyanate results in the leaching of the fumigants, 

which might lead to the contamination of shallow groundwater. 

On the other hand, the deeper application of the fumigant elongates its path length 

between application point and soil surface. This increases the fumigant residence in the soil, 

and increases its interaction with soil pathogens and pests, which improves its pest control 

efficacy (Sharon et al., 2004). However, Papernick et al. (2004) showed that covering the 

fumigated soil with a virtually impermeable film or HDPE is even more effective in 

containing fumigants than increasing the depth of injection. 

The environmental repercussions of these soil fumigants, especially MeBr (Gan et al., 

1994, Gushee, 1996, Yagi et al., 1993, and Yates et al., 1996), metam sodium (Cone et al., 

1994, and Macalady et al., 1998) and chloropicrin (Gan et al., 2000) necessitate the search 

for more efficient, eco-friendly, and durable alternatives. 
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Ozone Characteristics and Potentials in Disinfection 

Ozone is a potent oxidant with strong germicidal properties, and it has been 

implemented successfully against numerous pathogens including viruses, bacteria, fungi, 

protozoa and metazoa (Cullen et al., 2009; Finch and Fairbairn, 1991; Khadre et al., 2001; 

Mun et al., 2009; Orta de Velásquez et al., 2002 and 2004; Ramírez-Cortina et al., 2005; 

Restaino et al., 1995). It is often used to disinfect drinking water and wastewater (Van 

Leeuwen, 1996; Van Leeuwen et al., 2003), and disinfest ships ballast water (Oemcke and 

van Leeuwen, 2004 & 2005) due to its oxidizing properties. Ozone has also been applied in 

mold prevention on stored corn (White et al., 2010), and in the degradation of mycotoxins 

(Tiwari et al., 2010). Mycotoxins are toxins produced by stored-grain pests and are “known 

to exhibit carcinogenic, teratogenic, immunosuppressive properties and cause several 

physiological disorders both in humans and animals” (Fung and Clark, 2004; Leung et al., 

2006; Mally and Dekant, 2009; Stockmann-Juvala and Savolainen, 2008; Wu et al., 2009). 

Postharvest processing of fruits and vegetables with ozone gas or ozonated water inactivates 

pathogens and spoilage microorganisms (Cullen et al., 2009). Sarig et al. (1996) work 

indicates that postharvest treatment of fresh fruit (e.g. table grapes) with ozone decreases 

fungal deterioration caused by Rhizopus stolonifer and increases shelf-life. Scanning electron 

microscopy showed that ozone causes damages to the surface of Toxocara canis ova, a 

nematode parasite of dogs and other canines (Ooi et al., 1998). It is also capable of diffusing 

across bacterial membranes and reacting with cytoplasmic biomolecules, such as DNA, 

which results in cell death (Ishizaki et al., 1987). Micrographs of transmission electron 

microscopy of ozone-treated Bacillus spores showed degradation of the outer spore coat 

layers, thus exposing the core to further oxidation by ozone (Foegeding, 1985; Khadre and 
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Yousef, 2001). Furthermore, ozone reacts with biomolecules such as proteins, carbohydrates 

and polyunsaturated fatty acids bound to albumin, dyes, and is involved in lipid peroxidation 

(Bocci, 2005; Zhu et al., 2013). 

Ozone has been approved by the American Food and Drug Administration for direct 

use in human food as it was affirmed as Generally Recognized as Safe-GRAS (Graham, 

1997), as well as in drugs, cosmetics and also as compounds in food contact materials such as 

cutting boards and other surfaces that come in contact with unprotected food (Kobayashi et 

al., 2011). In addition, ozone is listed by the National Organic Program under the list of “The 

National List of Allowed and Prohibited Substances” with code (§205.605) referring to: 

“Nonagricultural (nonorganic) substances allowed as ingredients in or on processed 

products labeled as “organic” or “made with organic (specified ingredients or food 

group(s))”” (National Organic Program, 2005). In contrast to other disinfection methods and 

conventional pesticides used in soil fumigation, postharvest fruit and vegetable processing 

fumigants, stored-grain pest treatments, and other pesticide applications, such as methyl 

bromide and other fumigants, the use of ozone as a disinfection method has the advantage 

that it does not produce pollutants, because its rapid decomposition only produces oxygen. In 

addition, ozone has a short half-life in soil of an order of minutes, because it decomposes 

quickly into oxygen, and results in low persistent chemicals in the soil after reacting with soil 

components (Takayama et al., 2006). 

Sopher et al. (2002), reported the successful use of gaseous ozone for soil fumigation 

in increasing plant yield and minimizing the damaging effects of soil pathogens for a range 

of crops and soils under different climatic conditions. They reported that positive effects of 

preplant ozone application, might be due to the decrease in soil pathogen populations and 

http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&rgn=div5&view=text&node=7:3.1.1.9.32&idno=7#7:3.1.1.9.32.7.354
http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&rgn=div5&view=text&node=7:3.1.1.9.32&idno=7#7:3.1.1.9.32.7.354
http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&rgn=div5&view=text&node=7:3.1.1.9.32&idno=7#7:3.1.1.9.32.7.354.6
http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&rgn=div5&view=text&node=7:3.1.1.9.32&idno=7#7:3.1.1.9.32.7.354.6
http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&rgn=div5&view=text&node=7:3.1.1.9.32&idno=7#7:3.1.1.9.32.7.354.6
http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&rgn=div5&view=text&node=7:3.1.1.9.32&idno=7#7:3.1.1.9.32.7.354.6
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increased nutrient availability. However, they recommended further studies to accurately 

predict specific responses achieved from ozonation under different soils, plants, and 

environmental factors (crops, soils, pathogens and climatic conditions). In contrast to other 

disinfection methods and conventional fumigants used in the treatment of soil pathogens, 

namely MeBr, metam sodium, and chloropicrin, the use of ozone as a disinfection method 

has the advantage because it is environmentally friendly and not a source of pollution. 

Matsuo (1993), reported that the treatment of nutrient solution with 0.25 mg/L of 

ozone for hydroponic cucumber culture was considerably effective in reducing germination 

of F. oxysporum f.sp. cucumerinum microconidia, while a concentration of 0.4 mg O3/L 

completely inhibited the germination of fungal spores. In another study evaluating gaseous 

ozone for inactivating mixtures of non-specified spores and mycelia of fungi in malting 

barley, Allen et al. (2005), showed that 96% of fungi were inactivated at a dosage of 0.1 mg 

O3 g
-1 barley min-1 for 5 min, without affecting germination of the barley. The referenced 

research on hydroponic nutrient solutions treatment of F. oxysporum with ozonated water 

showed the need for further research to optimize the ozonation procedure. Further 

investigation in this is needed particularly the optimization of the ozonation procedure 

regarding the effects of temperature, rate of ozonation, and gas phase concentration (GPC), 

and the effect of admitting ozone gas directly to the nutrient solution in contrast to adding it 

in the form of ozonated water. 

The high oxidative power of ozone, its efficiency in inhibiting pathogens without 

leaving toxic residues in the environment, the limited research conducted on the use of ozone 

as a soil fumigant, the absence of research on ozone as an oomycete treatment, and the need 

for optimizing ozonation procedure in the treatment of hydroponic nutrient solutions and 
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greenhouse wastewaters infected with plant pathogens, had encouraged us to do additional 

research in soil fumigation targeting the oomycete Phytophthora sojae, and in the 

optimization of ozone treatment of Fusarium oxysporum in water suspension, as a model of 

treatment of hydroponic nutrient solution and agricultural wastewater collected from 

drainage ditches. In addition, soil ozonation for nematode treatment was added to the 

research to broaden the targeted spectrum of soil pathogens. 

Accordingly, the objectives of the current research are: For P. sojae, to investigate the 

use of gaseous ozone in suppressing the disease caused by this pathogen in soil assay, as a 

model Phytophthora pathogen that affects a wide range of high-value crops. For F. 

oxysporum (i) to test the effect of varying dosages of ozone on the viability of F. oxysporum 

spores in suspension, (ii) to compare the effect of ozone gas-phase concentration, i.e. when 

ozone is produced from either oxygen (high GPC) or air (low GPC) on the viability of F. 

oxysporum spores, and (iii) to evaluate the effect of ozone on the viability of F. oxysporum 

spores in suspension at either 5ºC or 21ºC. For nematode, to evaluate, on bench scale, (i) the 

effect of varying dosages of ozone on the viability of nematodes in the soil, and (ii) the 

efficacy of soil ozonation in nematode treatment at low temperature. 

 

Research Objectives and Dissertation Organization 

 

Nematodes 

Plant parasitic nematodes are microscopic, nonsegmented roundworm parasites that 

live in soil and attack the plants through their roots. Nematodes feed on the nutrients found in 

the plant roots and vascular tissues, thus weakening the plant and leading to decreased yields. 
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An international survey determined annual crop losses due to nematodes as follows: cotton, 

10.7%; peanut, 12%; wheat, 7%; and soybean, 10.6% (Sasser and Freckman, 1987). 

Nematodes can cause up to 75% yield loss in some crops, in addition to vectoring plant 

viruses and creating root wounds through which other pathogens can enter (Barker and 

Koenning, 1998). In 2000, global production losses to nematodes were estimated at US$ 121 

billion, $9.1 billion of which in the United States (Chitwood, 2002). Most nematicides are 

broad-spectrum, highly volatile fumigants, able to move in the soil and reach nematodes in 

their confinement. Most of the efficient volatile nematicides were deregistered (e.g. ethylene 

dibromide and dibromochloropropane, Chitwood, 2002), because they were correlated with 

environmental degradation and human health risks. 

Currently, there are only a handful of chemicals registered for pre-plant nematode 

control (Duniway, 2002 and Martin, 2003). The most important remaining nematicide used is 

methyl bromide (MeBr). Many commodities have become dependent on MeBr for nematode 

control, which necessitates identifying effective alternatives (Carpenter et al., 2000). Zasada 

et al., (2010) believed that it would be too difficult to manage phytoparasitic nematodes 

without MeBr. However, given the pesticidal ozone characteristic, it would be a justified 

choice as potential alternative to MeBr in the control of nematodes. To our knowledge, no 

previous research has used ozone targeting soil nematodes. The use of nematicides is 

prohibited within 100 feet of drinking-water wells to protect groundwater from potential 

contamination (U.S. EPA, 2001), while ozone could be used safely near groundwater bodies. 

Hence, this encouraged us more to investigate its nematicidal efficacy. 
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Phytophthora sojae 

Phytophthora is the name of an important phytopathogen that means literally “plant 

destroyer”. With more than 80 species, Phytophthora is an oomycete that attacks a wide 

range of agriculturally-important plants, and results in billions of dollars in losses worldwide 

each year (NSF Current, 2013). Phytophthora infestans was behind the famous Irish famine 

in 1840’s, which destroyed all potato production as a result of potato late blight. P. infestans, 

the most investigated Phytophthora spp, causes enormous losses in potato fields with 

estimations of US$3 billion in losses annually worldwide, in spite of the use of fungicides 

and resistant varieties, because the pathogen in many instances has adapted quickly and 

become resistant (Duncan, 1999). P. sojae is one of the important species of Phytophthora. It 

can infect soybeans at all growth stages and causes seed rot, pre- and post-emergence 

‘damping off’ and root and stem rot of older plants, with an annual cost worldwide of US$1–

2 billion (Tyler, 2007). Seedlings infected with P. sojae show lesions anywhere between the 

root, hypocotyls and cotyledon, turn brown, wilt, and die (Dorrance et al., 2008). The 

estimated reduction in soybean yield due to P. sojae in 1994 was 560,300 metric tons, and 

mild symptoms, referred to as hidden damage, may reduce yield by as much as 40% 

(Schmitthenner, 2000; Schmitthenner and Bhat, 1994). 

Chemical fungicides that are mostly used in the control of Phytophthora spp. in high-

value crops are metalaxyl, mefenoxam, phosphite, fosetyl-al, and soil fumigants i.e. methyl 

bromide, metam sodium and chloropicrin. The development of resistance to metalaxyl (Dahl 

et al, 1995; Dowley and O’Sullivan, 1985; Sankaran et al., 2008), and to mefenoxam 

(Lamour and Hausbeck, 2001; Mathia, 1999; Parra and Ristaino, 1998; Pennisi et al., 1990), 

the limited efficiency in disease control of fosetyl-al (Browne et al., 1999) and phosphite 
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(Forster et al., 1998), and the environmental repercussions of these fungicides and of soil 

fumigants, especially MeBr (Gan et al., 1994; Gushee 1996; Yagi et al., 1993; Yates, 1996), 

metam sodium (Cone et al., 1994; Macalady et al., 1998) and chloropicrin (Gan et al, 2000) 

necessitate the search for more efficient, eco-friendly, and durable alternatives to control the 

“plant destroyer” especially for high-value crops. 

Furthermore, the economic importance of Phytophthora, and the need for efficient 

and environmentally safe alternatives to the use of fungicides used in its control, has justified 

the choice of P. sojae as one of the three targeted pathogens in this research. To our 

knowledge, no previous research has tried ozone against an oomycete. 

 

Fusarium oxysporum 

Fusarium wilt, caused by Fusarium oxysporum, is one of the most widespread and 

destructive diseases of many major ornamental and horticultural crops (Bowers and Locke, 

2000). Currently, the major control practices adopted to control wilts and other soilborne 

pathogens on high-value crops (such as ornamental cut-flowers and greenhouse crops) are 

preplant soil fumigation and fungicide applications. For field crops, control measures 

adopted for Fusarium wilt diseases are limited to planting resistant cultivars; However, in 

some cases more virulent races of the pathogen have developed and therefore necessitated 

the continued development of new resistant cultivars to the new pathogen race (Mace et al., 

1981). Because Fusarium spores remain viable in water, spores leached out of contaminated 

soil into drainage ditches, ponds and other water bodies used later in irrigation, can 

indefinitely be a source of inoculum (Ratting, 1977). This is particularly important in the case 

of water aggregation bodies (ponds and ditches) used in crop irrigation, or to treat the 

agricultural wastewater aggregating in drainage ditches of small-scale high-value crops, and 
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in hydroponic cultures where contaminated nutrient solution is reused. According to Song et 

al. (2004), Fusarium wilt is the most serious soilborne disease in hydroponic cultivation 

systems. F. oxysporum is highly virulent in hydroponic greenhouses because it spreads easily 

through the nutrient solutions (Sutton et al., 2009). 

With the growing environmental and health concerns over chemical pesticides, water 

scarcity and the need to treat agricultural wastewaters contaminated with pathogens to be 

safely reused, the increasing demand for residue-free produce, and the current trends towards 

organic farming, the search for efficient fungal control methods that address these concerns 

and needs has become of high importance. In contrast to other disinfection methods and 

conventional fungicides used in the treatment of F. oxysporum in hydroponic cultures, such 

as prochloraz and carbendazim, ozone appears to be an effective method at reducing viability 

of Fusarium (Kottapalli et al., 2005) without generating toxic residues in the environment.  

The economic importance of F. oxysporum especially in hydroponic cultivation 

systems, and the need for environmentally safe alternative treatments to the currently adopted 

fungicides, made it a justified choice as a target for treatment optimization with ozone. 

 

Ozonation 

The measurement of absorbed ozone by samples was done by the iodometric wet-

chemistry method (IOA, 1987). This method is based on the principle that iodide ion is 

oxidized by ozone to form iodine, as the carrier gas is bubbled through a solution of KI. 

When bubbling is stopped, the KI solution pH is adjusted with sulfuric acid to pH 2, in order 

to complete the reactions. The liberated iodine is reduced with a standardized 0.1N sodium 

thiosulfate titration to an endpoint using a starch indicator. The mass of ozone reacted is 
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determined based on a theoretical ozone/iodine stoichiometry of 1.0. The reactions of iodine 

liberation by ozone and its titration with sodium thiosulfate are described as follows: 

Iodine liberation reaction: 

O3 + 2I- + H2O = I2 + O2 + 2(OH)- 

Titration reaction: 

I2 + 2S2O3
2- = 2I- + S4O6

2- 

For each O3 molecule reacting with two of KI, 2 molecules of sodium thiosulfate are 

needed in the titration to the endpoint. Knowing the amount of Na2S2O3 used, we could 

deduce the amount of O3 that reacted with iodine by the multiplication with a factor of molar 

weight comparison as follows: 

The sodium thiosulfate pentahydrate (Na2S2O3-5H2O) used has a molar mass of 

248.18. The mass of Na2S2O3-5H2O 0.1N per ml titration is: 248.18 x 10-1 x 10-3 = 0.02482g. 

The molar mass of ozone is 48, hence the mass of ozone (corresponding to the titrated 

amount of Na2S2O3-5H2O) could be calculated by multiplying the volume of titrated 

Na2S2O3-5H2O by a factor of: 0.02482 x 2 x 48 ~ 2.4. 

Before each experiment, measurement of the rate of ozone generation is tested with 

this method and noted, as the factors affecting the rate of ozone generation may fluctuate. 

Knowing the amount of ozone (A) initially generated and subtracting the amount of 

unreacted ozone (B) determined by the KI method described above and multiplying by the 

factor of 2.4, the reacted amount of ozone (C) could be calculated using the following 

formula: 

C = [(A – B) x 2.4]/V 

Where: V = volume of sample in liters - A and B are in mgO3 - C is the calculated 

ozone dosage in mg/L. 
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Ozone Generator and Accessory Equipment Cost Breakdown 

Ozone generators are available in different sizes and capacities according to the need. 

A medium-sized oxygen-source ozone generator with ozone output 5 kg O3/h, costs $168,000 

including generator price at source ($85,000), freight ($2,000) and import duties ($2,000), 

3% insurance, 20% pipework, venturis and air drying equipment, 50% engineering, 

construction and power supply, and 2% maintenance. 

 

Dissertation Organization 

The dissertation is organized in five chapters, including a general introduction with a 

literature review, three papers and a conclusions chapter. Each of the papers tackles research 

on one of the three pathogens tested: Nematodes, Phytophthora sojae and Fusarium 

oxysporum. 
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Abstract 

Phytoparasitic nematodes are important pests that cause severe crop yield losses. In 

the past, chemical compounds have been used as management practices but these practices 

are not environmentally sustainable. Ozonation was studied as an alternative management 

practice since it is highly effective against microorganisms and degenerates quickly to 

oxygen. Soil samples that were naturally infested with nematodes were treated with different 

levels of gaseous ozone at 21 ºC and 5 ºC. A medium level of ozonation (2.1 g O3 kg-1 for 10 

min at a rate of ozonation 0.21 g O3 kg-1min-1) and low temperature (5 ºC) resulted in 96% 

nematode inhibition. Regression analysis showed that nematode viability was a function of 

the level of ozonation (P = 5.1E-07) and the soil temperature (P = 4.4E-08; Adjusted R-

square = 0.65). These data imply that ozone may be an efficient and sustainable alternative to 

nematicides and the fumigant methyl bromide in the treatment of nematodes in the soil. 

Additional keywords: ozone, soil ozonation, nematodes, sustainability, methyl 

bromide alternatives, nematicides alternatives. 
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Introduction 

Plant-parasitic nematodes are microscopic, nonsegmented roundworm parasites that 

live in soil and attack the plants through their roots. Endoparasitic nematodes infect and 

colonize the roots of plants (e.g. lance, root-lesion, and root-knot) while ectoparasitic 

nematodes remain outside of the root tissue, (e.g. dagger, needle, spiral, sting, stubby root 

and stunt).  Nematodes feed on the nutrients found in plants roots and vascular tissues, 

weakening the plant and leading to decreased yields. An international survey determined 

annual crop losses due to nematodes as follows: cotton, 10.7%; peanut, 12%; wheat, 7%; and 

soybean, 10.6% (36). Nematodes can cause up to 75% yield loss in some crops, in addition to 

vectoring plant viruses and creating root wounds through which other pathogens can enter 

(3). In 2000, global production losses to nematodes in all crops were estimated at US$ 121 

billion, $9.1 billion of which in the United States (8). 

Phytoparasitic nematodes survive in the soil or in plant roots, and active nematode 

stages are more susceptible to nematicides than resting stages (11,21). Most systemic 

nematicides are needed in high concentrations (e.g. 1000 ppm of Vydate) to control 

nematodes within plant roots, which is impractical under field conditions (11). Hence, it is 

difficult to deliver a nematicide in efficiently sufficient concentration directly in contact with 

nematodes within plant roots and root surroundings. Total eradication of nematode 

populations with a nematicide or fumigant is difficult to achieve due to the heterogeneous 

nature of soil that offers protection to some individuals or ova (8). However, management 

should be aimed at inhibiting or deactivating the number of phytoparasitic nematodes in the 

soil below their economic threshold. Most nematicides are broad-spectrum, highly volatile 

fumigants, that are able to move through the soil pores. Many of the most efficient volatile 
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nematicides have been deregistered (e.g. ethylene dibromide and dibromochloropropane) (8), 

because they were associated with environmental and human health risks. Ethylene 

dibromide was the most abundantly used nematicide in the world, until 1983 when it was 

prohibited in the United States because of groundwater contamination and possible 

carcinogenicity (13,23). Similarly, 1,3-dichloropropane was prohibited because it was 

classified as a probable carcinogen (1) while 1,2-dibromo-3-chloropropane (DBCP) was 

suspended in the U.S in the late 1980s because it was found to cause male infertility and was 

a probable carcinogen (40). Carbamates used as nematicides (i.e. aldicarb, carbofuran and 

oxamyl) are highly toxic to humans and animals (1), and organophosphates (ethoprop, 

fenamiphos, cadusafos, fosthiazate and phorate) have been reviewed by the U.S. EPA and 

several were withdrawn from use (24). Some nematicides, however, have recently undergone 

re-registration eligibility decisions (REDs) by the U.S. Environmental Protection Agency 

(44). These include, metam sodium that has limited efficiency in controlling nematodes in 

some circumstances (9,13,18), and the fumigants chloropicrin, metam-potassium, and 

dazomet.  

Currently, there are only a handful of chemicals registered for pre-plant nematode 

control (10,19). The most important remaining nematicide, methyl bromide (MeBr), was the 

fourth most abundantly used pesticide in the U.S. in 1997 (1), is now under phaseout due to 

its degradation of the stratospheric ozone layer. Many commodities have become dependent 

on MeBr for nematode control, which necessitates identifying effective alternatives (7). 

Zasada et al. (53), believed that it would be too difficult to manage phytoparasitic nematodes 

without MeBr. Methyl bromide is an effective pre-plant soil fumigant used to control soil 

pests (weed seeds, nematodes, insects, fungi, bacteria and viruses) (31), in many high-input, 
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high-value crops in U.S. agriculture, including vegetables, nursery plants, ornamentals, tree 

fruits, strawberries and grapes (53). This broad-spectrum pest control, along with its higher 

efficacy compared to other fumigants (20), and its volatility that enables it to penetrate 

treated soil sufficiently (10), has made some crop production systems highly MeBr-

dependent, e.g. strawberries and fresh market tomatoes, and led to reductions in crop rotation 

and in diversification of production practices (6). Approximately 25,000 to 27,000 ton of 

MeBr was still applied annually between 1990 and 1994 (42), with more than 75% of its use 

for pre-plant soil fumigation (41). In 2013, only 562 metric tons of MeBr were allowed by 

the EPA as “critical use exemption”, in compliance with the MeBr phaseout plan mandated 

by the Montreal Protocol (45) to protect the stratospheric ozone layer. 

Ozone is a potent oxidant and it has been implemented successfully against numerous 

pathogens including bacteria, viruses, protozoa and also metazoa (28,29,32,39). Ozone is 

often used to disinfect drinking water and wastewater (46,47), and disinfest ships ballast 

water (25,26) due to its oxidizing properties. Ozone has also been applied in mold prevention 

on stored corn (51,52). Scanning electron microscopy showed that ozone causes damage to 

the surface of the ova of Toxocara canis, a nematode parasite of dogs and other canides (27). 

Ozone is also capable of diffusing across bacterial membranes and reacting with cytoplasmic 

biomolecules, such as DNA, which results in cell death (16). Furthermore, ozone reacts with 

biomolecules such as proteins, carbohydrates and polyunsaturated fatty acids bound to 

albumin, dyes and is involved in lipid peroxidation (4,54). 

Ozone has been approved by the American Food and Drug Administration for direct 

use in human food, drugs, and cosmetics and also as compounds in food contact materials 

such as cutting boards and other surfaces that come in contact with unprotected food (17). In 
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addition, ozone is listed by the National Organic Program under the list of “The National List 

of Allowed and Prohibited Substances” with code (§205.605) referring to: “Nonagricultural 

(nonorganic) substances allowed as ingredients in or on processed products labeled as 

“organic” or “made with organic (specified ingredients or food group(s))”” (22). In contrast 

to other disinfection methods and conventional pesticides used in the treatment of soil pests, 

such as soil fumigants MeBr, metam sodium and chloropicrin described above, the use of 

ozone as a disinfection method has the advantage that it does not produce pollutants, because 

its rapid decomposition produces oxygen only. The use of other nematicides is prohibited 

within 100 feet of drinking-water wells to protect groundwater from potential contamination 

(43), while ozone could be used safely near groundwater bodies. 

Sopher et al. (35), reported the successful use of gaseous ozone soil fumigation in 

increasing plant yield and reducing the detrimental effects of soil pathogens in a range of 

crops and soils under different climatic conditions. They reported positive effects of preplant 

ozone application, theoretically attributed to the decrease in soil pathogens and increased 

nutrient availability. However, they recommended further studies to confirm this theory and 

predict specific responses achieved from ozonation under different crops, soils, pathogens 

and climatic conditions. Nevertheless, to our knowledge, no further studies have been done in 

this regard. 

The high oxidative power of ozone, its effectiveness in inhibiting pathogens without 

leaving toxic residues in the environment, and the limited research on ozone use in the 

domain of soil fumigation as alternative to nematicides inspired the current research. 

Furthermore, the economic importance of phytoparasitic nematodes, and the need for 

efficient and environmentally safe alternative treatments to the currently adopted fumigant 

http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&rgn=div5&view=text&node=7:3.1.1.9.32&idno=7#7:3.1.1.9.32.7.354
http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&rgn=div5&view=text&node=7:3.1.1.9.32&idno=7#7:3.1.1.9.32.7.354
http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&rgn=div5&view=text&node=7:3.1.1.9.32&idno=7#7:3.1.1.9.32.7.354.6
http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&rgn=div5&view=text&node=7:3.1.1.9.32&idno=7#7:3.1.1.9.32.7.354.6
http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&rgn=div5&view=text&node=7:3.1.1.9.32&idno=7#7:3.1.1.9.32.7.354.6
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nematicides, made treatment with ozone a realistic aim for further investigation. 

We conducted studies in the laboratory to evaluate the effect of ozone on nematode 

viability in soil samples collected from a field In Iowa. Our objectives were to evaluate (i) 

the effectiveness of different ozone doses and rates at reducing the viability of nematodes in 

the soil, and (ii) the efficacy of soil ozonation at low soil temperature (5 ⁰C) versus high soil 

temperature (21 ⁰C). 

 

Methods and Materials 

Soil samples 

Soil for this experiment was collected from the Hinds Farm (Iowa State University 

research farm, near Ames, Story County, Iowa). This soil belongs to the Clarion-Nicolett-

Webster “principal association area”, and Zenor soil series (Iowa Soil Properties and 

Interpretations Database-ISPAID). The soil was analyzed for texture and organic matter 

content and was found to contain 79% sand, 4.9 % coarse silt, 4.7% fine silt and 10.4% clay. 

The soil had low organic matter content (1.4%) and low total carbon (0.7%). 

The species composition of nematodes present in the soil was determined by 

centrifugal floatation and species identification with the aid of an inverted compound 

microscope, on four soil samples (100 g each). The soil contained an average of 225 non-

plant parasitic nematodes, 2 spiral (Helicotylenchus sp.) and 0.5 ring (Criconemoides sp.) 

nematodes per 100 g of soil. Non-plant parasitic species lack for feeding stylet, a mouth part 

necessary in plant parasitism. These nematodes belong to the group of free-living terrestrial 

nematodes, constituting 25% of all nematode species. Spiral nematode is one of the most 
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common ectoparasites that occur in corn fields and floor of forests. Damage potential of 

spiral nematode is low, with a threshold of 500 – 1000 per 100 cc soil. Ring nematode is an 

ectoparasite with a damage threshold of 100 per 100 cc soil. Accordingly, both spiral and 

ring nematodes detected were well below damage thresholds. 

Ozone treatment of soil 

Prior to ozone treatment, the soil was sieved and mixed well. Samples of 100g were 

treated with incrementally greater ozone doses (low, medium and high; Table 1) generated by 

increasing the ozone generation time (Fig. 1.a), at a flow rate of 0.1L/min. Each experiment 

consisted of 5 replicates of 100 g each: three ozonated at the same dose, and two nontreated 

control samples. Doses of ozone applied ranged from 0.39 to 3.12 g O3/kg soil. The effect of 

temperature on the efficacy of ozone to reduce the viability of nematodes was also tested. 

Two temperatures (5ºC and 21ºC) were tested for each ozone dose. For experiments at 5 ºC, 

soil was kept in a refrigerator at 5 ºC until the ozonation experiments. After ozonation, the 

five subsamples were soaked in Baermann funnels (Fig. 1.b) (51) at room temperature. Since 

only viable nematodes migrate down through the soil sample, penetrate the filter and fall 

down into the distillate, nematode viability was easily determined by comparing nematode 

counts in the treated and untreated (sub) samples in the distillate after 24 h and 48 h. 

Nematodes were counted with the aid of an inverted compound microscope (Fig. 1.c) at x40 

magnification. Viability was determined as the total number of nematodes in the treated 

sample divided by the total number of nematodes in the control samples as a percentage. The 

experiment was repeated twice as shown in the experimental design (Table 1). 
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Table 1. Experimental design with number of subsamples and replications per ozone level, 

dose, time of ozonation, rate of ozonation and temperature. 

Temperature 

(ºC) 

Level of 

ozonation 

Dose                  

(g O3 kg-1 soil) 

Time 

(min) 

Rate                  

(g O3 kg-1min-1) 

Samplesa  

x Reps. 

5 (ºC) 

Low 

0.6 5 0.14 5 x 2 

0.8 5 0.16 5 x 2 

0.9 5 0.17 5 x 2 

Medium 

1.4 7.5 0.19 5 x 2 

1.9 7.5 0.26 5 x 2 

2.1 10 0.21 5 x 2 

High 

2.5 13 0.19 5 x 2 

2.5 13 0.19 5 x 2 

3 15 0.20 5 x 2 

3.2 15 0.21 5 x 2 

21 (ºC) 

Low 

0.4 1 0.39 5 x 2 

0.4 1.5 0.29 5 x 2 

0.6 2 0.31 5 x 2 

0.7 2 0.35 5 x 2 

Medium 

1.1 4 0.27 5 x 2 

1.1 5 0.22 5 x 2 

1.5 7.5 0.19 5 x 2 

1.5 7.5 0.19 5 x 2 

High 
2.2 8.75 0.25 5 x 2 

3.5 15 0.23 5 x 2 

a Each experiment consisted of 5 subsamples (100 g soil each), three subsamples were ozonated and two 

controls. Then, the experiment was repeated twice. 

       

 

 

 

 

 

 

 

a b 
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Figure 1. a. Ozone generator, reactor, and sample ozonation. b. Soaking of samples after 

ozonation in Baermann funnels for 24 h and 48 h. and draw-off of the filtrate to collect viable 

nematodes for counting and assessment of treatment c. Nematode counting with a dissecting 

microscope at x40 magnification. 

Ozonation 

The ozone generator used was a 1000BT-12 Triogen Model TOG C2B,–generating a 

maximum of 1g O3/h from pure oxygen by corona discharge, where the conversion of 

oxygen to ozone occurs in a tubular cell excited by a high-voltage potential. The reactor was 

made of glass (Fig. 1.a), and all tubing was made of silicone material. The operating volume 

in the reactor was 250 cc. In each test the ozone flow rate per min was maintained at 1L min-

1L-1 gas-flow/liter volume of soil sample (34). The excess and unreacted ozone was captured 

in a solution of 2% potassium iodide (KI). The amount of absorbed ozone by the soil sample 

was measured by the iodometric wet-chemistry method (15). Well-established, standardized 

methods for ozonation and ozone measurement were used (15). 

 

 

c 

b 
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Data analysis 

Mean percent viability for each ozone level was calculated and data were analyzed 

using RStudio software (RStudio, Inc., Boston, Massachusetts). Data is clustered in three 

ozone levels: low (0.12 – 0.16 g O3 kg-1 s-1), medium (0.25 - 0.31 g O3 kg-1 s-1) and high (0.57 

- 0.62 g O3 kg-1 s-1), representing each an average of Dose*Rate of about 30 samples with a 

marginal standard error. Dose*Rate is an interaction factor combining ozone dose in grams 

of ozone per kilogram of soil, and the rate of ozone generation in grams of ozone per 

kilogram of soil per second, indicating the speed of ozone generation and feeding the sample. 

Comparison of means between levels at different temperatures was done by Student’s t-Test: 

two-sample assuming unequal variances at 95% confidence interval. 

To quantify the effects of ozonation levels and temperature on nematode viability, a 

multiple regression analysis was conducted and a linear regression model was obtained. 

 

Results 

Before processing the linear regression model analysis, the distribution of data and 

homogeneity of variance were checked and found normally distributed. 

ANOVA table (Table 2) shows each factor significance in the linear model. 

Table 2. Regression statistics and ANOVA, showing the significance of ozonation level 

(Dose*Rate) and temperature on nematode viability. 

Regression Statistics 

Multiple R 0.814871638 

R Square 0.664015787 

Adjusted R Square 0.646785827 
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Table 2 continued  

ANOVA  Coefficients Standard Error t Stat P-value 

Intercept 14.11445702 2.305026305 6.123338805 3.49072E-07 

Temperature 1.058978269 0.156333081 6.773859128 4.38677E-08 

Dose*Rate -32.70057066 5.445014351 -6.005598618 5.08697E-07 

 

Regression analysis shows that both the level of ozonation (Dose*Rate) and 

temperature are significantly important in affecting nematode viability. The regression model 

explaining the relation between nematode viability and the two factors (Temp. for 

temperature and O3-Level for Dose*Rate) is: 

Viability = 14 + 1.06 Temp. – 32.7 O3-Level. 

Nematode viability was reduced with ascending ozone levels (P=5.08697E-07) and 

decreasing temperature (P=4.38677E-08). Ozonation at 5 ºC was more effective than at 21 ºC 

(Tables 2, 3). At low ozone levels, viability of nematodes was reduced 61% compared with 

82% at 21 ºC and 5 ºC, respectively. At medium ozone levels, nematode viability was 

reduced by 76% compared with 96% at 21 °C and 5 ºC respectively, and at high levels, it was 

reduced by 85% at 21 °C compared to 97% at 5 ºC. 

Table 3. Effect of soil ozonation at different Doses*Rates on nematode viability 

in soil samples collected from a corn field in central Iowa at 21 ºC and 5 ºC 

Levelx 

 

Dose*Ratey  

(g O3 kg-1 s-1) 
Temperature (⁰C) 

Viabilityz  

(%) 

Low 0.12 ( 0.06) 5 18 (8) a 

Medium 0.31 (0.05) 5 4 (3) b 

High 0.62 (0.05) 5 3 (1) b 
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Table 3 continued   

Low 0.16 (0.03) 21 39 (6) c 

Medium 0.25 (0.04) 21 24 (5) d 

High 0.57 (0.12) 21 16 (1) a 

x Each level (low, medium and high) represents an average of Dose*Rate of 30 samples. 

Values are presented by the average followed by the standard error in parenthesis. 
y Dose*Rate is an interaction factor combining ozone dose in grams of ozone per kilogram of 

soil, and rate of ozone generation in grams per second (indicating the speed of ozone 

generation and feeding the sample). 
z Viability of nematodes was evaluated as the percent of nematodes in treatment distillate in 

comparison with the count in control samples. Mean viability followed by the standard error 

in parenthesis are followed by a letter (a, b, c, d). Values followed by the same letter were not 

significantly different (P > 0.05) by “t-Test: two sample assuming unequal variances”. 

Detailed means comparison and p-values are shown in table 4. 

 

Table 4. P values of means comparison using a t-Test: two-sample assuming unequal 

variances (REF) between three ozonation levels at 5 ⁰C and 21 ⁰C 

P(T<=t) 

two-tail 

Low  

(5 ⁰C) 

Medium  

(5 ⁰C) 

High  

(5 ⁰C) 

Low  

(21 ⁰C) 

Medium  

(21 ⁰C) 

High  

(21(21 ⁰C) 

Low  

(5 ⁰C) 
----------- 0.000009 0.000003 0.005 0.055 0.209* 

Medium  

(5 ⁰C) 
0.000009 ---------- 0.21* 0.00457 0.003 0.000012 

High  

(5 ⁰C) 
0.000003 0.21* ----------- 0.0039 0.00268 0.0009 

Low  

(21 ⁰C) 
0.005 0.00457 0.0039 ---------- 0.021 0.020 

Medium  

(21 ⁰C) 
0.055 0.003 0.00268 0.021 ---------- 0.0496 

High  

(21 ⁰C) 
0.209*  0.000012 0.0009 0.020 0.0496 ---------- 

*P-value higher than 0.05, with no significant difference between groups. 

Temperature had significant effect on treatment (P << 0.05). Ozonation at 5 ºC was more 

efficient than at 21 ºC at inhibiting nematodes. 

Level of ozonation had significant effect on treatment ((P << 0.05). Ozonation was more 

efficient at ascending levels at inhibiting nematodes. 
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The optimal treatment with ozone was obtained at a medium level of ozonation (a 

dose of 2.1 g O3 kg-1 soil for 10 min at a rate of 0.21 g O3 kg-1min-1) and low temperature 

(5 ºC) which resulted in 96% nematode inhibition. A higher dose of ozone did not result in a 

significantly important reduction in nematode viability. More than 50% of nematodes were 

inhibited at the lowest ozonation level applied (a dose of 0.4 g O3 kg-1 soil for 1 min at a rate 

of 0.14 g O3 kg-1min-1, at 21 ºC) (Table 1, 3). 

It was noticed that the collected filtrate from treated samples was yellow in color 

(Fig. 2), unlike that from untreated samples that was colorless. 

 
Figure 2. Filtrates from ozonated (yellow) and control (colorless) samples collected after 

24 h soaking in Baermann funnels. 

In order to investigate this observation, ozonated soil samples were analyzed for pH 

and the main oxidizable elements: P (Mehlich-3 extraction, showing P in its bioavailable 

form), Zn, Fe & Mn (analyses of the bioavailable forms by DTPA extraction method). 

Results did not show any correlation between ozonation dose (expressed in time of ozonation 

in min. and in dose in g O3 kg-1 soil) and any of the analyzed parameters (Table 5). 

Table 5. Effect of ozone in ascending doses on the soil pH and the release of bioavailable 

forms of P, Zn, Fe and Mn 
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Time of 

ozonation 

Dose 

(g O3 kg-1 soil) 

pHa M-3 Pb 

(ppm) 

DTPAc-

Zn (ppm) 

DTPAc-Fe 

(ppm) 

DTPAc-

Mn (ppm) 

control 0 7.90 34 0.5 16 116 

10 min 0.5 7.75 38 0.9 24 24d 

13 min 0.7e 7.70 37 0.8 21 141 

15 min 0.8e 7.80 33 0.7 17 115 

17 min 1.1e 7.80 38 0.7 20 123 

20 min 1.2e 7.80 37 0.7 22 24d 

25 min 1.4e 7.80 36 0.7 21 42d 

a The soil ozonation did not show a correlation between ozone doses and variation in soil pH. 
b Bioavailable form of phosphorous in response to ozonation was measured with the 

Mehlich-3 method, and showed no correlation between ozone dose and M-3 P. 
c Bioavailable forms of zinc, iron and manganese in response to ozonation were measured 

using the DTPA extraction method. No correlation was detected between ozone dose and the 

variations in DTPA forms of Zn, Fe or Mn. 
d Differences between DTPA-Mn numbers are of an order of ppm. This is a normal and non-

significant difference between soil samples from the same soil. 
e Difference in dosage increase in response to the same increase in ozonation duration (2 

min) is due to the difference in ozone absorption by the soil samples. This fluctuation 

depended on how tightly submerged the ozone diffuser was in the soil sample. Doses 

presented are averages of dosage measurements of 12 replicates of the same ozonation 

duration. 

 

Discussion 

The overall results of this study clearly indicate that ozonating soil infected with 

nematodes at a medium level at 5 ºC is sufficient to kill 96% of the nematodes. Also, 

ozonation at a low temperature (5 ºC) was more efficient at killing soil nematodes than at a 

high temperature (21 ºC), which favors the application of this treatment at the beginning of 

the growing season. Experiments showed that more than 50% of nematodes were inhibited at 

the lowest level of ozonation executed at either temperatures (Table 3). Accordingly, this 

level of disinfection might be enough to reduce the nematodes viability below damaging 
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thresholds, without harming the soil biotic balance. Biotic balance is a crucial factor in 

maintaining the soil health and productivity, and non-plant parasitic nematodes and other 

beneficial microorganisms play an essential role in maintaining that through organic and non-

organic nutrients recycling, and by competing with -and suppressing, plant parasitic 

microorganisms. Hence, it is not recommended to use unnecessary higher ozone doses in the 

control of soil nematodes. 

Ozone was more efficient at reducing nematode viability at lower temperature, which 

is similar to that reported by Patil et al. (30). This is attributed to the increasing ozone 

solubility ratio with decreasing temperature (2), and the slower ozone decomposition at lower 

temperature (33). Hence, ozone is more stable at 5ºC, which prolongs its activity at oxidizing 

and inhibiting nematodes in the soil. Consistent with these physico-chemical ozone 

properties, the current study confirms a higher efficacy at a lower temperature. This effect of 

temperature efficacy does not occur with many nematicides (e.g. EDB and 1,3-D), (38) and 

fumigants (MeBr) (12), which is an advantage for ozone use, because nematicides are usually 

applied at the beginning of the growing season, when temperatures are usually below optimal 

soil temperature range for nematode development and multiplication (21 ºC to 27 ºC). This 

qualification is an advantage over nematicides and other gas fumigants, because these latter 

are less efficient at low temperatures. 

The results in Table 5 do not show any correlation between ozonation dose or time 

and the analyzed soil parameters (pH, Me-3 P, and DTPA- Zn, Fe, & Mn) in response to 

ozonation, which does not prove the theory of Sopher et al. (35) of increased nutrient 

availability by soil ozonation. A plausible explanation of the yellow coloration of ozonated 

soil filtrate might be the oxidation of soil organic matter. By oxidizing soil organic matter, 
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the organic carbon content transforms from humine to humic acid then to fulvic acid, which 

might explain the yellowish coloration of the filtrate. Fulvic acid is the most soluble and 

mobile form of organic carbon, and the most active form in chelating nutrients and rendering 

available to plants. Hence, this could partially confirm Sopher et al. (35) theory, since fulvic 

acid ameliorates the soil physical-chemical properties and increases plant productivity as a 

consequence. The soil we used in this experiment is sandy with low organic matter content 

(Table 1). Ozone is known to be able to selectively oxidize colored matter and cause color 

changes (48, 49). 

Fumigants diffusion is faster in coarse-textured soil with high moisture (5), and these 

become less efficient in soils with high organic matter content (35). Organic matter and 

metals increase the ozone demand because they are oxidizable. Hence, higher ozone doses 

will be required than in this research to reach similar nematode inhibition rates in heavier 

soils with higher organic matter and metal contents. 

This study was not species-specific, since the observations were assessing the 

aggregate number of nematodes inhibited by the treatment unselectively amongst species. 

Therefore, further experimentation with species specificity is recommended, taking in 

consideration the significance of nematode inactivation by species. In addition, although the 

soil that was used in this research did not include significant numbers of phytoparasitic 

nematodes, the high efficiency of ozone in inactivating non-parasitic nematodes could be an 

indicator for comparable effect on plant-parasitic nematodes as well. Hence, this could be a 

plausible confirmation of Sopher et al. (35) assumption that the increased crop yield after soil 

ozonation was attributed in part to a decrease in soil pathogens by ozone. 
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Since ozone does not leave toxic residues, and given that low doses are required to 

inactivate nematodes by half, which would control the nematodes without harming the soil 

biotic balance, ozonation could be used as a sustainable alternative to the conventional 

treatments that have been used to manage nematodes and other soil pathogens. Thus it could 

play an important role in organic agriculture. Furthermore, due to the complexity of ozone 

generation systems required in field application and the difficulty of bringing big ozone 

generators on site, the application of this technique is limited to small crop-lands. Lands that 

are suitable for soil ozonation are those usually treated with gas fumigants, (e.g. MeBr), 

namely high-value crops and greenhouse crops. Finally, additional research is required to 

evaluate the economic feasibility of ozonation to control soil nematodes, the species-specific 

response to ozonation, and the application of soil ozonation at the field level. 
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CHAPTER III 
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Abstract 

Ozonation was studied for inactivating Phytophthora sojae, a predominant soybean 

pathogen that causes root and stem rot, and pre- and post-emergence damping-off of 

soybean. Assays of artificially inoculated soil samples with P. sojae were treated with 

different doses of gaseous ozone. This study showed that a dosage of 0.47 g O3/kg soil, 

totally prevented root and stem rot disease symptoms caused by P. sojae. The findings of this 

research clearly indicate that ozonation is an efficient and sustainable alternative to chemical 

fungicides in the inhibition of Phytophthora diseases in the soil. 

Additional keywords: ozone, soil ozonation, soil disinfection, Phtyophthora sojae, 

sustainability, soilborne pathogens. 

 

Introduction 

Phytophthora is an important phytopathogen that means literally “plant destroyer”. 

With more than 80 known species, Phytophthora is an oomycete from the kingdom 

Chromalveolata that attacks a wide range of agriculturally-important plants, and results in 

billions of dollars in losses worldwide each year (29). Phytophthora infestans was behind the 
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infamous Irish famine in 1840’s, which destroyed all potato production as a result of potato 

late blight. Phytophthora produces several kinds of spores to survive under different soil 

conditions, the most predominant of which are (i) sporangia, asexual sac-like multinucleate 

spores, (ii) oospores, which are non-motile sexual spores specialized for survival in the 

absence of a host-plant and adverse conditions, and (iii) zoospores which are dispersal spores 

adapted to move with water, locate the host-plant, and disseminate the pathogen (17). 

Asexual spores (sporangia and zoospores) are often targeted by treatments to manage 

Phytophthora, because they represent a vulnerable phase in the pathogen life cycle. Also, 

they are exposed to the environment and have limited nutrient reserves which prevent them 

from persisting for long outside a host (17). 

P. sojae is one of the important species of Phytophthora. It can infect soybeans at all 

growth stages and causes seed rot, pre- and post-emergence ‘damping off’ and root and stem 

rot of older plants, with an annual cost worldwide of US$1–2 billion (51). Seedlings infected 

with P. sojae show lesions anywhere between the root, hypocotyls and cotyledon, turn 

brown, wilt, and die (8). Similar to the other Phytophthora species, P. sojae persists in soils 

as oospores which can survive for many years without a host, either in the crop residue or in 

the soil after the residue decomposes (51). 

Cultural practices, development of resistant varieties, organic amendments, 

fungicides and fumigants are all adopted in the control of Phytophthora diseases. However, 

each control measure has some drawback. Based on the biological knowledge of 

Phytophthora and understanding the ecological processes that could suppress the disease, the 

most important cultural practice in the control of Phytophthora diseases is the management of 

soil moisture since the pathogen’s spores disperse with free moisture and through water. 
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However, controlling soil moisture is not always manageable, like in the case of P. sojae, one 

of the predominant soybean pathogens, in production regions with poorly drained soils and 

heavy rain occurrence (14). The estimated reduction in soybean yield due to P. sojae in 1994 

was 560,300 metric tons, and mild symptoms, referred to as hidden damage, may reduce 

yield by as much as 40% (43,44). Organic treatments like composts and soil amendments, 

did not reduce soil populations of P. capsici causing pepper root and crown rot, although 

they provided some control of the disease incidence (18). The use of resistant varieties is not 

a durable solution, because the pathogen in many instances has adapted quickly and become 

resistant (10). In addition, some of the developed resistant varieties to Phytophthora do not 

possess desirable horticultural characteristics that are accepted by growers (1), or in some 

cultivars, they possess excellent horticultural characteristics combined with resistance to one 

phase of the pathogen, but do not have resistance to its other phases (5,40). Chemical 

fungicides that are mostly used in the control of Phytophthora spp. in high-value crops are 

metalaxyl (trade name Ridomil), mefenoxam (trade name Ridomil Gold), phosphite (salt of 

phosphorous acid), fosetyl-al (trade name Aliette), and soil fumigants i.e. methyl bromide, 

metam sodium and chloropicrin. The development of resistance to metalaxyl (7,9,36), and to 

mefenoxam (22,25,35,36), the limited efficiency in disease control of fosetyl-al (4) and 

phosphite (11), and the environmental repercussions of these fungicides and of soil 

fumigants, especially MeBr (13,41,55,56), metam sodium (6,23) and chloropicrin (12) 

necessitate the search for more efficient, eco-friendly, and durable alternatives to control the 

“plant destroyer” especially for high-value crops. 

Ozone is a potent oxidant and it has been used successfully against numerous 

pathogens including viruses, bacteria, protozoa, fungi and metazoa (20,27,28,33,34,39,49). 
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Ozone is often used to disinfect drinking water and wastewater (52,53), and disinfest ships’ 

ballast water (30,31) due to its oxidizing properties. Ozone has also been used in mold 

prevention on stored corn (54). Scanning electron microscopy showed that ozone causes 

damages to the surface of Toxocara canis eggs, a nematode parasite of dogs and other 

canines (32). Ozone is also capable of diffusing across bacterial membranes and reacting 

with cytoplasmic biomolecules, such as DNA, which results in cell death (16). Furthermore, 

ozone reacts with biomolecules such as proteins, carbohydrates and polyunsaturated fatty 

acids bound to albumin, dyes and is involved in lipid peroxidation (3,57). 

In contrast to other disinfection methods and conventional fungicides used in the 

treatment of soil pathogens, namely metalaxyl, mefenoxam, MeBr, metam sodium, and 

chloropicrin, the use of ozone as a disinfection method has the advantage because it is 

environmentally friendly and not a source of pollution. To our knowledge, no previous 

research has tried ozone against an oomycete. The high oxidative power of ozone, its 

efficiency in inhibiting pathogens without leaving toxic residues in the environment, the 

limited research conducted on the use of ozone as a soil fumigant, and the absence of 

research on ozone as an oomycete treatment, had encouraged us to do additional research on 

this topic. Furthermore, the economic importance of Phytophthora, and the need for efficient 

and environmentally safe alternatives to the use of fungicides, has justified the need of this 

research. 

Sopher et al. (45), reported the successful use of gaseous ozone for soil fumigation in 

increasing plant yield and minimizing the damaging effects of soil pathogens for a range of 

crops and soils under different climatic conditions. They reported that positive effects of 

preplant ozone application were due to the decrease in soil pathogen populations and 
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increased nutrient availability. However, they recommended further studies to accurately 

predict specific responses achieved from ozonation under different soils, plants, and 

environmental factors (crops, soils, pathogens and climatic conditions). Nevertheless, to our 

knowledge no further studies were conducted on this topic. 

Therefore, the main objective of this study was to investigate the use of gaseous 

ozone in controlling P. sojae in soil assay, as a model Phytophthora pathogen that affects a 

wide range of high-value crops. 

 

Methods and Materials 

Experimental investigations for this study were conducted in the environmentally 

controlled greenhouse of the Department of Horticulture at Iowa State University (ISU). Soil 

for this experiment was collected from Hinds Farm (an ISU research farm, near Ames, Story 

County, Iowa). This soil belongs to the Clarion-Nicolett-Webster “principal association 

area”, and Zenor soil series according to the Iowa Soil Properties and Interpretations 

Database-ISPAID. The soil was analyzed for texture and organic matter contents and results 

of soil analysis show that the soil texture is sandy with low organic matter and organic 

carbon content (Table 1). 

Table 1. Texture and organic matter contents of the soil used in a study to determine the 

effect of ozone on P. sojae 

Total C (%) OM (%) % SAND 
% COARSE 

SILT 

% FINE 

SILT 
% CLAY 

0.73 1.4 79.0a 4.9 4.7 10.4 

The analysis of soil shows that the soil used in the current research is sandya in texture 

constituted in 4/5 of sand, with a low organic matter (<2%) and organic carbon (0.73%) 

content. 
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Inoculum preparation 

To evaluate the effect of ozonation on P. sojae, soil was artificially infested with P. 

sojae rice inoculum, treated with ozone at various dosages, then seeded with susceptible 

soybean cultivar (Sloan), and incubated for two weeks. To prepare the soil samples, soil was 

first sterilized through autoclaving (dry heat at 170ºC for 60 min) to eliminate any undesired 

pathogens, and then the soil was artificially inoculated with rice infested with P. sojae (46). 

The isolate of P. sojae R7-2a (pathotype 1d, 2, 3a, 5, 6, 7) (acquired from Dr. Anne 

Dorrance, Department of Plant Pathology at Ohio State University) was used in this study. 

For long-term storage, the isolate was first plated on DV8++ (diluted V8 juice agar plus 

antibiotics neomycine sulfate and chloramphenicol) and after 7 days, plugs ~2mm2 of P. 

sojae mycelia were transferred to sterilized water in a tube including sterile water, at room 

temperature without the presence of any light (complete darkness). To prepare P. sojae rice 

inoculum, two-week old agar plugs of R7-2a were  transferred to rice that had been 

autoclaved twice for 45 min on two consecutive days, and incubated for two weeks at room 

temperature, with daily break of clumps that were built in the plastic bag. The rice was dried 

for two consecutive days at room temperature, before it was mixed with the autoclaved soil. 

Experiments were conducted in a greenhouse using 16 oz PVC pots. Each pot was 

first filled with 150g of sterilized soil, then 15cc of P. sojae-infested rice was placed in a 

layer, and finally the inoculum layer was covered by adding 300g of sterilized soil. The pots 

were flooded with deionized water for 24 h, then drained for another 24 h or until the 

moisture content approaches ~ 300 mb matrix potential (44). The pots were then placed in 

polyethylene bags and incubated in a greenhouse for a total of 2 weeks (greenhouse 

temperature was maintained at 25ºC for 16 h to simulate day hours, and at 21ºC for 8 h to 
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simulate night hours). Oospores will germinate and form sporangia during this period. Plastic 

bags from pots were removed after the two-week period, and then pots were flooded again 

for 24 h period and then drained for 48 h. The last flooding procedure is required to disperse 

zoospores, emerging from sporangia in the rice inoculum layer, throughout the soil in the pot. 

Experimental design 

A total of 5 runs of the experiment or “batches” were prepared. Batches consisted of 

24 pots of P. sojae-infested soil each. For each batch, eight samples were non-treated control 

samples, and 16 samples were treated in quadruplicate sub-samples (4 x 4 subsamples) at 

different ozone doses. There were 6 treatments that were ascending doses of ozone generated 

by increasing the time of ozonation (10, 13, 15, 17, 20 and 25 min per 450g soil 

corresponding to ~ 0.47, 0.73, 0.79, 1.1, 1.2, and 1.41 g O3/kg soil, respectively). Treatment 

samples (# of pots-subsamples per treatment dose) and non-treated control pots per batch are 

listed in Table 2. Each batch was treated separately on a different day, including 4 of the 6 

treatments and one set of 8 control pots per batch. Control samples, consisting of 8 pots per 

batch of P. sojae-infested soil, sown with Sloan seeds and incubated without treating with 

ozone, served to confirm inoculation success by revealing disease symptoms on seeds and 

seedlings, and these were compared with soil samples treated with ozone. 

Table 2. Experimental design with number of subsample treatments and controls per batch 

(ozonation treatments as a function of time) 

 Control 10 min 13 min 15 min 17 min 20 min 25 min 

Batch # 1 8 4 -- 4 4 -- 4 

Batch # 2 8 -- 4 4 4 -- 4 

Batch # 3 8 -- 4 4 4 4 -- 

Batch # 4 8 4 4 4 -- 4 -- 

Batch # 5 8 -- -- -- 5 5 5 

The experimental design consisted of 5 Batches of 24 pots each, including 8 control pots and 

4 out of 6 treatment doses each, with each treatment dose ran in quadruplicate subsamples in 
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the first 4 batches, and 3 treatment doses with 5 replicates each in the 5th batch. 

-- no treatment pots. 

 

Experimental treatments and incubation 

Soil in each pot (weighing 450 g) was ozonated at a flow rate of 0.5 L/min. Doses of 

ozonation in this experiment varied from 0.47 to 1.41 g O3/kg soil by incrementally 

increasing the ozonation time (Fig. 1.a). 

Following ozonation, pots were placed again in the greenhouse (where temperature of 

25ºC was maintained for 16 h during the day and, temperature of 21ºC was maintained for 8 

h during the night). Then, 10 soybean seeds of cultivar Sloan, which is susceptible to P. 

sojae, were placed on the surface of the soil in each pot and covered with 2.5 cm of wet 

coarse vermiculite (Fig. 1.b), flooded for 24 h and drained for another 24 h. Each pot was 

flooded separately, to avoid cross contamination between treatments if any. The germination 

rate of Sloan seeds used in this experiment was 96.5%. The pots were then placed into plastic 

bags for three days to prevent drying out during seed germination. Three days later, bags 

were removed and the pots were flooded again for 24 h then placed on benches to drain. Over 

the next 15 days, pots were monitored for symptoms. 

Monitoring and assessment of treatments 

Evaluation of treatment efficiency was done by monitoring the treated (ozonated) and 

non-treated (control) samples and assessing the symptoms of infection with P. sojae 

including: seed rot, root rot, seedling emergence, collapsed hypocotyls of emerging 

seedlings, and stem lesions, thus presenting the disease incidence (Fig. 1.c). 
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Figure 1. a. Ozone generator, reactor, and sample ozonation. b. incubation of samples after 

ozonation and sowing of Sloan seeds. c. emergence of seedlings. 

 

Ozonation 

The ozone generator used was a 1000BT-12 Triogen Model TOG C2B –generating 

1g O3/h from pure oxygen by corona discharge, where the conversion of oxygen to ozone 

occurs in a reaction cell excited by a high-voltage potential. The reactor was made of glass 

(Fig. 1.a), and all tubing was made of silicone material. The operating volume of the reactor 

was 1.5L (Fig. 1.a). In each test, the ozone flow rate per min was maintained at 1L min-1L-1 

gas-flow/liter volume of soil sample (42). The feed and excess unreacted ozone were 

measured by the iodometric wet-chemistry method (15). The amount of ozone absorbed by 

the soil sample was determined by difference.  

Data analysis 

The data analysis was done using RStudio software (RStudio, Inc., Boston, 

Massachusetts). To prepare the data for statistical analysis, a data matrix was constructed, 

a b 

c 
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with vectors consisting of three factors: two main factors (time in minutes, and ozone dosage 

value in g O3/kg), and one interaction factor between the main factors (rate of ozonation: 

ozone dose/time). Then, the code of vector-binding followed by the command “leaps” and 

matrix analysis was implemented. For finding the best model that fitted the data best, 

ANOVA table was prepared to compare the means between various treatments for 

significance of variance. 

 

Results 

Seedling emergence (Fig. 2.a) started at day three after sowing soybean seeds in all 

pots except pots that received higher ozonation doses (1.09, 1.2 and 1.41 g O3/kg) when it 

occurred on day 4 in these pots. All emerged seedlings in all treatments were free of any 

disease symptoms like root and stem rot, stem lesions, collapse of hypocotyls and damping-

off (Table 3, Fig. 2.b, 2.d & 2.e), whereas seedlings in non-treated (control samples) showed 

different levels of disease incidence (Table 3, Fig. 2.c). In addition, it was observed that the 

emergence rate of seedlings was negatively correlated with the dose of ozone treatment 

(Table 3). Data are presented in averages of “% emergence” and “% disease incidence” 

related to infection with P. sojae of seed, root rot, stem lesions, collapse of hypocotyls, and 

seedling damping-off that were observed in non-ozone treated pots (Table 3). 

Table 3. Effect of treatment with ozone at different doses on root and stem rot disease caused 

by P. sojae on susceptible Sloan soybean 

Ozonation 

time (min) 

Ozone dose  

g O3 kg-1 

Rate of ozonation 

g O3kg-1min-1 
% Emergence 

% Disease 

incidence 

0 0.0 0.00 48a 70b 

10 0.5 0.05 81c 0d 
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Table 3 continued    

13 0.7e 0.06 82c 0d 

15 0.8e 0.05 72c 0d 

17 1.1e 0.06 66c 0d 

20 1.2 0.06  62c 0d 

25 1.4 0.06  56c 0d 

a Rates and percentages are the averages of subsamples readings. Less than 50% of seeds 

emerged in control pots. The non-emerged seedlings in control pots included 80% rotted 

seeds and 20% non-germinated seeds. 
b Control samples showed a disease incidence on 70% of seeds and seedlings, including root 

and stem rot, damping-off and collapse of hypocotyls, and stem lesions. 
c Treated pots showed a decline in seedling emergence as ozonation time and dose increased. 
d All treated pots showed healthy seedlings, exempt of any symptoms related to infection 

with P. sojae. 
e Difference in dosage increase in response to the same increase in ozonation duration (2 min) 

is due to the difference in ozone absorption by the soil samples. This fluctuation depended on 

how tightly submerged the ozone diffuser was in the soil sample. Doses presented are 

averages of dosage measurements of 12 replicates of the same ozonation duration. 

 

 
Figure 2. Monitoring and evaluation of treatments. a. Beginning of hypocotyls emergence 

after 3 days of incubation. b. All emerged seedlings in all treatments were free of any disease 

symptoms. c. Control pot showing damping-off of one seedling, three toothpicks marking 

collapsed hypocotyls, and of the rest of the sown seeds four sprouted and rotted and two non-

a b c 

d e 
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germinated. d. Treated sample showing healthy seedlings exempt of any P. sojae-related 

symptoms. e. Treated pots at four different ozone doses (expressed in time of ozone 

generation from left to right: 13 min., 15 min., 17 min., 20 min.) from the same batch, 

showing fewer number of seedlings from left to right as the ozonation dose increases. 

 

The statistical data analysis resulted in the following best fit linear model: 

Emergence = 101 – 1.83Time 

where Emergence is percent emergence of seedlings, and Time is the duration of ozonation 

in min. Ozone dosage is represented in the model by Time, where the increase in the duration 

of ozonation resulted in an increase of ozone dosage. 

Discussion 

The appearance of P. sojae disease symptoms on control pots seedlings and the 

absence of these symptoms in treated pots confirmed our belief that pots not treated with 

ozone resulted in infected seedlings from pathogens present in the soil after artificial 

infestation with P. sojae rice inoculum. While the exemption of treated pots from any P. 

sojae-related disease symptoms, concluded that ozonation of soil resulted in healthy 

seedlings free from pathogen damage. 

Since the variation in ozone dosage was less pronounced than that of time, only this 

latter was statistically revealed significant (with p-value < 0.05) in the linear model. Rate of 

ozonation also did not show any significance in the linear model, which could be attributed to 

the fact that this factor was almost constant at all dosage levels, and that seeds were sown 

after the treatment, which means that they were not directly subjected to the effect of rate of 

ozonation, and the germplasm would not be harmed. Germination is defined as “the 

emergence of the radicle through the seed coat” (24), while emergence is the superficial 
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outgrowth of the seedling shoot from the soil. Most non-emerged seeds in the treated pots 

had germinated. This observation confirms the explanation about rate of germination. 

 

Symptoms seen in non-ozone treated pots were attributed to infection from P. sojae 

for three reasons: (i) disease-like symptoms from pathogens were observed only in non-

treated pots, (ii) the soil in the pots was autoclaved at the beginning of the experiment 

eliminating the possibility from other diseases except from P. sojae, and (iii) disease 

symptoms matched those usually seen in P. sojae-infected soybean, namely seed and root rot, 

stem lesions, collapse of hypocotyls, and seedling damping-off that were observed (Fig. 2.c). 

These results also show that the ozonation of P. sojae-infected soil was seen highly efficient 

because even the pots treated with lowest dose of 0.47 g O3/kg (10 min) resulted in an 

average of 81% seedling emergence rate of healthy plants (Table 3, Fig. 2.d). The non-

emergence of seedlings in the treated samples, could not be attributed to the direct harm to 

the germplasm by ozone, since 95% of the non-emerged seeds were germinated, and the 

ozonation process was done in the absence of seeds. A possible explanation for the 

observation of lowered seed emergence in response to the increased ozonation dosages, could 

be that higher dosages result in lowering the viability of beneficial microorganisms 

responsible for many vital processes in promoting plant growth, like rhizobacteria, which 

could, by consequence, decrease emergence (2). Examples of mechanisms that these 

microorganisms promote are nutrients mineralization, solubilization and immobilization, 

induced plant resistance and pathogens suppression, growth promotion, and increased yield 

(2,19). In addition, ozonation might form oxidized products with potential deleterious 

properties, like the oxidized bromide ion that upon reaction with water or soil constituents 
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might form mildly toxic hypobromous and bromate ion or tribromomethane (56). Ozone 

concentrations of 0.2 – 0.3 mg/L caused root injury when immersing cucumber plant root in 

ozonated water (26). Kottapalli et al. (21) found that an exposure of barley seeds to 11 mg O3 

g-1 barley min-1 for 30 min resulted in significant reduction in barley germination energy. 

However, in the current research, the seeds were not directly exposed to ozone, but were 

sown after ozonation. 

Since the lowest ozone dose (0.47 g O3/kg) was as good as inhibiting 100% of the 

disease without affecting or harming seed germination, residual ozone toxicity would not be 

a practical limitation. The occurrence of soilborne disease and its severity depends on the 

populations of both the pathogen and disease-suppressing organisms in the soil. Pesticides 

reduce the diversity of soil microorganisms, and break the balance between beneficial and 

phytopathogenic organisms. In healthy soils, beneficial organisms suppress disease-causing 

organisms, however breaking the balance between these, fosters resistant pathogens (19,47). 

Accordingly, it is highly important to study the effect of soil ozonation on non-targeted 

organisms at the effective dose to treat the pathogen. 

The overall results of this study clearly indicate that ozonating soil contaminated with 

P. sojae at a rate of 0.47 g O3/kg is sufficient to minimize any harmful impact on seed 

germination and plant health. This level of ozonation rate can be considered enough to inhibit 

soil pathogens efficiently. In addition, given that ozone does not leave toxic residues in 

nature, we conclude that ozonation can be practiced as a sustainable alternative to the 

conventional treatment against soil pathogens such as Phytophthora, and could be used in 

organic agriculture. At the same time, future research must concentrate on the economics of 

ozonation to control disease effects on soil pathogens. This study focused on the feasibility of 
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the technique and not on the viability of ozonation for mass use in agriculture. Treating a 

field of soybean with ozone, would be impractical because row crops occupy large areas, 

needing huge amounts of oxygen and large ozone generators to generate enough ozone to 

treat soil to a minimum depth of 15 cm. In addition, ozone gas application to the soil would 

be done using irrigation system pipes or shanks (as fumigation gas), and the soil covered by 

tarp or impermeable nylon mulch to reduce the fumigant emission and increase ozone 

residence time in the soil to maximize its pesticidal activity, which is undoable for field 

crops. Hence, a practical application of this treatment would be in high-value cash crops like 

greenhouse crops. Finally, we recommend investigating the efficiency of ozone in the control 

of seedborne pathogens (e.g. ozonation of seedlings, potato seed tubers) based on the 

promising results of this work. 
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Abstract 

Ozonation was studied for inactivating conidia of Fusarium oxysporum, which causes 

Fusarium wilt, an economically important disease in hydroponic cultivation systems. 

Samples of conidial suspensions of F. oxysporum were treated with incremental doses of 

ozone from either oxygen feed with high gas-phase concentration (GPC) or air feed with low 

GPC. Trials resulted in non-viability of the pathogen at high ozone GPC with a dose of 0.84 

mg O3/L for 3 seconds. The optimal conditions for F. oxysporum treatment with ozone were 

high GPC (oxygen feed), high rate of ozonation (> 16 mg O3 L
-1 min-1), and low temperature 

(5 ºC). Regression analyses showed that F. oxysporum spore viability is function of GPC (P 

= 7.7252E-11; Adjusted R-square = 0.81), of temperature (P = 2.16734E-05) and level of 

ozonation (Dose*Rate; P = 5.63367E-11; Adjusted R-square = 0.38). The linear model from 

air feed ozonation: Viability = 16.6 + 0.97 Temp. - 9.7 O3-Level. Furthermore, LD50 of 

ozone at 21 ºC and at 5 ºC were determined as 34 mg O3/L and 30 mg O3/L respectively, 

using the linear model. The findings of this research imply that ozone is an efficient and 

sustainable alternative to chemical fungicides in the treatment of Fusarium wilt in hydroponic 

nutrient solutions, especially since it degenerates quickly to oxygen, an environmentally-safe, 

non-toxic residue. 
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Introduction 

Fusarium wilt, caused by Fusarium oxysporum, is one of the most widespread and 

destructive diseases of many major ornamental and horticultural crops (7). Over 120 formae 

speciales and races of F. oxysporum are known to cause vascular wilts of agricultural crops 

in many areas of the tropical and temperate zones (6,8). Although not all soils are conducive 

to Fusarium wilt, the disease may cause considerable losses in areas in which it becomes 

established (15). This fungus is soilborne and causes vascular wilts by infecting plants 

through the roots and spreading internally through the cortex to the vascular tissue (2,7,18). 

Currently, the major control practices adopted to control wilts and other soilborne pathogens 

on high-value crops (such as ornamental cut-flowers and greenhouse crops) are preplant soil 

fumigation and fungicide applications. 

The fungus has been found in the imperfect state in three forms only: microconidia, 

macroconidia and chlamydospores (6,8,15,20). It is disseminated in these three forms in and 

on seeds, and in vegetative propagation material, as well as in soil, water, by air and human 

activity. Because Fusarium spores remain viable in water, spores leached out of 

contaminated soil into ditches, ponds and other water bodies used later in irrigation, can 

indefinitely be a source of inoculum (29). This is particularly important in the case of water 

aggregation bodies (ponds and ditches) used in crop irrigation, and in hydroponic cultures 

where contaminated nutrient solution is reused. According to Song et al. (32), Fusarium wilt 

is the most serious soilborne disease in hydroponic cultivation systems. F. oxysporum is 
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highly virulent in hydroponic greenhouses because it spreads easily through the nutrient 

solutions (33). 

Song et al. (32) reported that prochloraz and carbendazim were the most effective 

fungicides in inhibiting Fusarium mycelial growth in the tomato Fusarium wilt in hydroponic 

system. An inspection report by the “European Commission – DG Health and Consumer 

Protection” entitled “Monitoring for pesticide residues in the European Union and Norway – 

Report 1996”, declared carbendazim as one of the 12 most commonly detected pesticides in 

foodstuffs (1). Concerns have been raised regarding carbendazim’s effect on human health 

and the environment, to the extent that “Friends of the Earth” highlighted it as one of their 

‘filthy four’ pesticides (12). Similarly, prochloraz is a possible carcinogen and a suspected 

endocrine disruptor (26). With the growing environmental and health concerns over chemical 

pesticides, the increasing demand for residue-free produce, and the current trends towards 

organic farming, the search for efficient fungal control methods that address these concerns 

and needs has become of high importance. 

Ozone is a potent oxidant and it has been implemented successfully against numerous 

pathogens including bacteria, viruses, protozoa and also metazoa (17,24,25,28,34). It is often 

used to disinfect drinking water and wastewater (35,36), and disinfest ships ballast water 

(21,22) due to its oxidizing properties. Ozone has also been applied in mold prevention on 

stored corn (38,39). Scanning electron microscopy showed that ozone causes damages to the 

surface of Toxocara canis eggs (a nematode parasite of dogs and other canides) (23). It is 

also capable of diffusing across bacterial membranes and reacting with cytoplasmic 

biomolecules, such as DNA, which results in cell death (11). Furthermore, ozone reacts with 
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biomolecules such as proteins, carbohydrates and polyunsaturated fatty acids bound to 

albumin, dyes, and is involved in lipid peroxidation (5,38). 

Ozone has been approved by the American Food and Drug Administration for direct 

use in human food, drugs, and cosmetics and also as compounds in food contact materials 

such as cutting boards and other surfaces that come in contact with unprotected food (13). In 

addition, ozone is listed by the National Organic Program under the list of “The National List 

of Allowed and Prohibited Substances” with code (§205.605) referring to: “Nonagricultural 

(nonorganic) substances allowed as ingredients in or on processed products labeled as “organic” or 

“made with organic (specified ingredients or food group(s))””. (19). In contrast to other 

disinfection methods and conventional fungicides used in the treatment of F. oxysporum in 

hydroponic cultures, such as prochloraz and carbendazim, the use of ozone as a disinfection 

method has the advantage that it does not produce undesirable byproducts, because its rapid 

decomposition only produces oxygen. 

Matsuo (16), reported that the treatment of nutrient solution with 0.25 mg/L residual 

ozone for hydroponic cucumber culture was considerably effective in reducing germination 

of F. oxysporum f.sp. cucumerinum microconidia, while a residual concentration of 0.4 mg 

O3/L completely inhibited the germination of fungal spores. Residual concentrations of 0.2 – 

0.3 mg O3/L, however, caused root injury when immersing plant roots in ozonated water. In 

another study evaluating gaseous ozone for inactivating mixtures of non-specified spores and 

mycelia of fungi in malting barley, Allen et al. (3), showed that 96% of fungi were 

inactivated at a dosage of 0.1 mg O3/g barley/min for 5 min, without affecting germination of 

the barley. They also suggested fungal mycelia were more susceptible to ozonation than 

spores. However, Kottapalli et al. (14) found that an exposure of Fusarium-infected barley to 

26 mg O3/g barley/min for 15 min resulted in 53% inhibition of Fusarium viability. Exposure 

http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&rgn=div5&view=text&node=7:3.1.1.9.32&idno=7#7:3.1.1.9.32.7.354
http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&rgn=div5&view=text&node=7:3.1.1.9.32&idno=7#7:3.1.1.9.32.7.354
http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&rgn=div5&view=text&node=7:3.1.1.9.32&idno=7#7:3.1.1.9.32.7.354.6
http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&rgn=div5&view=text&node=7:3.1.1.9.32&idno=7#7:3.1.1.9.32.7.354.6
http://www.ecfr.gov/cgi-bin/text-idx?c=ecfr&rgn=div5&view=text&node=7:3.1.1.9.32&idno=7#7:3.1.1.9.32.7.354.6
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to 11 mg O3/g for 30 min gave a higher rate of Fusarium inhibition but resulted in significant 

reduction in barley germination energy, an important characteristic in the malting process. 

Although ozone appears to be an effective method at reducing viability of Fusarium, further 

investigation in this is needed particularly the optimization of the ozonation procedure 

regarding the effects of temperature, rate of ozonation, and gas phase concentration (GPC), 

and the effect of admitting ozone gas directly to the nutrient solution rather than adding it in 

the form of ozonated water. 

The high oxidative power of ozone, its effectiveness in inhibiting pathogens without 

leaving toxic residues in the environment, and the limited research on ozone use in the 

domain of agricultural applications inspired the current research. Furthermore, the economic 

importance of F. oxysporum especially in hydroponic cultivation systems, and the need for 

environmentally safe alternative treatments to the currently adopted fungicides, made it a 

justified choice as a target for treatment optimization with ozone. The referenced research on 

hydroponic nutrient solutions treatment of F. oxysporum with ozonated water showed the 

need for further research to optimize the ozonation procedure. Accordingly, the goal of this 

work was to optimize the use of gaseous ozone in the treatment of F. oxysporum spores in 

suspension, as a representation of contaminated irrigation ponds and hydroponics nutrient 

solutions with fungal spores. Our objectives were to (i) test the effect of varying dosages of 

ozone on the viability of F. oxysporum spores in suspension, (ii) to compare the effect of 

ozone gas-phase concentration, i.e. when ozone is produced from either oxygen (high GPC) 

or air (low GPC) on the viability of F. oxysporum spores, and (iii) to evaluate the effect of 

ozone on the viability of F. oxysporum spores in suspension at either 5ºC or 21ºC. 
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Methods and Materials 

Preparation of F. oxysporum spore suspensions 

Fusarium oxysporum 370TSB (acquired from Dr. Alison Robertson, Corn Pathology 

Lab., Iowa State University - Fig. 1) was used in this study. For long-term storage, the isolate 

was stored on potato dextrose agar (PDA), at 5 ºC. To prepare spore suspensions, 370TSB 

was sub-cultured on PDA (Fig. 1) and allowed to grow at room temperature and normal 

day/night light, for four to five weeks. Cultures grown on PDA sporulate within a month 

(20). Spores were harvested from eight Petri plates (Fig. 2) that were 3 to 5 weeks old, by 

washing the cultures under aseptic conditions. To each plate, 5 ml distilled sterile water was 

added and a sterile glass rod (hockey stick) was used to gently dislodge the fungal tissue 

from the media. The mycelia and spore suspension from each plate was bulked and filtered 

through sterile cheesecloth to remove the mycelia. The obtained spore suspension was made 

up to 1L with distilled sterile water. The concentration of conidia in the original conidial 

suspension (OS) was determined with a hemacytometer. The original suspension was divided 

into four approximately 250 ml aliquots. Each aliquot was diluted tenfold to prepare the 

following dilutions to be treated with ozone or not treated as control: 10-2, 10-4 and 10-6. Each 

aliquot was plated in quadruplicate control samples (non-ozonated). The prepared 

suspensions (OS and the three dilutions) were divided into 4 samples of 250 ml each (to have 

4 replicates per treatment, a total of 4 x 4 = 16 samples of 250 ml each) and ozonated. Then 

each treated sample was plated (two plates per sample) and incubated at the same conditions 

as the control plates. To obtain low ozone doses (in oxygen feed at high GPC), sample 

volume was increased to 1L and 2L. 
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Figure 1. F. oxysporum isolate                            Figure 2. plated controls 

 
Ozone gas sources 

To determine the effect of ozone generated from either oxygen or air on the viability 

of F. oxysporum spores, a 1000BT-12 Triogen Model TOG C2B ozone generator was used. 

This machine generates a maximum of 1g O3/h from pure oxygen (99.9%) and 0.5g O3/h 

from air by corona discharge, and the conversion of oxygen to ozone occurs in a reaction cell 

excited by a high-voltage potential. The reactor was made of glass (Fig. 3), and all tubing 

was silicone. In each test the ozone flow rate per min was maintained at 1L min-1 L-1 gas-

flow/sample-volume (31). The unreacted ozone was captured in a solution of 2% potassium 

iodide (KI). The measurement of absorbed ozone by the sample was done by the iodometric 

wet-chemistry method (10). To test the ozone gas-phase concentration (GPC) effect, two gas 

sources were used in ozone generation, (i) pure oxygen for a high GPC, and (ii) air for a 

lower GPC. 
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Figure 3. ozone generator, glass reactor and silicone tubing 

 

Ozonation dosages 

A flow rate of 0.25 L/min was used to ozonate each dilution sample (250ml) with 

incrementally increased ozone doses that were generated by increasing the ozone generation 

time. The operating volume in the reactor was 250 ml, except at the lowest ozone dosages 

(7.7, 6.5, 4.6, 2.4, 2.6, 1.3, 0.84 mg O3/L) where sample volume was increased to 1L – 2L to 

reach a lower ozone dosage. Doses of ozone that were produced ranged from 0.84 to 88 mg 

O3/L with oxygen and from 9 to 31.8 mg O3/L with air. 

Temperature effect 

The effect of temperature on the efficacy of ozone to reduce the viability of spores of 

370TSB was tested at two temperatures: 5 ºC and 21 ºC (room temperature). Sterile distilled 

water and dilutions of conidial suspensions were kept in a refrigerator at 5 ºC throughout the 

experiment except during the preparation of suspensions and during ozonation treatment. 

All experiments were repeated twice. 

Determination of viable conidia of 370TSB 

The number of viable conidia was determined by plating aliquots from each dilution 

before and after ozonation and comparing the number of colony forming units (CFU) of 

ozone-treated and non-treated control. For each sample, 100 µL from the suspension was 
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spread onto the surface of a PDA plate using a sterile glass rod. Each plate was sealed with 

Parafilm (BEMIS FLEXIBLE PACKAGING, Neenah, WI) and incubated for 72 hours at 

room temperature, with normal day/night light. For each sample (controls and treated 

samples), two replicate plates were done. Colonies were counted after 72 hours. 

The results shown in Table 1 are comparisons in percent conidial (CFU) viability 

between ozonated samples and corresponding controls (non-ozonated) by colony-counting 

and comparison with the treated samples of the same dilution- CFU count, from all dilution 

ranks (OS, 10-2, 10-4 and 10-6). In the results of ozonation with air feed, the comparison 

between controls and treatments is expressed with the CFU counts from dilution rank 10-4, 

because the corresponding CFU numbers were countable (between 50 and 200 per plate). 

The other dilutions and OS plates were crowded with too many colonies to be counted (OS 

and 10-2 – Fig. 4), or too few to show a reliable colony count (10-6) for viability 

determination and treatment efficiency assessment. However, in this case all other solutions 

(OS and dilutions) were still treated and plated as well to monitor differences in dilution 

responses to the treatment if any. A test was conducted to monitor spores viability in 

suspension between the times of samples preparation and ozonation. This test was done by 

plating four plates from the dilution rank 10-4 at the time of suspensions preparation, and 

again plating another four plates right before ozonation (both are non-ozonated), incubating 

plates for 72 hours and making colony-count comparison between the two sets of plates. 
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Figure 4. Growing colonies of a dilution rank 10-2 after ozonation with air feed. 

 

Data analysis 

Mean percent spore viability for each ozone level was calculated for data obtained 

from ozonation with air feed, and data were analyzed using RStudio software (RStudio, Inc., 

Boston, Massachusetts). Data is clustered in three ozone levels: low (1.9 – 2.1 mg O3 L
-1 s-1), 

medium (2.9 – 3.3 mg O3 L
-1 s-1) and high (4.5 – 6.2 mg O3 L

-1 s-1), representing each an 

average of Dose*Rate of about 40 samples with a marginal standard error. Dose*Rate is an 

interaction factor combining ozone dose in milligrams of ozone per liter, and the rate of 

ozone generation in milligrams of ozone per liter per second, indicating the speed of ozone 

generation and feeding the sample. Comparison of means between levels at different 

temperatures was done by Student’s t-Test: two-sample assuming unequal variances at 95% 

confidence interval (29). To determine the significance of temperature and the confidence 

intervals for ozone LD50 at 5 ºC and 21ºC, data from air feed only was used, since it 

included variability in response to temperature change, and included viability response values 

around 50% (which are necessary to determine LD50), unlike data from oxygen feed where 

response-values were all 100%. 
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To quantify the effects of GPC, ozonation levels and temperature on F. oxysporum 

spores viability, multiple regression and ANOVA analyses (29) were conducted and linear 

regression models were obtained. 

To determine the linear model showing the effect of GPC on spore viability with this 

method, data from both oxygen and air feed were analyzed together. As for the linear model 

showing the effects of ozonation levels and temperature on spore viability, data from air feed 

alone was analyzed. 

 

Results 

Ozonation decreased the number of viable F. oxysporum spores in suspension (Table 

1, 2, 3). A difference in efficiency between ozone generated using oxygen (Table 1) and 

ozone generated from air (Table 2, 3) was detected. The lowest dose of ozone generated from 

pure oxygen, 0.84 mg O3/L, was 100% efficient at inhibiting growth of the spores of F. 

oxysporum. Conversely, the highest dose of ozone (31.8 mg O3/L) generated by air as source, 

was only able to inhibit growth of 41% of the pathogen spores. 

All of the applied ozone dosages at high ozone GPC and rate of ozonation when 

ozone was generated from oxygen, completely inhibited growth of F. oxysporum spores even 

at the lowest dose (0.84 mg O3/L). At 5 ºC, ozonation also resulted in complete inhibition of 

conidial germination (Table 1). When air was used for ozone generation, the GPC and rate of 

ozonation were comparatively lower as compared to ozone from oxygen, the percent viability 

of conidia ranged from 20 to 100%. 

After several trials, no significant change in spores viability during the preparation of 

suspensions was noticed. Hence, the resulted decline in spores viability after treatment, is 
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attributed to the ozonation, not any decline in spore viability during suspension preparation 

time. 

Table 1. Percent of viability of spores of Fusarium oxysporum after treatment with varying 

ozonation levels generated from oxygen at 21ºC and 5ºC 

Ozonation Level 

(& Temperature) 

Dose*Rate  

(mg  O3 L-1)* 

(mg  O3 L-1 s-1) 

Mean CFUa 

prior to 

ozonation 

Mean CFUa 

after 

ozonation 

% Spore viability 

High (21 °C) 66.2 (3.2) 1.7 x 107 0 0 

Medium (21 °C) 33.1 (2.1) 1.7 x 107 0 0 

Low (21 °C) 1.4 (1.1) 1.0 x 107 0 0 

Medium (5 °C) 28.7 (3.0) 1.5 x 107 0 0 
a CFU – colony forming units per ml 

Table 2. Percent of viability of spores of Fusarium oxysporum after treatment with varying 

dosages of ozone generated from air at different rates and at 21ºC and 5ºC 

Time 

Ozone 

dosage 

mg O3 L-1 

Rate of 

ozonation 

mg O3 L-1 s-1 

Temp. 

ºC 

Mean CFUa 

prior to 

ozonation 

Mean CFUa 

after 

ozonation 

% Spore 

viability 

6 min 31.8 5.3  

 

 

21 ºC 

 

 

 

 

11 x 106 7 x 106 59 

3 min 28.8 9.6 12 x 106 3 x 106 28 

4 min 22.7 5.7 13 x 106 9 x 106 71 

4 min 23.7 6 16 x 106 11 x 106 72 

2 min 23 11.5 2.9 x 106 2.5 x 106 87 

2 min 19.2 9.6 15 x 106 18.5 x 106 123b 

1 min 12.6 12.6 16 x 106 16.5 x 106 101b 

45 s 9 12 18 x 106 16 x 106 89 

10 min 60.9 6.1 

5 ºC 

16 x 106 3 x 106 20 

5.5 min 22.1 4 14 x 106 9 x 106 62 

4 min 22.1 5.5 16 x 106 11 x 106 67 

3 min 22.6 7.5 20 x 106 13 x 106 66 

3 min 26 8.7 8.4 x 106 50 x 106 58 

2 min 15.8 8  14 x 106 11 x 106 80 
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Table 2 continued 
    

a CFU – colony forming units per ml. 
b as microconidia are known to germinate but do not divide and multiply, an increase of conidial 

number in the treated samples would be justified as normal marginal difference in count between 

treated and control samples; hence, viability-response numbers above 100% are set to 100 for 

statistical data analysis, signifying no response at the corresponding dosage, which means a dosage 

falling below the treatment efficiency threshold. 
 

Before processing the statistical data analysis, the distribution of the data and 

homogeneity of variance were checked and found normally distributed. 

Table 3. Percent of viability of spores of Fusarium oxysporum after treatment with 

varying levels of ozonation (Dose*Rate) from air at 21ºC and 5ºC 

Levelx 

 

Dose*Ratey  

(mg O3 L-1)* 

(mg O3 L-1 s-1) 

Temperature (⁰C) 
Viabilityz  

(%) 

Low 1.87 ( 0.53) 5 69 (4) a 

Medium 3.29 (0.69) 5 62 (4) a 

High 6.18 (0.16) 5 20 (6) b 

Low 2.09 (0.48) 21 76 (3) c 

Medium 2.88 (0.35) 21 67 (4) ac 

High 4.52 (0.32) 21 51 (5) d 
x Each level (low, medium and high) represents an average of Dose*Rate of 40 samples. 

Values are presented by the average followed by the standard error in parenthesis. 
y Dose*Rate is an interaction factor combining ozone dose in mg of ozone per liter, and rate 

of ozone generation in mg per liter per second (indicating the speed of ozone generation and 

feeding the sample). 
z Viability of spores was evaluated as the percent of viable CFU in treatment in comparison 

with the CFU in control samples. Mean viability followed by the standard error in 

parenthesis are followed by a letter (a, b, c, d). Values followed by the same letter were not 

significantly different (P > 0.05) by “t-Test: two sample assuming unequal variances”. 

Detailed means comparison and p-values are shown in table 4. 
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Table 4. P values of means comparison using a t-Test: two-sample assuming unequal 

variances (REF) between three ozonation levels at 5 ⁰C and 21 ⁰C 

P(T<=t) 

two-tail 

Low  

(5 ⁰C) 

Medium  

(5 ⁰C) 

High  

(5 ⁰C) 

Low  

(21 ⁰C) 

Medium  

(21 ⁰C) 

High  

(21 ⁰C) 

Low  

(5 ⁰C) 
--------- 0.14 0.003* 0.098 0.739 0.032* 

Medium  

(5 ⁰C) 
0.14 --------- 0.008* 0.002* 0.428 0.187 

High  

(5 ⁰C) 
0.003* 

0.008* --------- 0.001* 0.004* 0.035* 

Low  

(21 ⁰C) 

0.098 0.002* 0.001* --------- 0.141 0.004* 

Medium  

(21 ⁰C) 

0.739 0.428 0.004* 0.141 --------- 0.084 

High  

(21 ⁰C) 

0.032* 0.187 0.035* 0.004* 0.084 --------- 

*P-value lower than 0.05, indicating significant difference between compared groups. 

Temperature had significant effect on treatment (P < 0.05). Ozonation at 5 ºC was more 

efficient than at 21 ºC at inhibiting spores viability. 

Level of ozonation had significant effect on treatment ((P < 0.05). Ozonation was more 

efficient at ascending levels at inhibiting spores viability. 

 

Regression analysis of data from air and oxygen feeds showed that F. oxysporum 

viability was function of GPC (P= 7.7252E-11), where high GPC with oxygen feed killed all 

spores (Table 1), but low GPC with air feed was much less efficient (Table 2, 3). 

Table 5. Regression statistics and ANOVA, showing the significance of GPC on Fusarium 

oxysporum spores viability 

Regression Statistics 

Multiple R 0.909781469 

R Square 0.827702322 

Adjusted R Square 0.809241856 

ANOVA  Coefficients Standard Error t Stat P-value 

Intercept 58.42378583 8.063574492 7.245395437 6.90675E-08 

Temperature 0.823983021 0.469996062 1.753170053 0.090516351 

GPC -73.40277801 7.267687222 -10.09988126 7.7252E-11 
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Regression analysis shows that GPC is very significant in affecting F. oxysporum 

spores viability, with high GPC (with oxygen feed) being much more effective in decreasing 

spores viability that low GPC (with air feed). 

ANOVA analysis of data from air ozonation (Table 6) shows the significance of ozonation 

level and temperature in the linear model. 

Table 6. Regression statistics and ANOVA, showing the significance of ozonation level 

(Dose*Rate) from air, and temperature on Fusarium oxysporum spores viability 

Regression Statistics 

Multiple R 0.623892482 

R Square 0.38924183 

Adjusted R Square 0.379062527 

ANOVA  Coefficients Standard Error t Stat P-value 

Intercept 16.55664041 5.530300514 2.993804833 0.003346515 

Rate * Dose -9.738912502 1.352085116 -7.20288419 5.63367E-11 

Temp. 0.967588526 0.218842438 4.421393469 2.16734E-05 

 

Regression analysis shows that both the level of ozonation (Dose*Rate) and 

temperature are significantly important in affecting F. oxysporum spores viability. The 

regression model explaining the relation between spores viability and the two factors (Temp. 

for temperature and O3-Level for Dose*Rate) is: 

Viability = 16.6 + 0.97 Temp. - 9.7 O3-Level. 

The model shows that as the level of ozonation increases, conidial viability decreases. 

The model also shows that as temperature decreases, viability of the conidia decreases, 

indicating that ozonation at 5 ºC is more efficient at reducing conidial viability. 

In table 1, all response data were equal (0% conidial viability), regardless the change 

in temperature, mainly due to the effect of high GPC and rate of ozonation. The ozonation 

with air feed showed difference in response to the treatment at different temperatures, unlike 
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data from table 1 where ozone generation was from oxygen and total inactivation of spores 

resulted at both temperatures. The difference in response at different temperatures with air 

feed ozone generation, allowed to reveal the significance of temperature on ozonation 

efficiency. Using this linear model, the confidence intervals of ozone LD50 at 21ºC and 5ºC 

under air feed setting were determined as follows: 

C.I. of LD50 at 21ºC: [30 – 38] mg O3/L, with optimal LD50 = 34 mg O3/L at 21 ºC; 

C.I. of LD50 at  5 ºC: [27 – 33] mg O3/L, with optimal LD50 = 30 mg O3/L at 5 ºC. 

 

Discussion 

The difference in efficiency between ozone generated using oxygen (Table 1) and 

ozone generated from air (Table 2) can be explained by the gas-phase concentration effect 

(GPC). Generally, the rate of ozonation with ozone from oxygen was about an order of 

magnitude higher than with ozone from air. The rate effect also is demonstrated by the 

difference between the upper two readings in table 2, where the higher dose (31.8 mgO3/L) 

inhibits fewer spores (41% vs. 72%) than the lower dose (28.8 mg O3/L), but where the rate 

of ozonation was almost twice as high as for the higher dosage. Higher rates of ozonation and 

also higher gas-phase concentrations in the bubbles, result in higher ozone concentrations in 

the liquid surrounding the bubbles. These higher concentrations are short-lived because of 

the ozone demand, but these higher concentrations ensure that disinfection proceeds rapidly. 

These results agree with the findings of Patil et al. (27). 

In contrast to Matsuo’s work (16), the methodology presented depends on direct 

ozonation of the spores in suspension, rather than adding ozonated water to the solution. The 

importance of this methodology is its wider applications for treatment of F. oxysporum-
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contaminated waters in aggregation ponds for irrigation, and for the recycling of 

contaminated agricultural wastewaters. In addition, this methodology is more efficient and 

practical in the treatment of hydroponic nutrient solutions, since it expresses the action of 

GPC and allows to cutoff intermediary steps between ozone generation and delivery. 

The difference in CFU counts (in controls - prior to ozonation) between experiments 

is due to the different maturation ages (3 to 5 weeks old) of culture plates used in the 

preparation of spore suspensions. 

In comparison with a study by Hitoshi (9), where an ozone injection dosage of 

1.56 mg O3/L in a nutrient solution of hydroponic system was needed to sterilize it from F. 

oxysporum, this study showed complete conidial eradication with only 0.84 mgO3/L at high 

GPC. In our study, ozone gas was directly delivered to the conidial suspension as fine 

bubbles, rather than injected as ozonated water, and this study treated a conidial suspension 

in sterile deionized water, while Hitoshi’s study treated conidia present in recycled nutrient 

solution. 

These data agree with those reported by Kobayashi et al. (13) who showed that the 

effect of ozone on declining the viability of phytopathogens in hydroponic culture solutions 

increases concomitant with increasing initial dissolved ozone (dO3) concentration, and with 

those reported by Patil et al. (27) who showed that higher rates of ozonation and higher GPC 

in the bubbles result in higher ozone concentrations in the immediately surrounding liquid, 

which results in higher ozonation efficiency. However, the observation that temperature 

didn’t show significance in the first linear model, might be due to including data from both 

tables (air and oxygen feed) in the data analysis, where the effect of temperature in the first 

table was outweighed by those of high GPC and rate of ozonation. This observation confirms 
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similar findings by Patil et al. (27). The linear model for data from ozonation with air feed 

shows that as temperature decreases, disinfection becomes more efficient. This is attributed 

to the increasing ozone solubility ratio with decreasing water temperature (4), and the slower 

ozone decomposition at lower temperature (30). Hence, ozone is more stable in water at 5ºC, 

which prolongs its activity duration at oxidizing and inactivating the spores in suspension. 

Consistent with these physico-chemical ozone properties, the current study confirms a higher 

response at lower temperature. 

The findings of this study suggest that ozonating F. oxysporum-contaminated waters 

and hydroponic nutrient solutions, at high GPC, high rate of ozonation and low temperature, 

are a viable management option for hydroponic production. Caution should be exercised, 

however, to allow enough time for decomposition of ozone to oxygen since ozone solutions 

may be phytotoxic to plants (16). Since ozone does not leave toxic residues that would 

pollute the environment or harm human health, ozonation treatment could be considered a 

sustainable alternative to chemical fungicides that are currently used for Fusarium wilt 

management in the hydroponic industry, as well as being an effective disease management 

practice in organic settings. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Summary of the Current Research Findings 

A dose of ozonation 0.47 g O3/kg was found to inhibit the effect of P. sojae disease 

on susceptible Sloan soybean in the soil assays carried out in this research, without affecting 

or harming seed germination. Similarly, ozonating soil infected with nematodes at a dose 

0.59 g O3/kg at 5ºC was found sufficient to kill 76% of the nematodes. The current study 

confirms similar works finding on ozonation of a higher response at a lower temperature. 

Hence, for optimal results with soil ozonation, we recommend the application of this 

treatment at the beginning of the growing season, when temperatures are usually low. On the 

other hand, the findings of the study of ozone effect on conidial suspensions of Fusarium 

oxysporum, suggest that ozonation at high GPC, high rate of ozonation and low temperature, 

are a viable management option for hydroponic production. 

Ozonation might form oxidized products with potential deleterious properties, like the 

oxidized bromide ion that upon reaction with water or soil constituents might form mildly 

toxic bromate ion or a type of trihalomethane (Suslow, 2004). In addition, ozone solutions 

may be phytotoxic to plants (Matsuo, 1993). Accordingly, caution should be exercised upon 

ozonation treatments, to allow enough time for decomposition of ozone to oxygen. 

Enhancements to the ozonation soil treatments 

Several works focused on overcoming the limitations to the application of ozonation 

in the management of soil phytopathogens, namely the need for (i) high ozone doses enough 

for the treatment of big surfaces at soil depth enough to control the targeted pathogens, (ii) 

reducing energy consumption for the generation of ozone and increasing the process 
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feasibility, and (iii) reducing the dependence on fossil fuel to make ozonation more eco-

friendly. Takayama et al. (2006) developed an ozonation technology using barrier discharge 

(DBD) by applying high voltage between electrodes (Ebihara et al., 2004; Stryczewska et al., 

2004). Two types were developed: a “pyramid-type electrode” that can control ozone dosage 

from low (0.1 gO3/m
3 soil) to high (12 gO3/m

3 soil), and a “screw-type electrode” that can 

generate high ozone dosage (20 gO3/m
3 soil) with high efficiency. High ozone dosage (20 

gO3/m
3 soil for 10 min.) permitted to kill 97.5% (Takayama et al., 2006) to 99.9% (Pawlat et 

al., 2011; Pawlat and Stryczewska, 2012) of Fusarium oxysporum spores in the soil. On the 

other hand, tackling the need to reduce energy consumption for the generation of ozone, 

Pawlat et al. (2011) developed fully automatic power system from photovoltaic panels that 

could cover up to 95 – 100% energy needs for ozone generation. This technology allows to 

substitute fossil fuel with renewable energy in ozone generation, with zero-emission and with 

reasonable cost (Pawlat et al., 2011). 

Recommendations 

Seed treatment can enhance stand establishment, reduce seedling disease, and 

increase yield and economic benefits (Bradley, 2008). Current grain and postharvest fruit and 

vegetable treatment of pathogens and pests include the fumigants aluminum phosphide, 

methyl bromide and phosphine (Tiwari et al., 2010). The persistent dependence on these 

fumigants resulted in the disruption of natural agents biological control systems, and has 

been reported with pest outbreaks, widespread resistance development, adverse effects on 

non-target organisms, and detrimental effects on the environment and human health (Collins 

et al., 2005; Islam et al., 2009; Kells et al., 2001; Pimentel et al., 2007 and 2009). These 

adverse effects highlight the need to search for safer alternatives (Fields and White, 2002). 



98 

 

Ozone was reported to be efficient in the control of phosphine-resistant strains of stored grain 

pests Silophilus zeamais, S. oryzae, Tribolium castaneum and Rhyzopertha dominica (Qin et 

al., 2003). 

Ciccarese et al. (2007) showed that the treatment of wheat, bareley and pea seeds with 

a mixture of ozone and air at a concentration of 3% by seed weight, and for 3 min. exposure 

was effective in seed disinfestation without affecting germination. 

According to what preceded and to the promising findings of our research, we 

recommend the following: 

A- Conducting further research on seed and grain treatment with ozone and optimizing 

its processes on economically important seeds and stored grains. 

B- Adopting the above mentioned enhancements to the ozonation process to increase its 

feasibility and further enhance its environmental benefits. 

C- Adopting ozone treatment in pest control under organic agriculture setting, given 

ozone efficiency coupled with its degeneration into oxygen, an environmentally safe 

byproduct. 

D- Integrating ozonation with cultural practices, integrated pest management, and 

resistant varieties when necessary and applicable. 

E- Conducting further research on ozonating other soilborne phytopathogens, especially 

those with history of resistance to common fumigant pesticides, or with high 

virulence on economically important crops. 

F- Carry out species-specific research on ozone treatment to phytoparasitic nematodes, 

and species of Phytophthora and Fusarium to investigate differences in species 
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response to ozonation if any, and to generalize the ozonation for treatment of these 

pathogens in high-value cash crops where it could be applicable. 
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