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ABSTRACT 

The most important energy challenges of the century are energy growth, energy 

security and climate protection. Cellulosic based fuels such as ethanol are poised to offer 

energy security, and economic and environmental benefits if the associated 

commercialization challenges are overcome. The main objective of this thesis is to evaluate a 

promising approach for cellulosic ethanol production and to present information to guide. 

This dissertation, completed in partial fulfillment of the requirements of the Ph.D. degree, is 

prepared in the journal paper format, and includes four papers that have been published in or 

are prepared for submission to a journal. The objective of the first research chapter was to 

evaluate the effectiveness of an aqueous-ammonia soaking pretreatment method on ethanol 

production from switchgrass at bench scale. We have determined that ammonia soaking 

pretreatment method can be an effective method for the pretreatment of switchgrass. It was 

observed that after ammonia soaking, lignin and hemicellulose were partially removed, while 

the cellulose content of the lignocellulosic feedstock was preserved. The results also show 

that there is a tradeoff between pretreatment intensity and enzyme loading. The objective of 

the second paper was to scale up the bench scale simultaneous saccharification and 

fermentation (SSF) procedure and to identify the key issues of cellulosic ethanol production 

at larger scales. Pilot scale experiments (50 and 350-L fermentations) showed promising 

results that were similar to bench scale experiments. Material handling of the feedstock and 

bacterial contamination were the biggest challenges of the pilot scale fermentations. The 

third paper presents the techno-economic feasibility analysis of a full scale aqueous-ammonia 

soaked switchgrass fermentation process. It was determined that even though the aqueous-

ammonia soaking pretreatment method provides advantages such as operating at ambient 
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conditions, it is a capital-intensive process when implemented at commercial scale. Soaking 

time was the most important parameter that affected the total equipment cost. Feedstock and 

enzyme costs were identified to be the primary drivers of ethanol selling price. The objective 

of the last paper was to develop a rapid and easily adaptable SSF technique that offers the 

advantage of running a large number of samples at the same time using ammonia soaking as 

a pretreatment method. This research showed that ammonia soaking combined with SSF can 

be used as an easy and effective assay to determine ethanol yields of different feedstock. It 

was also observed that lignin concentration or near infrared reflectance spectroscopy can be 

used in directly to predict ethanol yields and can be used to guide biofuel feedstock selection 

in plant breeding research or in choosing feedstock for biofuel production.  
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CHAPTER 1. GENERAL INTRODUCTION 

Increasing energy demand, rising fuel prices and environmental issues related to 

fossil fuel consumption have motivated governments, academia and entrepreneurs to focus 

on alternative energy sources. Our society and economy require secure, environmentally 

benign, economically feasible and sustainable energy supplies. Biorenewable resources and 

the fuels produced from them can reduce our dependence on petroleum from unstable 

countries, create new domestic job opportunities and improve environmental quality. One of 

the most widely promoted and promising alternative fuels is ethanol, which is currently being 

produced from corn in the U.S. The number of ethanol plants in the U.S. has increased 

dramatically from 50 in 1999 to 134 in 2007 with additional plants under construction 

(Renewable Fuel Association Statistics, 2008). However, the demand for corn as a fuel, food 

and feed has driven up corn prices and will eventually limit expansion of grain-based ethanol 

production. In addition, it has been shown corn grain ethanol can only satisfy a small portion 

(~10%) of the US energy demand (Perlack et al., 2005).  

One approach to solving this problem is utilizing lignocellulosic materials for ethanol 

production (Lynd et al., 1991). Dedicated energy crops such as switchgrass, and agricultural 

and forestry residues are major sources of lignocellulose and have the potential to displace as 

much as 30% of U.S. petroleum consumption (Perlack et al., 2005). Lignocellulosic biomass 

is viewed as a renewable and sustainable ethanol feedstock, however the recalcitrant 

cellulosic structure, and hence the high cost of cellulosic ethanol production impedes its 

widespread commercialization. During the last two decades, a large literature has been 

generated by researchers addressing different issues of cellulosic ethanol production, 

including different pretreatment methods, enzymatic hydrolysis and saccharification of 
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cellulose, production of cost effective enzymes and development of new microorganisms and 

fermentation techniques. However, there is still a continuing debate about the best process 

designs and there is no single process that offers the most efficient way to produce ethanol 

from cellulosic biomass. This thesis does not claim to have the best process design for 

ethanol production and will not address all the issues of cellulosic ethanol, but rather 

attempts to evaluate one promising approach and to present information that can inform and 

guide the commercialization process.  

Objectives 

The objectives of the research for this thesis were: 

• To evaluate the effectiveness of aqueous ammonia soaking on ethanol yield of 

switchgrass and to determine the effect pretreatment conditions on the composition of 

switchgrass 

• To scale up the proposed bench scale SSF procedure and to identify the key issues of 

cellulosic ethanol production at larger scales. 

• To analyze techno-economic feasibility of aqueous ammonia soaked switchgrass 

fermentation process in full scale 

• To develop a rapid and easily adaptable SSF technique which offers the advantage of 

running a large number of samples at the same time 

Thesis Organization 

This thesis contains a general introduction, four research articles, a general 

conclusion as well as cited references and acknowledgments. The general introduction 

includes thesis objectives, thesis organization, the authors’ role in each article and a brief 
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literature review. The first article entitled “Aqueous Ammonia Soaking of Switchgrass 

Followed by Simultaneous Saccharification and Fermentation” has been published in the 

journal of Applied Biochemistry and Biotechnology (Isci et al., 2008). This article shows that 

ammonia soaking at ambient conditions was an effective pretreatment method for ethanol 

production from switchgrass. The compositional changes that occurred during ammonia 

soaking are presented and different pretreatment conditions and enzyme loadings are 

compared in terms of ethanol production. The second research article entitled “Pilot Scale 

Fermentation of Aqueous Ammonia Soaked Switchgrass” has been accepted by the journal of 

Applied Biochemistry and Biotechnology. It reports on a series of scale up trials of the 

bench-scale experiments proposed in the previous article and identifies challenges in pilot 

scale fermentations such as material handling and bacterial contamination. The third article, 

entitled “Techno-economic Analysis of Aqueous Ammonia Soaked Switchgrass 

Fermentation”, analyzes the economic feasibility of aqueous ammonia soaked switchgrass 

fermentation and identifies the processes and the parameters that have the largest impact on 

the capital cost and the ethanol selling price. The third article will be submitted to the journal 

of Bioresource Technology. The last research article, accepted by the journal of BioEnergy 

Research, is entitled “A Rapid Simultaneous Saccharification and Fermentation (SSF) 

Technique to Determine Ethanol Yields”. This article demonstrates that the ammonia soaking 

pretreatment combined with SSF can be used for rapid feedstock screening. A rapid and 

easily adaptable SSF technique was developed which offers the advantage of running a large 

number of samples at the same time. The technique is demonstrated using a set of genetically 

diverse corn stover samples. It is also shown that ethanol yields of the stover samples could 

be predicted from simple compositional data and near infrared reflectance spectroscopy 
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(NIRS). Following the fourth article is a general conclusion and discussion of future research 

directions suggested for improving the ammonia-soaking pretreatment method and the 

feasibility of cellulosic biofuel production in general. References for the general introduction 

and each paper are included at the end of each chapter.  

Authors’ Role 

 All of the research articles presented in this thesis are written by the primary author 

with the guidance and assistance of co-authors. Unless otherwise stated in the research 

articles, all the methods described in this thesis were performed by the primary author. 

In the first article (Chapter 2) Jennifer Himmelsbach (MS Student, Iowa State 

University) contributed to work by helping the primary author in the experiments. She has 

also helped with the design of bench scale ammonia washing system. Dr. Anthony L. 

Pometto (Professor, Department of Food Science & Human Nutrition, Iowa State University) 

contributed guidance and discussion and also helped with culture preparation and 

fermentation experiments. Dr. D. Raj Raman and Dr. Robert P. Anex (Associate Professors, 

Department of Agricultural & Biosystems Engineering, Iowa State University) provided 

guidance and assistance. The experiments were performed with the use of materials and 

equipment in Dr. Raman and Dr. Anex’s laboratory (3242 NSRIC Building). Yeast cultures 

were prepared in Dr. Anthony Pometto’s laboratory.  

In the second article (Chapter 3) Jennifer Himmelsbach designed the pilot scale 

ammonia soaking steeping tanks and helped in every step of the fermentation experiments 

which were performed in the Iowa State University Fermentation Facility, Food Science 

Department under the supervision of Dr. Anthony Pometto. Dr. John K. Strohl (Assistant 

Scientist, Department of Food Science & Human Nutrition, Iowa State University) provided 
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guidance and assistance in using 50-L and 350-L fermentors. Dr. Anthony Pometto provided 

intellectual discussion and guidance on large scale fermentation experiments. Dr. Raj Raman 

and Dr. Robert Anex helped during ammonia soaking experiments and provided guidance 

and assistance.  

In the third article (Chapter 4) Dr. Feroz Kabir (Visiting Scientist, Center for 

Sustainable and Environmental Technology, Iowa State University) helped with the mass 

balance and designing the flow charts. He also designed unit processes using ASPEN Plus 

software and provided guidance in cost calculations. Dr. Robert Anex contributed by 

providing new approaches and guidance. 

In the fourth article (Chapter 5) Pat Murphy (PhD Candidate, Department of 

Agricultural & Biosystems Engineering) provided assistance throughout the experiments. Dr. 

Kenneth J. Moore (Professor, Department of Agronomy, Iowa State University) guided the 

primary author with his knowledge on Near Infrared Reflectance Spectroscopy (NIRS) and 

statistical experiment designs. The compositional data and NIRS calibrations were done in 

Dr. Moore’s lab in the Department of Agronomy with the help of his laboratory members and 

Pat Murphy. Dr. Robert Anex provided the ideas and helped structuring the article.    

Literature Review 

The most important energy challenges of our century are growth in energy demand, 

energy security and climate protection. The dependency on petroleum and its products is 

increasing daily. The petroleum consumption of the United States is about 20.7 million 

barrels/day as of 2007 and the dependence on net petroleum imports is 60% (Energy 

Information Administration, 2007). Negative economic and social impacts are expected when 

our society faces disruptions in oil supplies.  
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Fuels derived from cellulosic biomass are expected to offer energy security, and 

economic and environmental benefits. However, there are still issues that impede their 

commercial production such as feedstock selection, pretreatment, cost, distribution and 

compatibility of the fuels, and the transition of the fossil fuel economy to a bio-economy. 

This chapter aims to give a brief overview of lignocellulosic ethanol production and to 

provide context for the concepts discussed in the later chapters of the thesis. 

Lignocellulosic Biomass Structure 

 Lignocellulosic biomass refers to plant biomass which is composed of cellulose, 

hemicellulose and lignin. The plant cell wall of lignocellulosic biomass can be considered as 

a composite material consisting of cellulosic microfibrils embedded within a matrix of 

hemicellulose and lignin. In general, lignocellulosic biomass contains 35-50% cellulose, 20-

35% hemicellulose, 10-15% lignin on dry basis (Wyman, 1994). The interactions among 

these cell components inside the plant cell hinder the hydrolysis of the carbohydrates into 

fermentable sugars.   

Cellulose 

Cellulose is polymer of glucose molecules which are covalently linked with β-1,4 

glycosidic bonds. The β configuration orients the glucose molecules in such a way that each 

polymer forms hydrogen bonds with the adjacent ones and coalesces into very strong, long 

and straight microfibrils. The microfibrils usually contain 30-36 hydrogen bonds with 

diameters of ~3 nm. The lengths of the microfibrils are unknown but single glucans 

containing up to 14000 units have been identified (Somerville et al., 2004).  Microfibrils are 

further aggregated into fibrils, which constitute cellulose fibers.  
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 Due to hydrogen bonding within the cellulose structure, cellulose can form very 

tightly packed crystallites. This regularly ordered structure can sometimes be so tight that no 

enzyme or water can penetrate into it. However, cellulose fibers in nature are not purely 

crystalline and have amorphous regions, which make the fibers at least partially hydrated. 

This characteristic of the natural cellulose enables enzymes access to substrate during 

hydrolysis (Moore and Hatfield, 1991). 

Hemicellulose 

 Hemicellulose is also a plant polysaccharide and comprises 20-35% of the biomass of 

most plants. Unlike cellulose, hemicellulose is not chemically homogeneous and composed 

of polymers of pentoses (xylose, arabinose), hexoses (mannose, glucose, galactose), and 

sugar acids (Saha, 2003). Xylan and glucomannan are the main constituents of hardwood and 

softwood hemicelluloses, respectively (McMillan, 1993). In grasses like switchgrass, 

hemicellulose is mainly present as arabinoxylan. Xylose molecules bond together to from a 

xylan backbone structure and arabinose forms bonds with the free hydroxyl group of the 

xylose molecules. Due to their amorphous morphology, hemicelluloses can be hydrolyzed 

easily by chemical and enzymatic treatments (Moore and Hatfield, 1991). 

Lignin 

 Lignin is phenylpropane based polymer derived from cinnamyl alcohols (coumaryl, 

sinapyl, coniferyl). Lignin is formed as a result of free radical reaction in which the 

monomeric precursors are condensed in a random arrangement. It gives strength and rigidity 

to plant cell and protects the plant from diseases and microorganisms (Moore and Hatfield, 

1991).  
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Lignin in grasses can be classified as core and non-core lignin. The core lignin is 

primarily, etherified and methoxylated cinnamyl alcohol polymers. The non-core lignin 

includes esterified and etherified cinnamyl acids with varying degrees of methoxylation 

which are either bound to core lignin or to hemicellulose. It has been suggested that these 

chemical linkages between lignin, cell wall polysaccharides and proteins hinders enzymatic 

hydrolysis of polymeric sugars (Moore and Hatfield, 1991). The primary cinnamyl acids that 

play a role in limiting cell wall digestion are ferulic acid and p-coumaric acid. Ferulates and 

p-coumarates that are esterified to polysaccharides or lignin are extracted with alkali at room 

temperature. Extraction at high temperatures, however, is required to cleave both ester- and 

ether-linked hydroxycinnamic acids (Moore and Jung, 2001). These aromatic molecules are 

antimicrobial and needs to be removed prior to SSF.  

Lignocellulosic Ethanol Production 

 The overall process of biochemical lignocellulosic ethanol production is summarized 

in Figure 1. The material handling process receives the biomass and prepares the feedstock 

for ethanol production. This step usually involves mechanical size reduction and washing. 

Subsequent to feedstock handling, biomass is pretreated in order to increase enzyme 

accessibility to fermentable sugars and remove possible fermentation inhibitors. Different 

pretreatment methods have been proposed and studied to overcome the recalcitrance of 

lignocellulosic hydrolysis. The main goals are to break up/alter the biomass structure and to 

reduce crystallinitiy of cellulose.  
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EtOH

Biomass

Biomass Residue

Feedstock 
Handling Pretreatment

Hydrolysis & 
Fermentation Distillation

Figure 1. Block flow diagram of cellulosic ethanol production 

 

Chemical and physical pretreatment methods have been extensively studied. Mosier 

et al. (2005a) have reviewed characteristics of the most studied pretreatment methods 

including steam explosion, liquid hot water, dilute acid, AFEX (ammonia fiber explosion), 

ARP (ammonia recycled percolation) and lime treatment.  

In steam explosion, biomass is subjected to high pressure steam followed by an 

explosive decompression. Acetic acid and other acids released during the process help to 

hydrolyze the hemicellulose portion; hence the accessibility of cellulose by enzymes is 

improved (Schultz et al., 1983; Brownell and Saddler, 1984; Heitz et al., 1991). The hot 

water process uses compressed water in liquid form at high temperatures (~200 ºC) to 

pretreat the biomass (van Walsum et al., 1996; Allen et al., 1996; Mosier et al., 2005b). The 

hot water process cleaves hemiacetal linkages and liberates acids, which facilitates the 

breakage of ether linkages in biomass (Antal, 1996). Dilute acid treatment involves heating a 

biomass-acid mixture directly or indirectly, which hydrolyses the hemicellulose fraction 

(Grohmann et al., 1985; Torget et al., 1990, 1991, 1992). AFEX is similar to the steam 

explosion process, but ammonia is used instead of steam. AFEX removes some of the 

hemicellulose and lignin and disrupts the crystalline structure of cellulose (Dale, 1986; Dale 

and Moreira, 1982; Dale et al., 1996). The ARP process, on the other hand, utilizes aqueous 
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ammonia for pretreatment. Liquid ammonia at elevated temperature passes through a column 

reactor packed with biomass (Yoon et al., 1995; Iyer et al., 1996; Kim and Lee, 1996; Kim et 

al., 2002). Ammonia recycled percolation process causes swelling of cellulose and a phase 

change in the crystal structure. It is also reported that glucuronic cross-links are hydrolyzed 

by ammonolysis reactions further increasing the accessibility of carbohydrates (Lin et al., 

1981). Lime pretreatment involves spraying a lime water mixture onto the biomass at 

relatively lower temperatures and pressures (Chang et al., 1997, 1998; Karr and Holtzapple, 

1998, 2000). Pretreatment time can be reduced by increasing the temperature (Playne, 1984). 

Lime treatment removes lignin, acetyl groups and uronic acid substitutions in hemicellulose 

and improves hydrolysis of cellulose (Chang and Holtzapple, 2000).  

After pretreatment, biomass is subjected to hydrolysis and fermentation. In most 

studies enzymatic hydrolysis and fermentation is performed in one step, which is also known 

as SSF (simultaneous saccharification and fermentation) (Takagi et al., 1977). Cellulase 

enzymes are widely used to hydrolyze cell-wall polysaccharides in the SSF process. A 

cellulosic enzyme (EC 3.2.1.4) system consists of three major components: endo-glucanase, 

exo-glucanase and β-glucosidase. Endo-glucanase randomly attacks internal glycosidic bonds 

in the cellulose chain and acts mainly on amorphous regions of cellulose. Exo-glucanase 

hydrolyzes from the chain ends and produces predominantly cellobiose. Cellobiose is cleaved 

to form two glucose molecules by β-glucosidase (Figure 2) (Eveleigh, 1987). In the SSF 

process, the released glucose is then consumed by the fermentative organism. 
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Figure 2. Enzymatic hydrolysis of cellulose (Eveleigh, 1987) 

 

Fungi such as Trichoderma ssp. and Aspergillus ssp. are the main cellulase-producing 

microorganisms used and crude enzymes produced by these microorganisms are 

commercially available. Commercial cellulase enzymes are usually a mixture of enzymes 

that includes hemicellulases as well as cellulase (Isci et al., 2008).  

Like many enzymes, cellulases are inhibited by their end products. Exo-glucanase 

activity is inhibited by cellobiose, whereas β-glucosidase activity is inhibited by glucose 
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production (Wright et al., 1988). Therefore, researchers have focused on SSF to overcome 

the end product inhibition during the hydrolysis step. As stated above, SSF is a process in 

which enzymatic hydrolysis and fermentation are carried out simultaneously in one reactor. 

Since glucose is rapidly consumed by the fermentative microorganism, end product 

inhibition of enzymes is greatly reduced. Takagi et al. (1977) were the first to describe SSF 

in the literature. Simultaneous saccharification and fermentations is preferred to SHF 

(separate hydrolysis and fermentation) not only due to reduction in end product inhibition but 

also due to reduced capital cost. In the SHF process, hydrolysis and fermentation take places 

in different reactors and solid liquid separation is required after hydrolysis. Using separate 

reactors for hydrolysis and fermentation also increases the chance of contamination (Wright 

et al., 1988; Grohmann, 1993). Ohgren et al. (2006) have also reported that higher ethanol 

concentrations can be achieved in SSF process which reduces the contamination levels. The 

most important disadvantage of SSF process is the limitation of process optimization for 

higher sugar and ethanol yields (Grohmann, 1993). Cellulolytic enzymes are usually more 

active at higher temperatures (~50ºC) relative to the optimum temperatures of common 

fermentative microorganism such as Saccharomyces cerevisiae (~35ºC). The SSF process 

usually takes place at the lower temperatures which are optimal for the fermentative 

organisms. 

Various fermentative microorganisms have been considered for improving ethanol 

production from lignocellulosics. As stated above, the most commonly used microorganism 

is Saccharomyces cerevisiae, which is also known as baker’s yeast. Even though this 

microorganism is capable of producing relatively high ethanol concentrations, it can only 

metabolize glucose (a 6-carbon sugar). However, in order to improve process economics, it is 
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desirable to convert both pentoses and hexoses to ethanol (Lynd et al., 1999). Yeasts such as 

Pichia stipitis, Candida shehatae, and Pachysolen tannophilus are naturally capable of 

fermenting both glucose and xylose to ethanol (Lynd et al., 1999; Bothast et al., 1997; 

Schneider et al., 1981).  However, it has been reported that these yeasts produce about one-

fifth the ethanol of S. cerevisiae (Chandakant and Bisaria, 1998) which also negatively 

impacts process economics. These yeasts are also reported to be sensitive to possible by-

products of pretreatment and hydrolysis (Hahn-Hagerdal et al., 2006).  

One approach to overcome these issues is to genetically engineer a microorganism 

that can ferment both hexoses and pentoses, produce large amounts of ethanol, and tolerate 

both inhibitory compounds and high ethanol concentrations. Several microorganisms 

including  Escherichia coli, Klebsiella oxytoca and Saccharomyces cerevisiae have been 

genetically modified to ferment both xylose and glucose into ethanol (Hahn-Hagerdal et al., 

2006; Lynd et al., 1999), however, more research is needed to increase ethanol titers and to 

adapt these microorganism to industrial conditions. The ultimate low-cost configuration for 

cellulosic ethanol production is integrating cellulolytic enzyme generation and fermentation 

capability in one microorganism, an approach known as consolidated bioprocessing (Lynd et 

al., 2005).  

 The final step in cellulosic ethanol production is separation. Fractional distillation can 

concentrate ethanol to 95.6% (w/v). This mixture is an azeotrope with a boiling point of 

78.1°C, and cannot be further purified by distillation, but can be further concentrated using 

molecular sieves, desiccation or extractive distillation. Other ethanol separation techniques 

such as gas stripping, vacuum, membrane processes, and liquid extraction have been also 

suggested in literature (Cardona and Sanchez, 2007).  
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Commercialization Challenges 

 A major barrier to the commercialization of cellulosic ethanol is its high cost of 

production relative to gasoline. The most important parameters that affect the costs of 

production are feedstock (collection, transportation and storage), pretreatment and enzyme 

(Aden and Ruth, 2001). Currently, pretreatment techniques are very capital intensive 

(Eggeman and Elander, 2005). Advancements in pretreatment methods will significantly 

reduce the cellulosic ethanol price. In addition, the engineered microorganisms that are 

capable of producing high ethanol yields will improve process economics.  

Co-products are also important to decreasing the cost of cellulosic ethanol and to 

achieving an environmentally friendly process. Various by-product streams, mostly organic 

in nature are expected to be generated during the processing of lignocellulosic biomass. 

These organic by-products will have an important value either as a feedstock for fuel or as a 

source of other value added co-products. Some likely co-products are organic acids, organic 

alcohols, and aromatic chemical intermediates (Tsao et al., 1999; Iyer et al., 2000; Bordern et 

al., 2000; Altaras et al., 2001; Holtzapple et al., 1999). In addition, different integrated 

biorefinery scenarios are being considered to make the process more profitable and 

sustainable. One of the approaches is to utilize the unfermented portion of biomass for power 

and electricity generation by combustion (Aden and Ruth, 2001). Another option could be 

syngas production via gasification of the unfermented portion of the biomass. There will be 

more opportunities once the side streams are fully characterized. 

There are currently 11 companies planning to produce cellulosic ethanol 

commercially, these are: Abengoa Bioenergy (30 MMgal/y in Kansas), Alico, Inc. (Florida), 

BlueFire Ethanol, Inc. (17 MMgal/y in California), Gulf Coast Energy (70MMgal/y in 
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Florida), Mascoma Corp., (40 MMgal/y in Michigan), Iogen (18 MMgal/y in Idoha), POET 

(25 MMgal/y in Iowa), Range Fuels (20 MMgal/y in Georgia), SunOpta (20 MMgal/y in 

Minnesota), Xethanol (8 MMGal/y in Florida) (Ethanol Producer Magazine, 2007). There are 

other demonstration plants under construction that should help guide the commercialization 

of cellulosic ethanol. 
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Abstract 

Simultaneous saccharification and fermentation (SSF) of switchgrass was performed 

following aqueous ammonia pretreatment. Switchgrass was soaked in aqueous ammonium 

hydroxide (30%) with different liquid-solid ratios (5 and 10 mL/g) for either 5 or 10 days. 

The pretreatment was carried out at atmospheric conditions without agitation. A 40-50% 

delignification (Klason lignin basis) was achieved, whereas cellulose content remained 

unchanged and hemicellulose content decreased by approximately 50%. The Saccharomyces 

cerevisiae (D5A)-mediated SSF of ammonia-treated switchgrass was investigated at two 

glucan loadings (3 and 6%) and three enzyme loadings (26, 38.5 and 77 FPU/g cellulose), 

using Spezyme CP. The percentage of maximum theoretical ethanol yield achieved was 72. 

Liquid-solid ratio and steeping time affected lignin removal slightly, but did not cause a 

significant change in overall ethanol conversion yields at sufficiently high enzyme loadings. 

These results suggest that ammonia steeping may be an effective method of pretreatment for 

lignocellulosic feedstock. 
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Introduction 

Switchgrass (Panicum virgatum) is a warm season, perennial grass which is resistant 

to harsh conditions, pests and diseases (1). It is also capable of producing high biomass 

yields at low fertilizer application rates (1). These attributes along with the environmental 

benefits associated with perennial vegetation make switchgrass a good candidate for a 

dedicated energy crop (2). However, lignin in lignocellulosic feedstocks is known to create 

obstacles such as inhibition of enzymatic hydrolysis and microbial activity in the ethanol 

fermentation. Besides the goal of reducing compounds that may inhibit fermentation of 

sugars to ethanol, pretreatment is also required to either partially remove or break up the 

lignin structure, so that enzymes can diffuse into the cellulose polymer and degrade it into 

monomeric fermentable sugars. While a variety of pretreatment methods have been 

developed and tested at lab-scale (3), pretreatment of biomass remains one of the most costly 

steps in lignocellulosic biofuels production and affects subsequent operations (4). For 

example, improvements in pretreatment can reduce the amount of enzymes (cellulases) used 

(4). Teymouri et al. (5) indicated effective enzymatic hydrolysis of AFEX-treated biomass at 

enzyme loadings as low as 7 FPU/g of glucan could be achieved by adjusting the 

pretreatment parameters. Kim et al. (6) reported the enzymatic digestibility of corn stover 

treated by the ammonia recycled percolation to be 90% with an enzyme loading of 10 FPU/ 

g-glucan. Although many biological, chemical, and physical methods have been attempted 

over the years, further development of pretreatment methods is needed to reduce overall costs 

of lignocellulosic bioconversion (7). Dilute acid treatment, water pretreatment with pH 

control, AFEX (ammonia fiber explosion), ARP (ammonia recycle percolation), and lime 

pretreatment are among the most promising and most studied technologies (3). Many of these 
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pretreatment methods, however, require high temperature and/or high pressure. The extreme 

conditions used to increase the digestibility of the biomass decrease the reaction time 

required for the pretreatment, but they increase capital and operating costs. Extreme 

conditions may also cause the formation of compounds that are inhibitory to the fermentative 

organisms, and they may cause degradation of some fraction of the fermentation substrate. 

For these reasons, ambient temperature and pressure pretreatments are of interest. 

Removing lignin with alkaline chemicals to improve cellulose digestibility and 

ammonia steeping/soaking at room temperature has been previously studied on several types 

of biomass (8, 9, 10). The steeping method is a simple method that does not require high 

pressures and high temperatures. Ammonia soaking of corn stover at room temperature can 

remove as much as 74% of the lignin, but retain nearly 100% of the glucan and 85% of the 

xylan (8).  

Currently, simultaneous saccharification and fermentation (SSF) is one of the most 

commonly used processes for ethanol production (5, 6, 8, 11-15). This process combines two 

steps in the same vessel to generate ethanol: enzymatic break down of the complex sugars 

into glucose, and fermentation of the glucose into ethanol by yeast. This process has been 

widely adopted due to reduction of glucose inhibition during enzymatic hydrolysis. In 

addition, the risk of bacterial contamination and capital investments are lower, since both the 

hydrolysis and the fermentation steps take place in the same reactor. Although SSF of 

switchgrass has been studied following numerous types of pretreatment (11-13, 16), the 

effect of aqueous ammonia soaking at room temperature and atmospheric pressure on ethanol 

yield of switchgrass has not been reported. The objectives of this study were to determine the 
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effect of soaking time and liquid-solid ratios on the composition of ammonia-steeped 

switchgrass, and on ethanol production from SSF of ammonia-steeped switchgrass. 

Materials and Methods 

Switchgrass samples were collected from mature stands of the Cave-in-Rock cultivar 

while dormant (early spring) in Chariton, IA. Dry switchgrass was ground to a size of 5-6 

mm by the Biomass Energy Conversion Center (BECON), Nevada, IA. The composition of 

the switchgrass except for Klason lignin was determined by Iowa State University, 

Department of Agronomy using the ANKOM method (ANKOM Technol. Corp., Fairport, 

NY) as described by Vogel et al. (17). Untreated switchgrass contained 42% cellulose, 31% 

hemicellulose, 6% acid detergent lignin, 22% Klason lignin and 0.7% ash.  

Cellulase enzyme (Spezyme CP, lot no: 301-05021-011) was provided by Genencor 

International (Palo Alto, CA) and had an activity of 77 filter paper units (FPU)/mL, measured 

using standard procedures (18). The yeast (Sacccharomyces cerevisiae D5A) was supplied by 

National Renewable Energy Laboratory and preserved at 4°C after freeze drying with 20% 

skim milk.  

Forty grams of dry switchgrass was soaked in reagent-grade 29.5 wt% aqueous 

ammonium hydroxide (Fisher Scientific Inc.) in 1L high density polyethylene bottles at room 

temperature without any agitation. Two different aqueous ammonia loading rates (5 and 10 

mL/g) were applied for both 5 and 10 d. Each treatment was performed in duplicates. At the 

end of the pretreatment, the biomass was washed in the same bottles with 20 L DI water 

using a customized fluidized bed-biomass washing system (Figure 1). For treated fiber 

washing, deionized water was supplied from the bottom of the bottle which was placed on 

top of a magnetic stir plate and the rinsate was collected from the top of the bottle. A metal 
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screen and glass wool was used to keep the biomass inside the bottle during washing. This 

system allowed homogeneous continuous rinsing of the biomass in situ to minimize reactor 

handling.  

The pretreated samples were then analyzed for cellulose, hemicellulose (as described 

above) and for Klason lignin. The biomass was dried completely for Klason lignin analysis 

which was performed following Crawford and Pometto (19) with a slight modification, 

namely that glass fiber filters (Fisherbrand, G6, 1.6 µm) were used for capturing lignin 

residues instead of Whatman #1 filter papers. Employing the glass fiber filters avoided errors 

due to the rapid adsorption of atmospheric humidity onto the dry filter papers.  

The wet biomass obtained from the washing system was used for simultaneous 

saccharification and fermentation experiments following established procedures (20). 

Specifically, 250-mL Erlenmeyer flasks were used for fermentation with 100-mL working 

volume. Two cellulose loadings (3 and 6%), and three enzyme loadings (26, 38, and 77 

FPU/g cellulose) were evaluated on ammonia-treated switchgrass. The switchgrass after the 

pretreatment contained 56.6% cellulose with 80% wet basis moisture content. Example 

cellulose loading calculation for one flask (20): 

flaskonfermentativolumeworkingmLincelluloseg
contentcellulosecontentsolidbiomasspretreatedwetg

10001.3
%6.56%206.26

=
××

 

The fermentation media contained 1 % w/v yeast extract, 2 % w/v peptone and 0.05 

M citrate buffer (pH 4.8). Yeast-free saccharification flasks were run alongside each 

fermentation flasks to monitor sugar production in the absence of fermentative organisms. 

Samples were analyzed for sugars (cellobiose, glucose, and xylose) and ethanol by HPLC 

(Varian ProStar 210, MetaCarb 87P column with mobile phase of water, flow rate of 0.4 
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ml/min, column temperature of 80oC, and injection volume of 20 μl) with a refractive index 

detector. Total sugars and reducing sugars in both saccharification and fermentation flasks 

were determined by using phenol-sulfuric (21) and DNS methods (22), respectively. Water 

soaked switchgrass and α-cellulose were fermented using the same procedure and reported as 

control and reference, respectively. All of the experiments are performed in duplicate (n=2). 

Theoretical ethanol yields were calculated as follows considering the maximum 

(51%) conversion of glucose into ethanol by yeast (8).  

 

100
511.0)(

)((%) ×
×

=
reactoringsugarInitial

reactoringproducedEthanolyieldethanollTheoretica  

 
 

 
Figure 1. Fluidized bed biomass washing set-up. 
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Results and Discussion 

Ammonia steeping proved to be an effective method for removing Klason lignin, 

preserving the cellulose fraction, and enhancing the subsequent SSF of switchgrass. Figure 2 

illustrates the effect of different treatments on the recovery of sugars and total dry biomass. 

Almost all the cellulose was retained, while nearly half of the hemicellulose was removed 

with ammonia treatment. More than 75% of the original dry biomass was collected after 

soaking. Removing hemicellulose has sometimes been considered a desired characteristic of 

a biomass pretreatment because this reduces inhibitory compounds such as furfural generated 

from hemicellulose degradation via dilute acid treatment at high temperature and pressures 

(23) and some process designs have included fermentation of hexose and pentose sugars in 

separate reactors. However, the development of genetically modified microorganism capable 

of fermenting both pentose and hexose sugars offers the advantage of greater ethanol yields 

(24, 25) and lower capital cost. Therefore, the feasibility of capturing the rinsate pentoses 

should be determined in future studies. In contrast to the 50% removal of hemicellulose that 

we observed, Kim and Lee (8) observed around 15% xylan reduction after 10 d of aqueous 

ammonia soaking of corn stover with 12 mL/g loading (they did not report hemicellulose 

reductions specifically). The higher reduction in pentose polymers in our study could be due 

to the thorough washing of treated biomass employed to ensure neutral pH before 

fermentation; the degree of washing performed by Kim and Lee was not reported. However, 

the difference might also reflect fundamental cell wall differences between corn stover and 

switchgrass. 
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Figure 2. Effect of different aqueous ammonium hydroxide loadings (ml/g of ground 
switchgrass) and soaking time on the recovery of dry switchgrass, hemicellulose, and 
cellulose (n=2).  
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Figure 3. Percent klason lignin removal with different aqueous ammonium hydroxide 
loadings (ml/g ground switchgrass) and soaking time (n=2). 

 

 

Estimates of lignin content can vary greatly between different procedures (26). For 

example, although acid detergent lignin (ADL) and Klason lignin are both common for 

determination of forage lignin content, Klason lignin values are generally two to four times 

greater than ADL estimates for grasses (26). This study used Klason lignin values to be 

consistent with previous studies (8, 10, 14, 15).  

The influence of different treatment conditions on Klason lignin is presented in 

Figure 3. As anticipated, more lignin was removed with higher aqueous ammonia loadings 

and longer treatment. The highest delignification (47%) was achieved with ammonium 

hydroxide soaking for 10 d at 10 mL/g biomass. These results are consistent with Kim and 
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Lee (8) who report approximately 50% lignin removal from corn stover in 4 d with loading 

of 12 mL/g ground corn-stover. Cao et al. (10) report that between 80-90% lignin can be 

removed from corn cobs in 24 h with an ammonium steeping ratio of 5 mL/g at 26ºC. Higher 

delignification with lower pretreatment duration in that case could be due to structural 

differences between corn cob and corn stover. Chang et al. (14) reported approximately 30% 

lignin solubilization after lime treatment of switchgrass. Kim and Lee (15) have also reported 

that the ARP (ammonia recycle percolation) process can remove up to 85% of lignin from 

corn stover.  
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Figure 4. Time courses of sugars and ethanol concentrations for SSF of aqueous ammonium 
hydroxide steeped switchgrass (5 mL/g, 5 d, 3% cellulose, 77 FPU/g cellulose) (n=2). 
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The SSF of aqueous ammonia pretreated switchgrass followed a classical SSF 

production curve in which ethanol concentration increased with time while glucose and 

cellobiose concentrations increased initially then decreased once the yeast began consuming 

sugars at higher rates (Figure 4). The accumulation of xylose indicated the presence of 

hemicellulases in our enzyme complex, and could potentially inhibit ethanol fermentation 

(8). The glucose concentrations were generally higher than cellobiose concentrations 

throughout the fermentations indicating the effective conversion of cellobiose into glucose by 

β-glucosidase in the enzyme solution. The ethanol concentration remained relatively constant 

after 24 h, but to ensure fermentation was completed, the 96 h data are presented in 

subsequent figures. 

Two extreme ammonium pretreatment conditions were selected (5 d with 5 mL/g, and 

10 d with 10 mL/g switchgrass) to explore the effect of steeping time and loading rate on 

sugar release and ethanol production (Figure 5). The lower residual sugar concentrations 

observed in the fermentation flasks (compared to saccharification flasks) suggested the 

enzymes and yeast were metabolizing sugars. As expected, higher aqueous ammonium 

hydroxide loadings and longer soaking times led to greater sugar release in subsequent 

saccharification tests. This implied higher ethanol concentrations could be achieved by these 

more aggressive conditions, and this is borne out in the data presented in Figure 6, which 

illustrates the final ethanol concentrations achieved through SSF of pretreated switchgrass. 

The highest ethanol concentration (22 g/L) was observed in flasks fermenting switchgrass 

treated for 10 d at 10 mL/g ground switchgrass, using a glucan loading rate of 6 % and an 

enzyme loading rate of 38.5 FPU/g cellulose. This also corresponded to the treatment 

showing the highest sugar release (Figure 5, T4). Pretreatment loading rates and durations 
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had no significant effect on ethanol production at high enzyme loadings (Figure 6, T1 and 

T2). However, at medium and low enzyme loadings (38.5 and 26 FPU/g cellulose, 

respectively), final ethanol concentrations were sensitive to pretreatment conditions in the 

range studied. Specifically, final ethanol concentrations increased approximately up to 40% 

when the pretreatment went from 5 d with 5 mL/g loading to 10 d with 10 mL/g aqueous 

ammonia loading (Figure 6, T3 vs. T4 and T5 vs. T6). Doubling the cellulose loading, while 

halving the enzyme loadings, resulted in a doubling of ethanol concentrations at 96 h (Figure 

6, T1 vs. T3 and T2 vs. T4). This suggests effective conversions at higher cellulose 

concentrations with medium enzyme loadings. The trade-offs among pretreatment intensity, 

enzyme loadings, and cellulose loadings need to be addressed in detail prior to scale-up of 

the aqueous ammonia steeping procedure. 
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Figure 5. Effect of aqueous ammonium hydroxide loading and soaking time on sugar release 
at 96 h. Saccharification and fermentation flasks had two cellulose loadings (3 and 6 %) and 
three enzyme loadings (26, 38.5 and 77 FPU/ g cellulose). T1 (5/77): Treatment 1, 5 mL/g, 
5d, 3% cellulose, 77 FPU/g cellulose; T2 (10/77): Treatment 2, 10 mL/g, 10d, 3% cellulose, 
77 FPU/g cellulose; T3 (5/38.5): Treatment 3, 5 mL/g, 5d, 6% cellulose, 38.5 FPU/g 
cellulose; T4 (10/38.5): Treatment 4, 10 mL/g, 10d, 6% cellulose, 38.5 FPU/g cellulose; T5 
(5/26): Treatment 5, 5 mL/g, 5d, 3% cellulose, 26 FPU/g cellulose; T6 (10/26): Treatment 6, 
10 mL/g, 10d, 3% cellulose, 26 FPU/g cellulose. 
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Figure 6. Ethanol concentrations in different fermentation flasks at 96 h. REF: reference, 3% 
α-cellulose fermentation, 77 FPU/g cellulose; T1 (5/77): Treatment 1, 5 mL/g, 5d, 3% 
cellulose, 77 FPU/g cellulose; T2 (10/77): Treatment 2, 10 mL/g, 10d, 3% cellulose, 77 
FPU/g cellulose; T3 (5/38.5): Treatment 3, 5 mL/g, 5d, 6% cellulose, 38.5 FPU/g cellulose; 
T4 (10/38.5): Treatment 4, 10 mL/g, 10d, 6% cellulose, 38.5 FPU/g cellulose; T5 (5/26): 
Treatment 5, 5 mL/g, 5d, 3% cellulose, 26 FPU/g cellulose; T6 (10/26): Treatment 6, 10 
mL/g, 10d, 3% cellulose, 26 FPU/g cellulose; CTRL: control, water soaked switchgrass 
fermentation, 5mL/g, 5d, 3% cellulose, 77 FPU/g cellulose. 
  

 

Three percent α-cellulose fermentation with high enzyme loading (77 FPU/g 

cellulose) was performed as a reference. At equal glucan loadings, α-cellulose yielded 

approximately 25% more ethanol compared to aqueous ammonia pretreated switchgrass 

(Figure 6, REF vs T1 & T2). The lower ethanol productions from switchgrass fermentation 

were likely due to accumulation of inhibitory compounds such as xylose (8). Fermentation of 

water-soaked switchgrass was attempted as a negative control and no ethanol production was 
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observed, illustrating the critical role of aqueous ammonia soaking in overcoming the 

recalcitrance of switchgrass. 
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Figure 7. Theoretical ethanol yields of different fermentations. Letters on top of the columns 
indicate significant differences (Tukey test, α = 0.05). REF: reference, 3% α-cellulose 
fermentation, 77 FPU/g cellulose; T1 (5/77): Treatment 1, 5 mL/g, 5d, 3% cellulose, 77 
FPU/g cellulose; T2 (10/77): Treatment 2, 10 mL/g, 10d, 3% cellulose, 77 FPU/g cellulose; 
T3 (5/38.5): Treatment 3, 5 mL/g, 5d, 6% cellulose, 38.5 FPU/g cellulose; T4 (10/38.5): 
Treatment 4, 10 mL/g, 10d, 6% cellulose, 38.5 FPU/g cellulose; T5 (5/26): Treatment 5, 5 
mL/g, 5d, 3% cellulose, 26 FPU/g cellulose; T6 (10/26): Treatment 6, 10 mL/g, 10d, 3% 
cellulose, 26 FPU/g cellulose; CTRL: control, water soaked switchgrass fermentation, 
5mL/g, 5d, 3% cellulose, 77 FPU/g cellulose. 
 

 

The percent of maximum theoretical ethanol yield achieved was computed for each of 

the SSF treatments using the conversion rate of 51 g ethanol per 100 g glucose. Results 

ranged from 72% for 10 d with the 10 mL/g treatments (Figure 7, T4), to 44% for 5 d with 5 
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mL/g and low enzyme case (Figure 7, T5). The average percent of maximum theoretical 

ethanol yield achieved was 60. Kim and Lee (8) reported 73% of maximum theoretical 

ethanol yield achieved after fermenting corn stover pretreated in aqueous ammonium 

hydroxide at 8 mL/g for 10 d. No statistically significant differences in percent of maximum 

theoretical ethanol yield achieved were observed between low, medium, and high enzyme 

loadings at high liquid-solid ratios and soaking times (Figure 7, T2, T4, and T6). In contrast, 

5 d with 5 mL/g with the lowest enzyme loading had a statistically significantly lower 

ethanol yield (Figure 7, T5). This reinforces the interrelationship between enzyme 

requirements and pretreatment intensity discussed earlier. 

Conclusion 

Aqueous ammonia soaking at room temperature and atmospheric pressure is an 

effective pretreatment method for switchgrass prior to simultaneous saccharification and 

fermentation for ethanol production. The percent of maximum theoretical ethanol yield 

achieved by this method was as high as 72%, and this result reflected minimal optimization 

of the process. At high enzyme loadings, ethanol production was not greatly influenced by 

soaking time and liquid-solid ratio. However, at low enzyme loadings, significant increases 

in ethanol production were observed for the samples pretreated with higher intensity. The 

interrelationship between pretreatment conditions and enzyme requirements should be an 

area of further study and optimization. 
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Abstract 

Aqueous ammonia steeped switchgrass was subject to simultaneous saccharification 

and fermentation (SSF) in two pilot-scale bioreactors (50 and 350 L working volume). 

Switchgrass was pretreated by soaking in ammonium hydroxide (30%) with solid to liquid 

ratio of 5 L ammonium hydroxide/kg dry switchgrass for 5 days in 75-L steeping vessels 

without agitation at ambient temperatures (15 to 33 ºC). SSF of the pretreated biomass was 

carried out using Saccharomyces cerevisiae (D5A) at approximately 2% glucan and 77 filter 

paper units (FPU)/g cellulose enzyme loading (Spezyme CP). The 50-L fermentation was 

carried out aseptically, whereas the 350-L fermentation was semi-aseptic. The percentage of 

maximum theoretical ethanol yields achieved was 73% in the 50-L reactor and 52-74% in the 

350-L reactor due to the difference in asepsis. The 350-L fermentation was contaminated by 

acid producing bacteria (lactic and acetic acid concentrations approaching 10 g/L), and this 

resulted in lower ethanol production. Despite this problem, the pilot-scale SSF of aqueous 

ammonia pretreated switchgrass has shown promising results similar to laboratory scale 

experiments. This work demonstrates challenges in pilot scale fermentations with material 
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handling, aseptic conditions and bacterial contamination for cellulosic fermentations to 

biofuels. 

Introduction 

Recovery of nutrients from biorefineries and recycling them back to crop fields can 

significantly improve the sustainability of biofuel production and can improve the overall 

energy balance of cellulosic ethanol systems (Anex et al., 2007). Advanced biorefinery 

designs usually integrate biological and thermochemical processes in which the unfermented 

portion of the biomass is thermally converted to produce additional fuels as well as heat and 

energy to drive the conversion processes. In theory, nutrient cycles can be closed by 

capturing the plant nutrients that are concentrated in ash and as gaseous ammonia produced 

during thermal conversion of the fermentation residue and by recycling them to crop 

production fields where feedstock are grown (Anex et al., 2007). To test this theory, 

quantities of fermentation residue sufficient to feed a pilot-scale gasifier were required. The 

target gasifier located at Iowa State University requires approximately 10 kg of dry 

fermentation residue to achieve the steady state operation required for consistent data 

generation (Do et al., 2007). Thus, one of the objectives of this study was to develop pilot-

scale fermentation protocols that would generate a sufficient amount of fermentation residue 

for future gasification studies. 

Pilot-scale fermentation experiments using steam exploded aspen and corn fiber have 

been reported previously in the literature (De Bari et al., 2002; Schell et al., 2004; Schell et 

al., 2007). De Bari et al. (2002) reported achieving 79% of theoretical ethanol yields from 

steam exploded aspen in helical stirred 10 and 50-L pilot-scale bioreactors. Schell et al. 

(2004) described an ethanol plant design which can continuously process a lignocellulosic 
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feedstock at a rate of 900 kg/day (dry weight) and they evaluated  the equipment operation in 

the ethanol plant and generated performance data using dilute acid treated corn fiber. The 

authors have also discussed significant operational problems such as settling of solids during 

fermentation, difficulty in mixing, and bacterial contamination. In their second study, the 

authors (Schell et al., 2007) presented information on subsequent fermentation experiments 

and identified the primary source of contaminating microorganisms as Lactobacillus bacteria 

in the main fermentors. These papers provided valuable information on pilot-scale ethanol 

production from lignocellulosics; however, to our knowledge, there are no articles in the 

literature on pilot scale ethanol production from dedicated energy crops such as switchgrass 

or pilot-scale fermentation studies using aqueous ammonia pretreatment.   

Ethanol production from switchgrass has been the focus of different studies (Isci et 

al., 2008; Alizadeh et al., 2005; Chang et al., 2001; Kurakake et al., 2001; Iyer et al., 1996); 

however all of these studies were performed at the bench scale. Therefore, the second 

objective of the study was to show that our previously proposed bench scale simultaneous 

saccharification and fermentation procedure (Isci et al., 2008) can be successfully scaled up.     

Materials and Methods 

Switchgrass samples were collected from mature stands of the Cave-in-Rock cultivar 

while dormant (early spring) in Chariton, IA. Dry switchgrass was ground to an average size 

of 5-6 mm in a tub grinder by the Biomass Energy Conversion Center (BECON), Nevada, 

IA. The compositions of the switchgrass (before and after pretreatment) were determined by 

Iowa State University, Department of Agronomy using the ANKOM method (ANKOM 

Technol. Corp., Fairport, NY) as described by Vogel et al. (Vogel et al., 1999). Untreated 

switchgrass (starting material) contained 32% cellulose, 31% hemicellulose, and 4.4% acid 
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detergent lignin, 27% Klason lignin and 0.7% ash. Klason lignin values were determined as 

explained by Isci et al. (Isci et al., 2008). 

Cellulase enzyme (Spezyme CP, lot no:301-05330-206) was provided by Genencor 

International (Palo Alto, CA) and had an activity of 60 filter paper units (FPU)/mL, measured 

using standard procedures (NREL, Procedure no: 06, 1996). The yeast (Sacccharomyces 

cerevisiae D5A) was supplied by National Renewable Energy Laboratory and preserved at 

4°C after freeze drying with 20% nonfat dry milk. 

Soaking in ammonium hydroxide, which was first studied by Kim and Lee (2005) as 

a biomass pretreatment method, was performed to enhance subsequent enzymatic hydrolysis 

of switchgrass. It has been shown at the lab scale (Isci et al., 2008) that the process partially 

removes lignin and hemicellulose, while preserving cellulose fraction of the biomass. To test 

the performance of the pilot scale pretreatment and fermentation, 4 kg of dry switchgrass was 

soaked in reagent-grade (29.5 wt%) ammonium hydroxide (Fisher Scientific Inc., 

Hanoverpark, IL) for 5 days in 75-L vessels at the Iowa State University Livestock 

Environment Building and Research Center (LEBRC) near Boone, IA, during the summer of 

2007 (Himmelsbach et al., 2008). The vessels were operated without any agitation at ambient 

temperatures (15 to 33ºC). The ammonia soaked switchgrass from this first trial was used in 

the 50-L fermentation immediately after the soaking period. The design and performance of 

the pretreatment vessels have been described in detail elsewhere (Himmelsbach et al., 2008). 

From the subsequent soakings, approximately 80 kg of wet aqueous ammonia soaked 

switchgrass was generated and stored at -20ºC for the 350-L fermentation and thawed during 

the three days before the fermentation. Pilot scale simultaneous saccharification and 
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fermentation (SSF) was performed following established procedures (NREL, Procedure no: 

08, 1996). 

Fermentation Design  

Extrapolating bench scale experiments suggested that approximately 12-20 kg of 

ammonia pretreated switchgrass (60-100 kg wet switchgrass) would need to be fermented to 

produce the 6-10 kg of residual. One steeping vessel run generated sufficient pretreated 

switchgrass for the 50-L fermentor, which allowed to directly scale-up to the 50-L 

fermentation. Performing a 50-L fermentation 7-times with pretreated fresh switchgrass was 

considered, however in order to produce a homogeneous residue, gain experience at larger 

scales and save time we chose to work at 350 L. The size of pretreatment vessel used 

required that pretreated switchgrass be stored by freezing until sufficient material could be 

generated to perform the 350-L fermentation. 

The 50-L Fermentation 

Approximately, 13.3 kg of wet switchgrass (80% moisture content) was generated 

from an initial trial of pilot-scale ammonia soaking, which contained 48% cellulose, 23% 

hemicellulose and 22% Klason Lignin. The average solid content of the wet switchgrass was 

determined by drying 6 switchgrass samples (20 gram each) taken from different locations of 

the pretreatment vessel at 60ºC for 3 days.  

A 50-L steam-jacketed fermentor (Figure 1, Biostat U-50, B. Braun Biotech 

(Sartorius), Allentown, PA) was loaded with 13.3 kg wet switchgrass (which corresponds to 

2.4% [w/v] cellulose concentration), 1% (w/v) yeast extract (Ardamine Z, Indianapolis, IN), 

2% (w/v) peptone (Difco Laboratory, Detroit, MI),  0.05 M citrate buffer (pH 4.8), and 
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deionized water added to make a working volume of 50-L then sterilized at 121oC for 20 

min. The 50 L fermentor was equipped with 3 Rushton type impellors, which operated at 130 

rpm during fermentation. Once the fermentation media cooled down to 35ºC, the inoculum 

and enzyme (77 FPU/g cellulose) was added aseptically. The 1-L S. cerevisiae D5A inoculum 

was prepared in 2-L shake flasks with 1% (w/v) yeast extract (Ardamine Z), 2% (w/v) 

peptone (Difco Laboratory) and 5% (w/v) dextrose (Fisher Scientific Inc.) at 35oC  with 

shaking at 170 rpm for 24 h, and was inoculated with one freeze dried culture vial (2 * 109 

cells/ mL).   

 

 
Figure 1. Biostat U-50, 50L fermentor. 

 

The 350-L Fermentation 

Approximately, 80 kg of wet switchgrass (80% moisture content) was generated by 

ammonia steeping in 75-L vessels by steeping for 5 days at a liquid to solid ratio of 5 L 
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aqueous ammonia/kg dry switchgrass (Himmelsbach et al., 2008). The pretreated switchgrass 

contained 45% cellulose, 23% hemicellulose and 23.5% Klason lignin. The solid content and 

fiber content of the pretreated material were determined as explained above.  

A 350-L fermentor (Figure 2, Model PTT, Walker Stainless Equipment Co., New 

Lisbon, WI) was loaded with approximately 80 kg of thawed wet switchgrass with a moisture 

content of 80% (~2% w/v cellulose), 1% (w/v) yeast extract, 2% (w/v) peptone and 0.05 M 

citrate buffer (pH 4.8). A semi-aseptic method was used, such that first yeast extract, 

peptone, water and buffer were sterilized in the tank using steam jackets, and then 

unsterilized switchgrass was added incrementally over 24 h. Specifically, approximately one 

third of the switchgrass (~27 kg) was added at times 0, 5, and 24 h, which allowed substrate 

thinning via the cellulase (77 FPU/g cellulose). Incremental addition of wet switchgrass was 

done because the material was dense and clumpy, and we risked damaging the reactor 

impeller if all biomass were added at once. The single 30-cm diameter, 3-blade axial flow 

impeller was operated at 200 rpm throughout the SSF process. 

 The 10-L S. cerevisiae D5A inoculum was prepared in 20 L fermentor (Bioflo 500, 

New Brunswick Scientific, Edison, NJ) with 1% (w/v) yeast extract (Ardamine Z), 2% (w/v) 

peptone (Difco Laboratories) and 5% (w/v) dextrose (Fisher Scientific Inc.) at 35oC for 24 h 

with  250 rpm agitation and 5-10 L/min air flow. The inoculum was aseptically transferred 

into 350 L fermentor at time 0. Enzyme (77 FPU/ g cellulose) was added at the same time 

from the top of the fermentor using sterile containers based on the final concentration of 

treated switchgrass. 
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Figure 2. 350-L fermentor, Model PTT. 

 

Theoretical ethanol yields were calculated as follows based on the maximum (51%) 

conversion of glucose into ethanol by yeast (Isci et al., 2008).  

 

100
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At the end of each fermentation, the biomass fermentation residue remaining in the 

fermentors was pumped into containers and screened through 2 mm fiberglass mesh 

(charcoal fiberglass, New York Wire) and the captured solids were dried at 60ºC for 3 days. 
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Analytical Procedure 

Samples were taken at time 0, 4, 8, 24, 48 and 72 h from 50 L fermentation and at 

time 0, 5, 24, 28, 48, 72, 96, 120 h from 350 L fermentation. The samples were analyzed for 

sugars (cellobiose, glucose, and xylose), ethanol and organic acids by HPLC (Varian ProStar 

210) with a refractive index detector (Varian 355 RI). A MetaCarb 87P column (water as a 

mobile phase, flow rate of 0.4 ml/min, column temperature of 80oC, and injection volume of 

20 μl) was used for sugar analysis, while a Bio-Rad 87H column (0.01 N sulfuric acid as a 

mobile phase, flow rate 0.6 ml/min, column temperature 65oC, and injection volume of 20 μl) 

was used for determination of ethanol and organic acid concentrations. 

Results and Discussion 

In our previous study (Isci et al., 2008), we showed that ammonia soaking at room 

temperature is an effective method for removing Klason lignin while conserving the cellulose 

fraction and enhancing the subsequent SSF of switchgrass at lab scale. Therefore, ammonia 

soaking at room temperature was also selected as the pretreatment method for these pilot-

scale fermentation experiments. Approximately 30-35% weight loss was observed from the 

initial pilot scale ammonia soaking of switchgrass. The details of the compositional changes 

of switchgrass have been reported elsewhere (Himmelsbach et al., 2008). The focus of the 

current paper was to generate large amounts of biomass fermentation residue sufficient for 

gasification and to demonstrate that SSF of ammonia treated switchgrass is feasible at pilot 

scale under non-aseptic conditions.  

It was also reported earlier that at higher enzyme loadings ethanol production was not 

greatly influenced by pretreatment intensity (Isci et al., 2008). Therefore, the experiments 
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reported in this paper used relatively high enzyme loading (77 FPU/ g cellulose). Figure 3 

shows sugar and ethanol concentrations over time for the 50-L fermentation. A set of 

standard SSF trajectories similar to those previously obtained at lab scale (Isci et al., 2008) 

were observed. The ethanol concentration increased slowly during the first 24 h of 

fermentation, with a more rapid increase between 24 and 48 h. A rapid decrease in glucose 

concentration was simultaneously observed, indicating that yeast cells began to utilize 

glucose and convert it into ethanol effectively after 24 h. In a lab scale fermentation 

performed under similar conditions (Isci et al., 2008), the ethanol concentration reached its 

peak at 24 h when sugar was depleted, and remained constant thereafter. The slower response 

observed at pilot scale could be due to scale-up induced changes in mixing, shear forces, 

mass transfer and/or it might reflect the lower inoculum concentrations used in the 50-L 

fermentation. In bench scale, freeze dried inoculum was used and each fermentation flask 

(100 mL working volume) contained approximately 2*107 cells. On the other hand, the 

inoculum of the 50 L fermentation had an absorbance at 620 nm of 0.5, which corresponds to 

a cell concentration of 0.23 g/L (dry wt) (Demirci and Pometto, 1999). It might have taken 

longer for the number of cells to reach a level where glucose consumption equaled or 

exceeded the rate of enzymatic hydrolysis. De Bari et al. (2002) have reported that doubling 

inoculum yeast concentration from 3 to 6 g/L produced nearly identical ethanol 

concentrations after 48 h in pilot scale fermentations. 
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Figure 3. Time courses of sugars and ethanol concentrations for 50-L SSF of ammonium 
hydroxide steeped switchgrass (5 L/kg ammonia soaking for 5 days, 2.4% (w/v) cellulose, 
and 77 FPU/kg cellulose). 

 

 

The theoretical ethanol yield of the 50-L fermentation was 73%, which was similar to 

the results (60-72%) obtained from lab scale fermentations (Isci et al., 2008). No lactic acid 

and acetic acid production was observed throughout the 50-L fermentation which indicates a 

successful sterilization was achieved.  

Xylose concentrations (7 g/L) observed in the 50-L fermentation are similar to those 

observed in lab scale fermentations (6.79 g/L in 100 mL fermentation) as well, and reflected 

hemicellulase activity in the cellulase enzyme used. Xylose concentrations at this level could 

possibly inhibit ethanol production (Kim and Lee, 2005). 
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Figure 4. Time courses of sugars, ethanol and acid concentrations for the 350-L SSF of 
ammonium hydroxide steeped switchgrass. The total amount of wet switchgrass loaded was 
approximately 80 kg. (5 L/kg ammonia soaking for 5 days, ~2% (w/v) cellulose, and 77 
FPU/kg cellulose). 
 

 

Sugar, ethanol and organic acid concentrations over time in the 350-L fermentation 

are presented in Figure 4. The rate of ethanol production was observed to fluctuate 

significantly over the first 48 h, which corresponded to the incremental addition of pretreated 

switchgrass into the reactor. The ethanol concentration at 72 h was approximately 25% lower 

than that of the 50-L fermentation. This was likely due to bacterial contamination by 

heterofermentative lactic acid bacteria producing lactic acid and acetic acid, as evidenced by 

a continuous increase in both acid concentrations beginning at 24 h. The lactic acid and 

acetic acid concentrations reached to 9.75 and 6.85 g/L, respectively, at 120 h; these 
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concentrations are reportedly inhibitory to yeast growth and ethanol production (Maiorella et 

al., 1983). Schell et al. (2004 and 2007) also reported decrease in ethanol production due to 

inhibitory effect of the relatively high organic acid concentrations on yeast performance. 

Unlike 50 L fermentation, cellobiose and glucose concentrations never exceeded 0.5 

g/L throughout the fermentation, which signified that as soon as cellulose was hydrolyzed 

into glucose it was being consumed by yeast and/or contaminating bacteria. Arabinose was 

completely utilized by bacteria after 48 hours. Schell et al. (2007) have also identified the 

contaminating microorganisms as different stains of Lactobacillus in their fermentation broth 

which consumed arabinose readily. After the depletion of arabinose, xylose concentrations 

started to decrease as the organic acid concentrations continued to increase which proves that 

the contaminating bacteria was able to consume different sugars. 

A gradual decrease in pH from 5.0 to 4.3 was observed between 48 and 120 h of 

fermentation due to organic acid production which also was an indication of contamination 

(no pH control was employed). The corn dry-grind ethanol industry usually observes 2 to 3 

g/L lactic acid production in 60 h of fermentation which also indicates lactic acid bacterial 

growth (Dr. Anthony L. Pometto, personal communication, November 27, 2007). The lactic 

acid concentration in our experiment was approximately 3 g/L at 60 h, which shows that a 

similar pattern was being followed. Since it would be extremely difficult to produce 

lignocellulosic ethanol aseptically at industrial scale, ways to keep contamination levels at 

minimum must be determined in detail before scaling up. In industrial fermentations, the 

most common method to control contaminations is based on the antibiotics virginiamycin 

and penicillin (Connoly, 1997 and Lushia & Heist, 2005). Schell et al. (2007) have also 

showed that the lactic acid bacteria contaminations can be controlled by antibiotic 
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virginiamycin in industrial scale lignocellulosic fermentations.  In addition, modified 

microorganisms that can ferment all of the available sugars (xylose, arabinose etc.) into 

ethanol could be used to compete with the contaminating microorganisms. 

The pretreated switchgrass from the first pilot scale steeping trial was used for the 50-

L fermentation which generated approximately 0.8 kg dry switchgrass residue at the end of 

fermentation. Based on this data, it was decided to repeat the pilot scale soaking 8 times 

which was expected to generate 6.4 kg fermentation residue. However, because of the 

problems encountered during this first pilot-scale pretreatment experiment, a design change 

was made (Himmelsbach et al., 2008). The redesigned steeping system, however, generated 

only 4.5-kg dry fermented switchgrass residue after fermentation in the 350-L fermentor. The 

difference between the amount of residue recovered and the predicted amount of 

fermentation residue was most likely due to the loss of fine particles during washing of 

pretreated switchgrass in the redesigned steeping system. It could also be attributed to a 

technical problem encountered on the first trial of the 350-L fermentation. As a consequence 

of mixing problems, the pretreated biomass was transferred back to containers from the 

fermentor before inoculation, which resulted in some loss of switchgrass. It was unknown 

exactly how much biomass was lost during the transfer. The agitation problem was overcome 

in the second 350-L fermentation trial by loading the fermentor with water initially, and then 

gradually adding the switchgrass. Schell et al. (2004) have also reported mixing difficulties 

in the first run of a 9000-L fermentor due to settling of solids. For their second run, the 

authors started the fermentor with sterile water which thinned the broth enough to allow 

adequate mixing.  
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Table 1. Mass flow of the process including theoretical ethanol yield estimations (all of the 
values are presented on dry basis) 

 
conservative 

case 
medium 

case 
best 
case 

 50L 350L 350L 350L 
Switchgrass Before Pretreatment (kg) 4a 32a 32a 32a 

Switchgrass After Pretreatment (kg) 2.7a 21c 16c 15c 

Cellulose in pretreated switchgrass (kg)b 1.3 9.6 7.2 6.8 

Ethanol yield (%)b 73 52 70 74 

Switchgrass After Fermentation (kg) 0.8a 4.5a 4.5a 4.5a 

a Measured values 
b Calculated values (percent ethanol yields are calculated based on the total cellulose in the 
fermentor using the formula presented in methods section)  
c Estimated values 
 

 

Due to uncertain loss of biomass in the 350-L fermentation as mentioned above, 

estimates have been made of the possible theoretical ethanol yields achieved (Table 1). The 

lower limit (conservative case) was calculated assuming same amount of biomass was 

recovered from the redesigned pilot-scale soaking vessels as in the first soaking design trial 

and there were no biomass loss from the 350-L fermentor. In that case 21 kg pretreated 

biomass (2.6 kg dry pretreated switchgrass recovered from first steeping vessel and totally 

eight 75-L aqueous ammonia pretreatment was performed) should be available for ethanol 

conversion. Based on this assumption, the theoretical ethanol yield calculated as 52% for the 

most conservative case. However, it was clear from lower amount of fermentation residue 

generation (~4.5 kg) that a significant amount of biomass was lost, which meant a better 

conversion rate was achieved in reality. Based on the biomass residue recovered from both 

the 50-L and 350-L fermentations, it could be estimated that originally there were 15 kg dry 

pretreated switchgrass for 350-L fermentation, which corresponds to a theoretical ethanol 
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yield of 74%. If the total biomass loss from the process (including both the pretreatment and 

fermentation) was assumed to be the half of the initial switchgrass, the theoretical ethanol 

yield would have been 70%. The last two estimates are more likely to be close to real values, 

which are also similar to lab scale ethanol yields (Isci et al., 2008).   

Conclusion 

 Simultaneous saccharification and fermentation of ammonia soaked switchgrass was 

scaled up successfully with minor contamination and mixing problems. Better techniques to 

control the bacterial contamination and to improve mixing of wet biomass in the fermentor 

need to be studied for further scaling up trials. The theoretical ethanol yields achieved were 

between 52-74% which were similar to laboratory scale results. Due to loss of biomass 

during the washing step of the pretreatment and the first trial of the 350-L fermentation, a 

lower amount of fermentation residue was generated than expected.   
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CHAPTER 4. TECHNO-ECONOMIC ANALYSIS OF AQUEOUS 

AMMONIA SOAKED SWITCHGRASS FERMENTATION 

 

A paper to be submitted to the Bioresource Technology Journal  

 

Asli Isci, Feroz K. Kazi, and Robert P. Anex 

Abstract 

A techno-economic model is used to analyze the economic feasibility of biochemical 

conversion of switchgrass to ethanol using an aqueous-ammonia soaking pretreatment 

process. The modeled biorefinery includes an aqueous-ammonia soaking pretreatment 

section along with two-stage ammonia recovery units, simultaneous saccharification and co-

fermentation, distillation, waste water treatment and combustion units. Ammonia recovery 

units are designed using ASPEN Engineering Software which includes two steam stripping 

units. A spreadsheet model was developed by adapting the National Renewable Energy 

Laboratory’s (NREL) lignocellulosic ethanol production process model (Aden and Ruth, 

2001). Ammonia soaking pretreatment and ammonia recovery sections designed in this study 

replace NREL’s dilute acid pretreatment section. The model assumes a 2000 metric ton 

(dry)/day switchgrass feed rate. In the base case scenario, the ammonium hydroxide (30%) to 

solids ratio is assumed to be 5L/kg and the soaking time is taken as 5 days.  The results show 

that at full-scale aqueous-ammonia soaked switchgrass fermentation is a capital intensive 

process. Even though the pretreatment reactor unit cost is low, the cost of the pretreatment 

section is still high due to the large number of reactors and filters needed. The pretreatment 
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section was found to be the second most expensive after the combustion section and it 

contributes to 24% of the total equipment cost in the base case design. The ammonia 

recovery units were not large contributors to equipment cost. The baseline scenario resulted 

in an ethanol selling price of $2.99/gal. Sensitivity results showed that feedstock cost have 

the largest impact on ethanol selling price, whereas soaking time was the most important 

parameter affecting the total equipment cost. Ethanol yields were also significant economic 

drivers of the process. Under the range of conditions and configurations examined, aqueous 

ammonia soaking was found not to be an economically viable pretreatment method.  

Introduction 

Aqueous ammonia soaking pretreatment of biomass for ethanol production has been 

performed recently at bench and larger scales (Kim and Lee, 2005; Isci et al., 2008a; Isci et 

al., 2008b). Aqueous ammonia soaking is an attractive pretreatment method because it does 

not require high temperatures or pressures and preserves the cellulose fraction of biomass 

while partially removing lignin and hemicellulose (Isci et al., 2008a). Even though the 

ammonia soaking method does not require extreme pretreatment conditions, capital and 

operations costs can still be high due to water and ammonia usage and the need for extensive 

ammonia recovery. In this paper a process model is used to assess the techno-economic 

performance of an integrated biorefinery that utilizes the aqueous ammonia soaking 

pretreatment process. 

Process modeling and economic analysis of lignocellulosic ethanol production have 

been the focus of several biorefinery evaluation studies (Perez et al., 1981; Nagle et al., 1999; 

Aden and Ruth, 2001; Eggeman and Elander, 2005). The process simulation package, 

ASPEN Plus has been used in several of these studies to perform mass and energy balances 
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and to identify the variables that have major impact on the process performance and 

economics. These analyses have found that pretreatment, hydrolysis and fermentation unit 

performance are the largest contributors to production cost of cellulosic ethanol. The 

Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI) project has 

compared different types of pretreatment in terms of economic performance (CAFI 

PROJECT, Eggeman and Elander, 2005). The CAFI studies found that all of the designs 

were capital intensive and there was little differentiation in process economics among the 

pretreatment options. Although the economic performances of several different types of 

pretreatment have been compared, there are no articles in the literature that report on the 

economics of aqueous-ammonia soaking pretreatment. This paper focuses on identifying the 

process economic impacts of the aqueous-ammonia steeping pretreatment method. 

Materials and Methods 

A detailed flow diagram (Figure 1) and an Excel®-based process model have been 

developed based on aqueous-ammonia soaking pretreatment data obtained from bench and 

pilot-scale experiments (Isci et al., 2008a, 2008b). The model is divided into 10 sections 

(known as “areas”), including feedstock handling (Area-100), pretreatment (Area-200), 

ammonia recovery system 1 (Area-300), ammonia recovery system 2 (Area-400), hydrolysis 

and fermentation (Area-500), distillation-evaporation-dehydration (Area-600), storage (Area-

700), combustor (Area-800), waste water treatment (Area-900) and utilities (Area1000). The 

feedstock in this analysis is switchgrass with the composition shown in Table 1. The 

composition of switchgrass was taken from a previous laboratory analysis that was also the 

source of estimated process parameters (Isci et al., 2008a).   
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Figure 1. Process flow diagram of aqueous ammonia soaked switchgrass fermentation 
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The cost estimates are based on the assumption that this is the “nth” plant as 

described in NREL’s technical report (Aden and Ruth, 2001). The plant is assumed to be 

operational 24 hours per day, 350 days per year. In order to be consistent with and allow 

comparison with other studies the base scenario plant size is defined as 2000 dry ton/day of 

feedstock (15% moisture content) into the pretreatment unit. Other assumptions of the base 

scenario are presented in Table 2. 

Design and Cost Calculations 

Feedstock Handling (Area 100) 

The feedstock handling section (Area 100) is assumed to be similar to NREL’s 

design. The feedstock washing step is eliminated in our model because unlike dilute acid 

pretreatment, ammonia soaking process does not require wet biomass. In this area the 

feedstock is received and ground and then sent to the pretreatment unit. Equipment sizes and 

costing are adapted from the NREL’s design and adjusted for differing flow rates.  

 

Table 1. Composition of switchgrass 
Composition of Switchgrass (% dry basis) 

Cellulose 42 
Hemicellulose 31 
Klason Lignin 22 
Acid Detergent Lignin 5.9 
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Table 2. Base case scenario assumptions 

Parameter Assumptions 

Ammonia Consumption 
By Reactions 1.5% of total ammonia 

Ammonium Hydroxide to 
Solids Ratio 5 L/kg 

Wash Water to 
Solids Ratio 50 L/kg 

Soaking Time 5 days 

Cellulose to Ethanol 
Conversion 95% 

Xylose to Ethanol 
Conversion 85% 

Switchgrass Cost $30/dry US ton 

Enzyme Price $5.52/lb 

Pretreatment 
Reactor Price $165,000/unit 

 

 

Pretreatment (Area 200) 

The major equipment in the pretreatment section are the ammonia soaking tanks, 

pneumapress filters, and screw and belt conveyers. The base scenario residence time is taken 

to be 5 days. Vessel size is calculated based on the bulk density of ground switchgrass with a 

20% headspace volume. One train of soaking unit consists of 4 tanks and each tank has a 

volume of 1.1 million gal. The number of trains required is equal to the soaking time in days 

(plus one additional train to accommodate downtime).  For example, in the base case 

scenario the residence time is 5 days, therefore the number of trains required is 6 and the total 
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number of tanks needed is 24. The cost of pretreatment tanks is estimated based on the cost 

of the ethanol storage tank reported in NREL’s report with modifications for material 

handling. These modifications increase the pretreatment tank cost 40% relative to the simple 

storage tank. 

The ammonium hydroxide (30% w/w) to solids ratio in the pretreatment reactors is 5 

L/kg in the base scenario. Different soaking ratios are also studied during sensitivity analysis. 

After switchgrass is soaked in 30% ammonium hydroxide for 5 days, it is sent to the 

pneumapress filters by screw conveyers. A single pneumapress filter is used for each 

pretreatment train.   

Filtration is performed in 2 sequential steps. In the first step, the tank is drained and 

switchgrass is pressed to extract concentrated ammonium-hydroxide solution (concentrated 

rinsate). The concentrated rinsate is sent to ammonia recovery system 1 (Figure 2). In the 

second filtration step, switchgrass is washed with water and pressed. The resulting dilute 

ammonium hydroxide solution (dilute rinsate) is sent to ammonia recovery system 2 (Figure 

3). For this analysis, it is assumed that 1.5% of the total ammonia is consumed in reactions 

(e.g., ammonolysis) during pretreatment. The pretreated and washed solids are transferred to 

the fermentation unit with belt conveyers. 

Ammonia Recovery Systems (Area 300-400)  

A two-step ammonia recovery system is designed using ASPEN Plus simulator 

2004.1 (Aspen Technology, INC, Cambridge, MA). Equipment costs are estimated using 

engineering design and cost estimation data from Peters et al. (2003). The concentrated 

ammonia recovery system (Figure 2) consists of a feed pump, steam stripper, reboiler, flash 

drum, water scrubber, scrubber reflux condenser and two additional condensers. The 
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recovered ammonium hydroxide is collected from the flash drum, scrubber and condenser 

and stored in the concentrated ammonia tank.  The stripper bottom is sent to the waste water 

treatment (WWT) unit. The system is designed such that stripper bottom would contain only 

5 ppm ammonia (The ammonia loss through concentrated ammonia recovery-system was 

calculated as 0.001% of the total ammonia feed). 

The dilute-ammonium hydroxide stream generated after washing pretreated 

switchgrass is sent through a separate recovery train (Figure 3). This system consists of a 

feed pump, steam stripper, stripper reboiler, reflux condenser and an ammonia condenser. 

The flow rate of the dilute ammonium hydroxide stream in the base case scenario is too large 

to be passed through a single stripper system and considering the maximum practical size of 

a stripper it is determined that eight dilute ammonia recovery trains are needed. The 

recovered ammonium hydroxide solution is collected from condenser and stored in the dilute 

ammonium hydroxide tank. Ammonia concentration in the stripper bottom is 5 ppm 

(accounting for 0.02% of total ammonia in the feed) and is sent to WWT. Total ammonia loss 

from the plant is calculated and included in the pretreatment unit as make-up ammonia. In the 

base case scenario, total ammonia loss is calculated as 1.69 % of the original ammonia that is 

used in the pretreatment area. The concentration of ammonia recovered from area 300 and 

400 is assumed to be adjusted back to 30% using concentrated ammonia before being 

recycled back to the pretreatment unit.  
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Figure 2. Flow Diagram of Area 300 (Concentrated Ammonia Recovery Process) (203: concentrated rinsate, 301: stripper 
bottoms to WWT, 302-303-305: ammonium hydroxide to concentrated ammonia tank, 304: water for scrubbing) 
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Figure 3. Flow Diagram of Area 400 (Dilute Ammonia Recovery Process) (204: dilute rinsate, 401: stripper bottom to WWT, 402: 
ammonium hydroxide to dilute ammonium hydroxide tank 
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Hydrolysis and Fermentation (Area 500) 

The pretreated lignocellulosic material is sent to the fermentation unit. The 

fermentation conditions are taken to be the same as assumed in NREL’s technical report 

(Aden and Ruth, 2001) (Table 3). Since a simultaneous saccharification and co-fermentation 

(SSCF) process is assumed in this area, no separate saccharification vessels are included in 

the design. To facilitate comparison with results of the NREL analysis, in the base case 

scenario we also assumed that a microorganism will be commercially available that can 

ferment glucose and xylose with 95 and 85% ethanol yields, respectively. Cellulase loading 

(30 FPU/ g cellulose) is selected based on the results of our previous study (Isci et al., 

2008a). It was reported in the same study that at this level of enzyme loading, ethanol yields 

were not affected greatly by pretreatment intensity.  

 

Table 3. Condition of SSCF in base scenario 
Temperature  (ºC) 41 
Initial fermentation solids  (%) 10 
Residence time  (d) 1.5 
Size of vessel  (gal) 1,365,000 
Number of vessels - 5 
Inoculum Level  (%) 10 
Corn Steep Liquor Level  (%) 0.25 
Diammonium phosphate (DAP) Level  (g/L fermentation broth) 0.33 
Cellulase loading* FPU/g cellulose 30 

*Assuming total enzyme activity as 60FPU/ml enzyme    

  

Fermentor capital cost is scaled based on the total volume of the fermentation broth. 

An additional 20% increase in the costs of fermentors and agitators is included to account for 

  



 70 

modifications to the vessels to accommodate the SSCF process. Other equipment in this area 

is assumed to be 40% of the total area cost.  

Distillation, Dehydration, Evaporation, Solid-Liquid Separation (Area 600) 

This area includes the beer column, rectification column, evaporation system, 

molecular sieve and pneumapress filter. As described in NREL’s report, distillation is 

performed in two steps. In the first beer column most of the water is removed and in the 

second rectification column, ethanol concentration is increased to 95%. The rest of the water 

is removed by vapor phase molecular sieve adsorption. The bottoms from the beer column 

are filtered and sent to the combustor. The liquid from the filter is concentrated in a multiple 

effect evaporator. The concentrated syrup from the evaporator is mixed with the solids being 

sent to the combustor, and the evaporated condensate is used as recycle water (Aden and 

Ruth, 2001). Equipment is sized according to modeled flow rates and the costs are adjusted 

accordingly.  

Storage (Area 700) 

In Area 700, all tank designs and costs are taken from the NREL’s design report. The 

tanks that are not required in the ammonia steeping process, such as the sulfuric acid tank, 

are eliminated. All tank and pump costs are corrected based on design flow rates. 

Combustor (Area 800) 

This area is designed to generate steam and electricity by burning unconverted 

portions of lignocellulosics. Burning these by-product streams allows the plant to be self 

sufficient in energy and reduces solid waste disposal cost and generates additional revenue 

through sales of excess electricity (Aden and Ruth, 2001). This design philosophy increases 
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the plant capital cost compared to a plant design that utilizes fossil fuels to generate heat and 

power. We have followed this same “minimum fossil fuel” design approach to allow more 

direct comparison of plant performance. The design of this section is also adapted from the 

NREL design. The size and the cost of equipment in this area are scaled from the NREL 

design according to the predicted total solids coming into the burner from the WWT unit and 

Area-600.  

Wastewater Treatment (Area 900) 

The wastewater treatment section treats process waste water for reuse to reduce the 

plant makeup water requirement. NREL’s wastewater unit is adapted by updating the cost 

based on the solid fraction of the waste streams coming from the pretreatment area. As in the 

NREL design report, we also assumed that WWT produces waste water sufficiently clean 

that it can be recycled in the process and no water is sent to municipal treatment facilities. 

Process Economics 

Equipment costs are taken either from NREL’s report (Aden and Ruth, 2001) or from 

Peters et al. (2003) and adjusted to 2007 dollars (Bureau of Labor Statistics, 2007). The 

installation factors are also taken from NREL’s report. Total project investment includes the 

cost of several items in addition to the installed equipment as summarized below in Table 4. 
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Table 4. Additional costs for determining total project investment (Aden and Ruth, 2001) 
Item Amount 
Warehouse 1.5 % of total installed equipment cost 
Site Development 9% of the installed process equipment cost
Prorateable Costs 10% of total installed cost 
Field Expenses 10% of total installed cost 
Home Office and Construction  25% of total installed cost 
Project Contingency 3% of total installed cost  
Other cost (start-up, permission etc. ) 10% of total capital investment 

 

 

All components of the variable operating costs (Table 5) including raw materials, 

waste handling charges and by-product credits are taken from NREL’s design report and 

adjusted to our process flow rates. Fixed operating costs include labor and various overhead 

items which are also taken from NREL’s design report. General overhead is assumed to be 

60% of applied total salaries and covers items such as safety, general engineering, general 

plant maintenance, payroll overhead (including the benefits), plant security, janitorial and 

similar services, phone, light, heat, and plant communications (Aden and Ruth, 2001). 

Annual maintenance and repairs are estimated as 2% of the total installed equipment cost. 

Insurance is estimated 0.7% of the total installed cost. These estimates are based on a 

representative Midwest US location.  

  



 73 

Table 5. Variable operating costs 
Variable Operating Costs Flow (kg/h) Cost (2000$/lb) (2007$)/y 
Biomass Feedstock 99,020 0.015 $27,510,618
Make up- anhydrous ammonia 1,907 530i $8,488,856
Corn Steep liquor 1,650 0.0804 $2,956,327
Cellulase 17,629 5.52 $24,095,819
Diammonium Phosphate 1,712 0.0706 $2,693,232
Propane 20 0.0022 $981
Make up-Water 303,001 0.0001 $675,236
Boiler Feed Water Chemicals 1 1.3497 $30,078
Cooling Water Chemicals 1.9 1.0204 $43,205
WWT Chemicals 225.81 0.1579 $794,580
WWT Polymers 0.761 2.551 $43,255
Ash Disposal 4802 0.0094 $1,005,861
Electricity Credit 20040ii 0.041iii $8,305,229
Extra electricity for not using  
steam in pretreatment unit  $1,031,894

i: in $/ton anhydrous ammonia (Carolan et al., 2007) 
ii: units in kW 
iii: units in $/kWh   

 

Discounted Cash Flow Analysis 

A discounted cash flow analysis method is used to determine the minimum selling 

price per gallon of ethanol produced. The discounted cash flow analysis fixes the internal rate 

of return and then iterates on the selling cost of ethanol until the net present value of the 

project is zero.  

 

Table 6. Discounted cash flow parameters  
Plant life 20 years 
Start up period 1 year 
Salvage value 10% of capital investment 
Annual depreciation method Straight line method 
Income Tax Rate 30 % 
Internal Rate of Return 15 % 
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Sensitivity Analysis 

The base case scenario includes several uncertain assumptions that may have a large 

impact on equipment cost and ethanol selling price. Some of these assumptions are selected 

for sensitivity analysis in order to determine and compare the impact of these assumptions on 

ethanol selling price and equipment cost. The Crystal Ball (Denver, CO) software program is 

used in combination with the Excel® model to calculate the probability distributions and to 

determine model sensitivity in terms of how much the variation in each parameter contributes 

to variation in the ethanol selling price and total equipment cost. The selected parameters and 

their distributions are shown in Table 7. Some of the assumptions (cellulose conversion 

yield, xylose conversion yield and feedstock cost) in the base case scenario were taken from 

NREL’s design report (Aden and Ruth, 2001). As can be seen in table 7, these assumptions 

are modified from the base case to reflect current realistic values.    

The values of some of the parameters selected for sensitivity analysis (Table 7) are 

correlated and this will impact the likelihood of model outcomes. There may be other 

correlated parameters in the model that are not recognized in this analysis. Parameter 

correlations can affect the sensitivities of model outputs to parameter values significantly; 

however it is difficult to identify and quantify all correlations. The Crystal Ball program 

allows parameter values to be correlated either with a positive or negative correlation 

coefficient. The correlations assumed in this analysis are presented in Table 8. In sensitivity 

analysis 10,000 iterations were run using the probability distributions shown in Table 7. 
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Table 7. Input parameters of sensitivity analysis 

Parameter Distribution 
Function 

Most 
Probable 

Standard
Deviation Minimum Maximum 

Ammonia 
Consumption 
By Reactions 

Triangular 1.5% of total 
ammonia ----- 1% of total 

ammonia 
2% of total 
ammonia 

Ammonium 
Hydroxide to 
Solids Ratio 

Triangular 5 L/kg ----- 3 L/kg 10 L/kg 

Wash Water to 
Solids Ratio Triangular 50 L/kg ----- 25 L/kg 75 L/kg 

Soaking Time Triangular 5 days ----- 2 days 10 days 

Cellulose to 
Ethanol 

Conversion 
Triangular 85% ----- 70% 96% 

Xylose to 
Ethanol 

Conversion 
Triangular 70% ----- 40% 90% 

Switchgrass 
Cost Triangular $50/dry US ton ----- $25/dry US 

ton 
$100/dry 
US ton 

Enzyme Price Triangular $5.52/lb ----- $3.86/lb $11.04/lb 

Pretreatment 
Reactor Price Lognormal $165,000/unit $33,160 $0 Infinity 
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Table 8. Correlations between assumptions 

 

Ammonium 
Hydroxide 
to Solids 

Ratio 

Wash 
Water to 

Solids Ratio

Soaking 
Time 

Cellulose to 
Ethanol 

Conversion 

Xylose to 
Ethanol 

Conversion 

Ammonium 
Hydroxide 
to Solids 

Ratio 

 + NC + + 

Wash 
Water to 

Solids Ratio 
  NC NC NC 

Soaking 
Time    + + 

Cellulose to 
Ethanol 

Conversion 
     

NC 

Xylose to 
Ethanol 

Conversion 
     

+, shows positive correlation between two assumptions (correlation coefficient assumed to be 
0.85 for all of them) 
NC: no correlation 
 

Results and Discussion 

Aqueous ammonia soaking is an attractive pretreatment method for ethanol 

production from lignocellulosic biomass, since the process operates at atmospheric pressure 

and ambient temperatures. However, this study shows that aqueous ammonia soaked 

switchgrass fermentation is a capital intensive process. The total project investment (TPI) for 

the base case scenario was determined as $277.5 million and breakdown of the TPI is 

presented in Figure 4. 
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Total Installed 
Equipment Cost

57%

Warehouse
1%

Site Development
4%

Field & 
Prorateable 
Expenses

12%

Home Office & 
Construction Fee

15%

Project 
Contingency

2%

Other Cost (Start 
up, permits, etc.)

9%

 
Figure 4. Breakdown of total project investment  

 

Total installed equipment cost was approximately $157 million (2007 dollars) in the 

base case scenario. The other costs (Table 4) are computed from the total installed equipment 

cost; therefore, it is important to examine the total installed equipment cost in detail.   

The breakdown of total equipment cost is shown in Figure 5. As can be seen, the most 

expensive section is the combustion area. This section is integrated to generate electricity and 

steam and to reduce the dependence of the plant on fossil fuels. However, including such a 

complex system in this process not only increases the capital cost but will also raise the cost 

of installation and operation. The second most expensive area is pretreatment. Even though 

unit cost of a soaking vessel is low, the large number of required vessels increases the total 

pretreatment capital cost. We find that soaking vessel and pneumapress filter costs account 
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for 73% of the pretreatment area cost. Overall the pretreatment area including the two 

ammonia recovery systems accounts for one-third of the total equipment cost. Unexpectedly, 

the ammonia recovery systems do not represent a large fraction of the capital cost. The steam 

and power generation system accounts for the other one-third of the total equipment cost. 

These percentages show a distribution of capital costs similar to a plant based on dilute acid 

pretreatment (Eggeman and Elander, 2005). However, total project investment in our base 

case is almost $40 million higher than NREL’s dilute acid process, which is directly reflected 

in the minimum ethanol selling price. 

 
 

2%

6%

6%

17%

5%
2%

31%

3% 4%

24%

Feedstock Handling

Pretreatment

Steam Stripper Unit 1

Steam Stripper Unit 2

Fermentation

Distillation

Waste Water Treatment

Storage

Combustion

Process Water System

Figure 5. Cost contribution of each area to total equipment cost 

 

  



 79 

In the base case scenario it is assumed that with the more active enzymes that will be 

available in the future, better conversion rates will be achieved (Aden and Ruth, 2001). The 

theoretical ethanol yields of glucose and xylose are taken to be 95 and 85%, respectively. 

Total annual ethanol production is determined to be 50.5 MMgal/y. Even with these 

optimistic assumptions, the capital investment requirement is found to be $5.50/gal ethanol 

produced. In comparison, biorefineries based on other pretreatment methods have a capital 

investment requirement ranging from $2.82/gal ethanol to$5.14/gal ethanol produced (the 

results are adjusted to 2007 dollars) (Eggeman and Elander, 2005). The aqueous ammonia 

soaking method is close to the upper end of this range. Compared to corn-dry mill ethanol 

technology that requires capital investment of $1.12-1.69/gal ethanol (adjusted to 2007 

dollars) (BBI International, 2003), cellulosic biorefineries require very large capital 

investment.  

Eggeman and Elander (2005) suggest that an ideal cellulosic ethanol process should 

have a minimum ethanol selling price (MESP) of $1.12/gal (adjusted to 2007 dollars). In this 

ideal case, pretreatment related capital and operating costs are assumed to be zero and sugar 

yields (glucose and xylose) after enzymatic hydrolysis are assumed to be 100%. In our base 

case scenario, MESP is determined as $ 2.99/gal which is about $1.90/gal more than the ideal 

case. As mentioned above, the base case scenario included optimistic assumptions 

(conversion yields and feedstock cost in Table 2) related to future conditions and therefore 

the MESP of the base case scenario is not the most likely near term outcome. When more 

likely parameter assumptions (the most probable numbers in Table 7) are integrated into the 

model, MESP increases to $3.90/gal ethanol. This increase shows how sensitive the MESP is 
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to conversion yields and feedstock cost which are the most significantly modified 

parameters.  

The assumptions in Table 7 are used to generate probability distributions for MESP 

and total equipment cost. As mentioned, feedstock cost, cellulose and xylose conversion 

yields were adjusted to more probable values to determine the likely near future outcome. 

Figure 6 is the histogram of the minimum ethanol selling price and shows that the expected 

value of MESP is $4.45/gal. This reflects a more likely outcome than the base case, 

accounting for updated expectations of parameters such as feedstock price and conversion 

efficiency. The explanation of the shift in expected value of MESP from $3.90/gal to 

$4.45/gal is the skewness of the distributions assumed in Table 7 reflecting parameter 

uncertainty. Similarly, Figure 7 shows that the expected cost of the installed equipment is 

approximately $169 million, which is almost $10 million more than the base case scenario. 

Sensitivity analyses are performed on the parameters shown in Table 7. Figure 8 

shows the contribution of the variation in each sensitivity parameter to the variation in 

MESP. As can be seen, MESP is most sensitive to feedstock and enzyme costs which 

accounted for 63 and 10% of the variation in MESP, respectively. This shows that of the 

parameters examined, feedstock cost will play the most important role in determining the 

ethanol selling price. It also shows the importance of reduction in enzyme consumption. In 

fact, if the enzyme loading is decreased by half in the base case scenario the MESP reduces 

24 cents/gal.  

Ethanol yields from glucose and xylose, soaking time and ammonium hydroxide to 

solids ratio have similar effects on MESP. It is also important to note that these parameters 
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affect the MESP negatively, such that when there is an increase in cellulose conversion, 

ethanol price decreases.  

Soaking time is the most influential parameter on total equipment cost (Figure 9). 

This was an anticipated result, since the soaking time greatly influences the pretreatment area 

cost. Ethanol yields also have an important impact on equipment cost since they directly 

affect the fermentation area cost. Ammonium hydroxide to switchgrass (solids) ratio and 

water consumed during pretreatment washing step accounted for 15 and 11% of the variation 

in MESP, respectively. These two parameters have a large influence on the pretreatment and 

ammonia recovery unit costs.    

It is also important to note that the correlations between the selected parameters 

greatly affect the sensitivity results. One of the important correlations that has not been 

modeled is the correspondence between the amount of enzyme consumed and the intensity of 

the pretreatment. As we have previously reported (Isci et al., 2008a), when ammonium 

hydroxide to solids ratio and the soaking time increased, the amount of enzyme required 

decreases. This correlation could significantly influence the ethanol selling price, since 

enzyme cost is 34% of the direct operating cost.  

The sensitivity results showed that even though the proposed biorefinery system is 

capital intensive under the current assumptions; the economics of the process can be 

improved with improved performance in targeted sections. Reduction in soaking time and 

enzyme consumption, better conversion yields, and reduced feedstock cost are the key 

improvements that would reduce the ethanol selling price and capital cost. It is also worth 

noting that increasing the maximum allowable solids concentration not only in pretreatment 

section but also in fermentors will save a significant amount of money. In this study, it was 
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assumed that the fermentors will contain only 10% solids limited by mixing requirements in 

the fermentor. Low solids concentrations result in low end product concentrations which 

increase distillation costs. Improvements that allow increased solids concentrations in the 

fermentor will significantly improve process economics.  

 

Frequency Chart

 ($/unit  product ion)

Mean =  4.45
.000

.007

.013

.020

.027

0

66.75

133.5

200.2

267

3.42 4.10 4.78 5.47 6.15

10,000 Trials    10,000 Displayed

Forecast: MESP 

 Figure 6.  Histogram of minimum ethanol selling price  
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Frequency Chart
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Figure 7. Histogram of total installed equipment cost 

 

 

Target Forecast:  MESP 

Feedstock cost 63.3%

Enzyme cost 10.2%

Cellulose conversion (%) 6.8%*

Soaking t ime 5.7%*

Xylose conversion (%) 5.7%*

Ammonium hydroxide to solids rat io 4.8%*

Water to solids rat io 2.6%*

Ammonia consumption by react ions 0.5%

Pretreatment vessel cost 0.4%

100% 50% 0% 50% 100%

Measured by Contribution to Variance

 * - Correlated assumption

Sensitivity Chart

Figure 8. Sensitivity chart of minimum ethanol selling price 

 

 

  



 84 

Target Forecast:  Equipment cost

Soaking time 29.3%*

Xylose conversion (%) 20.5%*

Cellulose conversion (%) 20.0%*

Ammonium hydroxide to solids ratio 15.0%*

Water to solids ratio 11.2%*

Pretreatment vessel cost 3.9%

Feedstock cost 0.0%

Ammonia consumption by reactions 0.0%

Enzyme cost 0.0%

100% 50% 0% 50% 100%
Measured by Contribution to Variance

 * - Correlated assumption

Sensitivity Chart

Figure 9. Sensitivity chart of total installed equipment cost 

 

Conclusion 

The techno-economic feasibility of ethanol production through aqueous-ammonia 

soaking and simultaneous saccharification and co-fermentation process was analyzed. The 

results show that ammonia soaking is a capital intensive process compared to NREL’s dilute 

acid treatment-based biorefinery and is much more capital intensive than corn dry mill 

ethanol technology. Pretreatment and combustion are the most expensive areas in the overall 

process. The base case scenario which is based on an optimistic view of future technology 

development has an ethanol selling price of $ 2.99/gal. However, less optimistic assumptions 

show that the ethanol selling price may be as high as $4.45/gal.  These results suggest that 

ammonia soaking pretreatment is not a cost competitive pretreatment method at commercial 

scale. However, sensitivity analysis revealed that performance may be better if improvements 
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allow shorter soaking time, increased solids to liquid ratio, lower enzyme loading, and better 

conversion yields.   
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CHAPTER 5. A RAPID SIMULTANEOUS SACCHARIFICATION AND 

FERMENTATION TECHNIQUE TO DETERMINE ETHANOL YIELDS 

 

A paper accepted by the BioEnergy Research Journal  

  

Asli Isci, Patrick T. Murphy, Robert P. Anex, and Kenneth J. Moore 

Abstract 

We have developed a relatively simple simultaneous saccharification and 

fermentation (SSF) technique to determine the ethanol production potential for large sets of 

biomass samples. The technique is based on soaking approximately 0.5 grams of a biomass 

sample in aqueous ammonia at room temperature and at atmospheric pressure for 24 hours, 

then fermenting with Saccharomyces cerevisiae D5A for 24 hours using Spezyme CP, for 

enzymatic hydrolysis of structural polysaccharides. We have tested the technique on a set of 

corn stover samples representing much of the genetic variability in the commercial corn 

hybrid population. The samples were weighed into modified Ankom filter bags (F57) before 

soaking to avoid biomass loss during the process. Fermentation samples were analyzed for 

ethanol after 24h by HPLC. Theoretical ethanol yields of the samples ranged between 44.9 

and 73%. We observed that theoretical ethanol yields were highly correlated (r2 = 0.90) with 

acid detergent lignin concentration while a low correlation was observed between cellulose 

concentration and ethanol yield. Near infrared spectra of corn stover samples were also 

examined. The coefficient of determination (r2) from regression of predicted versus measured 

percent theoretical ethanol yield was 0.96. This result suggests that using NIRS is a 
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promising method for predicting ethanol yield, but larger calibration sets are necessary for 

obtaining improved accuracy for larger sample populations. We conclude that the developed 

SSF technique could be applied to large numbers of biomass samples to rapidly estimate 

ethanol yields and to compare different biomass samples in terms of theoretical ethanol 

yields. 

Introduction 

Simultaneous saccharification and fermentation (SSF) is currently the most common 

fermentation method used for producing ethanol from lignocellulosic feedstock. It integrates 

an enzymatic hydrolysis of cellulose into glucose and fermentation of glucose into ethanol 

within the same vessel. The method reduces the likelihood of end product inhibition by 

glucose and bacterial contamination. The current standard SSF method (NREL, LAP 08, 

1996) to determine ethanol yield is time-consuming and not suitable for large sets of 

samples. Large sample sets may be required in industry and for agronomic plant breeding 

research when comparing and checking feedstock quality in terms of ethanol production.  

Two fermentation assays are reported in the literature for predicting the 

fermentability of cellulosic biomass to ethanol. Weimer et al. (2005) proposed using an in 

vitro ruminal (IVR) digestibility assay as an indirect predictor of ethanol yields. They 

compared three different forage samples (eastern gamagrass, big bluestem and switchgrass) 

by subjecting both to SSF and IVR fermentations and determined the correlation of gas 

accumulations in both fermentations. Even though the IVR method offers the advantage of a 

non-aseptic operation and high sensitivity due to more gas generation than the SSF system, 

the correlations appears to be dependent on sample type. For example, lower correlations 

were observed when they used switchgrass as a feedstock. The authors claimed SSF of 
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switchgrass possibly contained inhibitory compounds which resulted in unfermented sugar 

accumulation, thus the lower correlations (r2=0.2). Hoskinson et al. (2007) have also reported 

an SSF technique, which is based on the method described by Weimer et al. (2005) to 

estimate the ethanol potential of corn stover samples with different harvesting scenarios. 

Their samples were subjected to dilute acid treatment prior to fermentation. In this technique, 

the fermentations were carried out in air tight serum vials. This can cause solubilization of 

the carbon dioxide generated during fermentation which can decrease the pH of the solution 

and inhibit yeast fermentation. Both techniques require about one gram of pretreated material 

which in some cases may not be available.  

The main objective of our study was to develop a rapid and easily adaptable SSF 

technique which offers the advantage of running a large number of samples at the same time. 

We also aimed to predict the ethanol yields of samples with compositional (cellulose, 

hemicellulose, lignin) data and NIRS calibrations.  

Materials and Methods 

Corn stover samples were obtained from a set of different hybrids, populations, and 

population crosses genetically diverse for compositional properties, which were part of a 

larger collaborative field experiment between the University of Wisconsin-Madison and Iowa 

State University.  Samples obtained from the University of Wisconsin-Madison were grown 

at Madison and Arlington, WI in 2005 and 2006.  Samples obtained from Iowa State 

University were grown at Ames and Ankeny, IA, in 2005 and at Ames and Belmond, IA in 

2006. All corn entries were grown in triplicate at each location and in each year.  The 

Wisconsin samples were comprised of 11 hybrids and one breeding population and the Iowa 

samples were comprised of 10 hybrids, one breeding population, and one population cross. 
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After the manual grain harvest of corn plots occurred, sub-samples of the corn stover were 

taken and dried at 38°C for four days.  Samples were ground with a Wiley mill (Thomas 

Scientific, Inc., Swedesboro, NJ) to pass a 1-mm screen.  Composite samples of the dried, 

ground material were made by combining 2 g of each of the six samples from each location 

(Wisconsin and Iowa) within each year (2005 and 2006).  

 Composition of the corn stover samples were determined using the ANKOM method 

(ANKOM Technol. Corp., Fairport, NY) as described by Vogel et al (Vogel et al., 1999). 

Table 1 presents the samples and their compositions. Hemicellulose concentration was 

calculated as the difference between neutral detergent fiber and acid detergent fiber and 

cellulose concentration was calculated as the difference between acid detergent fiber and acid 

detergent lignin.   Dry matter of the samples was determined by drying 0.5-g subsamples at 

103°C for 72 h in a forced-air oven to correct of the moisture contained in the samples.     

Cellulase enzyme (Spezyme CP, lot no: 301-05021-011) was provided by Genencor 

International (Palo Alto, CA) and had an activity of 60 filter paper units (FPU)/mL, measured 

using standard procedures (NREL, LAP 06, 1996). The yeast (Sacccharomyces cerevisiae 

D5A) was supplied by National Renewable Energy Laboratory. The yeast culture was grown 

in 1% (w/v) yeast extract, 2% (w/v) peptone and 5% (w/v) dextrose for 24 hours at 35ºC 

rotating at 170 rpm and freeze dried in 2-mL serum vials with 20% (w/v) nonfat dry milk. 

The vials were preserved at 4°C until the day of fermentation. The number of yeast cells per 

vial was determined to be 2.4 X 109 cells/mL according to hemocytometer counts.
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Table 1. Compositions and theoretical ethanol yields of corn stover samples (dry basis) 
Entry Year %NDFa %ADFb %Cellulosec %Hemicellulosed %ADLe % TEYf 

W64A X A619 2005 67.95±0.13 36.44±0.02 33.54±0.03 31.51±0.15 2.05±0.01 56.0±0.95
W64A X A619 bm3 2005 60.22±0.74 31.09±0.48 29.75±0.41 29.13±0.26 0.98±0.04 73.0±3.33

WQS C3 Syn2 2005 64.85±0.26 33.87±0.25 31.71±0.11 30.98±0.06 1.67±0.05 65.5±1.42
WQS C3 X HC33 2005 69.64±0.62 36.88±0.01 34.66±0.09 32.77±0.63 1.83±0.03 58.4±1.76
W601S X LH244 2005 71.39±0.21 40.02±0.12 37.39±0.17 31.38±0.08 1.94±0.12 58.7±0.77
W602S X LH198 2005 72.49±0.00 39.44±0.12 36.95±0.04 33.05±0.12 1.96±0.10 56.5±3.42
W603S X LH227 2005 75.87±0.71 41.36±0.54 38.56±0.51 34.50±0.17 2.40±0.07 53.4±0.84
W604S X TR7245 2005 71.45±0.1 39.09±0.15 36.54±0.13 32.37±0.05 2.07±0.04 55.1±2.72
W605S X HC33 2005 74.06±0.65 40.20±0.50 37.23±0.38 33.86±0.15 2.41±0.01 55.8±1.70
LH227 X LH279 2005 75.73±0.25 41.36±0.37 38.35±0.33 34.37±0.13 2.52±0.07 52.7±0.23

DK5143 2005 73.33±0.25 39.99±0.29 37.39±0.36 33.34±0.54 2.05±0.10 54.5±0.54
Mycogen F697 bm3 2005 64.46±2.00 35.08±0.74 33.46±0.56 29.38±1.26 1.23±0.04 68.9±1.55

W64A X A619 2006 57.40±1.42 31.15±0.93 28.60±0.84 26.25±0.48 1.95±0.11 58.7±2.89
W64A X A619 bm3 2006 61.13±0.46 32.47±0.48 30.93±0.52 28.66±0.94 1.10±0.07 72.4±1.54

WQS C3 Syn2 2006 60.51±0.18 33.12±0.79 30.80±0.55 27.39±0.62 1.80±0.09 63.7±1.45
WQS C3 X HC33 2006 63.63±0.43 34.67±0.58 32.20±0.53 28.96±1.00 2.06±0.06 53.4±2.08
W601S X LH244 2006 69.62±0.79 39.62±0.48 36.67±0.29 30.00±0.30 2.32±0.11 53.9±2.01
W602S X LH198 2006 69.06±0.66 39.26±0.46 36.40±0.45 29.81±0.20 2.40±0.06 53.9±1.54
W603S X LH227 2006 74.68±0.09 42.20±1.40 38.78±1.09 32.48±1.49 2.86±0.26 44.9±2.24
W604S X TR7245 2006 65.22±0.93 36.74±0.28 33.83±0.42 28.48±1.21 2.36±0.11 56.9±1.72
W605S X HC33 2006 62.96±0.56 34.58±0.23 31.77±0.21 28.38±0.79 2.31±0.09 53.6±2.37
LH227 X LH279 2006 71.42±0.1 40.88±0.73 37.44±0.53 30.54±0.63 3.12±0.25 48.9±0.66

DK5143 2006 71.75±1.57 41.03±0.33 38.08±0.32 30.72±1.24 2.47±0.02 50.4±1.41
Mycogen F697 (bm3) 2006 61.21±0.76 34.14±0.10 32.46±0.01 27.07±0.66 1.23±0.03 68.0±3.83

aNDF: neutral detergent fiber, bADF : acid detergent fiber, c Cellulose: ADF-ADL(adjusted for ash), d Hemicellulose: NDF-ADF 
eADL: acid detergent lignin, fTEY: theoretical ethanol yield 
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Pretreatment 

Approximately 1.6 mm from the top of each F57 Ankom filter bag (made from 

polyester) was cut to make the bag small enough to fit in a 25-mL fermentation flask. Each 

filter bag received 0.5 g of corn stover sample, and was sealed at the top using a heat sealer. 

Filter bags were placed in 1-L plastic bottles (every bottle contained 6 filter bags) and soaked 

in 100 mL of reagent grade 30% aqueous ammonium hydroxide for 24 hours. An average of 

30% dry matter loss was observed after 24 hours of aqueous ammonia soaking, indicating 

sufficient pretreatment based on previous lab scale experiments (Isci et al., 2008).  

The bags were washed with deionized water until ammonia odor was eliminated (Isci 

et al., 2008). To decrease washing time, the bags were also squeezed by hand and washed 

several times under running deionized water. Each corn stover sample were pretreated in 

triplicates. 

Fermentation 

Simultaneous saccharification and fermentation was performed aseptically following 

established procedures (NREL, LAP 08, 1996) with modifications. Washed filter bags with 

corn stover samples inside them were loaded into 25 mL Bellco DeLong flasks (Bellco Glass 

Inc, Vineland, NJ) along with 1% (w/v) yeast extract, 2% (w/v) peptone and 0.05 M citrate 

buffer (pH 4.8). The total working volume was 10 mL. 

The filter bags were cut before placement into flasks as shown in Figure 1 to 

accelerate mass transfer during fermentation. Uncut bags were observed to expand during 

autoclaving and trapping all the liquid inside and preventing enzyme and yeast contact with 
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the substrate. The cut bags were submerged totally in the fermentation media with a help of 

spatula before autoclaving.  

All flasks were capped with stainless steel closures (Bellco Glass, Inc., Vineland, NJ) 

and covered with aluminum foil. The flasks were allowed to cool to room temperature 

following sterilization at 121ºC for 20 min by autoclaving. Afterwards, sterile water was 

added aseptically to correct for the amount vaporized during autoclaving. Finally, 0.5 mL 

enzyme and 0.2 mL of rehydrated freeze dried yeast were transferred into each flask. Each 

flask contained approximately 2 X 107 cells and was incubated at 35ºC for 24 hours rotating 

at 170 rpm.  

 

Sealed from the top 
with a heat sealer Cutting  

Sites 

Figure 1. Schematic representation of a cut filter bag         

 

The 24-h fermentation period was selected based on preliminary experiments done 

using a corn stover sample (W64A X A619 bm3). A total working volume of 10 mL was too 

small to allow for sampling over time to determine ethanol concentration without affecting 

the fermentation experiment. Therefore, 8 filter bags were prepared for sampling in parallel, 

using the same corn stover sample, and fermented to determine the change of ethanol 
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concentration over time. Two flasks were taken out of the incubator at 7, 24, 48 and 72 h and 

analyzed for ethanol concentrations. Ethanol concentration peaked at 24 h (Figure 2), then 

started to decrease. For this reason, we have selected 24 h as the completion point for 

fermentation. The decrease in ethanol concentration may be due to consumption of ethanol 

by yeast after depletion of glucose (Piskur et al., 2006) or due to evaporation of ethanol. 
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Figure 2. Change of ethanol concentrations in flasks over time 

 

As a control, ammonia soaked empty filter bags were fermented using the same 

procedure along with the corn stover samples and no ethanol production was observed.  
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Analysis 

Samples were analyzed for sugars (cellobiose, glucose, and xylose) and ethanol by 

HPLC (Varian ProStar 210) with a refractive index detector (Varian 355 RI). A MetaCarb 

87P column (water as a mobile phase, flow rate of 0.4 ml/min, column temperature of 80oC, 

and injection volume of 20 μl) was used for sugar analysis, while a Bio-Rad 87H column 

(0.01 N sulfuric acid as a mobile phase, flow rate 0.6 ml/min, column temperature 65oC, and 

injection volume of 20 μl) was used to determine ethanol concentration. 

Theoretical ethanol yields were calculated based on a theoretical ethanol yield of 51 g 

per 100 g of glucose for yeast (Isci et al, 2008; Kim and Lee, 2005).  

 

100
511.0)(

)((%) ×
×

=
reactoringsugarInitial

reactoringproducedEthanolyieldethanollTheoretica  

 

Fermentations were preformed in triplicate, in three batches. A randomized complete 

block design was used to perform the experiments in which the batches were considered to 

be the blocking factor.  Linear correlations between compositional data and ethanol yields as 

well as multiple regression equations were determined by JMP (SAS Institute, Cary, NC) 

using a stepwise multiple regression approach.  

NIRS  

 The samples were scanned in triplicate using a Foss NIRSystems 6500 

spectrophotometer (NIRSystems, Silver Springs, MD). The NIR instrument records the mean 

spectrum of 3 scans of each sample over the wavelength region of 400–2500 nm at 2 nm 

intervals. Equations were developed using modified partial least squares (MPLS) using 
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reference chemistry for percent theoretical ethanol yield. Calibration equations were 

evaluated and validated using 6 sample subsets in a cross validation scheme.  The 

performance of calibrations was assessed by evaluating the standard error of validation 

(SEV), coefficient of determination (R2), and bias (Westerhaus et al., 2004).  

Results and Discussion 

Previously, it was reported that the cellulose concentration does not change with 

aqueous ammonia soaking at room temperature and atmospheric pressure (Isci et al., 2008; 

Kim and Lee, 2005). Based on this fact, theoretical ethanol yields can be calculated easily, 

since the weight of cellulose inside one filter bag is known before the process. The 

theoretical ethanol yields of different corn stover samples from Wisconsin can be seen in 

Table 1. The highest and lowest ethanol yields achieved were 73 and 45% respectively, 

belonging to variety W64A X A619 bm3 (year 2005) and W603S X LH227 (year 2006). 

These results were consistent with the bench scale (100 mL total working volume) SSF data 

(Isci et al., 2008) in which 72% theoretical ethanol yield was the maximum observed from 

switchgrass fermentation. Even though W64A X A619 bm3 (year 2005) had a lower 

cellulose concentration than W603S X LH227 (year 2006), the former generated more 

ethanol. This result can be attributable to the samples’ lignin concentration. Figure 3 shows 

the relationship between lignin concentration of different corn stover samples and their 

percent theoretical ethanol yields. We observed that acid detergent lignin concentration of the 

samples were highly correlated (r2=0.90) with ethanol yields. As the lignin concentration in 

the biomass decreased the ethanol generation capability of a corn stover sample increased. 

This result was anticipated, since lignin has been known to create obstacles to ethanol 

fermentation by limiting the accessibility of hydrolytic enzymes to fermentable plant cell-
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wall components in the fermentation vessel. On the other hand, we observed a lower 

correlation (r2=0.50) between the cellulose concentration of stover samples and percent 

theoretical ethanol yields (Figure 4). The stover sample with the highest cellulose and lignin 

concentration (W603S X LH227, year 2006) generated the lowest ethanol yield. This 

suggests that lignin concentration of stover samples may be a more important feature than 

cellulose concentration when determining or estimating ethanol generating capabilities. 

 

y = -12.897x + 84.178
R2 = 0.896

0

10

20

30

40

50

60

70

80

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3
% Acid Detergent Lignin

%
 T

he
or

et
ic

al
 E

th
an

ol
 Y

ie
ld

s

.5

Figure 3. The correlation between acid detergent lignin concentration of corn stover samples 
and percent theoretical ethanol yields. (Theoretical ethanol yields are average of three 
replicates)          
 

 

Acid detergent lignin (ADL) concentration can be determined easily using the 

ANKOM method described in the methods section. The high correlation between ADL 
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concentration and percent ethanol yield can be used to guide biofuel feedstock selection 

and/or plant breeding research.  
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Figure 4. The correlation between cellulose concentration of corn stover samples and percent 
theoretical ethanol yields. (Theoretical ethanol yields are average of three replicates)      

 

 

We observed a low correlation (r2=0.21) between ethanol yield and percent 

hemicellulose (Figure 5). Because Saccharomyces cerevisiae is not capable of utilizing five-

carbon sugars; the low correlation was an expected result. In addition to these correlations, 

multiple regression equations were developed and analyzed (Table 2). We determined that 

when cellulose and hemicellulose were included in the ethanol yield prediction model, the 

root mean square error (a measure of the differences between values predicted by a model 
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and the values actually observed) and r2 did not improve significantly. Consequently, acid 

detergent lignin concentration can solely be used for estimation of ethanol yields for similar 

corn stover samples.  

 

Figure 5. The correlation between hemicellulose concentration of corn stover samples and 
percent theoretical ethanol yields. (Theoretical ethanol yields are average of three replicates) 

able 2. Multiple regression results  
MODEL number MODEL r2 RMSE 
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5 % ADL 0.90 2.38 
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Cellulose and hemicellulose co  calculated  n  detergent 

fiber (N

 

ncentrations were  from eutral

DF) and acid detergent fiber (ADF) concentrations as described in materials and 

methods section (Cellulose=ADF-ADL, Hemicellulose=NDF-ADF). Since these are the 

primary measurement rather than calculations, the correlations between NDF, ADF and 

theoretical ethanol yields were of interest as well. Figure 6 shows that both NDF and ADF 

have low correlations (r2=0.47 for NDF and r2=0.60 for ADF). ADF had a slightly better 

correlation than NDF which may be explained by the removal of hemicellulose content on 

the ADF step. As stated above, our fermentative microorganism is not capable of fermenting 

pentose sugars. Therefore, when hemicellulose was removed during ADF step, there is a 

possibility of increasing the correlation. 
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Table. 3 NIR Results 

Constituent  
% Theoretical 
Ethanol Yields 

Math treatment 1,4,4,1 
Mean 57.369 
Range 44 0 
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Stdev: Standard Deviation 
SEL: Standard Error of Laboratory Results,  
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Figure 7. Correlation between actual ethanol yields obtained from fermentation experiments 
and predicted ethanol yields using NIRS calibration equations 
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Although laboratory analysis using spectrophotometry to estimate forage quality is 

common, little work has been done to estimate the ethanol production potential of biom

using near infrared spectroscopy. We determined that NIRS predictions have high correlation 

with actual percent theoretical ethanol yield (Table 3 and Figure 7). The results suggest that 

the method can be used to estimate percent theoretical ethanol yields of corn stover with high 

accuracy. However, more samples from different locations and years are needed to improve 

the calibration. 

Conclusion 

We have developed a rapid and relatively easy SSF technique to determine theoretical 

ethanol yields of a large number of corn stover samples. Theoretical ethanol yields between 

45-73% were observed without optimizing our SSF technique. We observed a high 

ass 
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CHAPTER 6. GENERAL CONCLUSION 

General Discussion 

 Cellulosic ethanol promises to provide not only a renewable transportation fuel but 

also reduced dependence on foreign oil supplies. In this thesis, a cellulosic ethanol 

production method using an aqueous-ammonia (30%) soaking pretreatment and simultaneous 

saccharification and fermentation (SSF) is presented at several scales and in several contexts. 

Several important conclusions are drawn from this work. In Chapter 2, “Aqueous Ammonia 

Soaking of Switchgrass Followed by Simultaneous Saccharification and Fermentation”, the 

effectiveness of ammonia soaking was examined in a laboratory setting. It was determined 

that soaking switchgrass in ammonium hydroxide alters the structure of the material and 

facilitates enzymatic hydrolysis and ethanol production. Ethanol yields as high as 73% were 

achieved. It was also observed that enzyme consumption can be reduced as the intensity of 

the pretreatment is increased. In Chapter 3, “Pilot Scale Fermentation of Aqueous Ammonia 

Soaked Switchgrass”, previously developed bench-scale SSF experiments were scaled up to 

50 and 350L. The results showed that materials handling of semi-solid feedstock slurries can 

be problematic at larger scales. Obtaining a homogeneous mixing in the fermentors and 

bacterial contamination during fermentation were the important challenges at pilot scale. The 

first two projects have showed us that aqueous ammonia soaking is an effective pretreatment 

process but scale-up may be difficult. However, a pretreatment method needs to be 

economically feasible as well technically feasible in order to be commercially viable. 

Therefore, in Chapter 4, “Techno-economic Analysis of Aqueous Ammonia Soaked 

Switchgrass”, we have analyzed the economically viability of the process as part of a 
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commercial-scale integrated biorefinery. It was found that ethanol production using ammonia 

soaking of switchgrass is likely to be a highly capital intensive process. Long residence time 

during pretreatment increases pretreatment cost, the total fixed capital cost and, in turn, the 

ethanol selling price. Sensitivity analysis showed that enzyme and feedstock cost had the 

largest impact on mean ethanol selling price. Although, ammonia soaking may not be a cost 

competitive pretreatment method, it is still an attractive method at bench scale due to its 

simplicity. In Chapter 5, entitled “A Rapid Simultaneous Saccharification and Fermentation 

Technique to Determine Ethanol Yields”, we have developed a relatively simple SSF 

technique to rapidly assess the ethanol production potential for large sets of biomass samples. 

This method was based on soaking feedstock in aqueous ammonia for 24 hours and then 

fermenting it for 24 hours. The technique was successfully demonstrated on a large set of 

corn stover samples. Through this investigation it was found that acid detergent lignin (ADL) 

concentration and theoretical ethanol yields were highly correlated which suggests that ADL 

can be used as a rapid prediction method for ethanol yields for corn stover. We have also 

shown that NIRS calibration curves can be developed that predict ethanol yields of 

lignocellulosic biomass such as corn stover. Such NIRS methods may be even more useful in 

screening biomass ethanol potential because the calibrations reflect more compositional 

information than the simple ADL measurement. 

Future Work 

As described in Chapter 4, soaking time is an important parameter that affects the 

process cost aqueous ammonia soaking. Therefore, it is extremely important to optimize 

pretreatment conditions further. Different soaking times and soaking ratios can be examined 

in the search for increased ethanol production. In addition, it is important to search for 
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improved methods of ammonia recovery that avoid washing the pretreated feedstock. This 

would not only reduce water consumption but also decrease the waste water treatment cost. 

One approach could be vacuum recovery of ammonia after pretreatment. However, the 

presence of inhibitory compounds generated during pretreatment might become an issue if 

the pretreated material is not washed. The trade offs need to be explored more fully before 

ammonia soaking is deemed to be feasible or infeasible.  

 One of the biggest problems encountered at pilot scale was bacterial contamination. It 

is not feasible to sterilize the feedstock at larger scales using standard methods. Therefore 

other methods need to be analyzed to reduce contamination. It is known that ammonia at high 

concentrations has a sterilization effect and if the pretreated material is protected from 

contacting non-sterile environments, the contamination levels can be reduced. One approach 

could be soaking the feedstock in a sterile reactor, and after vacuum recovery of ammonia, 

sterilized fermentation media could be added from the side of the reactor with sterile pipes 

and fermentation can be done in the same reactor. This approach could also decrease the 

capital cost as well, since both pretreatment and fermentation could be done in the same 

reactor. 

 There are many possibilities for improving the aqueous ammonia soaking 

pretreatment method. There are still many unknowns in the cellulosic ethanol production 

process and commercially viable processes may still be years away. However, cellulosic 

ethanol will continue to be a very appealing way of reducing foreign energy dependency, 

combating global warming, and reducing the environmental impacts of fuel production.  
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