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CHAPTER 1. GENERAL INTRODUCTION AND LITERATURE REVIEW 

 

Introduction 

 Iowa is a leader in corn and ethanol production. For corn-based ethanol 

plants, a primary co-product of the process is distillers dried grains with solubles 

(DDGS). DDGS contain high levels of digestible energy and metabolizable energy, 

digestible amino acids, and available phosphorus (Shurson et al., 2003; Honeyman 

et al., 2007). Generally, DDGS have been found to contain 2 to 3.5 times more 

amino acids, fat, and minerals then corn (Honeyman et al., 2007). Because of these 

benefits, animal nutritionists have suggested including up to 20% DDGS in nursery, 

grow-finish, and lactating sow diets and up to 40% in gestating sow and boar diets 

(Honeyman et al., 2007). However, the choice to feed DDGS is generally based on 

economics, and at the current DDGS and corn prices the inclusion of DDGS in swine 

diets has provided a cost savings over traditional non-DDGS diets. 

 Aerial emissions from livestock facilities have been a controversial subject. In 

Iowa, rural residents have concerns with odors and aerial emissions from animal 

feeding operations and the potential effect these emissions may have on their 

health, property values, and the environment. Livestock owners are concerned for 

similar reasons, but also for the health and productivity of their animals (Powers, 

2003). Because of this, animal feeding operations are under increased scrutiny for 

their aerial emissions from the general public, environmental groups, and regulatory 

organizations. 
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 Expansion of the corn grain ethanol industry has led to increased availability 

of DDGS, and feeding DDGS to swine has become more common in pork 

production. With feed being the primary cost in the pork production and increasing 

interest in air emissions from animal feeding operations, it is important to understand 

the impacts of DDGS-laden diets on aerial emissions. There is currently a lack of 

data concerning the impact of DDGS on air emissions at the farm scale. Previous 

pilot-scale, short-term research indicated that air emissions could be impacted, but 

long-term effects under production settings have not been examined.  

 Because feeding DDGS can provide a cost savings, pork producers are likely 

to continue feeding DDGS. As such, information collected at full-scale finish 

operations along with suggestions to manage emissions would be of value to pork 

producers. 

 

Objective 

 The primary objective of this project was to quantify the impacts on gaseous 

emissions of feeding DDGS to growing-finishing swine. In order to achieve this 

objective two co-located wean-to-finish deep-pit swine facilities were monitored 

simultaneously for two production turns. Animals in one barn received a traditional 

corn soybean diet while the other received a ration with 22% DDGS inclusion.  

Constituents monitored and reported from this study were ammonia (NH3), hydrogen 

sulfide (H2S), carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4).  
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Literature Review 

 It has been hypothesized that the sulfur in DDGS would result in increased 

H2S emissions from stored swine manure when pigs are fed rations containing 

DDGS in full-scale swine production systems. The increased usage of DDGS in 

swine facilities has led several researchers to examine the effect of DDGS on 

emissions, odors and manure composition. However, these studies have been 

conducted at lab or non-commercial scales, and the results have not been 

consistent. The rest of the chapter is devoted to a review of literature on the subject 

matter.  

 

Bench-scale Emission Study Results  

 Spiehs et al. (2000) performed a 10-week trial on 20 barrows receiving either 

DDGS (at a 20% inclusion rate) or non-DDGS ration. The pigs were housed in two 

fully-slatted pens within the grow-finish room of a swine research facility based on 

diet (non-DDGS vs. DDGS). The non-DDGS diet was a typical corn-soybean meal. 

Total phosphorus and total lysine were held constant in both diets within each phase 

of feeding. The study was conducted to evaluate differences in odor, H2S, and NH3 

from stored manure as affected by the animal’s diet. The stored manure evaluated 

for emissions was maintained in a container to simulate deep pit storage. Air 

samples were collected from the head space of the storage containers. Over the 10-

week period, this study reported that the DDGS diet did not affect the amount of 

odor, H2S, or NH3 from the stored manure. 
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 Gralapp et al. (2002) performed six, four week trials utilizing a total of 72 

finishing pigs. Three diets containing 0, 5, 10% DDGS were fed during the study.  

Manure from the study was collected in a pit below each environmental chamber 

where the pigs were housed. Samples were collected on day 4 and day 7 of each 

week and analyzed. Each pit was cleaned weekly. Gralapp et al. (2002) observed no 

significant differences between concentrations of total solids (TS), volatile solids 

(VS), chemical oxygen demand (COD), total kjeldahl nitrogen (TKN), and 

phosphorus (TP) content. Additionally, this study compared the effects on odor of 

each of the different diets and found there were no significant differences.  

 Xu et al. (2005) performed a study utilizing 40 nursery pigs to evaluate 

phosphorus excretion from animals receiving DDGS diets. The diets contained 0, 10, 

20% DDGS. Results indicated that diets containing 10 and 20 % DDGS had a 15 

and 30 % increase in daily manure excretion, respectively, compared to pigs fed the 

corn-soybean meal diet. Xu et al. (2005) reported the increase was due to a 2.2 and 

5.1 % reduction in dry matter digestibility in rations containing 10 and 20 % DDGS, 

respectively. Reportedly, reduced dry matter digestibility was the result of increased 

amounts of crude protein and higher fiber levels in the DDGS diet.    

 Powers et al. (2006 & 2008; non-peer reviewed) completed a study that 

included 48 barrows in 8 chambers. In the study, the animals received increasing 

amounts of DDGS in their ration (from 0 –30%) as they progressed through their 

feeding phases. Corn-based control diets were also included. The diets were 

formulated to contain similar amounts of lysine and energy. Manure collection pans 

were placed under the animal pens and were partially cleaned twice weekly to 
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remove manure and prevent overflow. Air samples were collected from within the 

animal chambers. The reported results indicated that the DDGS ration led to greater 

NH3 and H2S emission rates but reduced CH4 emissions. 

 Jarret et al. (2011) investigated the effects of different biofuel co-products 

(DDGS, SBP, and high fat level rapeseed meal on nitrogen (N) and carbon (C) 

excretion patterns as well as ammonia and methane emissions. Ammonia emissions 

were measured from a pilot scale system for a period of 16 days using H2SO4 

ammonia traps. Biochemical methane potentials (BMPs were then ran on the 

manure to determine the methane production potential of the difference diet 

regimens. The DDGS diet was found to excrete the more N, C and dry matter than 

the other rations. It was also reported that diets with higher fiber contents with higher 

crude protein (CP) inclusions were had similar ammonia emissions as lower fiber 

and lower protein diets. Methane production potential was also found to be the 

lowest in manure when pigs were fed DDGS.  

 The results of these lab-scale studies cannot be directly compared because 

of differences in rations, animal housing, manure storage, and analytical methods. 

However, in general, the studies provide conflicting results. Besides differences in 

the experimental design of the two studies, the conflicting results might also be 

attributed to the different scale of the studies. While laboratory and small-scale trials 

can be quite useful, especially when multiple parameters are being varied, 

measurement of emissions from full-scale swine production systems with extended 

period of manure storage would provide data not currently available. Deep-pit 
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systems usually store manure for up to a year before it is applied to the land. It is 

difficult to simulate these conditions in the laboratory. 

  

Full-scale Emission Study Results  

 To date, there are no published results from full-scale studies looking at the 

effects of feeding DDGS to swine. However, there are several studies that have 

investigated gaseous emissions from full-scale swine finishing production facilities 

(Dong et al., 2009; Harper et al., 2004; Hoff et al., 2009; Ni et al., 2000; Ni et al., 

2008; Sharpe et al., 2000; Zahn et al., 2001). These studies represent a variety of 

swine production and manure storage systems as well as monitoring style and study 

duration. Even though these studies aren’t all from deep-pit systems in Iowa, they 

provide a baseline to compare this study’s results to. The results reported from the 

previous field-scale studies are described below by constituent.  

 

Ammonia (NH3) Emissions 

 Ammonia is released by the microbiological decay of plant and animal 

proteins. The primary source of ammonia in deep-pit manure systems is urinary urea 

and the excretion of undigested and microbial proteins in the feces. Ammonia exists 

in two forms, a volatile form (NH3) and a non-volatile form (NH4
+). At a pH of 7.0 or 

lower the majority of the released N is in the non-volatile form, NH4
+(Applegate et al., 

2008). 

 Table 1 summarizes literature data for NH3 emissions from swine finishing 

systems. All of these studies were completed on deep-pit manure storage systems 
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with the exception of Harper et al. (2004) which was a flush system that recycled 

lagoon water weekly.  Even though there are arguably more data available for NH3 

emissions than other constituents, the data are relatively variable.  

Literature values of NH3 emissions in g/d-AU (AU = animal unit = 500 kg live body 

weight) for finishing swine ranged from 14 to 130. It has been shown that NH3 

emission rates from swine finishing facilities increase with increased temperatures 

(ambient and barn) (Heber et al., 2000). This could account for some of the 

variability of NH3 data. The average warm-weather NH3 emissions rate for available 

data was 101.8 g/d-AU compared to 25 g/d-AU for colder weather conditions.   

 There have also been more studies done to determine the best way to 

mitigate NH3 emissions than H2S and greenhouse gas (GHG) emissions. There are 

two main ways to mitigate emissions: 1. Alter the feed composition (i.e. improve 

nutrient utilization efficiency within the animal so less undigested nutrients are 

excreted) 2. Directly applied treatments to the manure or on the exhaust air leaving 

the facility.  

 The most common diet modification that has been done to reduce or 

manipulate NH3 emission rates was reducing dietary crude protein (CP). It has been 

shown for each percentage unit of reduction in dietary CP, estimated N excretion 

and NH3 emissions were reduced by 8-10% in poultry and swine (Liang et al., 2005; 

Applegate et al. 2008). Some studies have shown that grow-finish pigs fed diets with 

3.5 to 4.5 % lower CP experienced a 40-60% reduction in NH3 aerial emissions 

(Powers et al., 2006; Sutton et al., 1999; Prince et al., 2000; and Richert and 

Sutton., 2006).   
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 Manure treatments have also been successful in reducing NH3 emissions. 

Heber et al. (2000) reported reductions of 24% per AU when the two mechanically 

ventilated deep pits were treated with the pit additive Alliance. Biofiltration of exhaust 

air could reduce NH3 emission even more. Hoff et al. (2009) reported 58% NH3 

emissions reduction from a hybrid deep-pit swine finishing facility in Iowa by 58%. 

This was accomplished by retrofitting the existing system and adding an 88 m2 

biofilter that utilized wood-chips as the main filtration media.    

  
Hydrogen Sulfide (H2S) Emissions 

 Hydrogen sulfide is the product of the decomposition of organic compounds 

containing sulfur to sulfide under anaerobic conditions (Arogo et al., 2000). Sulfides 

exist in different proportions in aqueous solutions at different pH. For example, the 

pKa of HS- is 7 meaning at a pH greater than 7 the majority of sulfides will be 

present in the form of HS-, whereas below a pH 7 the majority of sulfides are in the 

form of H2S (Figure 1, Snoeyink and Jenkins, 1980). Therefore, when manure 

storage systems with sulfides present experience a decrease in pH below 7 the 

potential for H2S emission increases. In deep-pit swine facilities, the three primary 

sources of sulfates are excess feed, water, and excreted manure.    

 There are several studies that have investigated H2S emissions from deep-pit 

finish swine facilities. One of the more comprehensive studies was Ni et al. (2001) 

who measured H2S emissions from two mechanically ventilated finishing swine 

barns in central Illinois from June to September 1997. Each barn housed 

approximately 1,000 pigs and had 2.4 m deep-pits for manure storage. Table 2 
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shows the results from this study compared to similar studies that measured H2S 

emissions from deep-pit swine finishing facilities (Avery et al., 1975; Zhu et al., 2000; 

Heber et al., 1997; Jacobson et al., 2003).  

 

 

Figure 1: Fraction of sulfides in aqueous solution at 25oC as a function of pH  

(Snoeyink and Jenkins, 1980) 

  

  Based on the results from these studies H2S emissions are highly 

variable among facilities and throughout seasons. Ni et al. (2002) and Zhu et al. 

(2000) showed H2S emissions tend to increase during summer months. It has also 

been shown that temperature and ventilation rate have the highest influence on H2S 

emissions (Ni et al., 2001).  

 There are very limited published data (with the exception of Ni et al., 2000, 

2002, 2008) on H2S emission factors for swine finishing facilities. For most of the 

reported studies, data were collected intermittently for short periods of time.   
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 Mitigation methods considered in literature have focused on diet 

manipulation. Kendall et al. (2000) were able to reduce in-house H2S concentrations 

by 39% by replacing mineral sulfate sources in diets for grow to finish pigs with 

carbonate, oxide and chloride.  Powers et al. (2006) found that by feeding DDGS 

H2S concentrations and emissions were increased from the additional sulfur added 

to the diet by feeding DDGS. Both studies constrained the ventilation systems such 

that each room received the same flowrate throughout the study.  

        
Carbon Dioxide (CO2) Emissions 

 The primary source of CO2 emissions in livestock production is respiration 

from the animals. Manure is estimated to contribute only 4% of CO2 production in 

livestock facilities (Pedersen and Sallvik, 2002). The third possible source for CO2 

production is the use of heaters during winter months in colder climates.  

Consequently, CO2 emissions are not expected to drastically fluctuate on a per pig 

basis between similar swine production systems.  

 Ni et al. (2000) measured CO2 emissions from two mechanically ventilated 

finishing swine barns with shallow manure flushing systems. Each barn had a 

capacity of 1,100 pigs. Pigs from both barns entered the facility at 25 kg and were 

marketed at 123 kg and received identical diets during the study. The average 

number of pigs in both barns was 1,115 with an average weight of 64 kg. Data were 

collected continuously from Aug 2002 to June 2003. This study found that the 

average CO2 emissions were 15.8 kg/d-AU for both barns.     
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 Dong et al. (2007) compared CO2 emissions from multiple types of swine 

production (farrow-to-finish) in China. The finishing facility was naturally ventilated 

with a partial slatted floor and housed 192 pigs. Solid manure was removed twice a 

day from this facility. A CO2 balance was used to estimate the ventilation rate used 

in the emission rate calculations. Air samples were collected manually at 2-hour 

intervals for three consecutive days, six times between May 2004 and March 2005. 

The annual average CO2 emission for this study was determined to be 16.7 kg/d-AU, 

comparable to the results from Ni et al. (2000). 

 

  Nitrous Oxide (N2O) Emissions 

 N2O is a product of both nitrification and denitrification. N2O is emitted from 

manure as an intermediate product of nitrification/denitrification processes under low 

oxygen conditions (Costa and Guarino, 2009). Nitrification requires aerobic 

conditions and denitrification requires anaerobic conditions. In swine houses, these 

conditions occur mainly in deep litter systems but not slurry systems; however 

emissions can also occur from manure on the floor in swine houses with slatted 

floors (Philippe et al., 2007).   

 To date there are only four studies that have monitored N2O from swine 

production facilities. Of these studies only one was representative of a full-scale 

swine operation (Zhang et al., 2007). The other three studies were smaller 

experimental scale (Costa and Guarino., 2009; Dong et al., 2006; and Osada et al., 

1998) (Table 3).   
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Ni et al. (2002)
Treated Control Barn A Barn B 3B

Season Sept. Sept. June to Sept. 

Average number of pigs b b 550 400 887

Average pig weight (kg) b b 82 109 83

Ventilation typea N N M N M

Building ventilation rate (m3/h) b b 13,063 30,039 158,202

Number of samples 1,500 1,500 7 7 1,700

Concentration (ppb) 221 180 414 271 173

Specific emission (g d-1 AU-1)* 0.9 0.84 2.0 3.3 8.3
a M = mechanical ventilation  N = natural ventilation  H = hybrid barn with mechanical and natural ventilation
b information not provided in article
* AU = 500 kg live body weight

Variable 
Heber et al. (1997)

Jan. to March

Zhu et al. (2000)

 

 Zhang et al. (2007) monitored two farrowing operations in southern Manitoba, 

Canada. Air samples were collected for 19 days in the Fall 2003 and Summer 2004. 

N2O exhaust concentrations measured were the same as the background ambient 

levels (0.4 ppm); therefore there were no emissions of N2O recorded for this study. 

 Two of the three experimental scale studies reported similar results for the 

grams of N2O emitted on per day per AU basis. Osada et al. (1998) and Dong et al. 

(2007) reported that finishing swine emit an average of 0.87 g N2O/ d-AU during a 

grow-out period. In comparison, Costa and Guarino (2009) results were significantly 

higher at 3.26 g N2O/ d-AU. None of the studies was performed in the United States, 

and nor did any of the facilities use deep-pit manure storage/treatment system. 

However, Osada et al. (1998) imitated a deep-pit system by storing the manure in 

the shallow pit for the duration of the eight-week trial and compared this to a system 

that flushed weekly. It should also be noted that all of reported studies were done 

Table 2. Summary of reported hydrogen sulfide (H2S) emissions from full-scale finishing 

swine production systems.  
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abroad. The lack of full-scale studies measurement of N2O emission data, under the 

U.S. conditions and the limited data from abroad indicates that there is a need for 

more research in this area.  

 

Table 3: Summary of nitrous oxide (N2O) emission rate from experimental-scale finishing 

swine  

Dong et al. 
(2007)

Exp Ref G-F

Season Fall Fall All Fall and Spring

Location China Italy

Manure pit type Flush System Slatted floor

Manure removal 7 d 60 d Daily c

Average number of pigs 40 40 66 344

Average pig weight (kg) 59 60 192 c

Ventilation typea M M N M

Building ventilation, m3/h 2080 2138 c c

Number of days 56 56 432b 70

Concentration, ppm c c 0.36 c

Specific emission, g d-1 AU-1* 0.88 0.8 0.86 3.3

Costa and 
Guarino 
(2009)

Variable

c information not provided in article

* 1 AU = 500 kg live body w eight

a M = mechanical ventilation  N = natural ventilation 
b12 sample per day for 3 day during six different months

Osada et al. (1998)

Denmark

Partially Slatted 

 

 Methane (CH4) Emissions 

 CH4 production in slurry occurs when anaerobic conditions exist, combined 

with sufficient availability and degradability of organic compounds. The degree of 

anaerobic bacterial fermentation and the amount of CH4 produced depends on the 
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pH, temperature of the manure and the hydraulic retention time of the system 

(Zeeman, 1991; Huther et al., 1997). 

 CH4 production in deep-pit swine production facilities has become more of a 

concern with increased foaming, flash fires and explosions occurring in recent years 

(Moody et al., 2009). Unfortunately, there are very few studies that evaluated the 

CH4 production from full-scale deep-pit facilities in terms of emission rates. There 

have been multiple studies that evaluate the CH4 production potential of deep-pit as 

a potential energy source (Martin, 2003; Spajic et al., 2010; and Wu-Hann, 2010). 

 Martin (2003) performed a study to characterize chemical and physical 

transformations in swine manure accumulated in deep pits under slatted floors and 

assess the performance of the system with respect to CH4 emissions. Samples were 

collected from two groups of feeder pigs finished in a single 1,000 head deep-pit 

barn from January to October 2002. During this period, three vertically integrated 

sub-samples were collected and composited every two weeks. Animals were fed a 

traditional corn-soybean diet. To estimate gaseous CH4 emissions, Martin (2003) 

used calculated losses of VS and COD. CH4 emissions for a 289-day period were 

estimated to be 20,381 m3 or 100 g/d-AU. This estimate was comparable to what 

has been reported in literature as shown in Table 4.    
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 Spajic et al. (2010) performed biochemical CH4 potential assays on swine 

manure collected from a deep-pit swine finishing operation. The biochemical CH4 

potential assays (BMPs) provide an estimate of potential CH4 production under 

optimal anaerobic digestion conditions. The data reported by Spajic et al. (2010) 

estimated CH4 production could be up to 254 mL CH4/g VS.  In similar tests 

performed with manure from a farrow-to-finish shallow-pit system, Wu-Haan (2010) 

reported potential CH4 yields of 321 mL CH4/g VS. It was reported at the time of 

sampling for both studies animals were receiving a DDGS ration. ASABE Standard 

D384.2 MAR2005 (R2010) reports that manure from swine finishing operations 

produce 45 kg VS/pig marketed. Using this factor with the previous study results,  

 CH4 emission estimates can be made. Table 5 shows the estimates made using 

data from Spajic et al. (2010) and Wu-Haan (2010). These values are higher than 

reported literature since BMPs are used as indicators of the highest level of CH4 

production that could be achieved by an anaerobic digestor that has been optimized 

to produce CH4. 

 CH4 emission rates reported in literature range from 29 to 351 g/d-AU. Similar 

to NH3 emission rates, CH4 emission rates were reported to be higher during 

summer months. Sharpe et al. (2001) reported the most extreme case of having 

significantly different emission rates of 34 g/d-AU and 323 g/d-AU for cooler and 

warmer seasons, respectively. 

 

 

 

\ 
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Table 5: Methane (CH4) production potentials from swine finishing manure in Iowa 

Reference 
CH4 Production 

Potential 
CH4 Emissions  

Potential 

  mL CH4/ g VS g CH4/d-AU* 

Spajic et al. (2010) 254 225 

Wu-Haan et al. (2010) 315 284 

*1 AU = 500 kg live body weight  

 

The same swine finishing barn was monitored continuously for 7 days in both spring 

and winter and it was found that CH4 emissions were 34 g/d-AU and 323 g/d-AU, for 

spring and winter, respectively, an 800% increase in CH4 emission for the warmer 

months. It was also reported that CH4 emissions would gradually increase with the 

growth of the pigs (Osada et al., 1998). Costa and Guarino (2008) reported that CH4 

emission increased when ambient temperatures increased and could be related to 

the frequency of manure removal from the barn. Both of these studies were 

supported by findings reported in Haeussermann et al. (2006).  

 One study reported a reduction of CH4 emissions per AU by treating the 

manure with oil (Ni et al., 2008). For this study, the treatment barn was sprayed 

various oils throughout the growout period and results were compared to a control 

that was not treated with any suppressant. Oils used in this study were soybean oil, 

misting of essential oils, and misting of essential oils with water. This was the only 

full-scale study found that considered mitigation techniques for CH4.  
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CHAPTER 2. AMMONIA, HYDROGEN SULFIDE, AND GREENHOUSE GAS 

EMSSIONS FROM WEAN-TO-FINISH SWINE BARNS FED TRADITIONAL VS. A 

DDGS-BASED DIET 

L. M. Pepple, R. T. Burns, H. Xin, H. Li, J. F. Patience 

A manuscript to be submitted to the Atmospheric Environment 

Abstract 

 In recent years the corn grain ethanol industry has expanded and led to 

increased availability of dried distillers grains with solubles (DDGS), and feeding 

DDGS to swine is becoming more common in pork production. With feed being the 

primary cost in pork production and increasing interest in air emissions from animal 

feeding operations, it is important to understand the impacts of non-traditional 

dietary formulations on aerial emissions. The purpose of this study was to evaluate 

the impacts of feeding DDGS on ammonia (NH3), hydrogen sulfide (H2S) and 

greenhouse gas (GHG) emissions from deep-pit swine wean-to-finish (5.5 – 118 kg) 

facilities in Iowa, the leading swine producing state in the USA. To attain the study 

objectives, two commercial, co-located wean-to-finish barns were monitored: one 

barn received a traditional corn-soybean meal diet (designated as Non-DDGS 

regimen), while the other received a diet that included 22% DDGS (designated as 

DDGS regimen). Gaseous concentrations and barn ventilation rate (VR) were 

monitored or determined semi-continuously, and the corresponding emission rates 
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(ER) were derived from the concentration and VR data. Two turns of production 

were monitored for this study, covering the period of December 2009 to January 

2011. The daily and cumulative emissions are expressed on the basis of per barn, 

per pig, and per animal unit (AU, 500 kg live body weight). Results from this project 

indicate that feeding 22% DDGS does not significantly affect aerial emissions of 

NH3, H2S, CO2, N2O or CH4 when compared to the Non-DDGS regimen in a deep-pit 

wean-to-finish swine facility (p-value = 0.10 for NH3, 0.13 for H2S, 0.55 for CO2, 0.58 

for N2O, and 0.18 for CH4). ER for the Non-DDGS regimen, in g/d-pig, averaged 7.5 

NH3, 0.37 H2S, 2127 CO2 and 72 CH4. In comparison, ER for the DDGS regimen, in 

g/d-pig, averaged 8.1 NH3, 0.4 H2S, 1849 CO2, and 48 CH4. On the basis of kg gas 

emission per AU marketed, the values were 8.7 NH3, 0.724 H2S, 2350 CO2 and 84 

CH4 for the Non-DDGS regimen; and 12 NH3, 0.777 H2S, 2095 CO2, and 60 CH4 for 

the DDGS regimen. Results of this extended field-scale study help filling the 

knowledge gap of GHG emissions from modern swine production systems.  

Keywords: Ammonia, Hydrogen sulfide, Greenhouse gases, Emissions, Swine  

 

Introduction 

 Iowa leads the United States in corn and ethanol production. For corn-based 

ethanol plants, a primary co-product of the process is distillers dried grains with 

solubles (DDGS). DDGS have been reported to contain high levels of digestible 

energy and metabolizable energy, digestible amino acids, and available phosphorus 

(Shurson et al., 2003; Honeyman et al., 2007). Generally, DDGS have been found to 

contain 2 to 3.5 times more amino acids, fat, and minerals than corn (Honeyman et 
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al., 2007). Animal nutritionists have suggested including up to 20% DDGS in 

nursery, grow-finish, and lactating sow diets and up to 40% in gestating sows and 

boars (Honeyman et al., 2007). However, the decision to feed DDGS is generally 

based on economics. At the current DDGS and corn prices the inclusion of DDGS in 

swine diets has provided a cost savings over traditional non-DDGS diets.  

 It has been hypothesized that sulfur levels in DDGS could result in increased 

hydrogen sulfide (H2S) emissions from stored swine manure when pigs are fed 

rations containing DDGS. However, comparative data from full-scale swine 

production systems are needed to confirm any impacts on air emissions from 

feeding DDGS. The increased usage of DDGS at swine facilities has led several 

researchers to examine the effect of DDGS on emissions, odors, and manure 

composition, but these studies have been at lab or at non-commercial scales and 

the data from these studies were inconsistent (Spiehs et al., 2000; Gralapp et al., 

2002; Xu et al., 2005; Jarret et al., 2011)  

 Spiehs et al. (2000) performed a 10-week trial on 20 barrows receiving either 

a DDGS (at a 20% inclusion rate) or non-DDGS ration. The pigs were housed, 

based on diet, in two fully-slatted pens within the grow-finish room of a swine 

research facility. The non-DDGS diet was a typical corn-soybean meal; total 

phosphorus and total lysine were held constant in both diets within each phase of 

feeding. The study was conducted to evaluate differences in odor, H2S, and 

ammonia (NH3) from stored manure as a result of the pig’s diet. The stored manure 

that was evaluated for emissions was maintained in a container to simulate deep-pit 

storage. Air samples were collected from the headspace of storage containers. Over 
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the 10-week period, this study reported that DDGS (at a 20% inclusion level) did not 

affect odor, H2S, or NH3 emissions from the stored manure. 

 Gralapp et al. (2002) performed six, four week trials utilizing a total of 72 

finishing pigs. Three diets containing 0, 5, 10% DDGS were fed during the study.  

Manure from the study was collected in a pit below each environmental chamber 

where the pigs were housed. Samples were collected on day 4 and day 7 of each 

week and analyzed. Each pit was cleaned weekly. Gralapp et al. (2002) observed no 

significant differences between concentrations of total solids (TS), volatile solids 

(VS), chemical oxygen demand (COD), total kjeldahl nitrogen (TKN), and 

phosphorus (TP) content. Additionally, this study compared the effects on odor of 

each of the different diets and found there were no significant differences.  

 Xu et al. (2005) performed a study utilizing 40 nursery pigs to evaluate 

phosphorus excretion from animals receiving DDGS diets. The diets contained 0, 10, 

20% DDGS. Results indicated that diets containing 10 and 20 % DDGS had a 15 

and 30 % increase in daily manure excretion, respectively, compared to pigs fed the 

corn-soybean meal diet. Xu et al. (2005) reported the increase was due to a 2.2 and 

5.1 % reduction in dry matter digestibility in rations containing 10 and 20 % DDGS, 

respectively. Reportedly, reduced dry matter digestibility was the result of increased 

amounts of crude protein and higher fiber levels in the DDGS diet.    

 Jarret et al. (2011) investigated the effects of different biofuel co-products 

(DDGS, SBP, and high fat level rapeseed meal on nitrogen (N) and carbon (C) 

excretion patterns as well as ammonia and methane emissions. Ammonia emissions 

were measured from a pilot scale system for a period of 16 days using H2SO4 



31 
 

ammonia traps. Biochemical methane potentials (BMPs were then ran on the 

manure to determine the methane production potential of the difference diet 

regimens. The DDGS diet was found to excrete the more N, C and dry matter than 

the other rations. It was also reported that diets with higher fiber contents with higher 

crude protein (CP) inclusions were had similar ammonia emissions as lower fiber 

and lower protein diets. Methane production potential was also found to be the 

lowest in manure when pigs were fed DDGS.  

 The results from these studies cannot be directly compared because of 

differences in rations, animal housing, manure storage, and analytical methods. 

Besides differences in the experimental design of these studies, the results may also 

be affected by scaling issues. Additionally, only two of the studies investigated the 

effects of feeding DDGS to swine on aerial emissions, both were small scale 

experimental studies. This has led to deficit of data concerning the impact of DDGS 

on air emissions at the farm scale. 

 The primary objective of this study was to quantify the impact on gaseous 

emissions of feeding DDGS to wean-to-finish pigs in two commercial deep-pit swine 

barns. The secondary objective was to compare the emission results of this study to 

similar full-scale emission monitoring studies that have been reported in the 

literature. To meet these objectives, NH3, H2S and greenhouse gases (GHG) 

(carbon dioxide – CO2, nitrous oxide – N2O, and methane – CH4) concentrations 

were measured and emission data were collected using a mobile air emissions 

monitoring unit (MAEMU). The results were further compared with the available 

literature data.    
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Methods and Materials 
Site Description 

 Two 12.5 x 57 m (50 x 190 ft) co-located wean-to-finish deep-pit swine barns, 

designated as Non-DDGS and DDGS, located in central Iowa were monitored for 

two production turns. Pigs entered the barns at 5.5 kg (12 lbs) and were marketed at 

118 kg (260 lbs). Each turn was approximately 27 weeks in length with pigs entering 

the barns at 3 weeks and marketed around 30 weeks of age. The barns had a rated 

capacity of 1,200 marketed pigs. Both barns were double-stocked initially, meaning 

during the wean-to-grow (W-G) phase (first 6 to 10 weeks of the turn) both barns 

held approximately 2,400 pigs. When the pigs reached 27 kg (60 lbs), approximately 

half of the pigs were moved off-site to another facility for the grow-to-finish (G-F) 

phase. Each barn had four 0.6 m (24 in.) pit fans, two 0.6 m (24 in.) endwall fans for 

mechanical ventilation, and sidewall curtains on both sides to provide natural 

ventilation when needed. The barns were equipped with three space heaters 66 kW 

(225,000 BTU/h) each, 20 brooder heaters 5 kW (17,000 BTU/h) each and 20 bi-flow 

ceiling inlets (one per pen).  

 The diets used during this study were formulated to meet the pigs’ 

requirements as they grew towards market weight (NRC, 1998); the only difference 

in ingredients between the Non-DDGS (control) diet and the DDGS (treatment) diet 

was the inclusion of 22% DDGS for the DDGS regimen. The ingredients and diet 

formulations used during this study are proprietary information. Including DDGS 

resulted in higher levels of crude protein, crude fiber, acid detergent fiber and sulfur 

compared to the non-DDGS diet. The nursery phase diets for both barns did not 
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include DDGS. Nursery diets were fed until the pigs weighed 12 kg or approximately 

10 to 14 days after entering the barn. Therefore, data for the periods when nursery 

diets were fed were excluded from the analysis. 

  The producer provided weekly pig performance data, including mortality and 

average body weight for the duration of the project.   

  

Measurement System  

 A MAEMU was used to continuously collect emissions data from the two 

deep-pit wean-to-finish swine barns. The instruments and data acquisition system 

were housed in the MAEMU. A detailed description of the MAEMU and operation 

can be found in Moody et al. (2008).  Constituents measured during this study were 

NH3, CO2, N2O, CH4, and H2S. Aerial emissions were monitored for two growout 

periods. A photoacoustic multi-gas analyzer (INNOVA Model 1412, INNOVA AirTech 

Instruments A/S, Ballerup Denmark) was used to measure NH3, CO2, N2O, and CH4 

concentrations. H2S concentrations were measured using an ultraviolet fluorescence 

H2S analyzer (Model 101E, Teledyne API, San Diego, CA).  The instruments were 

challenged weekly with calibration gases and recalibrated as needed. All calibration 

gases were certified grade with ± 2% accuracy.   

 Air samples were drawn from three composite locations (north pit fans, south 

pit fans, and endwall fans) in each barn and an outside location to provide ambient 

background data (Figure 1). Each composite sampling location was chosen to match 

the fan stages used at the facility.  Pit fan sampling points were located below the 

slats next to each fan. Endwall sample ports were placed approximately 1.0 m (3.28 
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ft) in front of each endwall fan. Sample locations and placement of sampling ports 

were chosen to ensure representativeness of the air leaving the barns. Air samples 

were collected in 30-s cycles for four cycle periods (120 s) at each location. The 

fourth reading from each sampling cycle was used as the measured pollutant 

concentration. Use of the fourth reading was due to the fact that the INNOVA and 

API had T98 and T95 response time of 120 s and 100 s, respectively. Each 

sampling point had three consecutive dust filters (60, 20, 5 µm) to keep particulate 

matter from plugging or contaminating the sample lines, the servo valves, or the 

delicate instruments. 

 A positive-pressure gas sampling system (P-P GSS) was used in the MAEMU 

to prevent introduction of unwanted air into the sampling line. The P-P GSS 

consecutively pumped sample air from each sampling location using individual 

designated pumps. Air samples from each location were collected sequentially over 

the 120 s period via the controlled operation of servo valves of the PP-GSS. Each 

barn sampling location was sampled every 14 min. It was assumed with the 

sequential sampling that any concentration change at a given location between two 

sampling periods followed a linear relationship. Therefore, linear interpolation was 

used between sampling points to determine the intermediate concentrations and to 

line up the concentration with the continuously measured ventilation rate (VR) for the 

location.  A background ambient air sample was collected every two hours for 8 

minutes. Background concentrations were subtracted from the exhaust readings 

when air emissions rates were calculated for the barns. All pumps and the gas 
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sampling system were leak checked weekly to ensure no contamination was 

occurring.  

 Pit fans at this facility had variable speeds, while the endwall fans had a 

single speed. All fans were calibrated in situ at multiple operation points (RPM and 

static pressure) to develop a performance or airflow curves for each fan.  The in situ 

calibration of the exhaust fans was conducted with a fan assessment numeration 

system (FANS) (Gates et al. 2004). For single-speed fans (endwall), airflow was a 

function of static pressure, whereas for variable-speed fans, airflow was a function of 

static pressure and fan speed (revolution per minute or RPM). Runtime of each fan 

was monitored continuously using an inductive current switch (with analog output) 

attached to the power cord of each fan motor (Muhlbauer et al., 2011). Each current 

switch’s analog output was connected to the data acquisition (DAQ) system 

(Compact Fieldpoint, National Instruments, Austin, Tex) (Li et al., 2006). Both barns 

were equipped with static pressure sensors (model 264, Setra, Boxborough, Mass.). 

Each pit fan’s RPM was continuously measured using Hall Effect speed sensors 

(GS100701, Cherry Corp, Pleasant Prairie, WI). Atmospheric pressure, indoor and 

outdoor temperature, and relative humidity (RH) were measured with barometric 

pressure sensor (WE100,Global Water, Gold River, Cal.), temperature sensors 

(type-T thermocouple, Cole Palmer, Vernon Hills, Ill.), and RH probes (HMW60, 

Vaisala, Woburn, Mass.). Signals were sampled every second and averaged and 

recorded on the on-site computer in 30 second intervals.  

 VR during periods of natural ventilation was determined using a CO2 balance, 

an indirect VR determination method. The CO2 balance method is governed by the 
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principal of indirect animal calorimetry (Xin et al., 2009). More specifically, the 

metabolic heat production of non-ruminants is related to oxygen (O2) consumption 

and CO2 production of the animals (Brouwer, 1965) ( Equation 1). Using this 

relationship the VR can be estimated by using the inlet and exhaust CO2 

concentrations and the total heat production (THP) of the animals (Equations 2 & 3).  

For the purpose of this study, finishing pig THP under thermoneutrality (Pedersen 

and Sallvik, 2002) (Equation 4) and a respiratory quotient (RQ) of 1.14 was used.  

            ` (1) 

Where, THP = total heat production rate of the animals (W) 

   O2      = oxygen consumption rate of the animals (mL s-1) 

   CO2 = carbon dioxide production rate of the animals (mL s-1) 

  

                  (2) 
 

                                                                          

                                `   (3) 

 

Where, VR = building ventilation rate (m3 s-1) 

 CO2 = carbon dioxide production rate of the animals (mL s-1) 

 CO2 e = carbon dioxide concentration of exhaust (ppmv) 

 CO2 i = carbon dioxide concentration of inlet (ppmv) 
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          (4) 

Where, THP = total heat production rate of animals (W) 

 m = mass of animal (kg) 

 n = daily feed energy intake (expressed as n times the maintenance 

requirement) 

  

 Body mass used in the THP calculation was provided weekly from the 

producer and linearly interpolated for daily values. The daily feed energy intake was 

calculated using information provided by the producer about feed composition and 

the daily maintenance energy requirement (DME, kcal/day) for a finishing swine 

provided by NRC (1998) (Equation 5). Calculated values for n ranged from 6.9 to 2.9 

(with an average of 3.5) for pig weights from 5 -120 kg, respectively.  

                                                                           

       (5) 

Where, BW = animal body weight (kg) 

  

 In addition to air sampling, manure samples were collected monthly from 

each barn. Manure samples were collected from each of the four pit pump-out 

locations and composited for each barn. Samples were cooled and shipped to 

Midwest Laboratories (Omaha, NE) and were analyzed for total solids (TS), total 

nitrogen (TN), ammoniacal nitrogen (NH3-N), total phosphorus (TP), potassium (K), 

sulfur (S), calcium (Ca), magnesium (Mg), sodium (Na), iron (Fe), manganese (Mn), 

]09.509.5*)][003.47.0(1[09.5 75.75.75. mmnmmTHP −+−+=
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copper (Cu), zinc (Z), and pH. A total of eleven manure samples from each barn was 

collected and analyzed during the monitoring period.  
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Figure 1: Schematic representation of the monitoring system layout 

 

Gaseous Emission Rate (ER) Determination 

 Constituent ER was calculated as the mass of the gas emitted from the barn 

per unit time and expressed in the following form (Equation 6):   
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Where  ER  = Gas emission rate for the house, g hr-1 barn-1 

  Qe  = Exhaust ventilation rate of the barn at field temperature and 

 barometric pressure, respectively, m3 hr-1 barn-1 

  [G]i,[G]e  = Gas concentration of incoming and exhaust ventilation air, 

 respectively, ppmv 

  wm  = molar weight of the gas, g mole-1 (e.g., 17.031 for NH3) 

  Vm  = molar volume of gas at standard temperature (0°C) and pressure 

 (101.325 kPa) or STP, 0.022414 m3 mole-1 

  Tstd  = standard temperature, 273.15 K 

  Ta = ambient air temperature, K 

  ρi, ρe  = density of incoming and exhaust air, respectively, g/cm3 

  Pstd  = standard barometric pressure, 101.325 kPa 

  Pa
  = atmospheric barometric pressure at the monitoring site, kPa 

 The data collection period for this study was December 2009 through January 

2011. Statistical analysis was performed using SAS 9.2 (SAS Institute Inc., Cary, 

NC). Daily emission rates were analyzed with analysis of variance using a proc 

mixed procedure to determine the effects of diet, turn, temperature, and animal 

units. Data were analyzed using single factor ANOVA and considering each day as a 

repeated measure during the period. The dietary effect was considered being 

significant at P-value < 0.05. 

Results and Discussion 

Manure Sample Analysis Results 
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 Manure samples from each barn were sampled monthly from each barn to 

determine any differences in manure properties by feeding DDGS. Table 1 shows 

the average results for both barns over the entire monitoring period along with the 

standard deviations. There were a total of 11 manure samples collected over the 

sampling period. The barn fed the DDGS ration tended to have higher for NH3-N, 

TN, S, and Z concentrations. Ultimately, manure composition in both barns were 

similar to each other.  

 

Table 1. Mean (SD) manure analysis results for Non-DDGS and DDGS barns reported for the 

duration of monitoring period (n=11).  

Sample ID Non-DDGS DDGS

Ammonium Nitrogen, ppm 4240 (255) 4460 (347)

Organic Nitrogen, ppm 2510 (360) 2610 (366)

Total Nitrogen, ppm 6750 (438) 7070 (386)

Phosphorus, ppm 1984 (814) 1968 (758)

Poatassium, ppm 4385 (496) 4508 (448)

Sulfur, ppm 735 (82) 847 (147)

Calcium, ppm 1430 (157) 1440 (201)

Magnesium, ppm 840 (255) 880 (140)

Sodium, ppm 1030 (82) 1020 (122)

Copper, ppm 40 (7) 41 (9)

Iron, ppm 132 (15.4) 128 (17.5)

Manganese, ppm 27 (6.3) 24 (4.7)

Zinc, ppm 203 (40) 222 (52)

Total Solids, % 6.4 (.9) 6.7 (.9)

pH 8.2 (.2) 8.1 (.34)  

 

In-House Gaseous Concentrations  

 Each barn was monitored for two complete turns. Each turn was 

approximately 29 weeks long. Animal populations were reported for the W-G phase 
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and G-F phase along with corresponding exiting weight (Table 2). The daily average 

VR for the barns are shown with ambient temperature in Figure 2 for the entire 

monitoring period. The average VR for the Non-DDGS barn for the monitored period 

was 61 m3 /hr-pig and 65 m3 /hr-pig for the DDGS barn. There was no significant 

difference between the two barns VR (p-value = 0.65). 

 Daily mean concentrations are shown for NH3 (Figure 3), H2S (Figure 4), CO2 

(Figure 5), N2O (Figure 6), and CH4 (Figure 7) for both turns in the DDGS barn to 

show dynamic seasonal variations of the concentrations. The concentration means 

and variations are also reported by fan stage for both barns in Table 3, Table 4, 

Table 5 and Table 6. Endwall (Stage 3) fan concentrations were typically lower than 

concentrations measured at both pit (Stage 1 and Stage 2) fan locations.  

 However, measured concentrations were similar between the two barns with 

NH3 and H2S concentrations trending higher in the DDGS barn and CH4 

concentrations trending higher in the Non-DDGS barn. There were no trending 

differences for CO2 or N2O between the barns. The average NH3, H2S, CO2, N2O, 

and CH4 concentrations (±SD) in the DDGS barn were, respectively, 18.4 (±9.5) 

ppm, 522 (±528) ppb, 2,324 (±1,351) ppm, 532 (±466) ppb, and 127 (±84) ppm. The 

average gas concentrations (±SD) in the Non-DDGS barn were, respectively, 14.7 

(±7) ppm NH3, 341 (±451) ppb H2S, 2,392 (±1437) ppm CO2, 524 (±490) ppb N2O, 

and 152 (±102) ppm CH4.  

 Since the VR were similar between barns (p-value = 0.5), higher NH3 

concentrations in the DDGS regimen could be caused by the increase of 

ammoniacal nitrogen excreted when pigs are fed more dietary protein (Kerr et al. 



42 
 

2006), as is the case when feeding DDGS. The increase in H2S concentrations 

could be attributed to the addition of sulfur contained in the DDGS diet, especially 

since the two barns shared the same water source. More investigation is needed to 

determine if sulfur from feedstuffs is the only influencing factor. The CH4 

concentrations were lower in the DDGS barn than in the Non-DDGS.  

 

Ammonia and Hydrogen Sulfide Emission Rates 

 Daily ER values calculated using Equation 6 are reported on the basis of per 

barn, per pig, and per AU. In addition, the cumulative emissions are reported per pig 

marketed and per AU marketed. A statistical analysis was completed to determine if 

difference in emission rates between the two barns was significant. 

 The daily average ERs and cumulative emissions for NH3 and H2S are shown 

for both barns in Figure 8 and Figure 9, respectively. Average NH3 and H2S ER for 

each turn are shown in Table 7 for Non-DDGS barn and Table 8 for the DDGS barn. 

The average NH3 and H2S ER (±SD) in g/d-pig for the DDGS barn was 8.1 (±4.6) 

and 0.4 (±0.51), respectively. These are comparable to the ER for the Non-DDGS 

ration, 7.5 (±4.1) g/d-pig of NH3 and 0.37 (±0.59) g/d-pig of H2S. There was no 

statistical difference detected between the diets for either NH3 (p-value = .10) or H2S 

(p-value = 0.13). However, judging from the borderline p-value, significant difference 

may have been detected had there been more replications monitored for NH3 and 

H2S emissions. There was a difference between turns 1 and 2 for H2S emissions in 

both barns (p-value=0.04), indicating there is seasonal variation in H2S emissions 

from deep-pit swine facilities. On average, H2S ER increased from .27 – 1.28 
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kg/barn for winter and summer seasons, respectively, for both barns. Ni et al. (2002) 

and Zhu et al. (2000) also found that H2S emissions tended to increase during 

summer months. Similar to H2S, NH3 also exhibited some seasonal variation in each 

barn, the Non-DDGS barn experienced in an increase from 9 to 12.6 kg/barn and the 

DDGS barn was similar with an increase from 10.5 to 12.6 kg/barn (p-value = 0.06). 

 There have been several studies that quantify NH3 ER from deep-pit swine 

finishing facilities (Demmers et al., 1999; Heber et al., 2000; Zhu et al., 2000; Harper 

et al., 2004; Hoff et al., 2009). These studies reported an ER range of 14 – 130 g/d-

AU. It was also shown that NH3 ER tends to increase with ambient and barn 

temperatures, accounting for the wide range of the previously reported values. The 

average warm weather NH3 ER for the available data was 102 g/d-AU, as compared 

to 25 g/d-AU for colder weather conditions. NH3 ERs measured during this study for 

both the DDGS and Non-DDGS barns were within the range of reported NH3 ER 

(Table 13). However, when seasonal ER values were compared to those reported in 

literature, results from this study were higher for both cool and warm weather. Table 

11 shows the average NH3 ER values from turns 1 (colder weather) and turn 2 

(warmer weather) for this study compared to literature in g/d-AU.  

 

Table 11: Comparison of ammonia (NH3) emission rates (g/d-AU) from published literature and 

this study. 

Weather 
Published 
Literature 

This Study 
DDGS Non-DDGS 

Colder  25 74 52 

Warmer 102 114 108 
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 There is limited published data available on H2S ER for deep-pit swine 

finishing facilities. Previous studies have reported ER ranging from .84 to 8.3 g/d-AU 

from monitored deep-pit swine facilities for H2S (Avery et al., 1975; Heber et al., 

1997; Ni et al., 2002; Zhu et a., 2000). Based on the results from these studies H2S 

emissions are highly variable between facilities and seasons. Ni et al. (2002) and 

Zhu et al. (2000) showed H2S emissions tended to increase during summer months. 

The majority of these studies collected data intermittently for short periods of time.  

 Similar H2S ER was observed for both dietary regimens in this study (Table 

14). The average colder weather H2S ER was 1.7 and 2.4 g/d-AU for Non-DDGS 

and DDGS barns, respectively. There was a drastic increase in H2S ER during 

warmer periods of the year for both regimens (to 15 g/d-AU). The difference 

between this study and the previously reported data could have been due to the data 

collection method (i.e. continuous for long-time periods vs. intermittent for short-time 

periods).   

 Cumulative emissions for NH3 and H2S are reported in Table 12 for both 

barns. The average of NH3 emissions for both turns in the DDGS barn was 1,499 

g/pig marketed with only 9 g difference between turns 1 and 2. The Non-DDGS barn 

had a similar average of 1,420 g/pig marketed but with a much larger difference of 

577 g between turns 1 and 2. H2S emissions per pig marketed for each barn was 

comparable with 32 g for both dietary regimens in the first turn, and 110 g and 124 g 

for the Non-DDGS barn and DDGS barn, respectively, in the second turn. On the 

basis of per AU marketed, the gaseous emissions for the two dietary regimens were: 
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8.7 kg NH3 and 724 g H2S for the Non-DDGS regimen; and 12.2 kg NH3 and 777 g 

H2S for the DDGS diet.  

 

Greenhouse Gas (GHG) Emission Rates 

 The daily ER and cumulative emissions of CO2, N2O and CH4 for both dietary 

regimens are compared in Figures 10, 11, and 12, respectively. The daily average 

ERs of CO2, N2O and CH4 are shown in Table 9 for the Non-DDGS barn and in 

Table 10 for the Non-DDGS barn. The average,ER (±SD) in g/d-pig barn was 1847 

(±768) CO2, 0.11 (±.41) N2O and 48 (±35) CH4 for the DDGS, as compared to 2,127 

(±817) CO2, 0.10 (±.60) N2O and 72 (±65) CH4 for the Non-DDGS barn. N2O ER 

was determined during part of turn 2 for both barns due to concentrations falling 

below the instrument detection limit (0.5 ppm) during the rest of the monitoring 

period. The average daily ER per pig were 0.30 and 0.39 g for the Non-DDGS and 

DDGS diets, respectively. There was no statistical difference detected between the 

diets for any of the GHG (CO2 p-value = 0.46, N2O p-value = 0.58, and CH4 p-value 

= 0.18). 

 CO2 emissions increased with pig weight, caused by increased metabolic rate 

(thus respiratory CO2 production), as shown in Figure 10. Two previous studies have 

reported CO2 emissions from finishing swine facilities. Results from both studies 

were similar with Ni et al. (2000) reporting 15.8 kg/d-AU and 16.7 kg/d-AU reported 

by Dong et al. (2006). Both of these studies monitored a grow-to-finish phase of a 

shallow pit operation where manure was removed weekly for Ni et al. (2000) and 

daily for Dong et al. (2006). Results from this study were higher than both previously 
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reported studies likely due to the difference in pig age between this study and the 

other two studies. The CO2 ER for the Non-DDGS pigs was 19.5 kg/d-AU for turn 1 

and 23.6 kg/d-AU for turn 2; whereas it was 18.5 and 23 kg/d-AU for turn 1 and turn 

2, respectively, for the DDGS pigs.      

 N2O ERs were determined for the second half of turn 2 for the previously 

stated reason, with the Non-DDGS barn averaging 1.2 g/d-AU and the DDGS barn 

having an average of 3.1 g/d-AU. These results were comparable to the three 

studies in literature that reported N2O emissions from swine finish facilities ranging 

from 0.8 to 3.3 g/d-AU (Costa and Guarino, 2009; Dong et al., 2006; Osada et al., 

1998) (Table 15).  

 With high variability of the CH4 emissions between barns there was no 

statistical difference detected between the dietary regimens; however there was a 

significant difference (p-value = 0.04) between turns 1 and 2. This indicates CH4 

emission tends to increase with ambient temperature and accumulation of manure in 

the deep-pit storage.  

 To date there have been no full-scale emission studies on CH4 emission from 

deep-pit swine finishing operations over a long period of time. There have been a 

few small-scale studies with systems that were manipulated to reflect a deep-pit 

system where manure was stored below slats for the duration of the monitoring 

period. The majority of studies reporting CH4 ER were for shallow-pit systems. 

These studies reported results ranging from 29 to 351 g/d-AU CH4 (Costa and 

Guarino, 2009; Dong et al., 2006; Heussermann et al., 2006; Ni et al., 2008; Osada 

et al., 1998; Sharpe et al., 2001; Zhang et al., 2007) (Table 16). In comparison, CH4 



47 
 

ER from the current study ranged from 325 to 1327 g/d-AU for the Non-DDGS 

regimen and 314 g/d-AU to 792 g/d-AU for the DDGS regimen. The lack of 

published CH4 ER data for a full-scale deep-pit swine finishing operations made it 

difficult to compare the result from the current study. 

 Cumulative emissions of CO2, N2O and CH4 are shown in Table 12. The 

average CO2 emission per pig marketed was 337 kg for the DDGS regimen and 398 

kg for the Non-DDGS regimen. Since there were no N2O emission data for turn 1 

and part of turn 2, the cumulative emissions were based on part of turn 2 with both 

barns emitting similar amounts of 79 g (Non-DDGS) and 75 g (DDGS) per pig 

marketed. Average CH4 emissions per pig marketed were 14 kg and 9.0 kg for the 

Non-DDGS and DDGS regimens, respectively. The CH4 emissions between turns 1 

and turns 2 increased by 13 kg/pig for the Non-DDGS barn and 4 kg/pig for the 

DDGS barn. GHG emissions per AU marketed were: 2350 kg CO2 and 84 kg CH4 for 

the Non-DDGS regimen; and 2095 kg CO2 and 60 kg CH4 for the DDGS regimen.  

 

Conclusions 

 Results from this project indicate that feeding 22% DDGS to wean-to-finish 

pigs in a deep-pit facility does not seem to affect aerial emissions of NH3, H2S, CO2, 

N2O and CH4 gases when compared to a traditional corn-soybean ration (NH3 p-

value = 0.10, H2S p-value = 0.13, CO2 p-value = 0.55, N2O p-value = 0.58, and CH4 

p-value = 0.18). The borderline p-values for the differences between the dietary 

regimens in NH3 and H2S emissions imply that statistical significance may have 
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occurred if more replications had been involved. There were considerable seasonal 

variations in H2S and CH4 emissions (H2S p-value = 0.02, CH4 p-value = 0.04). 

 On average the wean-to-finish pigs fed the traditional corn-soybean diet 

emitted 7.5 ± 4.0 g/d-pig of NH3, 0.37 ± .59 g/d-pig of H2S, 2,127 ± 817 g/d-pig of 

CO2 and 72 ± 65 g/d-pig of CH4. The W-F pigs fed a 22% DDGS ration emitted 8.1 ± 

4.6 g/d-pig of NH3, 0.40 ± .51 g/d-pig of H2S, 1,847 ± 768 g/d-pig of CO2, and 48 ± 

35 g/d-pig of CH4. On the basis of per AU marketed, the gaseous emissions for the 

two dietary regimens were: 8.6 kg NH3, 724 g H2S, 2,350 kg CO2 and 84 kg CH4 for 

the Non-DDGS diet; and 12.2 kg NH3, 777 g H2S, 2,095 kg CO2, and 60 kg CH4 for 

the DDGS diet. 

  There were no noticeable differences in manure compositions between the 

DDGS and Non-DDGS regimens.  
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W-G G-F W-G G-F W-G* G-F*

Turn 1 59 126 2574 1236 7.4, 40 40, 109

Turn 2 49 155 2614 1289 7.2, 27 27, 123

Turn 1 52 139 2375 1121 7.3, 30 30, 116

Turn 2 76 110 2403 1235 6.8, 37 37, 123

# pigs Avg. Pig Wt., kgGrowout Days

* incoming wt, exiting wt

Non-DDGS

DDGS

Table 2. Pig populations and average weight for Non-DDGS and DDGS barns during each 

growing phase for turns 1 and 2 for the monitoring period 
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Table 3. Daily ammonia (NH3) and hydrogen sulfide (H2S) concentrations for each ventilation 

stage for the Non-DDGS barn 

NH3, ppm H2S, ppb

Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

Mean 20.4 15.4 9.78 337 203 139

SD 6.69 6.89 3.87 186 176 96.0

Max 42.1 43.0 25.1 1170 1210 650

Min 7.28 4.10 2.91 90.2 34.0 26.2

SEM 0.52 0.53 0.30 14.5 13.7 7.47

Mean 18.2 15.3 11.4 539 478 304
SD 8.25 8.02 7.66 623 697 453
Max 41.7 52.1 43.2 5139 6570 3680
Min 4.08 4.41 1.46 69.3 24.2 21.6

SEM 0.60 0.58 0.56 45.3 50.7 33.0
Mean 18.9 15.0 10.4 450 347 228
SD 7.85 7.64 6.28 477 533 343
Max 42.1 52.1 43.2 5139 6570 3680
Min 2.92 2.09 1.22 69.3 24.2 21.6

SEM 0.41 0.40 0.33 25.0 27.9 17.9

Turn 1

Turn 2

Average

 

*Stages 1 and 2 are pit fans, and Stage 3 are endwall fans. 

 
Table 4. Daily ammonia (NH3) and hydrogen sulfide (H2S) concentrations for each ventilation 

stage for the DDGS barn 

NH3, ppm H2S, ppb
Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

Mean 23.9 22.6 15.4 400 420 217

SD 7.27 6.20 5.30 327 219 155
Max 41.8 41.7 30.8 1641 1080 1032
Min 3.92 4.42 3.42 48.8 106 22.2

SEM 0.56 0.48 0.41 25.5 17.1 12.1

Mean 17.9 19.8 14.0 684 843 423
SD 10.8 11.1 11.7 735 755 448
Max 48.1 56.3 49.3 3977 6198 3303
Min 5.07 2.16 1.63 3.18 2.94 0.33

SEM 0.78 0.81 0.85 53.5 55.0 32.6
Mean 20.3 20.6 14.3 580 655 332
SD 9.89 9.48 9.33 617 611 357
Max 48.1 56.3 49.3 3977 6198 3303
Min 2.79 1.70 1.31 3.18 2.94 0.33

SEM 0.52 0.49 0.49 32.3 55.0 18.7

Turn 1

Turn 2

Average

*Stages 1 and 2 are pit fans, and Stage 3 are endwall fans. 
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Table 7. Daily ammonia (NH3) and hydrogen sulfide (H2S) emission rates for each turn from the 

Non-DDGS barn 

NH3 H2S NH3 H2S NH3 H2S

Mean 38.6 9.01 0.27 6.70 0.16 51.7 1.61

SD 52.2 4.18 0.13 4.07 0.13 17.5 1.60

Max 293 24.4 0.60 21.4 0.97 100 9.44

Min 5.80 3.48 0.06 1.35 0.00 22.3 0.00

SEM 4.20 0.34 0.01 0.33 0.01 1.41 0.13

Mean 82.4 12.6 1.30 8.25 0.55 108 14.8

SD 77.8 6.51 1.53 3.97 0.76 93.7 35.5

Max 363 39.8 8.89 28.2 5.06 551 241

Min 77.8 0.69 0.01 0.65 0.00 14.1 0.06

SEM 6.00 0.51 0.13 0.31 0.06 7.37 2.79

Mean 61.3 10.5 0.74 7.50 0.37 80.5 8.36

SD 70.1 5.94 1.12 4.08 0.59 73.7 26.2

Max 363 39.8 8.89 28.2 5.06 551 241

Min 5.80 0.69 0.01 0.65 0.00 14.1 0.00

SEM 3.90 0.33 0.06 0.23 0.03 4.15 1.48

Average

kg d-1 barn-1 g d-1 pig-1VR                

(m3 h-1 pig-1)
g d-1 AU-1

Turn 1

Turn 2

 
 
Table 8. Daily ammonia (NH3) and hydrogen sulfide (H2S) emission rates for each turn from the 

DDGS barn 

NH3 H2S NH3 H2S NH3 H2S

Mean 36.1 10.5 0.27 8.50 0.19 74.5 2.39
SD 48.5 5.76 0.13 5.81 0.08 27.8 1.95
Max 263 36.9 0.60 32.9 0.48 187 8.72
Min 4.02 3.12 0.06 1.31 0.05 23.8 0.43

SEM 3.93 0.47 0.01 0.47 0.01 2.26 0.16

Mean 65.0 12.6 1.26 7.63 0.65 115 15.0
SD 55.2 6.72 1.54 2.67 0.67 93.1 27.9
Max 213 36.3 8.89 15.1 3.65 513 219
Min 10.7 2.46 0.01 1.39 0.01 19.4 0.08

SEM 4.82 0.59 0.13 0.23 0.06 8.13 2.43
Mean 49.4 10.7 0.73 8.10 0.40 93.2 12.0
SD 53.5 6.47 1.12 4.64 0.51 69.3 35.8
Max 263 36.9 8.89 32.9 3.65 513 336
Min 4.02 0.80 0.00 1.31 0.01 19.4 0.08

SEM 3.18 0.36 0.06 0.28 0.03 4.11 2.09

Average

Turn 1

Turn 2

kg d-1 barn-1 g d-1 pig-1 g d-1 AU-1VR                 

(m3 h-1 pig-1)
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Table 15: Summary of nitrous oxide (N2O) emission rate from experimental-scale finishing 

swine.  

 
Dong et al. 

(2007)
Exp Ref G-F Non-DDGS DDGS

Season Fall Fall All
Fall and 
Spring

All All

Location China Italy US US

Manure pit type Flush 
System

Slatted floor
Slatted 
Floor

Slatted 
Floor

Manure removal 7 d 60 d Daily c Annual Annual 

Average number of pigs 40 40 66 344 1928 1783

Average pig weight (kg) 59 60 192 c 61 63

Ventilation typea M M N M H H

Building ventilation, m3/h 2080 2138 c c 96,575 84,166

Number of days 56 56 432b 70 384 384

Concentration, ppm c c 0.36 c 0.52 0.53

Specific emission, g d-1 AU-1* 0.88 0.8 0.86 3.3 1.2 3.2

Variable

c information not provided in article

* 1 AU = 500 kg live body w eight

a M = mechanical ventilation  N = natural ventilation 
b12 sample per day for 3 day during six dif ferent months

Osada et al. (1998)

Denmark

Partially Slatted 

This Study (2011) 
Costa and 

Guarino 
(2009)
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CHAPTER 3. GENERAL CONCLUSIONS 

 

 Feeding 22% corn DDGS to growing-finishing swine in a full-slat and deep-pit 

housing system did not seem to affect aerial emissions of ammonia (NH3), hydrogen 

sulfide (H2S), carbon dioxide (CO2), nitrous oxide (N2O), or methane (CH4) when 

compared to a traditional corn-soybean ration (NH3 p-value = 0.10, H2S p-value = 

0.13, CO2 p-value = 0.55, N2O p-value = 0.58, and CH4 p-value = 0.18). There were 

no noticeable differences in manure compositions between the DDGS and the 

traditional rations. The lack of statistical significance could have resulted from the 

insufficient replications of the treatments. It was also found that both barns 

experienced considerable seasonal variations in H2S and CH4 emissions (H2S p-

value = 0.02, CH4 p-value = 0.07).  

 On average the wean-to-finish pigs fed the traditional corn-soybean diet 

emitted 7.5 ± 4.0 g/d-pig of NH3, 0.37 ± .59 g/d-pig of H2S, 2,127 ± 817 g/d-pig of 

CO2 and 72 ± 65 g/d-pig of CH4. The W-F pigs fed a 22% DDGS ration emitted 8.1 ± 

4.6 g/d-pig of NH3, 0.40 ± .51 g/d-pig of H2S, 1,847 ± 768 g/d-pig of CO2, and 48 ± 

35 g/d-pig of CH4. These emission rates, except for CH4, were comparable to those 

reported by a few other studies that had monitored full-scale deep-pit swine finishing 

barns in the US and abroad. There were no comparable studies for CH4 emissions 

from deep-pit swine facilities.  

 Gaseous emissions per pig marketed were 1,420 g NH3, 71 g H2S, 398 kg 

CO2, and 14 kg CH4, respectively for the traditional corn-soybean ration and 1,499 g 

NH3, 78 g H2S, 337 kg CO2, and 9.0 kg CH4, respectively for the 22% DDGS ration. 
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On the basis of kg gas emission per AU marketed, the values were 8.7 NH3, 0.724 

H2S, 2350 CO2 and 84 CH4 for the Non-DDGS regimen; and 12 NH3, 0.777 H2S, 

2095 CO2, and 60 CH4 for the DDGS regimen. 

 These data will help swine producers to estimate emissions from their 

facilities when feeding a traditional corn-soybean ration or a ration containing 22% 

corn DDGS.   

  Future Research Recommendations 

1. It is clear from the amount of published data available that more studies 

are needed to look at GHG and H2S emissions from full-scale swine 

growing-finishing operations.  

2. If possible, more replications should be considered to further determine 

the impact of feeding corn DDGS on aerial emissions from finishing swine 

facilities through long-term field-scale monitoring.  

3. With the price of corn continuing to increase there is also a need to 

determine the impact of higher inclusion rates of corn DDGS on aerial 

emission from full-scale swine operations. 
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