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ABSTRACT 

 Runoff from open feedlots has the potential to cause degradation of surface 

and groundwater if handled improperly. Due to this pollution potential, the United 

State Environmental Protection Agency (US EPA) regulates runoff control systems 

on concentrated animal feeding operation (CAFO) sized feedlots. For the first time, 

the 2003 effluent limitation guidelines allowed consideration of alternative manure 

treatment systems for National Pollutant Discharge Elimination System (NPDES) 

permitted CAFO operations. Concentrated animal feeding operations that utilize 

alternative manure treatment systems under an NPDES permit are required to 

demonstrate, through modeling, that their alternative runoff control system had an 

equal or lesser nutrient mass release than a conventional manure management 

system would. This permitting requirement renewed interest in the modeling of 

traditional containment systems and generated interest in modeling “alternative 

technology” systems. One possible “alternative technology” systems being 

considered are vegetative treatment systems (VTS). A VTS is defined as a runoff 

control system that uses a series of treatment components, at least one of which 

uses vegetation, to treat open lot runoff. In particular, much of the VTS research thus 

far has focused on vegetative treatment areas (VTA’s). A VTA is an area planted to 

permanent vegetation that reduces pollutant transport via sedimentation, filtration, 

and infiltration of the feedlot runoff. This modeling requirement led to the 

development of the Iowa State University (ISU) – Effluent Limitations Guidelines 

(ELG) model and the ISU – VTA model, which predict the performance of traditional 

containment systems and of vegetative treatment area systems, respectively. 

 This thesis reviews the accuracy of the ISU-ELG model by comparing the 

modeled runoff control performance of a traditional containment system to that 

predicted by the Soil-Plant-Air-Water (SPAW) model. Specifically, the criterion used 

to determine if a particular day is a “dewatering day,” i.e., suitable for land 

application of basin effluent, is investigated to determine its effect on basin 

performance, with the objective of verifying that the ISU-ELG model is providing a 

reasonable prediction of the runoff control provided by a containment basin in Iowa. 
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The ISU-ELG model is based on a model developed by Koelliker et al. (1975) to 

predict the performance of a holding basin at controlling feedlot runoff and uses a 

set of general criteria to determine if land application is acceptable, while the SPAW 

model uses a soil moisture criterion to determine if conditions are acceptable for 

land application. The results show that the ISU-ELG model over-predicts 

performance of traditional containment systems in comparison to the SPAW model 

at all five Iowa locations investigated. For wetter areas in Iowa, the number of drying 

days has a large affect on basin performance, whereas for the drier northwest region 

of Iowa this affect is limited. Possible methods of improving the ISU-ELG model 

predictions include adding a soil moisture accounting function to model moisture 

levels in the land application area or calibrating the number of drying days required 

before land application can commence. 

 In addition to modeling traditional containment systems, this thesis also 

examines possible methods of modeling VTA’s, as previous research has shown 

that the ISU-VTA model greatly over-predicts VTA performance. In this study, two 

different approaches, both using the SPAW model, were investigated to determine 

their ability to predict hydraulic performance of the vegetative treatment areas 

(VTA’s). Three of the four locations used in this study had a high water table; this 

water table elevation limited the space available in the soil profile to infiltrate and 

store water. For these locations, the performance of the VTA was limited by the 

storage available in the soil profile and SPAW simulations provided a realistic 

prediction of the monitored results. Modeling results verified that for these locations 

VTA performance was limited by the space available in the soil profile. Modeling 

statistics were calculated to determine the model’s ability to predict VTA 

performance. For the four locations investigated, Nash-Sutcliffe efficiencies ranged 

from 0.45 to 0.99 while the percent bias of the model ranged from -3% to 100%. The 

results show that the SPAW pond module can be used to determine if VTA 

performance will be limited by presence of a high water table. Additionally, these 

methods provided insight into possible modifications to improve the performance of 

the ISU-VTA model.
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CHAPTER 1. GENERAL INTRODUCTION 

Introduction 

 Runoff from open lot animal feeding operations has long been recognized as 

a potential pollutant to receiving surface waters, as this effluent is known to contain 

nutrients such as nitrogen and phosphorus, as well as other potential pollutants such 

as organic matter, solids, and pathogens. In 1972, Congress passed the Clean 

Water Act, which authorized the Environmental Protection Agency (EPA) to develop 

regulations for the maintenance of water quality throughout the United States. This 

led to classification of feedlot runoff as a potential point source pollutant; as a result, 

feedlots were required to implement management practices to minimize the risk of 

the runoff effluent reaching surface waters. Specifically a set of standards, the 

feedlot Effluent Limitation Guidelines (ELG’s), were developed. The ELG’s contained 

specific guidelines detailing the level of runoff control required of all Concentrated 

Animal Feeding Operation (CAFO) sized operations. A CAFO was defined as a 

facility with more than 1,000 animal units (AU) for at least 45 days a year kept on 

areas without permanent vegetation (Federal Register, 2003). In addition, medium 

and small operations can also be classified as CAFO’s if the facility discharges 

directly to a water of the United States, discharges through a manmade conveyance 

to a water of the United States, or if the facility is deemed a “significant pollution 

contributor” (Sweeten et al., 2003). The size required for an operation to be deemed 

a CAFO is shown in Table 1. Although non-CAFO operations are not required to 

meet the standards specified in the ELG’s, they are required to meet any state 

regulations. 

 
Table 1. CAFO sizes for different animal types from Federal Register (2003). 

Animal Type Large Medium Small 
Cattle or Cow/Calf Pair 1,000 or more 300-999 1-299 

Mature Dairy 700 or more 200-699 1-199 
Veal Calves 1,000 or more 300-999 1-299 

Swine (over 25 kg) 2,500 or more 750-2499 1-749 
Swine (less than 25 kg) 10,000 or more 3,000-9,999 1-2,999 
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All facilities designated as CAFO’s are required to apply for a National 

Pollutant Discharge Elimination System (NPDES) permit. This permit requires the 

producers to have no discharge from the feedlot or effluent control system except 

under the terms of the permit. As a minimum performance level, the NPDES permit 

requires all manure, wastewater, and process generated effluent be contained; in 

addition the runoff control facility must contain all runoff generated from the feedlot 

area by the 25-year, 24-hour storm (Federal Register, 2003). Traditionally, this 

required a holding pond be used to catch and contain all the runoff effluent. This 

effluent was then land applied as a final means of disposal. However, recently the 

ELG’s were updated to allow the use of alternative runoff control options that are 

capable of providing performance equivalent to that provided by a traditional 

containment basin runoff control system. Current regulations require producers 

wishing to utilize an alternative waste control system to perform site-specific 

modeling of the performance of both a traditional containment system and the 

proposed alternative treatment system. This alternative treatment option has 

renewed interest in modeling the performance of both traditional containment 

systems as well as alternative treatment technologies. 

Vegetative treatment systems have been identified as one possible 

alternative control system that could be used to treat feedlot runoff. Koelsch et al. 

(2006) defined a vegetative treatment system (VTS) as a combination of 

components, at least one of which uses vegetation, to manage and treat open lot 

runoff. Thus far, research has primarily focused on two different vegetative treatment 

components, these being vegetative treatment areas (VTA’s) and vegetative 

infiltration basins (VIB’s). A VTA is an area planted and maintained to dense 

vegetation for the purpose of treating runoff effluent (Moody et al., 2006). Typically, 

this area is flat in one dimension (width) with a slight slope (less than 5%) in the 

other dimension (length). The system is operated by releasing runoff effluent evenly 

along the top of the treatment area and allowing the effluent to flow down the length 

of the slope (Moody et al., 2006). The effluent is treated by both filtration as effluent 

flows through the vegetation and via infiltration as water enters the soil profile. Gross 
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and Henry (2007) developed a modification to the VTA in which sprinklers are 

utilized to evenly apply the effluent to the treatment area. 

A VIB is a flat area surrounded by berms with tile lines approximately four feet 

below the surface (Moody et al., 2006). Again, this area is planted to permanent 

vegetation. In this case, all the effluent is treated via infiltration into the soil profile. 

The tile lines intercept the effluent infiltrating through the soil profile; this effluent is 

then sent to an additional treatment component, usually a VTA. 

In addition to the modeling requirement for CAFO operations wishing to utilize 

alternative treatment technologies, modeling also plays a key role in designing runoff 

control systems. Previously Wulf and Lorimor (2005) developed three models to aid 

producers in designing both traditional containment runoff control systems and 

vegetative treatment systems. These models include the Iowa State University – 

Effluent Limitations Guideline Model (ISU-ELG Model), the Iowa State University – 

Vegetative Treatment Area Model (ISU-VTA Model), and the Iowa State University – 

Vegetative Infiltration Basin / Vegetative Treatment Area Model (ISU-VIB/VTA 

Model). These models were utilized in designing and permitting VTS systems 

throughout the state of Iowa, specifically six VTS systems designated as “pilot 

systems.” These six locations have been monitored by Iowa State University for 

approximately two years, with a third year of monitoring currently being conducted. 

Moody et al. (2006) and Khanijo (2008) provide descriptions of the monitoring 

methodologies use to determine the performance of the vegetative treatment 

systems. This monitoring has provided the data necessary to validate both the ISU-

VTA and the ISU-VIB/VTA models. Khanijo et al. (2007) reported that both of these 

models over-predicted the performance of the VTS in comparison to the 

performance monitored under actual field conditions. Based on these results it was 

determined that further review and modification of the ISU models was required to 

improve model performance. 



 4

Objectives 

 The objectives of this research focus on modeling both traditional 

containment systems as well as vegetative treatment system for control of open lot 

runoff under Iowa conditions. These models serve as both a permitting tool for runoff 

control systems on CAFO sized operations as well as a design tool for operations of 

all sizes. Thus, it is essential that these tools be further developed so that they 

provide realistic simulations of the waste control systems. 

The objectives of this study are: 

1. Evaluate the ISU-ELG Model’s ability to predict the runoff control performance of 

a containment basin receiving open lot runoff under Iowa climatic and 

hydrological conditions. 

2. Determine the ability of the Soil-Plant-Air-Water (SPAW) model to serve as a tool 

for the design and evaluation of vegetative treatment areas. 

3. Based on the SPAW model results develop design and siting recommendations 

for vegetative treatment systems. 

Thesis Organization 

 The research presented in this thesis is comprised of two papers, each 

corresponding to specific research objectives. The first paper entitled “Comparison 

of the Iowa State University – Effluent Limitation Guidelines Model with the Soil-

Plant-Air Water Model to Describe Holding Basin Performance” has been submitted 

to the Transactions of the ASABE. The second paper, “The Use of the Soil-Plant-Air-

Water Model to Predict Hydraulic Performance of a Vegetative Treatment Areas for 

Controlling Open Lot Runoff” will be submitted to Transactions of the ASABE 

Literature Review 

 The beef industry is an important part of the state economy of Iowa, 

representing one of the states major economic activities (Lawrence et al., 2006). For 

example, in 2005, over $2.4 billion in cattle sales was reported; furthermore, it is 

estimated that the cattle industry contributed $5.1 billion to the Iowa economy (Iowa 
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Beef Industry Council, 2007) with approximately one million head of cattle on feed 

(Lawrence and Otto, 2006). Thus, the cattle feeding industry plays an important role 

in adding value to the agricultural products of Iowa. 

Feedlots in Iowa typically utilize one of five designs: an earthen lot with 

windbreaks, an earthen lot with a shed, a concrete lot with a shed, a confinement 

building with a solid floor, or a confinement building with a slatted floor (Lawrence et 

al., 2006). Obviously, the choice of feedlot design has a large effect on the type of 

manure and waste management system that can best be utilized. For example, in a 

solid-floor confinement building, the floor is bedded and all manure is handled as a 

solid manure-bedding pack, where as for a slotted-floor confinement building the 

manure falls through the floor and into a storage pit where it is handled as manure 

slurry. Open feedlots must deal with waste in both solid and liquid form. The solid 

manure is a result of animal defecation on the feedlot surface and is collected on a 

periodic basis, while liquid waste is generated when rainfall that falls directly onto the 

feedlot surface is of sufficient size to cause a runoff event. Thus, no matter what 

feedlot design is selected, some form of manure management system is required. 

Usually, the manure is utilized as a source of nutrients for crop production. 

For larger feedlot operations, this requires development of a nutrient 

management plan that describes the timing, rate, and method with which manure 

application should occur. The rate of manure application has traditionally been 

determined on a nitrogen basis, although recently many states have initiated a 

phosphorus index to determine if the amount phosphorus applied should limit the 

application rate. Although land disposal works well for manures with a high nutrient 

concentration to volume ratio, for relatively dilute nutrient sources land application is 

not as economical due to the cost associated with transport of the waste to land 

application areas. Thus, although land application of solids and manure slurry is 

economically justifiable, the costs associated with handling more dilute nutrient 

sources such feedlot runoff quickly escalates. 

Event though feedlot runoff is a relatively dilute source of nutrients as 

compared to solid waste, it still contains nutrients such as phosphorus and nitrogen, 
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as well as solids, organic matter, and pathogens (Blume, 2006) in sufficient 

quantities that it would be a source of pollution if released to surface waters. As 

such, producers of all sizes are facing greater pressures to be proactive in their 

approaches to managing feedlot runoff. For instance, CAFO sized operations are 

required to apply for and meet the requirements of a National Pollution Discharge 

Elimination System (NPDES) permit if they discharge. Specifically, this permit 

requires that the waste management system be designed and operated to prevent 

release of any manure, wastewater, or runoff effluent except from storms in excess 

of the 25-year, 24-hour event (Melvin, 2007). Although smaller lots are not yet facing 

these strict regulations, these lots are still interested in technologies that lessen their 

pollution potential (Blume, 2006). Murphy and Harner (2001) discuss several 

different types of runoff control systems for open lots of all sizes; these include 

containment systems and vegetative treatment systems. Examples of containment 

systems include lagoons, holding ponds, and evaporation ponds, while examples of 

vegetative systems include wetlands, infiltration areas, and grass filters. 

Furthermore, Hanna et al. (2007) state that as a minimum level of control all open 

lots are recommended to have a settling basin. 

When considering what manure management system to implement, several 

factors need to be considered, these include state and national regulations, the 

number of animal units on the facility, the pollution potential of the lot (i.e. the 

proximity to ground and surface water), the climate of the region, and the level of 

management desired. In addition to these factors, the overall economics of the 

waste management system are of extreme importance and often become the driving 

factor for system selection. 

Thus, although all feedlot designs and management options should be 

considered when planning for a particular feedlot, this thesis focuses specifically on 

modeling the performance of manure management systems designed to control 

runoff from open feedlots. The process of modeling and understanding the 

performance of these manure management systems can be broken down into 

several components. First, both the amount and quality of the feedlot runoff must be 
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determined. These values are important as they provide information on how much 

effluent must be handled and as well as any limitations on how the effluent must be 

handled. From here, the hydrology of the runoff control system becomes of upmost 

importance, as the first step in modeling these systems is to determine the amount 

and rate at which effluent is moving through the system. After these processes have 

been determined, the change in pollutant content as the effluent travels through 

each treatment component can then be predicted. The literature review is broken 

down by first looking at the quality and quantity of runoff from the feedlot surface and 

then is followed by available information on different treatment components typically 

used in controlling feedlot runoff. 

Feedlot Runoff Quality and Quantity 

Design of runoff control systems for open feedlots requires an understanding 

of both the expected amount of runoff effluent and the chemical and physical 

properties of this effluent. An understanding of these properties provides the primary 

information necessary to design effective waste management systems as well as the 

information necessary to predict how the effluent is modified, both in volume as well 

as in quality, by different treatment components. Specifically, an understanding of 

the physical properties of the runoff effluent is required to develop sedimentation 

techniques for improving runoff quality, while an understanding of chemical 

properties is required to determine the affect different treatment options will have on 

the nutrient content in the runoff effluent. 

Several different approaches have been used to determine the properties of 

runoff effluent. These include sampling effluent that was running off the feedlot 

surface (Gilbertson and Nienaber, 1973), sampling fresh feces to determine particle 

size distributions (Chang and Rible, 1975), sampling fresh feces and manure from 

feedlot pens to determine settling velocities of the manure particles (Lott et al., 

1994), and determining the effects that different solids concentrations have on the 

settling velocity of manures particles (Moore et al., 1975). In addition to these 

studies, which focused primarily on the physical properties of the feedlot runoff, 

many other studies have focused on the chemical properties of the feedlot runoff 
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(Woodbury et al., 2003; Lorimor et al., 2005; Miner et al., 1980; Westerman and 

Overcash, 1980; Clark et al., 1975). A summary of the chemical properties typical of 

feedlot runoff is provided in Table 2. As can be seen there is a large variability in 

most of the properties with standard deviations being approximately half the average 

reported concentration. Although these data are quite variable, they still provide 

reasonable values that can be expected for feedlot runoff. Of note are total solids 

concentrations ranging from 3,000 mg/L to 17,500 mg/L and chemical oxygen 

demands of approximately 2,000 to 18,000 mg/L. This data set shows a correlation 

between the total solids concentration and COD concentration. This correlation is 

shown in Figure 1. This would seem to indicate approximately a one-to-one 

correspondence between the chemical oxygen demand and volatile solids, with the 

offset presumably from dissolved solids in the effluent, which do not contribute to the 

chemical oxygen demand.  

 
Table 2. Summary chemical properties of feedlot runoff effluent from different facilities. 

Location 
Total Solids 

mg/L 
COD 
mg/L 

Total-N 
mg/L 

TKN 
mg/L 

Total-P 
mg/L 

EC 
mmhos/cm 

Bellville, TXa 9,000 4,000 85 -- 85 -- 
Bushland, TXa 15,000 15,700 1,080 -- 205 8 
Ft. Collins, COa 17,500 17,800 -- -- 93 9 
McKinney, TXa 11,430 7,210 -- -- 69 7 

Mead, NEa 15,200 3,100 -- -- 300 3 
Pratt, KSa 7,500 5,000 -- -- 50 5 

Sioux Falls, SDa 2,990 2,160 -- -- 47 -- 
Clay Center, NEb 4,801 4,770 -- -- -- -- 

Boone, IAc 11,200 -- -- 440 18 -- 
Ohiod 17,100 19,900 -- 741 118 -- 

Ames, IAe 3,341 -- -- 221 79 -- 
Average 10,460 8,849 583 467 106 6 

Standard Deviation 5,363 6,934 704 261 85 2 
Coefficient of Variation 0.51 0.78 1.21 0.56 0.84 0.35 

 

                                            
a From Clark et al. (1975) 
b From Woodbury et al. (2003) 
c From Lorimor et al. (2005) 
d From Edwards et al. (1986) 
e From Lorimor et al. (2003) 
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Figure 1. Correlation between the COD concentration and the total solids concentration. 

 

In addition to the between farm variability of chemical properties of the feedlot 

runoff show in Table 2, the data sets of Woodbury et al. (2003) and Lorimor et al. 

(2005) allow the assessment of the on farm variability of feedlot runoff chemical 

properties. The maximum, minimum, average, and standard deviation for the data 

sets is displayed in Table 3. As can be seen, the chemical properties were again 

quite variable, more so for the Lorimor et al. (2005) data set than the Woodbury et 

al. (2003)set. Based on the Woodbury et al. (2003) data set, both suspended and 

fixed solids, as well as the chemical oxygen demand all had coefficients of variation 

of approximately 0.5. The Lorimor et al. (2005) data showed substantially more 

variation in the transport of total solids with the coefficient of variability for total solids 

of 0.8 and for total Kjeldahl nitrogen of 1.65. Based on this data, it would appear that 

the variability of chemical properties between farms is equal to or less than the 

variability of the chemical properties of the effluent from different runoff events on a 

single farm. A similar finding was reported by Sweeten (1990) for runoff effluent from 

Texas feedlots that was stored in holding ponds. In this study, Sweeten reported 

chemical concentrations in the holding ponds varied widely between feedlots as well 

as temporally on a given feedlot. 
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Table 3. Summary of variability of chemical properties of feedlot runoff from different runoff 
events on two different facilities. 

Woodbury et al. (2003)  Lorimor et al. (2005) 

 TSS 
mg/L 

VS 
mg/L 

COD 
mg/L  Total Solids 

mg/L 
TKN 
mg/L 

P 
mg/L 

K 
mg/L 

Minimum 1,900 370 790  3,300 74 66 378 

Maximum 8,500 3,390 7,920  25,000 1,730 92 570 

Average 4,689 1,415 4,770  11,200 440 79 474 

Standard Deviation 2,154 761 2,463  9,000 724 18 136 

Coefficient of Variation 0.46 0.54 0.52  0.80 1.65 0.23 0.29 

 

Several authors have reported runoff quality variation as a function of feedlot 

hydrology (Koelliker et al., 1975; Gilbertson et al., 1975; Clark, 1975). This variation 

in runoff quality is reported to be due to the ration feed, the type of feedlot surface, 

the climate, the antecedent moisture conditions of the feedlot surface, and the storm 

intensity and duration. However, few correlations are available to predict quality 

based on these variables (Sweeten, 1990). 

In addition to the chemical properties of the runoff effluent, which are 

important for determining the appropriate application rates for crop use, the physical 

properties of the effluent have also been studied. These physical properties are 

important for determining the effectiveness of sedimentation techniques at improving 

effluent quality. Gilbertson and Nienaber (1973) performed one of the earliest 

studies on the physical properties of runoff effluent. In these studies, automatic 

samplers were used to collect runoff from feedlots and from the effluent discharged 

from a settling basin. This allowed Gilbertson and Nienaber (1972, 1973) to directly 

calculate the effectiveness of the settling basin. The runoff effluent and settling basin 

effluent was tested for total solids, volatile solids, and settleable solids. The 

measured concentrations are presented in Table 4. As can be seen, approximately 

half of the transported solids were volatile and the other half were fixed solids. In this 

case, the solids transport data was less variable with coefficients of variation of 

approximately 0.4. 
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Table 4. Solids concentrations in feedlot runoff as presented by Gilbertson and Nienaber 
(1973). 

  Average 
(mg/L) 

St. Dev. 
(mg/L) 

Coefficient of 
Variation Range 

Total Solids 15,200 5,300 0.35 6,600 – 33,000 
Fixed Solids 8,400 3,500 0.42 2,600 – 22,100 

Volatile Solids 6,800 2,700 0.40 3,600 – 16,800 
 

 Gilbertson and Nienaber (1973) also determined the volume of settleable 

solids in the runoff effluent. Settleable solids were measured by putting the effluent 

in Imhoff cones and allowing sedimentation to occur for 1 day. The interface layer 

between the solids and liquids was determined; the volume of the settleable solids 

was then calculated as the volume of the Imhoff cone below this layer. A summary of 

the settleable solids in the runoff is provided in Table 5. 

 
Table 5. Settleable solids concentration in feedlot runoff as presented by Gilbertson and 

Nienaber (1973). 

Year Average St. Dev. 
  mL/L mL/L 

1970 49 19 
1971 79 46 
1972 60 20 

 

Gilbertson and Nienaber (1973) performed a second study in which they 

determined particle densities of the solids in the feedlot runoff. In this study, 

Gilbertson and Nienaber (1973) collected feedlot runoff during rainfall events. The 

runoff effluent was then through a series of screens to separate the solids into 

different groups based on the particle size. A subsample from each particle size 

range was selected, a balance was used to measure the mass of the subsample and 

a pycnometer was used to determine the volume of the subsample. Knowing both 

the mass of the subsample and the volume of the subsample allowed calculation of 

particle density. 

Particle density information is required to determine settling times based on 

Stokes Law. In their study, they found that the average particle density in the runoff 

effluent was 1.95 ± 0.18 g/cm3; in addition, they performed an analysis of how 
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particle density varied with particle size. Their findings indicate that as particle size 

decreases, particle density increases while the volatile solids content decreased. 

This would indicate that most of the organic matter transported in the feedlot runoff 

is attached to the larger particles, i.e., it is in an aggregated form. Table 6 displays 

how the particle density varied with particle size in the feedlot runoff. As can be 

seen, there is a notable decrease in particle density for particles larger than 250 

microns, while the two particle classes below this size exhibited little variability with 

particle size. Furthermore, since the chemical oxygen demand is strongly correlated 

with organic matter these data would indicate that sedimentation can be effectively 

used to reduce the chemical oxygen demand of the waste by removing the larger 

particles. To take full advantage of this information the chemical properties of these 

particles also need to be known; unfortunately, Gilbertson and Nienaber did not 

measure nutrient contents for different particles in this study.  

 
Table 6. Chart displaying particle densities for different particle sizes in feedlot runoff from 

Gilbertson and Nienaber (1973). 

Particle Size 
(microns) 

Particle Density 
(g/cm3) 

< 37 2.38 
105 - 249 2.34 
250 - 499 1.96 
500 - 999 1.77 

  

Chang and Rible (1975) presented a similar study on feces from beef cattle. 

In their study, they analyzed the particle sizes present in the manure, the percent of 

the manure in this particle size range, and the nutrient content of each particle size. 

In their study, Chang and Rible provided the percent nitrogen, phosphorus, and 

crude fiber for each particle size range. For this analysis, COD was determined by 

assuming all crude fiber was organic carbon and then dividing by a factor of 2.67. 

This conversion factor was determined by taking the ratio of COD to organic carbon 

from AgNPS (Young et al., 1987; Tolle, 2007). This information is displayed in Table 

7 below and is important for estimating the properties of the waste after it has 

undergone sedimentation. In general, it can be seen that crude fiber, and therefore 
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presumably COD, is of greater concentration on larger particles, while nitrogen and 

phosphorus are more prevalent on smaller particles. Thus, the crude fiber/COD data 

seems to correspond with that presented by Gilbertson and Nienaber (1973) that 

most of the volatile solids are aggregated. Furthermore, this data indicates that 

sedimentation can be used to effectively reduce the strength, i.e. the chemical 

oxygen demand, of the waste. Furthermore, sedimentation will have some effect on 

the nitrogen and phosphorus concentrations in the effluent; however, this effect will 

be limited in comparison to that of sedimentation on COD concentrations. 

 
Table 7. Nutrient contents for different particle sizes in beef cattle feces from Chang and Rible 

(1975). 

Particle Size 

(mm) 
Percent of Total Manure 

N 

(%) 

P 

(%) 

Crude Fiber 

(%) 

CODf 

(%) 

> 1.00 30.7 1.7 0.83 43.7 16.3 

0.50 – 1.00 9 2.2 0.39 58.7 21.9 

0.25 – 0.50 6.7 2.5 0.41 32.8 12.2 

0.105 – 0.25 6.1 2.7 0.73 27.6 10.2 

0.053 – 0.105 3.6 2.8 * 16.6 6.2 

< 0.053 43.6 4.9 1.42 10.2 3.8 

   

Gilbertson and Nienaber (1973) also provided data on the settling of total 

solids and volatile solids from the feedlot runoff. These settling characteristics were 

determined by placing the runoff effluent into a 1-L cylinder and then sampling the 

effluent at a depth of 10 cm below the liquid surface at specified time intervals. The 

total solids and volatile solids content of the subsample was then determined. A 

graphical display of the settling characteristics is shown in Figure 2. As can be seen, 

the initial settling rate up to a time of approximately 1-hour is very rapid; however, 

after this the rate of settling greatly decreases. 

                                            
f Determined by dividing the Crude Fiber percentage by a factor of 2.67 based on the COD to organic carbon 

ratio in AgNPS. 
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Figure 2. Settling characteristics of solids in beef feedlot runoff. 

 

Lot et al. (1994) performed a similar study on fresh beef feces and aged feces 

from a feedlot surface. In their analysis, Lot et al. related settling times to the 

percentage of material remaining in suspension by fitting a hyperbola to the settling 

data. Based on this study Lot et al. concluded that a settling time of ten minutes 

would remove the rapidly settleable portion of solids in the feedlot runoff; 

furthermore, he stated that longer retention times provide very little improvement in 

runoff quality. To explain this phenomenon Lot et al. noted that the runoff consisted 

of two types of particles, a coarse material that would rapidly settle and another 

component, approximately 25 -55% of the solids, that settles too slowly to be 

retained in a settling basin. Based on this study Lot et al. (1994) suggested that this 

drastic change in settling rate occurs for particles that settle slower than 0.003 

meters per second. Lot et al. (1994) also noted that diet had a large effect on the 

settling properties of the feces and that there was little difference between the 

settling characteristics of the fresh manure and aged feces collected from the feedlot 

surface. 

In addition to the study of runoff quality, several efforts have been made to 

quantify the amount of effluent resulting from different sized precipitation events. 

Gilbertson et al. (1972) proposed a regression equation to determine the depth of 

runoff from the feedlot surface. The equation is designed for rainfall events, and 
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does not represent snowmelt from the feedlot. This equation is shown as equation 

(1). 

58.028.0  PR           (1) 

Where P is the depth of rainfall in inches and R is the depth of runoff also given in 

inches. Many other rainfall relationships have been proposed with regression slopes 

ranging from 0.36 to 0.93 per unit of precipitation with no runoff occurring until 1 cm 

of precipitation has fallen on the feedlot surface (Westerman and Overcash, 1980). 

Furthermore, Clark et al. (1975) proposed that this slope is proportional to the to the 

moisture deficit, with higher moisture deficits corresponding to a lower slopes of the 

regression line.  

An alternative model, utilizing the Soil Conservation Service/ Natural 

Resource Conservation Service (SCS/NRCS) curve number (CN) method was 

utilized by Koelliker et al. (1975) to predict the quantity of runoff from feedlots. 

Koelliker et al. (1975) state that unpaved feedlots can be represented with a curve 

number of 91 for antecedent moisture conditions (AMC) II and with 97 for 

antecedent moisture conditions III. For paved feedlots, a curve number of 94 was 

recommended for AMC II, while a value of 98 was used for AMC III. The model 

utilized by Koelliker et al. (1975) is displayed in equation (2). In equation (2) P is 

again the depth of rainfall in inches, R is the depth of runoff in inches, and S is a soil 

retention factor which will also have units of inches. This soil retention factor is 

calculated based on the curve number, with the appropriate equation provided as 

equation (3). A comparison of the two models results is provided in Figure 3. 
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Figure 3. Comparison of feedlot runoff predictions based Gilbertson et al. model and use of 

the SCS/NRCS curve number prediction. 

 

 As can be seen, there is relatively little difference between the liner model 

proposed by Gilbertson et al. (1972) and the SCS CN model recommended and 

used by Koelliker et al. (1975), particularly over the range of data used by Gilbertson 

et al. (1972)in developing their correlation. However, for storm sizes larger than 

three inches the two models quickly diverge from each other. The regression 

equation of Gilbertson et al. (1972) substantially under predicts the amount of runoff 

in comparison to the SCS/NRCS model. 

 In addition to rainfall runoff from feedlots, in some areas snowmelt runoff also 

may be of concern. Unfortunately, little information was found on measurements of 

snowmelt runoff; however, limited data on the quality of the snowmelt runoff were 

available. Gilbertson et al. (1980) reported that snowmelt runoff often occurred as 

lava-type flow and had higher solids content, approaching values up to 218,000 

mg/L. A summary of snowmelt runoff properties as reported by Gilbertson et al. 

(1980) can be found in Table 8. 
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Table 8. Summary of nutrient concentrations measured in feedlot snowmelt runoff (Gilbertson 
et al., 1980). 

 Total Solids Volatile Solids Total N Total P pH COD 
  mg/L mg/L mg/L mg/L   mg/L 

Low 8,000 600 190 5 4.1 14,100 
High 218,000 143,000 6,528 917 9.0 77,100 

  

The final issue in dealing of concern when looking at feedlot runoff would be 

the expected amount of runoff effluent that must be treated on a yearly basis. This 

can be determined by using the SCS curve number model proposed by Koelliker et 

al. (1975) on a continuous basis. Table 9 shows the result of this analysis for several 

locations in Iowa. As can be seen the amount of feedlot runoff ranges from 3,522 

cubic meters per hectare in the wettest region down to only 1,957 cubic meters per 

hectare of feedlot in the drier regions. The data seems to indicate that for most of 

Iowa the runoff volume will be approximately 3,000 cubic meters per hectare of 

feedlot, which is between 6.3 and 7 cubic meters per head assuming between 225 

and 250 square feet of area per animal (Lawrence, 2005). Also of note, runoff is 

about 35% of the rainfall received in that area; however, for drier regions the 

percentage decreases as seen from the Waterloo and Sioux City data.  

 
Table 9. Average runoff volumes per hectare of feedlot surface of five locations in Iowa. 

  Precipitation 
cm 

Runoff 
cm 

Runoff as % 
of Rainfall 

Runoff Volume 
m3/ha 

Average 89 32 35 3,174 Ames 
St. Dev. 23 13 6 1,250 
Average 92 35 35 3,522 Red Oak 
St. Dev. 22 14 7 1,382 
Average 85 30 35 3,019 Sac City 
St. Dev. 20 10 5 1,036 
Average 67 20 29 1,957 Sioux City 
St. Dev. 14 7 5 667 
Average 84 27 32 2,740 Waterloo 
St. Dev. 18 10 6 1,028 

 

In addition to the overall volume of effluent that must be treated, the temporal 

distribution of this effluent is also important. The temporal distribution of feedlot 



 18

runoff from Ames, Iowa is presented in Figure 4. Almost 80% of the entire runoff 

volume occurs between April and November, i.e., during the typical growing season. 
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Figure 4. Temporal distribution of feedlot runoff from Ames, Iowa. 

Solids Settling Systems 

 A settling system of some type is often the first component in a runoff control 

system. There are several options available for settling systems; these include 

settling basins, settling benches, debris basins, terrace systems, or even natural 

depression areas. In general, the settling system intercepts the feedlot runoff, slows 

the flow rate, and allows the solids to settle from the effluent. Thus, the settling 

system performs two important functions; it attenuates the runoff hydrograph and 

reduces the mass of organic material and nutrients entering the secondary treatment 

component. Attenuating the runoff hydrograph serves two functions, it reduces the 

peak inflow rate to secondary treatment components and elongates the time period 

over which the event occurs. Both of these functions make the runoff event easier to 

control. Furthermore, reduction in organic loading reduces the oxygen demand and 

nutrient concentration lightens the demand on the secondary treatment component. 

Thus, proper design and operation of the settling system is important to ensure that 

the entire runoff control system is successful. 
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 Current Iowa regulations require feedlot operations of all sizes to have at a 

minimum, a solids settling facility. There are several possible designs for the settling 

facility with examples being settling basins, terraces, diversions, or natural areas; 

however, no mater the type of settling facility is utilized, certain design criteria must 

be met. Current Iowa design standards include that: 

 The basins must be, at a minimum, designed to settle solids from feedlot 

runoff from a 1-hour, 10-year storm. 

 Liquid velocity in the basin must be reduced to less than 0.5 feet per second 

(fps) for at least five minutes. 

 At a minimum, the settling basins must have one square foot of surface area 

for every eight cubic feet of runoff per hour from the feedlot. The amount of 

runoff per hour is based on the 1-hour, 10-year storm. 

 Basins must include adequate capacity to store the settled solids between 

cleanouts. 

In addition to these design requirements, Blume (2006) made several 

recommendations about the use of sedimentation basins on vegetative treatment 

systems. These include having the capacity to store the annual sediment yield from 

the feedlot surface, being designed to facilitate maintenance and sediment removal, 

and provide controlled outflow onto the vegetative treatment area. These 

suggestions play a key role in the long term success of the settling system. 

Specifically, by including the capacity to store the annual sediment yield within the 

sediment basin the design will function as intended even as solids accumulate. If this 

volume was not considered during system design the performance of the basin 

could degrade as capacity, and therefore most likely retention time, is reduced. 

Furthermore, this issue is again highlighted by stating that the basin should designed 

“to facilitate” sediment removal. As mentioned, sediment accumulation in the basin 

reduces capacity and possibly retention time, which could be detrimental to basin 

performance. Furthermore, removal of settled solids from the basin ensures that the 

particles won’t be  transported to a secondary treatment component due to 

resuspension. Woodbury et al. (2003) provide the additional recommendation that 
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the settling basin should be designed to facilitate even distribution of the effluent on 

the vegetative infiltration area. 

Several studies have been performed to quantify the performance of settling 

basins on different feedlots. Gilbertson and Nienaber (1972) found that the debris 

basin removed 71 percent, by weight, of the settleable solids being transported by 

the runoff. Furthermore, Gilbertson et al. (1980) report that in general a settling basin 

can remove 75 percent of the total solids transported in a runoff event, with an 

approximately 40 percent reduction in solids occurring within 30 minutes of basin 

retention. 

More recently, interest in settling basins has focused on their use as a stand-

alone runoff control system and on their use in vegetative treatment systems. 

Lorimor et al. (1995) monitored the performance of a settling basin on an earthen 

beef feedlot in Iowa. In this study, the basin used perforated, galvanized risers as 

the basin outlet. The drainage area into the basin consisted of a 4.1-hectare area, 

2.6 of which was the feedlot surface area. Based on the data collected in this study, 

Lorimor et al. (1995) concluded that the settling basin had a solids removal efficiency 

of 64%, while removal efficiencies for nitrogen, phosphorus, and potassium was 84, 

80, and 34% respectively. The mean solids concentration reported by Lorimor et al. 

(1995) compares favorable with the values reported by Gilbertson and Nienaber 

(1972). A summary of the concentrations in both the feedlot runoff and the effluent 

as monitored in the Lorimor et al. (2005) study is presented in Table 10. Also of note 

is that treatment of the runoff in the settling basin reduced the variability in total 

solids and total Kjeldahl nitrogen quite substantially. 

 
Table 10. Monitoring results from a settling basin on an earthen beef feedlot in Iowa, from 

Lorimor et al. (2005). 

 Raw Runoff Basin Discharge Effluent 
 Total Solids TKN P K Total Solids TKN P K 
  mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

Max 25,000 1,730 92 570 16,000 118 57 511 
Min 3,300 74 66 378 1,800 20 4 168 

Mean 11,200 440 79 474 4,000 71 16 314 
St. Dev. 9,000 724 18 136 1,700 34 7 129 
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In another recent study, Woodbury et al. (2002) reported that the TSS, VSS, and 

COD removal by the settling basin averaged 80%, 67%, and 59% on a cumulative 

mass basis over a three-year monitoring period. A summary of the average 

concentration of both total suspended solids and chemical oxygen demand 

concentrations in the feedlot runoff entering and exiting the settling basin is provided 

in Table 11. 

 
Table 11. Average concentrations of feedlot runoff exiting and entering the settling basin as 

reported by Woodbury et al. (2003). 

 Raw Runoff Basin Discharge Effluent 
 TSS COD TSS COD 
  mg/L mg/L mg/L mg/L 

Max 8,500 12,300 1,960 6,060 
Min 1,900 790 200 100 

Mean 4,689 5,711 849 2,311 
St. Dev. 2,154 3,377 580 2,018 

 

Moody et al. (2007) reported the concentrations of settled runoff effluent 

released from settling basins on four CAFO sized open feedlots in Iowa. In this 

study, the settled effluent was tested for a large assortment of parameters including 

ammonium, biological oxygen demand, chemical oxygen demand, total phosphorus, 

total solids, and total Kjeldahl nitrogen. Results from this sampling is shown in Table 

12. As can be seen the sample result data were highly variable for all parameters 

and all locations. In addition to monitoring chemical concentrations in the runoff 

effluent, Moody et al. (2007) also attempted to correlate total solids concentrations to 

the rainfall intensity, rainfall depth, rainfall duration, and the number of days since 

the feedlot surface was last scraped. No relationship was found in this study. 

Khanijo (2007) also reported the settling basin effluent from these four 

feedlots in both 2006 and 2007. In the study by Khanijo (2007), the settling basin 

outlets at Central Iowa 1 and Northwest Iowa 1 were modified after 2006 to have a 

valved outlet. This allowed the producer to control when effluent was released from 

the settling basin and increased retention time in the basin. By increasing retention 
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time in the basin the total solids concentration in the effluent was reduced; the 

variability of the solids concentrations were also reduced substantially (Khanijo, 

2007). A comparison of the monitored total solids concentrations for both years of 

monitoring at all four sites is shown in Figure 5. Khanijo (2007) also reported 

ammonium concentrations in the solid settling basin effluent for both years; these 

are shown in Figure 6. At Central Iowa 1, effluent was held for longer time periods in 

2007; this may have caused the increase in ammonium concentrations in the 

effluent as compared to 2006 (Khanijo, 2007). 

 
Table 12. Solid settling basin effluent concentrations for four open beef feedlots in Iowa. From 

Moody et al. (2007). 

 Central Iowa 1 Central Iowa 2 Northwest Iowa 1 Northwest Iowa 2 
(mg/L) Average St. Dev. Average St. Dev. Average St. Dev. Average St. Dev. 
NH4 151 100 35 30 239 357 354 227 

BOD5 2,595 1,704 462 457 5,252 9,033 5,447 4,355 
COD 9,045 4,397 2,221 1,817 24,378 40,483 18,541 12,473 

Cl 497 114 207 120 813 203 549 209 
Total P 96 41 30 23 137 152 150 70 

TDS 7,704 3,026 3,089 119 9,188 6,428 8,973 4,835 
TSS 2,683 1,902 1,219 1,751 13,708 14,034 7,366 3,854 
TS 10,387 4,295 4,069 3,131 22,895 19,596 16,339 8,446 

TKN 462 316 112 119 1,024 1,254 985 703 
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Figure 5. Total solids concentrations in effluent released from solids settling basins on four 

open beef feedlots in Iowa from Khanijo (2007) 
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Figure 6. Ammonium concentrations in effluent released from solids settling basins on four 

open beef feedlots in Iowa from Khanijo (2007) 

 

Settling basins use gravitation force to separate solids from the wastewater. 

The rate of sedimentation is based on the density difference between the solid 

particles and the liquid; often this process is modeled with the use of Stokes Law, 

which is displayed in equation (4). 

 



18

2gd
v s

s


            (4) 

Where sv represents the settling velocity, s  the density of the solid particles,    the 

density of the liquid, g  the acceleration of gravity, d the particle diameter, and   is 

the dynamic viscosity of the fluid. There are several assumptions built into using 

Stoke’s law to model sedimentation. These include that the settling velocity of the 

particle is reached instantaneously, that the particles are rigid, smooth spheres, and 

that the particles settle independently. If the settling process meets all these 

assumptions then the process is said to be Type 1, discrete particle settling. If the 

particles flocculate as the settling process occurs then the settling process is 

considered Type 2, which is flocculent settling. This process is the most common in 

waste treatment as the particles are often aggregated during the settling process. In 

this case Stoke’s law can still be used, but usually the settling velocity will be 
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underestimated as the particles continue to flocculate, and thus increase in size, as 

settling occurs. A third type of settling, hindered settling, can occur if particles 

adhere together and then slowly settle as a blanket; in this case settling is often 

slower and cannot be modeled with the use of Stoke’s law. Type 3, hindered settling, 

usually occurs due to higher concentrations of solids in the effluent. 

For most cases, the settling rate can be determined based on Stoke’s law, 

and the particle density – particle size data presented by Gilbertson and Nienaber 

(1973) which were displayed in Table 6. The settling velocity for different particle 

sizes can be calculated, and is shown in Table 12. Combining this with the nutrient 

characteristic-particle size data, such as found in Chang and Rible (1975) provides 

insight into how settling can reduce both nutrient content and chemical oxygen 

demand as different particle sizes settle out of the effluent. As can be seen, larger 

than particles 53 microns the particle should settle more than 0.6 meters in five 

minutes. Therefore, if a settling basin is designed to be 0.9 m (3 feet) deep, a 

retention time of approximately 7.5 minutes would be required to settle these 

particles from the effluent. This matches well with the study of Lot et al. (1994) in 

which they recommended a settling time of approximately ten minutes as the rapidly 

settling portion of waste had been settled by this time. Furthermore, they found that 

after the 10 minute settling time approximately 40-50% of the manure remained in 

suspension, which corresponds relatively well to the 43.6% of manure particles that 

have a diameter between 0 and 53 microns in the Chang and Rible (1976) study. 

However, both the calculation of settling velocity and the experiments of Lot et al. 

(1994) assume ideal settling, i.e., there is no flow; therefore, a slightly longer 

retention time may be required to achieve the same settling efficiency in the field. 

Furthermore, the study by Chang and Rible (1976) looked only at the feces particles 

that could be transported in the feedlot runoff, not the soil particles that could also be 

transported in this runoff. These soil particles can substantially increase settling time 

as the time required for silt particles (11 microns) to settle 0.5 meters is 

approximately 2.3 hours, while clay particles (2 microns) would require 



 25

approximately 11.5 days. Thus the addition of these particles can substantially 

reduce settling efficiency. 

 
Table 13.  Calculated settling data for feedlot runoff, based on the data of Gilbertson et al. 

(1973) and Chang and Rible (1976). 
Particle 
Density 

Settling 
Diameter N P COD Settling 

Velocity 
Distance Traveled 

in 5 Minutes 
(g/cm3) (microns) 

Percent of Total 
Manure (%) (%) (%) (m/s) (m) 

2.38 0 43.6 4.9 1.42 3.8 0.000 0 
2.36g 53 3.6 2.8 1.08g 6.2 0.002 0.6 
2.34 105 6.1 2.7 0.73 10.2 0.008 2 
1.96 250 6.7 2.5 0.41 12.2 0.033 10 
1.77 500 9 2.2 0.39 21.9 0.105 31 
1.77 g 1000 30.7 1.7 0.83 16.3 0.418 125 

  

Based on this data, it appears that sedimentation can be used to remove all 

particles larger than 53 microns in equivalent diameter. This corresponds to 

approximately 60% of the solid particles in the runoff. Utilizing the nutrient data from 

Chang and Rible (1975) and assuming 100% removal efficiency of all particles larger 

in diameter than 53 microns, then the estimated N, P, and COD removals would be 

35%, 39%, and 84% respectively. Thus, correctly designed and functioning 

sedimentation basins can be an effective treatment technique, reducing nutrient and 

organic matter loading rates encountered by additional treatment components. 

 After primary treatment of runoff effluent in the settling basin, additional 

treatment or final disposal of the effluent is required. There are several options for 

both additional treatment components as well as final disposal options. For smaller 

feedlot operations release to a vegetated waterway can often be used as a final 

means of treatment and release; however, this is not allowed on CAFO operations 

and would be recommended only for operations were pollution potential of feedlot is 

relatively small. Alternative means of treatment include land application onto 

cropland, use of vegetative treatment systems, evaporation basins, lagoons, or 

                                            
g Calculated based on the average of the data surrounding data points. 
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chemical or biological treatment to reduce nutrient concentrations to stabilize the 

effluent. 

Evaporation Ponds 

 An evaporation pond is a containment system in which the final disposal 

method of effluent is through evaporation. A schematic of a typical evaporation 

system is provided in Figure 7. Like most runoff control systems, this system uses a 

settling basin, which in an evaporation system is followed by the evaporation basin. 

The primary treatment in this system is provided by the settling basin, which is 

designed to remove the settleable solids. Good performance of the settling basin is 

important, as solids entering the evaporation pond reduce the usable capacity 

making the basin more susceptible to overflow. Furthermore, this will increase the 

frequency that solids must be removed from the basin. The secondary form of 

treatment occurs in the evaporation pond. The runoff effluent is stored in the basin; 

during storage evaporation occurs which reduces the liquid content, i.e., thickens the 

waste. By evaporating off the liquid from the feedlot runoff effluent the waste is 

easier to transport and requires less volume to store. This thickening also increases 

the nutrient concentration of the waste, improving the economics of transporting and 

land applying at greater distances. However, for areas where evaporation ponds are 

an appropriate for of waste treatment, crops are often irrigated. Thus effluent 

application onto cropland is often the preferred method of effluent disposal. 

In general, it is only recommended to use evaporation ponds in areas where 

the annual evaporation potential exceeds precipitation by more than 50 cm 

(Gilbertson et al., 1980), thus these systems are not appropriate for Iowa conditions. 

Anschutz et al. (1979) provided a more specific approach in designing evaporation 

ponds for feedlots. In their study, Anschutz et al. (1979) sized evaporation ponds for 

20 locations around the United States such that they would not experience a basin 

release. At each of these locations, the ratio of the average annual precipitation to 

the annual lake evaporation (PE Ratio) was determined. The required surface area 

for the evaporation pond was then related to a PE ratio via a regression equation, 

shown as equation (5). In equation (5), Aevap represents the surface area of the 
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evaporation pond in hectares, Afeedlot is the area of the feedlot in hectares, and PE 

Ratio is the ratio of the annual volume of precipitation to the annual lake 

evaporation. Example calculations for thirteen locations around Iowa are displayed 

in Table 14; the required size is per hectare of feedlot area. Based on these data, 

the average feedlot in Iowa would require approximately 2.5 hectares of evaporation 

pond surface area per hectare of feedlot area, thus these system are not very 

practical in Iowa. A summary of the required evaporation pond sizes for different 

locations around Iowa is provided in Table 14. 

 

 
Figure 7. Schematic of a runoff control system using an evaporation pond. 

 

feedlot

RatioPE
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Although Anschutz et al. (1979) developed his relationship to help producers 

size evaporation basins appropriately for their feedlots, in some respects it has a 

relationship to both the land application area required for holding pond systems as 

well as the vegetative treatment area required for vegetative treatment systems. For 

instance, by idealizing the land application area or vegetative treatment system as a 
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soil-water reservoir the approximate surface area required to evapotranspire the 

runoff effluent can be determined using a procedure similar to that Anschutz et al. 

(1979) to size the evaporation pond. 

 
Table 14. Required evaporation pond sizes per hectare of feedlot based on evaporation basin 

sizing from Anschutz et al. (1979). 

Location 
Annual 

Precipitation 
inches 

Annual 
Evaporation 

inches 
PE Ratio 

Evap. Pond 
Surface Area 

ha 

Depth 
meters 

Ames 35.1 40.24 0.87 2.42 1.83 
Centerville 30.6 37.9 0.81 1.75 1.83 

Irwin 30.9 37.8 0.82 1.84 1.83 
Larrabee 28.3 37.8 0.75 1.30 1.83 

Lenox 33 37.9 0.87 2.40 1.83 
McGregor 30.7 35.3 0.87 2.39 1.83 

Mount Pleasant 34.8 33.7 1.03 5.38 1.83 
Red Oak 36.2 37.8 0.96 3.70 1.83 
Sac City 33.5 37.7 0.89 2.62 1.83 

Shenandoah 34.2 37.9 0.90 2.81 1.83 
Sioux City 26 35.8 0.73 1.17 1.83 

Saint Ansgar 29.5 36.6 0.81 1.74 1.83 
Waterloo 32.9 35.3 0.93 3.26 1.83 

  

Holding Pond 

 A holding pond is the traditional system used to control open feedlot runoff. 

Traditionally CAFO sized operations were required to construct and maintain a 

containment basin to prevent release of effluent. The effluent is then land applied 

during onto cropland as weather and soil conditions permit. An example of the layout 

of a traditional containment system is shown in Figure 8. As can be seen, this 

system consists of four basic components, the open lot area, a settling basin, a 

containment basin, and the land application area. In this scenario, the open feedlot 

is the source of runoff effluent, this effluent should then be routed through a solids 

settling basin to remove solids. This settling / debris basin can remove up to 75% of 

the total solids coming from the feedlot (Gilbertson et al., 1980). Removing these 

solids before storage in the containment basin minimizes build-up with in the 

containment basin; this maintains both the usable volume in the basin and 
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decreases the required frequency of solids removal. Furthermore, removing these 

solids also makes the effluent easier to pump through an irrigation system 

(Gilbertson et al., 1980). The containment basin serves as a waste storage facility 

until application of the waste occurs. Several different methods are available for land 

application of the runoff effluent; these include tanker wagons, center pivot irrigation 

systems, overland flow irrigation, and “big gun” sprinklers. 

 
Figure 8. Example traditional containment system. 

 

When sizing the containment basin, several factors need to be considered, 

these include the feedlot size, the climate of the region, the desired length of time 

between land application intervals, and the size both the contributing drainage area 

and the land application area. The maximum rate at which the basin can be 

dewatered also has impact on determining the size of the containment basin. 

Currently the Iowa AFO/CAFO guidelines list five containment basin systems that 

producers can choose. These options differ by the number of and timing of land 

application periods. The options include one effluent application period per year, July 

and November effluent application periods, April, July, and November application 

periods, application after every significant precipitation event, and April/May and 

October/November manure application periods. 
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 There is a long history of both the use of these systems, as well in modeling 

the performance of containment basins; however, very limited data are available on 

their actual performance on open lot facilities. Gilbertson and Nienaber (1973) report 

on a case study in which a solid settling basin / containment basin system was 

designed for a 100 head feedlot. The system was then monitored for a one-year 

period; no containment basin overflow was recorded during this monitoring period. 

Although there are very limited data on actual system performance, there is a 

long history of attempting to model the performance of these systems. Much of the 

modeling research can be traced back to 1975 to a feedlot runoff model developed 

by Koelliker et al. (1975). This model has been utilized to demonstrate that basin 

overflow can result not only from storms in excess of the design storm, but also 

because of chronic rainfall events. In addition, this model was used to establish the 

baseline performance that could be expected from a containment basin experiencing 

the site-specific weather conditions. In this model, the land application area is not 

explicitly modeled, but instead a general set of criteria are used to determine if land 

application of effluent is appropriate. The criteria include items like the soil not being 

frozen, the temperature being above freezing, the containment basin is more than 

1/10th full of effluent, it is not raining today, and there was less than 0.05 inches of 

precipitation during the three previous days. These land application criteria were 

selected by Koelliker et al. (1975) to represent Kansas climatic conditions, and may 

not be appropriate for other areas. Koelliker et al. (1975) recognized this fact during 

the development of their model and stated that model performance could be refined 

by using more disposal criteria such as the condition of the watershed in which land 

application would be practiced. In addition, they also state that a chemical transport 

model could be used to assess the total water quality impact that the feedlot, waste 

containment system, and land application area are having on the water quality on 

the watershed scale. Furthermore, Gilbertson et al. (1980) point out that the 

dewatering schedule used by the producer to empty the basin has a large effect on 

both the required size of the basin as well as the performance of the basin. 
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Given that actual system performance is noted to be directly related to 

management decisions made by the farmer, it becomes very important to define a 

reasonable management plan that the operator could be expected to use to manage 

wastewater basins. Moffitt et al. (2003) elaborated on this fact stating that application 

time is affected by the conditions of the field on which effluent is to be applied, the 

state of the crop being grown, and the application methods available. This fact has 

been evaluated in several modeling studies (Zovne et al., 1977; Anschutz et al., 

1979; Jia et al., 2004; Moffitt et al., 2003; Moffitt and Wilson, 2004; McFarland et al., 

2000). In the studies of Zovne et al. (1977), Anschutz et al. (1979), McFarland et al. 

(2000) , and Jia et al. (2004) the land application area was linked to the performance 

of a containment basin system by using soil moisture criteria to determine if land 

application was appropriate. However, non-point source pollution resulting from 

disposal of the runoff effluent on the land application area was not considered. 

The model developed by Zovne et al. (1977) used a simple water balance in 

the disposal area to predict soil moisture in the land application area, with land 

application of effluent being delayed if soil moisture was greater than 90% the 

available moisture content in the soil profile. Anschutz et al. (1979) then used this 

model to determine the required basin sizes base for different locations. In this 

study, Anschutz et al. (1979) developed a regression equation, shown in equation 

(6) below, to select the required basin size based on the moisture deficit of the 

climate, with moisture deficit being defined as the mean annual lake evaporation 

minus the mean annual precipitation. 

 MDfeedlotA
Vol

410*92.591.410
16

          (6) 

Where MD  is the moisture deficit in mm, feedlotA  is the area of the feedlot in hectares, 

and Vol is the required volume of the containment basin in cubic meters. This 

regression equation was developed to provide 100% runoff control. Furthermore, 

“standard conditions” were assumed in the land application area; these included 

having subsoil that had an intake rate that was moderate (an intake family 0.5), 

growing corn in the land application area, and a land application to feedlot area ratio 
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of one-to-one. An assortment of modification factors was then created to modify the 

system for non-standard conditions; these are shown in equation 7. In equation (7), 

S is the soil type factor, C is a crop factor, D is the ratio of feedlot area to land 

application area, R is the disposal rate factor which is based on the depth of effluent 

applied per day, H is a factor representing the depth of the retention pond, M is a 

factor based on the moisture deficit in the area, and PRC is the is a factor based on 

the percent of runoff to be controlled. Elaborating on the soil type factor, S, it is 

related to the soil intake family and represents the water infiltration capability of a 

soil (USDA NRCS, 1997). The soil intake factor is related to both soil type and 

irrigation method. Guidance for estimating a soil intake factor is available in the 

USDA NRCS Irrigation Guide (1997) and is shown in Table 15. 

 
Table 15. Soil intake factors for different textures and application methods from the USDA 

NRCS Irrigation Guide (1997). 

 Soil Intake Characteristics 
Soil Texture Sprinkler Furrow Border & Basin 

Clay, Silty clay 0.1 - 0.2 0.1 - 0.5 0.1 - 0.3 
Sandy clay, Silty clay loam 0.1 - 0.4 0.2 - 0.8 0.25 - 0.75 
Clay loam, Sandy clay loam 0.1 - 0.5 0.2 - 1.0 0.3 - 1.0 

Silt loam, Loam 0.5 - 0.7 0.3 - 1.2 0.5 - 1.5 
Very fine sandy loam, Fine sandy loam 0.3 - 1.0 0.4 - 1.9 1.0 - 3.0 

Sandy loam, Loamy very fine sand 0.3 - 1.25 0.5 - 2.4 1.5 - 4.0 
Loamy fine sand, Loamy sand 0.4 - 1.5 0.6 - 3.0 2.0 - 4.0 

Fine sand, Sand 0.5 + 1.0 + 3.0 + 
Coarse sand 1.0 + 4.0 + 4.0 + 

 

PRCMHRDCSVolVolAct _       (7) 

 The sizing requirement for a containment basin of one-hectare feedlot based 

on equation (7) is shown in Table 16. For thirteen locations in Iowa, the size 

requirement for storage ranged from 3,600 cubic meters to 5,300 cubic meters, with 

an average size of 4,300 cubic meters of storage per hectare of feedlot surface area. 
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Table 16. Containment basis sizes required per hectare of feedlot area for 13 Iowa locations. 
Based on sizing requirements presented by Anschutz et al. (1979). 

Location Annual Precipitation 
inches 

Annual Evaporation 
inches 

MD 
mm 

Containment Pond Size 
m3 

Ames 35.1 40.2 131 4,252 
Centerville 30.6 37.9 185 3,946 

Irwin 30.9 37.8 175 4,001 
Larrabee 28.3 37.8 241 3,656 

Lenox 33.0 37.9 124 4,287 
McGregor 30.7 35.3 117 4,332 

Mount Pleasant 34.8 33.7 -28 5,277 
Red Oak 36.2 37.8 41 4,806 
Sac City 33.5 37.7 107 4,393 

Shenandoah 34.2 37.9 94 4,469 
Sioux City 26.0 35.8 249 3,618 

Saint Ansgar 29.5 36.6 180 3,973 
Waterloo 32.9 35.3 61 4,675 

 

 Current Iowa standards are based for containment basin sizing are based on 

the 25-year, 24-hour storm size. This is roughly 5.1 inches for most of Iowa, which 

results in a required basin size of 1,036 cubic meters for a one-hectare feedlot. Thus 

current Iowa design requirements for containment basins are roughly ¼ the size 

recommendations of Anschutz et al. (1979). 

 The study of McFarland et al. (2000) assessed the impact of chronic rainfall 

events on lagoons receiving runoff from dairy loafing lots. In this study, McFarland et 

al. (2000) used an antecedent precipitation index (API) to schedule or delay 

irrigation of lagoon effluent. Although the API is an artificial concept used to 

represent the soil water redistribution process, it is still a first step at representing 

soil-moisture in the land application area. This study also provided an important first 

step in defining chronic rainfall, which McFarland et al. defined as precipitation on 

consecutive days. Jia et al. (2004) extended on this analysis with the use of 

DRAINMOD. Rather than using the API, Jia et al. (2004) used DRAINMOD to 

simulate the hydrology of the land application area. In this simulation, land 

application was modeled to occur when the water-free pore space was larger then 

the amount of effluent to be land applied. In addition to this soil moisture constraint 

additional constraints of wastewater availability in the lagoon and the crop nitrogen 
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limit were also used. Based on this research, Jia et al. (2004) concluded that 

prolonged wet periods cause high soil moisture conditions that prohibit irrigation of 

effluent. This in turn caused high stage levels in the modeled lagoon. 

 Moffitt and Wilson (2004) utilized the Soil-Plant-Air-Water model (SPAW) to 

predict the level in holding ponds that received runoff from dairy lots. In this study, 

the results from SPAW closely followed the monitored levels in four waste storage 

facilities located in Oregon. It was therefore concluded that SPAW provided a useful 

design and evaluation tool for simulating waste storage structures. 

As mentioned, management of a containment basin is a very important 

aspect of basin performance. There are several options available for dewatering a 

basin; selection of the appropriate dewatering technique should be based on the 

dewatering schedule, the size of the basin, the availability of labor, the 

characteristics of the waste, and economics. Options for dewatering include a 

stationary gun, a traveling gun, center pivot irrigation, hand-moveable sprinkler 

systems, overland flow irrigation, furrow irrigation, and a pump-and-haul irrigation 

system. Gilbertson et al. (1980) recommended the use of an irrigation system to 

dewater the basin, rather than pump-and-haul systems due to the larger labor 

requirement of using a pump and haul system. Gilbertson et al. (1980) also provided 

a few points to consider when planning and designing a land application system. 

Specifically, when sizing the land application area requirements, consider both the 

nutrient and water needs of the crop, the water holding capacity of the soil, the 

application rate, the characteristics of the runoff, and state laws and regulations. 

In addition to the overflow events predicted in these models there are other 

aspects of a traditional containment system that could cause potential pollution. 

These include seepage from the basin as well as non-point source pollution from the 

land application area. Both items have received attention from field-scale, lab-scale, 

and modeling studies, but in general, these items have never been linked with a 

containment basin model to predict when the overall impact of a containment basin – 

land application system. 
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Seepage from runoff holding ponds is a concern since it could result in 

contamination of groundwater by nutrients and pathogens in the effluent stored in 

the basin. This has resulted in states setting hydraulic conductivity and/or flux 

standards to limit the seepage of waste from lagoons. Several studies field and lab 

studies have been performed to try to quantify seepage rates from existing lagoons. 

Much of the field-scale research has focused on determining seepage rates for 

lagoons under different environmental and climatic conditions. From these studies, it 

has been determined that initial seepage rates from lagoons can be relatively high, 

but a “sealing process” reduces the infiltration rate (Rowsell et al., 1985). This 

sealing process can reduce infiltration rates by several orders of magnitude and 

occurs from both physical and biological processes that reduce the hydraulic 

conductivity of the soil (Barrington et al., 1987). Several modeling attempts have 

been performed to try to quantify both the amount of seepage occurring from these 

structures and the environmental impacts. Typically, the amount of seepage 

occurring from these structures by assuming saturated conditions in the liner and 

then using Darcy’s law to calculate the flux rate. This is shown in equation (8). 

L

LW
L L

LLKq 
           (8) 

Where q is the flux rate through the liner, LK  is the hydraulic conductivity of the 

liner, WL  is the depth of waste in the basin, and LL  is the thickness of the linear.

 The third mechanism by which containment-land application systems could 

transport nutrients is from non-point source pollution originating from the land 

application area. Currently Iowa NPDES permits do not include non-point source 

pollution from this area in determining the mass of nutrients released from an animal 

feeding facility as long as best management practices with regards to timing and 

application rate of the effluent are followed. However, the Federal Register (2003) 

states that waste control systems should be evaluated “holistically”. Therefore, future 

studies on both modeling and monitoring the containment-land application systems 

should focus on addressing all mechanism by which the waste management 
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systems cause environmental concern. Specifically, adding non-point source 

pollution originating from land-application areas. 

Vegetative Treatment Areas 

 A vegetative treatment area (VTA) is designed to manage runoff from open 

livestock facilities and is typically planted to a perennial grass or forage crop 

(Koelsch et al., 2006). This area typically has a slope of less than 5% and should be 

designed to encourage uniform sheet flow through the length of the VTA. Ikenberry 

and Mankin (2000) propose that VTA’s treat the runoff effluent by sedimentation, 

filtration, infiltration, and evapotraspiration. Koelsch et al. (2006) elaborate on these 

treatment mechanisms stating that the two primary mechanisms of treatment in the 

VTA are sedimentation, which usually occurs in the first few meters of the VTA, and 

infiltration of the runoff effluent. After being infiltrated into the soil, several processes 

occur which can improve the effluent quality; these include filtration of bacteria and 

solids, immobilization of nutrients such as ammonia and phosphorus, which are 

adsorbed to the soil surface, and the subsequent uptake of these nutrients by plants. 

Furthermore, it is possible that the VTA will cycle between aerobic and anaerobic 

conditions as effluent saturates the upper soil profile and then subsequently drains 

away or is evapotranspired; these fluctuations could promote the breakdown of 

organic compounds during aerobic conditions and possibly denitrification during 

anaerobic conditions. As mentioned previously, maintenance of sheet flow is 

important for maximizing performance of the VTA. By ensuring sheet flow on the 

VTA surface flow velocity is reduced, therefore increasing contact time between the 

VTA and the effluent, increasing the opportunity for infiltration of the effluent, and 

reducing the transport mechanism (i.e. the carrying capacity) of nutrients. Many 

VTA’s use overland flow via gravity to distribute the effluent down the length of the 

treatment area; however, recently Gross and Henry (2007) proposed and developed 

a sprinkler system that could be utilized to more evenly distribute the effluent over 

the VTA. This option provides the advantage of more even application of effluent; 

however, this system also reduces the opportunity for filtration of the effluent as it 

flows through the vegetation. 
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VTA’s have been utilized as a form of waste treatment for many years; 

however, it was only recently that engineers began to formalize a design process 

and to quantify the results these treatment systems were having on the quality and 

quantity of effluent released from an animal feeding facility. Thus far, two general 

procedures have been purposed for sizing vegetative treatment areas. These 

procedures are based on the either the hydraulic loading rate or the nutrient loading 

rate expected. When sizing a VTA based on the hydraulic, or water balance method, 

the risk of runoff from the VTA should be minimized, thus nutrient transport from the 

facility will be reduced. By sizing on a nutrient mass balance, usually nitrogen, the 

risk of nitrate leaching will also be reduced since the effluent is applied at an 

agronomic rate (Woodbury et al., 2004). 

 A general procedure for sizing a VTA using the water balance method is to 

determine the volume of effluent resulting from a design storm. First, determine the 

saturated soil infiltration rate for the treatment area. Saturated soil infiltration rate is 

often determined with the use of a soil survey data; however, in situ measurements 

provide a more thorough analysis and will provide a design that better matches 

actual field conditions. The second step is to determine the drain time of the settling 

basin; typical drain times are between 30 and 72 hours (Woodbury et al., 2003). The 

required VTA size is then determined by dividing the entire effluent volume by the 

saturated infiltration rate. This solution assumed even hydraulic loading of the entire 

VTA area, so a term amounting to a safety factor is added to account for any 

channelization that may occur. 

 Sizing the VTA by the nutrient mass balance is performed in a slightly 

different manner than the hydraulic balance, rather than looking at the system on a 

design storm basis, the system is analyzed on a yearly basis. This requires 

determination of the average annual runoff volume from the feedlot surface. This 

value is then multiplied a concentration that is representative of the effluent flowing 

onto the vegetative treatment area. The estimated uptake of nitrogen and 

phosphorus from the vegetation then should be determined. This is done by taking 

typical vegetation uptake rates and multiplying by the expected harvest rate. The 



 38

required VTA size is then determined by matching the expected annual nutrient 

harvest to the average annual nutrient load transported from the feedlot. 

 Along with understanding the design process of vegetative treatment areas, it 

is important to understand, at least conceptually, how the entire system will operate 

in order to effectively model the performance. Blume (2006) provides a framework 

for considering how the vegetative treatment system operates and how this relates 

to the design of the system. 

1. Rainfall begins on the feedlot and the vegetative treatment system. 

2. Runoff begins from the feedlot after the initial abstraction has been satisfied. 

The vegetative treatment continues to infiltrate most of the rainfall. 

3. Runoff from the feedlot enters a settling basin. The outlet on the settling basin 

can be operated either passively or actively, but in either case outflow from 

the settling basin should be substantially limited during the rainfall event. 

4. Release of effluent onto the VTA can now commence; application rates of 

effluent onto the VTA should be matched to the infiltration rate of the soil. 

5. Soil moisture in the VTA will then be depleted by evapotranspiration until the 

next rainfall event. This resets the system for step 1. 

Along with the available design guidance there is substantial research that has 

been performed on VTA’s at the field and plot scale. Koelsch et al. (2006) completed 

a literature review of field and plot trials from over 40 studies. These studies in 

general showed reductions of total solids of 70-90%, with the majority of this 

reduction occurring in the first few meters. Total phosphorous reductions were 

typically around 70%, with performance often being similar to that of total solids. 

Similar results have been seen for most nutrients with the exception of nitrate 

(Koelsch et al., 2006). In a study by Paterson et al. (1980) nitrate concentrations 

increased while passing through the treatment system. Moreover, in their literature 

review Koelsch et al. (2006) reported several studies in which nitrate concentrations 

increased, but even with the increase in nitrate concentrations the total mass of 

nitrate transported still decreased. Overcash et al. (1981) proposed a design 
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equation to account for nutrient reductions as the effluent passed through the VTA. 

This is shown in equation (9). 
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In equation (9) xC  is the concentration at the outlet of the treatment area, BC  is the 

background concentration (i.e., the concentration regardless of whether or not waste 

has been applied), OC  is the influent concentration, D  is the ratio of infiltration to 

runoff, and K  is the ratio of VTA length to the waste generation area length. This 

equation can be used for most contaminants and was originally developed to predict 

the pollutant reduction occurring in buffer zones located next to land application 

area. This is a first order decay equation that basically state that given sufficient flow 

distance the treatment strip will reduce the effluent concentrations to the levels in 

rainfall runoff from the filter area. 

 Woodbury et al. (2002, 2003) performed a more recent study on the effects of 

a full-scale VTS on an open feedlot near Clay Center, Nebraska. In this study a flat-

bottomed debris basin and a vegetative treatment area where used to control the 

runoff. In this study, the feedlot drainage area was 2.4 hectares with and additional 

1.2 hectares of grassland contributing runoff to the settling basin. The VTA in this 

study is 6.0 hectares, giving a VTA to a feedlot ratio of 1.67. During this study, no 

effluent was monitored exiting the VTA; furthermore, the vegetation removed from 

the treatment area accounted for more nitrogen removal then was added from the 

effluent runoff from the feedlot. Thus, it was concluded that the system was effective 

at controlling runoff from the open feedlot. 

Vegetative Infiltration Basins 

 A vegetative infiltration basin (VIB) is a possible vegetative treatment 

component that relies on the soil to filter nutrients and contaminants from the feedlot 

runoff effluent (NRCS, 2006). Moody et al. (2006) provides a description of typical 

VIB design and operation, stating that a VIB is a flat area surrounded by berms and 

planted to permanent vegetation, thus there is no direct surface discharge from the 
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VIB. Tile lines installed at depths between four to six feet are placed under the VIB; 

these tile lines enhance infiltration into the soil so that water remains ponded in the 

VIB for only short time periods. VIB’s perform several important functions; they 

significantly reduce both the concentration and mass of most nutrients transported in 

the runoff. VIB’s also delay and extend the period of release from the hydrograph, 

which reduces the risk of an effluent discharge by providing a more controlled 

release to any additional treatment components. 

 Edwards et al. (1986) report the performance of a VIB system used on a 56-

head concrete feedlot located in Ohio during a three-year period. In this case the 

treatment system consisted of two components, a settling basin and a vegetative 

infiltration basin. For this site the feedlot had an area of 243 m2, the settling basin 

capacity was 6.3 m3, and the VIB area was 165 m2, giving a VIB to Feedlot area 

ratio of 0.68. The VIB was isolated from the surrounding area by installing metal 

borders (0.9 meters deep) and a perimeter tile around the VIB. Tile lines under the 

VIB were also installed at 0.9 meters of depth. 

 The hydraulic performance of the system as monitored by Edwards et al. 

(1986) is provided in Table 17. As can be seen, a reduction in the volume of water 

exiting each component was reduced in comparison to the total volume of effluent 

and rainfall added to that component. However, if the volume of effluent exiting the 

infiltration bed is compared to the volume of runoff exiting the feedlot a reduction in 

effluent quantity was only obtained during the first year of the study (7% reduction). 

For the remaining years, the volume of effluent actually increased, by 40% and 20%, 

respectively, for years two and three. This was due to rainfall directly on the 

infiltration bed increasing the hydraulic loading rate. Based on this study it seems 

logical to conclude that use of a vegetative infiltration basin does not reduce the 

overall quantity of feedlot runoff effluent. This fact coincides with the 

recommendations in the recommendation presented in the NRCS VTS design 

guidelines, which state that a VIB will not significantly reduce the volume of water 

moving to a VTA. Although both the data by Edwards et al. (1986) and the design 
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guidelines presented by the NRCS suggest this to be the case, it is important to 

understand the theoretical basis behind this. 

 
Table 17. Hydraulic performance of VIB system given by Edwards et al. (1986). 

 Feedlot  Settling Basin  Infiltration Bed 
Year 1 2 3 Total   1 2 3 Total   1 2 3 Total 

Precipitation (m3) 227 167 202 596  34 25 30 89  156 115 139 410 
Run on (m3) 0 0 0 0  158 92 132 382  158 99 122 379 

Total Inflow (m3) 227 167 202 596  192 117 162 471  314 214 261 789 
Total Outflow (m3) 158 92 132 382  158 99 122 379  147 129 158 434 

% Reduction 30 45 35 36  18 15 25 20  53 40 39 45 
  

To understand why this is the case, it is important to understand how a VIB is 

constructed and what are the hydraulic conditions it will encounter. As mentioned 

previously, a VIB is a relatively flat area surrounded by berms to prevent a surface 

release. Tile lines will underlie the VIB and serve to increase infiltration through the 

soil profile and collect the infiltrating effluent; this effluent is then transferred to 

additional treatment components. In order to function properly a VIB should be 

located in an area with impervious subsurface soils, as this will create a perched 

water table allowing the tile lines to function properly. Furthermore, this impervious 

subsoil layer limits seepage from the system. Based on these conditions, a simple 

water balance model can be used to asses how effluent will move through the VIB. 

This water balance model is shown in equation (10). 

DDTDETRPS           (10) 

In this equation P  represents the volume of precipitation falling onto the VIB, R  the 

volume of runoff inflow into the VIB, and ET  the volume lost to evapotranspiration. 

TD  and DD  both represent volumes lost due to drainage, where TD  is the volume 

of tile drainage and DD  is the volume lost to deep drainage, i.e., the volume lost 

due to seepage below the tile lines. The final term, S  represents the change of 

water content in the soil profile as well as the change in volume water stored on the 

surface of the VIB. If located properly, very little effluent will be lost to deep drainage. 

Furthermore, if functioning properly the VIB will only have standing water on the 

surface for a couple of days, thus looking over the course of an event there would be 
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no change in surface storage in the VIB. Finally, looking at the change in storage of 

soil water content in the soil profile there should be little to no change in soil water 

content, as the soil profile should be approximately at equilibrium water content at 

the start of the event and drains to equilibrium at the end of the event. 

As seen in Table 18, Edwards et al. (1986) report that the concentration of 

most nutrients is substantially reduced in both the settling basin and the vegetative 

infiltration basin. For instance, in the settling basin both total solids and chemical 

oxygen demand are decreased by approximately 50%, while soluble nutrients such 

as ammonium and potassium see little reduction in concentration. As the effluent is 

filtered by the soil profile concentrations of the soluble nutrients such as ammonium 

and potassium are reduced. The concentration of nitrate increases during the 

filtration through the infiltration basin (Edwards et al., 1986). This increase in nitrate 

concentrations may have been the result of aerobic conversion of ammonium to 

nitrate by Nitrosomonas and Nitrobacter (Prantner et al., 2001). In addition to the 

concentrations reductions, the overall mass of nutrients transported in the feedlot 

runoff was also substantially reduced (Table 19). Throughout the runoff control 

system the total solids, chemical oxygen demand, ammonium, total phosphorus and 

soluble phosphorus concentrations were reduced by 70-80%. Again, nitrate was the 

only nutrient in which the mass exported exceeded the mass imported, which again 

suggests that nitrate was being created from the ammonia and organic nitrogen 

loading in the infiltration basin.  

 
Table 18. Nutrient concentrations at each point of the treatment system from Edwards et al. 

(1986). 

 TS COD NO3-N NH4-N Organic N Total P Soluble P K 
  mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

Feedlot 17,100 19,900 0.7 209 532 118 73 701 
Settling Basin 8,800 9,800 0.5 208 346 93 63 645 

Infiltration Basin 3,000 3,000 5.2 50 104 24 13 259 
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Table 19. Total masses of nutrients exiting each stage of the treatment system from Edwards 
et al. (1986). 

 TS COD NO3-N NH4-N Organic N Total P Soluble P K 
  kg kg kg kg kg kg kg kg 

Feedlot 2181 2534 0.09 26.7 67.9 15 9.3 89 
Settling Basin 1114 1243 0.06 26.3 43.7 11.8 8 82 

Infiltration Basin 431 437 0.75 7.3 15 3.5 1.9 38 
 

Yang and Lorimor (2000) reported on the use of a soil infiltration-wetland 

treatment system used on a 380 head beef cattle feedlot near Ames, Iowa. In this 

study the cattle were housed on 22,720 m2 (5.5 acre) concrete lot. Concrete aprons 

around the pens served as solid settling basins. After passing through the  solid 

settling basins runoff effluent was routed into a 3,976 m2 infiltration area The 

infiltration area, surrounded by earthen berms, was drained with three 0.1 m (4 inch) 

tile lines. These tile lines collected and transported the infiltrating runoff effluent to a 

wetland area for final treatment. 

In this study, Lorimor et al. (2003) reported 80% reductions in total Kjeldahl 

nitrogen concentrations and 81% reduction in ammonium concentration during 

treatment in the VIB. Furthermore, total solids and total phosphorus concentrations 

were reduced by 65% and 77%, respectively. In this study, as in the Edwards et al. 

(1986) study, nitrate concentrations increased during treatment in the infiltration 

basin. Lorimor et al. (2003) reported settling basin outflow concentrations of 0.98 

mg/L and 1.7 mg/L after treatment in the VIB.  

Lorimor et al. (2003) also assessed total mass transport reduction occurring 

during thee flow events. These events occurred on June 8 - 13, July 4 - 10, and Aug 

5 -13. Overall mass reductions for TKN, ammonium, nitrate, total phosphorus, and 

total solids were 88%, 86%, 57%, 80%, and 79% respectively (Lorimor et al., 2003). 

Thus, even though nitrate concentrations increased, there was still an overall 

reduction in nitrate transport during these three periods. This is in contrast to the 

Edwards et al. (1986) study, which showed an overall increase in nitrate mass 

transport along with the concentration increase. 
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Monitoring of VTSs in Iowa 

 Iowa State University has been monitoring the performance of VTS located 

on six CAFOs located throughout the state of Iowa. At four of these locations, 

monitoring began in 2006. Monitoring data from those four locations is available from 

Khanijo (2007). A summary of the sites used in the study are provided in Table 20 

and pictures of these sites are provided in Figure 9. For this study two of the sites, 

Central Iowa 1 and Central Iowa 2, were designed as stand-alone VTA systems. 

These sites had VTA to feedlot area ratios of 0.50:1 and 0.58:1 respectively. The 

remaining two systems, Central Iowa 2 and Northwest Iowa 2 are VIB-VTA systems. 

For these systems the ratio of VTS (VIB and VTA areas) to feedlot area are 0.52:1 

and 0.55 respectively. 

 
Table 20. VTS configurations and system component sizes for monitored VTSs in Iowa from 

Khanijo (2007). 

 
VTS 

Configuration 
Feedlot 

Area 
SSB 

Volume 
VIB 
Area 

VTA 
Area 

    (ha) (m3) (ha) (ha) 
Central Iowa 1 1 SSB - 2 VTAs 3.08 4,276 - 1.53 
Central Iowa 2 1 SSB - 1 VIB - 1 VTA 1.07 561 0.32 0.24 

Northwest Iowa 1 1 SSB - 1 VTA 2.92 3,710 - 1.68 
Northwest Iowa 2 1 SSB - 1 VIB - 1 VTA 2.95 1,104 1.01 0.60 

 

 The pilot portion of the Central Iowa 1 VTS consists of a solid settling basin 

that drains into two VTAs. The settling basin at this site is designed to contain all 

feedlot runoff and direct precipitation from a 25-year, 24-hour storm event. This 

settling basin uses a slotted picket fence outlet design to filter solids from the runoff 

effluent. During the spring of 2007, a gated V-notch weir was added to the basin 

outlet to improve solid settling and to allow the operator more control over when 

effluent would be applied to the VTAs. Pictures of the original picket fence outlet and 

the gated V-notch weir outlet are shown in Figure 10a and b. From the solid settling 

basin, the effluent is applied via gravity drainage onto two VTAs. 
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a.  b.

c.  d.  
Figure 9. Pictures of the VTSs monitored by Iowa State University from Khanijo (2007). a.) 

Central Iowa 1 b.) Central Iowa 2 c.) Northwest Iowa 2 d.) and Northwest Iowa 1 

 

a.  b.  
Figure 10. Photo a.) shows the original picket fence outlet structure and photo b.) shows the 
outlet structure after installation of the gated V-notch weir. 

 

 Central Iowa 2 is a VIB-VTA system. In this the runoff effluent drains into a 

concrete settling basin. The settling basin uses again a picket fence outlet structure. 

Effluent from the settling basin is released into the VIB through a PVC pipe; a gate 

valve on the pipe inlet controls when effluent is released. The VIB has four-inch 
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perforated tile installed at a four foot depth below the VIB surface. The drainage tiles 

were installed with a 20 foot spacing. The tile collects and transports effluent 

infiltrating through the soil profile. This effluent is then applied to a VTA for additional 

treatment 

 Northwest Iowa 1 was very similar in design to Central Iowa 1. The system 

was a stand-alone VTA system with storage for a 25-year, 24-hour storm event in 

the settling basin. The settling basin used a picket fence outlet structure and had a 

valve to control when effluent was released. The VTA was planted primarily to 

brome grass and had geotextile flow spreaders located every 200 feet down its 

length to encourage even flow distribution. 

 Northwest Iowa 2 used a VIB-VTA system. This was the only concrete 

surfaced feedlot in the study. As with Central Iowa 1, the runoff effluent drained from 

the settling basin into the VIB. Tile lines were installed under the VIB to enhance 

drainage. Effluent collected in these tile lines was pumped to the top of the VIB and 

applied the VTAs. Effluent reaching the bottom of the VTAs was collected and 

routed back into the VIB. 

The performance of these systems, on a nutrient mass release basis from 

these systems is given in Tables 21 and 22. In 2006, all system performed well with 

nutrient mass reductions ranging from 67% to 99%. For 2007, the performance of 

several systems was less than in 2006, most noticeably at Central Iowa 1, where the 

percentage reduction in nutrient mass transport ranged from 35-53%. The large 

volumes of release from the VTA were the primary cause of the reduced system 

performance, as the release volume from the VTA was larger than the volume of 

runoff from the feedlots. Northwest Iowa 2 consistently was the best performing 

system reducing the nutrient mass transport by over 99% for all nutrients in both 

years. 
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Table 21. Percentage reduction in nutrient mass transport reported in 2006 for four VTSs from 
Khanijo (2007). 

2006 NH4 TKN Total P COD TS 
Central IA 1 97% 97% 97% 97% 97% 
Central IA 2 83% 78% 72% 74% 67% 

Northwest IA 1 94% 97% 96% 97% 97% 
Northwest IA 2 99% 99% 99% 99% 99% 

 
Table 22. Percentage reduction in nutrient mass transport reported in 2007 for four VTSs from 

Khanijo (2007). 

2007 NH4 TKN Total P COD TS 
Central IA 1 53% 44% 41% 44% 35% 
Central IA 2 94% 95% 92% 95% 89% 

Northwest IA 1 80% 82% 76% 82% 84% 
Northwest IA 2 99% 99% 99% 99% 99% 

 

 Khanijo (2007) also provided the arithmetic average concentrations of the 

effluent released from each component of the VTS; these are shown in Table 23. In 

general, concentration reductions occurred during each phase of the treatment 

process at the sites. On average, concentration reductions of 67, 62, 57, 69, and 

66%  were reported for NH4, TKN, Total P, Total Solids, and COD respectively. 

Thus although though these systems are not providing complete runoff control they 

due seem to provide a high level of both nutrient mass transport reduction and 

nutrient concentration reduction. 
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Table 23. Average concentrations in effluent released from each VTS component. 

 

References 

Anschutz, J.A., J.K. Koelliker, J.J. Zovne, T.A. Bean, M.J. Peterson. 1979. Sizing 

components on open feedlot runoff-control systems. Transactions of the 

ASAE. 22(4):803-808.  

Barrington, S.F. and C.A. Madramootoo. 1989. Investigating seal formation from 

manure infiltration into soils. Transactions of the ASAE. 32(3):851-856. 

Barrington, S.F., P.J. Jutras, and R.S. Broughton. 1987. The sealing of soil by 

manure: II. Sealing mechanisms. Canadian Agriculture Engineering. 29(2):99-

103. 



 49

Blume, H. 2006. Vegetated treatment areas to utilize feedlot runoff. ASABE Paper 

No. 064075. St. Joseph, Mich.: ASAE. 

Clark, R.N., A.D. Schneider, and B.A. Stewart. 1975. Analysis of runoff from 

southern great plains feedlots. Transactions of the ASAE. 15(2):319-322. 

Chang, A.C. and J.M. Rible. 1975. Particle-size distribution of livestock wastes. 

Proceedings of the 3rd International Symposium on Livestock Waste, 339-

343. St. Joseph, MI.: ASABE. 

Dickey, E.C., and D.H. Vanderholh. 98. Vegetative filter treatment of livestock 

feedlot runoff. Journal of Environmental Quality. 10(3):279-284 

Edwards, W.M., L.B. Owens, R.K. White, and N.R. Fausey. 1986. Managing feedlot 

runoff with a settling basin plus tiled infiltration bed. Transactions of ASAE. 

29(1): 243 -247. 

Federal Register. 2003. National Pollutant Discharge Elimination System Permit 

Regulation and Effluent Limitation Guidelines and Standards for Concentrated 

Animal Feeding Operations (CAFO’s). Federal Register Vol. 68, No. 29. 

Gilbertson, C.B. and J.A. Nienaber, 1973. Beef cattle feedlot runoff – physical 

properties. Transactions of the ASAE. 16(5):997-1001 

Gilbertson, C.B., J.A. Nienaber, T.M. McCall, J.R. Ellis, and W.R. Woods. 1972. 

Beef cattle feedlot runoff, solids transport and settling characteristics. 

Transactions of the ASAE. 15(6):1132-1134. 

Gilbertson, C.B., R.N. Clark, J.C. Nye, and N.P. Swanson. 1980. Runoff control for 

livestock feedlots – state of the art. Transactions of the ASAE. 23(5): 1207 - 

1212 

Gross, J. and C. Henry. 2007. A “sprinkler” vegetative treatment system. 

Proceedings of the 2007 International Symposium on Air Quality and Waste 

management for Agriculture. ASABE Paper No.701P0907cd 

Hillel, D. and W.R. Gardner, 1968. Steady infiltration into crust-topped profiles. Soil 

Science. 108(2):137-142 



 50

Ikenberry, C.D., K.R. Mankin. 2000. Review of vegetative filter strip performance for 

animal waste treatment. ASAE Paper No. MC000128. ASAE Mid-Central 

Conference 

Iowa Beef Industry Council. 2007. Iowa’s beef cattle industry facts and figures. 

Available at http://www.iabeef.org/Content/industryfacts.aspx. Accessed on 

10/2/08. 

Jia, Z., R. O. Evans, W. Luo, and R.W. Skaggs. 2004. Modification and use of 

DrainMOD to evaluate a lagoon effluent land application system. 

Transactions of the ASAE 47(1): 47-58.Khanijo et al., 2007 

Iowa Department of Natural Resources. 2006. Chapter 65: Environmental Protection 

Appendix A: Open Feedlot Effluent Control Alternatives for Open Feedlot 

Operations 

Khanijo, I. 2008. Monitoring vegetative treatment system performance for open beef 

feedlot runoff control. MS thesis. Ames, Iowa. Iowa State University. 

Department of Agricultural and Biosystems Engineering. 

Khanijo, I., R. Burns, L.Moody, M. Helmers, J. Lawrence, C. Pederson, D. Andersen. 

2007. Vegetated treatment system models: modeled vs. measured 

performance. Proceedings of the 2007 International Symposium on Air 

Quality and Waste management for Agriculture. ASABE Paper No. 

701P0907cd 

Koelsch, R.K., J.C. Lorimor, K.R. Mankin. 2006. Vegetative treatment systems for 

management of open lot runoff: review of literature. Applied Eng. in Agric. 

22(1):141-153 

Koelliker, J.K., H.L. Manges, R.I. Lipper. 1975. Modeling the performance of feedlot-

runoff control facilities. Transactions of the ASAE. 18(6):118-1121 

Lawrence, J. 2005. Practical solutions for everyday situations. Common feedlot 

problems and options. Iowa State University Extension publication. Available 

at http://gpvec.unl.edu/mud/FeedlotProblem-

Solution&Options%20ISU%20PM2008.pdf Accessed on 11/24/08 



 51

Lawrence, J and D. Otto. 2006. Economic Importance of Iowa’s cattle industry. Iowa 

State University Extension publication. Available at 

http://www.iowabeefcenter.org/content/EconomicImportanceOfIowa'sBeefInd

ustryJuly2005.pdf Accessed on 8/10/08 

Lawrence, J., S. Shouse, W. Edwards, D. Loy, J. Lally and R. E. Martin. 2006. Beef 

feedlot systems manual. Iowa beef centre. www.iowabeefcentre.org 

Lorimor, J.C., L. Wulf, and P. Jaranilla. 2003. An infiltration-wetland system for 

treating open feedlot runoff. In Proceedings of the 9th International 

Symposium on Animal, Agricultural, and Food Processing Wastes, 405-410. 

St. Joseph, Mich: ASAE. 

Lorimor, J.C., S.W. Melvin, and K.M. Adam. 1995. Settling basin performance from 

two outdoor feedlots. In Proceedings of the 7th International Symposium on 

Animal, Agricultural, and Food Processing Wastes, 17-23. St. Joseph, Mich.: 

ASAE. 

Lott, S.C., R.J. Loch, and P.J. Watts. 1994. Settling characteristics of feedlot cattle 

feces and manure. Transactions of the ASAE. 37(1):281-285 

Lory, J.A., R. Massey, A. Schmidt, M. Shannon, A. Ulmer. 2006. Optimizing fertilizer 

value of manure from slurry hog finishing operations. Item # G 9334. MU 

Extension, University of Missouri-Columbia.  

McFarland, A.M.S., M.J. McFarland, and J.M. Sweeten. 2000. Dairy lagoon design 

and management under chronic rainfall. Applied Engineering in Agriculture 

16(3): 285-292 

Melvin, S.W. and J.C. Lorimor. 2007. Alternative technology systems for open 

feedlot runoff control. ASABE Paper No. 074071. St. Joseph, Mich.: ASAE. 

Miner, J.R., J.K. Koelliker, and M.J. English. 1980. Predicting the quality of cattle 

feedlot runoff and holding pond contents. Transactions of ASAE.  

Moffitt, D.C. and B. Wilson. 2004. Evaluating the design and management of waste 

storage ponds – Part II. ASAE Paper No 044072. St. Joseph, Mich.: ASAE. 



 52

Moffitt, D.C., Wilson, B., and Willey, P. 2003. Evaluating the design and 

management of waste storage ponds receiving lot runoff. ASAE Paper No. 

034129. St. Joseph, Mich.: ASAE. 

Moody, L., C. Pederson, R. Burns, and I. Khanijo. 2006. Vegetative treatment 

systems for open feedlot runoff: project design and monitoring methods for 

five commercial beef feedlots. ASABE Paper No. 064145. St. Joseph, Mich.: 

ASABE. 

Moore, J.A., 1975. Settling solids in animal waste slurries. Transactions of the 

ASAE.  

Murphy, P and J. P Harner 2001. Open lot runoff management options. Livestock 

poultry environmental stewardship curriculum. Lesson 22. Available at 

http://www.lpes.org/Lessons/Lesson22/22_Lot_Runoff.html Accessed on 

8/30/08 

Overcash, M.R., S.C. Bingham, and P.W. Westerman. 1981. Predicting runoff 

pollutant reduction in buffer zones adjacent to land treatment sites. 

Transactions of ASAE 24(2):430-435. 

Paterson, J.J., J.H. Jones, F.J. Olsen, G.C. McCoy. (1980) Dairy liquid waste 

distribution in an overland flow vegetative-soil filter system. Transactions of the 

ASAE 23(4):973 – 978 

Prantner, S.R. R.S. Kanwar, J.C. Lorimor, and C.H. Pederson. 2001. Soil infiltration 

and wetland microcosm treatment of liquid swine manure. Applied Engineering 

in Agriculture 17(4):483-488 

Rowsell, J.G., M.H. Miller, and P.H. Groenevel. 1985. Self-sealing of earthen liquid 

manure storage ponds: II. Rate and mechanism of sealing. Journal of 

Environmental Quality 14(4):539-543 

Sweeten, J.M. 1990. Feedlot runoff characteristics for land application. Proceedings 

of the Sixth International Symposium on Agricultural and Food Processing 

Wastes. 168-184. St. Joseph, Mich.: ASAE 

Sweeten, J.M., R. Miner, and C. Tengman. 2003. A Brief History and Background of 

the EPA CAFO Rule. Manure Matters. Volume 10, Number 1. 



 53

Tolle, S.M. 2007. Modeling alternative treatment systems for confined animal 

feedlots operations (CAFO) in Kansas. MS thesis. Manhattan, Kansas, 

Kansas State University. Department of Biological and Agricultural 

Engineering.  

United States Department of Agriculture Natural Resources Conservation Service. 

1997. Irrigation Guide. National Engineering Handbook. Available at 

http://www.wsi.nrcs.usda.gov/products/W2Q/downloads/Irrigation/National%2

0Irrigation%20Guide.pdf. Accessed on 11/25/08. 

Wulf, L.W., J.C. Lorimor, and S.W. Melvin. 2003. Modifications to feedlot runoff 

containment systems in Iowa. Agricultural and Food Processing Wastes 

Proceedings of the 12-15 October 2003 Symposium. Pg. 387-396. ASAE 

Paper No. 701P1203. 

Wulf, L and J. Lorimor. 2005. Alternative Technology and ELG Models for Open 

Cattle Feedlot Runoff Control. Model Descriptions and Users Guide. Ames, 

IA: Iowa State University. 

Wensink, R.B. and J.R. Miner. 1975. A model to predict the performance of feedlot 

runoff control systems at specific Oregon locations. Transactions of the ASAE 

18(6): 1141-1145, 1151. 

Wensink, R.B. and J.R. Miner. 1977. Modeling the effects of management 

alternatives on the design of feedlot runoff control facilities. Transactions of 

the ASAE 20(1):138-144 

Westerman, P.W. and M.R. Overcash. 1980. Dairy open lot and lagoon-irrigated 

pasture runoff quantity and quality. Transactions of the ASAE 23(5): 1157-

1164,1170. 

Woodbury B.L., J.A. Nienaber, R.A. Eigenberg. 2002. Operational evaluation of a 

passive beef cattle feedlot runoff control and treatment system. Applied Eng. 

in Agric. 18(5): 541-545. 

Woodbury B.L., J.A. Nienaber, R.A. Eigenberg. 2003. Performance of a passive 

feedlot runoff control and treatment system. Trans of ASAE. 46(6): 1525-1530 



 54

Woodbury, B., R. Koelsch, B. Boyd, J. Harner, and L. Wulf. 2004. Vegetative 

treatment area design. VTS guidance document. Chapter 6. Available at 

http://www.heartlandwq.iastate.edu/ManureManagement/AlternativeTech/vtsg

uidance/ Accessed on 5/30/08 

Yang, P and J. Lorimor. 2000. Physical and chimical analysis of beef cattle feedlot 

runoff before and after soil infiltration and wetland treatment. In Proceedings 

of the 8th International Symposium, Animal, Agricultural, and Food Procesing 

Wastes. 2003-2009. St. Joseph, Mich.: ASAE. 

Young, R.A., C.A. Onstead, D.D. Bosch, and W.P. Anderson. 1987. AGNPS: 

Agricultural Non-Point-Source Pollutions Model. A Watershed Analysis Tool. 

Conservation Research Report 35, pg. 80. Springfield, VA: SDA. 

Zovne, J.J., T.A. Bean, J.K. Koelliker, and J.A. Anschutz. 1977. A continuous 

watershed model for evaluation and design of feedlot runoff control systems. 

ASCE Journal of the Irrigation and Drainage Engineering 102 IR1, pp. 79-92 



 55

CHAPTER 2. COMPARISON OF THE IOWA STATE UNIVESITY – EFFLUENT 
LIMITATION GUIDELINES MODEL WITH THE SOIL-PLANT-AIR-WATER MODEL 
TO DESCRIBE HOLDING BASIN PERFORMANCE 

Submitted to Transactions of the ASABE for publication 

D.S. Andersen, R.T. Burns, L.B. Moody, M.J. Helmers, R. Horton 

Abstract 

In Iowa, all open beef feedlot operations over 1,000 head are required to have 

runoff control systems. Currently, Iowa regulations allow the use of vegetative 

treatment systems (VTS) on open beef feedlots that meet regulatory siting 

requirements. For a National Pollutant Discharge Elimination System (NPDES) 

permit, the runoff control performance of VTS’s must meet or exceed the 

performance of traditional runoff containment basins as predicted by the Iowa State 

University-Effluent Limitations Guideline (ISU-ELG) model. The ISU-ELG model was 

based on a model developed by Koelliker et al. (1975) to predict the performance of 

a holding basin at controlling feedlot runoff. In this paper, the criterion used to 

determine if a particular day is a “dewatering day,” i.e., suitable for land application 

of basin effluent, was investigated to determine its effect on basin performance, with 

the objective of verifying that the ISU-ELG model was providing a reasonable 

prediction of the runoff control provided by a containment basin. This paper 

compares results from the ISU-ELG model to results obtained using the Soil-Plant-

Air-Water (SPAW) model to simulate traditional feedlot runoff containment basin 

performance. The SPAW model uses a soil moisture criterion to determine if 

conditions are acceptable for land application of basin effluent. The results show that 

the ISU-ELG model over-predicts performance of traditional containment systems in 

comparison to the SPAW model at all five locations investigated. For wetter areas in 

Iowa, the number of drying days has a large effect on basin performance, whereas 

for the drier northwest region of Iowa this effect is limited. Possible methods of 

improving the ISU-ELG model predictions include adding a soil moisture accounting 
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function to model moisture levels in the land application area or calibrating the 

number of drying days required before land application can commence. 

Keywords. feedlot runoff control, Effluent Limitation Guidelines Model, SPAW, 

containment basin performance 

Introduction 

 Water pollution associated with runoff from open beef cattle feedlots 

has been a concern for many years. The passage of the Federal Water Pollution 

Control Act Amendments in 1972 placed the Environmental Protection Agency 

(EPA) in charge of developing runoff control guidelines (Anschutz et al., 1979). As a 

result, the EPA released the Effluent Limitation Guidelines, which described the 

design and operating criteria for concentrated animal feeding operation (CAFO) 

waste treatment systems (Sweeten et al., 2003). These effluent limitation guidelines 

historically required collection, storage, and land application of feedlot runoff. In 

Iowa, the current guideline for CAFO beef feedlot runoff control was written to 

require removal of all settleable solids and no effluent discharge resulting from 

precipitation events less than or equal to the 25-year, 24-hour precipitation event 

(Iowa Department of Natural Resources, 2006). 

The Iowa regulations for feedlot runoff control facilities on CAFO operations 

was recently modified to allow the use of alternative treatment systems when 

performance is equivalent to or exceeds that of a traditional system (Federal 

Register, 2003). Permitting alternative treatment technologies requires a comparison 

of the median annual overflow over a 25-year period between a traditional 

containment system and the proposed alternative treatment system. This 

comparison is made by performing site-specific modeling of both a theoretical 

traditional system and the proposed alternative treatment system. In addition to 

playing a key role in the initial permitting of these alternative treatment systems, 

modeling of the traditional containment system is required to ensure that the 

installed alternative treatment system is achieving a level of control equaling or 

exceeding that of the traditional containment system. This comparison is made on a 
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yearly pollutant mass load exiting the runoff control system (EPA, 2008). In Iowa, 

site specific traditional containment system performance is predicted using the Iowa 

State University-Effluent Limitations Guideline Model (ISU-ELG Model) implemented 

according to the guidelines described in Appendix A of the Iowa AFO/CAFO 

Regulation (Iowa Department of Natural Resources, 2006). One traditional 

containment option available to producers is a basin sized to contain all runoff from 

the 25-year, 24-hour precipitation event from all contributing drainage areas. For this 

option, land application of the collected effluent must begin on the first day that 

conditions are suitable (Iowa Department of Natural Resources, 2006). Modification 

of the feedlot runoff control regulations to allow use of alternative treatment systems 

has renewed interest in predicting control provided by runoff control systems, as 

evidenced by the development of models to determine the runoff control achieved by 

vegetative treatment systems. Examples of these models include the Iowa State 

University-Vegetative Treatment Area Model (ISU-VTA Model), the Iowa State 

University-Vegetated Infiltration Basin / Vegetative Treatment Area Model (ISU-

VIB/VTA Model) (Wulf et al., 2005), and runoff control system models developed for 

Kansas (Tolle et al., 2007). Accuracy of the ISU-ELG model to predict traditional 

containment basin performance is key to alternative treatment system design and 

installed system evaluation. However, thus far little research has been done to 

determine if the ISU-ELG Model is providing reasonable prediction of the 

performance a traditional containment system would achieve, especially under Iowa 

conditions. 

Objective 

This paper compares the modeled overflow volumes obtained using the ISU-

ELG and SPAW models to simulate the performance of a containment basin 

controlling feedlot runoff. This analysis was performed to determine if the ISU-ELG 

model provides a reasonable prediction of containment structure performance under 

Iowa climatic conditions. The analysis was performed for five locations throughout 
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Iowa. At each location, actual site-specific historical weather data were used in 

modeling system performance. 

Background 

There is a long history of modeling the performance of traditional containment 

systems on open beef feedlots. This modeling effort can be traced back to the EPA’s 

release of effluent limitation guidelines in 1972. Shortly after the creation of the 

effluent limitation guidelines, Koelliker et al. (1975) developed a model to predict 

runoff control achieved by a traditional containment system following the effluent 

limitation guidelines. This model was written as a continuous watershed model 

operating on a daily time step to estimate the runoff control provided by the 

containment system. The model was developed to use the SCS curve number 

method to determine runoff volume from the feedlot surface; runoff volume was then 

routed into a holding pond. The holding pond volume was simulated using a water 

balance with inflows of runoff from the feedlot and direct precipitation onto the 

holding pond and outflows of evaporation, overflow, and land application of effluent. 

In this model, Koelliker et al. (1975) did not specifically consider the disposal area, 

but instead created a set of guidelines to determine when land application was 

appropriate. They considered land application appropriate if: daily precipitation for 

each of the three previous days was less than 0.05 inches, the average daily 

temperature was above freezing, there was no snow on the ground, the soil was not 

frozen, and more than 10% of the basin’s total volume was filled with effluent. Using 

this model, Koelliker et al. (1975) demonstrated that a period of chronic rainfall could 

cause basin overflow. Furthermore, they suggested that by including more detailed 

disposal criteria the ELG Model could be refined. Wensink and Miner (1975) 

performed a similar modeling effort to evaluate the effect of chronic rainfall on total 

containment systems for Oregon locations. They recognized that runoff events in 

Kansas represented mainly catastrophic rainfall events whereas in western Oregon 

chronic rainfalls characterized the climate. In their investigation, Wensink and Miner 

(1975) noted the amount of overflow, the date, and the precipitation that caused this 
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overflow. Based on this data the legality of the overflow was determined, i.e., was it 

caused by a storm event of equal or greater magnitude to the 25-year, 24-hour 

event. This allowed them to determine that many of the overflows were caused by 

events of lesser magnitude than the 25-year, 24-hour event. Based on the results of 

the study, they designed a second model that used what they termed the “Sufficient 

Design Technique” to help size containment structures to prevent discharge from 

events of lesser magnitude than the 25-year, 24-hour storm.  

Based on these earlier modeling attempts, Zovne et al. (1977) developed a 

model that took into account the soil moisture in the disposal area. They considered 

the disposal area to be a soil-water reservoir that was recharged by both 

precipitation and land application, and depleted by evaporation and deep drainage. 

There were three components in this model: the feedlot surface which generated the 

runoff effluent, the effluent wastewater storage facility which modeled the holding 

pond level, and the disposal area which performed a soil moisture accounting 

procedure and enabled the modeling of soil conditions in the disposal area. Based 

on the soil conditions in the disposal area, a decision was made about the 

appropriateness of land application. In this analysis, a percentage of available 

moisture in the root zone above 90% was the threshold value for delaying land 

application. Anschutz et al. (1979) used the Zovne et al. (1977) model to study 

important variables in designing runoff control systems. For irrigation disposal 

systems, they found that moisture deficit was the most important factor. Moisture 

deficit was defined as the difference between the mean evaporation from a lake and 

the annual precipitation. 

More recent interest in modeling holding pond performance has been 

provided by Wulf and Lorimor (2003), who created the ISU-ELG model to determine 

the performance of a traditional containment system under Iowa conditions. The 

ISU-ELG model was developed as a modified version of the Koelliker et al. (1975) 

model. The ISU-ELG model was written to operate on a daily time step with runoff 

volumes from the contributing drainage area calculated using the NRCS/SCS curve 

number method. This flow was then routed into a containment basin. The flow 
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entering the basin has the concentrations shown in Table 24. These concentrations 

are used to calculate the mass of specific parameters entering the basin. The 

concentrations of the parameters in the basin were then adjusted to account for both 

water loss due to evaporation and water addition from rainfall directly onto the 

containment basin surface. The adjusted concentration was used to determine the 

mass of specific parameters removed from the basin due to either land application or 

basin overflow. In this model, Wulf and Lorimor (2005) used the same guidelines as 

Koelliker et al. (1975) for determining when land application was appropriate. These 

guidelines were deemed appropriate for Kansas climatic conditions, but no effort 

was made to verify these assumptions for Iowa climate conditions. 

 
Table 24. Concentrations of specific parameters in the containment basin used in the ISU-ELG 

Model. 

Contaminant 
Earthen Lot 

(mg/L) 
Concrete Lot 

(mg/L) 
Total Kjeldahl Nitrogen 65 97.5 
Ammonium Nitrogen 60 75 

Total Phosphorus 20 30 
Total Solids 2000 3000 

Chemical Oxygen Demand 2650 3975 
 

The Soil-Plant-Air-Water (SPAW) Model has been used to simulate the 

performance of waste containment structures. Moffitt et al. (2003) performed a 

comparison of Soil-Plant-Air-Water (SPAW) and the National Resources 

Conservation Services (NRCS) Animal Waste Management (AWM) program to test 

the temporary storage component of AWM. In this analysis, AWM was used to size 

the temporary storage component of the basin. They then used SPAW to examine 

the basin performance on a daily time step (Moffitt et al., 2003). In a separate study, 

Moffitt and Wilson (2004) utilized SPAW to model the pond levels in four wastewater 

storage ponds located on dairies in Oregon. These dairies had lot areas ranging 

from 232 to 11,655 m2 (0.06 to 2.88 acres) which contributed runoff to the holding 

ponds. In this study, Moffitt  and Wilson (2004) demonstrated good general 

agreement between the SPAW modeled levels and the experimentally determined 
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levels, with deviations between the results possibly caused by issues such as 

operators deviating from their waste management plans, inaccuracies in 

containment structure level measurement, or differences in actual and modeled 

manure and wastewater inputs. This study showed that SPAW provided a model 

that could predict the performance of a waste storage pond if the system was 

operated according to the nutrient management plan. Specifically Moffitt and Wilson 

(2004) stated that a model is only as good as the operators’ ability to follow their 

operating/nutrient management plans. They also pointed out that there were several 

factors that effect application time; these were the field conditions on which the 

containment structures contents were to be applied and the application time in 

relation to the crops nutrient demand. 

Given that actual system performance was noted to be directly related to 

management decisions made by the farmer, it has become very important to define 

a reasonable management plan that the operator could be expected to use to 

manage wastewater basins. The Nebraska Department of Environmental Quality 

has released two guidance documents providing information on suggested 

containment basin operation. In the guidance document on holding pond operation, 

they specified that land application must occur on all dewatering days until the 

available holding pond capacity was able to contain all runoff from a 25-year, 24-

hour event (Nebraska Department of Environmental Quality, 2005). A dewatering 

day was defined as a day with weather and soil conditions suitable for land 

application of livestock wastes (Nebraska Department of Environmental Quality, 

2003). Proper soil conditions were defined such that the amount of liquid applied 

should not exceed the capacity of the soil to store the moisture in the root zone of 

the crop. The amount of liquid the soil can hold is determined by taking the current 

moisture level of the soil and subtracting this value from the field capacity (Nebraska 

Department of Environmental Quality, 2003). This idea of manure application timing 

based on soil moisture was also recommended to producers in the Wisconsin 

Agriculturist (Hanson, 2007) and Hoard’s Dairyman (Weisenberger and Madison, 

2007). Hanson (2007) discussed the effect of soil texture on the moisture holding 



 62

capacity of soil and recommended keeping a moisture budget to determine if effluent 

application is acceptable. Weisenberger and Madison (2007) extended the analysis 

stating that no application of manure should occur when the moisture content in the 

top four inches exceeded 35% due to the risk of runoff. 

As stated previously, Moffitt and Wilson (2004) reported the use of SPAW in 

modeling the depth of effluent in a containment basin. In their investigation, Moffitt 

and Wilson (2004) assumed that during the scheduled application period field 

conditions would be acceptable for land application. This made it easier to model the 

performance of the containment basin. More recently, Saxton and Willey (2004) 

reported an update to the SPAW model that allows the user to perform an irrigation 

budget for a field. The use of the irrigation budgeting could be used to determine 

when effluent application onto the application area would be appropriate from a soil 

moisture standpoint. 

Methodology 

The first item investigated was the sensitivity of the ISU-ELG Model to the 

number of dry days required after a precipitation event before land application could 

proceed. In the ISU-ELG model, this variable was determined to be equivalent to 

setting the soil moisture at which land application is considered appropriate. In the 

ISU-ELG model to date, a value of three days has been used; this followed the 

guidelines suggested by Koelliker et al. (1975) for their original containment basin 

model used in Kansas. The sensitivity of the model to this assumption was 

investigated for five hypothetical feedlots across the state of Iowa; these feedlots 

were located in Ames, Red Oak, Sac City, Sioux City, and Waterloo (Figure 11). 

Each of the simulations was performed for a 26-year period using actual site-specific 

historical weather data. The model was run ten times at each location varying the 

number of dry days required before land application could begin. Land application 

was then modeled to proceed at a rate of one-tenth of the total containment basin 

volume per day until either rainfall occurred or less than one-tenth of the basin 

volume was filled with effluent. The amount of discharge was then normalized at 
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each site as average annual quantity of discharge per hectare of feedlot area. The 

size of the 25-year, 24-hour event at each of the locations is shown in the Table 24. 

This storm size was used to determine the size of a containment basin required to 

hold all feedlot runoff and direct precipitation onto the containment structure. 

 
Figure 11. Locations of the five hypothetical feedlots used in the simulation. 

 

Each of these simulations was also performed using the SPAW model. The 

SPAW model was used to simulate all parts of the feedlot hydrology including runoff 

from the feedlot, storage in a containment basin, and land application. SPAW, like 

the ISU-ELG Model, was developed to use the NRCS/SCS curve number method to 

determine the runoff volume from the feedlot. The curve numbers entered into the 

SPAW model were the same as the values programmed into the ISU-ELG Model, 

which are 91 and 94 for earthen and concrete surfaced feedlots respectively, under 

normal antecedent moisture conditions (AMC II), and 97 and 98 for earthen and 

concrete feedlots, under wet antecedent moisture conditions (AMC III), respectively. 

Stage-storage dimensions were entered in the SPAW model so that it replicated 

basin geometry used in the ISU-ELG Model. Finally, the land application area was 

modeled in SPAW such that land application would occur whenever the moisture 

level in the root zone reached 95% of the field capacity. The amount of irrigation 

supplied would replenish the moisture content of the root zone up to field capacity. 

Modeling the land application area required several additional input variables; these 

included the soil texture in the land application area, size of the application area, and 
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rooting depth of the crop. For this analysis, the rooting depth was assumed to be 

four feet at all locations. By supplying soil texture SPAW then calculates additional 

hydraulic soil properties such as the soil-water retention curve, the hydraulic 

conductivity, and the bulk density of the soil. For this analysis, a representative soil 

for each of the five locations was determined by use of a USDA web soil survey 

applet. The soil texture present in that land application area at each of the five 

locations is also shown in Table 25. This soil texture information, along with 

thicknesses of the soil layers, was entered into the SPAW model; SPAW then 

calculated required soil properties such as hydraulic conductivity, the soil-water 

retention curve, and porosity based on this data. 

Again, each of the simulations was run for a 26-year period using site-specific 

historical weather data. The model was run repeatedly at each location with varying 

land application area dimensions. The average annual overflow from the 

containment basin was again normalized by determining the average annual 

overflow on a per hectare of feedlot area basis. 

 
Table 25. 25-Year, 24-Hour Storm Size and Soil Texture for Five Locations in Iowa 

Location 
25-year, 24-hour Storm Size 

mm (inches) 
Soil Texture in Land 

Application Area 
Ames 129.5 (5.1) Loam 

Red Oak 129.5 (5.1) Silty Loam 
Sac City 129.5 (5.1) Loam 

Sioux City 124.5 (4.9) Silty Loam 
Waterloo 127.0 (5.0) Loam 

 

The results of both modeling efforts were compared to determine if the 

original hypothesis of beginning land application three days after a precipitation 

event was a reasonable management plan based on the soil moisture in the 

application area. The number of dry days required before land application could 

begin was then adjusted to calibrate the ISU-ELG model so that the average annual 

discharge per hectare of feedlot predicted by the ISU-ELG Model and the SPAW 

model were approximately equal. 
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Results and Discussion 

Figure 12 shows how the performance of a traditional containment basin 

varied, as predicted by the ISU-ELG Model, when the number of dry days required 

before land application could begin was adjusted. This analysis was conducted for 

five locations to represent the weather conditions expected throughout Iowa. The 

locations of Ames, Red Oak, Sac City, and Waterloo, showed the same general 

trend of increasing discharge when more time was required before land application 

could begin. Sioux City also showed this trend, but to a much lesser extent. As can 

be seen in Figure 12, the assumption about the amount of time required for the land 

application area to dry before effluent application could begin had a pronounced 

effect on performance for the majority of Iowa. The model’s sensitivity to this variable 

made it important to accurately choose the number of dry days required before land 

application began. 
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Figure 12. Sensitivity of the ISU-ELG Model to the number of dry days required before land 

application could begin for five locations in Iowa. 
 

A regression analysis was used to quantify how system performance changed 

with the number of dry days required before land application could begin. Examples 

of this regression analysis for the feedlot at Ames and Sac City are shown in Figure 
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13. In this figure, the two dashed lines represent a 90% confidence interval for the 

average annual basin overflow volume per hectare of feedlot surface. The average 

annual overflow volume per hectare of feedlot for each dry day requirement is 

marked in the figure. A regression line was fit to the average data; the best-fit line 

was used to assess the ISU-ELG Model’s sensitivity to the dry day requirement. For 

the Ames location, the analysis showed that for every day of drying required before 

land application commenced, on average an extra 163 cubic meters of basin 

overflow per year per hectare of feedlot would occur. Whereas for Sac City, on 

average an extra 143 cubic meters of basin overflow per year per hectare of feedlot 

would occur. Similar results were obtained for Red Oak and Waterloo. 
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Sioux City
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Figure 13. Regression analysis to determine the sensitivity of the ISU-ELG Model to the 

number of dry days required before land application could begin. Dashed lines represent 90% 
confidence intervals on the average annual overflow volume per hectare of feedlot. The data 

points with the solid regression line represent the average annual overflow volume per 
hectare of feedlot. a.) Ames b.) Sac City c.) Sioux City 
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The results from the regression analysis of Sioux City were quite different 

from the other locations, and are also shown in Figure 13. In modeling the Sioux City 

feedlot, changing the dry day requirement from one to three days had very little 

effect on the overall performance of the runoff control structure; thus, in this case the 

regression was only performed on dry days three through ten. At the Sioux City 

location, the temporal pattern of rainfall consisted of larger storms with a longer 

interlude between the storms in comparison to the other sites. Table 26 shows 

sensitivities to the dry day requirement for each of the five locations. 

 
Table 26. Sensitivity coefficient for the ISU-ELG Model to the number of dry days required 

before land application could begin. 

Location 

m3 overflow per hectare of feedlot per year per dry day required before land 
application 

(ft3 overflow per acre of feedlot per year per dry day required before land application) 
Ames 163 (2,332) 

Red Oak 184 (2,632) 
Sac City 143  (2,036) 

Sioux Cityh 51 (734) 
Waterloo 155 (2,211) 

 

The result of the SPAW analysis is shown in Figure 13. In this case, the 

performance of the runoff control system was a function of the land available for 

application of the feedlot runoff, since a larger area would allow application of more 

effluent every time the disposal criteria was reached. For all five locations, it was 

assumed that the land application area would be planted to corn and irrigation could 

occur regardless of the crop size, i.e., irrigation was only limited by the soil moisture 

criteria. In this case, the basin could be completely emptied, i.e., there was no 

minimum treatment volume required to remain in the containment structure. As can 

be seen in Figure 14, Ames, Red Oak, Sac City, and Waterloo again showed a 

similar trend in response to the land application area available. For the Sioux City 

feedlot, a smaller disposal area was required and the system achieved a greater 

level of control than at the other locations. Figure 14 also illustrates that increasing 
                                            

h Note that only days three through ten are considered in calculating the sensitivity coefficient for Sioux City. 
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the application area only has an effect on the performance of the containment 

system up to a ratio of five hectares of land application per hectare of feedlot 

surface, after this point there was a relatively small increase in system performance 

for increasing the application area. This was because at a certain point in each case 

the performance of the system was no longer limited by the size of the application 

area, but was instead limited by the temporal pattern of soil moisture in the land 

application area. Due to the drier climate in northwestern Iowa, a smaller application 

area was required per hectare of feedlot surface than in the areas that received 

more rainfall, and therefore naturally maintain a wetter soil profile. The soil moisture 

status was a function of several variables; among these were the volume and time 

distribution of rainfall, the soil texture, amount and time distribution of 

evapotranspiration, and soil properties in the land application area. 
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Figure 14. Sensitivity analysis of a containment basin, as predicted by the SPAW model, to the 

ratio of land application area to feedlot area for five locations in Iowa. 
 

As mentioned previously, the ISU-ELG model was originally developed based 

on the model Koelliker et al. (1975) developed for predicting containment basin 
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performance in Kansas. In this model, they assumed that land application would be 

possible three days after a rainfall event based on Kansas conditions. The ISU-ELG 

model had never been calibrated and no adjustments have been made for Iowa 

conditions. A comparison between the performances predicted by the SPAW model 

and the ISU-ELG Model has provided some insight into how well the assumption of 

three days before land application commences fits Iowa conditions. Based on these 

results and using the SPAW results as the measure of comparison, it was possible 

to calibrate the ISU-ELG model by adjusting the number of dry days required after a 

rainfall event to obtain the same performance as predicted by the SPAW model, 

which based land application timing on the modeled soil moisture. This calibration is 

shown for Ames, Red Oak, Sac City, Sioux City, and Waterloo in Figure 15. The 

calibrations were made on the average annual discharge volume per hectare of 

feedlot. For Ames, waiting approximately five days after the rainfall before land 

application made average annual discharge equivalent. For Sac City, between four 

and five days made the modeling procedures equivalent, with a similar result for 

Waterloo. Sioux City and Red Oak both had relatively good agreement when the 

release day criterion was left at three dry days before land application. This was 

caused by the substantially drier climate around Sioux City; the annual precipitation 

at this location was 66 cm (26 inches), this was similar to the 72.6 cm (28.6 inches) 

of precipitation averaged in Kansas. In addition, the similarity between the SPAW 

and ELG model results for Red Oak resulted from higher evaporation rates in this 

location. The results of the calibrated number of dry days required to obtain similar 

results to the SPAW model is shown in Table 27. 
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Figure 15. Calibration of the ISU-ELG Model dry day requirement to match SPAW predicted 

performance. a.)Ames b.) Red Oak c.) Sac City d.)Sioux City e.)Waterloo 

 
Table 27. Calibrated number of dry days required to match ISU-ELG and SPAW model 

predictions of effluent release. 

Location Calibrated Number of Dry Days before Land Application 
Ames 5 

Red Oak 3 
Sac City 5 

Sioux City 3 
Waterloo 5 
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A second way to conceptualize these results was to compare the predicted 

average annual yearly overflow volumes for both the SPAW and ISU-ELG models 

(Table 28). For most of Iowa, the SPAW model predicted 1.5 times the effluent 

discharge volume predicted by the ISU-ELG model when the three drying day 

criteria was used. The exception to this statement was Red Oak, where SPAW only 

predicted 1.1 times as much annual overflow as the ISU-ELG model. It should also 

be noted that the ratio of the two predictions for Sioux City was 1.5. In this case, the 

overflow volumes predicted by both models were very small. This large ratio was a 

result of the small overflow volumes predicted for this location. This can be verified 

by examining Table 29, which displays the percent runoff control predicted at each 

location. There was almost no change in the percent of runoff controlled at both Red 

Oak and Sioux City, whereas for Ames, Sac City, and Waterloo, a sizeable decrease 

in the predicted control was seen in the SPAW model predictions as compared to 

the ISU-ELG model. 

A second method of modifying the ISU-ELG model that could be used would 

be to utilize the ratio between the two predictions as a multiplication factor to correct 

the ISU-ELG model annual predicted overflow volume to be equal to that of the 

SPAW model. Applying this correction factor would maintain the current definition of 

chronic rainfall (precipitation events within three days of each other). Applying this 

correction factor would make the average annual release volume predicted by the 

ISU-ELG model equal to the average annual release volume simulated by SPAW. 

 
Table 28. Comparison of the average annual overflows predicted by the ISU-ELG and the 

SPAW Models. The third column displays the ratio of the SPAW prediction to the ISU-ELG 
prediction. 

Location 

Average Annual Yearly Overflow 
Predicted by ISU-ELG Model 

m3/ha of feedlot 

Average Annual Yearly Overflow 
Predicted by SPAW Model 

m3/ha of feedlot 

Ratio of 
SPAW Prediction 

to ISU-ELG Prediction 
Ames 436 704 1.6 

Red Oak 388 416 1.1 
Sac City 29 445 1.5 

Sioux City 16 25 1.5 
Waterloo 264 455 1.7 
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Table 29. The percent runoff control as predicted by the ISU-ELG and the SPAW model for 
each of the five locations. 

Location ELG Model SPAW 
Ames 86% 78% 

Red Oak 89% 88% 
Sac City 90% 85% 

Sioux City 99% 99% 
Waterloo 90% 83% 

 

Figures 16, 17, and 18, show a comparison between the ISU-ELG model 

results and the SPAW on a year-by-year basis. Both the original ISU-ELG model, 

with the three dry-day criterion before land application, and the dry day calibrated 

ISU-ELG model are shown in the site comparisons. As can be seen even the 

calibrated ISU-ELG model did not follow the same temporal pattern as SPAW in 

predicting when basin discharges would occur. Only a slight improvement in the 

temporal distribution of when the runoff occurred was realized from calibration of the 

ISU-ELG model to the SPAW model. Figure 16 shows a year-by-year comparison of 

the cumulative yearly overflow volumes on a per hectare of feedlot basis for Sac 

City. In this case, the uncalibrated ISU-ELG model predicted basin overflow for 13 

out of the 26 years, after calibration basin discharge was predicted in 15 of the 26 

years. The SPAW model also projected basin discharge in 15 of the 26 years 

modeled. For Sioux City, the ISU-ELG modeled predicted two years with discharges, 

while the SPAW model projected three years with discharge, according to both 

models most of the projected discharge occurred in 1972. In 1979, SPAW projected 

almost 148 m3 of basin overflow, while the ISU-ELG model predicted no overflow. 

This resulted from a wet September, which kept modeled soil moisture levels 

elevated in the SPAW model, limiting land application opportunities. The ISU-ELG 

model did not predict an overflow during this period because the precipitation events 

occurred more than three days apart, which allowed dewatering the containment 

basin. The year-by-year simulations results for Sioux City are shown in Figure 17. 

For Waterloo, shown in Figure 18, 1993 accounted for a large portion of the 

discharge volume in all three modeling scenarios. For Waterloo, the original ISU-
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ELG model projected 8 years with a discharge, after calibration 14 of the years had 

a discharge. The SPAW model projected 19 years with discharge for this site. 
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Figure 16. Temporal distribution of basin overflow volumes on a per hectare of feedlot basis 

for Sac City, Iowa. 
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Figure 17. Temporal distribution of basin overflow volumes on a per hectare of feedlot basis 

for Sioux City, Iowa. 
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Figure 18. Temporal distribution of basin overflow volumes on a per hectare of feedlot basis 

for Waterloo, Iowa. 
 

As recommended by Moriasi et al. (2007), three modeling statistics, along 

with a graphical comparison, were used to assess the agreement between the two 

models. The modeling statistics used were the Nash-Sutcliffe efficiency (NSE), the 

percent bias (PBIAS), and the ratio of the root mean square error to the standard 

deviation of the SPAW model results (RSR). These statistics were determined for 

the ISU-ELG model in both calibrated and un-calibrated form. Data comparisons 

where made on an annual basis. The NSE was used to indicate how well a plot of 

the observed data versus the modeled fits the one-to-one line (Moriasi et al., 2007); 

the NSE was developed to have a value between negative infinity and one. A NSE 

of one means that the models showed a perfect match; any value less than zero 

would indicate that the use of the mean value of the SPAW model was a better 

predictor of performance than use of the ISU-ELG model results. The PBIAS 

measured the average tendency of the ISU-ELG simulated data as compared to the 

SPAW simulated data. In this case, a value of zero indicates the two models predict 

similarly, a positive value would indicate that the ISU-ELG model would 

underestimate the volume of overflow and a negative value would indicate the ISU-
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ELG model overestimates the volume of overflow in comparison to SPAW. The third 

statistic used was the RSR; the RSR was calculated as the ratio of the root mean 

square error between the ISU-ELG simulation and the SPAW simulation divided by 

the standard deviation of the SPAW simulated data (Moriasi et al., 2007). This 

statistic was developed to have a range of zero to positive infinity, with the optimum 

value being zero. Moriasi et al. (2007) also provided guidelines for when these 

statistics indicate satisfactory model performance; for flow modeling these were, a 

NSE > 0.50, a RSR < 0.70, and PBIAS of less than plus or minus 25%. 

The statistics for both the calibrated and un-calibrated ISU-ELG model in 

comparison to the SPAW simulation are shown in Table 30. Each of these modeling 

statistics provided an important piece of information about the comparison of these 

two models. It was important that the models had very little percent bias, as this 

value provided information on the tendency of the model to either under- or over-

predict the amount of basin overflow. In all cases, both calibrated and un-calibrated, 

the ISU-ELG model predicted less basin overflow than the SPAW model. The NSE 

provided information on temporal variation between the two models. Values close to 

one indicate that the models predict similar amounts of release during the same 

years. Thus, the statistic provided information about whether both models predicted 

the system was stressed by the same weather patterns. Thus for Sioux City, which 

has a high NSE, the assumption of commencing land application three days after a 

precipitation event seemed to cause a similar temporal pattern of when basin 

overflow would occur as that predicted by the soil moisture criterion calculated by 

SPAW; however, the percent bias indicated that the ISU-ELG model constantly 

under-predicts the release volume. After calibration, the ISU-ELG model provided 

satisfactory performance in comparison to SPAW at three locations; at the Sioux 

City location, the PBIAS was larger than the accepted value. At the Sac City 

location, the NSE was slightly lower than the suggested value while the RSR was 

slightly higher; however, this site showed good agreement in the average annual 

overflow volume. Overall these results imply that after calibration the ISU-ELG 
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model provides good agreement between the average volumes of overflow, but 

without the desired temporal agreement between the ISU-ELG and SPAW models. 

 
Table 30. Nash-Sutcliffe modeling efficiency, percent bias, and the root mean square error – 

standard deviation ratio of the ISU-ELG model in comparison to the SPAW model. These 
statistics are shown for both the calibrated and uncalibrated ISU-ELG models. 

  ISU- ELG Model – Un-calibrated ISU-ELG Model - Calibrated 
Location NSE PBIAS RSR NSE PBIAS RSR 

Ames 0.58 46 0.65 0.59 12 0.64 
Red Oak 0.75 13 0.50 0.75 13 0.50 
Sac City 0.37 46 0.79 0.42 8 0.76 

Sioux City 0.89 35 0.34 0.89 35 0.34 
Waterloo 0.73 51 0.52 0.79 8 0.46 

Conclusions 

The current ISU-ELG model under-predicted the amount of discharge that 

occurred from a traditional containment structure when compared to the SPAW 

model for all five locations investigated. At Red Oak and Sioux City, the differences 

in discharge volumes were relatively minor, while the Ames, Sac City, and Waterloo 

locations showed large discrepancies. It is believed that the drier climate in Sioux 

City contributed to soil moisture conditions that made the three dry days before land 

application assumption appropriate. Over the 26-year simulation period used in 

modeling runoff containment facility at Sioux City the average yearly rainfall was 66 

cm (26 inches), which was very similar to the 72.6 cm (28.6 inches) average for 

Kansas. This would suggest that the assumptions Koelliker et al. (1975) made for 

when land application was appropriate were for the Kansas climatic conditions for 

which the model was developed. Even at the Sioux City location, the ISU-ELG 

model showed a large percent bias, although there was no difference in the percent 

control reported by the ISU-ELG model and the SPAW model. Red Oak, Iowa, 

although located in a wetter climate region, had higher evaporation rates and a soil 

texture in the disposal area that contributed to improved drainage and drying of the 

soil profile. This increased drying of the soil and made the three-day assumption 

more appropriate than for the other locations around Iowa. For the remaining three 
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locations, it was determined that the sites required approximately five days before 

beginning land application to calibrate the average annual discharges to match the 

SPAW model. 

The sensitivity of the ISU-ELG Model to the criterion of number of dry days 

required before land application could begin was tested. For most locations it was 

determined that on average approximately 150 cubic meters of discharge per 

hectare would be generated for every day that it takes for the application area to dry 

to a moisture content that would be suitable for land application. The Sioux City 

simulation showed a much lower sensitivity to the dry day criterion. The Nash-

Sutcliffe modeling efficiency was used to compare the ELG model and SPAW model 

results on yearly annual discharge. The uncalibrated ELG model was found to have 

a modeling efficiency ranging from 0.37 to 0.89. After calibration, the modeling 

efficiency was increased to range from 0.42 to 0.89. Therefore, even after 

calibration, the two models still displayed different temporal patterns of when 

discharge would occur. In its uncalibrated form the PBIAS statistic ranged from 13-

51%, after calibration, this value was improved to 8-35%. 

To increase the similarity between the ISU-ELG and SPAW model’s 

predictions; modification of the ISU-ELG model is required. There are several 

options available to perform these modifications. One option would be to perform a 

calibration of the ISU-ELG model to determine the number of dry days required in 

the ISU-ELG model to make the average annual overflow volume per hectare of 

feedlot equal to that predicted by the SPAW model. In this manner, the ISU-ELG 

model could be modified to more accurately represent soil moisture conditions. A 

second alternative would be to develop a scaling factor to adjust the ISU-ELG model 

average discharge to be equal to the volume predicted by the SPAW model. The 

advantage of using this method is that it would keep the temporal pattern of basin 

overflow the same, i.e., the definition of chronic rainfall is not changed from the 

modification. A third option available would be the use of the SPAW model to 

determine the amount of basin overflow that would occur. One difficulty in simulating 

the hydrology of the feedlot waste management system with SPAW is that three 
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simulations must be performed, one for the feedlot surface, one for the land 

application area, and one for the liquid level in the containment basin. The fourth 

option available would be to add a soil moisture modeling component to the ISU-

ELG model. Making this addition to the ISU-ELG model would allow the entire 

system to be simulated by a single model run, simplifying the simulation procedure. 
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CHAPTER 3. THE USE OF THE SOIL-PLANT-AIR-WATER MODEL TO PREDICT 
THE HYDRAULIC PERFORMANCE OF VEGETATIVE TREATMENT AREAS FOR 
CONTROLLING OPEN LOT RUNOFF 

Will be submitted to Transactions of the ASABE for publication 

D.S. Andersen, R.T. Burns, L.B. Moody, M.J. Helmers, R. Horton, C. Pederson 

Abstract 

Several Iowa beef feedlots have interim, National Pollution Discharge 

Elimination System (NPDES) permits for vegetative treatment systems (VTS) to 

control and treat feedlot runoff. Monitoring of these sites has provided data to 

validate performance modeling of these systems. In this study, two approaches 

using the field module and the pond module of the SPAW model were investigated 

to determine their ability to predict hydraulic performance of vegetative treatment 

areas (VTAs). Three of the four locations used in this study had a high water table; 

this water table elevation limits the space available in the soil profile to infiltrate and 

store water. For these locations, the performance of the VTA was limited by the 

storage available in the soil profile, and SPAW simulations provided a realistic 

prediction of the monitored results. Modeling results verified that for these locations 

VTA performance was limited by the space available in the soil profile. Modeling 

statistics were calculated to determine the models ability to predict VTA 

performance. For the four locations investigated, Nash-Sutcliffe efficiencies ranged 

from 0.45 to 0.99 while the percent bias of the model ranged from -3% to 100%. The 

results showed that the SPAW pond module could be used to predict hydraulic 

performance of VTAs, specifically under high water table conditions. 

Keywords. Feedlot runoff control, SPAW, Vegetative Treatment Areas, 

hydraulic modeling 

Introduction 

Pollution associated with runoff from open beef cattle feedlots has been a 

concern for many years. The passage of the Federal Water Pollution Control Act 



 82

Amendments in 1972 placed the Environmental Protection Agency (EPA) in charge 

of developing runoff control guidelines (Anschutz, 1979). As a result, the EPA 

released the Effluent Limitation Guidelines which described the design and operating 

criteria of the waste treatment system for concentrated animal feeding operations 

(CAFOs) (Sweeten, 2003). These effluent limitation guidelines historically required 

collection, storage, and land application of the feedlot runoff; however, recent 

modifications allow the use of alternative treatment systems when their performance 

is equivalent to or exceeds that of a traditional containment system (Federal 

Register, 2003). As part of permitting alternative treatment technologies on CAFO 

operations, a comparison of the median annual release volume over a 25-year 

period between a traditional containment system and the proposed alternative 

treatment system is required. EPA states that one possible method of making this 

comparison is to use simulation models, along with site-specific climate data and 

wastewater characterization data, to determine the pollutant discharge level (Federal 

Register, 2003). 

One possible alternative treatment technology that has been proposed is a 

vegetative treatment system (VTS). A VTS is a combination of treatment 

components, of which at least one component utilizes a form of vegetative treatment 

to manage runoff from open lots (Moody, 2006). Vegetative treatment areas (VTAs) 

and vegetative infiltration basins (VIBs) are two proposed vegetative treatment 

components for VTSs. A VTA is an area that is level in one dimension and has a 

slight slope along the other, planted and managed to maintain a dense stand of 

vegetation (Moody, 2006). Operation of a gravity flow VTA consists of applying 

feedlot effluent evenly across the top of the vegetated area and allowing the effluent 

to flow down the length of the treatment area (Moody, 2006). Gross and Henry 

(2007) proposed a modification to VTAs, called a “sprinkler VTA,” which uses a 

sprinkler system to apply the effluent more evenly over the VTA. Ikenbery and 

Mankin (2000) identified several methods in which effluent was treated by VTAs, 

these included settling solids, infiltrating runoff, and filtering the effluent as it flowed 

through the vegetated area. A VIB is a flat area surrounded by berms and planted to 
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permanent vegetation (Moody et al., 2006). These areas have drainage tiles located 

approximately 1.2 meters (4 feet) below the soil surface to encourage infiltration of 

effluent through the soil profile. The tile lines collect the infiltrating effluent, which 

then receives secondary treatment, often from a VTA. Pollutant removal in the VIB 

relies on filtration of the effluent as it flows through the soil, uptake of nutrients by 

plants, and pollution degradation (Moody et al., 2006). 

Currently, Iowa State University (ISU) is monitoring the performance of six 

vegetative treatments systems located around the state of Iowa. At four of these 

locations, a complete year of monitoring data was collected in 2007. At these sites, 

the vegetative treatment system was divided into both pilot and non-pilot systems. 

The pilot systems were monitored by Iowa State University and will be the focus of 

this modeling study; where as the non-pilot portions of the system are monitored by 

the producers. Moody et al. (2006) provided a description of the monitoring 

techniques Iowa State has been using to determine system performance at these 

locations. The data being collected includes daily temperature and precipitation 

values, as well as effluent volume and nutrient mass exiting each component of the 

treatment system. 

Table 31 shows the size of the feedlots and the vegetative treatment area of 

the pilot system at each of the four locations. In addition, the configuration of the 

VTS system is specified. On these sites there were two different VTS configurations, 

a solid settling basin (SSB) followed by a stand-alone VTA, or a SSB followed by a 

VIB which was then followed by a VTA. Schematics of both types of systems are 

shown in Figure 19. Figure 19a shows a stand-alone VTA system; in this system, 

runoff is generated from the beef feedlot and contained in a solid settling basin 

designed to provide sufficient detention time to settle solids from the effluent. The 

effluent from the solid settling basin is then released onto the VTA as permitted by 

soil and weather conditions. These VTAs utilize gravity flow to spread the effluent 

down the length of the VTA. Figure 19b shows a VIB-VTA system; it also utilizes a 

solid settling basin, but in this case the effluent is first released to a VIB. Tile lines 
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collect the effluent draining from the VIB. This tile drainage is then pumped onto the 

VTA for further treatment. 

 
Table 31. Description of the four pilot systems monitored by ISU during 2007. Displayed in the 

table are the site name, the system configuration (solid settling basin (SSB), vegetative 
treatment area (VTA), and vegetative infiltration basin (VIB)), and the areas of both the feedlot 

and the VTA. 

Site Name 
 

System Configuration 
 

Feedlot Area 
(ha) 

VTA Size 
(ha) 

Central IA 1 1 SSB - 2 VTA 3.08 1.53 
Central IA 2 1 SSB - 1 VIB - 1 VTA 1.07 0.24 

Northwest IA 1 1 SSB - 1 VTA 2.92 1.68 
Northwest IA 2 1 SSB - 1 VIB - 1 VTA 2.95 0.60 

 

a.  b.  

Figure 19. Schematics of a SSB-VTA systems (a) and a SSB-VIB-VTA system (b). 

 

Data in the literature review performed by Koelsch et al. (2006) suggested 

that VTSs may be effective in a variety of situations. Modeling the performance of 

these systems plays a key role in determining where these systems would perform 

as desired, as well as in determining the optimum design of a VTS. There is a recent 

history of modeling VTS performance. For example, Tolle et al. (2007) developed a 

series of models that have been used to simulate VTS performance throughout 

Kansas; Wulf and Lormior (2005) developed a series of models for VTSs in Iowa, 

referred to here as the ISU models. Smith et al. (2007) performed a sensitivity 

analysis of the ISU models to determine what variables have an important influence 

on VTS system performance. Khanijo et al. (2007) compared the ability of the ISU-
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VTA and ISU-VIB/VTA model to predict discharge volumes as well as nutrient mass 

released from four VTSs. Khanijo et al. (2007) found that the ISU models over-

predicted VTS performance on all Iowa sites, specifically over-predicting both VIB 

and VTA hydraulic performance; these models are currently undergoing revisions to 

improve the models predictive power. Along with improving the performance of these 

models, ISU has been looking at the use of other available models that could be 

utilized to aid in both the design of VTSs as well to quantify the expected system 

performance. As suggested by Gross and Henry (2007), the Soil-Plant-Air-Water 

(SPAW) model may by useful for designing VTAs. 

The SPAW model was developed to perform a one-dimensional water budget 

on agricultural fields using a daily time step. SPAW performs this water budget in the 

vertical dimension and focuses the simulation on major components in the water 

balance such as runoff, infiltration, evapotranspiration, percolation, and the water 

content of the soil profile (Saxton and Willey, 2004). By assessing the available room 

for water storage in the soil profile, the VTA size required to infiltrate and hold the 

volume of effluent generated from the design storm size can be determined. Gross 

and Henry (2007) reported the use of SPAW in design of their VTA systems on small 

feedlots in Nebraska. 

There are several reasons that make SPAW a logical choice for modeling the 

hydraulic performance of vegetative treatment areas. One of the key reasons is the 

wide acceptance of the SPAW model. It is a publicly available model and has a 

history of being used to model the performance of wastewater storage systems 

(Moffitt and Wilson, 2004; Moffitt et al., 2003). In these studies, Moffitt and Wilson 

(2004) and Moffitt (2003) used SPAW to evaluate the temporary storage design 

proposed by the NRCS’s Animal Waste Management software on a  daily basin 

(Moffitt et al., 2003) and then showed that SPAW could be used to simulate the level 

in wastewater containment structures on dairy operations (Moffitt and Wilson, 2004). 

In addition to Moffitt and Wilson (2004) and Moffitt et al.’s (2003) use of SPAW to 

model effluent level in waste containment structures, Saxton (1983) used SPAW to 

simulate soil moisture in a variety of situations. In these simulations, Saxton showed 
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that SPAW could be used to simulate the temporal soil moisture patterns as a 

function of soil texture, vegetation type, and hydrological inputs with reasonable 

accuracy. Thus, SPAW could be used to quickly assess the expected hydrological 

response of a vegetative treatment area to the hydrological inputs it receives. Based 

on the modeled hydraulic response, the overall performance of the VTS could then 

be determined. 

Objective 

The objective of this investigation was to test the ability of the SPAW model to 

simulate the hydrological performance of the vegetative treatment area (VTA) 

component of a vegetative treatment system (VTS). This study focused only on the 

hydrology of the VTA; nutrient transport into and through the system was not 

considered. The predicted VTA performance was compared to the monitored VTA 

performance at four sites throughout Iowa. Hydraulic performance of the VTA was 

modeled with two different methods. The first method utilized the field module of the 

SPAW model, while the second method utilized the pond module of the SPAW 

model. The results of the modeling options were compared to determine which 

option was most effective in predicting VTA hydraulic performance and the 

relevance to using SPAW to design VTAs is discussed. 

Materials and Methods 

Iowa State University has been monitoring the performance of four VTSs 

since 2006. The data collected included daily temperature and precipitation values, 

effluent volume released from each component of the VTS, and the nutrient 

concentrations of this effluent. For complete descriptions of the monitoring 

methodologies used by Iowa State refer to Moody et al. (2006) and Khanijo (2007); 

however, a brief description is provided here. Temperature measurements were 

collected on an hourly basis using Hobo temperature loggers (Onset, Bourne, MA). 

Precipitation depths were measured with the use of an ISCO 674 tipping bucket rain 
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gauge (Teledyne ISCO, Lincoln, NE) with a passive rain gauge installed on site as a 

back-up. 

 Monitoring method at the settling basin outlet was dependent on the settling 

basin outlet. For settling basins with round pipe outlets an ISCO 750 low-profile 

area-velocity sensor was used (Teledyne ISCO, Lincoln, NE). For all other settling 

basins an ISCO 720 submerged probe (Teledyne ISCO, Lincoln, NE) in conjunction 

with a 1.5 foot H-flume was used to monitor settling basin outflow. A flow 

measurement was taken every two minutes. Flow based samples were collected 

using an ISCO 6712 automated sampler (Teledyne ISCO, Lincoln, NE). 

 For sites with a VIB, the effluent captured in the tile lines was collected in a 

sump and then pumped onto the VTA. At these sites the pumped volume was 

measured using a Neptune two-inch turbine flow meter (Neptune, Tallassee, AL). 

Flow based samples were again collected using ISCO 6712 automated samplers. 

The ISCO sampler was interfaced to the turbine meter with the use of an ISCO 780 

smart 4-20 Analog Interface Module (Teledyne ISCO, Lincoln, NE), which allowed 

the ISCO 6712 automated sampler to collect flow weighted samples from the 

beginning to the end of the VIB release. 

 Flow monitoring at the VTA outlet was similar to monitoring at the settling 

basin outlet, with an ISCO 750 low profile area-velocity sensor (Teledyne ISCO, 

Lincoln, NE) used on sites where the VTA had a pipe outlet while an ISCO 720 

submerged probe (Teledyne ISCO, Lincoln, NE) in conjunction with a 1.5 foot H-

flume was used on the other VTAs. Monitoring data was again collected at a two-

minute interval. An ISCO 6712 automated sampler (Teledyne ISCO, Lincoln, NE) 

was used to collect flow paced samples. 

 The flow paced samples collected at the settling basin, the VIB, and the VTA 

were all analyzed for chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), 

ammonium nitrogen (NH4-N), total phosphorus (Total P), five day biochemical 

oxygen demand (BOD5), nitrate-nitrogen (NO3-N), dissolved reactive phosphorus 

(PO4), chloride (Cl-) pH, fecal coliform, total suspended solids (TSS), and total 

dissolved solids (TDS). Based on the flow paced samples and the monitored flow 
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volumes the mass of above parameters released from each component was 

calculated. 

 In addition to monitoring the parameters discussed above, the depth to 

groundwater was tracked in a well in or near the VTA using the Global Water WL16 

Level Logger (Global Water, Gold River, CA). The level logger was lowered to the 

bottom of the monitoring well; the logger then recorded the depth above the sensing 

element on the logger. The depth of water above the sensing element was 

subtracted from the distance of the sensing element below the VTA surface to 

determine groundwater depth.  

Methodology 

SPAW Field Module 

The field module of the SPAW model was used to perform a water balance on 

four Iowa VTAs. The hydraulic processes performed by the VTA and included in this 

water balance were infiltration, runoff, evapotranspiration, percolation, and storage 

of water in the soil profile. In this model, runoff was simulated with the NRCS/SCS 

curve number method. Runoff predictions are sensitive to curve number selection, 

thus accurate knowledge of the curve number was important in order to accurately 

predict the amount of expected runoff. The hydraulic soil group was determined 

using a soil survey map (Web Soil Survey, USDA NRCS, 2008), which along with 

knowledge on the land cover type can be used to predict the curve number. 

Additional, the water table depth below the VTA was measured with the use of a 

WL16 level logger (Global Water, Gold River, CA). 

There are several limitations in using the SPAW field module to predict VTA 

performance. First, the curve number method was a relatively simple method of 

predicting runoff volume and has several limitations; however, this method was 

developed from years of empirical data and provided a quick method to determine 

runoff volumes. In SPAW, the curve number used to simulate runoff depth was 

adjusted based on soil moisture; if the soil profile reached 90% of the saturated 

water content extra runoff was predicted from the event. 
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Additionally, the SPAW field module assumption that effluent application is 

level and uniform over the VTA. For VTA gravity flow systems, this was not the case; 

in fact effluent application would rarely be expected to be uniform as more effluent is 

applied to the upper end of the VTA (near the settling basin outlet) then the lower 

end of the VTA. Furthermore, there was a potential for channeling to develop 

throughout the VTA, which would again reduce the evenness of effluent application. 

Additionally, for smaller runoff events, the effluent may not cover the entire treatment 

area, but instead could be infiltrated in the front sections of the VTA. 

For these simulations, the equivalent depth of effluent applied to the VTA was 

added to the precipitation depth on a daily basis. This was done because many of 

the events that occurred had small equivalent depths that were at, or below, the 

irrigation depths SPAW was capable of simulating. Adding the effluent application 

depth to the precipitation should provide similar results to modeling the process as 

irrigation, as both functions were handled similarly in the SPAW model. 

SPAW model runs utilizing the field module were performed for each of the 

four sites. These model runs utilized the value of the curve number determined from 

soil survey data information.  Additionally, the measured water table depth was 

included in the model as a constant-boundary condition for the VTA area. 

SPAW Pond Module 

The second method used to model the hydraulic performance of the Iowa 

VTA’s utilized the SPAW pond module. In this scenario, the soil-water system was 

considered as a reservoir. When the reservoir was completely filled, overflow (i.e. 

runoff) will occur. In this analogy, there are several methods in which water is added 

to the reservoir; these include rainfall, effluent application from the settling basin, or 

effluent application for a vegetative infiltration basin. Furthermore, there is no need 

to make the assumption of uniform effluent application, just that it occupies a certain 

portion of the space available in the storage reservoir, i.e. in the soil profile. Two 

mechanisms for effluent removal from the storage reservoir where also included in 

the model, these include evapotranspiration and seepage losses. For this modeling 

scenario, seepage losses represent the amount of water lost due to a decline in 
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water table elevation. Appropriate numbers for several values must be determined in 

order to model VTA’s. These include the storage capacity of the soil profile, the 

amount of water originally in the soil profile, and as previously mentioned the 

seepage/percolation rate of water from the soil water reservoir. 

In this perspective of modeling VTA performance, only saturation overland 

flow is modeled, i.e., the volume of effluent predicted to be released from the VTA 

results by completely saturating the soil profile from the bottom up, as opposed to 

Hortonian, infiltration rate limited, overland flow (Chow, 1971). Thus for high water 

table locations where the soil profile may be prone to saturation this assumption may 

prove useful. For instance, Nachabe et al. (2004) used a similar approach to model 

both the amount of moisture stored in the soil profile as well as the movement of a 

shallow water table with success. 

However, that this modeling method only considers one of the mechanisms 

that can cause VTA releases can be severely limiting. However, this modeling 

perspective would provide insight into if VTA performance would be limited by the 

space available in the soil profile to infiltrate moisture. Furthermore, for locations in 

which saturation overland flow is the dominant mechanism by which VTA release 

occurs the modeling method could provide valuable insight into the performance a 

VTA could be expected to obtain. 

In using this methodology, it is important to understand the limitations of 

assuming that all releases will be caused by saturation overland flow. For instance, 

since VTA releases from Hortonian overland flow is not included we would expect 

the model to over predict VTA performance, as only one of the mechanisms that can 

generate runoff is accounted for. Moreover, it is also important to understand when 

VTA performance would be limited by infiltration rate and when it is limited by 

complete soil saturation.  For instance, for locations with either a deep water table or 

with low hydraulic conductivities, we would expect performance to be primarily 

limited by the infiltration rate of the soil, as complete saturation of the soil profile 

would be rare. However, for the opposite case, i.e., for shallow water table locations 

with higher water tables it is more likely that complete saturation of the soil profile 
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would occur. In actuality, most sights that experience saturation overland flow would 

also experience Hortonian overland flow. However, there are several actions that 

would help minimize the risk of a Hortonian overland flow release. For instance, by 

encouraging thick vegetation in the VTA the rate of flow will be reduced, providing 

and increased contact time between the VTA and the effluent/rainwater. This 

increases the time available for infiltration to occur, reducing the likelihood and 

volume of any Hortonian overland flow release. Moreover, VTA’s have small slopes 

(0 – 5%) which again increase the contact time between the VTA and the effluent, 

reducing the likelihood of Hortonian overland flow again. Furthermore, the rate of 

outflow from the settling basin can be controlled by the producer; by applying 

effluent at a rate equal to or lesser than the infiltration rate of the soil, Hortonian 

overland flow can again be avoided. Thus, if the settling basin is actively managed 

Hortonian overland flow can be reduced to times when the rainfall rate exceeds the 

soil’s infiltration rate. The number of times per year that this occurs is dependent on 

both the soil infiltration rate and the typical storm intensity characteristic of the 

climate. Thus for a complete understanding of VTA performance, Hortonian overland 

flow must also be considered; however, use of the saturation overland flow concept 

can be utilized to determine if available storage capacity in the soil profile will be a 

limiting factor of VTA performance. 

The storage capacity of the soil water reservoir was approximated as the pore 

space in the soil profile to a depth of 2.44 meters (8 feet). The calculation used to 

determine this volume is shown in equation (11). In equation (11) d represents the 

depth of the water table,   represents the porosity of the soil, and AreaVTA is the 

area of the VTA. The soil porosity was determined by taking three soil cores from 

each VTA to determine the bulk density of the soil. Bulk density was determined by 

drying the soil in an oven for 24 hours and then measuring the mass of the soil. Soil 

cores were collected in 7.6 cm (three-inch) diameter rings and had a length of 7.6 

cm (three inches). A subsample of the dried soil was used to measure particle 

density; a pycnometer was used to make this measurement. Knowing both the bulk 
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density of the soil and the particle density allowed the porosity of the soil to be 

calculated. 

VTAAreadStorage            (11) 

 The initial amount of water in the reservoir was determined by assuming the 

soil profile at equilibrium conditions with a specified water table depth. The formula 

used to determine this volume is shown in equation (12). In equation (12), d 

represents the depth of the water table, v   is the volumetric soil water content 

(which is a function of soil water potential), and AreaVTA which is the area of the VTA. 

The value of d used was determined based on a site-specific measurement of the 

water table depth using the WL16 (Global Water, Gold River, CA) 


d

vVTA dzAreaVolumeInitial
0

_          (12) 

A soil moisture-tension model (Saxton and Rawls, 2006) was used to 

determine the relationship between the soil water matric potential and the soil water 

content. This was a three-part model, it assumed complete saturation for all 

potentials above the air entry pressure, a linear model from the air entry pressure to 

the field capacity, and a power law relationship between field capacity and the 

permanent wilting point. This model is shown in Equation (13). In equation (13) v  is 

the volumetric water content, s is  the volumetric water content at soil saturation 

(assumed to be the soil porosity), 33  the volumetric water content at field capacity, 

ah  the air entry pressure in kPa, and  is the pore size distribution index, and h is 

the soil water potential. Values for the water content at field capacity, the air entry 

pressure, and the pore size distribution index were determined using the regression 

equations provided by Saxton and Rawls (2006) and measurements of soil texture.  

Figure 20 shows the general representation between soil water potential and the soil 

moisture. 
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Figure 20. Diagram of relationship between the soil water potential and the volumetric soil 

water content. 

 

The final variable that needed to be determined was the rate of seepage from 

the soil water reservoir. Monitoring of the groundwater level versus time was used to 

determine this rate. The measured rate, in meters per day, at which the water table 

was receding was determined. The amount of water stored in the top 2.44 meters (8 

feet) of the soil profile was then calculated for two different water table positions, d1 

and d2, the difference in height of these two positions was the height the elevation of 

the water table changes in a day. The seepage rate used in the SPAW model was 

then the difference in water content stored in the soil profile between the two water 

table positions. Equilibrium soil moisture profiles were assumed for both water table 

elevations. 
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SPAW model runs utilizing the pond module were again performed for each 

of the four sites. The input data was the size of the soil-water reservoir, the initial 

volume in the soil-water reservoir, the rate of seepage from the reservoir, daily high 

and low temperatures, evapotranspiration amounts, and daily precipitation amounts. 

Modeling statistics and graphical comparisons were used to determine the 

ability of both the SPAW field and the SPAW pond module to predict monitored 

outflow amounts. As recommended by Moriasi (2007), three modeling statistics were 

used to assess the agreement between the modeled and monitored results. The 

modeling statistics used were the Nash-Sutcliffe efficiency (NSE), the percent bias 

(PBIAS), and the ratio of the root mean square error to the standard deviation of the 

monitored results (RSR). These statistics were determined for both the field and the 

pond module of the SPAW model. 

The NSE provided an indication of how well the plot of the observed versus 

the modeled data fit the one-to-one line (Moriasi, 2007); the NSE was calculated to 

be a value between negative infinity and one. A NSE of one would indicate the 

models showed a perfect match; any value less than zero would indicate the use of 

the mean value of the monitored data was a better predictor of performance than 

use of the modeled results. The PBIAS measured the average tendency of the 

simulated data as compared to the monitored data. In this case, a value of zero 

would indicate the model and the monitored results predicted a similar volume of 

release. A positive value would indicate that the model underestimated the volume 

of release while a negative value would indicate model overestimates the volume of 

release in comparison to the monitored results. The third statistic used was the RSR, 

which was calculated as the ratio of the root mean square error between the 

simulation and the monitored results divided by the standard deviation of the 

monitored release (Moriasi, 2007). This statistical value could range from zero to 

positive infinity, with the optimum value being zero. 

Moriasi (2007) also provided guidelines for when these statistics would 

indicate satisfactory model performance; for flow modeling these would be, a NSE > 

0.50, a RSR < 0.70, and PBIAS of less than plus or minus 25%. Each of these 
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modeling statistics provided an important piece of information about the comparison 

of these two models. It is important that the models have very little percent bias, as 

this value provided information on the tendency of the model to either under or over 

predict the amount of VTA release. 

Results and Discussion 

The input values calculated for both the field module inputs and the pond 

module inputs are shown in Table 32. These inputs were calculated as discussed 

above and reflect actual field conditions measured at the site. In addition to these 

inputs, weather files including daily high and low temperatures and the depth of 

precipitation on a given day were also created from the monitoring data. Additionally, 

evapotranspiration data collected at near-by (but not on site) weather stations was 

included in the weather file. The final input included was the equivalent depth of 

each solid setting basin release if the event had been evenly applied to the entire 

VTA area. 

Using the field module greatly generalized local site conditions by grouping all 

systems according to hydrologic soil group. The inputs for the pond module were 

more site specific, thus model results were tailored more to the specific conditions 

encountered at the locations. As can be seen by the initial and total storage volumes 

listed in the table, hydraulic performance at many of these locations was limited by 

space available in the soil profile. 

For the three locations with a high water table, use of the pond module 

provided a good indication of the overall release volume from the VTA. The NSE 

provided information on temporal variation between the two models, values close to 

one indicate that the models were predicting similar amounts of release during the 

same periods. Thus, the statistic provided information about whether both types of 

systems were stressed by the same weather patterns. Based on the results, use of 

the pond module provided a good overall indication of performance. Table 34 

provides information on the total VTA release volumes monitored and modeled at 

each of the four locations. In general, the cumulative release volumes predicted with 
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the SPAW Pond module were similar to the monitored results at all four of the 

locations. 

In evaluating the results of this modeling effort it should be recognized that 

the input parameters, i.e., the SCS curve number, the initial water table depth, the 

storage, the initial volume, and the seepage rate were not calibrated but were 

estimated a priori to modeling the system. Thus this investigation can be utilized to 

assess the ability of the both the SPAW field and the SPAW pond module to serve 

as a design tool for VTA’s.  

 
Table 32. SPAW field and pond module inputs used for simulating VTA performance at the 

four locations. 

 Field Module Pond Module 

  
SCS 
CN 

Initial 
Water Table Depth 

(meters) 
Storage 

(m3) 
Initial Volume 

(m3) 
Seepage Rate 
(meters/day) 

Central Iowa 1 61 1.2 15,500 15,000 0.0001 
Central Iowa 2 74 1.4 2,600 2,500 0.00005 

Northwest Iowa 1 61 1.7 18,000 17,000 0.0005 
Northwest Iowa 2 61 4.3 7,300 4,800 0.0003 

 

Graphical analyses of the monitored and modeled results for each of the sites 

provide more insight into what aspects are limiting system performance as well as 

how monitored response is related to the modeled performance. Each of these 

systems will be discussed on a case-by-case basis. 

 
Table 33. Modeling statistics describing the performance of the field and pond module 

performance. 

 Field Module Pond Module 
  NSE PBIAS RSR NSE PBIAS RSR 

Central Iowa 1 0.52 55 0.69 0.63 22 0.61 
Central Iowa 2 0.86 28 0.38 0.45 -3 0.74 

Northwest Iowa 1 0.04 79 0.98 0.60 6 0.63 
Northwest Iowa 2 0.97 -384 0.17 0.99 100 0.05 

 



 97

Table 34. Comparison of monitored VTA release volumes to modeled release volumes. 
Modeled volumes were obtained using the SPAW Field and the SPAW Pond modules. 

 Monitored Release 
m3 

Modeled Release 
SPAW Field Module 

m3 

Modeled Release 
SPAW Pond Module 

m3 
Central Iowa 1 11,743 5,244 9,214 
Central Iowa 2 1,040 748 1,073 

Northwest Iowa 1 2,966 630 2,801 
Northwest Iowa 2 42 205 0 

 

Central Iowa 1 

The VTS at this site consisted of a settling basin followed by a VTA. The 

settling basin outlet was actively managed with release onto the VTA being 

controlled by a gate valve. The operator determined when and how much effluent to 

release onto the VTA, limiting the volume to the amount the VTA could absorb 

unless the settling basin was near capacity and rainfall was expected.  This site 

experienced an extremely wet year in 2007 with approximately 49 inches of rainfall 

during the monitoring year (April 1 – October 31), as opposed to an average year in 

which approximately 36 inches of rainfall would be received over the entire year. In 

addition to the direct rainfall onto the VTA, the equivalent of an additional 20 inches 

of effluent was applied. 



 98

0

500

1000

1500

2000

2500

4/1 5/21 7/10 8/29 10/18
Date

Ru
no

ff 
V

ol
um

e 
(m

3 )

Monitored
Field Module
Pond Module

 
Figure 21. Comparison of monitored and modeled performance for the vegetative treatment 

system at Central Iowa 1. 

 

Figure 21 shows that in general both the field and pond module did a 

reasonable job in following the trend of when release from the VTA occurred; the 

pond module performed with slightly more accuracy. There were several times when 

the models appeared to struggle, particularly with the largest release event that 

occurred on 4/24 and 4/25. For this event, the model drastically underestimated the 

VTA release volume that was measured. However, there was evidence that a 

measurement error occurred at the settling basin outlet and that the monitored data 

were incorrect. During this event, the producer completely emptied his settling basin, 

but only 1,190 m3 of outflow from the solid settling basin outlet was measured. The 

basin has a capacity of 2,500 m3and it went from full to empty, so the expected SSB 

release volume was 2,500 m3. Because settling basin release and rainfall were the 

driving forces for VTA release, any measurement error here could have substantial 

error in the modeled VTA release volume. Furthermore, it should be noted that the 

pond module model of the VTA did predict a VTA release, thus any additional 

effluent released from the settling basin would also be monitored to be released from 
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the VTA. When a settling basin release of 2,500 m3 was used in the modeling 

scenario, the simulated and monitoring results were very similar, particularly those of 

the pond module. 

Also of note was that on the dates 8/24 through 8/27 no data were available 

for the amount of effluent exiting the VTA. This was a very rainy period and water 

ponded at the VTA outlet causing extraneous depth readings in the measurement 

flume. Thus, release volumes from the VTA could not be measured during this time. 

During September and October, the estimated release volumes were overestimated 

by the pond module simulation of the vegetative treatment area.  

Along with predicting the amount effluent released from the VTA, the SPAW 

pond module results can also be utilized to predict water table fluctuations. This 

requires that we assume that the water content in the soil profile is always in 

hydrostatic equilibrium with the water table depth. Using this assumption, and the 

water content – soil water potential relationship shown in equation 13 the water table 

depth level can be tracked. An example of this is shown for Figure 22. As can be 

seen, the SPAW model results seem to be doing a reasonable job of tracking water 

table level, expect during late July when the monitored water table depth was 

several feet higher than the model results predict. 

 
Figure 22. Monitored and modeled water table depth below the VTA. 
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Central Iowa 2 

This system consisted of a solid settling basin, a vegetative infiltration basin, 

and a vegetative treatment area. For Central Iowa 2, both the field module and the 

pond module provided reasonable simulations of the monitored performance. At this 

location the Pond module predictions proved more accurate than the field module 

results at predicting the overall volume of effluent released from the vegetative 

treatment area; however, the results of the field module results provided a better 

temporal agreement of when these release events occurred as evidenced by the 

higher Nash-Sutcliffe modeling efficiency. 
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Figure 23. Comparison of monitored and modeled performance for the vegetative treatment 

system at Central Iowa 2. 

 

In general, using the pond module to predict performance provided both good 

temporal accuracy of when a VTA release would occur as well as a good prediction 

of release volume. The field module also provided a good simulation of the modeled 

results; however, the amount of release occurring was not predicted with as much 

accuracy as with the pond module. In addition, the field module predicted a release 

in July when no release actually occurred. The success of the pond module, along 

with groundwater monitoring data shown in Figure 24, indicate  that the performance 
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of the VTA at this site was limited by the space available in the soil profile. The only 

time the pond module showed substantial error in the simulation was for the 8/19 

event. This pond module simulation predicted that this event was refilling the soil-

water reservoir to capacity, while monitoring data would suggest that most of the 

effluent and rainfall applied onto the VTA during this event resulted in runoff from the 

VTA. This was likely caused by the SPAW pond module predicting the water table 

was deeper than the monitored value prior to the 8/19 event. 
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Figure 24. Groundwater depth data under the VTA at Central Iowa 2. 

Northwest Iowa 1 

The Northwest Iowa 1 site consisted of a settling basin followed by a 

vegetative treatment area. The settling basin outlet at this location was again 

actively managed, as this provided the producer with a greater level of control over 

system operation. The producer worked to match settling basin releases to the VTA 

conditions. At this location, the field module showed a poor ability to predict when a 

VTA release would occur; however, the pond module model of the VTA achieved 

good performance in all three modeling statistics. The pond module predicted both 

the releases in early spring and during the fall, providing some evidence that the 
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performance of this system was limited by the presence of a shallow groundwater 

table creating periods of complete soil profile saturation. 
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Figure 25. Comparison of monitored and modeled performance for the vegetative treatment 

system at Northwest Iowa 1. 

 

Several monitored releases that occurred from the VTA throughout April and 

May were not predicted by the pond module. However, the pond module releases, or 

non-releases, during April and May only reflected direct rainfall on the system and 

not settling basin releases. Because of system modification, monitoring equipment 

was not installed at the settling basin outlet during that time period and basin outlet 

flow was not recorded. In actuality, releases from the settling basin did occur during 

this time, and these releases would have affected the water balance and may have 

resulted in a modeled VTA release. Modeling results showed that the soil water 

reservoir was at or near capacity during this time; therefore any additional effluent 

applications most likely would have resulted in a modeled release. 
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Northwest Iowa 2 

The Northwest Iowa 2 site consisted of a settling basin, a vegetative 

infiltration basin, and a vegetative treatment area. Only two small release events 

occurred during the monitoring period at this site, both in early April. Simulation 

results showed that the pond module predicted no release. The water table at this 

site was deeper than at the other sites, therefore enough water was not applied to 

completely saturate the soil profile and induce runoff. The field module simulation 

predicted several runoff events from the treatment area, specifically in August when 

none were recorded. These release events resulted from larger rainfall events; 

however, soil conditions during these events was relatively dry, allowing the entire 

volume to infiltrate into the soil profile.  
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Figure 26. Comparison of monitored and modeled performance for the vegetative treatment 

system at Northwest Iowa 2. 

Conclusions 

The use of the Soil-Plant-Air-Water (SPAW) model, both the pond module 

and the field module, to predict the hydraulic performance of four different vegetative 

treatment areas (VTAs) was investigated. Based on the above results, it was 
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determined that the SPAW pond module could provide a reasonable prediction of 

VTA hydraulic performance with little or no calibration, specifically for areas with a 

high water table where VTA performance was limited by the storage available in the 

soil profile. The inputs for simulation were easily obtainable and included items such 

as water table depth, water table seepage rate, and the soil-water retention curve. 

Use of these three properties allowed calculation of the storage capacity of the soil-

water reservoir, the initial amount of water in the reservoir, and the rate water was 

exiting the reservoir. 

Three modeling statistics were used to assess model performance, these 

included the Nash-Sutcliffe modeling efficiency (NSE), the percent bias (PBIAS), and 

the ratio of the root mean square error between the simulation and the monitored 

results divided by the standard deviation of the monitored release (RSR). For the 

pond module, the NSE ranged from 0.45 to 0.99, which indicated good temporal 

agreement between the simulated releases and the monitored releases. In addition, 

the percent bias of the pond module simulations was -3 to 6% for locations with a 

high water table. For the one location with a deep water table, no release was 

simulated so the percent bias was 100%. Thus for high water table locations the 

pond module provided a good indication of the expected hydraulic performance of 

the VTA. 

For Central Iowa 1, Central Iowa 2, and Northwest Iowa 1 the modeling 

results, along with monitoring of the groundwater table, indicate that saturation 

overland flow was the probable mechanism for many of the VTA release. This was 

caused by a combination of a high water table and effluent/rainfall applications that 

were of a size that was sufficient to completely saturate the soil profile. Along with 

the model results which indicate that complete saturation of the soil profile may be 

occurring, monitoring results from tracking groundwater levels in the VTA verify 

water table levels due respond to rainfall events and that space available in the soil 

profile is limited.  According to the SPAW pond module, Northwest Iowa 2 did not 

experience these saturated conditions. Furthermore, monitoring of groundwater 

levels at this location have shown groundwater depths ranging from 8 to 20 feet 
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below the surface of the VTA, which again provides evidence that release events at 

this location are not caused by saturation overland flow, but instead by Hortonian 

overland flow. 

Thus, based on this study it may be possible to utilize the SPAW model to 

design VTA’s to achieve a specified level of hydraulic control. The process of using 

the SPAW model to design a VTA would be as follows. First, the necessary soil 

parameters such as water table depth, the soil porosity, and the soil texture need to 

be determined. Historical weather data for the area would then need to be located; 

this data would need to consist of daily high and low temperatures, the amount of 

precipitation occurring on a daily basis, and a daily value for the amount of 

evapotranspiration that occurred. The SCS curve number method could then be 

used to predict the volume of runoff from the feedlot occurring as a result of the 

precipitation. Based on the calculated runoff data, a pattern of how the producer 

would release from the basin would need to be developed. This could range from a 

completely passive management system where all runoff from the feedlot is released 

onto VTA the day of the precipitation event, to a very controlled system where 

effluent is slowly released from the basin as the moisture conditions in the VTA 

allow. In either case, the amount of effluent released needs to be normalized to the 

equivalent application depth on the VTA. The equivalent application depth added to 

the daily precipitation and substituted into the weather file. The dominant flow 

mechanism, i.e., Hortonian overland flow or saturation overland flow, for the site 

should then be determined. Based on the dominant flow mechanism the best 

modeling approach can be determined. For sites that experience saturation overland 

flow as the dominant release mechanism from the VTA, the pond module would then 

be used to model performance of the vegetative treatment system; however, for 

sites that frequently experience Hortonian overland flow this approach would not be 

appropriate. Different VTA areas can then be investigated to determine the level of 

performance being achieved by the system. Furthermore, it may be possible to 

utilize the SPAW model to investigate the water table depth, seepage rate, and the 
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soil properties necessary to obtain a specified level of hydraulic control from 

vegetative treatment systems. 
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CHAPTER 4. CONCLUSIONS 

 The final section will discuss the implications of the research papers 

presented in this thesis. Specifically, this section will discuss the practicality of the 

information presented and its use in modeling both traditional containment based 

systems and vegetative treatment systems. Implications this research has on 

designing and siting vegetative treatment areas is also presented. Future research 

needs are also highlighted. 

Implications of Modeled Containment Basin Performance 

 Containment basins are currently the accepted standard for feedlot runoff 

control systems, and as such they are the standard to which all other runoff control 

systems are compared. In order to ensure that alternative technologies are fairly 

compared, it is imperative that containment basin performance be accurately 

modeled. Thus researchers must continue to improve and verify modeling results for 

traditional containment systems. 

 The research presented in the section of this thesis titled Comparison of the 

Iowa State University – Effluent Limitation Guidelines Model with the Soil-Plant-Air-

Water Model to Describe Holding Basin Performance is a first step in critically 

evaluating the performance of a containment basin model. This evaluation showed 

that for many locations in Iowa the ISU-ELG model over-predicts containment basin 

performance in comparison to the SPAW model. Furthermore, this modeling effort 

demonstrated a strong connection between the land application area and the 

performance of the containment basin, with the size and the soil conditions in the 

land application area being critical factors in basin performance. 

 The Iowa DNR has developed graphs to assist producers in sizing a 

containment basin for their facility; an example of this graph is shown in Figure 27. 

The Iowa DNR guidelines state that land application should take place on days when 

weather and soil conditions are suitable (Iowa DNR, 2006). Furthermore, the Iowa 

DNR states that normally days are suitable for land application if the land application 

area is not frozen or snow-covered, the temperature during application is greater 
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than 32°F, precipitation has not exceeded 0.05 inches per day for each of the three 

days immediately preceding application, and no precipitation is occurring on the day 

of application (Iowa DNR, 2006). However, the research presented here showed that 

soil conditions, based on soil moisture criteria, may not be suitable for land 

application three days following a rainfall event in many parts of Iowa. Therefore, 

basins designed according to the Iowa DNR graphs may have a lower level of 

control than originally projected for much of Iowa. Figure 28 shows how performance 

of these basins is reduced by switching from the original ISU-ELG model, with the 

three drying day criteria, to an ISU-ELG model calibrated for Ames conditions (five 

drying day criteria). 

 

 
Figure 27. Feedlot runoff value, in inches, for determining required capacity of the System 1 – 

One effluent application period per year from Effluent Control Alternative for Open Feedlot 
Operation (Iowa DNR). 
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Figure 28. Runoff control performance as a function of basin size and the drying day 

requirement for Ames, Iowa. 

 

As would be expected, the number of drying days required before land 

application can begin has a larger effect on the percentage of runoff controlled for 

smaller basin than for larger basins. This is caused by the basin reaching full 

capacity sooner, leaving the operator with less flexibility as to when they must either 

dewater or risk overflow from the basin. This can be verified by examining the 

average annual runoff control levels for a basin sized for a 4.5 inch storm. This basin 

would provide 88% and 80% runoff control respectively for the three drying days and 

five drying days requirements. However, for a ten-inch design storm the average 

annual runoff controls are 98% and 97% respectively for the three dry days and five 

dry days requirement. Moffitt et al. (2003) also noted that larger holding ponds 

allowed producers more flexibility in determining when to dewater. 

In a practical sense, the importance of these data is not that the level of 

control is reduced, but that a larger basin must be constructed to provide the same 

level of runoff control. For example, currently the basin design requirement for most 

of Iowa is a five-inch storm. With of basin of this size, a feedlot operator near Ames 

would be expected to average 90% runoff control annually according to the original 
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ISU-ELG Model. However, if a producer wished to maintain this level of runoff 

control and only apply runoff from the basin during ideal land application conditions, 

he/she would need to construct a basin for a 6.5 inch storm event. For a five-acre 

feedlot drainage area, the containment basin size would increase from 2,047 m3 

(72,274 ft3) to 2,800 m3 (98,869 ft3), which is a 37% increase in the required size of 

the containment basin. 

Moreover, if a feedlot near Ames chose to construct a containment basin 

sized according to Iowa DNR System 1 – One land application period per year the 

size of the containment basin required would be determined from Figure 27. Based 

on this figure, the producer would be required to construct a basin sized to hold 12” 

of runoff from the contributing drainage area plus all runoff and direct precipitation 

resulting from a 25-year, 24-hour storm. The producer would then be able to select 

when this land application period would occur, typically either in the spring (taken as 

the month of April in this example) or fall (taken as the months of October and 

November). The predicted containment basin performance for both the three dry day 

and the five dry day requirements performance was determined and is shown in 

Table 35. As can be seen basin performance was reduced for both the spring 

application and fall application systems. In order to avoid this reduction in the level of 

runoff control the producer would be required to dewater in either less than ideal 

conditions or to dewater during periods outside the selected land application period. 

 
Table 35. Modeled performance of a containment basin located near Ames, Iowa sized for one 
land application period per year with both the 3-dry day requirement used in the original ISU-

ELG model and for a 5-dry day requirement as per the ISU-ELG model calibrated for Ames. 

 Spring Application  Fall Application 
  3-Dry Days 5-Dry Days   3-Dry Days 5-Dry Days 

Average 84% 78%  96% 93% 
St. Dev. 22% 32%  15% 18% 

 

If beef feedlot runoff containment basins are undersized in Iowa, then why 

aren’t more releases reported? Although this question cannot be answered 

conclusively, several possible explanations are available. One explanation would be 
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that overflow events occur, but are never reported. A second, and more plausible, 

explanation is that producers are simply forced to dewater their containment basin 

during less than ideal soil or weather conditions. This possibility is supported by a 

study by United States Department of Agriculture Risk Management Agency (USDA 

RMA) in which it was determined that 21% of animal waste management failures 

occurred during land application (USDA RMA, 2003). Furthermore, this study notes 

that land application and waste storage failures were both caused by allowing 

manure and wastewater to accumulate beyond the systems ability to store it 

appropriately (USDA RMA, 2003). However, for the case of open feedlots in Iowa, it 

may not be that manure and wastewater are being allowed to accumulate 

inappropriately, but simply that basins designed according to the Iowa DNR graphs 

are undersized and some portion of the land application must occur during 

inappropriate conditions. 

Implications of SPAW modeling of VTA 

 As was demonstrated in the section of this thesis titled The Use of the Soil-

Plant-Air-Water Model to Predict the Hydraulic Performance of Vegetative Treatment 

Areas for Controlling Open Lot Runoff the SPAW model, specifically the pond 

module, proved relatively accurate at predicting VTA performance. Furthermore, this 

modeling effort verified that the performance of three of the four vegetative treatment 

areas was limited by the presence of a shallow water table. Specifically, using the 

pond module and the soil water reservoir concept, modeling showed that the soil 

profile would become completely saturated and runoff would result. 

 As the presence of a shallow water table is important to the hydraulic 

performance of the vegetative treatment system, it is important that any model 

attempting to predict VTA performance be able to accurately predict water table 

movement. As the SPAW model proved effective at predicting VTA performance, it 

may also be able to predict the water table fluctuations occurring in response to 

rainfall and feedlot runoff events. 
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 Water table predictions can be made by using the SPAW pond module and 

assuming water content in the soil profile is in hydrostatic equilibrium with the with 

the water table depth. This analysis was performed for Central Iowa 1 and is 

displayed in Figure 29. The modeled water table level does a reasonable job of 

following monitored water table depth, with the exception of late July; at this point 

modeled water table depth reached more than eight feet below the surface, while 

monitored water table depth neared four feet. 

 
Figure 29. Comparison of measured and monitored water table response to precipitation and 

effluent application events at Central Iowa 1. 

 

 As demonstrated in Figure 29, the SPAW model seems to be doing a 

reasonable job simulating the water table response to rainfall and feedlot runoff 

events. This provides confidence that the soil-water reservoir concept used in The 

Use of the Soil-Plant-Air-Water Model to Predict the Hydraulic Performance of 

Vegetative Treatment Areas for Controlling Open Lot Runoff section of this thesis 

can provide an accurate simulation of the hydraulic performance of VTA and the 

water table depth. This concept can be used to provide siting criteria regarding the 

required the water table depth necessary to infiltrate a design storm. 
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 To develop these requirements the first step is to determine the design storm 

size that must be infiltrated, for this example a design storm of 12.95 cm (5.1 inches) 

is used. This storm size is approximately the 25-year, 24-hour storm for much of 

Iowa. There must then be sufficient pore space in the soil profile to infiltrate this 

depth of precipitation, i.e. the current air filled porosity of the soil must be equal to 

the design storm. Equation 14 shows how the available depth in the soil profile was 

calculated. Equation 15 shows the soil moisture-matric potential tension relationship 

used in calculating the volume of water stored in the soil profile. As was done 

previously, the soil profile was assumed to be at hydrostatic equilibrium with the 

water table. In determining the required water table depth there are several soil 

properties that need to be determined, these include the porosity, the field capacity, 

the air entry pressure, and the pore size distribution index. For each soil type these 

soil properties were determined using regression equation presented by Saxton and 

Rawls (2006). The required inputs to use these models are the sand content, the 

clay content, and the organic matter content. For all soil types the organic matter 

content was set at 2%. 


d

vdzdDepthAvailable
0

_          (14) 

 











































kPah
h
h

kPahh
hkPa
hkPa

hh

a

a
a

a

v

33,

33,
33
33

,

3333







       (15) 

 For each soil texture a representative sand and clay content was selected 

and then the soil properties were calculated. After determining the soil properties the 

required water table depth to have sufficient air-filled porosity to infiltrate 5.1 inches 

of rainfall was determined. The results for various soil textures are shown in Table 

36. As can be seen, these depths ranged from 1.5 m (4.9 feet) for sand to 3.8 m 

(12.5 feet) for clay soils. 
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Table 36. Required water table depth to have available pore space to infiltrate a 5.1 inches of 
water. 

Soil Type % Sand % Clay 
Required Water Table Depth 

m (ft) 
Clay 30 50 3.8 (12.5) 

Clay Loam 33 30 3.3 (10.7) 
Loam 42 18 2.7 (9.0) 

Loamy Sand 82 6 1.6 (5.3) 
Sand 92 5 1.5 (4.9) 

Sandy Clay 52 42 3.6 (11.8) 
Sandy Clay Loam 60 28 2.6 (8.7) 

Sandy Loam 65 10 2.0 (6.5) 
Silt 7 6 3.7 (12.3) 

Silty Clay 7 47 3.6 (11.7) 
Silty Clay Loam 10 34 3.6 (11.8) 

Silt Loam 20 20 3.4 (11.3) 
  

 Table 36 lists the required depth to groundwater to infiltrate direct rainfall 

directly onto the VTA; however, for a VTS to be successful it must also have space 

in the soil profile to infiltrate runoff from the feedlot. Again, assuming a 5.1 inch 

design storm the volume of runoff from a feedlot can be determined using the SCS 

curve number method. For a 5.1-inch storm, approximately 4.08-inches of runoff 

would be expected from the feedlot. The effect of this runoff on the required VTA 

depth can be minimized by storing the effluent into a containment basin until the 

water table level in the VTA has receded; however, if the producer wishes to release 

this effluent onto the VTA during or shortly after the storm, the required depth of the 

water table would increase. In this case the required depth is a function of two parts, 

first, the required depth to infiltrate all direct rainfall onto the VTA (which was 

presented in Table 36), and secondly the depth infiltrate all the feedlot runoff. Thus 

in this case the required water table depth is also a function of the VTA to feedlot 

area ratio. For instance, for 5.1-inch storm and VTA to feedlot area ratios of 0.5:1, 

1:1, 2:1, and 4:1 the VTA would need to have the available space to store 13.3, 9.2, 

7.1, and 6.1 inches of water respectively. Thus as the VTA to feedlot area ratio gets 

larger, the water table depth becomes less restrictive. Figure 30 shows the required 
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water table depth to infiltrate a design storm and the feedlot runoff resulting from this 

storm as a function of the VTA to feedlot area ratio for clay, loam and sand soil 

types. For each of these three soil types the properties were determined based on 

the sand and clay contents using the correlations of Saxton and Rawls (2006). 
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Figure 30. Water table depth requirement as a function of the ratio of VTA area to feedlot area. 

 

 In addition to the water table depth, the rate of recession of the water table 

also plays a crucial role in determining whether a VTA will operate successfully as 

this recession rate determine how quickly the system can be ready for the next 

rainfall event. Currently the ISU-ELG model assumes that a containment basin 

would be emptied within 13 days of a design storm. For a VTA that just meets the 

water table depth requirements listed in Figure 28 to maintain the same level of 

hydraulic control as the containment basin the VTA system must be “reset”, i.e. 

capable of infiltrating a design storm, within 13 days. For a 5.1-inch design storm 

and a one-to-one VTA to feedlot area ratio this would imply that the VTA must utilize 

0.7 inches of water per day. This water could be lost to either seepage or 

evapotranspiration. 

 In this case, the amount of water that the VTA must utilize is again a function 

of the VTA to feedlot area ratio. This relationship is shown in Figure 31, as can be 

seen, smaller VTA to feedlot area ratios require the VTA utilize more water. In 
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addition to the water utilization rate, the average evapotranspiration rate during the 

growing season is also shown as a dashed line. The difference between these two 

lines is the amount of water that must be lost to seepage. Even for large VTA to 

feedlot ratios approximately 0.25 inch of water per day must be lost to seepage. 
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Figure 31. Relationship between the VTA to Feedlot Area ratio and the required water 

utilization rate. 

  

Future Research Needs 

 Modeling the performance of a runoff containment basin system 

“holistically” 

 Monitoring the performance of a containment basin runoff control 

system 

 Investigate the waste treatment mechanisms occurring in a VTS 

Modeling the performance of a runoff containment basin system holistically 

The 2003 concentrated animal feeding operation (CAFO) rules allow 

consideration of alternative manure treatment systems for National Pollutant 

Discharge Elimination System (NPDES) permitted CAFO operations that have on 

net, no additional discharge as compared to traditional containment systems. 
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Concentrated animal feeding operations that utilize alternative manure treatment 

systems under an NPDES permit are required to demonstrate that their alternative 

system has an equal or lesser nutrient mass release than from a conventional 

manure management system. These guidelines specifically target wastewater 

discharges from the production area, but state that the operation should consider 

environmental releases “holistically”. Furthermore, the effluent guidelines state that 

land application areas are “integral to CAFO operations”.  Thus to fully quantify the 

mass of nutrients released from a traditional containment system all components 

need to be considered. 

A USDA RMA study (2003) provides a mechanism by which to view waste 

management systems holistically. In this study, the waste management system was 

broken into five components; these included waste collection, waste transport, waste 

storage/treatment, waste conveyance to the land application field, and land 

application. A diagram of these stages is shown in Figure 32. The study also broke 

down the percentage of failures occurring in each part of the waste management 

system; these are displayed in Table 37. As can be seen, failures of the containment 

treatment structure accounted for the largest portion of failures (45%), but system 

failures were also caused by the other system components. Therefore, to determine 

the total impact of an animal feeding facility all aspects of the waste management 

system must be considered. Furthermore, to make a fair comparison between an 

alternative treatment system and a traditional containment system, all mechanisms 

of nutrient transport from both systems need to be considered. This is especially true 

if the alternative system either eliminates, or incorporates, additional stages of the 

waste management system into the storage/treatment component. 
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Figure 32. Conceptual model of the five stages to waste treatment. 

 

For example, in a vegetative treatment system the vegetative treatment 

components serve as both a treatment component and as the final disposal 

mechanism, where by non-point source associated with land application is 

eliminated. However, currently Iowa NPDES permit requirements state that the ISU-

ELG modeled nutrient release, which only includes nutrient releases due to 

containment basin overflow events, should be compared to the mass of nutrients 

released from the VTS system. However, the mass of nutrients released from a VTA 

is determined based on all five stages of the waste treatment system, collection 

through land application, where as for a traditional containment system, non-point 

source pollution resulting from land application are not considered. 

 
Table 37. Percentage of failures occurring in each stage of the waste management system. 

Stage % of Failures 
Animal Housing / Waste Collection 18% 

Waste Transport 10% 
Waste Storage and Treatment 45% 

Waste Conveyance 7% 
Land Application 21% 
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Monitoring the performance of a containment basin runoff system 

The literature review performed for this thesis found limited data on the 

performance of containment basin runoff control systems, with only two data sets 

(Gilbertson and Nienaber, 1973; Moffitt and Wilson, 2004) located. In both cases, 

the studies lasted approximately one year in duration, thus neither study quantified 

long-term performance of the containment system. Therefore, studies focusing on 

monitoring the long-term performance of a containment basin are required to verify 

containment basin performance. Furthermore, these data are required so that 

existing containment basin models can be validated. This validation process would 

ensure that containment basin models can be used to accurately predict the 

performance of containment basins under the variety of climatic conditions and 

management strategies expected to be encountered at animal feeding operations. 

Moreover, these monitoring projects should take a “holistic” approach to 

determining the impact of an animal feeding operation. This will ensure that as new 

models are developed the data necessary to calibrate and validate them will be 

available. Moreover, these data could also be used to refine the management 

practices concerning land application of feedlot runoff; specifically, on how different 

basin management techniques, i.e., dewatering schedules effect performance of a 

containment basin and the amount of non-point source pollution originating from the 

land application area. 

Investigation of the treatment mechanisms occurring in a VTS 

Future research on VTS’s should focus on understanding and modeling the 

chemical and biological treatment mechanisms occurring during effluent treatment in 

a VTS, specifically those mechanisms for treating phosphorus, nitrogen, and COD. 

This will allow researchers to better understand the fate and transport of these 

parameters throughout the treatment process and through removal from the system. 

Thus far, several researches have proposed various treatment mechanisms that 

may be occurring in VTS’s; these include sedimentation, filtration, denitrification, 

nitrification, sorption to soil particles, plant uptake, and infiltration (Koelsch et al., 
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2006); however, no research has been performed to quantify the contribution of 

each treatment mechanism. By studying these mechanisms, the ultimate fate of 

each of these nutrients can be better quantified. 

Furthermore, current VTS models (Wulf and Lorimor, 2005; Tolle, 2007) only 

account for dilution as rainwater is added to the system, sedimentation of solid 

particles, and uptake of nitrogen and phosphorus by the vegetation. Thus, many of 

the treatment mechanisms that may be occurring are not considered. This limits the 

ability of these VTS models to predict effluent quality and nutrient transport through 

the various stages of the treatment process. In order to better understand overall 

impacts of VTSs it is important that the nutrient transformation, specifically those of 

nitrogen, are more fully considered. Moreover, inclusion of phosphorus treatment 

mechanism may provide insight into the long term effects VTSs will have on 

phosphorus levels in the soil. Additionally, improved understanding of the different 

treatment mechanisms will allow designers to optimize the treatment efficiency of 

different VTS components. Finally, as a VTS is compared to a traditional system on 

the basis of nutrient mass released from the system, the ultimate success or failure 

of the system must be based on its level of nutrient control. 
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