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ABSTRACT

As agricultural automatic guidance systems are further developed, greater attention is

being given to their performance under all reasonable conditions including the side slopes of

hills. To investigate the potential of improving auto-guidance performance using feed-

forward control with expected vehicle roll angle acquired from a slope path profile, a PID

navigation controller was simulated along with tractor and tire models. There were four

main steps to the simulation process: (1) The development of the gains for a roll angle feed-

forward controller, (2) Evaluation of the controller as it responded to both step and sinusoidal

slope profiles, (3) Investigation of the effects of different vehicle velocities and changes in

cornering stiffness compared to nominal values, and (4) Determination if looking-ahead into

the slope increases roll angle performance. Use of a roll angle feed-forward controller

reduced the maximum off-tracking distance by up to 87 percent. For the sinusoidal slope

profiles, increased velocity had a negligible effect on off-tracking error. Using a look-ahead

distance of 2 m for future estimates of roll angle reduced the off-tracking distance by up to

50%. When compared to the nominal values, increasing or decreasing the tire cornering

stiffness adversely affected the off-tracking error for the given vehicle model.
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CHAPTER 1. INTRODUCTION

1.1 Motivation

For much of the previous century, advances in the development of agricultural

equipment, along with improvements in genetics, pest control, and fertilization have allowed

producers to achieve higher levels of productivity. For instance, in 1900 the average

American farmer produced enough food for 7 people; today in 2006 that number has risen to

135 (Minnesota Beef Council, 2006). Agricultural mechanization is ranked number 7 in the

National Academy of Engineering’s list of the 20 greatest engineering achievements of the

20th century (Constable, et al., 2003). Recently, precision agriculture has come to the

forefront with a goal to improve the precision with which plants are managed through the

increasing use of sensing, automation, and control – information technologies, rather than

simply increases in the power and size of power units and implements (Cox, 2002).

Precision agriculture has led to the development of several new agricultural and off-

road vehicle automation technologies. A key enabler for precise vehicle localization has

been Global Positioning Systems (GPS) technology. When the potential of GPS technology

in agriculture was first considered, it brought about the concept of making georeferenced

measurements to document and manage spatial variability that occurs in agricultural fields.

Thus one of the first uses of GPS in agriculture was georeferencing yield measurements from

harvest yield monitors for the generation of yield maps. Taking this further, with

prescription maps, producers could vary their chemical input application rates using GPS on

chemical application vehicles, such as sprayers and spreaders.
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The potential of GPS paired with motorized vehicles was quickly utilized for

precision agriculture. Vehicle guidance assistance first provided visual cues to the driver

through a display such as a light bar mounted in front of the driver. Automatic guidance was

the next precision agriculture technology using GPS, where the operator’s steering input is

removed for the majority of the time in the field. Automatic guidance works by using GPS

signals to pinpoint the vehicle location in the field. The operator drives across the field

creating an initial path, called an A-B line, to follow. Once the location is known, a

controller is then used to send a signal to the hydraulic steering valve based on a distance

from the first path. The vehicle proceeds across the field following parallel tracks laid out by

the controller set by a predetermined implement width. An operator was still required to

monitor the field operations, control the implement or other machine functions, and to turn

the vehicle at the end of each path. With GPS-based automatic guidance systems, producers

have been able to cut down on inputs by minimizing overlapping passes through fields and

reducing fuel consumption (Pettygrove, et al., 2000; Lambert, et al., 2000).

Automatic guidance systems are a rapidly growing market and are being adopted for

reasons such as increased efficiency and cost reductions. Early adoption of guidance systems

occurred in the fertile valleys of California, where the region is well known for its produce

production. Produce crops are high value crops, but also have high cost inputs, so

operational and input efficiency is important. It is also common practice to use drip-tape

irrigation; producers found that the guidance technology allowed them to precisely place tape

in the ground and return to the same tapelines year after year for planting (Abidine, et al.,

2004). Word spread in the agricultural community and soon adoption of this technology

started to move in the direction of the row-crop corn and soybean fields of the Midwest
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(Finck, 2004). Farmers in the Midwest have found that with automatic guidance systems

they can work more ground with less equipment than they could without the new technology

(Watson, et al., 2002). There is also an increasing trend of utilizing automatic guidance for

controlled traffic systems where the vehicles travel in the same desired paths in an effort to

reduce compaction across a field.

Before spending the money on the expensive, high accuracy automatic steering units,

producers adopted lower cost systems to confirm the technology worked. It was soon clear,

however, that a higher level of accuracy was desirable, especially with the ability to use

automatic guidance technology to enable highly specialized practices such as controlled

traffic farming and strip tilling (Smith, 2003). Higher localization accuracies are achieved by

utilizing a localized base station receiver, and are known as Real Time Kinematic GPS

(RTKGPS) which can provide a 2 centimeter accuracy level. This was an improvement over

the previous systems which were based on differential signals covering larger areas and were

not referenced to a local base station. The less accurate technology is known as Differential

GPS (DGPS), which can only provide accuracy of 10 centimeters. This was still an

improvement over GPS receivers with no differential correction signals that typically only

have an accuracy of greater than 3 meters. The RTKGPS technology has provided producers

a higher level of accuracy that they now require for improved efficiencies. However, there

was still one problem facing producers. The new automatic guidance systems only operated

at a high level of accuracy in straight paths, on relatively flat terrain; otherwise they incurred

errors that would negate the improved efficiency.
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1.2 Background

Agricultural vehicles must operate on sloping terrain, given that much agricultural

land has hills and valleys and undulating topography. To operate effectively on sloping

terrains, several potential problems must be overcome. Safety on sloping terrain can be a

concern and extreme slopes can lead to vehicle overturn. To improve the safety in these

situations a Roll-over Protection System (ROPS) standard has been developed and adopted

by agricultural tractor manufacturers. The purpose of a ROPS system is in the event of a

tractor overturning, a two or four post system built around the operator station will provide

the operator with a safety envelope, avoiding a crushing fatality (ASAE, 2004). The narrow

front wheel configuration on tractors, popular from the 1930s through the 1950s, caused

tractors to be prone to roll-over and have since been eliminated. On combines, not only are

vehicle overturns possible, but also slopes cause grain inside the machine to flow to one side,

which causes the fluidized bed on the cleaning shoe to break down, leading to increased grain

losses. To overcome this problem, some modern combines have self-leveling cleaning

systems that allow for normal operation of the grain cleaning systems on extreme slopes.

Now with the advancement of automatic guidance systems, slopes are an issue once again.

The first noticeable problem with GPS-based automatic guidance is that on a slope

the GPS receiver is no longer directly over the center of the vehicle. Instead, the receiver

location is projected directly to a point on the ground along the gravity vector (Figure 1.1).

This effect results in the tractor constantly shifted off-track towards the uphill side of the

slope. By installing roll sensors along with their receivers, most manufacturers have built in

adjustments that eliminated the constant offset due to the roll angle.
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Figure 1.1 Tractors not-equipped with roll compensation (a) track to a line directly below
the GPS receiver leading to systematic off-tracking distances. Tractor with roll compensation

(b) minimizes this error source.

Another effect of operating on a side slope is the gravity vector contains not only a

normal force component opposed by the ground pushing up against the tires, but also a lateral

force component that must be counteracted by an opposing lateral tire force (Figure 1.2).

This additional lateral force acts as a disturbance to the navigation controller system by

changing the balance of forces on the vehicle. The component of the weight parallel to the

slope must be balanced by equal lateral tire forces. Without a controller, uncompensated

lateral force leads to a constant off-tracking distance. As the vehicle attempts to follow a

pre-determined path, an off-tracking distance is measured.

GPS Receiver Desired Path

a) Without Roll Compensation b) With Roll Compensation

Y

Y = Off-tracking Distance

Vehicle Center-line
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Figure 1.2 On a side slope, the weight is divided into a component normal to the slope and
another component parallel to the slope.

Before describing any further the effects of the disturbances caused by slope, it is

important to systematically set up the variables and nomenclature to describe this problem.

The off-tracking error (EOT) is the perpendicular distance between the vehicle’s center of

gravity (or some other control point) and the desired path. The heading error (EH) is the

angle created between the desired path’s vector and the vehicle’s velocity vector. When

oriented correctly with the world coordinate system (WCS), the heading error is the yaw

angle. The vehicle operates within the WCS, and it is this coordinate system that automatic

guidance is based upon; that is, the vehicle is being navigated to track a line which is fixed or

stationary in the world. To simplify the analysis, the X-axis of the WCS was set so that it

coincided with the straight-line path being tracked. This convention led to EOT being the

distance along the Y coordinate that the vehicle was displaced from the x axis and the

heading error to be equal to the yaw angle of the vehicle, ψ . Whenever EOT and EH appear

in the analysis, these variables can be immediately replaced with Y andψ .

Center of
Gravity

Gravitational Force, mg

Lateral Force
component
due to Slope

Normal Force
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Figure 1.3 Vehicle Off-tracking error (EOT) and Heading error (EH) are equivalent to Y and
ψ when the world coordinate system is orientated with the WCS X-axis aligned with the

desired straight-line path.

On a front wheel steered vehicle, such as a tractor, it is impossible to eliminate the

heading error due to the effects of gravity, when operating on a slope. Only an understeer

gradient of zero, for a rear steered vehicle, would result in a steering angle of zero, or a four-

wheel steer vehicle with all four wheels steered in the uphill direction would remove the

heading error when operating on a slope (Evans, 2006). When a tire is steered, the direction

D
E
S
I
R
E
D

P
A
T
H

Y

Y = EOT

ψ = EH

u
X
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vector of the tire is made up of lateral (Y) and longitudinal (X) force vectors. It is the lateral

force vector that applies the forces required to steer the vehicle. When operating on a slope,

a four wheel steer vehicle would be evenly applying lateral forces, front to back, to

compensate for the slope. With only one set of wheels steering, one end of the vehicle is

creating sufficient lateral forces to track to the path. Since the opposite end of the vehicle is

not generating the same lateral forces, this end of the vehicle will have a greater off-tracking

error than the other, creating a constant heading error. Besides heading error, the only factor

that remains to affect the guidance is the off-tracking error. The controller will use the off-

tracking and heading errors in order to make corrections toward the path to reduce these

errors. However without controller compensation for the slope, the steering angle

commanded will only be that required to obtain zero off-tracking on level ground, thus

creating a constant off-tracking error in slope applications. The exception to this is utilizing

an integral control to drive the off-tracking error to zero.

Evans (2006) developed a yaw plane bicycle model of a rear steered vehicle to

investigate the performance of an automatic guidance system for a combine on side-slopes.

Evans found the steady state relationship between slope, turning radius and steering angles

for a four wheel steered vehicle to be:

( )θδδ −+=− yrf aK
R

L
(1-1)

where fδ and rδ are the front and rear steering angles in radians, L is the vehicle length in

meters, R is the radius for a steady state turn in meters, K is the understeer gradient, ay is the

lateral acceleration in g’s and θ is the roll angle in radians. When tracking a straight line,

the lateral acceleration would be equal to zero and the radius would be infinite. Thus on a
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side slope, tracking a straight line would require the steering angle to be equal to the

understeer gradient times the roll angle.

Furthermore, Evans calculated the steady state heading angle when equation 1-1 is

substituted back into rδ ( 0=fδ for rear wheel steer), resulting in the relationship,

θβ
αf

f
ss C

W
= (1-2)

where, ssβ is the steady state sideslip angle, Wf is the weight on the front of the vehicle and

fCα is the cornering stiffness of the front tires. This equation shows that if there is a slope

present, then a two wheel, rear steered vehicle will experience some degree of side-slip in

order to track the desired path.

Evans modeled a proportional-integral-derivative (PID) automatic guidance

navigation controller which used off-tracking and heading error feed-back signals. The

major differences between Evans’ work and that of this thesis are (1) He did not use feed-

forward control, (2) He also did not investigate the use of a look-ahead function, and (3) He

did not include the effects of steering delay on the system, except in an appendix. Evans

showed that integral and derivative heading error feedback terms could be dropped since they

had little impact on performance. He derived the transfer function relationship between off-

tracking error and slope angle. The automatic guidance controller and the vehicle system

were simulated with a five degree step slope input. His results showed that in most cases the

off-track error was reduced to an acceptable value within five seconds. Evans investigated

the effect of vehicle parameters such as changes in center of gravity location (fore and aft),

vehicle weight, vehicle velocity and tire cornering stiffness. He observed from simulation
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and root locus analysis that only the slope and the tire cornering coefficients had an effect on

the system response. Evans included some steering delay work in his appendices, from

which initial results showed differences from his other work. As a result, steering lag was

included along with feed-forward control in this thesis, which is more realistic since vehicle

steering systems are hydraulically powered and changes in steering angle occur through finite

fluid flow. Although Evans’ work showed that vehicle forward velocity had a negligible

effect on the controller performance, our use of feed-forward simulations included steering

lag and also different types of slopes, so controller performance over multiple velocities were

simulated in our work. The work accomplished in this thesis also took the slope simulations

a step farther and utilized different slope types to test the controller (Evans, 2006).

1.3 Research Objectives

The main goal of this research was to investigate the potential of improving auto-

guidance off-tracking performance on side-slopes by feeding forward vehicle roll angles.

Supporting this main research goal were the following specific objectives:

1. To investigate the effect of a roll angle feed-forward signal on controller

performance.

2. To quantify the response of the controller on slopes.

3. To investigate the effects of changing parameters on vehicle controller performance.

4. To determine if any improvements can be made using a look-ahead function.

Each of these action items were considered a high priority in order to prove or disprove any

beneficial effects that the controller hoped to gain. In addition to these four items, analytical

work was required to determine a gain for the roll angle feed-forward term.
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One main way this controller differs from those in previous work is the use of a feed-

forward controller. This controller utilizes a proportional gain on the feed-forward signal to

compensate for the force of gravity on the vehicle. This compensation is accomplished by

the gain effectively “forcing” the output of the controller to be larger than it would be

otherwise. The feed-forward aspect of the simulation was expected to have the single

greatest effect on the way the controller affected the automatic guidance of the vehicle. The

remainders of the simulations were secondary to these tests and were believed to only

slightly enhance the functionality of the controller that is already improved upon by using

feed-forward control.

Once the controller was designed, its effectiveness had to be verified. This was

accomplished though the use of two different test slope profiles. Both utilized a straight path

with varying slopes. The first slope profile investigated was a sinusoidal slope with

amplitude of 5 degrees. The second slope profile used was a 5 degree step slope. These two

slopes were then used to determine the effectiveness of the controller to track a given line.

Changes in vehicle parameters were important to show the robustness of a controller

to operate effectively in many situations and using different vehicle parameters. The feed-

forward model was constructed with this idea in mind and allowed for the ease of changing

variables to simulate different vehicle makes and models. In his work on controller

development in sloped terrain, Evans (2006) found that changes in individual vehicle

parameters such as center of gravity and mass had little effect on controller performance.

Due to these findings, the parameter changes in this simulation do not deal with center of

gravity or vehicle mass. Two parameters were of particular importance: vehicle velocity and

tire cornering stiffness. In a situation where response delays can cause poor controller
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performance, velocity has the potential to have a negative effect on the system. Tire

cornering stiffness is the factor that deals with tire to soil interaction. For most of the

simulations, one set of nominal tire cornering stiffness values were chosen. A separate

simulation was run to examine how other cornering stiffness values, when compared to the

nominal values, affected controller performance. The off-tracking integral controller gain

was also investigated due to its small value. Integral off-tracking error gain uses a value

selected as described in chapter three.

The last objective is determining the effectiveness of utilizing a look-ahead function.

The basis behind this function is the use of a Digital Elevation Model (DEM) of a specific

terrain. A DEM provides an elevation element to a standard surface area map. With GPS

technologies, farmers can make their own terrain maps (DEMs) of their fields (Westphalen,

2004). In the field, roll angles can be measured using roll angle sensors; however with the

availability of a DEM it is possible to look-ahead into the terrain to estimate upcoming roll

angles. As a result, instead of basing the controller off of the roll angle at the vehicle’s

current location, looking-ahead into the DEM can pull out a point a certain distance in front

of the vehicle and feed-forward the upcoming expected roll-angle of the vehicle. With this

additional function, off-tracking error for automatic guidance could be further reduced. For

testing purposes, the idea behind a DEM was captured. However, instead of using an actual

DEM, we were able to look-ahead into our predetermined slope path to utilize upcoming roll

angles.
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1.4 Summary of work

Chapter 1 provided the background for the research by laying out the motivation for

this study. Chapter 2 introduces the vehicle model, describes in detail the development of the

controller model, its gain values, the simulations used in conjunction with them and

corresponding controller development. Chapter 3 describes the methodology of the

simulations. Chapter 4 presents the simulation results and some discussion. Chapter 5

outlines the conclusions derived from the results and offers suggestions in areas of

continuing research. The Appendices contain a detailed list of the vehicle parameters used as

well as full, detailed derivations of the steady state equations of the automatic guidance

controlled vehicle system, as well as the MATLAB and SIMULINK models used to run the

simulations (ver. 7, Mathworks, Natick, MA).
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CHAPTER 2. SIMULATION AND CONTROLLER

DEVELOPMENT

2.1 Vehicle Model

A vehicle model was developed that served as the basis for all simulations in the

project. In previous work, Westphalen (2004) developed a similar vehicle model in his work

on a rear steering controller, which was then updated for this specific simulation. The

vehicle model developed was a three degree of freedom; yaw-plane bicycle model which is a

standard model used among vehicle dynamics experts (Figure 2.1). Two main areas where

the new model differs from the one shown in Figure 2.1 are the earlier model included a rear

wheel steering angle for a four wheel steer vehicle, and it did not include lateral forces due to

gravity. This section contains an abridged derivation of the defining equations for the model.

Table 2.1 provides a list of all the variables used in the vehicle model. The complete model

development is documented in Appendix B.

The switch from four to two wheel steering involved simply setting the rear steering

angle to zero. The primary reason for this change was that an agricultural tractor (model

8320, Deere and Co., Moline, IL) was being simulated. Front wheel steering tractors

dominate the market in the Midwest, specifically those using an automatic guidance system.

Naturally this type of steering set-up best suited the research being done for this market area.

The forces generated on the model are a result of the tire slip angle. A lateral force is applied

perpendicular to each tire, which causes the vehicle to yaw, and is larger when the tires are

turned.
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Figure 2.1 Four-wheel steer, three degree of freedom, yaw-plane bicycle model based on
Westphalen (2004).

The addition of a force due to slope went beyond a simple parameter change. This

lateral force is a factor of the vehicle’s mass times gravity times the sine of the slope angle.

This force was then added into the force balance equation of the dynamic model, where it

was applied to the center of gravity (Figure 2.2).
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Figure 2.2 Modified yaw-plane bicycle model for front wheel steer vehicle operating on
slopes with an additional lateral force due to gravity.

As stated earlier, this model is based on a 3-degree of freedom, yaw plane bicycle

model. This allows for both lateral and horizontal movement as well as rotation about the

yaw axis. The model is limiting in some respects by only including three degrees of freedom

and thus not including pitch, roll and vertical movement. Vertical movement is not important

from an automatic guidance perspective and thus it was not necessary to include it in the

model. Weight transfer due to pitch and roll is important for vehicle dynamics, but in this

case the addition of those components would make the model too complex. Part of the

reason these were omitted was also due to the vehicle operating at relatively slow speeds.
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Operation on a slope does cause weight transfer regardless of speed, but the complexity of

the simulation required is beyond the scope of the problem addressed in this research.

Unlike traditional yaw-plane bicycle models, this model had the addition of a gravity

force vector. The roll degree of freedom was omitted from the model by rotating the yaw

plane about the vehicle’s centerline. The additional force was then applied via a lateral force

located on the uphill side of the vehicle creating a force vector expressed mathematically as:

( )θsinmgFs = (2-1)

where Fs is the lateral force, θ is the roll angle, and m is the vehicle mass. Positive roll

angles are defined as a counterclockwise rotation of the vehicle about an axis pointed toward

the front of the vehicle. Thus, a positive roll angle will result in a vehicle weight component

towards the left through the vehicle CG.

Figure 2.3 Lateral force vector generated from the gravitational vector acting upon a vehicle
as viewed from the front.

Fs=mg*sin

Center of
Gravity

mgmg*cos
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Table 2.1 List of variables that are used in this simulation, and their descriptions.
Variable Description Units

fα Front wheel slip angle rad

rα Rear wheel slip angle rad

a Distance from CG to front axle m
β Sideslip angle rad

b Distance from CG to rear axle m

cC Cornering Coefficient rad-1 

fCα Cornering Stiffness for front tire N/rad

rCα Cornering Stiffness for rear tire N/rad

d Look-ahead distance m

fδ Front steering angle rad

cf ,δ Commanded front steering angle rad

rδ Rear steering angle rad

Fs Lateral force due to gravity N
Fyf Lateral force for front wheels N
Fyr Lateral force for rear wheels N
g Gravitational acceleration m/s2

I Moment of Inertia kg-m2

K Understeer gradient rad
KH Heading Gain unit less
KOT Off tracking Gain rad/m
L Length of wheel base m
m Vehicle mass kg
r Yaw Rate rad/s
u Longitudinal velocity m/s
v Lateral velocity m/s
W Vehicle weight N
Wf Vehicle weight for front tires N
Wr Vehicle weight for rear tires N
X Vehicle position in WCS (longitudinal) m
Y Vehicle position in WCS (lateral) m
θ Roll angle rad
ψ Vehicle heading angle rad
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The equations of motion for the vehicle were developed based on Westphalen (2004)

with some changes made to better represent the vehicle system. The summations of the

lateral forces acting on the vehicle give the first equation of motion:







 +=−+
•

urvmFFF syryf (2-2)

The next equation was derived by summing the moments about the center of gravity:

•

=− rIbFaF zzyryf (2-3)

When the automatically guided vehicle was tracking the straight line, only relatively

small steering angles were required for accurate control, thus allowing the use of a small

angle assumption in the front and rear lateral tire force equations:

ffyf CF αα−= (2-4)

rryr CF αα−= (2-5)

Substituting these equations into 2-2, and then simplifying results in:

( )
m

murWCC
v rrff −−−−
=

• θαα αα sin
(2-6)

The front and rear slip angles, fα and rα respectively, are functions of the slip angle at the

center of gravity, steering angle, forward velocity, raw rate and distance to the CG:

ff u

ar δβα −+= (2-7)

rr u

br δβα −−= (2-8)
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Where β :







= −

u

v1tanβ (2-9)

Although rδ will eventually be set to zero since we are simulating a front-steer

vehicle, it is being kept in the equations of motion in order to create a more generic solution.

Using the small angle assumption for β ( uv /=β ) and then substituting 2-7, 2-8 into 2-6

results in our first state equation:

( )

m

murW
u

brv
C

u

arv
C

v
rrff −−





 −

−
−





 −

+
−

=
•

θδδ αα sin
(2-10)

Now taking the same steps with equation 2-3, finalizing the second state equation:

zz

rrff

I

b
u

brv
Ca

u

arv
C

r






 −

−
+






 −

+
−

=
•

δδ αα

(2-11)

Finally, because we were controlling the position of the vehicle relative to a straight-

line path, two more state equations for the yaw angle and lateral position relative to the path

are required.

ψuvY +=
•

(2-12)

Where Y is measured with respect to the center of gravity.

r=
•

ψ (2-13)

The steering system was modeled as a first-order delay with a time constant, τ . The steering

delay is based on
•

fδ and shown next.



21

τ
δ

τ
δδ 11

,cfff +−=
•

(2-14)

The steering system has additional non-linearities, which were not included here but

were included in the simulations. These non-linearities include steering angle and steering

rate saturation limits, and also hydraulic non-linearity within the steering system. These

were important to the system as they have a direct affect on how the system responds

regardless of the commanded values. These prevent the model from generating an unrealistic

steering signal that would not be attainable with a vehicle. Rewriting the equations 2-10

through 2-14 in matrix form gives:

( )






































 −

+













































−

=

























•

•

•

•

•

cf

r

f

f

H
m

W
F

Y

r

v

u

GDC

EBA

Y

r

v

,

sin

1
00

000

000

00

0

1
0000

00010

0001

00

00

δ
θ

δ

τ
δ
ψ

τδ

ψ
(2-15)

Where:

mu

CC
A rf αα −−
= (2-16)

mu

mubCaC
B rf

2−+−
= αα (2-17)

uI

bCaC
C

zz

rf αα +−
= (2-18)

uI

bCaC
D

zz

rf
22

αα −−
= (2-19)

m

C
E fα= (2-20)
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m

C
F rα−= (2-21)

zz

f

I

aC
G α= (2-22)

zz

r

I

bC
H α= (2-23)

Then simplifying for front wheel steer alone is accomplished by setting rδ equal to zero.

2.2 Steady State Solutions

2.2.1 Non-Feed Forward Steady State

Once the equations of motion for the vehicle were developed, then analysis was

performed to calculate the steady state solutions based on these equations. For automatic

guidance, the three steady state variables of most importance are heading error (yaw angle,

ψ ), off-tracking error (Y), and steering angle ( fδ ). These three variables define the tracking

and motion of the vehicle during simulation. Determining the steady-state values for each

variable provided a baseline which was then compared to future calculations. A brief outline

of each steady state derivation is shown below. More details are provided in Appendix B. 

This analysis started with an automatic guidance navigation controller with

proportional off-tracking and heading error feedback. The control law for this prototype

controller was:

( ) ψψδδ HOTcff KdYK −+−== sin, (2-24)

where d is the look-ahead distance.
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Then to find the steady-state relationships, all of the state variable in the vehicle

model were replaced with steady state variables as indicated with the bar. Then, since all of

the steady state variables were constant for particular input sets, the first derivatives go to

zero. This reduced the first two state equations to:

( )θδ sin0 gEvAv f −+==
•

(2-25)

And

fGvCr δ+==
•

0 (2-26)

Since
•

Y also goes to zero, the third state equation reduced to:

uv
u

v ψψ −=⇒−= (2-27)

Also from the fourth state equation:

0=r (2-28)

Now substituting the control law (2-24) into equations 2-25 and 2-26, and substituting

for v using (2-27), then solving forY , resulted in:

( )
OT

HOT

EK

gEKdEKuA
Y

θψψψ sinsin −−−−
= (2-29)

And

OT

HOT

GK

GKdGKuC
Y

ψψψ −−−
=

sin
(2-30)

Setting these two equations equal to each other then factoring:

( ) ( )
OTOT

H

OT

H

EK

g

EGK

EGKCu

GEK

GEKAu θψψ sin
=

−−
−

−−
(2-31)
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Pulling ψ out and simplifying again:

( )uECGA

Gg

+−
=

θψ sin
(2-32)

Substituting back in for A, C, E and G along with more simplification, yielded the steady

state solution for heading error.







 +

=

a

b
C

W

r 1

sin

α

θψ (2-33)

And with further manipulation:

r

r

C

W

α

θ
ψ

sin
= (2-34)

The solution for steady state off-tracking error begins using equations 2-30 and 2-34

above. Solving for Y this time and substituting right away gives:

























 +



























−








−







 +−
−

=

a

b
C

W

K
I

aC

K
I

aC
dK

I

aC
u

uI

bCaC

Y

rOT
zz

f

H
zz

f
OT

zz

f

zz

rf

1

sin

α
α

αααα

θ
(2-35)

Simplifying and using the equality from equation 2-34:

( )

OT

f

r

r

r
HOT

K

aC

bW

C

W
KdK

Y

θ
αα

sin1











−−−

= (2-36)

Using the definition of front and rear normal loads in the following equation:







=

a

b
WW rf (2-37)
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Finally substituting this variable into the Y equation and simplifying yields:

( )

OT

f

f

r

r

r

r
HOT

K

C

W

C

W

C

W
KdK

Y

θ
ααα

sin











+−+−

= (2-38)

The understeer gradient, K, which is a factor of the vehicle’s ability to steer, is used to

finalize the steady state solution (Gillespie, 1992).

r

r

f

f

C

W

C

W
K

αα

−= (2-39)

( )

OT

r

r
HOT

K

K
C

W
KdK

Y

θ
α

sin







++−

= (2-40)

Most of the analytical work was already completed for the steady state steering angle.

Combining the steady state equations 2-24, 2-35, and 2-36 and simplifying results in the

equation of the steering angle, results in the expression:

θδ sinKf = (2-41)

Which matches the results of Evans (2006).

From this analysis, it was observed that the steady state steering angle was directly

related to the slope and the understeer gradient. If the understeer gradient is non-zero, and

the vehicle is operating on a side slope, there would always be a steady state non-zero

steering angle. This angle was necessary to track the desired path in the steady state. The

steady state off-track error (Y ) is the constant distance the vehicle remains from the path

after the system has reached steady state. To improve automatic guidance performance, this

term must be driven towards zero. However, the expression for Y shows that with a steady-
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state heading error greater than zero, the off-track error can be different, depending on from

which part of the vehicle it was measured. This steady-state error was a function of the

slope, rear weight, rear cornering stiffness, heading and off-tracking error gains and also the

understeer gradient. The steady state heading angle error (ψ ) provides the lateral tire forces

at the rear of the vehicle to offset the lateral gravitational force. For a two wheel steer

vehicle, this error will always be greater than zero due to unequal generation of lateral forces

from front to rear. The steady state heading error was directly related to the weight on the

rear of the vehicle, the rear tire cornering stiffness and the slope. This analysis showed that

as long as the vehicle was operating on a slope the heading error was non-zero. At this point

the vehicle was orientated at an angle to the desired path and different parts of the vehicle

would have different off-tracking errors.

2.2.2 Feed-Forward Steady State

One initial question that needed to be answered for the development of a roll angle

feed-forward controller was what roll angle feed-forward gain should be used. Selecting the

feed-forward gain was non-trivial, however. While the lateral gravitational force component

only disturbs the system through the lateral acceleration state equation, the actuation through

the steering angle was applied to both lateral acceleration and yaw acceleration equations.

Thus a simple cancellation of the disturbance signal with feed-forward control does not work

in this situation. The first step in determining the feed-forward gain was to try adding

K*sin(θ ) to the control law to counteract the additional disturbance force due to gravity.

Here steady-state variables are used because of analysis that follows, but for actual

application, we will use general variables.
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( ) θψψδ sinKKdYK HOTf +−+−= (2-42) 

Substituting the control law in (2-29 and 2-30) results in:

( ) ( )( ) θθψψψ sinsin0 gKKdYKEuA HOT −+−+−+−= (2-43)

( ) ( )( )θψψψ sin0 KKdYKGuC HOT +−+−+−= (2-44)

Further substitutions similar to those done previously and solving for Y yields:

( )
OT

CON

GK

GKGKCu
Y

θψ sin++−
= (2-45)

Where:

HOTCON KdKK += (2-46)

Now substituting into 2-43 and simplifying gives the same steady state heading angle as

before.

θψ
α

sin
r

r

C

W
= (2-47)

For the steady state off-tracking distance, equation 2-44 is solved for ψ .

( )CON

OT

GKCu

GKYGK

+−
−

=
θ

ψ
sin

(2-48)

Inserting ψ into equation 2-43.

( ) ( ) ( ) θ
θ

sin
sin

gEKYEK
GKCu

GKYGK
EKAu OT

CON

OT
CON −=+









+−
−

+ (2-49)

Once this is simplified and the correct values of A, C, E, G are also inserted, the final

off-tracking error equation was found to be:
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( ) θ
α

sin
1

















++−= K

C

W
KdK

KK

K
Y

r

r
HOT

OTOT

(2-50)

The K/KOT terms cancel out which yields:

( ) θ
α

sin
1




















+−=

r

r
HOT

OT C

W
KdK

K
Y (2-51)

Now that the off-tracking error is derived, the steady state steering angle can be found based

on:

( ) θψδ sinKKdKYK HOTOTf ++−−= (2-52)

Substituting 2-51 and simplifying gives the steady state steering angle, which ended up being

the same steady state steering angle derived in 2-41.

θδ sinKf = (2-53) 

Like the non-feed-forward control law, this revised control law with roll angle feed

forward control did not eliminate steady state errors. The next step then in determining the

feed forward gain began with the previous feed forward steady state solution and applied an

arbitrary gain C instead of K, the understeer gradient, to sinθ , resulting in the control law:

( )( ) θψψδ sinCKdYK HOTf +−+−= (2-54) 

Since C is a constant, the steady-state off-tracking error in equation 2-50 changes to:

( ) θ
α

sin
1

















++−= K

C

W
KdK

KK

C
Y

r

r
HOT

OTOT

(2-55)

To determine the value of C that resulted in a zero steady-state off-track error, Y was set to

zero and then the equation was solved for C, resulting in:
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( ) K
C

W
KdKC

r

r
HOT ++=

α

(2-56)

This gave a steady state steering angle once substituted back into 2-54.

( ) θδ
α

sin







++= K

C

W
KdK

r

r
HOTf (2-57) 

Although the steady state steering angle had changed, the heading angle (ψ )

remained the same. The steering angle represented the final feed-forward term used for the

controller. The equation was used to improve the vehicle guidance over the non-feed-

forward steering command shown in 2-41. The addition of the off-tracking and heading

terms in the feed-forward gain drove the steady state error to zero.

2.3 Model Controller

In section 2.2 above, the steady state equations were derived for the vehicle

controller. The design utilized feed-forward control to send adjusted error signals into the

model and ideally, eliminating the steady-state errors caused by gravity. In this section, we

added integral and derivative off-track error terms. This provided for potentially better

control of the system than what was proposed analytically in the previous section. This

updated controller is composed of proportional, integral and derivative controllers. These are

more commonly referred to as PID controllers. Each gain in the PID controller contributes

their own error signal adjustment. All of these signals were based on the off-tracking and

heading error signals received from the simulation. In total, there could have been six

controller terms; however, previous work by Evans (2006) showed that the integral and

derivative heading controllers were best set to zero and thus can be omitted. This leaves the
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following four controller gains: KHP, KOTP, KOTI and KOTD. The following equation

describes how the desired signal to the controller was formed using the PID gains where d is

the look-ahead distance.

dtYIKYDKdYPKPK OTOTOTHf ∫+++=
•

*****ψδ (2-58) 

The controller gain values were determined by using a combination of kinematic and

dynamic vehicle models. When designing the controller we knew that the tracking dynamics

(Y and ψ ) dominate the system’s response, and the steering delay would be a secondary

effect of the dynamics. Adjustments were made by increasing the integral off-tracking gain

(KOTI) to reduce the steady-state error, then the derivative gain (KOTd) was increased to

improve system dampening, however the proportional controller can affect both types of

response (Nise, 2004). The kinematic model with proportional feedback control will have

the following characteristic equation.
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To design our controller, two equations were used for the damping ratio and natural

frequency of the system.

LPK

DKPK
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OTH

2

+
=ζ (2-60)

PK
L

v
OTn =ω (2-61)

Where ζ is the damping ratio and nω is the natural frequency (Steward, 2006).

Next we chose our desired distance to peak, dp, for the second order response. For this, 2

meters was chosen. The time to peak, tp, could then be related to dp through equation 2-62.
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V

d
t p

p = (2-62)

The next step was to then choose a desired damping ratio, based on an average value

with limited overshoot, but not overly damped, for which ζ was set to 0.5. Using a plot of

standard unit step response curves for second order equations found in any standard dynamic

systems textbook, the value of nω could be found based upon tp (Shearer, et al., 1997).

Using equation 2-61 we were then able to solve for KOT. Once KOT was determined,

equation 2-60 was then used to find KH, with the selected value for ζ .

A kinematic model was used first to obtain generalized root locus plots of the gains.

The above analysis uses the second order model as a starting point. We started with a second

order model because it is actually tractable to calculate gains.
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Generalized root locus show the response of one variable on a system changing while

the rest are held constant (Nise, 2004). A generalized root locus is a plot of the possible

closed loop pole locations with changes in individual gains. Depending on their location,

closed loop poles may be stable, marginally stable or unstable. These plots allowed gains to

be found that provided the best settling times, and least amount of overshoot for each

individual controller gain.

Figures 2.4 and 2.5 below show the generalized root-locus for each of the gain

variables. For all controller gains, except for one, the systems are always stable. KOTI is

only in the stable region briefly, before going unstable when KOTI is about 0.0825. Thus it

required the selection of a very small value from a limited range for this term. For the KHP



32

term we found a number of values that would work well based on the root locus, but when

used in the dynamic model, a value of 0.4 was found to work the best. Both KOTP and KOTD

have a zero and two poles right at the origin. Although the location of their other poles and

zeros are different, when running them in the dynamic model they ended up utilizing the

same value to gain favorable results.

The next step involved testing the gains in the dynamic model to check the system

response to the controller. A system response was desired that would have the fastest

damping time without sacrificing excessive system overshoot. A step function returned the

system response for four different velocities in graphical form (Figure 2.6). One of the first

things evident from this graph was the strong correspondence between velocity and

amplitude. A higher velocity led to higher peak amplitude, which would correlate to a

maximum off-tracking distance. Due to the higher speeds do causing greater overshoot, they

also take longer distances to settle. Except for the fastest speed, it appeared all the responses

get to their steady state values around 60 meters. From these observations it is obvious to see

that vehicle velocity dominates the response.
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Figure 2.4 Root Loci varying each gain value used in the controller. a) KHP varying with

KOTP = 0.1, KOTI = 0.0001 and KOTD = 0.001 b) KOTP varying with KHP = 0.4, KOTI =
0.0001 and KOTD = 0.001.
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Figure 2.5 Root Loci varying each gain value used in the controller. a) KOTI varying with

KHP = 0.4, KOTP = 0.01 and KOTD = 0.001 b) KOTD = varying with KHP = 0.4, KOTP = 0.01
and KOTI = 0.0001.



35

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Distance (m)

A
m

pl
itu

de
2 m/s (4.5 mi/h)
4 m/s (9 mi/h)
6 m/s (13 mi/h)
8 m/s (18 mi/h)

Figure 2.6 Comparisons in the step response to dynamic vehicle model using final gain
values from Table 2.2 at four different velocities. 

 

Table 2.2 Final Proportional, Integral, and Derivative controller gain values, where OT
terms are for off-tracking error and H terms are heading error.

Gain Numerical Value

KOTP 0.1

KOTI 0.0001

KOTD 0.001

KHP 0.4

KHI 0

KHD 0
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Utilizing the root locus and system response simulations, final values for the gains

were determined, which are highlighted in Table 2.2. These gain values were substantially

lower than those derived by Evans (2006), even though both had similar applications. One

factor that was likely to cause some differences between this work and Evan’s was that our

vehicle model included steering system dynamics. The steering system was modeled as a

first order delay with a 0.1 second time constant. There were also saturation limits on the

steering angle rate and the overall steering angle. These limits were only applied to the

model used in the vehicle simulations, and not in the analytical work. An additional,

possibly substantial, difference between Evans work and that presented in this thesis was that

his work was based on a combine with rear steering which weighed more and had

substantially different vehicle parameters.

2.4 Modeling Tire-Soil Interactions

A major factor in any vehicle modeling simulation is the interaction between the

vehicle and the soil surface. Vehicle modeling has been around for a long time; however,

there is still not a consensus on how to best model tire-soil interaction as related to slip angle

and lateral tire force in the agricultural field. The main problem is the high uncertainty in the

lateral force relationship between the tire and the soil.

The difference between the actual direction of travel and the tire angle is called the

slip angle (α ). The lateral force ( yF ) developed on the tire, causes the vehicle to turn and is

heavily influenced by the tire to soil interaction. This issue was magnified when operating

on hillsides. This was a result of gravity causing additional slippage and thus the vehicle was
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less apt to go in the direction the tires are pointed. The force on the tires in the y direction

was calculated based on this slip angle, multiplied by the cornering stiffness ( fCα ) of the tire.

The cornering stiffness was defined by:

0=

≡
α

α αd

dF
C y (2-64)

In the automobile industry, this interaction is well known and documented. This is

due to roads having a known coefficient of friction between the surface and the tire. In

addition, for automobiles, the road surface does not deform compared to off-road

applications where soil deformation occurs as a vehicle tire passes over it. Furthermore, tire

design is drastically different for agricultural operations. Both on and off-road tires are

deigned for their own particular environments. The type of contact patch each tire type has

for its own environment is completely different. In some scenarios, such as a car traveling at

low speeds on dry pavement, it is acceptable to assume that the direction the tires are pointed

is also the same as the velocity vector (Bernard, 2005). Although tractors travel at low

speeds when automatic guidance systems are engaged, a simple kinematic model that does

not include lateral wheel slip for the direction of travel would not be robust enough for

neither the higher speeds nor the slopes encountered during these simulations. Baack (2003),

and others, running off-road equipment simulations were able to avoid some of these issues

by assuming that there was no tire slip.

For the automobile industry, extensive data is collected by the tire manufacturers to

obtain cornering stiffness values to be used in simulations. Values are displayed in what is

called a carpet plot (Figure 2.7), which is used to calculate the cornering stiffness of tires.
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Figure 2.7 Carpet Plot for a passenger car tire (Gillespie 1992).

For the agricultural tire industry, carpet plots were not readily available. Instead, a

cornering coefficient was used. The equation for this value was based upon the normal load

and cornering stiffness for any particular tire on the vehicle.

v
c F

C
c α= (2-65) 

From this equation the cornering stiffness was determined for the tires and used in the

vehicle model.

When engaged in automatic guidance, tractors are not operating on dry pavement, but

rather on soil whose physical properties are affected by many different variables such as soil

shear strength, moisture content and vegetation to name a few. Several different tire models

have been developed relating tire slip angle and the vertical tire force to the tire lateral force.

These models are the linear model, the bi-linear model, the polynomial model, a Pacejka

modified sinusoidal model and an exponential model. The linear model applies a linear

lateral load until tire saturation, the bi-linear model is representative of the cornering force
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curve with two linear regions, the exponential model follows the relationship of shear stress

to soil deformation and the Pacejka model fits tire data to a modified sine function. The

linear model was not used since it only worked well for low speeds and had no vertical load

effect. A bi-linear model was disregarded for the same issues with vertical load, but also was

inaccurate compared to others as the lateral force reached the maximum value. The

polynomial model was more accurate in representing tire functionality than the previous two

models, but it did not include a camber effect nor did the coefficients relate to any real

values. A Pacejka modified sinusoidal model seemed to have all the benefits the others

lacked, however it required extensive data for curve fitting (Metz, 1993). Thus Metz settled

on an exponential model that didn’t have a camber effect, but included vertical load effects as

well as the coefficients corresponding to real data values. This exponential tire model was

represented mathematically by:

[ ]αB

V

y eA
F

F
LFC −−=≡ 1 (2-66) 

Where LFC is the lateral force coefficient, Fy is the lateral tire force,

FV is the normal tire force on an individual tire and α is the tire side slip angle. A and B are

exponential tire model parameters and are estimated from empirical data.

B changes as a function of normal tire force according to the expression:

[ ][ ] ADFFACB m
VVREF /// += (2-67) 

Where C, D, and m are model parameters estimated from empirical data, and

FVREF is a reference normal tire force.

Based on the definition of the cornering coefficient in equation 2-65 and that of cornering

stiffness in 2-64, it can be shown that the cornering stiffness is:



40

αC = ABFV (2-68)
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Metz also presented a list of cornering coefficients ranging from low plowed field

values up to high meadow values based on off-road tires. The type of soil, moisture content

and ground coverings all create different situations in which a tractor controller must be able

to operate (Metz, 1993).

Using normal forces on each of the tires for the agricultural tractor being modeled

(model 8320, John Deere, Moline, IL.), cornering stiffness was calculated for individual tires

using the exponential tire model parameters found from Metz and were based on the work of

Swanghart and Rott (1984). Swanghart and Rott (1984) experimentally determined the

cornering stiffness of tires for different, broad classes of soil/field conditions. Cornering

stiffness was determined by pulling a rolling tire in a straight line at particular slip angle and

measuring the force developed, cornering stiffness values were created for different types of

tires in different types of soil (Swanghart, et al., 1984). From Metz’s model the cornering

stiffness were used for a single tire with the static normal forces on the individual tires for the

John Deere 8320 tractor in a plowed field, cornfield and in a meadow. These values were

then multiplied by two for front tires and by four for rear tires in a dual rear wheel

configuration.



41

CHAPTER 3. EXPERIMENTAL DESIGN

3.1 Methods

This chapter discusses the methodology used to investigate controller performance.

All simulations were based on mathematical models executed using both MATLAB and

SIMULINK (ver. 7, Mathworks, Natick, MA). There were four main steps in the

methodology: (1) designing the gains for the roll-angle feed-forward controller for the

automatic guidance simulation, (2) controller simulation as it responded to straight paths,

both step and sinusoidal test slope profiles, (3) investigation of the effects of different vehicle

velocities and changes in cornering stiffness from the nominal values used to design the feed-

forward controller gains and (4) determining if feeding-forward expected roll angle at some

look-ahead distance from the current vehicle location could improve the controller

performance. The purpose of each of these steps was to assess the potential of roll-angle

feed-forward control in improving automatic guidance controller performance on side-slopes

under varying operating conditions.

A John Deere 8320 tractor with front wheel assist and dual rear wheels (Deere and

Co., Moline, IL) was used in the simulations and was modeled as a SIMULINK block

diagram. The difference in the model used for the simulations and that described in Chapter

2 was that it also included steering angle saturation and steering rate saturation. The

controller still functioned as the analytical model, but the saturation values limited the

steering angle and rate so they would not be outside the realistic limits for an off-road

vehicle. The controller was then implemented as a discrete time controller in a MATLAB

function with a 0.2 second sampling time. The SIMULINK model was called to simulate the
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vehicle dynamics over 0.2 time horizons. At the end of each time horizon, the vehicle states

were used to calculate the next controller output and were used as the initial conditions for

simulating vehicle dynamics over the next 0.2 time horizon. The MATLAB code for these

simulations is located in Appendix E and the SIMULINK block diagram is shown in

Appendix F.

3.1.1 Feed-Forward and Non-Feed-Forward Controller Comparisons

To meet the first and fourth research objectives, and to assess improvements in

vehicle tracking under automatic guidance with a feed-forward controller four different

controller simulations were performed over two prototypical test slope profiles which are

described further below. These tests were: (1) a navigation controller test with no feed-

forward control, (2) a navigation controller test with roll-angle feed-forward control using the

roll angle at the current vehicle location, (3) a navigation controller test with estimated roll

angle feed-forward control at 2 meters ahead of the current vehicle location and at (4) 10

meters ahead of the current vehicle location. The control law for the steering controllers used

in these tests was equation 2-58.

From each simulation, the off-track errors were calculated and stored at each 0.2

second interval over the duration of the simulation. Off-track error was defined as the

perpendicular distance of a point 1.83 m in front of the center of the rear vehicle axle from

the A-B line that was being tracked. Based on the off-track error vector for each simulation

case, two performance metrics were calculated: the maximum off-tracking distance and the

off-tracking percentage. The maximum off-tracking distance was the largest magnitude off-

tracking value observed during the simulation. In the field, this metric represents the single
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largest overlapping or gap distance between paths. The off-track percentage was the

percentage of the total path length where the vehicle experienced an off-track distance

greater than 0.025 meters (2.5 cm). The percentage was calculated by dividing the number of

off-track error values along the path greater than 0.025 meters by the total number of error

values calculated along the path. The off-track percentage provided an indication of the

proportion of the off-track errors that were above an acceptable level. According to John

Deere, the highest StarFire RTK GPS receiver accuracy was sub-inch, or less than 2.54 cm

(DE, 2006). This GPS position measurement mode is used in the most demanding automatic

guidance situations, such as laying drip tape and control traffic farming, which also require

the most precise automatic guidance controller performance. While this research was

estimating automatic guidance tracking performance, using the sub-inch threshold to

calculate this performance metric made sense and would indicate a level of performance that

ensures the navigation controller performance would not adversely affect the accuracy of

even the most precise systems.

3.1.2 Test Slope Profiles

During simulation, two different test slope profiles were used. The first test slope

profile started with a horizontal plane. Then after 100 meters in the direction of travel of the

tractor, the slope underwent a step change to a positive, or counter clockwise about the

longitudinal vector of the vehicle body pointed in the forward travel direction, five degree

slope (Figure 3.1). The slope change resulted in a vehicle roll angle step that caused a

gravitational lateral force component to act on the vehicle towards the left hand side of the

vehicle. After 200 meters along the vehicle travel direction, the slope profile returned to
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horizontal through another step change in slope. Simulation continued along this slope

profile for another 150 meters.

The stepped slope profile enabled simulation of controller step responses and enabled

observation of standard time response parameters such as rise time and percent overshoot for

the system. The stepped slope change of five degrees was based on that value being an upper

threshold for slopes found in many agricultural areas. In addition, this value provided

enough change to observe the effect of side-slope on automatic guidance controller

performance, but was not too large to demand that the controller to perform well under

unrealistic slope conditions. Although not impossible in nature, it was not expected that this

stepped slope would ever be encountered in reality by an operator running an automatic

guidance system in their vehicle. Nonetheless, this profile provided important insight into

controller performance.

The second slope profile started with a zero degree slope, but then immediately

picked up a sinusoidal slope profile. The amplitude of this slope was five degrees, similar to

the step slope, and had a period of 200 meters. As in the step slope simulation, the slope

returned to zero degrees after 200 meters. At this point the simulation continued at zero

degrees for another 150 meters.

In addition to the step slope, the sinusoidal profile was chosen for a number of

reasons. Not only is a sine wave a common mathematical function, but it also represented a

situation that would be more likely to be found under normal operating conditions. The

smooth transitions generated by the sine wave also provide a more realistic situation that

would be expected in the field, rather than a sharp slope change found in the step simulation.

The sinusoidal slope also allowed the system response to be shown over both a positive and a
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negative slope profile. This sign change in the slope allowed the controller to work with the

lateral force being exerted from two different sides (Figure 3.1). In the transition between

the positive and negative slopes, the look-ahead simulation contains a two meter section,

where the vehicle is experiencing a positive roll angle while the controller is looking ahead

and processing a negative roll angle. This transition period is important to ensure that

changes in slope sign do not cause excessive errors.
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Figure 3.1 Slope profile for step and sinusoidal slopes.

3.1.3 Vehicle Velocity

For each controller-type and test slope profile, simulations were run at four vehicle

velocities, 2, 4, 6 and 8 meters per second (4.5, 9, 13.4 and 18 miles per hour). This set of

velocities covered most of the expected working range of the vehicle under automatic
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guidance control plus some additional higher velocities. Most current automatic guidance

systems on the market today disable themselves at speeds near or above 12 miles per hour,

thereby creating a limit to the vehicle velocity where the controller would be expected to

operate (Deere & Company, 2006). However, new applications are constantly being

developed, and it would not be unlikely for automatic guidance systems to increase their

upper speed limit in the future.

Automatic guidance must produce an acceptable level of performance over a range of

vehicle velocities. As speed increases, the controller has less time to react, and depending on

the sampling rate, it may not be able to control the vehicle. At each sampling point in time

the controller is receiving a measurement of vehicle location and heading, calculates off-

track and heading errors based on the A-B line, and outputs a command to the steering

controller based on the control law. At the higher vehicle speeds, the steering dynamics may

lead to the steering angle lagging behind the steering angle command. In addition, larger

lateral steering forces are required to accelerate the vehicle laterally and to rotate the vehicle

about the yaw axis. These factors can lead to the vehicle exhibiting greater overshoot and

larger magnitude errors at higher speeds. Evans (2006) showed initially that at higher speeds

the system response improved; however, eventually these speed increases reached a threshold

and caused the response to become more underdamped.

3.1.4 Changes in Cornering Stiffness Compared to Nominal Values

Because of uncertainly in tire-soil interaction and variation across changes in field

conditions, it was also important to investigate controller performance as the tire cornering

stiffness coefficients change relative to those used in the design of the roll angle feed-forward
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controller gain. The roll-angle feed-forward gain, C, was calculated using equation 2-56

based on the nominal cornering stiffness coefficient for the tires supporting the weight of the

tractor on a maize field: fCα = 373432 N/rad and rCα = 633421 N/rad (Swanghart, et al.,

1984) and was fixed as a constant in the controller based on the current design. It was

important to explore what happens as the actual cornering stiffness changes due to soil/field

conditions while C is fixed in the controller. Ideally, the gain selected would be very robust

and work well for all applications. By analyzing different cornering stiffness coefficient

values relative to the nominal value used to fix C, the effects of changes in soil conditions on

controller performance can be studied.

For this comparison, three simulations were run. Each set had a different cornering

stiffness based on Metz’s data from a plowed field, a corn field and a meadow. For each

field condition, simulations were run using the sinusoidal path and roll angle feed-forward

control, but without look-ahead capabilities. These simulations were accomplished by

substituting the cornering stiffnesses from a plowed field and a meadow into the vehicle

model. The additional values represented the low and high ends, respectively, of the

cornering stiffness spectrum based on Swanghart’s data (1984) that an off-road tire would

likely encounter in an automatic guidance situation.

3.1.5 DEM Look-Ahead

The Digital Elevation Model (DEM) look-ahead function is based upon the idea of

having prior knowledge of the terrain over which the vehicle is traveling. Using elevation

data taken from an onboard DEM, the controller would then use this data as part of the

function along with feed-forward control. The idea was based on using the current location
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and heading, from which upcoming roll angles could be estimated at expected future

locations. The motivation behind this strategy was that highly accurate DEMs are becoming

available and could be loaded into vehicles that will be used in the field. Our hypothesis was

that feeding-forward estimated upcoming roll angles would result in improved performance.

When the look-ahead command was activated, the slope at the vehicle’s current

location was not used for estimating the roll angle for feed-forward control. Instead, the

controller looked-ahead along the desired path and estimated the slope it would encounter in

the near future. In this case, the controller looked ahead into the sinusoidal slope function

and pulled out the slope based on one meter segments of the curve. For testing purposes,

both 2 and 10 meter look-ahead distances were selected. With a 10 m look-ahead distance,

and our average tested speed of 5 m/s, the controller will be looking for a different slope two

seconds before it arrives at the location. The 2 meter distance was selected since it is the peak

distance, dp, used to design the controller gains. For the simulations, real DEMs were not

used, instead roll angles were found in the test slope profile at the look-ahead distance in

front of the current location.
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CHAPTER 4. RESULTS

4.1 Changes in Feed-Forward and Look-Ahead Control

Two factors were under investigation that had the potential to have the greatest effect on

vehicle control. These factors were the following: (1) the addition of roll angle feed-forward

control as compared with non-feed-forward control and (2) the use of estimated roll angles at

specific look-ahead distances from the current vehicle location as compared with the use of

roll angles at the current location. From the roll angle feed-forward control comparison, the

results showed a substantial advantage with the use of feed-forward control. The simulations

also showed that the addition of the look-ahead function, when combined with roll angle

feed-forward control, proved to further improve upon the control of the vehicle. Sections

4.1.1 and 4.1.2 detail the results of these simulations. Throughout the remainder of this

chapter, all tables will use the nomenclature of FF for roll angle feed-forward control, and

LA for roll angle feed-forward control using estimates of the roll angles at look-ahead

distances ahead of the current vehicle location. The number in parenthesis after the label,

LA, represents the look-ahead distance used in any particular function.

4.1.1 Feed-Forward Control

Our hypothesis was and our results confirmed that the addition of a feed-forward

input to the controller would have the greatest impact on automatic guidance performance on

hill side-slopes. For clarity, this section will only discuss the differences between the non-

feed-forward and roll angle feed-forward simulations.
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In the sinusoidal slope profile simulations, the controller with roll angle feed-forward

control performed well with a maximum off-track error ranging from 0.010 m to 0.013 m

with the maximum off-track error occurring at a speed of 8 m/s. When the controller without

roll angle feed-forward was simulated, the maximum off-track error was almost six times

larger at 0.076 m for the lower three vehicle velocities and 0.077 m at the top speed (Table

4.1). The controller without feed-forward control was only able to obtain 44.40 percent path

accuracy; however, the controller simulated using feed-forward control was able to produce

results with zero percent of the path beyond the 0.025 meter boundary (Figure 4.1 and 4.2).

For the accompanying figures in this section, there will be two error boundary lines at +/-

0.025 meters, which represent our prescribed off-tracking distance tolerances. In the metrics

any values outside these lines contributed to the off-tracking error percentage.

Table 4.1 Performance metrics calculated from simulations with the sinusoidal slope
profiles using controller models with and without roll angle feed-forward control.

Maximum Off-tracking Distance (m) Off-Tracking PercentageSpeed
(m/s) No FF FF, No LA No FF FF, No LA

2 0.076 0.010 44.40 0.00

4 0.076 0.011 44.46 0.00

6 0.076 0.011 44.50 0.00

8 0.077 0.013 44.52 0.00
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Figure 4.1 Trajectories of the tractor front axle center, vehicle center of gravity, and rear
axle center for sinusoidal slope profile at eight m/s for automatic guidance navigation

controller tracking the x = 0 line without feed-forward control.

A substantial difference in the performance metrics was observed from the

simulations of automatic guidance navigation controllers with and without roll angle feed-

forward control with estimates of the roll angle at the vehicle location (Table 4.1) In every

simulation, the performance metrics, where feed-forward control was used, were

substantially less than those without feed-forward control. These results were consistently

observed across all speed ranges and in both test slope profiles. In the sinusoidal slope

profiles, the off-tracking distance differences between the feed-forward and non-feed-

forward simulations were similar for slow speeds and high speeds, with the average off-

tracking distance difference being 0.065 meters.
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Figure 4.2 Trajectories of the tractor front axle center, vehicle center of gravity, and rear
axle center for sinusoidal slope profile at eight m/s for automatic guidance navigation

controller tracking the x = 0 line with roll angle feed-forward control.

In the step slope profile simulations, the largest improvement in performance based

on the difference in maximum off-track error comparing feed-forward with non-feed-forward

control schemes was 0.069 m and occurred at 8 m/s. Similarly, when looking at the off-

tracking percentage, the biggest difference between the two controllers also was at the

highest velocity. With roll angle feed-forward control, the step slope simulation was able to

reduce the off-tracking distance to values between 0.031 and 0.042 meters (Table 4.2). At

the same time, the off-tracking error percentage was held to an average value of less than

4.5%. These values were a large improvement over those of the non-feed-forward control

which averaged an off-tracking error percentage of just under 30%.
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In both step slope profile simulations, the results were noticeably more underdamped than

that of the sinusoidal slope profiles as the step input excited the dominant second order

dynamic, which from the plots had a damping ratio of 0.0368 at 2 m/s and 0.0374 at 8 m/s.

These dominant dynamics are consistent with the simulation results in Section 2.3. Although

the performance metrics for the feed-forward and non-feed-forward responses differ greatly,

both types of vehicle control show similar settling distances of just over 300 meters (Figures

4.3 and 4.4).
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Figure 4.3 Trajectories at the center of the vehicle’s front and rear axles, as well as at the
center of gravity for the step slope profiles for eight m/s with the controller tracking a path at

zero m over a distance of 350 m without feed-forward control.
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Figure 4.4 Trajectories at the center of the vehicle’s front and rear axles, as well as at the
center of gravity for the step slope profiles for eight m/s with the controller tracking a path at

zero meters over a distance of 350 m with roll angle feed-forward control.

Table 4.2 Performance metrics calculated from simulations with the step slope profiles
using controller models with and without roll angle feed-forward control.

Maximum Off-tracking Distance (m) Off-Tracking PercentageSpeed
(m/s) No FF FF, No LA No FF FF, No LA

2 0.093 0.031 28.68 3.85

4 0.096 0.034 28.80 4.22

6 0.102 0.037 29.98 4.66

8 0.111 0.042 31.34 5.18

It is important to observe the location of the front and rear of the vehicle, as indicated by the

trajectories of the front and rear axle center locations, for each vehicle controller case and the

effect that these locations had on the simulation responses. For the non-feed-forward control
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simulations, the rear of the vehicle followed the front, but the rear of the vehicle had a greater

deviation from the line being tracked than the front in the downhill direction of the slope

(Figure 4.5).
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Figure 4.5 Rear axle off-tracking distance relationship to the position of the front axle for
non-feed-forward using the sinusoidal slope profile at a speed of four m/s.

In the corresponding roll angle feed-forward control simulation case, the rear traced a

trajectory that was still downhill relative to the front, but was a smaller deviation from the

line being tracked because of the additional steering correction component from the feed-

forward term, which shifted the entire vehicle up the slope (Figure 4.6). These observations

were consistent with the analytical results for both non-feed forward and feed forward

controller schemes (Eqn. 2-33 and 2-46) indicating that the vehicle yaw will increase

(clockwise looking down on the top of the vehicle) for positive roll angles.
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Figure 4.6 Rear axle off-tracking distance relationship to the position of the front axle for
feed-forward control using the sinusoidal slope profile at a speed of four m/s.

4.1.2 Slope Look-Ahead

After observing that roll angle feed-forward control improved the tracking

performance, feed-forward controller performance was next investigated using estimates of

near future roll angles instead of roll angles measured at the current vehicle location. This

was done to compare the case where a roll angle sensor is mounted on a vehicle and

measures current vehicle roll angle with the case where a Digital Elevation Model (DEM)

could be used for roll angle estimates based on future vehicle postures according to the

current vehicle location and direction. Our hypothesis was that the controller could look

ahead into a field-level DEM and use the predicted upcoming roll angle to improve automatic
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guidance performance. Instead of using an actual DEM, the controller used pre-determined

slopes along the step and sinusoidal slope profiles.

Although the improvements are not as great as what was previously seen with the

comparison between feed-forward and non-feed-forward control schemes, the performance

metrics showed that there is a significant increase when using an appropriate look-ahead

distance in conjunction with the roll angle feed-forward control. For the 2 m/s simulation

and a look-ahead distance of two meters, the maximum off-tracking distance was cut nearly

in half to 0.016 m from 0.031 m without using look-ahead control (Table 4.3). Similar

results show the off-tracking error percentage was reduced from 4.22% without using look-

ahead control to 0%, using look-ahead control at 4 m/s. The look-ahead distance of 2 m at a

speed of 8 m/s on the step slope profile reduced the off-tracking error the greatest out of both

look-ahead distance and all four velocities with a reduction of 0.017 m. However, as much

as the 2 meter distance reduced the error, the 10 meter distance doubled the error, reaching an

error point as high as 0.075 m. Clearly the look-ahead distance must be selected to

correspond with the system dynamics.

By looking at more data from the step slope profiles, other differences between the

two types of control were also evident. When the simulation stepped to the five degree slope,

both controllers drove to the same steady state responses, however the look-ahead had less

overshoot (Figures 4.7 and 4.8).
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Table 4.3 Performance metrics comparing the look-ahead distances of 0, 2 and 10 meters for
simulations of roll angle feed-forward control using a step slope profile at 2, 4, 6 and 8 m/s.

Maximum Off-tracking Distance (m) Off-Tracking PercentageSpeed
(m/s) FF, No

LA
FF, LA
(2 m)

FF, LA,
(10 m)

FF, No
LA

FF, LA
(2 m)

FF, LA,
(10 m)

2 0.031 0.016 0.059 3.85 0.00 6.02

4 0.034 0.020 0.065 4.22 0.00 6.17

6 0.037 0.026 0.060 4.66 0.69 6.20

8 0.042 0.025 0.075 5.18 0.42 11.17
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Figure 4.7 Visual simulation response cues of a step slope profile at 6 m/s comparing roll
angle feed-forward control without a look-ahead distance.



59

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
-50

0

50

100

150

200

250

300

350

400

Off-Tracking Distance (m)

D
is

ta
nc

e
(m

)
Rear
CG
Front
Desired Path
Error Boundaries

Figure 4.8 Visual simulation response cues of a step slope profile at 6 m/s comparing roll
angle feed-forward control using a look-ahead distance of 2m.

In addition to the step slope profile, simulations were also performed with the

sinusoidal slope profile. Although the sinusoidal slope responses did not reduce the off-

tracking distance as much as the step slope profile, when comparing them to the non-look-

ahead simulations, they did have the lowest overall off-tracking distance of 0.005 meters

(Table 4.4). When compared to the non-look-ahead data, the sinusoidal slope profiles using

look-ahead control cut the off-tracking distance by 50%.
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Table 4.4 Performance metrics comparing the look-ahead distances of 0, 2 and 10 meters for
simulations of roll angle feed-forward control using a sinusoidal slope profile at 2, 4, 6 and 8
m/s.

Maximum Off-tracking Distance (m) Off-Tracking PercentageSpeed
(m/s) FF, No

LA
FF, LA
(2 m)

FF, LA,
(10 m)

FF, No
LA

FF, LA
(2 m)

FF, LA,
(10 m)

2 0.010 0.005 0.015 0.00 0.00 0.00

4 0.011 0.005 0.015 0.00 0.00 0.00

6 0.011 0.006 0.017 0.00 0.00 0.00

8 0.013 0.006 0.020 0.00 0.00 0.00

Unlike the difference in look-ahead (2m) and non-look-ahead cases, going from 2 to a

10 meter look-ahead value did not show an increase in performance. For both the step and

sinusoidal slope profiles, the 10 meter look-ahead distance was worse than not using any

look-ahead distance. For the sinusoidal slopes, where the 2 meter look-ahead distance

effectively cut the off-tracking distance errors in half, the 10 meter look-ahead distance

increased the off-tracking errors by 50%.
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Figure 4.9 Simulation responses comparing look-ahead distances of 2 meters for a
sinusoidal slope profile at a speed of 8 m/s and using roll angle feed-forward control.

In the sinusoidal performance metrics, it was noticeable that in both simulations, the

off-tracking distances were below the off-tracking error distance threshold (0.025m) for the

length of the run. However, from additional data, it was also evident that the 2 meter look-

ahead distance simulation did not have as large amplitudes as the 10 meter distance. This

results in the 2 meter look-ahead distance controller tracking the desired path better,

especially when comparing the path with the rear axle center trajectory (Figures 4.9 and

4.10).
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Figure 4.10 Simulation responses comparing look-ahead distances of 10 meters for a
sinusoidal slope profile at a speed of 8 m/s and using roll angle feed-forward control.

4.2 Parameter Changes

By using a specific vehicle for all of the simulations, the majority of the vehicle

parameters such as wheelbase and weight, were clearly defined and held constant throughout.

However, three variables were chosen to further investigate controller performance. The

three values under investigation were: the vehicle velocity, the integral off-tracking error

feedback term, and the cornering stiffnesses for different field conditions. To determine if

there was any change in performance with vehicle velocity, simulations of 2, 4, 6 and 8 m/s

were conducted. The roll angle feed-forward controller development resulted in an integral

off-tracking term which was very small. Further simulations were conducted to see if an

increase in this value would improve the vehicle response. Lastly, the tire cornering
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stiffness, which dealt with tire to ground interactions, had a large uncertainty associated with

it since it is influenced by many independent factors. As stated in section 2.4, much work

has been published in this area due to this uncertainty, thus it was thought to be beneficial to

explore how these changes would affect the roll angle feed-forward controller.

4.2.1 Changes in Velocity

For each of the four controller simulations (non-feed-forward, feed-forward and both

types of look-ahead functions) and the sinusoidal slope profile, the off-tracking distance did

not vary significantly with increased velocities. From the data, the largest change in off-

tracking distance when comparing a 2 m/s velocity with an 8 m/s velocity was five

millimeters, which was for the roll angle feed-forward control with a look-ahead distance of

ten meters (Table 4.1). Although each of the controllers did show an increase in off-tracking

distance when comparing the 2 and 8 m/s simulations, this change only averaged an increase

of 2.5 mm. Similarly, for the simulations that show any off-tracking percentage, mainly the

non-feed-forward simulation, the off-tracking percentage between any two speeds did not

change by one percent.

Additional data allowed for the further investigation of the vehicle response beyond

the performance metrics of off-tracking distance and off-tracking percentage. A visual

comparison showed that two simulations, both using non-feed-forward controllers on a

sinusoidal slope profile, initially look nearly identical in their maximum off-tracking distance

and period for speeds of 2 and 8 m/s (Figures 4.11 and 4.12).
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Figure 4.11 The effects on vehicle trajectories for non-feed-forward control simulations
comparing different vehicle velocities using a sinusoidal slope profile at 2 m/s.

However, upon closer inspection it is apparent that the 8 m/s simulation takes close to

25 meters longer to reach steady state. Overall, the simulations did not uncover any

significant relationship between the vehicle velocity and the off-track error. This confirms

what was published by Evans (2006) and shows that changes due to speed are negligible.
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Figure 4.12 The effects on vehicle trajectories for non-feed-forward control simulations
comparing different vehicle velocities using a sinusoidal slope profile at 8 m/s.

As in the sinusoidal slope profiles, further data analysis reveals the responses of the

vehicle beyond what was described with performance metrics. With the increased speed, the

sinusoidal profiles did not have a large change in response; however, from the step slope

profiles simulations, the vehicle dynamics had lower damping at the highest speed level

(Figures 4.13 and 4.14). This lower damping corresponds to the increase in velocity also

increased the settling distance from 250 to 300 meters when going from 2 to 8 m/s. Once

again the results are different than what was seen with the sinusoidal slope profiles.

However, despite the changes in the system responses, the overall effect was minor,

especially when considering drastic change in slope that was a result of the step slope profile.
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Figure 4.13 Comparison of off-tracking trajectory from a path at x=0 for a 2 m/s velocity
using a roll angle feed-forward controller, without the look-ahead function on a step slope

profile.

Results from the sinusoidal slope profiles showed very little change with increased

velocities and when they did change it was in a predictable manner. The four step slope

profile controller simulation results did not mimic those of the sinusoidal slopes. For the

non-feed-forward control simulation the results showed similar characteristics to the

sinusoidal paths in that the off-tracking distance increased with velocity (Table 4.2).

However, in the remaining three simulations, the off-tracking distances were not all greater

than they were at the previous speed for the same simulation. For instance, the roll angle

feed-forward controller using a look-ahead distance of ten meters had the second highest off-

tracking distance for the simulation occur at a speed of 4 m/s.
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Figure 4.14 Comparison of off-tracking trajectory from a path at x=0 for an 8 m/s velocity
using a roll angle feed-forward controller, without the look-ahead function on a step slope

profile.

Another difference for the step slope profile simulations was the magnitude of the

off-tracking distances. Out of all of the different velocity simulations the most any one off-

tracking distance increased by was 0.018 meters, which was the difference between the 2 and

8 m/s velocities using non-feed-forward control. This value appeared to be small, but when

calculated, it made up 72% of our allowable error (25 mm). This was not the same result as

found in the sinusoidal simulations. The results showed that for the step slope profiles,

increased velocities do negatively affect the controller performance.
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4.2.2 Changes in KOTI

From the controller development in chapter three, one value was chosen for the

integral off-tracking gain (KOTI = 0.0001). This number was so small that the integral

component of the feedback controller was practically negligible. Thus, since integral control

will drive steady-state error to zero, further simulations were run using a larger integral off-

tracking gain to evaluate whether it would have a significant impact upon the off-tracking

results. In order to provide a small sample set for simplified and direct comparisons,

simulations of the sinusoidal slope profile alone were used with the controllers that have a

larger integral error term.

When the feedback error term, KOTI, was increased to 0.01, the non-feed-forward

controller performance improved (Tables 4.5 and 4.6). This was most notable at the 2 m/s

velocity level where the maximum off-tracking distance with the increased KOTI was over

three centimeters less than that of the tests with KOTI being equal to 0.0001. However, as the

speed increased the advantages of the larger value for KOTI were less as they both were

within one centimeter off-tracking distance at 8 m/s. Also in the simulation for an 8 m/s

vehicle velocity, the original value for the off-tracking gain had an off-tracking percentage of

44.52% while the larger gain only had 42.91% off-tracking. Although it was expected that

the values would not change with velocity similar to what was seen previously, in the case of

a larger KOTI, an increasing velocity created larger off-tracking errors and percentages. The

changes were not negligible either; the off-tracking distance increased by over 70% while the

error percentage increased by 30%. This was a very interesting result as was substantially

different than previous results.
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Table 4.5 Performance metrics for an increased integral off-tracking error (KOTI = 0.01)
using a sinusoidal slope profile for different vehicle controllers.

Performance
Metric

Speed
(m/s) No FF

FF, No
LA

FF, LA
(2m)

FF, LA,
(10m)

2 0.043 0.011 0.011 0.021

4 0.063 0.011 0.008 0.022

6 0.072 0.011 0.008 0.021

Maximum
Off-tracking
Distance (m)

8 0.076 0.012 0.007 0.021

2 32.66 0.00 0.00 0.00

4 41.76 0.00 0.00 0.00

6 43.25 0.00 0.00 0.00

Off-Tracking
Percentage

8 42.91 0.00 0.00 0.00

Table 4.6 Performance metrics for the original integral off-tracking error (KOTI = 0.0001)
using a sinusoidal slope profile for different vehicle controllers.

Performance
Metric

Speed
(m/s) No FF

FF, No
LA

FF, LA
(2m)

FF, LA,
(10m)

2 0.076 0.010 0.005 0.015

4 0.076 0.011 0.005 0.015

6 0.076 0.011 0.006 0.017

Maximum
Off-tracking
Distance (m)

8 0.077 0.013 0.006 0.020

2 44.40 0.00 0.00 0.00

4 44.46 0.00 0.00 0.00

6 44.50 0.00 0.00 0.00

Off-Tracking
Percentage

8 44.52 0.00 0.00 0.00

In the roll angle feed-forward simulations where the look-ahead functions were not

used, the controller performance did not change with the larger integral gain term. When

comparing the 4 and 6 m/s velocity simulations for both sets of gains used the off-tracking

distance values remained the same at 0.011 meters. At the remaining two velocity levels the
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new and old data were within 1 mm. Thus far it seemed that a value 100 times larger than

the gain chosen could have been substituted for the original value.

Further data shows, however, that the two graphical responses are not identical

(Figures 4.15 and 4.16). Both simulations appear to have matching responses, for the front

and the center of gravity trajectories, up until the 200 meter mark. At the same time, the rear

trajectory for the larger gain stayed closer to the desired path. However, at this point the gain

value of 0.0001 quickly settled into the path, while the gain of 0.01 takes over 100 meters

longer to reach the same off-tracking distance from the path.
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Figure 4.15 Controller response to a sinusoidal slope profile using roll angle feed-forward
control at 6 m/s and comparing the effects of the integral off-tracking gains of KOTI = 0.0001

on vehicle response.
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By the performance metrics, the original integral off-tracking gain performed better

than the new gain with roll angle estimation at look-ahead distances. At the 2 m/s velocity, a

gain of 0.01 resulted in an off-tracking distance of 0.011 meters while a gain of 0.0001 had a

much lower off-tracking distance of 0.005 meters. In both the 2 and 10 meter look-ahead

functions, the original gain outperformed the larger gain. Since the gain of 0.0001 performed

equal to or better than the gain of 0.01 in the cases where the smallest off-tracking distances

were found, the controller was not changed and continued to use the original gain values.

One point of interest in the results is that for the 2 meter look-ahead function and the gain of

0.01, the off-tracking distance decreased as the vehicle velocity increased. This was opposite

from what was observed and discussed previously with the non-feed-forward control for the

larger gain.
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Figure 4.16 Controller response to a sinusoidal slope profile using roll angle feed-forward
control at 6 m/s and comparing the effects of the integral off-tracking gain of KOTI = 0.01 on

vehicle response.

4.2.3 Changing Tire Conditions for Fixed K

One issue encountered when using this controller was that the gains used in the

controller had to be set before starting the simulations. However, in real field conditions, the

cornering stiffness may be changing based on differences in soil conditions. In order to

optimize the controller, it was thought that the cornering stiffness used in the controller

needed to remain close to the actual cornering stiffness in the field.

The controller was based around Metz’s cornering stiffness for a corn field, so this

data served as the baseline for subsequent simulations using different cornering stiffness
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values (Figure 4.17). To provide a close comparison, only simulations on a sine slope profile

using feed-forward control were compared.
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Figure 4.17 Vehicle trajectories for a sinusoidal slope profile, using feed-forward control,
without the look-ahead function at a speed of 4 m/s while using the corn field cornering

stiffnesses.

The plowed field had a smaller cornering stiffness, so it was not surprising to see the

off-tracking distance to be worse than that of the corn field. The performance metrics

showed that the plowed field was substantially worse, producing off-tracking distances that

were over five times higher than that of the baseline data (Table 4.7). This result was

observed across all four speeds. Comparing the plowed field against the corn field data

showed a definite increase in error; however, a conclusion could not yet be made as to
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whether the cause of the increased off-tracking distance was due solely to the lower

cornering stiffness of the plowed field, or whether the difference was a result of the actual

cornering stiffness not matching the simulated cornering stiffness (Figure 4.18).

Table 4.7 Cornering stiffness in different field conditions for a sine slope using feed-
forward control without the look-ahead function.

Field Conditions/
Cornering Stiffness

Speed
(m/s)

Maximum Off-
Tracking Distance

(m)
Off-Tracking
Percentage

2 0.052 38.23

4 0.052 38.32

6 0.051 38.32

Plowed field

fCα = 226615 N/rad

rCα = 384476 N/rad
8 0.054 38.37

2 0.010 0.00

4 0.011 0.00

6 0.011 0.00

Corn field (Baseline)

fCα = 373432 N/rad

rCα = 633421 N/rad
8 0.013 0.00

2 0.034 25.96

4 0.033 26.06

6 0.033 26.14

Meadow (Grassy field)

fCα = 665837 N/rad

rCα = 1129470 N/rad
8 0.033 26.37

Taking a closer look at the trajectories from the case using the plowed field cornering

stiffnesses, an interesting result was found when comparing the front axle off-tracking

distances. In the corn field baseline data, the front axle had the greatest off-tracking errors

while the rear axle remained close to the desired path. However, for the plowed field the

opposite occurred. The front axle remained close to the desired path while the rear axle

distances were much greater. This could have been a result of the low cornering stiffnesses

of the plowed field in combination with the dual rear tires on the test vehicle.
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Figure 4.18 Vehicle trajectories for a sinusoidal slope profile, using feed-forward control,
without the look-ahead function at a speed of 4 m/s while using the plowed field cornering

stiffnesses.

The meadow field had a larger cornering coefficient than the corn field; however the

data once again showed higher off-tracking distances than that of the baseline data (Figure

4.19). This result was similar to the plowed field, except in this case the off-tracking

distances were three times higher than the baseline. With this data it was clear that the errors

being generated were not solely based on a high or low cornering stiffness, but instead at

least partially due to their differences from the baseline gains. However, the plowed field

used cornering stiffnesses that were closer to the corn field values, yet had larger off-tracking

distances than the meadow. Without further evidence the errors from the plowed field cannot
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be fully rationalized, but they are likely due to the low cornering stiffness and not being able

to generate as high lateral forces.
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Figure 4.19 Vehicle trajectories for a sinusoidal slope profile, using feed-forward control,
without the look-ahead function at a speed of 4 m/s while using the meadow cornering

stiffnesses.

It is also important to note that in all three cases, the results represented an

improvement over the non-feed-forward simulations. These results aligned with the theory,

stated in the opening paragraph of this section, that in order to optimize the controller, the

theoretical cornering stiffness must remain close to the actual coefficient.
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CHAPTER 5. CONCLUSIONS AND SUGGESTIONS

FOR FURTHER WORK

5.1 Conclusions

From this research, we derived the following conclusions:

• The roll angle feed-forward controller was the single biggest improvement to reduce

off-tracking errors of a vehicle. In all cases and situations it outperformed the non-feed

forward controller.

• The roll angle feed-forward controller gains its off-tracking advantage by over-

driving the vehicle to the uphill side of the desired path and allows the gravitational force to

reduce the off-tracking error.

• Increasing velocities in the sinusoidal slope paths do not significantly change the

maximum off-tracking error; this was most likely a result of lateral forces generated by the

tires increasing as the vehicle velocity increases, even though the tendency to overshoot

would be greater. Meanwhile the gravity force we were trying to overcome remains

constant, regardless of vehicle speed. As velocity increases, there was only a negligible

difference in maximum and percentage off-tracking values. This confirms what Evans found

and extends Evan’s work to the roll angle feed-forward controller case.

• In the step slope simulations, an increase in velocity led to larger off-track errors and

percentages. This result was due to the instantaneous change in slope that the step causes,

fully exciting the closed loop system dynamics. Damping decreases as the speed increases,

leading to larger errors.
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• Estimating the roll angle 2 meters ahead of the current vehicle location cut the off-

tracking distance by up to 50%. However, using a larger distance of 10 meters made the

controller perform worse than the case where the current vehicle roll angle was used.

• By increasing the integral off-tracking gain, our performance metrics were not

adversely affected. However, in some simulations the larger integral gain did show an ill

effect in the settling time and system damping.

• The cornering stiffness used in the controller should be matched to the cornering

stiffness of the field in order to have the greatest reduction in off-tracking distance.

Derivations from the nominal value did result in increased metrics, but not as large as the

case with no feed-forward control.

5.2 Suggestions for Further work

• All the work achieved for this project was simulated in MATLAB. It seems natural

that the next step would be to test the controller in a real environment to see how it holds up

to a different set of demands. This also would provide an interesting comparison to the

simulated results of the controller. We have already integrated the controller into an

automatic guidance equipped vehicle to test in real field conditions. However, for this type

of testing, simulation and field testing offer very difficult challenges. One obstacle to field

testing is an accurate method for measuring the off-tracking distance for the desired path.

The A-B line must be set using vehicle mounted GPS receivers so there is a limitation on

how accurate a path can be physically measured when dealing with such small off-tracking

distances. Using the same GPS receivers for tracking a path and calculating off-tracking
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distances does not allow for an independent source of measurement to confirm that errors are

not solely due to the receivers.

• The controller should be tested across a wide range of tires, different ground cover

and varying degrees of soil moisture. For these tests, the controller was only set-up using the

tire cornering stiffness for a corn field. This was due to the fact that the goal of this project

was to study the controller performance and not to resolve any tire-to-soil contact issues. We

know from section 4.2.3, that changing the actual cornering coefficient relative to what the

controller used increases off-tracking errors. In this area there is a vast amount of variability

and relatively little work was done compared to what is being done in other areas to improve

automatic guidance. Different environmental conditions also can play a major roll in the

effectiveness of a steering controller. Thus all of these issues need further exploration either

in simulation or in field tests.

• The controller should be tested on slopes less than five degrees. In order to get a

more direct comparison, only one maximum slope value was used. As a result, further

studies may show the controller reacts differently for different grades and may not truly be a

linear system.

• Apply the controller to different vehicles using alternate tractor parameters as well as

non-tractor vehicle platforms. For instance, Evan’s work involved the automatic guidance of

a combine. An interesting comparison could be made between the two controllers if the

vehicle parameters were changed to reflect those of a combine.

• Instead of using a three degree of freedom bicycle model, simulate a 6-degree

dynamic vehicle model. Currently the yaw-plane bicycle model only contains half the
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degrees of freedom needed to exactly replicate a real vehicle. A six degree of freedom model

would also enhance the dynamic changes going on within the vehicle while operating on a

slope, thus may provide a more accurate representation of a real vehicle. This would allow

for the changes in normal forces due to vehicle pitch and roll. With so much of the controller

relying on the tire to ground interaction, a change in the normal force could potentially yield

some very beneficial results.

In conclusion, the feed-forward and look-ahead functions performed as expected

reducing the off-tracking errors of the system. With the look-ahead distance set to two

meters, the combination of these two control systems dominated the system responses

compared to the other test cases. Further testing of the controller on a real vehicle platform

would help verify our simulations and provide better feedback on the system. This would be

very beneficial if the vehicle were navigated over differing terrain and soil conditions.
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APPENDIX A. VEHICLE PARAMETERS FROM A JOHN

DEERE 8320 TRACTOR

Variable Value Units

a 1.745 m

b 1.225 m

L 2.97 m

fCα 87.764 N/rad

rCα 135.86 N/rad

u 2, 4, 6 and 8 m/s

Izz 50.64 kg*m2

m 12660 kg

g 9.81 m/s2

W 124192.6 N

Wf 51224.2 N

Wr 72968.4 N

θ 0 to 0.0873 radians
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APPENDIX B. STEADY STATE EQUATIONS

B.1 Equations of Motion

The first equation of motion is found by summing the forces about the model in the y-

direction.

)sin(θWFs = (B-1)







 +=∑
•

urvmF (B-2)







 +=−+
•

urvmFFF syryf (B-3)

ffyf CF αα−= (B-4)

rryr CF αα−= (B-5)

Substituting B-4 and B-5 into B-3 

( ) murvmWCC rrff ++−−−
•

θαα αα sin (B-6)

Then solving for
•

v

( )
m

murWCC
v rrff −−−−
=

• θαα αα sin
(B-7)

Next the front and rear slip angles are calculated based on equations 2-7, 2-8 and 2-9.

ffff u

arv

u

ar

u

v

u

ar δδδβα −
+

=−+





=−+= −1tan (B-8)

rrrr u

brv

u

br

u

v

u

br δδδβα −
−

=−−





=−−= −1tan (B-9)
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Then substituting these variables into B-7 yields

( )

m

murW
u

brv
C

u

arv
C

v
rrff −−





 −

−
−





 −

+
−

=
•

θδδ αα sin
(B-10)

And

( )
m

W
FErBvAv rf

θδδ sin
−+++=

•

(B-11)

Where:

mu

CC
A rf αα −−
= (B-12)

mu

mubCaC
B rf

2−+−
= αα (B-13)

m

C
E fα= (B-14)

m

C
F rα= (B-15)

The second equation of motion is derived by summing the moments about the center of

gravity.

•

+∑ rIM zz (B-16)

•

=− rIbFaF zzyryf (B-17)

Then again substituting B-4 and B-5 variables, this time into B-17

•

=+− rIbCaC zzrrff αα αα (B-18)
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Then solving for
•

r

zz

rrff

I

bCaC
r

αα αα +−
=

•

(B-19)

And substituting the front and rear slip angles (B-8 and B-9) yields

zz

rrff

I

b
u

brv
Ca

u

arv
C

r






 −

−
+






 −

+
−

=
•

δδ αα

(B-20)

And

rf HGrDvCr δδ +++=
•

(B-21)

Where:

uI

bCaC
C

zz

rf αα +−
= (B-22)

uI

bCaC
D

zz

rf
22

αα +−
= (B-23)

zz

f

I

aC
G α= (B-24)

zz

r

I

bC
H α−
= (B-25)

Lastly since we are controlling the position of the vehicle relative to a straight-line path, two

more state equations for the yaw angle and lateral position relative to the path are required.

u

v
urbvY −=⇒+−=

•

ψψ (B-26)

r==
•

0ψ (B-27)
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Rewriting the equations in matrix form

( )

































 −

+





































=





















•

•

•

•

θ
δ
δ

ψψ
sin

000

000

0

0010

001

00

00

r

f

HG
m

W
FE

Y

r

v

u

DC

BA

Y

r

v

(B-28)

B.2 Steady State Heading Error

In the steady state, the first derivatives go to zero.

( )θδ sin0 gEvAv f −+==
•

(B-29)

fGvCr δ+==
•

0 (B-30)

Since B-26 will also go to zero, this reduces to:

uv
u

v ψψ −=⇒−= (B-31)

From 2-24 we get the control law for the controller.

( ) ψψδδ HOTcff KdYK −+−== sin, (B-32)

Then substituting B-31 and B-32 into B-29 and B-30.

( ) ( )( ) ( )θψψψ sinsin0 gKdYKEuA HOT −−+−+−= (B-33)

( ) ( )( )ψψψ HOT KdYKGuC −+−+−= sin0 (B-34)

Solving for Y

( )
OT

HOT

EK

gEKdEKuA
Y

θψψψ sinsin −−−−
= (B-35)

OT

HOT

GK

GKdGKuC
Y

ψψψ −−−
=

sin
(B-36)
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Setting equations B-35 and B-36 equal to one another and simplifying:.

( )
OT

HOT

OT

HOT

GK

GKdGKuC

EK

gEKdEKuA ψψψθψψψ −−−
=

−−−− sinsinsin
(B-37)

ψψθψψ sin
sin

sin d
GK

GKCu

EK

g
d

EK

EKAu

OT

H

OTOT

H −
−−

=−−
−−

(B-38)

( ) ( )
OTOT

H

OT

H

EK

g

EGK

EGKCu

GEK

GEKAu θψψ sin
=

−−
−

−−
(B-39)

( ) ( )
OTOT

HH

EK

g

GEK

EGKCuGEKAu θψ sin
=

−−−−−
(B-40)

Solving for ψ and simplifying:

( ) ( ) ( ) ( )EGKCuGEKAu

Gg

EGKCuGEKAu

GEK

EK

g

HHHH

OT

OT −−−−−
=








−−−−−

=
θθψ sinsin

(B-41)

( ) ( ) ( )uECGA

Gg

KGEGEuECGA

Gg

H +−
=

−−++−
=

θθψ sinsin
(B-42)

Substituting A, C, E and G back into the equations:








 +−
+






 −−
−










=








 +−
+







 −−
−










=

zz

rffrf

zz

f

zz

f

zz

rffrf

zz

f

zz

f

I

bCaC

m

C

m

CC

I

aC

g
I

aC

u
uI

bCaC

m

C
u

mu

CC

I

aC

g
I

aC

αααααα

α

αααααα

α θθ
ψ

sinsin

(B-43)

( )







 +










=










 +−+










=

mI

baCC

g
I

aC

mI

bCCaCaCCaC

g
I

aC

zz

rf

zz

f

zz

rffrff

zz

f

αα

α

αααααα

α θθ
ψ

sinsin

22
(B-44)
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( ) ( )baC

aW

m

baC

ag

rr +
=








 +
=

αα

θθψ sinsin
(B-45)

Finally yields the steady state solution for heading error.







 +

=

a

b
C

W

r 1

sin

α

θψ (B-46)

B.3 Steady State Off-Tracking Error

Starting with equation B-36 for the steady state off-tracking error and simplifying:

OT

HOT

GK

GKdGKuC
Y

ψψψ −−−
=

sin
(B-47)

ψ
OT

HOT

GK

GKdGKCu
Y

−−−
= (B-48)

Also using the steady state heading error (B-46)







 +

=

a

b
C

W

r 1

sin

α

θψ (B-49)

Substituting in the equations for C, G and B-49, then reducing:

























 +



























−








−







 +−
−

=

a

b
C

W

K
I

aC

K
I

aC
dK

I

aC
u

uI

bCaC

Y

rOT
zz

f

H
zz

f
OT

zz

f

zz

rf

1

sin

α
α

αααα

θ
(B-50)







 +











−−−

=







 +



















−−−

=

a

b
CK

WKdK
aC

bC

a

b
CK

I

aC

WKdK
aC

bC

I

aC

Y

rOT

HOT
f

r

rOT
zz

f

HOT
f

r

zz

f

1

sin1

1

sin1

α

α

α

α
α

α

αα θθ

(B-51)
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Further reducing B-49

r

r

r

C

W

a

b
C

W

α
α

θθ sin

1

sin
=







 +

(B-52)

Then changing this in B-51

OT

r

r
HOT

f

r

K

C

W
KdK

aC

bC

Y

θ
αα

α sin1 









−−−

= (B-53)

( )

OT

f

r

r

r
HOT

K

aC

bW

C

W
KdK

Y

θ
αα

sin1











−−−

= (B-54)

Using the definition of front and rear normal loads:







=

a

b
WW rf (B-55)

Using B-55 to simplify further:

( )

OT

f

f

r

r
HOT

K

C

W

C

W
KdK

Y

θ
αα

sin1











+++−−

= (B-56)

( )

OT

f

f

r

r

r

r
HOT

K

C

W

C

W

C

W
KdK

Y

θ
ααα

sin











+−+−

= (B-57)

Using the understeer gradient, K, form Gillespie (1992)

r

r

f

f

C

W

C

W
K

αα

−= (B-58)

Yields the steady state off-tracking error.
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( )

OT

r

r
HOT

K

K
C

W
KdK

Y

θ
α

sin







++−

= (B-59)

B.4 Steady State Steering Angle

For the steady state steering angle B-32 is used as a starting point.

( ) ψψδ HOTf KdYK −+−= sin (B-60)

ψψδ HOTOTf KdKYK −−−= sin (B-61)

From section B.3 we use B-59 to substitute for Y .

( )
ψψ

θθ
δ α

HOT
OT

r

r
HOT

OTf KdK
K

K
C

W
KdK

K −−
















 −+−
−= sin

sinsin

(B-62)

ψψθθθδ
αα

HOT
r

r
H

r

r
OTf KdKK

C

W
K

C

W
dK −−








−−−−= sinsinsinsin (B-63)

From B-52

θψ
α

sin
r

r

C

W
= (B-64)

And substituting into B-63









−







−







++= θθθθθδ

αααα

sinsinsinsinsin
r

r
H

r

r
OT

r

r
H

r

r
OTf

C

W
K

C

W
dKK

C

W
K

C

W
dK

(B-65)

Finally reduces to the steady state steering angle

θδ sinKf = (B-66)
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B.5 Feed-Forward Steady State Heading Error

Once again starting with B-32

( ) θψψδ sinKKdYK HOTf +−+−= (B-67)

Also starting with B-33 and B-34

( ) ( )( ) θθψψψ sinsin0 gKKdYKEuA HOT −+−+−+−= (B-68)

( ) ( )( )θψψψ sin0 KKdYKGuC HOT +−+−+−= (B-69)

From B-31

uv ψ−= (B-70)

And rearranging

( ) ( ) θψψ sin0 gEKKdKEYEKuA HOTOT −++−−−= (B-71)

( ) θψψ sin0 GKKdKGYGKuC HOTOT ++−−−= (B-72)

From 2-45 we get

HOTCON KdKK += (B-73)

B-71 can be reduced to

( )
OT

CON

GK

GKGKCu
Y

θψ sin++−
= (B-74)

Setting Y equal to zero and combining with B-72 yields

( ) ( ) θψ
θψ

ψ sin
sin

0 gEKEK
GK

GKGKCu
EKuA CON

OT

CON
OT −+−







 ++−
−−= (B-75)

Finally solving for ψ
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θψ
α

sin
r

r

C

W
= (B-76)

B.6 Feed-Forward Steady State Off-Tracking Error

Equation 2-47 is used as a starting point

( )CON

OT

GKCu

GKYGK

+−
−

=
θ

ψ
sin

(B-77)

Inserting this into B-68

( ) ( ) θψ singEKYEKEKAu OTCON −=++ (B-78)

( ) ( ) ( ) θ
θ

sin
sin

gEKYEK
GKCu

GKYGK
EKAu OT

CON

OT
CON −=+









+−
−

+ (B-79)

( )
( )

( )
( ) θsin








−+

+
+

−=







+

+
+

− gEKGK
GKCu

EKAu
YEKGK

GKCu

EKAu

CON

CON
OTOT

CON

CON (B-80)

After simplifying, equations for A, C, E and G are inserted

( ) ( )
θααααααα sin




















+

+−
−

+
=

+
CON

zz

f

zz

rf

zz

rf

zz

OTrf K
I

aC

I

bCaC
g

mI

KbaCC
Y
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Then solving for Y
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B.7 Feed-Forward Steady State Steering Angle

From B-66

θδ sinKf = (B-83)
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Where C is an arbitrary gain used in place of K

θδ sinCf = (B-84)

Also using B-76
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r
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W
= (B-85)

Using C in B-82
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For zero off-track (Y = 0) and solving for C

( ) K
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W
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r

r
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(B-87)

Finally yields the steady state steering angle

( ) θδ
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r
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APPENDIX C. PERFORMANCE METRICS

Sinusoidal Path Sinusoidal Path, KOTI = 0.01 Step Path

No Feed-Forward, No Look Ahead No Feed-Forward, No Look Ahead No Feed-Forward, No Look Ahead
Speed
(m/s)

Max
OT OT Percentage

Speed
(m/s)

Max
OT OT Percentage

Speed
(m/s)

Max
OT OT Percentage

2 0.076 44.40 2 0.043 32.66 2 0.093 28.68

4 0.076 44.46 4 0.063 41.76 4 0.096 28.80

6 0.076 44.50 6 0.072 43.25 6 0.102 29.98

8 0.077 44.52 8 0.076 42.91 8 0.111 31.34

Feed-Forward, No Look-Ahead Feed-Forward, No Look-Ahead Feed-Forward, No Look-Ahead
Speed
(m/s)

Max
OT

OT
Percentage Speed (m/s)

Max
OT

OT
Percentage Speed (m/s)

Max
OT

OT
Percentage

2 0.010 0.00 2 0.011 0.00 2 0.031 3.85

4 0.011 0.00 4 0.011 0.00 4 0.034 4.22

6 0.011 0.00 6 0.011 0.00 6 0.037 4.66

8 0.013 0.00 8 0.012 0.00 8 0.042 5.18

Feed-Forward, Look-Ahead (2m) Feed-Forward, Look-Ahead (2m) Feed-Forward, Look-Ahead (2m)
Speed
(m/s)

Max
OT

OT
Percentage Speed (m/s)

Max
OT

OT
Percentage Speed (m/s)

Max
OT

OT
Percentage

2 0.005 0.00 2 0.011 0.00 2 0.016 0.00
4 0.005 0.00 4 0.008 0.00 4 0.020 0.00

6 0.006 0.00 6 0.008 0.00 6 0.026 0.69

8 0.006 0.00 8 0.007 0.00 8 0.025 0.42

Feed-Forward, Look-Ahead (10m) Feed-Forward, Look-Ahead (10m) Feed-Forward, Look-Ahead (10m)
Speed
(m/s)

Max
OT

OT
Percentage Speed (m/s)

Max
OT

OT
Percentage Speed (m/s)

Max
OT

OT
Percentage

2 0.015 0.00 2 0.021 0.00 2 0.059 6.02
4 0.015 0.00 4 0.022 0.00 4 0.065 6.17

6 0.017 0.00 6 0.021 0.00 6 0.060 6.20

8 0.020 0.00 8 0.021 0.00 8 0.075 11.17
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APPENDIX D. TIRE PARAMETERS

On-
Highway

Plowed
field

Normal Load = 25,500 N
A = 0.67 unit less A = 0.65 unit less
B = 0.29305 1/degrees B = 0.11931 1/degrees
m = 0.14 m = 0.14

C/A= 1.01 C/A= 0.411
D/A= 0.8401 D/A= 0.3418

Calpha= 5006.7 N/degree Calpha= 1977.6 N/degree
286861.7 N/rad 113307.6 N/rad

Cornering
Coefficient = 0.19634 1/degree

Cornering
Coefficient = 0.07755 1/degree

Corn Field Meadow
A = 0.53 unit less A = 0.88 unit less
B = 0.24113 1/degrees B = 0.25894 1/degrees
m = 0.14 m = 0.14

C/A= 0.8294 C/A= 0.891
D/A= 0.6894 D/A= 0.7407

Calpha= 3258.8 N/degree Calpha= 5810.5 N/degree
186716.2 N/rad 332918.8 N/rad

Cornering
Coefficient = 0.12780 1/degree

Cornering
Coefficient = 0.22786 1/degree

FRONT REAR
Soil
Conditions

Caf
(N/rad)

Cafall
(N/rad) Car (N/rad)

Carall
(N/rad) K

On-Highway 286861.7 573723.5 243365.4 973461.8 0.01390
Plowed Field 113307.6 226615.2 96119.1 384476.5 0.03518
Corn Field 186716.2 373432.4 158355.5 633421.8 0.02132
Meadow 332918.8 665837.6 282367.7 1129470.7 0.01196

K +Wr/Car*(Kot*d+Kh)
0.06752 Kot = 0.01 Wf (N) 51000
0.17094 d = 1.5 Wr (N) 73000
0.07753 Kh = 0.7
0.10373
0.05818
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APPENDIX E. MATLAB CODE

This section contains the complete MATLAB (The MathWorks, Inc., Natick, MA)

code used in the simulation of the vehicle and controller. This code has been edited to take

that which was used for plotting to reduce its length and only include the pertinent

information.

E.1 Vehicle Simulation Code: vehiclesim8.m

function[Time,Y,Delf,Delr]=vehiclesim8(speed,SLOPEPATH,simtime,PATHTYPE,LASLOPE,KpHEadi
ng,KpOTrack,KiOTrack,FF);
% Name: VehicleSim8
% Purpose: To simulate a vehicle which is being navigated down a path
% and has ARS 4WS control being applied to minimize the off-tracking
% error between the front and rear axle centers
% vehiclesim was uses model vehicle.m
% vehiclesim2 was developed using the a simulink model vehicle4WS.mdl
% vehiclesim3 includes capability to select the model
% vehiclesim4 multiple-line-segment paths capability
% vehiclesim5 Added side-slope input 2/18/06
% vehiclesim6 Using 2WD only and John Deere 8320 parameters 5/18/05
% vehiclesim7 Added integral controller 5/22/06, variable slope path 5/24/06
% vehilcesim8 Made FF control corrections and LA slope corrections
close all;
% MODEL = 1 vehicle.m
% MODEL = 2 vehicle4WS.mdl
MODEL = 2;
%PATHTYPE = 1 90 degree turns
%PATHTYPE = 2 Lateral shifts
%PATHTYPE = 3 Straight

%SLOPEPATH = 1 5 deg step slope
%SLOPEPATH = 2 sinusoidal slope (-5 deg to +5 deg, 1 period over 200m)

%LASLOPE = 1 look-ahead into SLOPEPATH turned off
%LASLOPE = 2 looks ahead into SLOPEPATH by distance "dla" for upcoming slope
dla = 2; %Look ahead distance into SLOPEPATH

TURN_RADIUS_LIMIT = 1;
Min_Rad = 30.49; %Westphalen used 15.24m and 30.49 m
global A B C D E F G H delfc delrc a b tau u L lambda theta %KpH KpOT KdOT KiOT

% Path is defined in by using the end points of line segments to specify
% the A-B points of the path
if PATHTYPE == 2

PATH = [ 0 0; 0 27; 3.81 36.1; 3.81 66.1; 0 75.2; 0 102.2];
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elseif PATHTYPE == 1
PATH = generatePath(2);

else
% PATH = [ 0 0; 0 300]; % Horizontal Line on y-axis

PATH = [ 0 0; 300 0]; % Vertical Line on x-axis
end

% Slope is defined by using the end points of line segments to specify
% the slope at any point along the path
if SLOPEPATH == 1

dist = 0:1:350;
SLOPE = [zeros(1,101) 0.0873*ones(1,250)];
step = 351;

% dist = 0:9000:9000; %max dist, one increment
% SLOPE = 0.0873; %5 deg step
% step = 2; %total number of steps
elseif SLOPEPATH == 2

dist = 0:1:350; %max dist, 1 m increments
SLOPE = 0.0873*sin(dist*(2*pi/200)); %5 deg sin wave, period = 200m
step = 351; %total number of steps

end

% Defining the State Variables
% y(1): lateral velocity in the vehicle coordinate system
% y(2): yaw rate
% y(3): yaw or heading angle
% y(4): rear steering angle
% y(5): x-coordinate of rear axle center in the world coordinate system
% y(6): y-coordinate of rear axle center in the world coordinate system
% y(7): x-coordinate of CG
% y(8): y-coordinate of CG
% y(9): front steering angle
% y(10): x-coordinate of front axle center in the world coordinate system
% y(11): y-coordinate of front axle center in the world coordinate system

% Caf = 226615; % (N/rad) based on Metz's plowed field
% Car = 384476; % (N/rad) based on Metz's plowed field

% Caf = 665837; % (N/rad) based on Metz's meadow field
% Car = 1129470; % (N/rad) based on Metz's meadow field

Caf = 373432; % (N/rad) based on Metz's corn field
Car = 633421; % (N/rad) based on Metz's corn field

m = 12660; % kg
Iz = 27998; % kg-m^2
a = 1.745; % m
b = 1.225; % m

L = a + b;

u = speed; %u = 2; % m/s
tau = 0.1; % s



97

lambda = 1.52; % m distance behind front wheel where heading deviation is measured

Wf = m*9.8*b/L;
Wr = m*9.8*a/L;

K = Wf/Caf - Wr/Car;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Set up the path
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
path_ind = 2;
ydif = PATH(path_ind,2) - PATH(path_ind-1,2); %B_Y - A_Y;
xdif = PATH(path_ind,1) - PATH(path_ind-1,1); % B_X - A_X;
[slope,vertical] = CalcSlope(ydif,xdif);
intercept = CalcIntercept(PATH(path_ind-1,1),PATH(path_ind-1,1),slope,vertical);
PathHeading = pi/2 - atan2(xdif,ydif); % Heading angle, psi, is defined as CW

% relative to the positive WCS X-axis;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Vehicle Model Parameters:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A = (Caf+Car)*(-1/(m*u));
%B = (Caf*a-Car*b-u^2)*(-1/(m*u));
B = (Caf*a-Car*b+u^2*m)*(-1/(m*u)); % Corrected from Mark's Model 122905 See Notes p. (31)
C = (Caf*a-Car*b)*(-1/(Iz*u));
%D = (Caf*a^2-Car*b^2)*(-1/(Iz*u));
D = (Caf*a^2+Car*b^2)*(-1/(Iz*u)); % Corrected from Mark's Model 122905 See Notes p. (31)
E = Caf/m;
F = -Car/m; % Changed sign from Mark model 122805 See Westphalen p. 38-39
G = Caf*a/Iz;
H = Car*b/Iz; % Changed sign from Mark model 122805 See Westphalen p. 38-39
fsa = 0;
rsa = 0;
delfc = fsa*pi/180; % radians
delrc = rsa*pi/180; % radians

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Simulation Initialization
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rear_steer_off = 1;
SampTime = 0.2; % sec
Steps = simtime/SampTime;
Time = [];
Y = [];
Delf = [];
Delr = [];
Error = [];
RError = [];
PATHSEG = [];
HEading = [];
RError_sum = 0;
RE = [];
lookahead = [];
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LA = [];
OffTrackError = 0;
intOffTrackError = 0;

Front_Look_ahead_distance = 1.5; %1.5 is original value
Rear_Look_ahead_distance = 1.83; %m Westphalen p. 53
q=round(L/(u*SampTime)+10); %Number of path points to store

% DEFINE SLOPE
theta = SLOPE(1);
if MODEL==1

if PATHTYPE == 1
yinit = [0 0 0 0 -b 0 0 0 0 a 0];

elseif PATHTYPE == 2
yinit = [0 0 pi/2 0 0 -b 0 0 0 0 a]; % Facing to the Right

else
yinit = [0 0 0 0 -b 0 0 0 0 a 0];

end
else

if PATHTYPE == 1
yinit = [0 0 0 0 -b 0 0 0 0 a 0 delfc delrc u theta];

elseif PATHTYPE == 2
yinit = [0 0 pi/2 0 0 -b 0 0 0 0 a delfc delrc u theta]; % Facing to the Right

else
yinit = [0 0 0 0 -b 0 0 0 0 a 0 delfc delrc u theta]; % Facing up

end
options = simset('MaxStep',0.001,'SrcWorkspace','current');

end

h = waitbar(0,'Please wait...');
for i = 1:Steps

if MODEL == 1
[t,y] = ode45('vehiclewslopeinput',[0 SampTime],yinit);

else
[t,x,y] = sim('vehicle4WSwslopeinput',[0 SampTime],options,[0 yinit]);

end
Y = [Y; y];
Time = [ Time; t+(i-1)*SampTime];
last = size(y,1);
% Update which line segment should be used for the path
LA_Point = [Front_Look_ahead_distance*sin(pi/2-y(last,3)) + y(last,10)...

Front_Look_ahead_distance*cos(pi/2-y(last,3)) + y(last,11)];

if (path_ind < size(PATH,1))
next_segment = checkfornextsegment(path_ind,PATH,LA_Point);

else
next_segment = 0;

end
if (next_segment)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Update the path to new line segment
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
path_ind = path_ind+1;
ydif = PATH(path_ind,2) - PATH(path_ind-1,2);%B_Y - A_Y;
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xdif = PATH(path_ind,1) - PATH(path_ind-1,1);% B_X - A_X;
[slope,vertical] = CalcSlope(ydif,xdif);
intercept = CalcIntercept(PATH(path_ind-1,2),PATH(path_ind-1,1),slope,vertical);
PathHeading = pi/2 - atan2(xdif,ydif); % Heading angle, psi, is defined as CW

% relative to the positive WCS X-axis;
end

if LASLOPE == 1
cur_ind = ceil(step*(y(last,7)/350)); %selects slope segment
if cur_ind < 200

theta = SLOPE(cur_ind); %setting theta for the slope
theta_control= SLOPE(cur_ind); %setting theta that the FF controller uses

elseif cur_ind >= 200,
theta = 0;
theta_control= 0; %setting theta that the FF controller uses

end
elseif LASLOPE == 2

cur_ind = ceil(step*(y(last,7)/350)); %selects slope segment
if cur_ind < (200 - dla),

theta_control = SLOPE(cur_ind + dla); %setting theta that the FF controller uses
elseif cur_ind >= (200 - dla),

theta_control = 0;
end
if cur_ind < 200

theta = SLOPE(cur_ind); %setting theta for the slope
elseif cur_ind >= 200,

theta = 0; %setting theta for the slope
end

end

% Implement navigation control
CurrentVehicleHeading=OutputCorrecter(y(last,3));
HeadingError = GetHeadingError(PathHeading,CurrentVehicleHeading);
[distance,pt_Cur_LA_x,pt_Cur_LA_z] = GetPerpenDistance(slope, intercept,...

PATH(path_ind-1,2),y(last,6),y(last,5),pi/2-y(last,3),...
vertical,Front_Look_ahead_distance);

OldOffTrackError = OffTrackError;
OffTrackError = GetOffTrackError(distance,PATH(path_ind-1,2),...

PATH(path_ind-1,1),PATH(path_ind,2),PATH(path_ind,1),y(last,6),...
y(last,5),pi/2-y(last,3),Front_Look_ahead_distance);

[distance,pt_Cur_LA_x,pt_Cur_LA_z] = GetPerpenDistance(slope, intercept,...
PATH(path_ind-1,2),y(last,6),y(last,5),pi/2-y(last,3),...
vertical,0);

rearOffTrackError = GetOffTrackError(distance,PATH(path_ind-1,2),...
PATH(path_ind-1,1),PATH(path_ind,2),PATH(path_ind,1),y(last,6),...
y(last,5),pi/2-y(last,3),0);

intOffTrackError = intOffTrackError+OffTrackError*SampTime;
delOT=(OffTrackError-OldOffTrackError)/SampTime;
fsa=SSU(HeadingError,OffTrackError,intOffTrackError,delOT);

KpH = 0.4;
KpOT = 0.1;
KdOT = 0.001;
KiOT = 0.0001;
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% Feed-forward Control****************************************************
%%% Correcting the error of non-zero SS off-track error as seen in James' thesis

delfc = fsa*pi/180+(K +Wr/Car*(KpOT*Front_Look_ahead_distance+KpH))*sin(theta_control);
% convert from degrees to radians

% No Feed-forward
% delfc = fsa*pi/180; % convert from degrees to radians

delrc = 0; % radians

% Store states as initial conditions to start out the next simulation
if MODEL==1

yinit = y(last,:);
else

yinit = [y(last,:) delfc delrc u theta];
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [slope,vertical] = CalcSlope(ydif,xdif)
% This block supports an embeddable subset of the MATLAB language.
% See the help menu for details.

% Check to see if vertical
if (ydif == 0)

slope = 0;
vertical = 1;

else
slope = xdif/ydif;
vertical = 0;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function intercept = CalcIntercept(pt_A_x,pt_A_z,slope,vertical)
% This block supports an embeddable subset of the MATLAB language.
% See the help menu for details.

% Check to see if vertical
if (vertical~=1)

intercept = pt_A_z - (slope*pt_A_x);
else

intercept = 0;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function distance1 =
GetOffTrackError(distance,pt_A_y,pt_A_x,pt_B_y,pt_B_x,pt_Cur_y,pt_Cur_x,Cur_Heading,Look_ahe
ad_distance)
pt_Cur_LA_y = Look_ahead_distance*cos(Cur_Heading) + pt_Cur_y;
pt_Cur_LA_x = Look_ahead_distance*sin(Cur_Heading) + pt_Cur_x;
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area = pt_A_y*pt_B_x - pt_A_x*pt_B_y + pt_A_x*pt_Cur_LA_y - pt_A_y*pt_Cur_LA_x +
pt_B_y*pt_Cur_LA_x - pt_Cur_LA_y*pt_B_x;
if (area > 0)

right = 0;
else

right = 1;
end
if (right == 0)

distance1 = distance;
else

distance1 = -distance;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
function [distance,pt_Cur_LA_y,pt_Cur_LA_x] = GetPerpenDistance(slope,
intercept,pt_A_y,pt_Cur_y,pt_Cur_x,Cur_Heading,vertical,Look_ahead_distance)

% Project ahead to ahead distance
pt_Cur_LA_y = Look_ahead_distance*cos(Cur_Heading) + pt_Cur_y;
pt_Cur_LA_x = Look_ahead_distance*sin(Cur_Heading) + pt_Cur_x;

temp = pt_Cur_LA_x - (slope*pt_Cur_LA_y) - intercept;
if (temp < 0)

temp = -(temp);
end
if (vertical ~=1)

distance = temp/sqrt((slope*slope)+1);
else

%if it is a vertical line,
%perpendicular distance is the difference between two x coordinates
if (pt_Cur_LA_y >=pt_A_y)

distance = pt_Cur_LA_y - pt_A_y;
else

distance = pt_A_y - pt_Cur_LA_y;
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
function HeadingError = GetHeadingError(PathHeading,CurrentVehicleHeading)
% This block supports an embeddable subset of the MATLAB language.
% See the help menu for details.

PrelimHeadingError = PathHeading-CurrentVehicleHeading;

if abs(PrelimHeadingError) > pi %180
HeadingError = 2*pi - abs(PrelimHeadingError);
if ((PathHeading > 0) && (CurrentVehicleHeading < 0))

HeadingError = -HeadingError;
end

else
HeadingError = PrelimHeadingError;

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
function CorrectedHeading = OutputCorrecter(RawHeading)

temp1=RawHeading/(2*pi);

temp2 = 2*pi*(temp1 - fix(temp1));
if temp2 > pi

temp2 = (2*pi-temp2);
end
if (-temp2 > pi)

temp2 = (temp2+2*pi);
end
CorrectedHeading = temp2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
function fsa=SSU(HeadingError,OffTrackError,intOffTrackError,delOT)
KpH = 0.4;
KpOT = 0.1;
KdOT = 0.001;
KiOT = 0.0001;

fsa = (180/pi)*(KpH*HeadingError+KpOT*OffTrackError+KdOT*delOT+KiOT*intOffTrackError);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
function fsa=rSSU(HeadingError,OffTrackError,fsa,KpH,KpOT,Kfff)

% Use a minus sign in front of Kfff since front and rear steer angles are
% define opposite. 01/04/06
fsa = KpH*HeadingError+KpOT*OffTrackError-Kfff*fsa;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%
function next_segment = checkfornextsegment(path_ind,PATH,LA_Point);

% Projects current LA_Point onto the current PATH segment vector; if the
% projected length is greater than the segment length then it is time to
% shift to the next segment. See notes p. (35).
Segvectr = PATH(path_ind,:)-PATH(path_ind-1,:);
vecttoLA = LA_Point-PATH(path_ind-1,:);
SegLength = norm(Segvectr);
projectLength = vecttoLA*Segvectr'/SegLength;

if projectLength >=SegLength
next_segment = 1;

else
next_segment = 0;

end
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E.2 Parameter Setting and Plotting: VehicleSimDriverSlopes.m

% Name: VehicleSimDriverSlopes
% Purpose: To simulate a vehicle as 4WS controller parameters are changed
% and under different vehicle speeds and under side slope conditions.

clear all

%PATHTYPE = 1 90 degree turns
%PATHTYPE = 2 Lateral shifts
%PATHTYPE = 3 Straight
PATHTYPE = 3;

SLOPEPATH = 1; % 5 deg step slope
% SLOPEPATH = 2; % sinusoidal slope (-5 deg to +5 deg, 1 period over 200 meters)

% LASLOPE = 1; %look-ahead into SLOPEPATH turned off
LASLOPE = 2; %looks ahead into SLOPEPATH by distance "dla" for upcoming slope

if PATHTYPE == 1
fprintf(fidout,'PATHTYPE\tSpeed\tTheta\tLASLOPE\tKHEAD\tKpOT\tKiOT\tKFF\tAREA\tMax_Err\tErr
or_Percentage\r\n');
str=sprintf('PATHTYPE\tSpeed\tTheta\tLASLOPE\tKHEAD\tKpOT\tKiOT\tKFF\tAREA\tMax_Err\tError
_Percentage\r\n');
disp(str);
speed = [2 4 6 8];

if PATHTYPE == 1 % 90 degree turn case
elseif PATHTYPE == 2 % Lateral Shifts case
else % Straight Case

NumCases = 1;

Case(1).KpOTrack = 0;
Case(1).KpHEading = 0;
Case(1).KiOTrack = 0;
Case(1).K3 = 1;
initial_simtime = 175;
top_speed_ind = 4;

end
for case_ind = 1:NumCases

for speed_ind = 1:top_speed_ind
simtime = initial_simtime*2/speed(speed_ind);
[Time,Y,Delf,Delr]=vehiclesim8(speed(speed_ind),SLOPEPATH,simtime,PATHTYPE,...

LASLOPE,Case(case_ind).KpHEading,Case(case_ind).KpOTrack,Case(case_ind).KiOTrack,Case(ca
se_ind).K3);

[Total_Area,MaxOT,error_segments] = CalcOffTrackArea(Y,Time,simtime,PATHTYPE);

total_pts = sum(abs(Y(:,6)) >= 0);
err_pts = sum(abs(Y(:,6)) >= 0.025);
per_err = (err_pts./total_pts)*100;
max_err = max(abs(Y(:,6)));
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fox = Y(:,6);

err = Y(:,6);
big_err = abs(err) >= 0.025;
maj_err = err.*big_err;

end
end
fclose(fidout);

E.3 Calculating the Off-Tracking Area: CalcOffTrackArea.m

function [Total_Area,MaxOT,error_segments] = CalcOffTrackArea(Y,Time,simtime,PATHTYPE)
% Name: CalcOffTrackArea
% Purpose: Given output from simulation, to calculate the off-tracking area for that simulation

% Defining the State Variables
% y(1): lateral velocity in the vehicle coordinate system
% y(2): yaw rate
% y(3): yaw or heading angle
% y(4): rear steering angle
% y(5): x-coordinate of rear axle center in the world coordinate system
% y(6): y-coordinate of rear axle center in the world coordinate system
% y(7): x-coordinate of CG
% y(8): y-coordinate of CG
% y(9): front steering angle
% y(10): x-coordinate of front axle center in the world coordinate system
% y(11): y-coordinate of front axle center in the world coordinate system

SampTime = 0.2; % sec
Steps = simtime/SampTime;
MaxOT = 0;
Total_Area = 0;
Total_distance = 0;
new_rear = Y(1,5:6);
at_beginning = 1;
error_segments = zeros(size(Time));

if PATHTYPE == 1
EndDistance = 248.8;
% Since for the 90 degree turn course, the vehicle wraps around from
% the starting point, we need to find where that point is in the Path.
[error,wrap_ind] = find_nearest_path_point(Y(200:size(Y,1),10:11),[0 0]);
first_time = 1;

else
EndDistance = 104;

end

h = waitbar(0,'Please wait...');
for i = 1:Steps

current_time = SampTime*(i-1); % We will just perform error calculations
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% at the SampTime Intervals
cur_ind=find(Time==current_time);
old_rear = new_rear;
new_rear = Y(cur_ind(1),5:6);
distance = norm(old_rear-new_rear);
Total_distance = Total_distance + distance;
if PATHTYPE == 1

if first_time
[pre_error,ind]= find_nearest_path_point(Y(1:wrap_ind,10:11),new_rear);
if ind > 1 && ind < size(Y,1)

error = findperpdistance(Y(ind-1:ind+1,10:11),new_rear);
else

error = pre_error;
end
if (wrap_ind - ind < 300) && (Total_distance > 10)

first_time = 0;
[pre_error,ind]= find_nearest_path_point(Y(wrap_ind-400:size(Y,1),10:11),new_rear);
ind = ind+(wrap_ind-401);
if ind > 1 && ind < size(Y,1)

error = findperpdistance(Y(ind-1:ind+1,10:11),new_rear);
else

error = pre_error;
end

end
else

[pre_error,ind]= find_nearest_path_point(Y(wrap_ind-400:size(Y,1),10:11),new_rear);
ind = ind+(wrap_ind-401);
if ind > 1 && ind < size(Y,1)

error = findperpdistance(Y(ind-1:ind+1,10:11),new_rear);
else

error = pre_error;
end

end
else

[pre_error,ind]= find_nearest_path_point(Y(:,10:11),new_rear);
if ind > 1 && ind < size(Y,1)

error = findperpdistance(Y(ind-1:ind+1,10:11),new_rear);
else

error = pre_error;
end

end
if ~at_beginning

area = 0;
if (Total_distance < EndDistance) % Stop accumulating error at the end of the path

if error > 0.304 % Then off-tracking segment
area = 0.304*distance;
error_segments(cur_ind) = 1;

elseif error > 0.304/2
area = error*distance;
error_segments(cur_ind) = 1;

end
Total_Area = Total_Area+area*2; % Multiply by 2 for two tires
MaxOT = max([MaxOT error]);

end
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else
if Total_distance > 4.3

at_beginning = 0;
area = 0;
if error > 0.304 % Then off-tracking segment

area = 0.304*distance;
elseif error > 0.304/2

area = error*distance;
end
Total_Area = Total_Area+area;
MaxOT = max([MaxOT error]);

end
end
waitbar(i/Steps,h);

end
close(h);
err_ind = find(error_segments);

function dist_error=findperpdistance(Y,rearpoint);

[error,ind] = find_nearest_path_point([Y(1,:);Y(3,:)],rearpoint);
if ind == 2

ind = 3;
end
tempx(1) = Y(2,1);
tempy(1) = Y(2,2);
tempx(2) = Y(ind,1);
tempy(2) = Y(ind,2);
newxr = rearpoint(1);
newyr = rearpoint(2);

% from http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html
dist_error = abs(((tempx(2)-tempx(1))*(tempy(1)-newyr)-((tempx(1)-newxr))...
*(tempy(2)-tempy(1)))/sqrt((tempx(2)-tempx(1))^2+(tempy(2)-tempy(1))^2));

E.4 Locating the Points Along the Path: find_nearest_path_point.m

function [error,ind] = find_nearest_path_point(front_path,rear_point);
% Name: find_nearest_path_point
% Purpose: To find the next point in a Path to the point given

N = size(front_path,1);
dif = front_path - ones(N,1)*rear_point;
distance = sqrt(dif(:,1).^2+dif(:,2).^2);
[error,ind] = min(distance);
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APPENDIX F. MATLAB SIMULINK VEHICLE MODEL
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