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ABSTRACT 

Identifying and understanding the impact of within-field soil moisture patterns is 

currently limited by the time and resources required to do sufficient monitoring. The spatial 

and temporal variance of soil moisture complicates the ability to monitor and effectively 

predict soil moisture values. Remote sensing offers non-invasive techniques to measure soil 

moisture, but the resolution is too coarse to be of immediate value in many of the 

applications requiring soil moisture information. Obtaining high resolution soil moisture data 

requires dense sensor networks to adequately monitor changing spatial and temporal soil 

moisture patterns. The aim of this study is to develop methods to estimate soil moisture 

values at the field scale without the need for exhaustive pre-sampling. This is achieved by 

finding critical sampling locations within the field based upon topographic and soils data that 

can adequately predict field scale soil moisture. Given these sampling locations and values 

for soil moisture at those points, an interpolation method is developed that is independent of 

the spatial relationship between the sampling locations and the points to be interpolated. 

Ultimately, these approaches can be used as a method to find critical sampling points and 

interpolate field-scale soil moisture values based upon topographic and soils data that can be 

collected in a one pass operation and thus eliminate the need for extensive soil moisture 

monitoring.  
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CHAPTER 1: GENERAL INTRODUCTION 

Introduction 

Soil moisture (θ) is a key component in weather prediction, crop growth simulation, 

and environmental performance modeling. Compared to other sinks in the hydrologic cycle, 

the volume of soil moisture is small (~0.001% of global water), but it is of fundamental 

importance to many hydrological, biological and biogeochemical processes (USGS 2012). 

The surface soil water content is important because it controls the energy exchange between 

the atmosphere and land surface. Knowing that soil moisture is an important variable in 

understanding terrestrial hydrology, obtaining soil moisture measurements has become a 

focus for researchers in environmental modeling. 

The current methods for measuring θ are reviewed in Robison et al. (2008). From this 

research, the measurement of θ can be generalized into two different methods: remote 

sensing and in-situ θ sensors. By definition, remote sensing makes measurements to θ 

without being in direct contact with the soil. Remote sensing technologies have the ability to 

measure θ at a variety of different spatial and temporal scales. Satellite remote sensing 

devices can cover large areas in a short amount of time, but have low spatial resolution (~15-

40 km pixel size). Airborne remote sensing methods provide smaller pixel size (~10m), but 

operation is expensive and measurements are weather permitting. In-field remote sensing 

technologies can provide smaller resolutions, but measurements are limited to the field in 

which the instrument is installed.  

Apart from remote sensing, ground-based sensors provide θ values at the point scale. 

Because only values for a single point are provided, networks with a high number of sensors 
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are required to understand spatial θ patterns. Besides taking time to install these sensor 

networks, the money required to purchase and maintain the sensors make the method 

inefficient for larger scale spatial θ estimations.  

A common problem encountered in sensing θ is the lack of spatial resolution and 

timely values required to monitor the highly variable values of θ. Remote sensing techniques 

can cover large areas, but the spatial resolution is inadequate for many of the models 

requiring θ information. Sensor networks provide high resolution data, but are expensive to 

maintain and the values of θ are only valid for the area in which those sensors are installed.  

With these challenges in mind, the research objectives of this thesis are to: 

 

1. Identify optimal soil moisture sampling locations based upon readily available field 

data that can then be used to estimate field-scale θ values with the same accuracy as a 

sensor network. 

2. Estimate θ at the sub-field scale depending on the relationship of the topographic and 

soils data between the optimal θ sampling points identified in objective 1, and the 

unknown points within the field to be interpolated.  

 

Ultimately, achieving objectives 1 & 2 will eliminate the need for dense sensor 

networks to find the spatial patterns of θ at the sub-field scale and thus save time and money 

needed to purchase, install, and monitor a large number of ground based θ sensors. 

Furthermore, achieving these objectives would help in bridging the gap between the different 

scales at which θ readings are available from remote sensing and in-situ measurements. 

Ideally, researchers will be able to accurately estimate θ values at scales needed without the 



3 

 

 

 

need for dense in-situ sampling networks. Knowing that sensor networks are time and 

resource inefficient, the challenge then becomes determining how to accurately estimate θ 

values at the same resolution as a sensor network with a fewer number of sampling locations. 

Finding the number of samples that need to be taken to adequately estimate θ values at the 

scale desired, and then deciding where to locate the sampling stations is the topic of Chapter 

2. Methods for deciding the number of sampling locations and in finding the location for 

sampling stations are introduced and tested on fields where sensor networks have been 

installed and monitored. 

The next challenge in bridging the gap between the different scales of θ measurement 

techniques is how to estimate θ values at unknown points in the landscape given the optimal 

sampling locations found in Chapter 2. Different landscape characteristics allow θ values to 

change abruptly making interpolation of θ values difficult. A new method is needed for 

interpolation of θ values that is dependent of the spatial relationship between the point with 

known θ and the point to be interpolated. A new method is proposed in Chapter 3 that relies 

solely on topographic and electromagnetic inductance data of the soil to interpolate θ values 

at unknown points within the landscape. From this method, θ values are closely related to the 

different topographic and physical indices having significant impact on θ that are introduced 

in the literature review.     
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Literature Review 

Because soil moisture (θ) is an important variable, much research has been devoted to 

finding the factors that have an effect on θ patterns in an effort to find estimation methods. 

The complexity and variety of landscapes used in the current research leads to differing and 

sometimes conflicting results. Finding those factors most influential on spatial θ patterns is 

the key to understanding and modeling soil moisture. The factors having an impact at the 

scale to which this study is concerned are discussed in this review.  

Estimation of θ patterns would not be complete without the inclusion of topographic 

features. The topography of the landscape has an impact on flow channels, infiltration, 

potential radiation, and is related to the different soil types. Numerous studies include 

different topographic characteristics in attempts to model and  predict θ (Yoo and Kim 2004; 

Western et al. 2001; Wilson et al. 2004; Famiglietti et al. 1998; Kim and Barros 2002; 

Mohanty and Skaggs 2001). Though each of these studies were completed on different 

spatial scales, all use the influence of topographic features in θ estimation. Famiglietti et al. 

(1998) provides an in depth analysis of different topographic indices, how they are 

computed, and why they have an impact on θ patterns.  

The movement of water due to gravitational potential is the basis for the influence of 

topography on soil moisture. Studies have shown that θ data is inversely proportional to the 

elevation. (Henninger et al. 1976; Robinson and Dean 1993; Crave and Gascuel-Odoux 

1997). Weeks and Wilson (2006) note that it is typical to find higher moisture contents near 

the toe of the slope than at the crest. At the field scale it is possible to have higher elevations 

within the field that exhibit higher θ values. This is may be due to high elevations that are flat 
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and collect water or a variety of other different factors. Such factors can complicate the 

inverse relationship between θ and elevation thus requiring other topographic information to 

adequately estimate soil moisture.  

Elevation data can be used to compute a variety of different topographic indices. The 

slope at a point is a function of the elevation at the point in question and the elevation of the 

surrounding points. Studies have shown the influence of slope values on soil moisture 

variability (Hills and Reynolds 1969, Moore et al. 1988). The slope value is important 

because it determines the drainage characteristics, the amount of infiltration, and thus the 

runoff produced. A steep slope discourages infiltration whereas a low slope value encourages 

infiltration or evaporation from that point. As with all topographic indices, the scale at which 

the slope is found is important to identify. Because the slope can be measured over a variety 

of different lengths, clarifying the scale at which the slope is calculated helps in 

understanding its impact on θ variability.  

The curvature value is another index that has an influence on θ values. In general, the 

curvature is the measure of concavity or convexity of the landscape (Famiglietti et al. 1998). 

A correlation between curvature and soil moisture was documented in Moore et al. (1988). 

Tomer et al. (2006) found that surface curvature was the terrain attribute most commonly 

correlated with soil moisture. Concave landscapes will pool water because they have upslope 

contributing area. In contrast, points in a convex landscape have a smaller upslope 

contributing area. A convex shape will shed water resulting in lower soil moisture values. A 

landscape lacking curvature (a plane) will likely shed water in similar ways over the entire 

area. Understanding the curvature at a point is important in understanding the organization of 

soil moisture values at that point.   
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Researchers identify wetness indices that are a function of topography to help in 

prediction of θ patterns. Western et al. (1999) found a wetness index that is a function of the 

upslope contributing area to be the best univariate predictor of θ patterns at times when the 

mean moisture content of the field was high. Beven and Kirby (1979) introduce the steady 

state wetness index which is a function of the upslope contributing area and the slope of the 

point. Similar to the results from Western et al. (1999), this index was more successful in 

explaining θ values at times when the field had a high mean moisture content.    

 

Soil properties 

The different hydraulic properties of different soil types will have an impact on θ 

patterns. The hydraulic properties of the soil are closely related to the soil texture and 

structure. Brady and Weil (1999) cite the importance of soil texture saying it ‘clearly exerts a 

major influence on soil moisture retention.’ Other studies confirm that soil texture has a 

significant impact on soil moisture content (Hawley et al. 1983, Henninger et al. 1976, Crave 

and Gascuel-Odoux 1997). The large particles of sand result in a smaller surface area for the 

attachment of water molecules. In contrast, the small size of clay particles provides a large 

surface area for attachment. The different sizes of particles within the soil affect the ability of 

water to infiltrate and percolate, and affects the ability of water to be evaporated and 

transpired by plants. In addition to the soil texture, the soil structure also has an impact on the 

soil moisture variability. A well aerated, well granulated soil has more pore space and 

therefore greater holding capacity for water. Compact soils will have smaller pores that limit 

infiltration and hold water for longer periods of time. Soil structure is also related to the 
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existence of macroporosity which is a controlling influence of moisture movement within the 

soil (Niemann and Edgell 1993). 

Electromagnetic inductance (EMI) data is gaining popularity in precision agriculture 

applications for identifying changes in soil type. The electrical conductivity correlates 

strongly with the soil particle size and texture and thus can be tied to θ patterns (Tromp and 

McDonnell 2009; Grisso et al. 2009). The connection between soil texture and particle size 

with the hydraulic characteristics make EMI a valuable index in predicting θ. Khakural et al. 

(1998) found a linear relationship between electrical conductivity and soil water profile 

storage. Huth and Poulton (2007) found that EMI can provide quick and efficient means for 

monitoring θ in agroforestry systems. The connection between θ and the EMI data will be 

used in this research.  

 

Potential radiation 

A factor affecting θ that takes both the topographic information and the soil properties 

into account is the potential radiation. In Soil Physics, Horton and Jury note that the rate of 

evaporation from a wet, bare soil surface is a function of external meteorological conditions 

including wind speed, relative humidity, and the flux of radiant energy (2004). The flux of 

radiant energy is a function of the soil albedo and slope aspect at a point. Horton and Jury 

then go on to introduce different stages of evaporative loss from the soil. In the initial stage 

when the soil surface is wet, the evaporative loss occurs at the maximum rate, after drying, 

the evaporation is then controlled by other factors determined by the soil.  

The slope aspect and the albedo of the soil are the key factors in determing potential 

radiation at a point in the landscape. The slope aspect is a function of the elevation and is 
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determined by the direction of the slope. The direction of the slope influences the solar 

irradiance thus influences potential radiation (Famiglietti et al 1998). The albedo of the soil 

also has an influence on potential radiation because of its impact on the amount of energy 

received from the sun. The differing color of soils will affect the amount of radiation 

absorbed at the surface. A dark loam soil will soak up more radiation from the sun and thus 

have higher evaporation rates than that of a light clay soil. During much of the growing 

season when the θ is monitored, the soil is covered by a crop canopy, thus eliminating the 

effect of albedo on θ. Nevertheless, θ will likely be influenced by the albedo of the soil 

during the early segments in the growing season and after crops have been harvested and the 

soil surface layer is exposed.  

Western et al. (1999) noted that potential radiation was the best predictor of soil 

moisture during dry periods. Jackson et al. (1967) noted the effect of slope, aspect, and 

albedo on potential evaporation from hillslopes. Reid (1973) found a correlation between the 

aspect and soil moisture. Weeks and Wilson (2006) point out that north-facing slopes in the 

northern hemispheres receive significantly less radiation than horizontal or south facing 

slopes and the authors develop a method to predict the soil radiation at a point and thus 

predict potential evaporation. The potential radiation and its effect on evaporation may be 

one of the most important factors in determining surface θ values. 

 

Vegetation 

Because almost two-thirds of the water falling on the earth’s surface is returned to the 

atmosphere via transpiration, it is not a surprise that the vegetation cover has an influence on 

θ values (Brady and Weil 1999). The control and effect of vegetation on θ changes 
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depending on the vegetation type, density, and season (Famiglietti et al. 1998). Lull and 

Reinhart (1955) found that θ variability increased with decreasing canopy coverage. Besides 

transpiring the water in the soil, vegetation changes the pattern at which moisture falls on the 

surface of the soil. In forests the majority of the water hitting the canopy flows down the 

trunks of trees. Similarly, in row crop fields with a canopy, water runs down the stem of the 

plant and thus has an impact on spatial patterns of θ (Brady and Weil 1999). Different 

vegetation types provide different amounts shade and change the pattern of airflow over the 

soil. This impacts the potential for evaporation from the soil surface under the vegetation. 

Because this research is concerned with θ patterns at the field scale, it is assumed that the 

vegetation is homogenous over the study areas and thus will not be a determining factor in θ 

variability. Nonetheless, it is important to note the impact of vegetation on within field 

patterns.  

 

Mean moisture content 

The mean soil moisture content of the field also has an impact on θ patterns. 

Henninger et al. (1976) and Hawley et al. (1982) found the variance of θ decreased with 

decreasing mean moisture content. Hills and Reynolds (1969) argued that θ variability would 

be highest in the middle range of mean moisture content. In the middle range, moist areas 

could be present at the same time as dry areas. Whereas after a rainfall, all areas would be 

saturated, decreasing the variability of θ. In contrast, Western et al. (1999) found that θ 

patterns exhibit a high degree of organization during wet periods (high mean soil moisture) 

and a low degree of organization during dry periods. Famiglietti et al. (1998) found that 

variability in θ decreases with decreasing mean θ content. Yoo and Kim (2004) found that 
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the influence of soil properties and topographic features increases after rainfall. In a study to 

generate spatial patterns of θ, Wilson et al. (2005) based their methods on static topographic 

features and changed the model depending on different wetness conditions. Chang (2001) 

notes that it is necessary to connect the interdependencies of soil properties, topography, and 

mean soil moisture content when attempting to predict θ values. The inconsistency of the 

results of these studies make it difficult to identify when the mean moisture content will be 

the most influential in identifying θ patterns.  

 

Combined influences 

The most pressing difficulty apparent is the variety of different studies identifying 

different factors having the most influence on θ patterns. Famiglietti et al. (1998) found that 

during wet conditions, soil moisture is most strongly characterized by porosity and hydraulic 

conductivity of the soil (both of which are soil properties). During dry conditions, a 

correlation with soil moisture is more controlled by elevation, aspect, and clay content. 

Western et al. (1999) found that during wet conditions soil moisture was most influenced by 

topography. Kaleita et al. (2007) found no conclusive relationships between overall θ 

patterns and topographic and soil indices. Different findings from previous research can be 

explained to an extent by differences in climate, soils, vegetation, topography, and the 

sampling time period. Even if a strong correlation can be found between terrain indices and 

θ, Western et al. (1999) point out that a significant amount of random behavior exists within 

the θ continuum which cannot be predicted.  

As can be inferred from the above information, θ is not a factor of only one 

topographic, physical, or chemical characteristic. Finding a univariate predictor would be 
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beneficial for interpolation methods, but the variability in the soil hydrology system leads to 

a variety of factors that have an influence. Similar to other complex natural processes a 

combination of factors influence the variability of soil moisture at different scales. Kaleita et 

al. (2007) found that stable spatial patterns of soil moisture are linked to a combination of 

topography, particle size, and drainage pattern. Herbst et al. (2006) were best able to predict 

soil hydraulic properties at a point given the relative elevation, the slope, and the slope 

aspect. Although not attempting to predict θ, Green et al. (2007) used elevation, slope, 

aspect, curvature, and upslope contributing area in combination with spatial coordinates to 

predict crop yield. Mohanty and Skaggs (2001) noted the need to develop quantitative 

relationships between θ and various soil, topographic, and vegetation characteristics. Wilson 

et al. (2005) found a variety of terrain indices that had predictive power of θ patterns. In their 

concluding remarks, the authors state that spatial distribution of θ is not based on one terrain 

index but on a weighted combination of indices. Similarly, Western et al. (1999) describe an 

“index approach” where a variety of different indices are found for points throughout the 

landscape and used to determine θ behavior. A combination of indices is needed to accurately 

estimate the dynamic behavior of θ. In the end, the difficulty of modeling natural processes 

provides uncertainty and increases complexity. Given the main factors affecting the θ 

variability, the goal of this research is to employ the most dominate physical parameters 

having an effect on spatial variability of soil moisture to estimate θ values. 
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Self-organizing maps 

Given the complex behavior of soil moisture and the variety of factors having an 

influence on its value, a method of analysis is needed that can effectively evaluate a data set 

with many variables. One of the methods that will be used in this research is a type of 

artificial neural network called a self-organizing map. Self-organizing maps (SOMs) were 

first developed in the early 1980s by Teuvo Kohenen. The goal behind producing the 

algorithm was to map similar patterns (pattern vectors close to each other in the input signal 

space) onto contiguous locations in the output space (Kohonen 1995). Early algorithms were 

used in speech pattern recognition, but since their inception have been applied to numerous 

data sets in many fields of research. Unlike other classification techniques, SOMs do not 

require the class of the input vector to be known. This allows the user to input data with 

unknown classes into the algorithm and then identify classes based upon the output map.  

Input vectors are presented to the SOM and the vectors then ‘self-organize.’ The 

output of the SOM algorithm is a two dimensional map made up of ‘neurons.’ Input vectors 

are assigned to neurons and are then displayed on the output map to show the relationship 

between different input vectors. Based upon the the values of the variables for each of the 

input vectors within the neuron, a vector for each neuron within the input space can be 

calculated. This process is described in detail below. 

A set of p input observation vectors,  ������ = �	
, 	�, … , 	�� ∈ ℜ� is fed into the 

SOM. Input vectors are compared to a set of N neurons on the output layer, �� =

���
, ���, … ,���� ∈ ℜ� , (� = 1,2, … ,�) . Each input pattern is compared to each output 

neuron on the output 2-dimensional map. The winning neuron (the neuron to which the input 

vector is assigned) is chosen based on the formula: 
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  ������� −�!� = ��"�#������� −���$  (1.1) 

where mc is the winning neuron. This represents the minimum Euclidean distance between 

the input vector and ‘winning’ neuron on the output map to which the input vector is 

assigned. After finding the winning output neuron for each input vector, the neurons on the 

map are updated according to the following equation: 

 ��(% + 1) = ��(%) + ℎ!�(%)��(%) −��(%)� (1.2) 

where t denotes the index of the iteration step, x(t) is the vector input sample of xinput in the 

iteration t, and hci(t) is called the neighborhood function around the winning neuron c. During 

training, hci(t) is a decreasing function of the distance between the ith and the cth model on 

the map node. After the presentation of each input vector, the region around the best 

matching vector (determined by hci(t)) to is stretched towards x(t). For convergence it is 

necessary that hci(t) goes to 0 when t goes to ∞. The end result is that neighboring neurons on 

the output grid have similar weight vectors in the input space.  

The number of neurons in the output map and the dimensions of the map can be 

chosen arbitrarily or can be determined by the number of input vectors. Vesanto et al. (2000) 

suggest the number of neurons should be 5√"  where n is the number of input vectors. Given 

this rule for finding the number of neurons to be used in the output map, the dimensions of 

the map (height and width) then must be chosen to correspond to that number of neurons. 

One method of determining the size of the map is by finding the two largest eigenvalues of 

the training data. After finding the ratio between those two values the ratio between the 

length and width of the map is set to that ratio. The actual length and width is adjusted so that 

their product is similar to the number of map units determined by the rule above.  
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Another method for determining the size of the map is to minimize quantization and 

topographic error. Quantization error is the average distance between each data vector and its 

‘best matching unit’ or neuron vector. Topographic error quantifies the number of data 

vectors for which the best matching unit is not adjacent (Cereghino and Park 2009). In this 

method of sizing, different maps of different sizes are constructed and the map with 

minimum values for quantization and topographic error is chosen.  

The SOM algorithm can be changed depending the desires of the user. The map units 

and the size of the map can be manipulated, different distance formulas can be used to find 

the winning neuron, and different neighborhood functions can be chosen to change the region 

that is ‘stretched’ towards the input vector. Changing all of the above factors in the algorithm 

will change the resulting output map and how it is organized. Finding the optimal map for the 

specific application is the challenge of the researcher. More details about the SOM algorithm 

can be found in Kohonen (1995). 

 

K-means clustering 

 In order to partition the multivariate structure of the neurons in a SOM and in the 

input data, K- means clustering will be utilized. MacQueen (1967) first introduced the K-

means clustering algorithm as a tool to classify and analyze multivariate observations. In the 

K-means algorithm, the initial ‘means’ of a decided upon number of clusters (k) is randomly 

selected from the input data set. Clusters are created by associating each input vector to the 

nearest mean with the following formula: 

 *� = ��"�∈
…+�,(	�, ��)� (1.3)  
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where zn is the cluster to which the input vector xn is assigned, d( ) is the distance calculated 

between the input vector and the different k means. Similar to the SOM algorithm, different 

distance algorithms can be used for finding the difference between vectors. The vectors are 

then partitioned and the geometric center of each of the clusters becomes the new mean. The 

geometric center is found with the following formula: 

 �+ =


�-
∑ 	��:012+  (1.4) 

where mk is the mean of the k
th

 cluster, Nk is the number of points assigned to the k
th

 cluster, 

and xn is the input vector. After the new means are found in (4), (3) is calculated and this 

process continues until assignments *
:� do not change. The random selection of an input 

vector for the initial means of the clusters has an impact on the resulting cluster assignments 

of the input vectors. Due to this result, it is important to run the algorithm multiple times to 

validate the resulting clustering assignments.  

 The K-means clustering algorithm will be used in this research to partition both the 

SOM neuron data and the input data. This is done to evaluate the value of the SOM algorithm 

in assigning the input data to neurons with common characteristics that are subsequently used 

to cluster the data. Besides partitioning the data into neurons, the SOM algorithm allows a 

visual interpretation of the input data that is qualitatively valuable in describing the 

relationship between the different input data. Both the SOM algorithm combined with the K-

means algorithm and the K-means algorithm alone are valuable in their ability to handle 

multivariate data as is used in this research.  
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CHAPTER 2: FIELD-SCALE SOIL MOISTURE ESTIMATION USING 

SELF ORGANIZING MAPS AND K-MEANS CLUSTERING TO 

IDENTIFY CRITICAL SAMPLING POINTS 

A paper to be submitted to IEEE Transactions on Geoscience and Remote Sensing 

Zach Van Arkel and Amy Kaleita 

Abstract 

Identifying and understanding the impact of field-scale soil moisture patterns is 

currently limited by the time and resources required to do sufficient monitoring. This study 

uses self-organizing maps (SOMs) and K-means clustering algorithms to find critical 

sampling points to estimate field-scale soil moisture. Points within the field are clustered 

based upon topographic and soils data and the points representing the center of those clusters 

are identified as the critical sampling points. Using soil moisture information from the critical 

sampling points and the number of points within each cluster, a weighted average is found 

and used as the estimate mean field-scale soil moisture. Field-scale soil moisture estimations 

from this new method are compared to the techniques introduced by Vachaud et al. (1985) to 

find optimal sampling locations based upon temporal soil moisture data. Ultimately, the new 

approach can be used to find critical sampling points to estimate soil moisture measurements 

without the need for exhaustive pre-sampling. 

 

Introduction 

The modeling of hydrologic processes is a key component in weather forecasting, 

crop growth simulation, and environmental performance prediction. Compared to other sinks 
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in the hydrologic cycle, the volume of soil moisture (θ) is small, but it is of fundamental 

importance to many hydrological, biological and biogeochemical processes. Knowing that θ 

is an important variable in these processes, having access to accurate θ information is of 

value to researchers in environmental modeling. 

Current techniques for measuring θ are presented in a review by Robinson et al. 

(2008). Finding an efficient method for measurement at the resolution required is the 

challenge for applications where θ is an important input. Techniques vary from in-situ 

sensing instrumentation at the smallest spatial and temporal scales, to remote sensing 

satellites that provide θ information over large areas with less frequency. With each different 

method for measurement comes variance in the cost of the sensor, the cost of installation, the 

amount of maintenance required, the accuracy of the sensor, the ease of use, and the depth at 

which the θ is measured.  

  On a global scale, the most efficient technique for gathering θ data is using remote 

sensing. The constant motion of the satellite allows large areas to be covered with 

frequencies adequate for weather and crop models needing the θ information. The launch of 

the SMOS (Soil Moisture Ocean Salinity) satellite and the upcoming launch of the SMAP 

(Soil Moisture Active Passive) satellite will efficiently produce large amounts of θ data. With 

the idea that θ information from satellites is going to be readily available, the need to validate 

the accuracy of the satellite readings without extensive pre-sampling of θ arises. Knowing 

that θ readings from the satellite correspond to readings from the ground-based sensors is 

important in maintaining consistency and accuracy in the modeling applications requiring θ 

data. Because a large sensor network is required to check the accuracy of θ measurements 

from the satellite resolution, identifying representative sampling points throughout the 
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landscape that adequately estimate θ at the satellite resolution is one of the keys to validating 

remotely sensed data.  

Current methods for field-scale estimation require extensive time-series θ 

measurements from a network of in-situ sensors. One of the most common methods for 

finding optimal sampling locations to estimate θ at the field scale is the Rank Stability 

Analysis (RSA) developed by Vachaud et al. (1985). Given extensive time series θ data, 

sampling points within the field are identified as optimal sampling locations based upon 

having the smallest standard deviation of mean relative θ. These points are determined rank 

stable because they have the smallest variance with respect to the field mean θ. Though this 

has proven to be a valuable and relatively accurate method for θ estimation, weaknesses of 

the method make it unattractive. Besides the time and monetary resources required to find the 

temporal θ data for analysis, the reliance on empirical data is a downfall of the method. 

Because the method is based solely on empirical data, the ability to recognize why certain 

locations are better to sample than others is limited to the sampling points used to find the 

rank stable locations. Additionally, Yang (2010) argued that choosing random points from 

the sampling grid within the field was as reliable in field-scale θ estimation as the RSA 

method.   

The desire to identify critical sampling points without time-series θ information leads 

to the need for a new method of data analysis. A method of analysis gaining popularity in 

modeling natural processes is that of computational intelligence, specifically self-organizing 

feature maps (SOMs). Similar to the human brain but different than other classification 

techniques, SOMs learn patterns from complex data sets and then classify information 

accordingly. Typically, SOM networks learn to cluster groups of similar input patterns from 
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a high dimensional input space onto a low dimensional lattice of ‘neurons’ in an output layer 

(Kohonen 2001). The end result is an output layer (map) with contiguous neurons having 

similar input patterns (Kalteh et al. 2008). Often, SOMs are combined with a clustering 

algorithm to find similarly behaving clusters within the input data. The complexity and 

variation of temporal and spatial θ behavior, and the variety of factors having an impact on θ 

patterns, promote the use of computational intelligence methods in modeling θ behavior. 

Because soil moisture patterns are constantly changing over space and time, the ability of 

SOMs to analyze, cluster, and model data make it an attractive tool for complex natural 

processes. Complex data sets can be represented in a two dimensional map where similarities 

between sampling points can be observed. Additionally, because SOMs are unsupervised in 

nature, the exact class to which a specific sampling point belongs is not required. Data can be 

organized and clustered without knowing to which class each sampling point belongs. This is 

attractive because the high variability in θ values in spatial and temporal data sets 

complicates classification with traditional methods.    

Recent research supports the use of SOMs in modeling temporally and spatially 

varying natural processes. Annas et al. (2007) employed SOMs to identify temporally 

variable ‘hotspots’ in an attempt to predict fire risk. Mele and Crowley (2008) applied this 

method to classify soils based on biological, chemical, and physical properties. Honda and 

Konishi (2001) incorporated SOMs in their research to cluster cloud images from time-series 

satellite weather images. Also in a study showing the useful application of SOMs in a 

temporally varying environment, Lauzon et al. (2004) analyzed θ profiles on temporal scales 

with wavelet analysis and SOMs. Other studies attempted to model rainfall and runoff rates, 
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but few studies have addressed the need to understand spatial and temporal θ characteristics 

using computational intelligence methods.  

Knowing that SOMs can handle large amounts of data from a variety of different 

variables, the factors impacting spatio-temporal θ patterns can be used as inputs into the 

algorithm. Understanding the topographic and soil physical properties that have an effect on 

θ at different scales is crucial to understanding spatial θ patterns. Many studies confirm that 

both soil physical properties and topography control variations of θ over large areas (Chang 

2001, Romano and Palladino 2002). Other studies suggest that topography, soil physical 

characteristics, vegetation, and the climate are key factors that influence θ variations at the 

watershed scale (Famiglietti et al. 1998; Yeh and Eltahir, 1998; Western et al. 1999). Qiu et 

al. (2001) reported that on a smaller scale (field) land-use and soil type have a more 

pronounced control on θ than topography. Western et al. (1999) observed that patterns in θ 

result from a combination of both surface and subsurface pathways, while in the summer the 

potential radiation showed the strongest relationship with θ. Famiglietti et al. (1998) found 

that the dominant influence on θ changes from differences in soil heterogeneity to joint 

control by topographic and soil properties as the hill slope dried following rain events. 

Kaleita et al. (2007) found that stable spatial patterns of θ are linked to the combination of 

topography, particle size, and drainage pattern. Finding the most influential factors in 

estimating the θ is key to understanding θ patterns. 

The complex combination of factors influencing the spatial variability of θ and the 

ability of SOMs to represent large data sets in a two dimensional map makes this application 

appropriate for the use of this method. This research uses SOMs combined with K-means 

clustering, and the K-means clustering algorithm to find critical sampling points for field-
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scale θ estimation based on topographic and soil physical data. Finding a link between the 

physical data of the landscape and the θ behavior will allow field-scale θ to be estimated for 

validation without the need for extensive on ground θ monitoring. Recent improvements in 

LiDAR (Light Detection and Ranging) technologies allow accurate high resolution 

topographic data to be produced. Given this accurate topographic information, different 

derivatives of topography can be calculated and used as controlling factors of θ that are input 

in the SOM and K-means algorithm to find critical sampling locations.  

The ultimate goal of this research is to develop, with easily attainable data, a practical 

plan for designating critical θ sampling points within agricultural fields that can accurately 

estimate the field-scale θ and eventually help in bridging the gap between point 

measurements and remotely sensed θ data. First, given past time-series θ information, critical 

sampling points will be found using SOMs with K-means clustering algorithms and used to 

find a field-scale θ estimation. The estimates will be compared to estimates found using 

optimal sampling locations identified by the RSA method. Second, the SOM and K-means 

clustering algorithms will be used to find critical sampling points depending only on 

topographic and soil physical data as inputs. Assessing the accuracy of the estimates from the 

SOM and K-means clustering algorithms compared to the RSA method will determine the 

feasibility of using these new methods for field-scale θ estimation. 

 

Methods 

Field data 

This study analyzed in-situ θ measurements from the Brooks research field in Story 

County, Iowa. Soil moisture measurement values were taken in a 300 x 250 meter grid (~18 
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acres) on the field during the growing seasons (summers) of 2004-2008. The spacing 

between each sampling point is 50 meters and the coordinates of the grid are given in 

Universal Transverse Mercator (UTM, a mapping projection that gives location in meters 

from a datum). The elevation in the field varies by approximately 5 meters and the grid 

covers six different soil types and a variety of different landscape positions throughout the 

field (Fig. 1). Six points on the north end of the grid were not sampled in 2006 and thus 2006 

will not be used for data analysis. The readings were taken with an average interval of 

approximately 3 days. The daily sampling time period was limited to a maximum of two 

hours in order to reduce the θ differences due to drying.  

The soil moisture value used for analysis is an average of 3 samples taken within a 

~0.5 m radius of each sampling location at a depth of 0-6 cm with a ThetaProbe moisture 

meter (Delta-T Devices, Cambridge UK, marketed in the United States by Dynamax, Inc., 

Houston, Texas). Values from the probe were then converted to estimates of volumetric θ 

using a calibration developed for soils on the Des Moines lobe provided by Kaleita et al. 

(2005). A field calibration based on ThetaProbe measurements combined with gravimetric 

sampling resulted in a regression coefficient R
2
 of 0.77. The θ values given are in cm

3
 

(water)/cm
3
 (soil-water-air volume).  

In each season data collection with the ThetaProbe began after planting and samples 

were taken roughly twice a week in the absence of rain. In total there were 99 measurement 

days for the 2004-2008 growing seasons (less 2006 growing season measurements). As 

reference for the temporal θ behavior, precipitation data for each of these growing seasons 

was obtained from the Ames 8 WSW Station (UTM (Zone 15): 435912E, 4652376N; 

42.0208 Lat, -93.7741 Lon) from the National Oceanic and Atmospheric Administration 
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website. Fig. 2 shows the average θ of all grid points with standard deviation shown by error 

bars combined with the precipitation during the sampling time period.  

To calculate topographic indices, elevation data for the Brooks field was obtained 

using a GPS receiver mounted on an all-terrain vehicle. The vehicle traveled in the north-

south direction with approximately 20 m between each pass. Using the elevation data, slope, 

planar curvature, and slope aspect were derived for each point on the θ sampling grid using 

Surfer
®

 (Golden Software, Inc., Golden, Colorado). A 10-meter grid of elevation data was 

generated and then Surfer
®

 routines were used to find the indices. A 10-meter grid was used 

based upon the finding by Yang (2010) that this scale was adequate to describe field-scale θ 

patterns. The grid cell containing each of the sampling points was identified and the 

topographic indices for the sampling points were extracted from this information.  

Strobl et al. (2006) explain the indices and their impact on hydrologic patterns in the 

landscape. The slope is the rate of change in elevation and controls the energy available to 

propel surface flow. Curvature is a measure of topographic divergence and convergence and 

thus has an influence on the concentration of water at the surface. Positive values of planar 

curvature indicate convergent flow whereas negative values of planar curvature indicate 

divergent flow. The slope aspect indicates the direction of the slope from a point to its 

surroundings. This value has an influence on direction of flow and also on the potential 

radiation received at a point. The radiation received is important in determining θ because it 

impacts evaporation and transpiration.  

The known influence of soil types on hydraulic properties calls for the inclusion of a 

variable that can capture changes in soil texture. In the absence of high resolution soils data, 

the electromagnetic inductance (EMI) is used as a proxy index to identify changing soil 
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properties. Both horizontal (H-H) and vertical (V-V) conductances in units of 

milliSiemens/meter were gathered using an EMI sled pulled by an all-terrain vehicle. EMI 

data was interpolated with inverse distance weighting for each of the θ sampling locations in 

the grid based upon the ~20 m resolution data found with the EMI sled.  

   

Rank stability analysis 

The methods introduced by Vachaud et al. (1985) are employed to compare the 

identification and prediction of sampling points from the methods proposed in this paper. 

Using time-series θ data, the Rank Stability Analysis method finds the relative difference and 

standard deviation from the grid mean for each grid point. Points with small standard 

deviation are determined temporally rank stable. Temporally rank stable points are then used 

as optimal sampling locations because their θ behavior varies the least in time. Time-series 

data from the 2004 season was used to find 3 sampling points from the grid with the smallest 

standard deviation of mean relative difference to the field average. These points are deemed 

the optimal sampling locations (OSLs) for grid average validation because they have 

consistent behavior over time with respect to the field average θ content. Given the sampling 

locations with the smallest standard deviation of the mean relative difference, the field mean 

θ soil moisture is found with the following equation: 

 3̅56� =
789:


;	=>89:/
@@
 (2.1) 

Where 3ABCis the measured volumetric soil moisture content from an OSL on a given day, 

DA̅BC  is the mean relative difference from the OSL, and 3̅56�  is the estimated mean soil 

moisture from this OSL on the given day. When more than one OSL is used to determine the 
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estimated mean field moisture, equal weights are given to the estimated soil moisture value 

from each point.  

To compare the different techniques of identifying critical sampling locations with 

the different algorithms, temporal θ data from 2004 and topographic and EMI data were used 

to construct three matrices: Mθ, MT, and ME. Each matrix contained the points in the 

sampling grid as rows and the rows then represent the input vectors into the algorithms.  In 

the columns of the matrix Mθ contained the 2004 θ sampling days as columns. This is the 

same data used to find optimal sampling locations based upon RSA. Only the temporal θ data 

from 2004 was included because this method would be similar to the rank stability method of 

identifying optimal sampling locations based upon a temporal data series and then using the 

selected sampling locations for future estimation of θ values. The columns of MT contained 

elevation, slope, slope aspect, and planar curvature, and the columns of ME contained 

elevation, slope, slope aspect,  planar curvature, H-H EMI, and V-V EMI. Thus, Mθ is a 

42X24 matrix of θ values was created (corresponding to 24 sampling days from the 2004 

season), MT is a 42X4 matrix, and ME is a 42X6 matrix.  

To address the differing scales of the variables in MT and ME, the values in the matrix 

were normalized before input into the SOM algorithm and K-means algorithm. A linear 

transformation for normalization was used with the mean value of each variable set to zero. 

Each variable was normalized with the function below: 

 	E = (FGF̅)
HI

 (2.2) 
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Where 	E is the normalized value at a point, 	 is the actual value of the variable at the point, 

	̅ is the mean of all the values for the specific variable, and JF is the standard deviation of all 

the values for the specific variable. 

 

Self-organizing maps 

Self-organizing maps are useful in their ability to find patterns in complex data sets 

with a variety of variables. Input vectors (temporal θ or topographic and EMI data from each 

point) are presented to the SOM and the vectors then ‘self-organize.’ Each input pattern is 

compared to an output neuron on the output 2-dimensional map. A schematic diagram of a 

SOM is given in Fig. 3. A set of n observation vectors  ������ = �	
, 	�, … , 	�� ∈ ℜ� is fed 

into the SOM. Neurons on the output map are represented by the vector 

�� = ���
, ���, … ,���� ∈ ℜ�, (� = 1,2, … ,�), where N is the number of neurons on the 

output map. When constructing an SOM, the algorithm compares each input vector to each 

neuron and the winning neuron, mc, is chosen based on the formula 

  ������� −�!� = ��"�#������� −���$.  (2.3) 

After finding the winning output node for each input vector, the neurons on the map 

are updated according to the following equation: 

 ��(% + 1) = ��(%) + ℎ!�(%)��(%) −��(%)� (2.4) 

where t denotes the index of the iteration step, x(t) is the input sample of xinput in the iteration 

t, and hci(t) is called the neighborhood function around the winning neuron mc. During 

training, hci(t) is a decreasing function of the distance between the ith and the cth neuron. For 

convergence it is necessary that hci(t) goes to 0 when t goes to infinity. Different distance 

formulas and neighborhood functions can be chosen within the SOM algorithm. For 
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simplicity in this study, the default parameters within the MATLAB SOM Toolbox 2.0 

(Vesanto et al. 2000) were used. More details about the SOM algorithm can be found in 

Kohonen (1995). 

 

K-means clustering 

 A more commonly used algorithm than SOM, K-means clustering is used to separate 

both the SOM map neurons and the temporal and physical data matrices into three different 

clusters containing points with similar characteristics. In the K-means algorithm, the initial 

‘means’ of a decided upon number of k clusters is randomly selected from the input data set. 

Clusters are created by associating each input vector (grid point data) to the nearest mean. 

The vectors are then partitioned and the geometric center of each of the clusters becomes the 

new mean. This process continues until the points converge. The MATLAB SOM Toolbox 

contains a K-means clustering algorithm that was used for partitioning the neurons in the 

output layer of the SOM. Similarly, this function was used to partition the grid point data 

without inputting the data into the SOM. This bypasses the SOM algorithm altogether to find 

clusters of points with similar characteristics. Readers are referred to MacQueen (1967) for 

further explanation of the K-means algorithm. 

Using the SOM Toolbox, a unified distance matrix (u-matrix) was created using Mθ, 

MT, and ME. The u-matrix shows the distance between the hexagonal neurons and can be 

used to identify patterns within the data. By noticing the color difference in the map and 

using the color scale, one can see the difference in distances between nodes within the U-

matrix. Colors corresponding to small numerical values show that the nodes are closely 
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related, whereas colors corresponding to large numerical values show divisions within the 

input data.  

After applying the K-means clustering algorithm to both the SOM neuron data and 

then to Mθ, MT, and ME, the centroid vector of each cluster in each method can be found. As 

the name suggests, the centroids represent the centers of the clusters created. Using the 

Euclidean distance formula, the input vector with the smallest distance from the centroid can 

be found. This input vector (grid point) is then deemed the best matching unit (BMU) to the 

cluster centroid. These BMUs were then used as the critical sampling locations identified by 

their respective algorithms. The point number of the BMUs to the cluster centroids for each 

method can be found in Table 1.  

To find the estimated average of the field θ using the sampling points identified by 

the clustering algorithms, a weighted average was found using the BMUs from each method 

and the number of points in the corresponding cluster. The weighted average can be found 

with the following formula: 

 3̅K =
∑ 7LMNOP∗#	ST	6UV�W��X	�S���6	��	YO
1
OZ[

�S�UW	6UV�W��X	�S���6	��	X\�]
 (2.5) 

Where 3̅K is the estimated mean θ on the jth day, 3^_`OP  is the θ value for the BMU to cluster 

i centroid on the jth day, a� is the ith cluster, and i ∈{1,2,3,4}.  

To compare the accuracies of the estimated field average from the different methods, 

the average bias, root mean squared error, and the Nash-Sutcliffe efficiency index were 

calculated. The Nash-Sutcliffe index provides a number from 1 to -∞ with 1 being a perfectly 

predicting model (Nash and Sutcliffe 1970, McCuen etal. 2006). A value of zero for this 
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index indicates that the model predictions are as accurate as the mean of the observed data. 

The index is calculated with the following formula: 

 �b = ∑ cdefGdgfh
ij

fZ[

∑ cdefGdekkkkh
ij

fZ[
 (2.6) 

Where Do is the observed value of θ and De is the estimated value of θ at time t.  

 

Results and Discussion 

SOM visual interpretation 

The u-matrix in Fig. 4a gives insight into the divisions within the 2004 temporal θ 

data (Mθ). The colors given in the color scale correspond to the Euclidean distance between 

the different hexagonal neurons of the SOM. A division can be seen between the lower third 

and upper two thirds of the map in Fig. 4a. This division identifies the existence of a cluster 

with θ behavior that differs from the points located in the upper two thirds of the map. In the 

top two thirds of the map, the lack of colors corresponding to large Euclidean distance values 

shows those nodes have similar temporal θ behavior. The lack of a definitive division 

between the nodes in the top two thirds of the map supports the use of only two different 

clusters from the 2004 temporal θ data.  

The sampling point identification numbers corresponding to the points in Fig.1 are 

displayed on the map and thus the landscape positions for each of the points within a cluster 

can be interpreted. As an example, sampling points 17 and 63 are assigned to the same 

neuron on the SOM. Viewing Fig. 1, this result agrees with the landscape position of these 

points as they are both in an area where water converges as determined by surrounding 

elevation values. Similarly, sampling points 9 and 81 are in the same neuron on the SOM and 
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are both located at the top of a ridge. Going further, the spatial relationship (opposite corners) 

on the SOM between the neuron containing sampling points 17 and 63 and the neuron 

containing points 9 and 81 agrees with the idea that these two points should have very 

different θ behavior. When looking at the landscape, it could be assumed that sampling 

points 17 and 63 would exhibit higher than average θ values whereas points 9 and 81 would 

exhibit lower than average θ values. Such a result explains the maximum spatial distance on 

the output map of the SOM between these two nodes and gives insight into the relationship 

between other points on the map as compared to these two nodes. Map neurons between 

these corners likely will contain sampling points with less extreme behavior. 

Fig. 4b and 4c exhibits the u-matrices after inputting MT and ME, respectively. In Fig. 

4b, colors corresponding to a larger distance are located in the upper left hand corner of the 

map. This result suggests that the points located in this section of the map have topographic 

characteristics that are dissimilar to points located in the lower portion of the map. 

Interestingly, similar to Fig. 4a, Points 9 and 81 are assigned to the same neuron in the U-

matrix. Although in Fig. 4a the points are located in the map neuron that is the farthest 

distance away from surrounding neurons as denoted by the color scale. In Fig. 4a, points 3. 

13, and 65 are all in the same neuron that is the farthest distance from any of the surrounding 

neurons. In Fig. 4b, these same points are scattered throughout the bottom half of the amp 

showing an inconsistency partitioning the data based only upon topography.   

Fig. 4c includes EMI data with the topographic data to construct a u-matrix. Similar 

to Fig. 4a, a division is denoted by the color scale between the upper two thirds of map and 

the bottom third of the map. Again, point 9 and 81 are assigned to the same neuron in the  

corner of the map. Points 3, 13 and 65 are at the bottom of the map farthest away from points 
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9 and 81 showing more consistency between Fig. 4a and Fig. 4c. Similarly, points 17, 19, 51, 

and 63 are all in close spatial proximity in Fig. 4a and in Fig. 4c. The correspondence 

between the location of the points in the output maps constructed from Mθ and ME lend 

support to the inclusion of EMI data in estimating soil moisture behavior.  

Besides giving insight into the relationship between sampling points, the u-matrices 

are valuable in identifying divisions within the input data. The resulting u-matrix in Fig. 4a 

suggests dividing the data into two different clusters because of the division seen between the 

lower third and upper two thirds of the map. Fig. 4c also supports a division into two clusters. 

Fig. 4b is more difficult to analyze because of the lack of a definitive division. Colors 

corresponding to small distance (blue) at the bottom of the map suggest a cluster from that 

region. Colors corresponding to higher distances start at the upper left corner and continue 

down towards the lower right corner. This pattern suggests a division between the upper right 

and left corners. Thus, the matrix in Fig. 4b suggests a division into three clusters of data.  

With the overall goal of accurately estimating the field mean θ while eliminating the 

need for exhaustive pre-sampling, the question then becomes how many points need to be 

sampled. Ideally, one point within the field could be identified as the critical sampling point 

and could be used for field scale estimation. The differing landscape and soil characteristics 

make identifying one point for accurate estimation difficult. In preliminary studies, three 

critical points were used for field mean estimation based on having a wet, medium, and dry 

cluster, based on the existence of three predominant soil textures (sand, silt, and clay), and 

based on the having three common landscape locations (hilltop, sideslope, toeslope). This 

decision was consistent with research by Chang (2001) who used three classes to estimate 

soil texture from remote sensing brightness temperature.  Knowing that the u-matrices from 
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Mθ and ME support a division into two clusters, and knowing that the u-matrix constructed 

from MT suggests a division of the data into three clusters, it was decided to group the data 

into one, two, three, and four clusters for identification of critical sampling points.  

 

Estimation from 2004 time-series θ data (Mθ) 

Table 1 gives the average bias, root mean squared error, and Nash-Sutcliffe 

coefficient of efficiency indices from the methods with Mθ as input data. When using the 

RSA method, the RMSE values and NSCE values support the use of a higher number of 

points in estimating the field mean θ value. Estimation from critical sampling points 

identified by the SOM K-means and K-means algorithms have lower RMSE values and 

higher NSCE values when 2 points are used for estimation instead of 3 points. The most 

accurate estimations are from the 4 critical sampling points identified by both the SOM K-

means and K-means algorithms.  

The resulting statistical indices support the use of the SOM K-means and K-means 

methods for identifying critical sampling points over the RSA method. Average bias, RMSE 

and NSCE values from two critical sampling points identified by the SOM K-means and K-

means algorithm show a more accurate estimation than from the 4 point estimation using the 

RSA method. Average bias and RMSE values are lower for estimation from the 3 points 

identified for sampling by the SOM K-means and K-means algorithms in comparison to 

estimation using the 4 RSA OSLs. The improvement in the statistical indices presented 

support the use of these new methods for finding critical sampling locations from temporally 

varying θ data. 
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Estimation from physical data (MT & ME)  

Given the θ estimation results from the three different methods using Mθ and the 

resulting sampling locations advised by those methods, it is important to realize that all of the 

above methods used 2004 temporal θ from the Brooks field to identify sampling points. The 

objective of this research was to find an efficient and accurate method for finding θ at the 

field scale without the need for exhaustive pre-sampling of θ as would be required by the 

above methods. The success that was found with the SOM K-means and K-means methods 

with the θ data gave confidence in applying those methods to find sampling locations based 

on topographic and physical soil data alone.  

Table 2 gives average bias, root mean squared error, and the Nash-Sutcliffe 

coefficient of efficiency for the estimations of mean field θ from the critical sampling points 

identified by MT and ME. Estimating mean field θ from MT resulted in the most 

inconsistency within the statistical indices. Estimations from one critical sampling point is 

supported by all indices over estimations from 2 and three critical sampling points identified 

with MT. When using four critical sampling points for estimation identified by MT, both 

estimations from SOM K-means and K-means improved significantly over estimations from 

a lower number of critical sampling points. The highest Nash-Sutcliffe value and lowest 

RMSE value for estimating mean field θ from any of the models is found when using the 4 

critical sampling points identified from the SOM K-means algorithm using MT.  

Estimations from critical sampling points identified by ME show improved accuracy 

when increasing the number of points used in finding the mean field scale θ estimation. 

RMSE values decrease and NSCE values increase as more points are included. In 

comparison to the estimation accuracies from MT, improvement is seen except in estimation 
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from one point and in estimation from 4 points using the SOM K-means algorithm. Sampling 

only two points identified from ME is more accurate than sampling three points using MT 

from both methods and is more accurate than sampling four points using the K-means 

method for identifying critical sampling points.  

Matrices MT and ME were analyzed separately in order to see the affects 

identification of sampling points, and thus field mean θ estimation, when including EMI data 

for each grid point. With the exception of the estimation from 4 critical sampling points 

identified by the SOM K-means algorithm from MT, the statistical indices in Table 2 support 

the use of identifying sampling points with ME. The relationship between soil texture values 

and the EMI values makes the value a strong factor in impacting θ values. The downfall with 

requiring this information is the added labor in finding the EMI values for points within the 

field. Ideally, only topographic data for θ estimation would be required. Topographic data 

can be quickly and efficiently measured at very high resolutions. Topographic data is readily 

available for much of the landscape in Iowa and in many other states. From the results in this 

research, in the absence of EMI data, more sensors will be needed at critical sampling points 

to accurately estimate mean field scale θ.  

Comparison to the mean field scale estimate from the RSA OSLs shows the value of 

the new methods in estimating field scale θ from critical sampling points identified with 

topographic and EMI data. Using one point for estimation, the statistical indices support the 

use of the critical sampling points identified by the SOM K-means and K-means algorithms 

from MT and ME in all models. Using two points for estimation, sampling points identified 

using MT were not supported for use over the RSA OSLs, but sampling points identified 

using ME produced estimates better than using 4 OSLs to estimate mean field θ. Similarly, 
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using three points for estimation, sampling points identified by MT were not supported for 

use over the RSA OSLs, but sampling points identified using ME produced estimates better 

than using 4 OSLs. Finally, using 4 points for estimation, sampling points identified by MT 

and ME outperformed the RSA method in all statistical indices in all four scenarios. Given 

this information, the new methods for identifying critical sampling points based upon 

topographic and EMI data can be used to identify critical sampling locations to estimate the 

mean field scale θ with more accuracy than the RSA method of identifying OSLs. These 

results support the elimination of a dense sensor grid for mean field scale θ estimation that is 

required for finding OSLs from the RSA method.   

 

Points identified for sampling 

Completing the Rank Stability Analysis on the temporal θ data led to the selection of 

optimal sampling locations (OSLs) based on having the smallest deviation from the mean 

relative difference. Points 55, 23, 77 and 39 were the 4 points with the smallest standard 

deviation of the mean relative difference. All three points are in 138B Clarion loam soil. 

Points 23 and 55, the top two rank stable points, have the first and second highest elevation 

of all the points identified for sampling. Points 55 and 23 have the first and second lowest 

EMI values of any of the points identified for sampling with any of the algorithms (Table 4). 

Similarly, point 39, the fourth rank stable point, has the third highest elevation of all the 

points identified for sampling by all of the methods. The location of the points at the higher 

elevations is likely a factor in adding to the rank stability of the point over time. Point 77 is 

located near a transition between 138B and 55 soils and is the lowest in elevation (313.2 m) 

of all the points identified by the method.  
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Using Mθ, the SOM K-means algorithm and the K-means algorithm alone identified 

Point 77, the third highest rank stable location, as the one critical point to sample to estimate 

mean field scale θ. From Table 4, point 77 is one of the most commonly identified points by 

all of the algorithms. The algorithms selected the same 2 points (29 & 47) for sampling. With 

the exception of the value for slope aspect, points 29 and 47 are similar in all topographic and 

EMI index values. The algorithms identified the same 3 points for sampling (53, 67 & 83). 

Of these three points, point 53 has the highest EMI values and is the only point with a 

negative slope. Point 83 has a slope aspect value of ~40° meaning it receives less radiation 

from the sun than the other two points. In the identification of 4 critical sampling points, the 

only common point identified by both methods is point 65. Of all the points identified for 

sampling by all of the algorithms, point 65 has the highest H-H EMI and V-V EMI. High 

EMI values are associated with clay soils which have higher matric potential and thus more 

water holding capacity. The identification of this point for sampling allows points with 

higher clay content to be represented in calculating the mean field scale θ. The inclusion of 

this point likely adds to the increase in the NSCE for the model.     

Recommended points for sampling identified from inputting MT into the SOM K-

means and the K-means algorithms are shown in Table 5. For one and two critical sampling 

point locations, the SOM K-means and K-means algorithms chose the same points for MT 

(77; 51 & 67). In the identification of three critical sampling points from MT, points 21 and 

67 are interchanged. From Table 4, points 21 and 67 have similar values for all variables 

except curvature. Points 21 and 41 are identified by both the SOM K-means and K-means 

methods when selecting 4 critical sampling point from MT. The methods differ in selecting 
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points 15 and 77 (SOM K-means) and points 51 and 59 (K-means). Point 15 has similar 

index values to those of 51 with the exception of slope aspect and EMI values.  

In identifying one sampling location from ME, both of the algorithms choose point 

21, a point that is similar to the average values of all the indices at the 42 grid points.  In 

identifying two critical sampling locations from ME, the algorithms again identified the same 

locations (35 & 67). Point 35 has higher than average EMI values. In the identification of 

three critical sampling points from ME, the algorithms choose the same three points (51, 59, 

67). These three points have the first, second, and fourth highest occurrences in being 

identified as critical sampling points for all the methods. Point 51 is the most common choice 

for sampling from MT and ME. Of all the points identified for sampling from all of the 

methods, point 51 has the second highest EMI values. Similar to the selection of point 65 

when the algorithms identified 4 critical sampling points from Mθ, the higher EMI values of 

this point correspond to a soil with higher clay content. Thus, point 51 likely represents 

points in the grid with that exhibit higher θ values throughout the measurement days.  

The main conclusion in the above analysis is that sampling a higher number of points 

allows for the inclusion of sampling points with index values different from the average 

values of the indices at the grid points. Points identified using the RSA method are at higher 

elevations and have lower EMI values than the points identified with the SOM K-means and 

K-means algorithms with Mθ, MT and ME as inputs. Two of the points identified by the RSA 

method are never identified for sampling from any of the other algorithms. A complex 

statistical analysis of the points identified for sampling would be valuable in finding which 

factors are most influential in estimating θ values. This qualitative overview only hints at 

some of the discrepancies between the sampling points identified by the different algorithms.    



41 

 

 

 

One point worth considering when comparing the estimations based on time-series θ 

data to the estimations based on physical data is that the OSLs and BMUs from the θ data 

were found using only the 2004 season. This structure made the most sense chronologically 

for application of θ estimation. A variety of other variables not taken into account in this 

study could have been different in the 2004 season when compared to the other three years 

used for validation. Nothing from the precipitation data, sampling methods, or the time of 

year appears to be drastically different, but this point is worth considering when comparing 

the estimation of θ data to the estimations from physical data.  

One of the reasons for the elimination of sampling days from the time-series data 

from each year was due to the sampling point being underwater. Eliminating these sampling 

days may have an impact on the pattern of θ behavior because the days with the highest 

average θ are not analyzed. Two days were eliminated from the 2004 temporal θ data, 4 days 

from 2005, 0 days from 2007, and 0 days from 2008. This would likely have the largest 

impact on the estimation methods based on the 2004 θ data rather than affecting the 

estimations from the algorithms based on the physical characteristics. Having data included 

in the 2004 θ data from the days when some of the points were under water may have an 

impact on the underestimates of the methods based on the time-series θ data. 

The scale at which these estimations are made are not large based upon today’s 

agricultural standards or compared to the resolution of some remote sensing devices (~18 

acres). The size of the grid was chosen based upon the amount of time required for a person 

to collect data from all of the sampling points in less than two hours. This was done in an 

attempt to reduce the impact of drying during that time period. While discussing the size of 

the grid, one could question the resolution at which the samples are taken and speculate about 
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the inadequacy of the grid representing the actual θ of the entire field. The points cover a 

variety of different landscapes positions and soil types, but variability between the points 

could make the actual field θ average different than that found from the grid points.  

The accuracy of the ThetaProbe could also be called into question when evaluating 

the legitimacy of these estimations. An R
2
 value of 0.77 is high for a natural system, but also 

leaves room for error in the measurements. Human error is also a factor when sampling with 

the ThetaProbe. The location of the three samples taken at each grid point, the cleanliness of 

the probes of the instrument, the depth at which the instrument was placed in the ground all 

could have an effect on the accuracy of measurements.         

After completing the θ estimations with both the SOM K-means algorithm and 

subsequently with the K-means algorithm alone, it appears from the resulting estimations that 

the classification into neurons on a SOM may not be needed to find critical sampling points 

based on temporal θ data or physical characteristics. With the exception of estimations from 

3 and 4 points from MT, finding sampling points with the K-means algorithm results in 

estimation values with NSCE values equal to or greater than the values from the estimation 

from points identified for sampling from the SOM K-means algorithm. The strength of the 

SOM method is in organizing points on the output layer to produce a visual interpretation of 

the relationship between the points. The distance between the map neurons on the output 

layer gives insight into the θ behavior of sampling points in comparison to other points in the 

field. In addition, the number of clusters to be used for finding critical sampling points is 

supported by the u-matrices. Knowing that spatial relationships can be inferred from the 

output layer of SOMs, the SOM method is valuable in qualitatively understanding θ patterns 
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based on topographic and soil properties, but may not be needed to quantitatively identify 

sampling points.   

 

Conclusion 

The new methods proposed in this paper provide an effective way to estimate θ not 

only from past time-series θ behavior, but also from soil properties and physical 

characteristics. SOM K-means and K-means algorithms have the ability to identify critical 

sampling points using topographic and soil physical data that can be used to estimate mean 

field scale θ values. Being able to identify critical sampling points based solely upon physical 

characteristics that can be measured quickly and efficiently in comparison to in-situ θ 

measurements is a valuable outcome. The SOM algorithm, specifically the u-matrix output, 

is valuable in identifying the divisions within the input data. These divisions can then be used 

to divide the input data into similarly behaving clusters, and thus a representative point from 

those clusters can be identified for sampling. Results suggest that fewer critical sampling 

points are needed if EMI data is included in the field physical data for identifying critical 

sampling points as opposed to only using topographic data to identify sampling points. 

Moving forward, these results are promising in the pursuit to estimate mean field-scale θ 

without the need for extensive ground based θ sampling networks. Understanding and being 

able to accurately estimate θ is a key to understanding hydrologic performance in a wide 

range of natural modeling systems. Further studies are needed in order to validate these 

methods for finding critical sampling points in different environments and at different scales.  
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Tables and Figures 

Table 1. Average bias, root mean squared error, and Nash-Sutcliffe efficiency index for mean field θ estimate 

from critical sampling points identified with Mθ 

 # of 

Points 

RSA Mθ SOM Mθ Kmeans Mθ 

AB 1 -0.010 -0.010 -0.010 

(cm
3
/cm

3
) 2 -0.016 0.003 0.003 

 3 -0.014 -0.012 -0.012 

 4 -0.013 0.005 -0.004 

RMSE 1 0.022 0.017 0.017 

(cm
3
/cm

3
) 2 0.021 0.014 0.014 

 3 0.016 0.016 0.016 

 4 0.016 0.010 0.012 

NSCE 1 0.436 0.667 0.667 

 2 0.483 0.754 0.754 

 3 0.682 0.697 0.697 

 4 0.708 0.876 0.832 

 

Table 2. Average bias, root mean squared error, and Nash-Sutcliffe efficiency index for mean field θ estimate 

from critical sampling points identified with MT (Topo) and ME (Topo/EMI) 

 # of 

Points 

SOM 

MT 

K-means 

MT 

SOM 

ME 

K-means 

ME 

AB 1 -0.010 -0.010 -0.004 -0.004 

(cm
3
/cm

3
) 2 0.018 0.018 0.002 0.002 

 3 0.011 0.013 0.003 0.006 

 4 -0.004 0.008 0.004 0.003 

RMSE 1 0.017 0.017 0.019 0.019 

(cm
3
/cm

3
) 2 0.025 0.025 0.013 0.013 

 3 0.017 0.020 0.013 0.012 

 4 0.008 0.013 0.011 0.010 

NSCE 1 0.667 0.667 0.550 0.550 

 2 0.264 0.264 0.798 0.798 

 3 0.638 0.535 0.810 0.815 

 4 0.923 0.785 0.850 0.891 

 

Table 3. Points identified for sampling by the Rank stability analysis, SOM K-means, and K-means algorithms 

using Mθ as input data 

 
# of points RSA Mθ SOM Mθ K-means Mθ 

1 55 77 77 

2 23,55 29,47 29,47 

3 23,55,77 53,67,83 53,67,83 

4 23,39,55,77 47,55,65,77 51,65,67,83 
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Table 4. Topographic and EMI data for any point identified for sampling by any of the methods. The point ID 

and the number of times the point was identified by the algorithms is in the first two columns.  

 

BMU 

Times 

Identified Elevation (m) Slope  

Planar 

Curvature 

Aspect  (° CW 

from North) 

H-H EMI 

(mS/m) 

V-V EMI 

(mS/m) 

1 3 313.7 1.6 0.1488 211.6 32.5 14.7 

15 1 312.7 1.6 -0.0252 63.0 45.1 23.0 

21 4 313.7 2.5 -0.0237 164.4 41.8 20.8 

23 1 315.0 4.2 0.0267 126.5 27.8 12.2 

29 2 313.1 2.5 0.0763 216.1 37.5 18.2 

35 2 313.2 1.8 -0.0763 90.4 53.5 31.0 

39 3 314.2 3.4 0.0755 124.1 33.1 15.0 

41 3 314.4 2.0 0.1007 328.1 28.5 12.5 

47 3 313.2 2.1 0.0740 320.2 43.1 23.9 

51 9 312.6 1.8 -0.0237 153.3 69.3 43.6 

53 2 313.4 1.8 -0.0755 166.0 52.6 29.1 

55 2 314.6 2.3 0.0244 180.2 25.4 10.5 

59 5 312.8 1.0 0.0511 124.4 42.2 20.8 

65 2 312.6 1.7 -0.0999 216.5 77.8 48.2 

67 10 313.7 2.9 0.0740 222.7 38.0 17.2 

77 7 313.2 1.9 0.0259 221.3 33.6 16.2 

83 3 313.5 3.2 0.0504 39.8 29.2 13.5 

Mean all 42 grid points 313.3 2.1 0.0186 178.2 43.6 23.2 
 

 

 
Table 5. Points identified for sampling by the  SOM K-means and K-means algorithms using MT (Topo) as 

input data and points identified for sampling by the  SOM K-means and K-means algorithms using ME 

(Topo/EMI) as input data 

 

# of points SOM MT  K-means MT SOM ME K-means ME 

1 77 77 21 21 

2 51,67 51,67 35,67 35,67 

3 1,21,51 1,51,67 51,59,67 51,59,67 

4 15,21,41,77 21,41,51,59 1,39,51,59 39,41,51,59 
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Figure 1. Brooks Field sampling grid with elevation and soil types. Points are on 50 meter spacing intervals. 

Soil type indices: 55: Nicollet loam, 1-3% slopes; 95: Harps loam, 1-3% slopes; 107: Webster clay loam, 0-2% 

slopes; 138B: Clarion loam, 2-5% slopes; 138C2: Clarion loam, 5-9% slopes, moderately eroded; 507: Canisteo 

clay loam, 0-2% slopes. 

 



47 

 

 

 

 

Figure 2. Average θ with standard deviation given by error bars for the 42 points within the Brooks field 

combined with precipitation data from the Ames 8 WSW stations at 42.0208 Lat, -93.7741 Lon. 
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Figure 3. From Annas etal. (2007). Structure of a SOM with input layer (in this study temporal θ values and 

physical data) and competitive layer output layer, which produces an image similar to Figure 4. 

 

 

Figure 4. Unified distance matrices from inputting Mθ (a), MT (b), and ME (c). Color bar to the right of each u-

matrix denotes the Euclidean distance between neurons. Numbers correspond to point identification numbers. 
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CHAPTER 3: INVERSE DISTANCE WEIGHTING BASED UPON 

PHYSICAL CHARACTERISTICS FOR INTERPOLATION OF IN-

FIELD SOIL MOISTURE 

A paper to be submitted to Journal of Hydrology 

Zach Van Arkel, Amy Kaleita, Brian Hornbuckle, Sally Logsdon 

Abstract 
 

The spatial and temporal variance of soil moisture complicates the ability to monitor 

and effectively predict soil moisture values. Identifying patterns and understanding the 

relationships between locations within a field is limited by the time and resources required 

for adequate monitoring. Remote sensing devices efficiently measure soil moisture over large 

areas, but the coarse resolution of measurements limits the use of the data. Finding a method 

to accurately estimate field scale soil moisture with limited in-field resources is the focus of 

this study. Given temporal soil moisture measurements at critical sampling locations 

throughout a field, the Euclidean distance can be found between these sampling points and 

all of the points in the field from their physical characteristics vector (elevation, slope, 

aspect, curvature, electromagnetic inductance) and used for interpolation of soil moisture 

values. Ultimately, this method can be used to find an accurate in-field soil moisture 

estimation without extensive monitoring. 

 

Introduction 

Soil moisture (θ) is of fundamental importance in crop and hydrology modeling and 

in weather prediction. The volume of θ is small in comparison to other water reserves in the 

hydrologic cycle, but plays an important role in these land-surface processes. Jaynes et al. 
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(2003) noted the response of crop yield to θ. Western et al. (1999) documented the ability to 

predict runoff at the catchment scale given θ values. Weather patterns are influenced by θ 

because surface soil water affects the energy exchange between the atmosphere and the land 

surface. The dependence of these models on values of θ at the required scale highlight the 

importance of accurate measurement of θ.  

Unfortunately, θ measurements are often not available at the spatial resolutions 

adequate to capture the variability of the aforementioned processes. The low spatial 

resolution of remote sensing devices leads to an inability to capture different θ patterns at the 

field-scale. On the other end of the θ sensing spectrum, ground based sensors provide θ 

information at the point scale. Ground-based techniques are precise and can provide very 

high spatial resolution, but obtaining data at the field-scale with point scale values is time 

consuming and monetarily expensive because of the number of sensors required. Dense 

networks of sensors are needed to accurately capture spatial patterns of θ at the field scale (Li 

and Heap 2010). This lack of an efficient and high resolution method of measuring θ calls for 

the development of an interpolation method for estimation of θ patterns at the sub-field scale 

that does not require a dense sensor network. 

 

Review of current interpolation methods  

Similar to other environmental variables, the complexity and dynamic behavior of 

spatial θ patterns makes interpolation difficult. Of the interpolation techniques used for θ 

estimation, kriging is undoubtedly the most common. Li and Heap (2010) found that kriging 

methods outperform non-geostatistical interpolation techniques at various scales. Thattai and 

Islam (2000) used kriging methods to interpolate θ from remote sensing data in the Little 
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Washita watershed (~600 km
2
). Bardossy and Lehman (1998) interpolated θ at the catchment 

scale using different variations of kriging. In a more applied study, Pandey and Pandey 

(2010) used kriging to predict θ for irrigation planning in a 2 hectare field from a 40 m x 40 

m grid of in situ θ sensors.  

Closely related to kriging, co-kriging has the ability to take into account secondary 

spatial information to aid in interpolation (Bishop and McBratney 2001). The different 

factors impacting θ can be included within the co-kriging algorithm to improve spatial 

estimtation. Yao et al. (2006) used co-kriging to interpolate θ by including micro-topography 

characteristics. Using co-kriging instead of kriging resulted in an improvement in the 

accuracy of estimating θ. Bardossy and Lehman (1998) also saw an improvement in 

interpolation quality when co-kriging using a topographic index as secondary information.  

The influence of topographic features and soils data on θ calls for their inclusion in 

estimation of θ patterns. The topography of the landscape has an impact on flow channels, 

infiltration, potential radiation, and is related to the different soil types. Mohanty et al. (1997) 

found slope position to be the biggest contributor to temporal variability of θ. Not only does 

the slope affect the flow of the water during wet conditions, but slope position also has an 

impact on the potential radiation that can be received at each point. Western et al. (1999) 

found the best univariate predictor under wet conditions to be a function of the upslope 

contributing area. In the same study, the authors found potential radiation to be the best 

predictor of θ during dry conditions. Numerous other studies include different topographic 

characteristics in attempts to model and predict θ. (Yoo and Kim 2004; Western et al. 2001; 

Wilson et al. 2004, Famiglietti et al. 1998; Kim and Barros 2002; Mohanty and Skaggs 2001) 

Though each of these studies were completed on different spatial scales, all use the influence 
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of topographic features in θ estimation. Famiglietti et al. (1998) provides an in depth analysis 

of different topographic indices, how they are computed, and why they have an impact on θ 

patterns.  

Differing soil types and textures will also have an impact on the spatial θ patterns. A 

worthy estimation of the soil type that can be found in one pass over the field is the 

electromagnetic inductance (EMI) (Tromp-van Meerveld and McDonnell 2009). The 

electrical conductivity correlates strongly with the soil particle size and texture (Grisso et al. 

2009). The connection between soil texture and particle size with the hydraulic 

characteristics make EMI a valuable index in estimating θ. Khakural et al. (2008) found a 

linear relationship between electrical conductivity and soil water profile storage. The 

landscape and soil characteristics also correlated with the EMI measurements. Huth and 

Poulton (2007) found that EMI can provide quick and efficient means for monitoring θ in 

agroforestry systems.  

A combination of factors that affect the θ is likely the answer to modeling the 

complex nature of θ patterns. Herbst et al. 2006 were best able to predict soil hydraulic 

properties at a point given the relative elevation, the slope, and the slope aspect. Although not 

attempting to predict θ, Green et al. (2007) used elevation, slope, aspect, curvature, and 

upslope contributing area in combination with spatial coordinates to predict crop yield. 

Mohanty and Skaggs (2001) noted the need to develop quantitative relationships between θ 

and various soil, topographic, and vegetation characteristics. Wilson et al. (2005) found a 

variety of terrain indices that had predictive power of θ patterns. In their concluding remarks, 

the authors state that spatial distribution of θ is not based on one terrain index but on a 

weighted combination of indices. Similarly, Western et al. (1999) describe an “index 
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approach” where a variety of different indices are found for points throughout the landscape 

and used for analysis. A combination of indices is needed to accurately estimate the dynamic 

behavior of θ.  

Although co-kriging attempts to incorporate topographic and/or soils data, the current 

methods for interpolation of θ fall short in their need for dense sampling networks and their 

dependence on spatial relationships to accurately portray θ patterns. Using kriging methods, a 

variogram is first constructed from a dense network of observed data. Given the variogram, a 

spatial pattern is estimated from the data depending on how far an unknown point lays from a 

known sampling point (Western et al. 2001). When data variation is high and the data 

contains randomly distributed patterns, as can be the case with θ, the sampling density needs 

to be increased to capture the spatial changes within the landscape (Li and Heap 2010). Thus, 

the sampling density and spatial design will have an impact on the accuracy of the 

interpolation method. Abrupt changes within the landscape that have an impact on θ will not 

be sensed unless a dense sampling network is installed. Similarly, because spatial θ patterns 

are highly variable, points located near one another in the field may exhibit different θ 

values. The current methods rely on neighboring points to interpolate values at unknown 

points. This spatial dependence can lead to inaccuracies when sudden changes in θ exist due 

to changes in the landscape and soil characteristics.  

Given the shortcomings of the current methods for interpolation of θ, a new method is 

needed to estimate θ values that bypasses spatial dependency and does not require a dense 

sensor network of θ values. The purpose of this research is to develop and test a new method 

for interpolation based only upon landscape characteristics that have an effect on spatial θ 

patterns. Using topographic and EMI data (as a proxy for soils information) for each point, in 
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the form of a vector for sampling points and unknown points, the Euclidean distance between 

the data vectors are used to interpolate values based upon an inverse distance weighting 

algorithm. This new vector space interpolation (VSI) method is valuable because it ignores 

spatial dependencies between estimated points and sampling points and because it eliminates 

the need for exhaustive pre-sampling with a dense sensor network. 

 

Methods 

Field data 

This study analyzed three in-situ θ data sets with varying spatial scales at the Iowa 

Validation Site (IVS) in Story County near Ames, Iowa (Fig. 1). The site covers 

approximately 150 acres (~60 hectares) and contains soils common in the Des Moines lobe. 

Elevation at the site ranges from approximately 310 to 316 meters above sea level and is 

characteristic of the prairie pothole region in which it is located.  

Topographic indices and EMI data make up the data vector that is used in the VSI 

method. The topographic indices used for analysis were found given the elevation data from 

the IVS collected at a ~20 m resolution with a GPS receiver on an all-terrain vehicle. The 

field was divided into 10 meter grid sections and the slope, planar curvature, and slope aspect 

(flow direction) for each grid point was derived from the elevation data using Surfer
®

 

(Golden Software, Inc., Golden, Colorado). The grid cell containing each of the sampling 

points was identified and the topographic indices for the sampling points were extracted from 

this information.  

Electromagnetic inductance (EMI) data was gathered at a ~20 m resolution using an 

EMI sled pulled behind an all-terrain vehicle.  Horizontal and perpendicular conductances in 
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units of milliSiemens/meter were found with this instrument and then interpolated at each 10 

meter grid point and at each sampling point with the same methods described above. Thus, 

for each θ sampling point from the three data sets and each 10 meter grid point, values of 

elevation, planar curvature, slope aspect, horizontal EMI, and perpendicular EMI were 

available. These values composed the data vector that was used in the VSI method.  

Three different sets of θ data with different time measurement and spatial locations 

are used for analysis. The sampling locations of each of the data sets can be seen in Fig. 1. 

The first set of data analyzed was gathered during the 2011 growing season using a neutron 

probe at 16 sampling locations throughout the field. Seven different measurement days are 

available and θ values from depth ranges of 0-10 cm and 10-20 cm are used in this study.   

The second data set analyzed was also gathered during the 2011 growing season. 

Nine CS616 sensors were used to log θ data every hour from day of year 202 to 258. Values 

for θ from 11:00am, 12:00pm, and 1:00pm at each sensor were averaged and used for that 

day’s θ value. In order to view the difference in θ estimation depending on the depth of the 

sensor, two different depths, 4.5 cm and 15 cm, are used in this study (Fig. 2). The locations 

of these sensors correspond with the location of the neutron probe sampling sites from the 

first data set (Fig. 1). The same UTM coordinates and topographic and EMI data vectors are 

used for analysis at corresponding neutron probe data sites.  

The third data set was collected during the 2007, 2008, and 2010 growing seasons. 

An irregular time-series of θ measurements was gathered at 35 different sampling locations 

during this time span. In total 65 measurement days are used for analysis. The θ value used 

for analysis is an average of 3 samples taken within a ~0.5 m radius of each sampling 

location at a depth of 0-6 cm with a ThetaProbe moisture meter (Delta-T Devices, Cambridge 
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UK, marketed in the United States by Dynamax, Inc., Houston, Texas). Values from the 

probe were then converted to estimates of volumetric θ using a calibration developed for 

soils on the Des Moines lobe provided by Kaleita et al. (2005). A field calibration based on 

ThetaProbe measurements combined with gravimetric sampling resulted in a regression 

coefficient R
2
 of 0.77.  

From the 35 sampling stations described in data set 3, 3 points were identified as 

optimal sampling locations based upon the methods utilized in chapter 2. A method using 

self-organizing maps combined with a K-means, and a method using only a K-means 

clustering algorithm are used to find 3 optimal sampling locations based upon the 

topographic and EMI data of all 35 points. Three sampling points were identified based upon 

the classification of three soil types, clay, silt, and sand. This is consistent with other studies 

using self-organizing maps for classification into different textural groups (Chang 2001).  

Each data set differs in sampling density, in the depth at which θ is measured and in 

the temporal variation of sampling. In addition, data set 3 builds on the methods presented in 

chapter 2 for identification of optimal sampling points for field-scale θ estimation. Identical 

techniques will be used to evaluate the estimations from data set 1 and data set 2. Because 

only 3 sampling sites are used to estimate θ values on the 10 m grid, the remaining 32 

sampling points in data set 3 are used for validation of the interpolation method.   

 

Vector space inverse distance weighting interpolation method (VSI) 

Using the data vectors (topographic indices and EMI) the Euclidean distance was 

calculated between each sampling point and each 10 m grid point. The Euclidean distance is 

determined by:  
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 ,(�, l) = m∑ (n� − o�)��
�2
  (3.1) 

where d denotes distance, u and v are vectors, and n is the dimension of vectors u and v (n=6 

in this application, dimensions are elevation, slope, planar curvature, slope aspect, horizontal 

conductance, and perpendicular conductance). For each θ data set, distances in the vector 

space were computed between each sampling point and the 10 meter grid points throughout 

the field. This distance was then used in an inverse distance weighting algorithm to find θ 

values at each point in the 10 meter grid. The formula for the inverse distance weighting 

algorithm is given below: 

 3(o) = ∑ pO(q)7O
r
OZs
∑ pP(q)r
PZs

, where	x�(	) =



](q,qO)
 (3.2) 

where v denotes the interpolated point, vi is a point with known θ (sampling locations), d is 

the Euclidean distance from observed point vi to unobserved point v as calculated from 

equation (1), and N is the total number of observed points used in interpolation. Fig. 1 gives 

values for θ from VSI method for one day given θ values at the three critical points identified 

for sampling by the K-means algorithm. 

 

Traditional IDW method 

To compare the VSI method with the traditional inverse distance weighting method, 

equations (3.1) and (3.2) were again used but with geospatial distances instead. In equation 

(3.1), vectors u and v are 2-dimensional (the first dimension is UTM easting and the second 

UTM northing). Given this spatial distance, known θ values at the sampling locations could 

then be used to interpolate unknown θ values at the 10 meter grid points with equation (3.2). 
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Fig. 3 shows one day of interpolated θ values using the traditional IDW method given θ 

values at the three critical points identified for sampling by the K-means algorithm.  

After introducing kriging in the introduction as the most common method for 

interpolation of θ values, the comparison of the VSI method to kriging would be expected. 

The vector method was not compared to kriging methods because the small number of 

sampling points in each data set eliminates the ability to construct a variogram. As the 

literature suggests, kriging methods will likely be more accurate than traditional IDW, but 

those methods require more dense sets of data for interpolation. The desire to use a small 

number of points to accurately estimate θ within the field does not lend support to kriging 

because a large number of sampling points in close spatial proximity are required.  

 

Validation methods 

To compare the accuracy of the VSI method with the traditional inverse distance 

weighting, leave one out (LOO) cross validation was employed for data sets 1 and 2. For data 

set 1, 15 sampling points were used to find θ values at the 16
th

 point; this was repeated 16 

times so that each observed point was left out of the analysis once. Similarly, with data set 2, 

8 sampling points were used to estimate the θ of the 9
th

 point. The estimations were then 

compared to the corresponding actual observed θ value. The Nash-Sutcliffe efficiency index 

and the root mean squared error are used to compare the different models (Nash and Sutcliffe 

1970, McCuen etal. 2006). Values for these indices for the VSI method are given in Table 1 

and for the traditional IDW in Table 2.  

To validate estimates from data set 3, the 3 sampling locations used for interpolation 

were left out of the actual grid θ values. Thus, 3 points were used to estimate the θ values at 
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the remaining 32 different points in the field. The estimated values from each interpolation 

method were compared with the actual values providing an opportunity to validate each 

estimation model. Table 1 gives values for statistical comparison of the VSI method as 

compared to the traditional IDW algorithm. To further compare the methods, the Pearson 

correlation coefficient for actual θ vs. estimated values of θ was found for each method on 

each measurement day for data set 3. Inconclusive evidence that the VSI method improved θ 

estimation prompted comparison of the methods with the Pearson coefficient. A scatter plot 

was constructed to compare the Pearson coefficient values for each interpolation method 

given sampling locations from the SOM or K-means clustering algorithm (Fig. 4).     

 

Results and Discussion 

The linear relationship between the actual and estimated values of θ from the VSI 

method using the 9 CS616 sensors from data set 2 can be seen in Fig. 2. As depth increases, 

the Nash-Sutcliffe efficiency index increases suggesting that the model is more accurate in 

estimation at deeper depths. This finding is consistent with the idea that as depth increases, θ 

variability decreases. The effect of precipitation, overland flow, and drying process 

associated with the soil surface is diminished at deeper depths. A smaller range of θ values 

with less variability leads to better estimation by both interpolation methods.    

Taking into account the soils information at specific sampling sites (Table 3) gives 

insight into θ estimates by the VSI method. Viewing Fig. 2, the relationship with the 1:1 line 

for different sampling sites can be combined with the soils information to understand the 

estimated values of the model at the different sites. The model appears to consistently 
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underestimate or overestimate different sampling locations. At a depth of 4.5 cm, the method 

consistently underestimates θ values for sampling point 705. At a depth of 15 cm, the model 

again underestimates the actual values for point 705. Point 714 is also underestimated by the 

model at the 15 cm depth. At 4.5 cm, values at sampling site 714 are overestimated at low 

actual values and underestimated at high actual values. From Fig. 1, sites 705 and 714 are 

located at lower elevations and in depressions in the landscape. Table 3 gives information 

about soil characteristics of each sampling point. Of the sampling sites, site 705 has the 

second highest clay content. Site 714 has a very low sand content and the highest silt and 

clay content of all the sampling sites. This information may explain the underestimation of 

the values of θ at each of these sites. The higher clay content at these sites results in a soil 

that has the potential to hold more water. Though the EMI was used as a proxy for soils data, 

this may not have adequately captured the difference in soil texture at these points, and thus 

caused the model to underestimate θ values. 

Fig. 1 and Fig. 3 show the estimated θ values given θ data from one measurement day 

from the three critical sampling points identified by the K-means clustering algorithm.  A 

significant difference in estimated θ values for the different points throughout the field can be 

observed. In Fig. 1, the spatial θ pattern closely follows the contour lines showing its 

dependency on topographic data for interpolation. Unlike in Fig. 3, the three sampling points 

have no apparent θ pattern surrounding them despite their influence on the interpolated 

values. Soil moisture values change depending on the landscape position because the VSI 

method bypasses the spatial dependency apparent in both traditional IDW and kriging 

algorithms. Values appear to be the lowest on side slopes and highest in the depression areas. 

Little variation in θ values is seen between the hill tops and the side slopes in the landscape.  
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The traditional inverse distance weighting method (Fig. 3) yields a spatial pattern that 

is strongly influenced by the location of the 3 observed data points used for interpolation. 

The 3 sampling points can be easily identified in Fig. 3 because of the spatial θ pattern that 

has been estimated for that measurement day. The dependence on the spatial relationship of 

the points for interpolation can be clearly seen by the resulting θ pattern. Consistent with Fig. 

1, point 4 exhibits the highest θ value of the identified sampling points and points 36 and 46 

exhibit similar, drier θ values. Points located an equal spatial distance from point 4 and point 

36 exhibit estimated θ values in the intermediate range of the θ color scale. Rings of equal θ 

values surround the sampling points further showing the reliance on spatial relationships for 

interpolation by the traditional inverse distance weighting method.   

As with any interpolation method, the estimated values of θ for unsampled points 

throughout the field will be limited to the range of values exhibited by the sampling points. 

The color bar at the bottom of both Fig. 1 and Fig. 3 shows the range of θ values within the 

field. The range for the VSI method is smaller than the range given by the traditional IDW 

method. The method for selection of sampling points used in chapter 2 aims at finding a 

sampling point that will exhibit θ values from 3 different classes of points with similar θ 

behavior. This improves the likelihood of eliminating the points in the landscape with the 

highest and lowest θ values and thus makes accurate estimations of θ at those locations 

unlikely.  

Comparing statistical index values in Tables 1 and 2 lends support to the use of the 

VSI method for interpolation. The Nash-Sutcliffe model efficiency index is used to evaluate 

the accuracy of hydrologic models. Values for this index can range from 1 to –infinity. A 

value of 1 corresponds to a model that perfectly estimates the observed values. In each of the 
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different data sets and depths chosen for analysis, the Nash-Sutcliffe index improved when 

using the VSI method. RMSE values were smaller for the VSI method in all data sets with 

the exception of the TDR SOM sampling points used for estimation.  

Although estimated values from the VSI make more sense qualitatively because of 

their lack of spatial dependence on sampling locations, little improvement is seen in the 

Nash-Sutcliffe efficiency index. Specifically, only a small increase in the NSCE is observed 

when using the VSI method in data set 3. This result does not lend support to the VSI for 

smaller scale interpolation, but does support the methods from chapter 2 because the 3 

sampling points selected can accurately estimate field scale θ with either interpolation 

method. Finding the average θ of the three sampling locations and then using that value for 

the estimation at each of the 32 other points on that day leads to an estimation with a NSCE 

value of 0.69. Both the VSI method and the traditional IDW method have high Nash-

Sutcliffe values because they are finding a complex average of the 3 sampling locations. In 

addition, the increased number of measurements leads to a lack of detail being exposed 

within the estimation data. Given actual θ values at each 10 meter point, the model efficiency 

spread would likely widen between the VSI method and the traditional IDW method. The 

irregular spatial θ patterns estimated by the traditional IDW method would be exposed in the 

model efficiency index given a denser sensor network for validation.  

To further compare the estimation of the VSI method with the traditional IDW 

method using the 3 optimal sampling locations identified by the SOM K-means and K-means 

algorithm, the Pearson correlation was calculated for the actual vs. estimated θ values for 

each of the 65 measurement days in data set 3 (Fig. 4). Higher values of the Pearson 

correlation coefficients for daily values of θ exhibited when using the VSI method lend 
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support to the new algorithm. Viewing Fig. 4, the range of values for the Pearson correlation 

coefficient for the VSI method with the K-means BMUs as sampling locations is ~0 to 0.65 

and -0.1 to 0.5 with the SOM BMUs as sampling locations. For the traditional IDW, the 

Pearson correlation coefficient ranges from ~ -0.3 to 0.35 with the K-means BMUs as 

sampling locations, and ~-0.35 to 0.35 with the SOM BMUs as sampling locations.  

Overall, the majority of correlation coefficients for the VSI method are higher than 

the correlation coefficients for the traditional IDW method. Only 12 of the 65 values of the 

correlation coefficients for the traditional IDW using the SOM BMUs as sampling points are 

above zero. Using the sampling points identified by the K-means algorithm, a negative 

correlation between the Pearson coefficients for the VSI method and the Pearson coefficients 

for the traditional IDW can be observed. The lowest values for the correlation coefficient 

using the VSI method correspond to the highest values of the Pearson correlation coefficient 

for the traditional IDW. Because of the spatial nature of the traditional IDW, this result may 

imply that when the field exhibits homogeneous θ values over the sampling grid, a traditional 

IDW will estimate values more accurately than the VSI method. After a rain or during 

drought periods when little variation in θ is seen over the landscape, the controlling factors of 

θ will have a smaller impact on the spatial θ patterns. Instead, any random samples from the 

field will be sufficient in estimating the θ on that measurement day because of the 

homogeneous conditions. Because the estimations of the VSI model rely on topographic 

features and EMI data for interpolation of θ values, the accuracy of the estimations will 

decrease when the points with different physical characteristics exhibit the same θ values. 

Identifying the days when the VSI method was outperformed by the traditional IDW method 
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and then finding factors that may have had an influence on θ values will be beneficial in 

understanding the patterns exhibited. 

 

Conclusion 

A method for interpolating θ values at the sub-field scale based upon topographic and 

EMI data is presented and compared to traditional, geospatial interpolation methods. This 

method has no reliance on spatial relationships of the sampling points to unknown points and 

does not require a dense network of sensors to monitor θ at multiple locations. When applied 

to three different θ data sets the following conclusions can be made: 

 

1. The new method requires no spatial relationship information between the known 

sampling point values and the unknown values. This spatial independence allows 

points with similar soil types and topographic characteristics that are not spatially 

near one another to be assigned similar θ values.  

2. Accuracy for estimation of the model improves as depth is increased. This is 

likely due to the decreased variability in θ as depth increases. 

3. The estimation of θ values from the newly proposed method is different 

depending on the site and its characteristics. At some sites, the model consistently 

underestimates or overestimates the actual θ value. Two sites that were 

underestimated had the first and second highest clay content of all the sampling 

sites. Finding a link between the factors impacting how the model estimates θ at 

each site could lead to a calibration for the model depending on those factors. 
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4. Although the accuracy of both methods is difficult to validate at the scale that can 

be estimated given topographic characteristics and spatial relationships, the 

proposed method outperforms the traditional inverse distance weighting 

algorithm. The accuracy of the new method in comparison to the traditional 

techniques will likely improve with increased density of known samples within 

the landscape for validation.  

5. The need for only a few points to accurately find the field-scale average θ 

presented in chapter 2 is supported by this study. The average of the points 

identified for sampling can be used to estimate the field-scale θ value for a given 

measurement day.   

 

Overall, the goal of decreasing the amount of sensors needed for accurately 

estimating θ values at the field scale is supported by this new method. A onetime gathering of 

elevation and EMI data can be used to identify points for sampling and then that same data 

can be used for interpolation of θ values using the VSI method. This independence from 

dense sensor networks saves time in the field and money required to buy, install, and 

maintain the networks. Given θ data from a small number of points within the field, the new 

method has potential to be valuable in crop and hydrology modeling, in remote sensing 

validation, and in weather prediction that is dependent on θ values at the sub-field scale.         
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Tables and Figures  

Table 1. NSCE, RMSE for Vector Space Interpolation method 

 

Sensor: Depth (cm) Total Points Points used 

for Prediction 

Measurement 

days 

Nash-

Sutcliffe 

RMSE 

Neutron Probe: 0-10 16 15 7 0.27 0.05 

Neutron Probe: 10-20 16 15 7 0.28 0.05 

CS616: 4.5 9 8 57 0.38 0.06 

CS616: 15 9 8 57 0.51 0.05 

TDR Kmeans: 0-5 35 3 65 0.73 0.03 

TDR SOM: 0-5 35 3 65 0.76 0.03 

 

Table 2. NSCE, RMSE for Traditional IDW 

 

Sensor: Depth (cm) Nash-Sutcliffe RMSE 

Neutron Probe: 0-10 0.12 0.05 

Neutron Probe: 10-20 0.11 0.05 

CS616: 4.5 0.22 0.07 

CS616: 15 0.44 0.05 

TDR Kmeans: 0-5 0.68 0.04 

TDR SOM: 0-5 0.62 0.04 

 

Table 3. Sampling site %sand, %clay, %silt 

 

Site Elevation (m) % Sand % Silt % Clay 

701 313.01 33.5 34.3 32.2 

702 312.24 27.5 37.9 34.7 

703 310.22 38.4 32.5 29.2 

704 311.01 39.6 30.3 30.1 

705 311.56 31.7 32.1 36.2 

706 314.34 45.7 28.4 25.9 

707 312.69 59.4 20.6 20.0 

708 315.88 52.8 22.3 25.0 

709 315.49 36.0 34.7 29.2 

710 312.62 40.1 28.2 31.7 

711 312.34 36.0 33.2 30.7 

712 311.1 24.5 39.6 35.9 

713 312.07 47.4 24.9 27.7 

714 311.33 12.6 46.9 40.5 

715 310.19 32.6 36.0 31.3 
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Figure 1. Vector space interpolation of θ values for one measurement day given θ values for that day from the 3 

critical sampling points identified by the K-means clustering algorithm in chapter 2. Soil moisture values at 10 

meter grid points are found using the VSI method and then linearly interpolated between 10 m grid points to 

create this map. Sampling locations of different sensors are given. Black circles correspond to the 35 point 

sampling grid from data set 3.  
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Figure 2. Actual vs. estimated θ value for different locations and depths of 9 CS616 sampling points at 4.5 cm 

and 15 cm depth 
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Figure 3. Traditional inverse distance weighting of θ values for one measurement day given θ values on that 

day from the 3 critical sampling points identified by the K-means clustering algorithm in chapter 2. Soil 

moisture values at 10 meter grid points are found using the traditional inverse distance weigthing algorithm and 

then linearly interpolated between the 10 m grid points to create this map. Sampling locations of different 

sensors are given. Black circles correspond to the 35 point sampling grid from data set 3. 
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Figure 4. Pearson correlation coefficient values for vector space interpolation vs. Pearson correlation 

coefficient for traditional inverse distance weighting interpolation. Predictions using the sampling points 

identified by the K-means clustering algorithm and the SOM combined with the K-means clustering algorithm 

are used in finding the Pearson coefficient and separated in the figure.  
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CHAPTER 4: GENERAL CONCLUSIONS 

Conclusion 

The goal of this research was to develop methods to efficiently and accurately 

estimate θ values at the field scale. Given the topographic and EMI data of the landscape 

where θ estimations are desired, a K-means clustering algorithm can be used to find optimal 

sampling locations. Whereas the rank stability analysis method requires temporal θ data from 

a dense grid of sensors to identify optimal sampling locations, the clustering algorithm only 

requires topographic and EMI data that can be obtained in one pass to identify sampling 

locations. A dense set of points with topographic and EMI indices within the landscape can 

then be divided into different clusters or families that will exhibit similar θ patterns. Finding 

these optimal sampling locations eliminates the need for dense sampling networks by 

allowing a small number of sampling points to find the same field-scale average as an entire 

sensor network. This data will be valuable for validation of remote sensing devices, as inputs 

in crop and hydrology models, and in weather prediction.  

The importance of finding sampling points that adequately describe a cluster of points 

throughout the field is highlighted in this research. Using the K-means clustering algorithm, 

three different clusters were formed. The points with the topographic and EMI values that 

best matched the average of all other points in that cluster are chosen as critical sampling 

points in the landscape. Identifying three different points for sampling with this method 

helped realize the heterogeneity in θ that exists within a field. The complexity of spatial and 

temporal cannot be discovered if points with homogeneous landscape and soil types are used 

for sampling. 
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A second objective of this research was to develop a method to accurately estimate θ 

values at the sub-field scale given θ data from a small number of monitoring locations. A 

method was developed that depends on the topographic and EMI data for θ monitoring 

locations and the unknown points within the field to be interpolated. Because the method 

relied heavily on the topographic characteristics, the θ values were closely related to the 

topography of the field where the unknown values were interpolated. The scale at which the 

values of θ were interpolated is a higher resolution than the available θ monitoring grids, 

making validation of the method difficult. When divided into daily estimation of θ, the newly 

proposed vector space interpolation outperforms the traditional IDW method. The high 

variability in θ patterns currently requires dense sensor networks to adequately describe the 

differing θ values in the landscape. Linking θ values with the topography of the landscape 

leads to an independence from spatial relationships between known points for interpolation. 

This avoidance of spatial relationships allows differing topographic characteristics where 

changes in θ often occur to be the driving factor behind the interpolated value. 

 

Prospects for future research 

Although mentioned in the literature review, the mean moisture content was not used 

in the estimation methods in this research. The high values of the Pearson correlation 

coefficient for the traditional IDW interpolation corresponding with low values of the 

Pearson correlation coefficient for the VSI method promote the incorporation of mean 

moisture content into interpolation algorithms. Identifying the days when the Pearson 

correlation coefficient was low for the VSI method and finding a similarity between those 

days would be valuable in further understanding how mean soil moisture impacts field scale 
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θ values. Depending on the wetness conditions of the field of study, the estimation algorithm 

could adapt to the conditions. Spatial variability of θ values over the landscape resulting from 

a soaking rain or drought conditions will likely decrease making the use of topographic and 

soils data unnecessary. Similarly, different topographic characteristics or soils data may have 

a larger impact depending on the wetness conditions. Weights of different indices could be 

changed depending on the average θ values of the sampling locations. Future study on 

finding and incorporating this connection between the interpolation methods and wetness 

conditions is suggested. 

In developing the vector space interpolation method the Euclidean distance was used 

because of its familiarity and simplicity. A variety of different formulas can be used to find 

the distance between two points in any dimension. The accuracy of estimating θ values using 

different distance formulas has the potential to increase. Maximizing the accuracy of these 

methods with different distance formulas is encouraged in future work. 

Also installed at the IVS is a COSMOS probe that is used to remotely measure θ 

values with a footprint size of approximately 700 meters. A weighting function depending on 

the distance of interpolated points from the COSMOS sensor could be used to find an 

estimated COSMOS reading value from points interpolated using the vector space method. 

Similarly, a field scale soil moisture value could be estimated using the methods to find 

critical sampling points and a weighted average as used in the chapter 1. Given θ values at 

corresponding times from the COSMOS sensor and the installed θ sampling sites would 

allow for the validation of each method.  

Values of elevation, curvature, slope, slope aspect, horizontal EMI, and perpendicular 

EMI were used in each application because the data was readily available. The topographic 
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indices can be quickly derived given the elevation data of the landscape. EMI requires 

another in field data gathering technique, but can be measured in one pass. Finding the 

indices that have the biggest impact on the estimation of θ values and eliminating the indices 

with little or no impact would save time and computing power in estimating θ values. Being 

able to estimate θ given only topographic information would be valuable in scenarios where 

measuring EMI data is not feasible (e.g. forested areas) Finding which indices have the 

biggest impact on the spatiotemporal θ estimation and making the model more efficient in 

terms of data required is another suggested path for future work. 

It is important to remember that these methods were developed on fields where the 

elevation values varied by less than 10 meters. Using these models to estimate θ values when 

the topography is more variable is another suggested area of research. Sharper topographic 

features will likely have a more obvious impact on the estimating capability of the model. 

Specifically, the slope aspect will likely have a more pronounced impact on θ values when 

steeper slopes are present because of changes in potential evaporation. Outside the Des 

Moines lobe, topographic features are more variable and different cropping and hydraulic 

management strategies are used. Monitoring and testing these newly proposed methods in 

settings with different topographic features would further increase understanding of spatio-

temporal θ patterns.  

Further testing the accuracy of the vector space interpolation is another suggested 

area of research. Moran’s I test was used on one day to find the patterns of error in estimation 

for the 32 points in data set 3. From this test it can be determined that the errors in estimation 

for the vector space interpolation method are randomly distributed throughout the field. 

Using the traditional IDW method the error values are closely clustered which is likely due to 
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the dependence of the method on the spatial relationship between sampling locations and 

points to be estimated. Appendix II gives an example hypothesis test with Moran’s I method.  

Future work could also be completed to determine at which scale three points can be 

used to interpolate θ values. Could the three points identified at the 150 acre IVS be used to 

estimate θ in the remaining 490 acres of the section in which it lays? For the eight 

surrounding sections? At a certain scale the differences in precipitation values will have a 

large impact on the variability of spatial θ patterns. Going even further, accurate precipitation 

data combined with optimal θ sampling points could be used to estimate θ values at large 

scales. Depending on precipitation an energy balance equation could be developed and used 

in θ estimation. The differing precipitation value would be just one more index that could be 

input in the θ estimation model. Finding the pixel size at which a small number of sampling 

sites could be used to interpolate values would be valuable in bridging the gap between θ 

sensing techniques and in models dependent on θ values.  
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APPENDIX I: MATLAB CODE 

%Vector Space Inverse Distance Weighting 
 

%% Load Been physical data 
load('kentel elevation out.dat'); 
load('kentel EM hcon out.dat'); 
load('kentel EM pcon out.dat'); 
load('kentel plan curvature out.dat'); 
load('kentel terrain aspect out.dat'); 
load('kentel terrain slope out.dat'); 

  
%% Create 10 meter spacing grid of Been field 
 

Been_Data_Grid = 

horzcat(kentel_elevation_out(:,3),kentel_EM_hcon_out(:,3)... 
    ,kentel_EM_pcon_out(:,3),kentel_plan_curvature_out(:,3),... 
    kentel_terrain_aspect_out(:,3),kentel_terrain_slope_out(:,3),... 
    kentel_terrain_slope_out(:,1),kentel_terrain_slope_out(:,2)); 

  
% eliminate field edges 
[r,c]=find(Been_Data_Grid > 1e+37); 
Been_Data_Grid(r(1:356),:)=[]; 

  
% cut out southwest corner 
[r1,c1]= find(Been_Data_Grid(:,7)<443030 & Been_Data_Grid(:,8)<4648000); 
Been_Data_Grid(r1(:,:),:)=[];  

  
%%% Been_Data_Grid (the topo and EMI data for 10m points) is saved as a 

.txt file (BeenPhysData 6.txt) so that it could be read in with 
som_read_data and the normalize and pdist2 functions are be used. sD.data 
and sP.data are used in calculating the distance in the vector space 

  
%% load in Been physical data in 10 meter spacing 
sD = som_read_data('BeenPhysData 6.txt',6); 
%%% can change sD.data before making the SOM to change the parameters 
%%% analyzed (elevation, EMI, etc) 

  
% Normalize data but keep structure 
sD = som_normalize(sD, 'var');  

  
%% to find physical data values at sampling stations, this function finds 

the value of the topo and EMI indices at the K-means BMUs UTM coordinates. 

Been_35_SMGrid is a 35X2 matrix with easting and northing as columns 

Kmeans_3BMUs = 

vertcat(Been_35_SMGrid(16,:),Been_35_SMGrid(33,:),Been_35_SMGrid(3,:)); 
sp = Kmeans_3BMUs; 
 

FElev = 

TriScatteredInterp(Been_Data_Grid(:,7),Been_Data_Grid(:,8),Been_Data_Grid(

:,1),'nearest'); 
spElev = FElev(sp(:,2),sp(:,3)); 
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FHEMI = 

TriScatteredInterp(Been_Data_Grid(:,7),Been_Data_Grid(:,8),Been_Data_Grid(

:,2),'nearest'); 
spHEMI = FHEMI(sp(:,2),sp(:,3)); 

  
FPEMI = 

TriScatteredInterp(Been_Data_Grid(:,7),Been_Data_Grid(:,8),Been_Data_Grid(

:,3),'nearest'); 
spPEMI = FPEMI(sp(:,2),sp(:,3)); 

  
FCurv = 

TriScatteredInterp(Been_Data_Grid(:,7),Been_Data_Grid(:,8),Been_Data_Grid(

:,4),'nearest'); 
spCurv = FCurv(sp(:,2),sp(:,3)); 

  
FAspect = 

TriScatteredInterp(Been_Data_Grid(:,7),Been_Data_Grid(:,8),Been_Data_Grid(

:,5),'nearest'); 
spAspect = FAspect(sp(:,2),sp(:,3)); 

  
FSlope = 

TriScatteredInterp(Been_Data_Grid(:,7),Been_Data_Grid(:,8),Been_Data_Grid(

:,6),'nearest'); 
spSlope = FSlope(sp(:,2),sp(:,3)); 

  
sp_Data = horzcat(spElev,spHEMI,spPEMI,spCurv,spAspect,spSlope); 

  
sP = som_data_struct(sp_Data); % create structure to use som_normalize 
sP = som_normalize(sP, 'var'); 

  
%% Euclidean distance b/t 10m spacing points and Sampling Stations 
dist = pdist2(sD.data,sP.data); % sD and sP structures not really 
% needed, but used for convenience of using som_normalize function. The 

.data appendix refers to the topo and EMI values at each point. sD.data is 

7050 X 6 and sP.data is 3 X 6. dist is then 7050 X 3.  

  
%% Soil Moisture Interpolation for one measurement 
day = 24; %day can be chosen but must be >=3 because the first two columns 

are easting and northing 

 
surfaceSM = vertcat(Been_35_SM(5,:),Been_35_SM(33,:),Been_35_SM(23,:));  % 

3X65 daily theta values of Kmeans BMUs 
power = 1; % can change depending on IDW function 

 
[r,c]=size(surfaceSM); 
PointSM = []; 

  
for k = 1:length(dist); 
     SM = sum(((1./dist(k,1:r).^power).*surfaceSM(1:r,day)')/ 

sum(1./dist(k,1:r).^power));  

%%% inverse distance weighting to find theta at all points 
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PointSM = vertcat(PointSM,SM);  

%%% fill matrix with theta at each 10m point values 
end 

  

 

  
 

%% To find theta values for all 7050 points for all measurement days 
surfaceSM = vertcat(Been_35_SM(5,:),Been_35_SM(33,:),Been_35_SM(23,:)); 
[r,c]=size(surfaceSM); 
PointSM2 =[];  %%% create empty matrix for 10m theta values  
for day = 3:c; 
    PointSM = []; 
        for k = 1:length(dist); 
            SM = sum(((1./dist(k,1:r).^power).*surfaceSM(1:r,day)')/ 

sum(1./dist(k,1:r).^power));  

%%% inverse distance weighting to find theta at all points 
            PointSM = vertcat(PointSM,SM); %%% fill matrix with theta 

values 
        end 
    PointSM2 = horzcat(PointSM2,PointSM); 
end 

  
ForSurferPlot = horzcat(Been_Data_Grid(:,7),Been_Data_Grid(:,8),PointSM2); 

%%% ForSurferPlot is a 7050 by 67 matrix, easting and northing in the 

first two columns and then 65 days of predicted θ values for all 10 meter 

grid points 

 

 

Reference 
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APPENDIX II: MORAN’S I TEST 

Evaluation of spatial distribution of the errors 

 

• Graphical spatial distribution of the prediction errors 

 

Below is the spatial distribution of the prediction errors obtained for each method from June 25 2007 

after interpolation given values θ values at the K-means BMUs 

 

Vector Space Interpolation Traditional IDW 

  

Small errors are spread over the whole area 
Small errors are concentrated in the bottom part 

of the area 

 

Interpretation:  

a. Big circles: high error values 

b. Small circles: small error values 

 

• Statistical test for the spatial distribution of the prediction errors: Moran’s I test for 

autocorrelation 

 

Hypotheses 

 

• H0: there is no autocorrelation of prediction errors, that is, the prediction error values are 

randomly distributed in the whole area 

• HA: the autocorrelation is not equal to zero. 

 

a. Vector space interpolation  prediction errors 
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Conclusion: the p-value (0.19) for the z-score indicates that the autocorrelation of the prediction 

errors is zero, that is, they are randomly distributed over the whole area. 

 

b. IDW prediction errors 

 

 
 

Conclusion: the p-value (0.05) smaller than the significance level indicates that z-score for the spatial  

autocorrelation index is significant, that is, the autocorrelation is not equal to zero. This results 

implies that the prediction errors are not randomly distributed in the whole area. 

 

Completed with assistance from Dr. Nerilson Terra Santos  
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