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CHAPTER 1 

GENERAL INTRODUCTION 

 

Introduction 

Manure generated in modern pork production facilities is typically land-applied 

as a fertilizer for crop production. The consolidation of animal production in recent 

years has created localized concentrations of nutrients such as nitrogen, 

phosphorus, and potassium (Zhu et al., 2001). When applying manure slurries at 

levels to only meet the crop requirements for nitrogen, phosphorus can be over-

applied leading to accumulation of phosphorus. The over-application of phosphorus 

fertilizers, manure or commercial, on agricultural fields has been recognized as a 

surface water quality threat in Europe and the United States (Greaves et al., 1999).  

Water quality and land management concerns have resulted in new 

requirements for the land application of manure slurries. These requirements 

frequently appear as regulations to limit the application of manure slurries based on 

crop macronutrient needs, such as nitrogen or phosphorus (Shober and Simms, 

2003). In many cases, the maximum allowable slurry application rate is limited by 

the phosphorus content of the slurry. Phosphorus based manure application rates 

can require up to eight times the land needed for nitrogen based application rates 

(Burns et al., 1998). In addition to larger land requirements needed for phosphorus 

based applications rates, application of supplemental nitrogen may be needed for 

optimal crop production. 
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To alleviate the local concentration of nutrients, comply with nutrient 

application regulations, and reduce the risk of over-applying phosphorus to 

agricultural fields, a treatment system capable of economically removing phosphorus 

prior to land application is needed.  

Objectives 

The objective of this research was to address the application of dedicated 

struvite reactors for full-scale pork production operations by: 

1) Investigating a method that quickly identifies maximum struvite precipitation, 

accounting for real-time variations of magnesium demand within the manure slurries. 

2) Developing and testing a short-retention-time pilot-scale reactor that: 

a) Effectively and reliably reduces DRP in a variety of swine manure slurries 

b) Provides separation and recovery of precipitated struvite for TP reduction 

c) Can be effectively applied to modern pork production systems across a 

variety of manure management systems 
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Thesis Organization 

The research presented in this thesis is comprised of three papers, each 

corresponding to specific research objectives. The first paper entitled “Investigation 

of a Magnesium Injection System to Determine Amendment Requirements for 

Phosphate Precipitation” will be submitted to Applied Engineering in Agriculture. The 

second paper entitled “Development of a Bench-Scale Air Sparged Continuous Flow 

Reactor for Struvite Precipitation from Two Different Liquid Swine Manure Storage 

Systems” has been submitted to Biosystems Engineering. The third paper entitled 

“Performance of a Pilot-Scale Air Sparged Continuous Flow Reactor and 

Hydrocyclone for Struvite Precipitation and Removal from Liquid Swine Manure” will 

be submitted to the Transactions of the ASABE. 

Literature Review 

Contemporary wastewater treatment systems commonly use metal and 

polymer precipitation or flocculation to remove phosphorus, creating an unusable 

phosphorus side stream which is discarded landfilled (de-Bashan and Bashan, 

2004).  Ideally, a treatment system would provide phosphorus removal while 

simultaneously producing a reusable phosphorus byproduct. Evaluation of 

phosphorus removal technologies should identify traditional measures such as 

capitol and operational costs, degree of treatment, efficiency, and feasibility of 

application, but should also value sustainability and utilization of phosphorus 

byproducts.  
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Emerging phosphorus removal technologies which create a usable 

phosphorus byproduct vary widely and incorporate biological, chemical, and physical 

methods. Examples of biological methods for phosphorus removal include wetlands, 

enhanced biological phosphorus removal (EBPR), and microalgae suspensions. 

Biological treatment can provide significant phosphorus reductions; however, they 

generally operate at low efficiencies (Battistoni et al., 2002). Incorporating a 

biological phosphorus removal technology on-farm may require long treatment times 

to overcome low efficiencies, necessitating large reactors and increasing the 

associated capital costs. Furthermore, most biological treatment processes are 

sensitive to, concentrated, high-strength wastes and fail if overloaded. Manure 

slurries are generally considered to be of high-strength and require dilution or pre-

treatment to avoid overloading a biological phosphorus removal system. 

Forced precipitation of dissolved reactive phosphorus (DRP) as struvite is a 

chemical phosphorus removal technology. Precipitation of struvite can significantly 

reduce the amount of DRP in manure slurries, while simultaneously allowing for the 

concentration of phosphorus for recovery and future use (Bowers and Westerman, 

2005a; Burns et al., 2001; Munch and Barr, 2001; Ohlinger et al., 2000). In 

laboratory and field tests, forced struvite precipitation has been shown to remove 

90% or more of the DRP from swine manure slurry (Burns et al., 2001).  

If a sufficient fraction of total phosphorus (TP) is available as DRP, struvite 

precipitation can provide significant reductions of TP in swine manure slurries. 

Controlling the amount of phosphorus removed during treatment can allow 

adjustment of nitrogen to phosphorus ratios, providing the potential to balance N and 
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P to match crop requirements. Additionally, recovered struvite can be used as a 

slow-release commercial or agricultural fertilizer, offering potential as an added 

value byproduct (de-Bashan and Bashan, 2004).  

Currently, there are several treatment systems that apply struvite precipitation 

techniques for phosphorus removal in municipal and industrial wastewaters (Munch 

and Barr, 2001; Ohlinger et al., 2000). Full-scale struvite reactors have been 

incorporated into municipal and industrial wastewater treatment systems in Japan 

and Europe, but their implementation is not a common practice in livestock 

production facilities (Burns et al., 2003). Dedicated struvite reactors and treatment 

methods have been developed at bench and pilot-scale for agricultural wastewater 

treatment, generally focusing on batch reactions and continuous flow fluidized bed 

processes at low flow rates (Burns et al., 2001; Bowers and Westerman, 2005b). 

However, current research has not sufficiently addressed the application of 

dedicated struvite reactors for full-scale pork production operations. 

Principles of Struvite Precipitation 

Struvite is a crystalline precipitate technically described as magnesium 

ammonium phosphate hexahydrate (MgNH4PO4*6H2O). To form struvite 

magnesium, ammonium, and phosphate ions must be available in sufficient 

concentration to provide an adequate precipitation potential. In a pure solution, a 

1:1:1 (Mg2+: NH4
+:PO4

3-) molar ratio can form struvite; if any one constituent is not 

available, struvite will not form. Optimization of struvite precipitation is also 

influenced by pH and reaction time.  
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Struvite Formation 

The rate of struvite formation depends upon the conditional solubility product 

(Ksp) of struvite which is directly proportional to the product of Mg2+, NH4
+, and PO4

3- 

ions in solution. The precipitation potential of struvite is highly dependant on Ksp and 

solution pH; as pH increases, the dissolution/precipitation equilibrium curve for 

struvite decreases allowing a greater degree of struvite precipitation to occur 

(Ohlinger et al., 2000). 

Struvite precipitation can occur via two distinct pathways: crystal growth and 

nucleation. Studies by Ohlinger et al. (2000) and Nelson et al. (2003) identified that 

struvite kinetics of crystal growth followed first order kinetics with rate constants 

ranging from 4.2 to 12.3 h-1, depending on the solution pH. Turker and Celen (2007) 

reported that the struvite nucleation followed second order kinetics. Nucleation has a 

significantly faster kinetic rate than crystal growth, indicating that implementation of a 

struvite precipitation reactor promoting nucleation can reduce hydraulic retention 

required in comparison to reactors utilizing crystal growth.  

Hydraulic Retention Time 

A hydraulic retention time (HRT) of 10 minutes has been shown to be more 

than sufficient to form struvite in swine manures (Burns et al., 2003). Furthermore, 

experiments by Burns et al. (2003) have shown that a 40-minute HRT removes only 

4% more DRP when compared to a 10-minute HRT. Hydraulic retention time 

determination is economically relevant to reactor design and sizing, shorter HRT’s 

allow for a minimum tank size while maintaining relatively equal phosphorus removal 
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rates. Additionally, increasing the reaction time increases the possibility of 

magnesium and phosphorus complexation, creating unwanted precipitants such as 

brushite, monetite, and dolomite (Celen et al., 2007). 

pH Adjustment 

Struvite precipitation is significantly influenced by the solution pH. Struvite 

formation increases with pH until it reaches its maximum precipitation point near a 

pH level of 9.0 (Buchanan et al., 1992). Consideration of chemical and energy costs 

should be accounted for when determining the level of pH adjustment. The system 

should provide economically feasible treatment while maintaining appropriate 

phosphorus removal rates. Furthermore, increasing pH also increases volatilization 

of ammonia, and excessive pH increases should be avoided. Two methods to 

increase pH in swine manures are chemical amendment with a caustic material such 

as sodium hydroxide, or carbon dioxide (CO2) removal via mechanical aeration 

utilizing either air sparging or agitation.   

Caustic amendment provides a rapid pH increase with low energy costs; 

however, treating manure slurries on farm would require a large amount of caustic 

material.  Material cost and on-farm storage of a caustic make this method of 

increasing pH prohibitive. 

Air sparging and agitation offer an alternative to caustic amendment for pH 

adjustment.  Mechanical aeration methods increase pH through CO2 stripping and 

subsequent reduction of carbonic acid levels in the manure. Manure slurries with 

high alkalinity levels reduce the efficiency of aeration for pH adjustment. Power 

consumption and required time to achieve the desired pH adjustment may limit the 
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application of aeration in continuous flow struvite reactors. Ohlinger et al. (2000) 

used a two-stage pH adjustment tank prior to a struvite reactor; air sparging was 

implemented for primary pH adjustment and sodium hydroxide provided 

supplemental adjustment when aeration was not capable of maintaining the desired 

pH. 

Agitation is often necessary to mix the layers within an on-farm liquid storage 

system to provide uniform nutrient loading during field application.  Agitation could 

be utilized and monitored to increase the slurry to acceptable pH levels prior to entry 

into the struvite reactor, reducing system cost. Research on low-level aeration (1 

L/min) of manure slurries indicated that the pH of manure can be raised 

approximately one unit in one day (Zhu et al., 2001).  

Determination of Magnesium Requirements 

In typical manure slurries, Mg2+ is the limiting ion for optimized struvite 

formation; this requires the addition of magnesium to maximize DRP removal. In a 

pure solution, a 1:1:1 (Mg2+: NH4
+:PO4

3-) molar ratio will form struvite. However, in 

heterogeneous organic solutions such as manures, magnesium can form complexes 

with other ions in solution, reducing magnesium’s net contribution to the Ksp of 

struvite. To overcome competing reactions and achieve the desired DRP removal 

rates, magnesium may be required at levels higher than the stoichiometric 

requirement (Burns et al., 2003).  

Determining appropriate injection rates of magnesium is paramount in the 

optimized precipitation of struvite. Different manures will require different amounts of 
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magnesium injection and pH amendment, therefore a method of determining or 

predicting the magnesium demand for the desired struvite formation is essential for 

manure treatment applications. Several approaches for struvite precipitation in 

manure slurries have been developed and utilize varying methods to determine the 

required chemical amendment. A feasible farm-scale system should be capable of 

determining the amendment rates for variable conditions in real-time with robust 

equipment while maintaining low initial investment. 

Bowers and Westerman (2005a) suggest injection rates for ammonia and 

magnesium based on laboratory analysis of the initial phosphorus, nitrogen, and 

magnesium amounts of typical manure slurry. Bowers and Westerman (2005a) also 

indicated that in some cases phosphorus removal exceeded theoretical predictions 

based on the initial slurry conditions. Using a single lab analysis does not account for 

changes in manure characteristics that are likely to occur during a land application 

event lasting several hours. Amendment additions based only on initial laboratory 

tests may cause excess chemical cost or decreased struvite precipitation under 

variable conditions. 

An optimization study of struvite precipitation in swine manure conducted by 

Burns et al. (2003) determined that a molar ratio of Mg2+:PO4
3- of 1.6:1 was the most 

effective amendment amount for various swine manures. This molar ratio accounts 

for magnesium complexing, however, it was derived from a limited number of swine 

manures with specific manure management practices, and may not be applicable to 

other swine operations or animal species. Furthermore, experiments were 

conducted in batch reactions and the molar ratio was determined from initial 
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conditions of the manure slurry. The excess ratio of Mg2+ allows for competing 

reactions, but does not account for changes in the manure slurry during continuous 

flow operation. 

Ohlinger et al., (2000) investigated struvite removal in municipal wastewater 

treatment and calculated the amendment needs for a continuous flow reactor based 

on kinetic rate constants determined in batch experiments. Munch and Barr (2001) 

tested a pilot system based on the Phosnix process developed by Unitika Ltd. The 

Phosnix process sets magnesium injection to provide a Mg:P ratio of 1.3:1. 

Municipal waste is generally less variable than manures from various livestock 

operations, allowing steady-state assumptions to be more realistic. During land 

application, pump-out disrupts settled solids and changes nutrient concentrations 

within the manure slurry. Manure slurries may violate assumptions steady-state 

conditions and constant reaction rates.  

Utilization of automated analysis equipment such as atomic absorption 

instruments for magnesium and colorimetric instruments for phosphorus would allow 

a user to update the slurry conditions as the treatment proceeds. Implementing 

automated analysis systems such as these on a farm-scale system is likely not 

economically feasible at present due to the relatively high equipment cost. 

Furthermore, due to high solids content and the corrosive nature of manure slurries, 

the robustness of automated analysis systems may be an issue. 

Modeling struvite formation is also possible by utilizing Visual MINTEQ. Visual 

MINTEQ models chemical equilibrium by utilizing a defined thermodynamic 

database. Ali et al., (2003) evaluated struvite precipitation potential with Visual 
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MINTEQAE version 4.0, simulating batch reactions to create a large database of 

struvite precipitation potentials for application to struvite reactors. The MINTEQ 

program allows the user to identify complexing reactions with magnesium and 

phosphate ions. Accurate predictions of the complexing reactions require the user to 

define a large array of ions present in the manure slurry, including but not limited to 

Mg2+, PO4
3-, NH4

+, Ca2+, K+, and alkalinity (Celen et al., 2007). The use of MINTEQ 

modeling to determine reaction characteristics is based on initial conditions and does 

not account for changes in manure slurry that may occur during a land application 

event. Application of MINTEQ modeling to determine real-time magnesium demand 

would require the continuous monitoring of interacting ion concentrations, which may 

not be technically or economically feasible at the present time. 

Magnesium Sources 

Several chemicals can be utilized for phosphate removal in wastewaters. The 

most common include lime, ferric metals, magnesium hydroxide (Mg(OH)2), 

magnesium oxide (MgO), and magnesium chloride (MgCl2). Adding lime or ferric 

metals does not precipitate struvite; however they do complex with phosphate to 

from precipitants. Magnesium hydroxide, MgO, and MgCl2 are all viable magnesium 

sources to force struvite formation.  

Magnesium hydroxide and MgO have low solubility characteristics and would 

require a water slaking system similar to lime softening systems for effective 

implementation. Without dissolving in a water slacking system prior to amendment, 

the reaction times required for struvite precipitation would be significantly increased 
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due to the low solubility of Mg(OH)2 and MgO, 0.0012 g/100g H20 and 0.00062 g/ 

100g H20, respectively. Slaking systems are difficult to operate with consistency and 

can create issues with amendment accuracy. Miles and Ellis (2001) utilized Mg(OH)2 

and MgO to force precipitation; however, the low solubility and precipitation potential 

of Mg(OH)2 prior to amendment reduced amendment accuracy. Magnesium 

hydroxide and MgO both increase solution pH, reducing the pH adjustment 

requirement for optimized struvite precipitation.  

Magnesium chloride has a high solubility, 54.2 g/100g H20, which makes it 

easier to handle and reduces the required reaction time in comparison to Mg(OH)2 

and MgO (Burns et al., 2001). However, MgCl2 is acidic and does not provide the 

added benefit of increasing the pH of the manure slurry, requiring greater pH 

adjustment to optimize struvite precipitation. For agricultural applications, the use of 

MgCl2 can reduce equipment cost and labor while increasing the accuracy of dosing 

when compared to the use of less soluble magnesium compounds. 

Application of Struvite Precipitation in Pork Production Facilities 

The most important design parameter of a struvite reactor is its ability to 

function at field-scale within existing pork production systems. Pork production 

facilities and their manure management systems vary significantly, requiring a 

flexible design. A flexible system requires an easily modifiable design that can 

accommodate differences between manure management strategies and manure 

characteristics from different liquid manure storage systems involving a variety of 

livestock species.  
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Point of treatment 

Determining the most appropriate, feasible, and cost effective implementation 

point for manure slurry treatment sets the design criteria for a viable struvite 

precipitation systems and phosphorus removal. For reaction and energy input 

efficiency, the optimal time for implementing a continuous flow struvite reactor is 

during the agitation of stored manure prior to, and in series with, land application 

events. Agitation provides a homogenous manure mixture and has the potential to 

increase manure slurry pH via CO2 stripping; reducing chemical and energy costs 

associated with pH adjustment. 

The most common manure slurry storage systems utilized in pork production 

include under floor deep-pit confinements, storage tanks, holding ponds, and 

anaerobic lagoons. A nutrient removal system could be designed to treat manure 

over an extended period at low flow rates. However, this strategy necessitates a 

post-treatment storage system, increasing capital expenditures. Implementing a 

treatment system in series with field application events requires higher treatment 

flow rates, but reduces the need for a post-treatment storage system. 

Deep-pit manure storage systems require specific management practices to 

minimize the concentration of hydrogen sulfide gas (H2S) inside the production 

facility. To avoid increasing the amount of H2S released from the stored manure 

slurry, agitation is avoided except during field application events. To minimize H2S 

risk in deep-pit storage facilities, the most feasible treatment scheme requires a 

system capable of treatment during land application events. 
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Manure slurry treatment systems that can perform at relatively high flow rates 

under variable environmental conditions are desirable for implementation within 

existing swine production systems. During land application events, manure slurry is 

typically applied at rates ranging from 2300 to 6800 L/min (~500 to 1500 gpm). This 

high volume application rate requires a treatment system with comparable flow 

rates, necessitating short retention times to avoid excessively large reactors.  

The majority of struvite research has focused on in-situ struvite precipitation 

or bench and pilot-scale reactors operating at low flow rates. Bowers and 

Westerman (2005b) tested a field-scale fluidized bed struvite reactor which treated 

manure slurries at 5.6 and 9.5 L/min (1.5 and 2.5 gpm). Munch and Barr (2001) 

tested a bench-scale fluidized bed reactor which treated waste water ranging from 

0.3 to 2 L/min. Modifications to achieve high flow rates required to make fluidized 

bed reactors applicable for use with large modern pork production operations may 

not be economically feasible. 

In-situ Struvite Precipitation 

Laboratory and field scale experiments by Burns et al. 2001 investigated the 

application of in-situ lagoon struvite precipitation for phosphorus removal from swine 

manure slurries. Utilizing in-situ lagoon struvite precipitation can provide significant 

phosphorus reductions prior to land application events. However, precipitated 

struvite settles to the bottom of the lagoon, and does not readily allow for the 

recovery of precipitated struvite. 
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Fluidized bed reactors 

Fluidized bed reactors are designed to provide optimal conditions of struvite 

precipitation onto bed particles via crystal growth. Bowers and Westerman (2005a) 

developed a cone-shaped fluidized bed reactor for treatment of swine wastewater. 

Their system utilized a fluidized bed containing struvite to promote the growth of 

struvite crystals within the reactor. Modeling and testing indicated that the conical 

reactor created plug-flow conditions for the liquid and provided a completely mixed 

fluidized bed. Complete mixing of the bed indicates that there is significant vertical 

mixing of bed particles creating a uniform distribution of particle sizes throughout the 

bed, as compared to a perfect classification of a fluidized bed which indicates that 

bed particles are stratified with respect to their size and density. Field tests provided 

removal rates of dissolved reactive phosphorus (DRP) ranging from 13% to 80%, 

and total phosphorus (TP) removal rates ranging from 0% to 80%. Under certain 

operating conditions, testing provided evidence of spontaneous nucleation and 

seeding. Spontaneous nucleation and seeding decreased the bed particle size and 

reduced phosphate removal performance due to struvite becoming entrained with 

the effluent and wash out of the reactor.  Bowers and Westerman (2005b) reduced 

the flow rate through the reactor to maintain struvite settling in order to ensure that 

struvite and bed washout did not occur.  

Munch and Barr (2001) modeled and tested a pilot-scale fluidized bed struvite 

reactor based on the Phosnix process developed by Unitika Ltd (Japan) (Brett et al. 

1997). Munch and Barr’s (2001) reactor utilized a struvite seed material to develop 

the fluidized bed and promote further precipitation upon the surface of the bed 
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material. They used a municipal wastewater with low TS conditions, achieving a 

DRP removal rate of 94%. Fine struvite crystals were found in the effluent of the 

reactor, accounting for lower than expected TP removal rates. If struvite precipitates 

via nucleation and not as crystal growth in a fluidized bed reactor, the upflow velocity 

within the system may be great enough to push small struvite particles out of the 

reactor, reducing the overall phosphorus removal performance.  

With the inconsistent nature of agricultural wastewaters, a rapid increase in 

TS of the influent manure has the potential to create a similar washout effect in 

fluidized bed reactors and thus, provide lower than expected phosphorus removal 

rates. Additionally, organic matter and other suspended particles could interfere with 

the struvite bed particles and reduce the precipitation potential of struvite onto the 

bed particles. Spontaneous nucleation of fine struvite particles in a fluidized bed 

reactor can become entrained in the effluent, reducing TP removal performance. 

Fluidized bed reactors are complex in design, fabrication, and operation. Bench and 

pilot-scale fluidized designs have provided significant phosphorus removal 

efficiencies (Bowers and Westerman 2005ab, Munch and Barr 2001). The adoption 

of full-scale fluidized bed reactors to on-farm systems may be limited because of 

their complexity; furthermore, modifications to achieve high flow rates required to 

make this type of system applicable for use with large modern pork production 

operations may not be economically feasible. 
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Continuous Flow Stirred Tank Reactor  

A continuous flow stirred tank reactor (CSTR) can provide a platform capable 

of creating optimal conditions and sufficient reaction times for struvite precipitation. 

Continuous flow stirred tank reactors inherently buffer shock loading (Benfield and 

Randall, 1987); thus, the phosphorus removal efficiency will be less susceptible to 

changes in the manure slurries, providing a robust system. Furthermore, CSTRs are 

relatively simple in design, and their sizing is well defined (AWWA, 1999). The 

simple design parameters also provide operational and maintenance benefits 

associated with startup and process changes that may not be available with fluidized 

bed reactors. However, CSTR’s do not provide a mechanism for struvite separation 

for the overall goal of TP reduction. 

Achieving TP reduction with a CSTR requires a downstream separation 

system for struvite-based phosphorus removal. Struvite has a specific gravity of 1.7, 

while liquid swine manure has a specific gravity near 1.0; this difference should 

permit gravity or centrifugal separation for the ultimate removal and recovery of 

precipitated phosphorus from the manure slurry. 

A post-treatment settling basin would allow precipitated struvite to be 

removed from the manure slurry. If large volumes of manure slurry are treated 

during a land application event, the size of a settling basin required may not be 

physically available or economically viable. Furthermore, a settling basin may not 

readily allow for the recovery of precipitated struvite. 

Up-flow clarifiers (UFCs) are commonly used in municipal wastewater 

treatment systems to separate solids from liquids in continuous flow systems 
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(AWWA, 1999). They are designed to reduce the up-flow velocity of the liquid to 

allow for the gravitational settling in a continuous flow process. Typically, UFCs are 

used to remove grit, suspended solids, and flocculated particles.  UFC’s are 

designed to remove material with a specific size and density. The high specific 

gravity struvite allows for a UFC to be designed to remove struvite particles of a 

certain size. The use of gravitational settling allows for UFCs to maintain low 

operating costs, while achieving continuous flow solids separation. Up-flow clarifiers, 

like fluidized bed reactors, may have reduced TP removal rates if small struvite 

particles are present. 

 Separation with a centrifuge or hydrocyclone provides an alternative, 

continuous-flow, method for struvite recovery. Centrifuges and hydrocyclones 

created centripetal acceleration which imparts a perpendicular force onto materials 

in a liquid or gas. The perpendicular force, commonly called gravities due to 

acceleration, allow for the separation of materials based on differences in density. 

Separation with centrifuges and hydrocyclones follows the principles of 

sedimentation; by increasing the gravitational force applied separation is enhanced. 

Continuous flow centrifuges are utilized in industrial process like ethanol production, 

however their implementation in on-farm systems is cost prohibitive under current 

conditions. 

Hydrocyclones have no moving parts and have considerably simpler designs 

than centrifuges. A hydrocyclone is designed to force fluid flow in a tangential path 

around a cylinder or cone, creating centripetal acceleration. They can select for 
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particles of the same density but different sizes; or in the case of fine particles, 

select for higher density particles. Larger and denser materials are forced to the 

outside wall where they collected at the bottom of the hydrocyclone, while less 

dense materials remain on the inside. A hydrocyclone has two effluent streams, the 

underflow consists of high specific gravity materials large enough to reach the wall 

and some entrained liquid, the overflow consists of the low density liquids and 

particles too small for separation.  

Hydrocyclones are most commonly used to separate particulate matter from 

air, gas from liquids, solids from liquids, or high density liquids from low density 

liquids. Hydrocyclone technology has also been implemented in dairy manure 

management systems for the removal of fine sand particles from manure slurries. 

The high gravitational forces generated within a hydrocyclone increase the removal 

potential of small struvite particles when compared to traditional settling basins and 

UFCs, and may provide a simple method to recover struvite and reduce TP. 
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  Abstract 

The goal of this project was to develop a system that identified magnesium 

demand for struvite formation by monitoring conductivity changes during continuous 

injection of magnesium chloride in several different manure slurries. The conductivity 

of six manure slurries was monitored to identify the response due to magnesium 

chloride injection and struvite precipitation. Struvite precipitation is a technically 

feasible treatment method for phosphorus removal and recovery from manure 

slurries (Bowers and Westerman, 2005a; Burns et al., 2000). Swine manure slurries 

typically require the addition of magnesium (Mg2+) to force struvite precipitation. The 

quantity of Mg2+ required for maximized phosphorus removal is generally determined 

through laboratory tests. Optimized struvite precipitation in a field setting would 

require a real-time method to determine Mg2+ addition rates for the duration of a land 

application event. This paper will discuss the requirements of a feasible automated 

control system which monitors and controls the injection of Mg2+ to force struvite 

precipitation, accounting for real-time variations of magnesium demand. Theoretical 

predictions and pure solution tests provided information capable of determining the 

magnesium demand for struvite precipitations. After testing six different manures in 
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triplicate, the conductivity responses did not follow theoretical predictions and failed 

to provide any indication of optimum magnesium injection rates for phosphorus 

removal.  

Keywords: Manure, Phosphorus, Struvite, Magnesium Chloride 

Introduction 

Struvite is a crystalline precipitate technically described as magnesium 

ammonia phosphate hexahydrate (MgNH4PO4*6H2O). To form struvite, magnesium, 

ammonia, and phosphate must be available in an ionic form to provide an adequate 

precipitation potential. Magnesium is the limiting ion in typical manure slurries, 

requiring the addition to force struvite formation. In a pure solution, a 1:1:1 (Mg2+: 

NH4
+:PO4

3-) molar ratio will form struvite. In complex organic solutions, such as 

manures, this ratio may not be adequate, requiring higher that stoichiometric 

magnesium additions to overcome complexing reactions (Burns et al., 2003). The 

objective of this project was to develop a method that quickly identifies maximum 

struvite precipitation in manure slurries, allowing for real-time determinations of 

magnesium demand.  

Determining appropriate injection rates of magnesium is paramount in the 

optimized precipitation of struvite. Variability within and across manure slurries 

require different amounts of magnesium injection and pH amendment. Furthermore, 

during land application events, pump-out disrupts settled solids and changes ion 

concentrations within the manure slurry. Current methods used to determine 

magnesium demand rely upon initial analysis of manure slurries and do not account 

for changes in a manure slurry that may occur during a land application event. A 
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feasible farm-scale system should be capable of determining the real-time 

magnesium amendment rates under variable conditions with robust equipment for a 

reasonable initial investment. 

The development of an automated feedback control system for magnesium 

amendment would allow a struvite reactor to account for variations within manure 

slurries and across different manure handling systems. A flow injection analysis 

(FIA) approach may provide information that allows for the determination of the 

struvite precipitation potential and degree of constituent ion availability for further 

struvite formation. Ion selective electrodes (ISE) are the workhorses of FIA systems 

and can be used in direct sensing of analyte ion activities or sensing the activities of 

reagent ions after reaction with analytes (Coetzee and Gardner 1986). Monitoring 

Mg2+, NH4
+, or PO4

3- ion activity with an ISE would allow for direct measurement of 

the struvite reaction. Speciation modeling with MINTEQ indicates that a magnesium 

ISE could be used to infer struvite supersaturating (Ali et al 2003).  

Magnesium ISE sensors can be found for applications in molten metal 

processing (Fergus, 2000) and for biological fluids such as blood (Zhang, 2006). 

However, no appropriate magnesium-specific ISEs are available for application in a 

manure system. Ammonia and ammonium ISEs are commercially available and 

have been thoroughly investigated. Problems with fouling and drift in manure 

solutions decrease the reliability of using ammonia ISE to monitor the struvite 

reaction in manure slurries(Winkler et al., 2004). Also, the solubility of ammonia and 

ammonium is dependant on solution pH. The ideal operating point for struvite 

precipitation is 8.5-9.0; at this point the concentration of ammonium is highly 
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sensitive to changes in solution pH. A change in solution pH will affect the ISE 

output, and may provide false information pertaining to the struvite reaction. 

Phosphate ISEs have been implemented to monitor soil macronutrients in real-time 

(Kim, 2006), however literature and product searches did not find a wastewater 

application of phosphate ISE’s.  

Theory 

Monitoring conductivity in a solution during struvite reaction could possibly 

provide information indicating reaction completion and magnesium demand. Specific 

conductance, K (S/cm), commonly used to determine the total dissolved solid 

content of a solution, is a direct measure of ions in solution. Conductivity varies with 

the type and number of ions in solution. As struvite precipitates out of solution, 

conductivity will change dependant upon the amendment procedure and reaction 

state. Specific conductivity, к, can be calculated from the following fundamental 

relationship show in Equation 2.1. 

 

Equation 2.1      
1000

N×Λ
=κ        

where:  N = Normality of the solution (eq L-1) 
   Λ = equivalent conductance of the solution (S m2 mol-1) 
 

Equivalent conductance of the solultion, Λ, is calculated by the summation of 

the equivalent ionic conductance of each species in solution, λo, Equation 2.2. Table 

2.1 provides a list of equivalent ionic conductance for species of interest in this 

system. 
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Equation 2.2    −+ +=Λ 000 λλ

 

 

Table 2.1. Equivalent Ionic Conductivities (Infinite Dilution at 25oC) 

Ion 
λo               

(10-4 S m2 mol-1) 
1/2 PO4

3- 69.0 
NH4

+ 73.5 
1/2 Mg2+ 53.0 

Cl- 76.3 
Na+ 50.1 
OH- 198 
H+ 349.6 

(CRC 1990) 
 

For a simple system, the addition of MgCl2 in distilled water will have the 

predicted conductivity shown in Equation 2.3. 

 

Equation 2.3   [ ] [ ] −−++ += ClMg ClMg 0
2

0
2 λλκ  

 

For a more complex system, where multiple species are present, this 

relationship shown in Equation 2.3 extends. As magnesium chloride is added to a 

solution with available phosphate and ammonium, struvite may precipitate. As 

struvite precipitates under these conditions the concentration of available ammonium 

and phosphate ions are reduced while chloride ions are added, creating a small net 

gain in specific conductivity. If magnesium chloride addition exceeds the molar ratio 

of ammonium or phosphate, no additional struvite precipitates, theoretically 

increasing the conductivity. Monitoring the rate of conductivity change during 
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magnesium chloride injection for struvite precipitation may allow for the identification 

of maximum struvite precipitation. 

Materials and Methods 

Three experiments were performed to validate theoretical predictions of 

conductivity response to magnesium amendment in pure solutions. One experiment 

was designed to determine the applicability of conductivity response in swine 

manure slurries. All experiments used well-mixed 1.5 L sample volumes in 2.5 L 

Nalgene Beakers. Conductivity and pH were logged every five seconds by an Orion 

4-Star pH/Conductivity probe (Thermo Electron, Waltham, MA) connected to a 

laptop computer. Magnesium chloride was selected as a magnesium source due to 

its high solubility. Magnesium chloride (MgCl2) was added continuously to the 

sample by a Masterflex peristaltic pump (Cole-Parmer, Vernon Hills, IL). Figure 2.1 

is a picture of the experimental setup. 

Magnesium Chloride Injection in Distilled Water 

To ensure that the conductivity meter was responding as theoretically 

predicted, the conductivity change in distilled water due to MgCl2 amendment was 

tested. In this experiment, 0.05 mol MgCl2 was continuously injected at a flow rate of 

13 mL/min into 1.5 L of distilled water at 24oC for seven minutes; conductivity and 

pH were monitored continuously for the duration of the experiment. 
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MgCl2 
Pump 

Conductivity 
Electrode 

pH/Conductivity 
Meter 

pH Electrode 

Figure 2.1. Experimental Setup 
 

 
Magnesium Chloride Injection in PO4

3-:NH4
+ Solution 

Three pure 1.5 L samples of ammonia phosphate were made to simulate the 

basic struvite reaction. Prior to magnesium injection, the pH of the solution was 

raised to 8.5 with sodium hydroxide. The solution was continuously stirred and 

allowed a five-minute reaction time between doses at 24oC. Conductivity and pH 

were monitored while magnesium was dosed from 10% to 140% of the phosphate 

stoichiometric requirement at 400, 600, 800, 1000 mg/L PO4
3-. 

Magnesium Chloride Injection in Manure 

Swine manure slurry samples were collected during custom field application 

events in the spring of 2006 from six swine production facilities in Iowa. Samples 

were stored in 5-gallon sealed plastic buckets at 4oC. Each sample was analyzed at 



30

25 oC in triplicate for dissolved reactive phosphorus (PO4
3-), ammonia (NH3), and 

total solids (TS). Dissolved reactive phosphorus concentration analysis used 

Standard Method 4500-P E (APHA 1998). Ammonia concentration analysis used 

Standard Method 4500-NH3 B & C for (APHA 1998). Total solids concentrations 

analysis used Standard Method 2540 B (APHA 1998). Table 2.2 provides a 

description of the facility operation and sampling information including animal type, 

manure storage system, and the time the sample was collected during pump-out 

 

Table 2.2. Facility Information 
Sample Storage Pump-out Stage 
Finisher 1 Lagoon Very bottom 
Finisher 2 Holding Tank Prior to agitation 
Finisher 3 Lagoon Middle 
Finisher 4 Deep Pit Top 
Farrowing 1 Deep Pit Middle 
Farrowing 2 Deep Pit End 

 

Table 2.3 identifies the physical and chemical results from analysis. Time to 

saturation, Tsat, identifies the MgCl2 pump time required to achieve a 1:1 

stoichiometric ratio based on initial phosphate concentration. Tsat was used to 

maintain a relatively equal magnesium injection rate between manures and varied 

depending on the manure characteristics; triplicates of a manure sample used a 

fixed Tsat.  Note that samples Finisher 3 and Farrowing 2 did not maintain a stable 

reading for the duration of the test; no further testing was performed on these 

samples. Conductivity and pH for each manure sample was monitored until 250% of 

the initial stoichiometric phosphate requirements had been applied (2.5 times Tsat). 
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Table 2.3. Physical and Chemical Description of Manure Samples 

Sample PO4
3- mg/L TS, %

NH4
+ 

mg/L Tsat, min 
Finisher 1 130 4.7 1800 4.5 
Finisher 2 620 4.6 4600 5.0 
Finisher 3 500 1.4 2300 4.1 
Finisher 4 950 6.4 4400 *no stable conductivity reading 
Farrowing 1 390 2.4 2900 4.7 
Farrowing 2 390 8.0 NA *no stable conductivity reading 

 

To identify the point when struvite precipitation was maximized, a second test 

on sample Finisher 4 was performed. This experiment monitored the conductivity 

and pH as described above. However, the amount of magnesium injection time was 

increased to approximately 700% of the initial stoichiometric phosphate 

requirements (7 times Tsat). Triplicate 30 ml samples were extracted prior to pH 

adjustment, after pH adjustment, every two minutes for the duration magnesium 

injection, and after magnesium injection was complete for DRP analysis. 

Results 

Magnesium Chloride Injection in Distilled Water 

Experimental measurements obtained were plotted with theoretical 

predictions of conductivity at equal concentrations. Figure 2.2 shows the comparison 

of the experimental and theoretical results. This plot shows that the experimental 

data is in agreement with the theoretical calculations of conductivity.   
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y(theo) = 88.408x + 1E-13
R2 = 1

y(exp) = 86.864x + 5.5903
R2 = 0.9991
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Figure 2.2.  Comparison of Theoretical Model and Experimental Data in Distilled 
Water 

 
 

Magnesium Chloride Injection in PO4
3-:NH4

+ Solution 

Figure 2.3 plots the experimental and theoretical curves of MgCl2 injection 

into PO4
3-:NH4

+ Solution .The theoretical model of conductivity provides an inflection 

point that corresponds with magnesium saturation and optimized struvite 

precipitation. As struvite is formed, phosphate, ammonium, and magnesium are 

removed from solution while chloride is added. The change in specific conductance 

is positive and linear during this portion of the reaction.  When phosphate or 

ammonia becomes the limiting ion, struvite no longer precipitates; with continued 

injection of magnesium chloride, both magnesium and chloride ions enter solution 

while no ionic removal occurs. The change in specific conductance then provides a 

slope approximately 20 times greater than when struvite was formed. The change in 
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conductivity slope could be used to identify magnesium saturation and optimized 

struvite formation.   
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Figure 2.3.  Comparison of Theoretical Model and Experimental Data in PO4

3--NH4
+ 

Solution 
 
 

Magnesium Chloride Injection in Manure Slurries 

To determine if this process was applicable over a broad range of operation 

systems, several manures were collected from other swine farms (as listed in Table 

2.2). Triplicate experiments developed conductivity curves for these manures. 

Figures 2.4 through 2.7 illustrate the conductivity response curves from the four 

swine facilities, with no inflection point indicating the magnesium demand for struvite 

precipitation; furthermore each manure provided a negative slope contradictory to 

theoretical predictions. Based on this information, it would not be possible to 

determine the magnesium demand by monitoring conductivity. 
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To identify the exact point of phosphate removal, tests were performed on 

Finisher 3 over an increased magnesium injection amount. Finisher 3 was selected 

because it provided a conductivity response curve with the greatest stability. Excess 

magnesium was added to ensure that maximum phosphate removal occurred. 

Samples were recovered throughout the experiment for DRP analysis.  Figure 2.8 

provides the extended conductivity response curve and the corresponding DRP 

removal values. 
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Figure 2.4. Finisher 1: Conductivity Responses to Magnesium Injection 
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Figure 2.5.  Finisher 2: Conductivity response to magnesium injection 
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Figure 2.6. Finisher 3: Conductivity response to magnesium injection 
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Figure 2.7.  Farrowing 1: Conductivity response to magnesium injection 
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Figure 2.8.  Extended Conductivity Response and Phosphate Removal to 

Magnesium Injection 



36

The phosphate analysis indicated that approximately 88% of the available 

dissolved reactive phosphorus (DRP) was removed during pH adjustment. The initial 

pH of 6.85 was adjusted to 8.48 with sodium hydroxide prior to magnesium 

amendment. This significant reduction of phosphate can most likely be attributed to 

precipitation of struvite with magnesium initially present in the manure sample and 

complexing of phosphate with other metal ions such as calcium. The extended 

magnesium injection failed to produce an inflection point indicating magnesium 

saturation and optimized struvite precipitation. The lack of an inflection point 

indicates that when magnesium chloride is added in excess of phosphate 

requirements, it continues to complex with ions in the solution, reducing the specific 

conductance of the solution. 

Conclusion 

The goal of this project was to develop a system that identified magnesium 

demand for struvite formation by monitoring conductivity changes during continuous 

injection of magnesium chloride in several different manure slurries. Theoretical 

predictions and pure solution tests provided information capable of determining the 

magnesium demand for struvite precipitations. After testing six different manures in 

triplicate, the conductivity responses did not follow theoretical predictions and failed 

to provide any indication of optimum magnesium injection rates for phosphorus 

removal. 

Optimized struvite precipitation in a continuous flow reactor requires the 

ability to define the proper magnesium demand. Current methods of determining the 
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magnesium injection rates rely heavily upon time-consuming laboratory work, but do 

not account for variations in manures that occur throughout the treatment period. 

Magnesium is often applied at molar ratios higher than calculated stoichiometric 

requirements to achieve maximum phosphate removal (Burns et al. 2003, Bowers 

and Westerman 2005). These defined magnesium amendment ratios have been 

developed for specific manures and may not be accurate assumptions for all manure 

systems.  

The conductivity response curves generated from the manure samples have 

a generally stable and negative slope and do not identify a magnesium saturation 

point. The constant trend of the conductivity response curve as magnesium is 

continuously applied after maximum struvite precipitation has occurred, suggests 

that magnesium continues to complex with organics and other free ions in solution. 

A magnesium ISE is not a suitable tool to determine the magnesium demand for 

struvite formation as it may providing an overestimation of magnesium demand.  

Based on the findings and experience, the most feasible way of determining a 

real-time magnesium demand for struvite precipitation would incorporate a 

phosphate ISE. During magnesium injection, a phosphate ISE would allow the user 

to directly monitor the level of dissolved reactive phosphorus in solution and thus 

indirectly monitor struvite formation. The indication of optimum struvite formation 

would be identified when the desired phosphate concentration is achieved, while 

avoiding errors due to magnesium complexing. Current methods of in-situ phosphate 

monitoring incorporate colorimetric methods that are prone to fouling in manure 

systems. The development of a phosphate ISE that is capable of withstanding the 
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harsh environment of manure slurries would allow a producer to indirectly monitor 

the magnesium demand for struvite precipitation in real-time. 
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Abstract 

Forced precipitation of struvite (MgNH4PO4*6H2O) can reduce dissolved 

reactive phosphorus (DRP) in swine manure slurries. Optimization of this process 

requires that the swine manure slurry pH be increased, that magnesium be added, 

and that sufficient reaction time be allowed for struvite precipitation. To gather data 

that could be used for a full-scale continuous-flow struvite precipitation reactor, a 

bench-scale (14-L) continuous flow reactor was designed, constructed, and tested. 

The bench-scale reactor used air sparging for both pH adjustment and mixing, used 

a peristaltic pump to continuously inject magnesium chloride (MgCl2 . 6H2O), and 

was operated at a 10-minute hydraulic retention time. The bench-scale system 

provided a 95% reduction of DRP in swine manure slurry collected from a concrete 

storage tank with a permeable cover, and a 78% reduction of DRP in swine manure 

slurry collected from a shallow under floor pit collection system. The implication of 

this work for full-scale systems is discussed. 

Keywords: Manure, Phosphorus, Struvite, Swine 



43

Introduction 

Growing water quality and land management concerns have resulted in new 

requirements for the land application of manure slurries. These requirements 

frequently appear as regulations to limit the application of manure slurries based on 

crop macronutrient needs, such as nitrogen or phosphorus (Shober and Simms, 

2003). In many cases, the maximum allowable slurry application rate is limited by 

the phosphorus content of the slurry, meaning that phosphorus removal systems 

could allow higher application rates of manure slurry. One such approach is the 

forced precipitation of the crystalline precipitate struvite (magnesium ammonia 

phosphate hexahydrate, MgNH4PO4*6H2O). 

Forced precipitation of struvite can significantly reduce the amount of soluble 

phosphorus (reported as dissolved reactive phosphorus, or DRP, in this paper) in 

manure slurries, while simultaneously concentrating phosphorus for recovery and 

future use (Bowers and Westerman, 2005a; Burns et al., 2001; Munch and Barr, 

2001; Ohlinger et al., 2000). In laboratory and field tests, forced struvite precipitation 

has been shown to remove 90% or more of the DRP from swine manure slurry 

(Burns et al., 2001). Recovered struvite can be used as a slow-release commercial 

or agricultural fertilizer, offering potential as an added value byproduct (de-Bashan 

and Bashan, 2004). Furthermore, controlling the amount of phosphorus removed 

during treatment will allow adjustment of nitrogen to phosphorus ratios, providing the 

potential to balance N and P to match crop requirements. 

In a pure solution, a 1:1:1 (Mg2+: NH4
+:PO4

3-) molar ratio will form struvite 

(Burns et al., 2001). The rate of struvite formation depends upon the conditional 
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solubility product (Ksp) of struvite which is directly proportional to the product of Mg2+, 

NH4
+, and PO4

3- ions in solution. The precipitation potential of struvite is highly 

dependant on Ksp and solution pH; as pH increases, the dissolution/precipitation 

equilibrium curve for struvite decreases allowing a greater degree of struvite 

precipitation to occur (Ohlinger et al., 2000). Struvite formation increases with pH 

until it reaches its maximum precipitation point near a pH level of 9.0 (Buchanan et 

al., 1992). However, increasing pH also increases volatilization of ammonia; 

therefore, excessive pH increases should be avoided. 

In typical manure slurries, Mg2+ is the limiting ion for optimized struvite 

formation; therefore, magnesium addition is required to maximize DRP removal. 

Furthermore, in heterogeneous organic solutions such as manure slurries, 

magnesium complexes with other ions in solution, thus magnesium additions greater 

than stoichiometric requirements may be needed to overcome competing reaction 

(Burns et al., 2003; Celen et al., 2007).  

Currently, there are several treatment systems that apply struvite precipitation 

techniques for phosphorus removal in municipal and industrial wastewaters (Munch 

and Barr, 2001; Ohlinger et al., 2000). Full-scale struvite reactors have been 

incorporated into municipal and industrial wastewater treatment systems in Japan 

and Europe but their implementation is not common practice in livestock production 

facilities (Burns et al., 2003). 

Bowers and Westerman (2005a) developed a cone-shaped fluidized bed 

reactor for treatment of swine wastewater. Their system utilized a fluidized bed 

containing struvite to promote the growth of struvite crystals within the reactor. 
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Modeling and testing indicated that the conical reactor created plug-flow conditions 

for the liquid and provided a completely mixed fluidized bed. Field tests 

demonstrated DRP removal rates ranging from 13% to 80%, with low performance 

associated with low particle size. This occurs because small particles have low 

settling velocities, and are more likely to be washed out of the reactor, as observed 

by Munch and Barr (2001). To overcome this, Bowers and Westerman (2005b) 

reduced the flow rate through the reactor to maintain struvite settling in order to 

ensure that struvite and bed washout did not occur. 

With the inconsistent nature of manure slurries, a rapid increase in TS of the 

influent slurry has the potential to create a similar washout effect in fluidized bed 

reactors and thus provide lower than expected phosphorus removal rates. 

Additionally, organic matter and other suspended particles could interfere with the 

struvite bed particles and reduce the precipitation potential of struvite on the bed 

particles by promoting the spontaneous nucleation of fine struvite particles. Fine 

struvite particles have lower settling velocities than larger particles and can become 

entrained in the effluent. Finally, fluidized bed reactors are complex in design, 

fabrication, and operation. For these reasons, we examined the potential of an 

alternate reactor configuration – that of a continuously stirred tank reactor followed 

by a downstream separation system to achieve struvite-based phosphorus removal 

from swine manure slurries. 

Manure slurry treatment systems that can perform at relatively high flow rates 

under variable environmental conditions are desirable for implementation within 

existing swine production systems. When treating swine manure slurry, the most 
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convenient point for DRP removal occurs during land application of the slurry. 

Manure slurry characteristics (solids content, nutrient concentrations, pH) can 

change during field application events. Changes during a field application event 

require a treatment system that is robust, tolerant of variable influents, and flexible. 

Furthermore, manure slurry application systems operate at flow rates ranging from 

1,900 – 5,700 L/min (500-1,500 gpm). This high volume application rate requires a 

treatment system with comparable flow rates, necessitating short retention times to 

avoid excessively large reactors. A flexible system requires an easily modifiable 

design that can accommodate differences between manure slurry management 

strategies and manure slurry characteristics from different manure slurry storage 

systems involving a variety of livestock species. 

Continuous flow stirred tank reactors (CSTRs) inherently buffer shock loading 

(Benfield and Randall, 1987); making them less susceptible to the anticipated 

variability in manure slurries. Continuous flow stirred tank reactors are relatively 

simple in design, and their sizing is well defined (AWWA, 1999). The simple design 

parameters also provide operational and maintenance benefits associated with 

startup and process changes that may not be available with fluidized bed reactors. 

The objective of this study was to develop and test a short-retention-time 

bench-scale CSTR, capable of effectively and reliably reducing DRP from swine 

manure slurries.  



47

Materials and Methods 

Bench-scale Design 

A 19-L (5-gal) plastic bucket was chosen as the vessel for the 14-L (working 

volume) bench-scale air sparged continuous flow tank reactor (ASTR, Figures 3.1 

and 3.2). A fine bubble EDI PermaCap 5 diffuser (Environmental Dynamics Inc., 

Columbia, MO) was mounted at the bottom of the reactor to provide diffused 

aeration for mixing and pH adjustment. Manure slurry was pumped into the reactor 

at 1.4 L/min by a utility pump (Model 75982, Wayne Water Systems, Harrison, OH), 

providing a 10-minute HRT. The influent passed through 0.6 cm copper tubing 

discharging directly above the air diffuser plate to provide rapid mixing of the 

influent. Magnesium chloride was injected with a Masterflex peristaltic pump (Model 

7518-10, Cole Palmer, Vernon Hills, IL) through 0.3 cm copper tubing discharging 

directly above the diffuser plate to provide incorporation with the manure slurry. For 

simplicity during initial testing of the system, magnesium was applied in excess to 

insure maximum phosphate removal. The magnesium injection rate was determined 

from initial DRP analysis and then adjusted to achieve the Mg2+:PO4
3- ratio of 1.6:1 

(per Burns et. al, 2003). The effluent was collected near the center of the ASTR to 

discourage short-circuiting within the reactor.  

Three commercial and one lab-fabricated air diffusion plates were tested to 

determine the gas transfer characteristics and mixing capabilities. Three PermaCap 

5 (Environmental Dynamics Inc., Columbia, MO) diffuser types provided fine, 

medium, or coarse air bubble sizes at similar flow rates. Diffusers were tested to 

identify the pH adjustment capabilities for air flow rates between 15-35 L/min. 
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The ASTR system alone does not provide a mechanism for the recovery of 

the precipitated phosphorus. Struvite has a specific gravity of 1.7, while liquid swine 

manure has a specific gravity near 1.0; this difference should permit gravity or 

centrifugal separation for the ultimate removal and recovery of precipitated 

phosphorus from the manure slurry. For the bench-scale study, we employed a 36.6-

L up-flow clarifier (UFC), placed downstream of the ASTR (Figure 3.3). Up-flow 

clarifiers are commonly used in municipal wastewater treatment systems to separate 

solids from liquids in continuous flow systems (AWWA, 1999). The UFC employed 

here had a diameter of 0.36 m, a total volume of 36.6 L, received slurry at 0.7 L/min, 

and therefore had a 52 min detention time. The UFC weir was designed to provide a 

surface overflow rate of 32 m3day-1m-2 (Metcalf and Eddy, 1991).  

Manure Slurry Sources 

Manure slurries were collected from two production facilities utilizing different 

manure slurry storage systems. The initial manure slurry was collected from a 

commercial finishing facility near Ames, Iowa. This system employed a 1-year 

capacity storage tank covered with light expanded clay aggregate (LECA). At the 

time of sampling, the storage tank was at approximately two-thirds of the total 

capacity. The second manure slurry was collected from the Iowa State University 

Swine Teaching Facility (Ames, Iowa), which is a swine finish facility. This system 

employed an under floor shallow-pit in the finishing barn which was pumped to a 

secondary storage tank weekly; manure slurry was collected from the shallow-pit.  
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Sample Analysis 

Chemical analysis methods were as follows: dissolved reactive phosphorus - 

Standard Method 4500-P E (APHA, 1998); total phosphorus - Standard Method 965-

17 (AOAC, 2002); total Kjeldahl nitrogen (TKN) - Standard Method 2001-11 (AOAC, 

2000); ammonium (NH4
+) - Standard Method 4500-NH4 B & C for (APHA, 1998); 

total solids - Standard Method 2540 B (APHA, 1998). Solution pH was determined 

with a pH electrode (Orion 4-Star pH/Conductivity probe, Thermo Fisher Scientific, 

Waltham, MA) calibrated with 7.0 and 10.0 standard pH solution prior to each 

determination.  

Bench-scale Operation 

Treatment of swine manure slurry for DRP reduction in the bench-scale ASTR 

proceeded in two phases: a pre-aeration batch phase followed by a continuous-flow 

DRP-precipitation phase (Figure 2.4). Pre-aeration consisted of applying diffused air 

at a flow rate of 20 L/min for 30 minutes to provide the initial 0.5 unit pH adjustment 

to 14 L of untreated manure slurry. After the initial pH increase was achieved in 

batch mode, untreated manure slurry was injected into the ASTR at 1.4 L/min to 

achieve continuous flow operation. During this time, magnesium chloride was 

continuously injected at a rate determined from laboratory analysis to achieve a 

1.6:1 Mg2+:PO4
3- molar ratio, air sparging proceeded at 20 L/min, and treated 

manure slurry was continuously extracted at 1.4 L/min. 

To test the ASTR-UFC system, the UFC was pre-loaded with effluent from the 

ASTR, and then the ASTR and UFC were both operated in continuous flow modes 
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for 60 minutes. For the duration of UFC pre-loading and continuous flow operation, 

influent and effluent samples were collected from the ASTR and UFC.  

Effluent 

7.6 cm 

11.4 cm 

23.5 cm 

29.8 cm 

MgCl2 

Influent 

Air Injection  

Figure 3.1. Plan drawing of 14-L air sparged continuous flow tank reactor (ASTR) 

 

 

Manure Outlet 
Ports 

Manure Diffuse 
Aeration 

MgCl2  
Inlet Inject 

Figure 3.2. Photograph of 14-L air sparged continuous flow tank reactor (ASTR) 
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UFC 

ASTR 

Figure 3.3. Photograph of 14-L air sparged tank reactor (ASTR) in series with an up-

flow clarifier (UFC). 
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(1.4L/min) 

MgCl2 Injection 
(1.6:1 Mg2+:PO4

3-) 
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(1.4L/min) 
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Preaeration (30 
minutes)  

Continuous Flow Operation (30 to 80 minutes) 

Figure 3.4. Operational flow chart of the air sparged tank reactor (ASTR) for 

the precipitation of phosphorus from liquid swine manure. 
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Experiments and Results 

ASTR Performance 

Table 3.1 provides the nutrient analysis of the two, untreated manure slurries 

utilized in the treatments. Initial testing of the aeration system indicated that the 

commercial diffusers outperformed the lab-fabricated diffuser, and the fine bubble 

diffuser provided the best gas transfer. The fine bubble diffuser appeared to provide 

vigorous mixing in the ASTR.  

Manure slurry from the shallow-pit system was used for the duplicate, 60-

minute treatments that were performed to assess the DRP reduction of the ASTR. 

Pre-aeration provided a pH increase from 7.84 to 8.31 in the first treatment and 7.76 

to 8.24 in the second treatment. Figure 3.5 provides the analysis of DRP for the 

duration of the 60-minute treatments. The system achieved an average DRP 

reduction of 78% over 30 minutes of continuous flow operation. Additionally, during 

the second run, a sample collected after pre-aeration and prior to magnesium 

addition exhibited a 50% reduction in DRP, indicating some of the reduction was due 

to the pH increase alone. 

ASTR-UFC Performance 

Manure slurry from the covered storage system was used for the 110-minute 

treatment with the ASTR-UFC system for the reduction of DRP during pre-aeration 

and continuous flow operation, and TP removal performance of the UFC. Pre-

aeration provided a pH increase from 7.64 to 8.15. Figure 3.6 provides the analysis 

of DRP and TP for the duration of the 110-minute treatment. While treating manure 

slurry collected from the covered storage system, the ASTR achieved an average 



53

DRP reduction of 95% for the 80 minutes of continuous flow operation. The ASTR 

DRP removal did not change from 30 to 80 minutes, suggesting that steady-state 

was achieved. The sample collected after pre-aeration and prior to magnesium 

injection exhibited a 68% reduction in DRP. Total phosphorus comparisons of the 

ASTR influent and UFC effluent indicated that there was no significant removal of 

total phosphorus through the system. 

 

Table 3.1. Characteristics of the two untreated manure sources: Dissolved reactive 

phosphorus (DRP), Total Phosphorus (TP), Total Kjeldahl Nitrogen (TKN), 

Ammonium (NH4), Total Solids (TS). 

Source 
DRPc, 

mg/L as PO4
3-

TPd, 
mg/L as PO4

3-
TKNe,      
mg N/L 

NH4
f,         

mg NH4-N/L 
TSg,       

% 
Ames Producer 

Covered Storageh 770 ± 14 990 ± 80 -- -- 4.6 ± 0.1 

ISU Teaching 
Shallow Piti 264 ± 26 2190 ± 35 2950 ± 60 1460 3.9 ± 0.1 

 

                                                           
c Dissolved Reactive Phosphorus. Standard Method 4500-P E (APHA, 1998) 
d Total Phosphorus. Standard Method 965-17 (AOAC, 2002) 
e Total Kjeldahl Nitrogen. Standard Method 2001-11 (AOAC, 2000) 
f Ammonium Nitrogen. Standard Method 4500-NH3 B & C for (APHA ,1998) 
g Percent Total Solids. Standard Method 2540 B (APHA, 1998) 
h Manure collected from a commercial finishing facility near Ames, Iowa. This system employed a 1-year 

capacity storage tank covered with light expanded clay aggregate (LECA) 
i Manure collected at the Iowa State University Swine Teaching Facility (Ames, Iowa) from an under floor 

shallow-pit in the finishing barn. 
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Figure 3.5. Reduction of Dissolved Reactive Phosphorus (DRP) during pre-aeration 

and continuous flow operation of the air sparged tank reactor (ASTR) with manure collected 

from the shallow pit manure system.**
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Figure 3.6. Reduction of Dissolved Reactive Phosphorus (DRP) and Total 

Phosphorus (TP) during pre-aeration and continuous flow operation of the air sparged tank 

reactor-up-flow clarifier (ASTR-UFC) with manure collected from the covered storage tank. 

 

                                                           
** Sample collected shortly after magnesium injection was initiated 
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Discussion 

The ASTR system provided an average DRP reduction of 95% with manure 

slurry from the covered storage system and 78% with manure slurry from the 

shallow-pit storage system. The difference in DRP reduction rates is most likely due 

to the amount of DRP available for struvite precipitation and its relation to the 

conditional solubility product of struvite. Specifically, manure slurry from the covered 

storage system had significantly higher initial DRP (770 mg/L) than did manure 

slurry from the shallow-pit (264 mg/L). The ASTR treatment provided an average 

DRP effluent concentration of 41 mg/L using manure slurry from the covered storage 

system and 64 mg/L using manure slurry from the under floor shallow-pit system. 

Ohlinger et al. (2000) indicated that a decrease of any contributing species 

decreases the conditional solubility product of the system and reduces the 

precipitation potential of struvite. If DRP is reduced significantly, the conditional 

solubility product and struvite precipitation potential will also decrease. This indicates 

that the reduction of DRP within the ASTR can limit the precipitation potential of 

struvite and thus limit the overall phosphorus removal capabilities.  

The initial step in struvite precipitation is pH adjustment. Ohlinger et al. (2000) 

found that the solubility of struvite was highly pH dependant; as pH increases within 

a system, the precipitation potential of struvite is increased. Burns et al. (2003), 

typically increased swine manure slurry pH up to one unit during their study; 

improving phosphorus removal via struvite precipitation. As operated here, the 

ASTR provided an adjustment of 0.5 units during continuous flow operation; further 

pH adjustment may achieve higher phosphorus removal rates. Consideration of 
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chemical and energy costs should be accounted for when determining the pH 

adjustment level to provide the most economically feasible treatment system while 

maintaining appropriate phosphorus removal rates.  

Pre-aeration provided a significant reduction of DRP without magnesium 

addition, (50% and 68% in samples tested). Two mechanisms can be identified that 

account for this reduction: magnesium was present prior to treatment allowing for 

struvite formation after pH adjustment, or phosphate was precipitated as another 

species such as calcium phosphate, brushite, or monetite. Magnesium is common in 

most ground water sources and is associated with water hardness; furthermore, 

some magnesium salts, albeit small amounts, are commonly used in swine rations. 

The quantity of available magnesium in the raw manure slurry was not determined 

and X-ray diffraction was not used to identify precipitated species in this study. 

Implementation at full scale should include a determination of initial magnesium 

concentrations in raw manure slurries available for struvite formation. Magnesium 

available for struvite precipitation prior to pH adjustment could reduce or eliminate 

the need for magnesium amendment. 

Several chemicals can be utilized for phosphate removal in wastewaters. The 

most common include lime, ferric and aluminum salts, magnesium hydroxide 

(Mg(OH)2), magnesium oxide (MgO), and magnesium chloride (MgCl2). Adding lime 

or metal salts does not precipitate struvite; however they do complex with phosphate 

to form precipitants under the same principles. Magnesium hydroxide, MgO, MgCl2, 

are all viable magnesium sources to force struvite formation. Magnesium hydroxide 

and MgO have low solubility characteristics and would require dissolving in water 
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(slacking) prior to amendment similar to lime softening systems for effective 

implementation. Without slacking prior to amendment, the reaction times required for 

struvite precipitation would be significantly increased due to the low solubility of 

Mg(OH)2 and MgO, 0.0012 g/100g H20 and 0.00062 g/ 100g H20, respectively. 

Slaking systems are difficult to operate with consistency and can create issues with 

amendment accuracy. Miles and Ellis (2001) utilized Mg(OH)2 and MgO to force 

precipitation; however, the low solubility and precipitation potential of Mg(OH)2 prior 

to amendment reduced amendment accuracy. Magnesium hydroxide and MgO 

increase the pH of the solution, reducing the pH adjustment requirement for 

optimized struvite precipitation. Magnesium chloride has a high solubility, 54.2 

g/100g H20, making it easier to handle and reduces the required reaction time in 

comparison to Mg(OH)2 and MgO (Burns et al., 2001). However, MgCl2 is acidic and 

may reduce solution pH, requiring greater pH adjustment to optimize struvite 

precipitation. For agricultural applications, the use of MgCl2 can reduce equipment 

cost and labor while increasing the accuracy of dosing when compared to the use of 

less soluble magnesium compounds.  

The incorporation of the UFC did not provide a significant reduction of TP. 

These results indicate that the settling characteristics of the manure slurry and 

particle characteristics of the precipitated phosphorus did not allow for continuous 

removal of the precipitant with the ASTR-UFC system. Precipitant removal strategies 

that could be incorporated with the ASTR system include operating the ASTR as a 

sequencing batch reactor to allow a quiescent period for settling, or providing forced 

gravitational separation in place of the UFC. Further experimentation with other 
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methods of struvite recovery, such as centrifuging the ASTR treated manure slurry 

will be conducted in the future to identify the capability for solids separation and TP 

reduction following treatment. 

 A typical corn crop in Iowa requires 0.50 – 0.54 kg N/25 kg of grain produced 

(1.1 to1.2 lb N/bu) and 0.17 kg P2O5/25 kg of grain produced (0.375 lb P2O5/bu) 

(Iowa State University, University Extension, 2003).  This suggests that manure 

slurries should have a N:P2O5 ratio of 3:1 for land application at a rate which 

balances both N and P for a typical Iowa corn crop.  

The manure from the commercial swine production facility utilizing covered 

storage contained 78% of the TP in DRP form. This high DRP:TP ratio allows for a 

significant removal of TP if the precipitated phosphorus can be recovered. Based on 

the ASTR DRP reduction performance, 73% of the TP could theoretically be 

recovered as a precipitate, reducing the initial TP concentration of the manure slurry 

collected from the covered storage from 740 mg/L P2O5 to 200 mg/L P2O5 (6.2 lb 

P2O5/1000-gallon to 1.7 lb P2O5/1000-gallon). 

The manure tested which was stored in a shallow-pit system contained 12% 

of the TP in DRP form, this low DRP:TP ratio reduces the overall amount of 

phosphorus that can be removed via struvite precipitation and separation. Based on 

the ASTR DRP reduction performance, 9% of the TP could theoretically be 

recovered as precipitate, reducing the initial TP concentration of the manure 

collected from the shallow-pit storage from 1640 mg/L P2O5 to 1440 mg/L P2O5 (13.7 

lb P2O5/1000-gallon to 12.0 lb P2O5/1000-gallon).  
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Untreated manure slurry from the shallow pit storage had a N:P2O5 ratio of 

1.8:1; if applied at nitrogen levels for a typical corn crop in Iowa, phosphorus would 

be applied in excess. Treatment with the ASTR has the potential to adjust the 

N:P2O5 ratio to 2.0:1. To achieve the desired (balanced) N:P2O5 ratio of 3:1, manure 

slurry from in this specific system would require at least 60% of the TP to be in the 

form of DRP for the precipitation and recovery of struvite. 

Bowers and Westerman (2005a, b) used struvite precipitation to treat raw 

swine manure slurry with approximately 50% of the TP available as DRP; they were 

capable of providing TP removal rates ranging from 49% to 56% with this high 

DRP:TP ratio. Manure slurries with high DRP:TP ratios can provide a higher 

phosphorus removal potential, allowing treatment systems to adjust the nutrient 

removal ratios to provide a N and P balanced manure slurry. 

Two reasons for the variation between the DRP:TP ratio from the manure 

slurries sampled include different feed rations used to feed the pigs grown at the two 

facilities and manure slurry storage type. Manure slurry from the commercial 

production facility was collected from a covered storage tank; manure slurry from the 

Iowa State University Swine Teaching farm was collected directly from the shallow 

pit below the barn, before the long term storage system. Long term manure slurry 

storage systems, such as covered storage tanks, would be expected to provide a 

greater degree of anaerobic digestion than the short term storage of manure slurry 

found in shallow pit barns. During the anaerobic process, a portion of nutrients such 

as nitrogen and phosphorus are converted from the organic and relatively non-

reactive form, to a more soluble and reactive form. Beal et al. (1999) determined that 
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anaerobic treatment of swine manure slurry increased the concentration of DRP and 

subsequently enhanced phosphorus removal capabilities via struvite precipitation. 

Results of the bench-scale test will be used to design a palletized pilot-scale 

treatment system which will be tested at several Iowa pork operations that utilize 

various manure slurry management strategies. 

Conclusion 

A continuous flow bench-scale (14-L) air sparged tank reactor (ASTR) was 

developed and tested for reducing dissolved reactive phosphorus (DRP) from two 

different swine manure slurry samples via struvite precipitation. The ASTR used air 

sparging for both pH adjustment and mixing, used a peristaltic pump to continuously 

inject magnesium chloride (MgCl2 . 6H2O), and was operated at a 10-minute 

hydraulic retention time. Two manure slurry samples that differed in their storage 

systems [covered storage tank (760 mg/L DRP) and shallow-pit (264 mg/L DRP)] 

were treated with the ASTR system.  The bench-scale system provided a 95% 

reduction of DRP in swine manure slurry collected from a concrete storage tank with 

a permeable cover, and a 78% reduction of DRP in swine manure slurry collected 

from a shallow under floor pit collection system. Treatment with the ASTR provided 

an average DRP effluent concentration of 41 mg/L with the covered storage tank 

manure slurry and 64 mg/L with the shallow-pit manure slurry. Increasing the pH 

without magnesium addition provided significant reductions in DRP in the two swine 

manure slurries tested. ASTR-UFC system performance indicates that the UFC is 

not capable of settling struvite particles formed in the ASTR. The failure of the UFC 

to remove struvite particles was most likely due to the small particle size of 
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precipitants and the settling characteristics of the manure slurry. This research 

indicates that a simple, robust, and flexible system utilizing air sparging and 

magnesium amendment can provide significant reductions of DRP from swine 

manure slurries. Furthermore, by adjusting MgCl2 amendment rates, a 

predetermined fraction of DRP can be precipitated as struvite for recovery, allowing 

site-specific treatment capable of producing a manure slurry fertilizer, which is 

balanced to meet crop requirement in terms of nitrogen and phosphorus nutrients.  

Further research will investigate other solid separation techniques and their ability to 

remove struvite and precipitated phosphorus from ASTR treated manure slurries and 

determine the economic feasibility of removing phosphorus with the ASTR system. 
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Abstract 

The development of a dedicated struvite reactor capable of operating at full-

scale pork production operations is essential for the implementation for phosphorus 

reduction via struvite precipitation. The objective of this research was to test a pilot-

scale air sparged tank reactor (ASTR) and struvite separation system on two 

manure slurries for struvite-based phosphorus removal and recovery. The pilot-scale 

ASTR system operated at flow rates of 80 L/min to 115 L/min and was based on the 

design from Shepherd et al. (2007). The ASTR effluent was processed using a 

McLanahan Model S1.506 A20 Hydrocyclone Separator (McLanahan Corp., 

Hollidaysburg PA) for struvite separation and total phosphorus (TP) recovery. The 

pilot-scale ASTR system provided a 92% reduction of dissolved reactive phosphorus 

(DRP) in swine manure slurry from a concrete storage tank, and a 91% reduction of 

DRP in swine manure slurry collected from a deep-pit under floor collection system. 

The ASTR-hydrocyclone system removed 18% of TP in swine manure from a 

concrete storage tank and 9% to 14% of TP in swine manure slurry from a deep-pit 

under floor collection system. Full-scale economics and implementation of struvite-

based phosphorus removal is discussed. A case study of a typical Iowa deep-pit 
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swine production facility (10,000 head/year) indicated that the annual cost of 

struvite-based phosphorus removal would be approximately $22.20/pig space or 

$0.0353/L manure slurry treated ($ 0.134/gal). This indicates that struvite-based 

phosphorus removal using this system in deep-pit swine manure slurries is not 

currently economically viable. 

Introduction 

Growing concerns about water quality and land management have resulted in 

new requirements for the land application of manure, often in the form of legislation; 

these regulations often limit the application of manure based on crop nutrient needs, 

such as phosphorus (Shober and Simms, 2003). Phosphorus based manure 

application rates can require up to eight times the land required for nitrogen based 

application rates (Burns et al, 1998). In addition to larger land requirements, 

application of supplemental nitrogen may be needed for optimal crop production. 

The development of an economical, robust, and flexible continuous flow struvite 

precipitation reactor, for phosphorus removal could greatly benefit livestock 

operations. 

Shepherd et al. (2007) developed a novel, bench-scale continuous flow air 

sparged tank reactor (ASTR) for struvite precipitation in swine manure slurries. The 

bench-scale ASTR system provided dissolved reactive phosphorus (DRP) 

reductions of 78% and 93%; however, separation of precipitated struvite for total 

phosphorus (TP) reduction was not achieved with a continuous flow upflow clarifier. 

Untreated and ASTR treated manure slurries were tested in the lab to identify 

struvite removal and recovery possibilities. Centrifuge tests applying more than 80 



67

gravities concentrated phosphorus in ASTR treated manures. The bench-scale 

centrifugue tests indicated that a hydrocyclone, providing 80 gravities or more may 

provided a continuous flow method to remove and recover precipitated phosphorus 

from ASTR-treated manure slurries. 

The objectives of this research were to test a continuous flow pilot-scale ASTR 

utilizing a hydrocyclone solid separator for struvite-based phosphorus removal and 

recovery.  

Optimized struvite precipitation in manure slurries generally requires adding 

magnesium and increasing the slurry pH. For reaction and energy input efficiency, 

the optimal time for implementing a continuous flow struvite reactor is during the 

agitation of stored manure prior to and in series with land application events. 

Agitation provides a homogenous manure mixture and has been shown to increase 

manure slurry pH (Zhu et al., 2007); reducing chemical and energy costs associated 

with pH adjustment. 

The most common manure slurry storage systems utilized in U.S. pork 

production include: under floor deep-pit confinements, storage tanks, holding ponds, 

and anaerobic lagoons. A nutrient removal system could be designed to treat 

manure over an extended period at low flow rates. However, this strategy 

necessitates a post-treatment storage system, increasing capital expenditures. 

Implementing a treatment system in series with field application events requires 

higher treatment flow rates, but reduces the need for a post-treatment storage 

system. 
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Deep-pit manure storage systems require specific management practices to 

minimize the concentration of hydrogen sulfide gas (H2S) inside the production 

facility. To avoid increasing the amount of H2S released from deep-pit stored manure 

slurry, agitation is avoided except during field application events. To minimize H2S 

risk in deep-pit storage facilities, the most feasible treatment scheme requires a 

system capable of performing during land application events when agitation is 

required and planned for. 

During land application events, manure slurry is typically applied at rates 

ranging from 2,300 to 6,800 L/min (500 to 1,500 gal/min). The majority of struvite 

research has focused on bench and pilot-scale reactors operating at low flow rates. 

Bowers and Westerman (2005b) tested a field-scale fluidized bed struvite reactor 

which treated manure slurries at 5.6 and 9.5 L/min (1.5 and 2.5 gal/min). The 

transition of bench and pilot-scale fluidized bed reactors to full-scale, on-farm 

systems may be challenging because of their complex design requirements and 

limited flexibility due to flow limitations associated with bed loss at high fluid 

velocities. Furthermore, modifications to achieve high flow rates required to make 

this type of system applicable for use with large modern pork production operations 

may not be economically feasible. 

Materials and Methods 

Pilot-scale Design 

A continuous flow pilot-scale ASTR was designed and constructed to precipitate 

phosphorus in liquid swine manure at flow rates up to 200 L/min (53 gal/min) at a 10-

minute hydraulic retention time (HRT). The ASTR-hydrocyclone system was 
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operated at 80 and 115 L/min (21 and 31 gal/min) during continuous flow test runs. 

Design criteria and operational conditions for the pilot-scale ASTR were based on 

bench scale research conducted by Shepherd et al. (2007). A McLanahan Model 

S1.506 A20 Hydrocyclone Separator (McLanahan Corp.; Hollidaysburg, PA) was 

implemented to provide phosphorus precipitant removal from the ASTR effluent. The 

ASTR-Hydrocyclone system was constructed as a mobile, palletized system, 

allowing for testing at various swine production sites (Figures 4.1 and 4.2). 

A 3,785-Liter (1000-gallon) cone-bottom, polypropylene tank (Den Hartog Inc; 

Hospers, IA) provides the reaction zone for the ASTR. Raw manure was pumped 

from the manure storage system to the top of the ASTR with a Vogelsang V100-90Q 

positive displacement pump (Vogelsang USA; Ravenna, OH); the ASTR effluent is 

recovered from the outlet of the cone-bottom tank and pumped to the hydrocyclone 

with a Vogelsang VX136-140Q positive displacement pump. The liquid discharge 

from the hydrocyclone overflow is considered to be the final effluent; a portion of the 

final effluent is recirculated to the ASTR to control operational volume and hydraulic 

retention time (HRT). Separated solids from the hydrocyclone underflow are 

collected in a hopper. At an operation volume of 2000 L, a 10-minute HRT is 

developed with a corresponding system flow rate of 200 L/min. Varying the 

operational volume and system flow rate, allows for adjustment of HRT for site-

specific requirements and optimization. 

Mixing and pH adjustment is provided through air sparging. An Ingersoll-Rand 

Model SS5 air compressor (Ingersoll-Rand; Davidson, NC) provides 566 L/min of 

compressed air to the ASTR at the base of the cone-bottom. A series of nine 
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Permacap5 Fine Bubble diffusers (Environmental Dynamics Inc.; Columbia, MO), 

were evenly spaced to provide uniform delivery of air for optimal mixing conditions 

and maximized bubble contact time (Figure 4.3). 

 

Figure 4.1. Palletized pilot-scale air sparged tank reactor with a hydrocyclone 

separator (ASTR-Hydrocyclone System) 
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Figure 4.2. Schematic of air sparged tank reactor and hydrocyclone system 

 

 

Figure 4.3. Air sparging diffusion platform and liquid level switches 

 



72

Magnesium chloride (MgCl2) was chosen as the supplemental magnesium 

source for enhanced struvite precipitation. Magnesium chloride solution (50%) was 

fed into the ASTR from a 55-gallon drum by a variable speed drum pump (Standard 

Pump, Inc.; Snellville, GA). For simplicity during initial testing of the system, 

magnesium was applied in excess of stochiometric requirements to insure maximum 

DRP removal. The magnesium injection rate was determined from initial DRP 

analysis and adjusted to achieve a Mg2+:PO4
3- ratio of at least 1.6:1 (per Burns et. al, 

2003).The magnesium injection site is located at the top of the ASTR near the 

hydrocyclone return to promote incorporation with the manure slurry. 

Two Krohne OPTIFLEX Electromagnetic flow meters (Krohne, Inc; Duisburg, 

Germany), located at the inlet of the ASTR and hydrocyclone overflow discharge, 

were implemented to monitor and display the flow rates of the influent and effluent. 

The Influent and hydrocyclone pump were independently controlled with WEG 

CFW08 variable frequency drives (WEG Electric Motors LTD.; Worcestershire, 

England). The variable frequency drives and flow meters allow for real-time flow rate 

adjustments to maintain the desired reactor volume and HRT. Liquid level switches 

were mounted in the reactor to provide indications of volume changes. Air flow 

regulation was achieved with a gas regulator and monitored with a CDI 5200 digital 

airflow meter (CDI Meters; Belmont, MA). Effluent mass from the hydrocyclone 

underflow was measured with a Dillon Model GL digital force gauge (Weigh-Tronix 

Inc.; Fairmont, MN). The instrumentation and display system allows for 

measurements and control of operational conditions. 
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Pilot-scale Operation 

The ASTR-hydrocyclone system was tested in two manure slurries with four 50-

minute continuous flow treatments, performed in triplicate: 1) ASTR-Hydrocyclone 

without aeration or MgCl2 injection, 2) ASTR-Hydrocyclone with aeration, but no 

MgCl2 injection, and 3) ASTR-Hydrocyclone with aeration and MgCl2 injection. For 

each treatment, the flow rate to the hydrocyclone was set to achieve a pressure drop 

of 5 bar across the hydrocyclone; approximately 50% of the hydrocyclone overflow 

was returned to the ASTR to maintain operational volume and HRT.  

Each 50-minute continuous flow operation was divided into five 10-minute time 

segments for sample collection. Three sub-samples (300mL) were collected for each 

10-minute increment at 2, 5, and 8 minutes; sub-samples were pooled for analysis. 

Influent, ASTR effluent, and hydrocyclone effluent were analyzed as is. Samples of 

the hydrocyclone underflow were allowed to settle for 48 hours, after which the liquid 

fraction was decanted with a siphon. The decanted liquid and settled solids were 

then analyzed separately. 

Treatment 1 – ASTR-Hydrocyclone without aeration or MgCl2 injection 

The ASTR was primed with 1,900L of manure slurry. Continuous flow operation 

was then initiated without aeration and MgCl2 injection for 50 minutes. 

Treatment 2 – ASTR-Hydrocyclone with aeration but without Mg Cl2 injection 

The ASTR was initially primed with 1,900L of manure slurry. Treatment then 

proceeded in two phases: a pre-aeration batch phase followed by a continuous-flow 

DRP-precipitation and separation phase. Pre-aeration consisted of applying diffused 

air at a flow rate of 566 L/min for 30 minutes to the 2000 L of untreated manure 
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slurry. After the initial batch phase, continuous flow operation was initiated with air 

sparging at 566 L/min; MgCl2 was not injected. 

Treatment 3 – ASTR-Hydrocyclone with aeration and MgCl2 Injection 

The ASTR was initially primed with 1,900L of manure slurry. Treatment 

proceeded in two phases, with pre-aeration operated as previously described. 

Following the initial batch phase, continuous flow operation was initiated. During 

continuous flow operation, MgCl2 was injected at a rate determined from laboratory 

analysis to achieve a Mg2+:PO4
3- molar ratio of at least 1.6:1; air sparging proceeded 

at 566 L/min. 

Manure Slurry Sources 

The ASTR was tested on-site at two swine commercial finishing facilities near 

Ames, IA. Each site utilized different a manure storage systems, an under-floor 

deep-pit storage system and a concrete storage tank. Treated manure slurry was 

returned to the storage system approximately 30 meters from the extraction point. 

Variations in the hydrocyclone underflow and effluent flow rates required adjustment 

of the influent flow rate to maintain the operating volume of the ASTR. 

The first manure slurry tested was extracted directly from the under-floor deep-pit 

storage system without agitation. The deep-pit manure was processed with all three 

treatments of the ASTR-hydrocyclone system. The hydrocyclone flow rate was set at 

277 L/min (73 gal/min), the system flow rate was approximately 115 L/min (31 

gal/min), and the HRT was approximately 16 minutes.  

The second manure slurry tested, from the concrete storage system, was 

agitated prior to and during testing; only treatment with MgCl2 addition and aeration 
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was performed. The hydrocyclone flow rate was set at 300 L/min (79 gal/min), the 

system flow rate was approximately 79 L/min (21 gal/min), and the HRT was 

approximately 24 minutes. 

Sample Analysis 

Chemical analysis methods were as follows: dissolved reactive phosphorus - 

Standard Method 4500-P E (APHA, 1998); total phosphorus - Standard Method 965-

17 (AOAC, 2002); total Kjeldahl nitrogen (TKN) - Standard Method 2001-11 (AOAC, 

2000); ammonium (NH4
+) - Standard Method 4500-NH4 B & C for (APHA, 1998); 

total solids - Standard Method 2540 B (APHA, 1998); Solution pH was determined 

with a pH electrode (Orion 4-Star pH/Conductivity probe, Thermo Fisher Scientific, 

Waltham, MA) calibrated with 7.0 and 10.0 standard pH solution prior to each 

treatment. Statistical analysis of phosphorus concentrations and total mass of 

phosphorus were accomplished using proc MIXED in SAS software. (SAS, 2003). 

Results 

The air-sparged tank reactor-hydrocyclone system (ASTR-hydrocyclone) was 

operated under three conditions to identify reductions in dissolved reactive 

phosphorus (DRP) and total phosphorus (TP) removal capabilities. Table 4.1 

provides the nutrient analysis of the untreated manure slurries utilized in the 

treatments. Two days prior to testing the ASTR-hydrocyclone system, a sample of 

the deep-pit manure was collected for analysis; the DRP concentration was 

determined to be 100 mg/L as P. During testing of the ASTR-hydrocyclone system 

the average DRP concentration of untreated manure was 22 mg/L as P. This 

difference is most likely due to the collection of an unrepresentative sample prior to 
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testing. Magnesium amendment rates were determined from the DRP analysis prior 

to testing (100 mg P /L), resulting in the application of MgCl2 at a ratio of 7.3:1 

Mg2+:PO4
3- ratio. 

The ASTR portion of the system was designed to provide optimal conditions 

for DRP precipitation as struvite through pH adjustment, MgCl2 incorporation, 

hydraulic retention time, and mixing. The ASTR is not designed to remove 

phosphorus from the slurry. ASTR performance is quantified by DRP reductions 

through the system. The hydrocyclone was incorporated to provide separation of 

precipitated phosphorus from the ASTR effluent; hydrocyclone performance is 

quantified by its ability to concentrate and remove total phosphorus (TP) from ASTR-

treated manure slurries. 

ASTR Performance 

For the deep-pit manure slurry, thirty minutes of pre-aeration provided an 

average pH increase of 0.24 units from 7.83 to 8.07. Under continuous flow 

conditions, air sparging without MgCl2 injection maintained a minimum pH increase 

of 0.11 units, air sparging with MgCl2 injection maintained a minimum pH increase of 

0.10 units. 

Thirty minutes of pre-aeration provided an average pH increase of 0.25 units 

from 7.05 to 7.30 with manure slurry from the concrete storage system. The addition 

of MgCl2 produced an immediately decreased pH to approximately 7.0 prior to 

continuous flow aeration, suggesting that the manure slurry from the concrete 

storage had a lower pH buffering capacity than the manure slurry from deep-pit 

storage. The pH was reduced to approximately 6.95 under continuous flow 
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operation. Manure slurries with lower buffering capacities may not allow aeration to 

provide a specific pH adjustment required for optimized struvite precipitation. A 

caustic amendment system could be implemented for supplementary pH adjustment 

when aeration is not sufficient. 

Table 4.2 provides the DRP concentrations entering and exiting the system, 

averaged across replications for each treatment. Treatment with air sparging and 

MgCl2 injection provided 91% reduction of DRP in manure from the deep-pit storage 

system and 92% reduction of DRP in manure from the concrete storage system 

during 50 minutes of continuous flow operation. With aeration and MgCl2 addition, 

the average influent DRP concentration was reduced from 22 mg P /L to 2.0 mg P/L 

in the deep-pit manure slurry and 130 mg P/L to 11 mg P/L in the concrete storage 

manure slurry. Treatment without air sparging and without MgCl2 injection provided a 

14% reduction in DRP in the deep-pit manure slurry; while treatment with aeration 

but without MgCl2 did not provide a statistically significant reduction of DRP in the 

deep-pit manure slurry.  
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Table 4.1. Characteristics of the untreated manure sources: Dissolved 

reactive phosphorus (DRP), Total Phosphorus (TP), Total Kjeldahl Nitrogen (TKN), 

Ammonium (NH4), Total Solids (TS). 

Source 
DRPj, 

mg/L as P 
TPk, 

mg/kg as P 
TKNl,         

mg N/L 
NH4

m,          
mg NH4-N/L 

TSn,        
% 

Deep Pito 22 ± 4.8 800 ± 120 3400 ± 170 3200 ± 250 2.2 ± 0.5 
Concrete Storagep 130 ± 13 420 ± 34 -- -- 2.1 ± 0.3 

 

Table 4.2. Average concentration of dissolved reactive phosphorus (DRP) entering 

and exiting the ASTR-Hydrocyclone system. 

 Deep-Pit Storage Concrete Storage 

 No Air, No MgCl2 Air, No MgCl2 Air and MgCl2 Air and MgCl2
 mg/L DRP as P mg/L DRP as P mg/L DRP as P mg/L DRP as P 
In 25 ± 3.4 22 ± 1.7 22 ± 3.2 130 ± 13 
Out 22 ± 2.3 21 ± 7.2 2 ± 0.4 11 ± 1.6 

% Reduction 14%+ Not Significant++ 91%+++ 92%+++

 

TP Removal 

 Table 4.3 provides influent, ASTR effluent, hydrocyclone overflow (effluent 

and ASTR return), and hydrocyclone underflow TP concentrations, averaged across 

the three replications of each treatment in the deep-pit and concrete storage manure 

slurries. Hydrocyclone underflow TP concentrations were found to be significantly 

                                                           
j Dissolved Reactive Phosphorus. Standard Method 4500-P E (APHA, 1998) 
k Total Phosphorus. Standard Method 965-17 (AOAC, 2002) 
l Total Kjeldahl Nitrogen. Standard Method 2001-11 (AOAC, 2000) 
m Ammonium Nitrogen. Standard Method 4500-NH3 B & C for (APHA ,1998) 
n Percent Total Solids. Standard Method 2540 B (APHA, 1998) 
o Manure collected from a finishing facility employing a deep-pit under floor storage system near Ames, Iowa. 
p Manure collected from a finishing facility employing a concrete storage system near Ames, Iowa. 
+ P-value = 0.0108 
++ P-value = 0.6968 
+++ P-value < 0.0001 
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higher than influent and effluent concentrations for all treatments in manure slurries 

from both the deep-pit and concrete storage systems (P< 0.0001).  

Comparing underflow TP concentrations across treatments of manure slurry 

from the deep-pit storage found no significant difference between treatments without 

MgCl2 addition. Introducing MgCl2 with aeration provided a statistically significant 

increase in underflow TP concentration across treatments in manure slurry from 

deep-pit storage (P<0.0001). 

 

Table 4.3. Total phosphorus concentrations (TP) of influent, air sparged tank reactor 

(ASTR) effluent, effluent, and hydrocyclone underflow. 

 Deep-Pit Storage Concrete Storage 
 No Air, No Mg Air, No Mg Air and Mg Air and Mg 
 TP, mg P /kg TP, mg P /kg TP, mg P /kg TP, mg P /kg 
Influent 780 ± 140 930 ± 35 680 ± 150 420 ± 34 
ASTR Effluent 900 ± 49 990 ± 30 860 ± 39 360 ± 79 
Effluent 870 ± 60 900 ± 20 840 ± 58 350 ± 93 
Hydrocyclone 
Underflow 1920 ± 370A B 2000 ± 390A B 2650 ± 668B 580 ± 47 

 

The concentration of TP in the hydrocyclone underflow suggests that a 

portion of TP is being removed from the manure slurry. To identify the reduction of 

TP, the total mass of phosphorus was determined from measurements of influent 

and underflow mass flow rates and their corresponding TP concentrations. Table 4.4 

provides the total mass of phosphorus entering the system and the total mass of 

                                                           
A No Significant Difference P = 0.3510, Treatment without aeration and without MgCl2 vs. Treatment with 

aeration but without MgCl2
B Significant Difference P < 0.0001, Treatment with aeration and MgCl2 vs. Treatment without aeration and 

without MgCl2; Treatment with aeration and MgCl2 vs. Treatment with aeration but without MgCl2
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phosphorus removed from the system in the hydrocyclone underflow, averaged 

across replications for each treatment.   

Results from the deep-pit manure tests show TP removal rates of 12% 

without the addition of MgCl2 and without aeration, 14% with aeration but without 

MgCl2 addition, and 9% with magnesium addition at 7.3:1 Mg2+:PO4
3- and aeration. 

Percent TP reductions between treatment of without MgCl2 injection are not 

significantly different (P-value of 0.9373), however treatments without MgCl2 

injection have significantly higher TP reductions that treatment with MgCl2 in the 

deep-pit manure slurry (no aeration-no Mg inject P-value = 0.0247, and aeration-no 

Mg inject P-value = 0.0222). Manure slurry from the concrete storage system had an 

18% reduction in TP when treated with MgCl2 addition at 1.6:1 Mg2+:PO4
3- and 

aeration. Results from treatments in the deep-pit manure slurry were not expected, 

as treatment with MgCl2 injection provided lower TP removal rates than treatments 

without MgCl2 injection; an examination of these results is provided in the discussion 

section.  

Table 4.4. Total mass and percent reduction of total phosphorus (TP), averaged 

across replications for each treatment of the ASTR-hydrocyclone system 

 Deep-Pit Storage Concrete Storage 
 No Air, No Mg Air, No Mg Air and Mg Air and Mg 
 TP, kg P TP, kg P TP, kg P TP, kg P 

Influent 3.3 ± 1.4 5.5 ± 0.47 2.7 ± 1.1 1.7 ± 0.64 
Hydrocyclone 
Underflow 0.40 ± .19 0.76 ± 0.34 0.25 ± 0.072 0.31 ± 0.039 

% Reduction 12% 14% 9% 18% 
 

                                                                                                                                                                                    
 



                                                                                                                                                                                   
 

 Solids collected in the hydrocyclone underflow hopper from treatment with 

aeration and MgCl2 were air dried and sieved prior to analysis with X-ray diffraction. 

The sieve analysis of solids recovered from they hydrocyclone is shown in Figure 

4.5. X-ray diffraction results of sieve fractions passing 150 and 200 mesh (104 and 

74 microns, respectively) were compared to the software database to identify 

crystalline species present (Figures 4.6 and 4.7). X-ray diffraction results indicate the 

presence of struvite, calcite, and quartz in the fraction passing 150 mesh and 

struvite, calcite, quartz, and dolomite in the fraction passing 200 mesh. The purity 

and amount of struvite formed was not quantified. 

X-ray Diffraction 

Figure 4.5. Sieve analysis of solids recovered from the hydrocyclone underflow for 

analysis of X-ray diffraction of ASTR-Hydrocyclone treated swine manure slurry 
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Figure 4.6. X-ray diffraction results of hydrocyclone solids passing a 150 mesh sieve showing correlating peaks of 

struvite, calcite, and quartz.
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Figure 4.7. X-ray diffraction results of hydrocyclone solids passing a 200 mesh sieve showing correlating peaks of 

struvite, calcite, quarts, and dolomite. 
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Discussion 

 A continuous flow pilot-scale air sparged tank reactor (ASTR) was developed 

and tested for reducing dissolved reactive phosphorus (DRP) on manure slurries 

from two different storage systems (under-floor deep-pit and concrete storage). 

Effluent from the ASTR was processed through a McLanahan Model S1.506 A20 

Hydrocyclone Separator (McLanahan Corp., Hollidaysburg PA) for struvite-based 

phosphorus recovery. The ASTR-hydrocyclone system was initially tested on 

manure slurry from a deep-pit storage system at a flow rate of 115 L/min (31 gpm) 

with a 16-minute HRT with three treatments, performed in triplicate: 1) ASTR-

hydrocyclone without aeration or MgCl2 injection, 2) ASTR-hydrocyclone with 

aeration, but no MgCl2 injection, and 3) ASTR-hydrocyclone with aeration and MgCl2 

injection. Due the low fraction of TP available as DRP (3%) in the deep-pit manure 

slurry, the ASTR-hydrocyclone system was tested on manure slurry from a concrete 

storage system which had 31% of the TP available as DRP for struvite precipitation. 

Manure slurry from the concrete storage was tested only with aeration and MgCl2 

injection, as results from treatment without MgCl2 injection in the deep-pit slurry did 

not provide sufficient DRP reductions for struvite-based phosphorus removal. 

Dissolved Reactive Phosphorus Reduction 

 The ASTR-Hydrocyclone system reduced the DRP concentration by 91% in 

the deep-pit manure slurry when air sparging proceeded at 566 L/min and MgCl2 

was applied at a Mg2+:PO4
3- ratio of 7.3:1. The average influent DRP concentration 

of 22.2 mg P/L was reduced to an average effluent DRP concentration of 2.0 mg 

P/L. Dissolved reactive phosphorus was reduced from 130 mg P/L to 11 mg P/L in 



85

manure from the concrete storage system; the 92% reduction was achieved with 

aeration at 566 L/min and MgCl2 injection at a Mg2+:PO4
3- ratio of 1.6:1. 

 Effluent from the treatment of the deep-pit manure slurry had a significantly 

lower DRP concentration than the effluent of from the treatment of the concrete 

storage manure slurry (P-value < 0.0005). This difference may be attributed to the 

higher struvite conditional solubility product created by over application of 

magnesium during the deep-pit manure treatment and the lower operational pH 

during the concrete storage manure treatment. 

X-ray diffraction and sieve analysis of effluent from the hydrocyclone 

underflow indicates that struvite is being formed as fine particles (<104 microns) in 

the ASTR-hydrocyclone system. Results indicate that the ASTR-Hydrocyclone 

system is capable of effectively and significantly reducing DRP at high treatment 

flow rates when aeration and MgCl2 is applied. Further testing is needed to identify 

the optimal HRT’s, magnesium injection rates, and pH requirements which provide 

adequate treatment levels and minimize capital and chemicals costs. 

Total Phosphorus Removal and Recovery via Struvite Precipitation 

 The maximum amount of struvite-based phosphorus removal and recovery is 

related to the availability of phosphorus as DRP. The ratio of DRP:TP allows for the 

identification of maximum theoretical TP removal rates. Manures with 1:2 DRP:TP 

ratios can provide up to 50% TP removal via struvite precipitation and recovery. 

Manure slurry from the deep-pit storage system had an approximate DRP:TP ratio of 

1:36 (22 mg P/L : 800 mg P/L), indicating only 3% of TP can be removed through 

struvite precipitation and recovery. Manure slurry from the concrete storage system 



86

had an approximate DRP:TP ratio of 1:3 (130 mg P/L : 420 mg P/L), indicating 31% 

of TP could be removed through struvite precipitation and recovery.  

A typical corn crop in Iowa requires 0.50 – 0.54 kg N/25 kg of grain produced 

(1.1 to1.2 lb N/bu) and 0.17 kg P2O5/25 kg of grain produced (0.375 lb P2O5/bu) 

(Iowa State University, University Extension, 2003).  This suggests that manure 

slurries should have a N:P2O5 ratio of 3:1 for land application at a rate which 

balances both N and P for a typical Iowa corn crop. Manure slurry from the deep-pit 

system had an initial N:P2O5 ratio of 1.9:1; if applied at nitrogen levels for a typical 

corn crop in Iowa, phosphorus would be applied in excess. 

To determine achievable treatment levels of struvite-based DRP reduction 

and recovery for TP removal in a specific manure slurry, the relationship between 

the DRP:TP, N:P2O5, and the combined efficiency of DRP reduction and recovery 

should be considered.  

Figure 4.6 illustrates the achievable N:P2O5 ratio dependant upon the 

DRP:TP ratio and combined DRP reduction and recovery efficiencies for a manure 

slurry similar to that used in this study with an initial N:P2O5 ratio of 1.9:1. For 

example, treatment with the ASTR has the potential to adjust the N:P2O5 ratio to 

2.0:1 based on the DRP:TP limit of the deep-pit manrue. To achieve the desired 

(balanced) N:P2O5 ratio of 3:1, manure slurry from this specific system would require 

at least 38% of the TP to be in the form of DRP for the precipitation and recovery of 

struvite, assuming 100% DRP reduction and removal efficiency.  
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Figure 4.6. Achievable N:P2O5 ratio dependant upon the DRP:TP ratio and 

combined DRP reduction and recovery efficiencies for a manure with an initial 

N:P2O5 ratio (1.9:1)q

 

Decreasing the DRP reduction and removal efficiency, necessitates a higher 

percentage of TP to be in the form of DRP to achieve the desired N:P2O5 ratio of 3:1. 

Testing of the ASTR system at bench and pilot-scale indicated that a 90% reduction 

in DRP is achievable with a Mg:PO4 ratio of at least 1.6:1. While the ASTR-

hydrocyclone did not show a significant reduction in TP, an estimate of the required 

DRP reduction and removal efficiency can be identified from Figure 4.6 for a specific 

DRP:TP ratio (and visa-versa). For example, if a treatment system provided a DRP 

reduction and removal efficiency of 70%, the manure slurry from the deep-pit system 

                                                           
q Source: Ames, IA deep-pit production facility (utilized in this study) 
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would require approximately 55% of the TP to be available as DRP to achieve the 

desired N:P2O5 ratio of 3:1.  

The initial N:P2O5 ratio of the manure slurry also plays a significant role in 

determining the required DRP reduction and removal efficiency and DRP:TP ratio to 

provide the desired treatment level. To show this relationship, three initial N:P2O5 

ratios where identified to represent typical Iowa deep-pit facilities (Table 4.5). Figure 

4.7 shows the relationship between the achievable N:P2O5 ratio vs. DRP:TP ratio, 

assuming a 70% DRP reduction and removal efficiency. For example manure slurry 

with an initial N:P2O5 ratio of 1.9:1 would require approximately 55% of the TP to be 

available as DRP to achieve an effluent N:P2O5 ratio of 3:1. A manure slurry with a 

lower initial N:P2O5 ratio of 1.25:1 would require approximately 90% of the TP to be 

available as DRP to achieve the same treatment level with struvite-based 

phosphorus removal. 

Table 4.5. Initial Nitrogen to Phosphorus ratios (N:P2O5) of swine manure slurries 

representing typical Iowa deep-pit finishing facilities. 

N:P2O5 ratio N:P2O5 ratio Source 
High 1.90:1 Ames, IA Producer (utilized in this study) 

Medium 1.40:1 
Nutrient content of finishing pig manure as excreted 

(MWPS 1993) 
Low 1.25:1 Manning, IA Producer (independent lab analysis) 
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Figure 4.7. Achievable N:P2O5  ratio vs. DRP:TP ratio, assuming a 70% DRP 

reduction and removal efficiency. 

   

Hydrocyclone Separation for Phosphorus Removal 

Results from the deep-pit manure tests show TP removal rates of 12% 

without the addition of MgCl2 and without aeration, 14% with aeration but without 

MgCl2 addition, and 9% with magnesium addition at 7.3:1 Mg2+:PO4
3- and aeration. 

Manure slurry from the concrete storage system had an 18% reduction in TP when 

treated with magnesium addition at 1.6:1 Mg2+:PO4
3- and aeration.  

Finding higher TP reduction rates in treatments without MgCl2 injection in 

comparison to treatment with MgCl2 in the deep-pit manure was not expected. The 

precipitation of struvite from MgCl2 injection should theoretically provide higher TP 

reduction rates due to the separation struvite by the hydrocyclone. However, the low 

availability of TP as DRP for struvite precipitation (3%) in the deep-pit manure slurry 
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suggests that treatment with MgCl2 injection will have a small impact on TP recovery 

and may not be identifiable due to the variability between samples collected for 

analysis. All treatments of the deep-pit manure slurry exceeded the theoretical 

struvite-based phosphorus removal rate. The reduction of TP without an associated 

reduction of DRP indicates that prior to treatment, a portion of TP in the manure 

slurry was in the form of dense solids, most likely undigested feed or calcium-

phosphorus precipitates, dense enough to be separated by the hydrocyclone. The 

difference in TP reduction performance between treatments in the deep-pit manure 

slurry is most likely due to TP variability and its impact on the collection of 

representative samples for analysis. 

Theoretical predictions of struvite-based phosphorus removal from the 

concrete storage manure slurry provide a maximum TP reduction rate of 31%. 

Treatment of manure from the concrete storage system provided phosphorus 

removal rates lower than the theoretical struvite-based TP reduction. This indicates 

that the hydrocyclone was not able to capture all precipitated struvite particles. 

Hydrocyclone recovery efficiency is dependant on the particle size and density as 

well as liquid characteristics. Factors which may reduce struvite removal efficiency 

with a hydrocyclone include: precipitation of struvite particles too small to be 

captured, struvite precipitation onto particles with low densities such as organic 

matter, and hindered settling of struvite particles by low density solids.  

Assuming that struvite was the sole contributor to TP in hydrocyclone 

underflow, the system achieved a combined TP reduction and removal efficiency of 

58% in the manure slurry from the concrete storage system. However, results from 
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the deep-pit system indicated separation of TP without struvite precipitation, 

therefore the struvite reduction and removal efficiency was likely less than 58%. 

X-ray diffraction analysis of material passing the 150 mesh (104 microns) 

indicated the presence of struvite, calcite (CaCO3), and quartz (SiO2). X-ray 

diffraction analysis of materials passing the 200 mesh (74 microns) indicated the 

presence of struvite, calcite, quartz, and dolomite (CaMg(CO3)2). The presence of 

quartz indicates sand, most likely introduced to the system through dust, dirt, and 

construction materials. Calcite is a sparingly soluble solid (Ksp of 10-8.34), and is 

common in water systems with high alkalinity (Snoeyink and Jenkins, 1980). In Iowa, 

groundwater is typically classified with high alkalinity levels due to the presence of 

calcium and magnesium hardness. The presence of Mg2+ has been shown to inhibit 

the growth of calcite (Morse, 1983). Therefore, calcite was most likely present prior 

to treatment with the ASTR-Hydrocyclone system. Dolomite is a calcium-magnesium 

complex with a slow precipitation rate (Mamais et at, 1994). Calcium-magnesium 

carbonate species precipitate in solutions with high magnesium concentrations or 

from the supernatants of anaerobic sludge digesters (Snoeyink and Jenkins, 1980); 

therefore it is possible that dolomite was present prior to treatment or precipitated 

due to the over application of MgCl2 during treatment. 

  Specific gravity of crystalline species found in the underflow solids are shown 

in Table 4.6. Quartz, dolomite, and calcite have significantly higher specific gravities 

than struvite. If we are capable of capturing a specific size of struvite particles with 

hydrocyclone separation, we will also capture materials of equal size which have 

higher specific gravities.  
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Table 4.6. Specific gravities of crystalline materials identified by X-ray diffraction in 

sieved hydrocyclone underflow solids. 

 Struvite Quartz Calcite Dolomite 

Specific Gravity 1.7 2.65 2.72 2.85 

 

Further testing should be performed on manure slurries better suited for 

struvite precipitation and the hydrocyclone should be tested under various 

operational flow rates and pressure drops to identify the optimal settings for struvite 

recovery and TP removal from typical manure management systems. Alternative 

methods to separate struvite from ASTR-treated manure slurries should also be 

investigated.   

ASTR-Hydrocyclone Treatment Economics 

 Operational and capital costs associated with implementing the ASTR-

hydrocyclone system were evaluated to provide insight into the economic feasibility 

of struvite-based phosphorus recovery. Table 4.7 provides an estimate of the pilot-

scale ASTR-Hydrocyclone capital cost (Base Cost) and predictions of full-scale 

ASTR-hydrocyclone capital cost. Scaling equipment components from base cost to 

predicted cost was accomplished with Equation 4.3. Each equipment component 

was scaled from defined pilot-scale size parameters (volume, flow rate, horsepower) 

to the required size for a full-scale system. For example, the full-scale cost of the 

reactor tank equals the cost of the pilot-scale tank times the ratio of the required full-

scale volume to the volume of the pilot-scale tank to the power of the economy of 

scale sizing exponent of reactor tanks provided in Table 4.7. 
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Equation 4.2.   
n

PilotScale

FullScale
PiloScaleFullScale Size

SizeCostCost ⎥
⎦

⎤
⎢
⎣

⎡
=  

where: n = economy of scale sizing exponent  (Brown, 2003) 

 

Economies of scale associated with the amount of manure treated annually 

provide incentive for an ASTR-Hydrocyclone system to be operated as a mobile 

treatment system by a custom manure applicator or cooperative. Assuming the 

annual treatment capacity allows the interest and depreciation of the full-scale 

capital cost to be associated into the operational costs on a per unit treatment base. 

Furthermore, a selling price of the service can be defined to provide the custom 

manure applicator or cooperative to achieve an expected return on investment. 

The operating costs included in analysis were direct costs of energy and 

chemical consumption and indirect costs of interest, depreciation, and selling price. 

Operational cost of the full-scale system was assessed at a continuous flow rate of 

5700 L/min (1500 gal/min), assuming the annual treatment capacity to be 450 million 

L/year (119 million gallons/ year). Indirect costs of annual interest were set 6% for a 

10-year loan, a 10% straight-line depreciation was assumed over the useful life of 10 

years, and selling price of the treatment service was set to achieve a 10% return on 

investment. Fuel consumption to operate the full-scale system was estimated to be 

17 L/h, the cost of diesel fuel used was $0.91/L (Energy Information Administration, 

27 November 2007). The market price for bulk MgCl2 used was $0.95/kg Mg2+ 

(Hydrite Chemical Co., Iowa). 
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Table 4.7. Capitol cost and unit cost of the pilot-scale ASTR-Hydrocyclone and 

predicted cost of full-scale ASTR-Hydrocyclone systems 

 
Pilot Scale Unit, 190 L/min (50 gal/min)    Predicted Full Scale Cost  

Equipment Size Base Cost  
n, Sizing 
Exponent  1900 L/min 5700 L/min 

Intake Pump 200 L/min  $      3,800  0.52r   $     12,252   $     22,279  
Hydro Pump 750 L/min  $      8,000  0.52q   $     12,972   $     26,490  
Hydrocyclone  550 L/min  $      6,000  1q   $     20,727   $     62,182  
Tank 3780 L  $      1,800  0.3q   $      3,591   $      4,994  
Trailer 22,000 kg  $      2,900  0.92s   $     24,000   $     65,784  
Generator 15 kW  $      2,200  0.75q   $     12,372   $     28,201  
Compressor 566 L/min  $      1,000  0.75q   $      5,623   $     12,819  
Magnesium 
Pump 850 W  $         800  0t   $         800   $         800  
Influent Flow 
Meter 2"  $      2,850  0.05u   $      3,196   $      3,375  
Effluent Flow 
Meter 4"  $      2,950  0.05t   $      3,308   $      3,494  
Air Flow Meter   $         700  0s   $         700   $         700  
Underflow Mass     $         500  0s   $         500   $         500  
        
Total Equipment   $     33,500     $   100,042   $   231,617  

Construction 
Materials  

$     10,000    $     23,010v $     53,272u

        
Total Base  190 L/min  $     43,500     $   123,051   $   284,889  

Base Cost per 
Treatment 
Capacity  L/min  $         229       $           65   $           50  

 

Energy cost for the full-scale ASTR-hydrocyclone system was estimated to be 

$0.0452/1000L manure slurry treated ($0.172/1000 gal). The chemical cost 

associated with treatment is directly proportional to the amount of phosphorus 

reduction required. Higher TP removal rates require larger chemical amendments 

                                                           
r Source: Brown, 2003 
s Source: Mid-State Utility Trailers, Omaha NE 
t Assumed to have zero scale due to low flow rates 
u Calculated from difference in price and capacity of purchased units 
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which increases the operational cost, Equation 4.1 calculates the chemical cost 

dependant upon the required reduction of total phosphorus.  Table 4.8 provides a 

summary of total operating cost of treatment, due to the variations of chemical 

requirements for different hog production facilities, the chemical cost is associated 

as a variable dependant upon the required phosphorus removal rate. Equation 4.2 is 

an estimate of the total cost per 1000L of deep-pit manure treated by a custom 

applicator or cooperative. A case study of a typical deep-pit finishing facility in Iowa 

is presented below to evaluate the system economics of struvite-based phosphorus 

removal. 

 

Equation 4.1.   [ ]removalChemical TPCost 0127.0=  

where:  CostChemical = Magnesium Chloride Cost, $/1000 L slurry treated 

  TPremoval = Required reduction of total phosphorus, mg P/L  

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                    
TP

v Based on 23% of total cost required for materials to build pilot-scale unit 
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Table 4.8 Summary of operating costs for a full-scale ASTR-hydrocyclone system 

treating 450 million L of manure slurry per year at a flow rate of 4700 L/min. 

Capital Cost  $          285,000  450 million L/year capacity 
   
 Cost, $/1000L Description 
FIXED COST   
Direct    
Fuel $           0.0452 Cost of diesel fuel $0.91/L 
   
Indirect   
Capital Charge  $           0.0860  6% interest for 10 years on total capital cost 
Depreciation  $           0.0633  10% straight line depreciation of total capital 
   
VARIABLE COST 
   
Chemical  $       0.0127[TPRemoval] From Equation 4.1  
   
TOTAL COST   
Operating  $ 0.0127[TPRemoval] + 0.1946  
   
CUSTOM 
CHARGE $ 0.0127[TPRemoval] + 0.2140 10% gross return on investment 

  

Equation 4.2.   [ ] 214.00127.0 += removalCustom TPCost  

where:  CostCustom = Custom applicator charge, $/1000 L slurry treated 

  TPremoval = Required reduction of total phosphorus, mg P/L  

Case Study  

Values used in this case study are intended represent a typical Iowa deep-pit 

pork production facility. A 10,000 head/year deep-pit pork production facility near 

Manning, IA produces approximately 6.0 million Liters of manure slurry per year (1.6 

million gallons/year). An independent lab analysis indicates that the slurry contains 

5.31 kg N/1000L and 2.82 kg P2O5/1000L (25.8 lb N/1000gal and 23.5 lb 

P2O5/1000gal). Based on crop nutrient requirements and facility information, 
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approximately 430 acres of corn is needed for manure slurry application at nitrogen 

levels. Assuming that the producer has no additional land and cannot economically 

export the liquid manure, if regulations require the application of the swine manure 

slurry based on phosphorus levels, the producer must reduce the phosphorus 

generated by the facility or remove phosphorus prior to land application.  

To comply with phosphorus based application regulations, the producer could 

reduce the number of pigs fed per year from 10,000 to approximately 6,400 (36% 

reduction). Furthermore, applying the manure slurry at phosphorus levels creates a 

nitrogen deficit of approximately 11,400 kg N/yr (25,000 lb N/yr). This requires an 

additional application of commercial nitrogen fertilizer to maintain corn yields, at a 

yearly fertilizer cost of $6,400 (Anhydrous ammonia $510/ton, Heartland Coop, 

Slater, IA, Fall 2007). 

Assuming that a custom applicator or cooperative operates a mobile struvite-

based treatment system with a DRP reduction efficiency of 90% and removal 

efficiency 80% (combined DRP removal and recovery efficiency of 72%), the number 

of pigs which can be placed back into the production facility can be determined. If 

50% of the TP is available as DRP for struvite precipitation, treatment would allow 

the production facility to feed approximately 10,000 pigs per year. Furthermore, 

treatment would recover approximately 6,140 kg P2O5/year (13,500 lb P2O5/year). 

Liquid swine manure is typically sold at 70% of their nutrient value, assuming that 

the separated solids can be sold for 70% of the commercial phosphate value, a 

revenue of $2,300/year could be realized (Phosphate $495/ton, Heartland Coop, 

Slater, IA, Fall 2007).  
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Based on the economical analysis of the full-scale ASTR-hydrocyclone 

system, avoidance of commercial nitrogen fertilizer, and sale of separated 

phosphorus, the yearly cost of treatment would be approximately $222,000. For this 

case study, to offset the cost of treatment, a profit of at least $61.66/pig replaced 

would be required. For the entire 10,000 head production facility, the annual cost 

equates to $22.20/pig space or $0.0353/L of deep-pit manure slurry treated 

($0.134/gal).  

Custom feeding operations are contracted by large producers to finish pigs to 

market weight. The average custom feeding operation in western Iowa is paid 

$13.50 per finished pig for operational management, facilities, utilities, labor, and 

manure management (personal correspondent with a custom feeding operation near 

Manning, IA). This indicates that struvite-based phosphorus removal system tested 

is not currently economically viable for deep-pit hog production. 

Conclusion 

Field experiments with the ASTR-Hydrocyclone treatment system 

demonstrated that it was possible to significantly reduce the quantity of dissolved 

reactive phosphorus (DRP) in swine manure slurry when aeration and MgCl2 were 

provided. Average DRP reductions of 91% were observed at continuous flow 

treatment rates of 115 L/min (31 gal/min), producing an effluent with an average 

DRP concentration of 2 mg P/L in manure slurry from deep-pit storage. Average 

DRP reductions of 92% were observed at continuous flow treatment rates of 80 

L/min (21 gal/min), producing an effluent with an average DRP concentration of 11 

mg P/L in manure slurry from a concrete storage system. 
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A hydrocyclone separator was implemented to provide struvite-based total 

phosphorus (TP) reductions. The ASTR-hydrocyclone system provided TP removal 

rates of 9% to 14% in manure slurry from deep-pit storage and 18% in manure slurry 

from a concrete storage system. Comparisons of ASTR-hydrocyclone treatments 

and theoretical struvite-based TP removal rates versus actual TP removal rates 

indicate that the hydrocyclone did not provide sufficient struvite separation 

efficiencies as operated. Analysis of struvite precipitation efficiency and required 

phosphorus reduction levels in typical deep-pit manure slurries indicates that a 

feasible separation system should provide struvite removal efficiency of 70% to 80%. 

X-ray diffraction of solids collected from the underflow of the hydrocyclone indicated 

the presence of struvite as small particles. The quantity and purity of struvite 

collected was not determined. Further research should focus developing an 

alternative method to remove struvite from ASTR treated manure slurries.  

Prior to the application of struvite-based phosphorus recovery, manures 

should first be analyzed to determine if treatment can provide the desired 

phosphorus reduction levels. Achievable treatment levels of struvite-based DRP 

reduction and recovery for TP removal in a specific manure slurry is dependant on 

the relationship between the DRP:TP, N:P2O5, and the combined efficiency of DRP 

reduction and recovery. Manure slurries with high DRP:TP ratios have the potential 

to provide significant TP reductions dependant upon the initial N:P2O5 ratio and 

degree of separation efficiency required to achieve a manure slurry balanced in 

terms of N and P for a specific crop. Further testing of the ASTR-Hydrocyclone 
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system should be performed on manure slurries with significant portions (>30%) of 

TP available as DRP for precipitation as struvite.  

An analysis of chemical, energy, capital, and depreciation operational costs 

for a full-scale (4700 L/min) ASTR-hydrocyclone unit indicated a high dependence 

on phosphorus removal requirements. The chemical cost of magnesium amendment 

is directly related DRP reduction needed to achieve the desired treatment level. A 

case study of a typical Iowa deep-pit pork production facility feeding 10,000 

head/year, could implement struvite-based phosphorus removal with an ASTR-

separation system for an approximate yearly cost of $222,000. This annual cost 

equates to $22.20/pig space or $0.0353/L of deep-pit manure slurry treated ($ 

0.134/gal) and indicates that the struvite-based phosphorus removal system tested 

in deep-pit swine manure is not economically viable. 
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CHAPTER 5 

GENERAL CONCLUSIONS 

 

 Struvite precipitation is a technically feasible method capable of reducing 

dissolved reactive phosphorus (DRP) allowing for total phosphorus (TP) removal and 

recovery from swine manure slurries. Point of treatment considerations within 

modern pork production facilities indicate that the most feasible struvite treatment 

scheme should be implemented during land-application events; necessitating a 

treatment system capable of operating at high flow rates.  

Bench-scale and pilot-scale continuous flow air sparged tank reactors 

(ASTR), incorporating aeration and MgCl2 injection, provided and maintained 

significant reductions of dissolved reactive phosphorus in swine manure slurries 

(78% and 95% bench-scale, 91% and 92% pilot-scale). The pilot-scale ASTR was 

capable of effectively and reliably reducing DRP from swine manure slurries at an 

average flow rate of 80 to 115 L/min.  

Dissolve phosphorus reduction performance utilizing manures slurries 

collected from four different manure management systems (two at bench-scale and 

two at pilot-scale) indicates that the simple design provides a flexible system for 

application at various full-scale operations. The well defined sizing criteria of the 

ASTR allows for the design of a full-scale system which could be an effective 

method to precipitate struvite at high flow rates required for application to existing 

modern pork production facilities. However, achieving TP reduction with the ASTR 
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requires a downstream separation system capable of effectively and efficiently 

removing precipitated struvite. 

A hydrocyclone separator was implemented to provide struvite-based total 

phosphorus (TP) reductions from ASTR treated manure slurries. X-ray diffraction of 

solids collected from the underflow of the hydrocyclone indicated the presence of 

struvite. Comparisons of ASTR-hydrocyclone treatments and theoretical struvite-

based TP removal rates versus actual TP removal rates indicate that the 

hydrocyclone does not provide sufficient TP separation efficiency as operated. 

Selection of Manures Suitable for TP Reduction via Struvite Precipitation 

Achievable treatment levels of struvite-based DRP reduction and recovery for 

TP removal in a specific manure slurry is dependant on the relationship between the 

DRP:TP, N:P2O5, and the combined efficiency of DRP reduction and recovery. 

Manure slurries with high DRP:TP  may have significant TP reductions with a 

effective and efficient separation system, providing the opportunity to balance the 

manure for N and P crop requirements. 

Prior to the application of struvite-based phosphorus recovery, manures 

should first be analyzed to determine if treatment can provide the desired 

phosphorus reduction. By adjusting MgCl2 amendment rates, a predetermined 

fraction of DRP can be precipitated as struvite for recovery, allowing site-specific 

treatment capable of producing a manure slurry fertilizer, which is balanced to meet 

crop requirement in terms of N and P nutrients.   

Magnesium Demand Determination 
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Determining the real-time magnesium demand for a specific reduction of DRP 

via struvite precipitation is essential for the application of an economically viable 

struvite precipitation system. Laboratory experiments with several manures indicated 

that monitoring solution conductivity during struvite precipitation does not provide an 

indication of reaction completion. Current methods to directly monitor the availability 

of magnesium, ammonium, and phosphate are not technically or economically viable 

for implementation in on-farm treatment systems. 

Pilot-scale Economics 

 An analysis of chemical, energy, capital, and depreciation operational costs 

for a full-scale (4700 L/min) ASTR-hydrocyclone unit indicated a high dependence 

on phosphorus removal requirements. A case study of a typical Iowa deep-pit pork 

production facility feeding 10,000 head/year, could implement struvite-based 

phosphorus removal with an ASTR-seperation system for an approximate yearly 

cost of $222,000.The capital cost of the pilot-scale ASTR-hydrocyclone was 

calculated to be $43,500, providing a per unit treatment cost of $229/ L/min. 

Estimations of the capital cost for full-scale units (1900 L/min and 5700 L/min) 

indicates a total capital cost of $123,000 and $285,000, respectively; full-scale 

capital costs on a per unit treatment base are estimated to be $65/ L/min and $50/ 

L/min, respectively. 

 

Recommended Future Research 

• Optimization of the ASTR, accounting for economics vs. degree of 

treatment by determining: 
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o Minimum requirements for hydraulic retention time HRT 

o Required pH adjustment level 

o Required magnesium demand 

• Modifications to the ASTR system 

o Incorporation of automated flow monitoring 

o Implementation of a caustic amendment system to provide 

supplemental pH adjustment when aeration alone is not adequate 

• Identification of a viable separation system to remove struvite from ASTR-

treated manure slurries 

• Focused investigations of hydrocyclone operational conditions to identify 

the effect of applied gravitational force on:  

o Overall struvite removal efficiency 

o Recoverable struvite particle size 

o Overall nutrient content and value of recovered solids 

• Modification of the hydrocyclone solids separator to operate as a 

traditional hydrocyclone. 

• Further testing of the ASTR-Hydrocyclone system should be performed to 

identify optimal operational conditions and hydrocyclone separation 

efficiencies in manures with: 

o  Significant portions of TP available as DRP for precipitation as 

struvite (>30%). 
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o Low and high solids content due to variations in manure 

management practices (deep-pit, covered storage tanks, open 

storage tanks) 

 

 

• Dewatering, processing, and handling of separated solids 

• Development of a phosphate ion selective electrode (ISE) that is capable 

of withstanding the harsh environment of manure to monitor the 

magnesium demand for struvite precipitation in real-time. 

• Development of a dedicated economic model evaluating struvite-based 

phosphorus removal 

o Capital investment vs. treatment capacity 

o Economies of scale based on total yearly treatment 

o Operational costs associated with  

 Chemical and energy requirements 

 Depreciation, maintenance, and labor 

 Combined removal and separation efficiency 

o Cost reductions associated with  

 Reduced magnesium and chemical dependence 

 Reduced land application requirements 

 Transportation or pumping of liquids off-farm 

 Reduced field operations and direct cost of supplemental 

commercial fertilizer application 
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 Value of recovered solids 

  

 


	2007
	Concentration and extraction of phosphorus from swine manure slurries as struvite
	Timothy Allen Shepherd
	Recommended Citation


	Theory
	Materials and Methods
	Magnesium Chloride Injection in Distilled Water
	 
	Magnesium Chloride Injection in PO43-:NH4+ Solution
	Magnesium Chloride Injection in Manure

	Results
	Magnesium Chloride Injection in Distilled Water
	 
	Magnesium Chloride Injection in PO43-:NH4+ Solution
	Magnesium Chloride Injection in Manure Slurries

	Materials and Methods
	Bench-scale Design
	Manure Slurry Sources
	Sample Analysis
	Bench-scale Operation

	Experiments and Results
	ASTR Performance
	ASTR-UFC Performance


