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Abstract

With the ability to monitor soil moisture in time comes the opportunity to develop ways to

incorporate these measurements into predictive models, without compromising or overriding the

model physics. The importance of soil moisture to the growth of crops is well understood and

because of this it is recognized as one of the more important parts of crop modeling programs.

This research focused on improvements to the Decision Support System for Agrotechnology

Transfer - Cropping System Model (DSSAT-CSM) as determined by the accuracy of soil mois-

ture estimates. To accomplish this, data assimilation techniques were implemented to process

the uncertainty of the model estimates and in situ measurements of soil moisture. Consid-

eration of soil parameter uncertainty, which influences model estimates of soil moisture and

model output, was taken into account using a Monte Carlo approach. A Kalman filter was

used to combine the model estimates of soil moisture with in situ soil moisture measurements,

while varying several important soil parameters in the model using a Monte Carlo approach.

Covariances for the Kalman filter were calculated for the model and measurements based on

the model’s standard deviation from the Monte Carlo soil moisture estimates and the standard

deviation of the in situ soil moisture measurements. Data for this study was obtained from

a research study conducted on irrigated wheat during the winters of 2003-04 and 2004-05 in

Maricopa, Arizona, in which thorough field and crop data were collected. Results of the simu-

lations were compared against biomass and yield measurements to determine the effectiveness

of the data assimilation scheme. The Monte Carlo approach with assimilation done in the top

layer of the soil profile was only able to moderately address uncertainty present in the soil

parameters. Improvement resulted for data assimilation of soil moisture through the reduction

of the error between the measured and simulated grain yield and canopy weight for 47% and

37% of the simulations for the 2003-2004 and for 25% and 32% of the simulations for the 2004-

2005 season, respectively. Assimilation was more effective for improving the model output of
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grain yield for the 2004-2005 than the 2003-2004 season and canopy weight for the 2003-2004

season than the 2004-2205 season. The results of model estimated daily NO3 levels in the

soil layers from data assimilation simulations indicates that assimilation of soil moisture can

influence its levels. The data assimilation combined with a Monte Carlo approach showed the

use of remotely sensed soil moisture could lead to improvements of frequently studied model

outputs, such as grain yield and canopy weight. Further study is needed to fully understand

the most desirable conditions for soil moisture assimilation and what other influencing effects

data assimilation of soil moisture presents.
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CHAPTER 1. Overview

1.1 Introduction

In agriculture and hydrology, computer simulation models are used to carry out experiments

and research for environments, conditions and situations that are hard or costly to replicate,

reach or find. The models allow researchers and scientists to complete varying experiments

without having to physically recreate the experiments or observations which are often costly

and time-consuming. Models are used in this manner to simulate different weather, soil, land

use, and vegetation conditions.

Food security and production sustainability benefit from the production data and crop yield

information provided by crop models. The models benefit scientists, policy-makers, and the

general public for use in precision agriculture, crop development, economic forecasting, famine

predictions, and global crop forecasting as well[Chen et al. (2008)].

Crop growth models have been used for many years to predict yield, monitor crop growth,

and manage farms. The Decision Support System for Agrotechnology Transfer - Cropping

System Model (DSSAT-CSM) has been used by scientists and researchers for years to predict

crop yields for a family of 25 crops. DSSAT-CSM implements its crop models into a common

simulation platform that share key non-plant modules such as soil and weather. Moreover, the

DSSAT-CSM is still widely used and have are continually being updated to meet ever present

modeling demands, making use of improved cropping models and non-plant modules [Jones

et al. (2003)].

In recent years agricultural production has adopted new standards and procedures to meet

the worlds demands for food supply while focusing on maintaining the efficiency of production.

Agricultural production has been able to take advantage of the rapidly growing technologically
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advanced, affordable scientific equipment, such GPS, satellites, and sensors, designed for appli-

cations in information management and collection. This implementation has grown into what

is considered today to be precision agriculture. Since the evolution of precision agriculture

models, more specifically crop models, are now being used more regularly and at higher spatial

resolutions [Batchelor (2002)]. The models require inputs of weather, soil property, manage-

ment practices, and cultivar characteristic information in order to simulate biological processes

like crop growth. Now that data and measurements for these parameters or variables are being

used more frequently, at finer resolutions and on larger scales, they offer the opportunity to

improve model accuracy. However, relatively few studies have been done with the focus being

on using measured environmental conditions along with agricultural crop models, particularly

in the case of soil moisture with DSSAT-CSM.

Soil water content is considered a significant factor in crop models, because the importance

of and influence of soil moisture on crop growth is well known. Soil water content is a key factor

specifically for the DSSAT-CSM model because its estimated value is used frequently in the

soil-plant-atmosphere, plant, and management modules within the DSSAT-CSM model [Jones

et al. (2003)]. These modules in the crop model take advantage of the relationship between soil

water content and transpiration rates. The amount of water content most importantly directly

relates to water availability for crop growth [Bert et al. (2007)]. Amongst other factors, such

as weather, genetics, and plant population, water stress is known to limit yield [Batchelor

(2002); Novak et al. (2005)]. Thus soil water content is important for accurately simulating

crop growth.

In recent years there have been efforts at improving the water balance module and methods

in DSSAT-CSM. These studies recognize and are based on the idea that the DSSAT-CSM water

balance methods could benefit from improved ability to estimate soil moisture. Models such as

Root Zone Water Quality Management, RZWQM, have been coupled with the crop modules

of the DSSAT-CSM to help improve the water profile estimates [Ma et al. (2005, 2006)]. There

has also been an increase in the use of in situ measurements, observations and remotely sensed

data combined with crop models to improve their predictions [Chen et al. (2008)].

Maas (1988) presented the usefulness of several techniques specifically focused on using



3

remotely-sensed data in improving models, these were again revisited by Moulin et al. (1998).

(a) direct use of a driving variable in the model

(b) updating of a state variable in the model

(c) re-initialization of the model

(d) re-calibration of the model

The four procedures that they covered form the basis of what is called data assimilation.

Data assimilation based on “updating” consists of taking a measurement and inserting into

the model as a replacement for or in combination with the estimated state variable in manner

to achieve an updated model estimated state variable. A state variable represents the value

or state of a condition within the model that changes in time. The goal of incorporating the

measurement is to obtain an optimal or true state variable in the model. The state variable is

considered optimal or most representative of the value in reality as far as modeling is concerned

is when the state variable has the lowest possible uncertainty but sometimes it is considered as

having minimum variance.

Because both model estimates and in situ measurements contain errors, using a combination

of the two while considering their corresponding errors should yield a superior estimate. To

combine the model estimate and the measurement, an assimilation algorithm, such as a Kalman

filter, is required. The Kalman filter is an algorithm that weights the uncertainty of the

measurement against the uncertainty of the model estimate to obtain a gain value, the Kalman

gain. The Kalman gain is applied to the residual or difference between the measurement and

model estimate which is then added to the previous model estimate to achieve the optimal

state variable or new model estimate [Reichle (2008)].

Many successful studies have been conducted in which a Kalman filter has been implemented

to assimilate observational data into models. The Kalman filter has the ability to efficiently

and effectively take in situ measurements and combine them with model estimates to improve

DSSAT-CSM predictions, specifically considering soil moisture values. Data assimilation of soil
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moisture in situ measurements should improve, specifically, the yield prediction of DSSAT-CSM

version 4.

This study will be focusing on the “updating” data assimilation scheme that Maas (1988)

covered, based on in situ measurements. This research is driven by the hypothesis that as-

similation of soil moisture observations using a Kalman filter will improve the model output,

specifically grain yield and canopy weight, of the DSSAT-CSM.
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CHAPTER 2. Review of Literature

2.1 Soil Moisture

With the recent development of precision farming the research community can foreseeably

provide the agricultural community with useful data but also important insights on how the data

is useful within their area. As precision farming continues to grow the agricultural community

would greatly benefit from new technologies such as soil moisture networking systems. The

importance of soil moisture and its influence on crop growth and yield is well known. Amongst

other factors, such as weather, genetics, and plant population, water stress is known to limit

yield [Batchelor (2002)].

Soil moisture is important in agriculture. It is of specific interest for crop irrigation schedul-

ing because of water’s limited availability and managing it effectively often requires reliable

information about evapotranspiration or ET [Hunsaker et al. (2007a)]. It has also been a

consideration in water management, meteorology and land surface climate models [Paniconi

et al. (2003)]. The study, understanding, and management of surface geophysical processes is

dependent on the temporal and spatial variation soil moisture, since it is the bridge connecting

the hydrologic cycle with the energy budget of land surfaces [Houser et al. (1998)]. Therefore,

when considering agricultural production and plant science, water, specifically soil moisture, is

considered one of the most important factors.

Water is a crucial medium for nutrient transport and exchange, cooling and other processes

necessary for plant growth. Furthermore, the drainage of water through the soil profile in-

fluences the level of nutrient availability. The necessary soil water content for processes such

as nutrient and oxygen movement can only be properly simulated if the components of the

water budget such as infiltration, runoff, drainage, evaporation, and root water uptake rates
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are reasonably simulated.

This is particularly relevant when modeling crop growth and requires that we are able

to reasonably simulate soil moisture [Tsuji et al. (1998a)], specifically in the DSSAT-CSM

because the estimated value of soil water content is used in the Soil-Plant-Atmosphere, Plant,

and Management modules [Jones et al. (2003)]. Transpiration rate, which is limited by soil

water content, is one of the many processes that can affect yield [Novak et al. (2005)]. The

water content can indirectly affect yield predictions but most importantly its value directly

relates to water availability for crop growth [Bert et al. (2007)].

2.2 DSSAT-CSM

The Decision Support System for Agrotechnology Transfer - Cropping Systems Model

(DSSAT-CSM) has been created and utilized to model crop growth for many years. It is a

physical model, versus a statistical model, that computationally simulates the biological pro-

cesses that occur during crop growth. In 2010, the International Consortium for Agricultural

Systmes Applications (ICASA) released a new version of the DSSAT called the DSSAT-CSM

4.5. DSSAT-CSM version 4 and beyond have had the underlying code restructured into modu-

lar components. The physical layout and organization of the program was modularized so that

its components were more accessible and easily maintained. The new organization allows each

plant or cultivar module to use the same soil, weather, and management modules [Jones et al.

(2003)].

The DSSAT-CSM has been used widely in the academic and research community [Jones

et al. (2003)] and provided valuable insight into understanding the processes of diverse agri-

cultural cropping systems. The DSSAT-CSM has been evaluated for various cropping systems

creating a good foundation for the testing of new routines and changes to current routines in

the model.

2.2.1 DSSAT-CSM Structure and Operation

The DSSAT-CSM’s main purpose is to manage information for and control the simulation

of 25 cultivar models. To do so it takes into consideration weather, soil, and plant dynamics as
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well as irrigation and management practices, and plant stresses.

The Main Program of the DSSAT-CSM, consisting of six operational steps, is the controlling

structure for the time loops and modules. The Land Unit Module handles the communication

and control between the Main Program and six primary modules; Weather, Management, Soil,

Soil-Plant-Atmosphere, CROPGRO Crop Template, and Plant. Each of these primary modules

contains sub modules relevant to fulfilling the modules purpose.

The Land Unit Module is responsible for transferring data to the Plant module, and sub-

modules of the Plant module such as CERES-Wheat, needed to simulate crop growth. CERES-

Wheat has been extensively evaluated and validated for use in many different locations, having

unique soil and climate conditions, and varieties. Its successful performance has been well-

documented making it a reliable and trusted crop model [Jones et al. (2003)].

2.2.1.1 Weather Module

The DSSAT-CSM will accept user provided weather data or it can simulate site relevant

weather data based on historical data using SIMMETEO or WGEN. The required daily inputs

are minimum and maximum temperature, dew point temperature, solar radiation, wind, and

precipitation.

2.2.1.2 Soil-Plant-Atmosphere Module

Within the Soil-Plant-Atmosphere module the daily plant transpiration and soil evapora-

tion is calculated. Potential evapotranspiration (ET) is scaled up from a Penman-Monteith

reference ET using a crop coefficient based on leaf area index. Actual ET is calculated from

soil moisture conditions. To calculate the actual evapotranspiration and the potential ET this

module requires the daily weather inputs as well as soil properties, soil water content and leaf

area index. Soil water content and leaf area index are computed daily but the initial soil water

contents and soil properties are provided to the DSSAT-CSM in a specific file. To determine the

ET values, root uptake through each soil layer is computed, which also requires the calculation

of root length density for each soil layer.
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2.2.1.3 Management

Planting, Harvest, Irrigation, Fertilization, and Residue are all the sub-modules included

within the Management module. These sub-modules are used to specify and control, through

user inputs, when their corresponding management practices take place and at what level. All

of these practices can be scheduled in the DSSAT-CSM experiment file or automated by the

DSSAT-CSM. Automation is typically based on the number of days from planting or when

certain conditions are reached. Automatic planting occurs when the soil water content in the

top 30cm and the soil temperature have reached preset limits. Likewise, automatic harvesting

can occur when the crop has reached maturity or the soil water content permits machine field

operations. If irrigation is desired and a user-specified schedule is not provided, it is triggered

when the available plant water drops below a fraction of water holding capacity for a given

management depth. Inorganic fertilizer application takes place on the provided days or when,

for automatic management, the plants require it, based on the plant nitrogen stress level.

Applied organic fertilizer and crop residue are can be accounted for at the beginning of the

simulation, after harvest or based on user specified days.

2.2.1.4 CERES-Wheat Sub Module

Each of the Plant sub-modules or crop models represents an different individual crop, each

having different phenological parameters. Each model is capable of simulating respective growth

stages, plant nitrogen and carbon demands. One specific crop model available is CERES-

Wheat. The CERES-Wheat model has been specifically designed to exhibit the behaviors,

specifically growth and yield, of individual wheat species.

CERES-Wheat simulates seven stages of the wheat plant life: germination, emergence,

terminal spikelet, end ear growth, beginning grain fill, maturity and harvest. Growing degree

days, calculated using the maximum and minimum daily temperatures, determine the the rate

of development. Progress from one stage of growth to another can be based on specific user

defined inputs or it be computed within the module using other user inputs.

Consideration of dry matter or dry biomass accumulation is part of the model’s physics as
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well. Daily intercepted light, based on leaf area index (LAI), plant population and spacing,

is converted to dry matter using a radiation use efficiency parameter. Dry matter totals for

each day are also influenced by soil water, soil nitrogen, air temperature, atmospheric CO2

concentration, depending on the most limiting [Jones et al. (2003)].

2.2.1.5 Soil Water sub module

The Soil module includes a sub-module that utilizes water balance dynamics for calculation

of soil moisture. Other sub-modules that are included use the dynamics for nitrogen, carbon

and temperature to determine their respective state.

The soil water balance model, originally developed for CERES-Wheat, was created as a

one-dimensional model, using irrigation, infiltration, vertical drainage, unsaturated flow, soil

evaporation and plant root uptake processes to compute the daily water content changes expe-

rienced by each layer in the soil profile.

Soil water movement downward through the soil profile is modeled using a “tipping bucket”

method, when the water content is above the drained upper limit, or level at which no further

drainage can take places. The soil parameter provided for diffusivity and differences between

the adjacent layers’ soil water content are used to calculate the upward saturated flow.

Infiltration is calculated as the difference between the precipitation and runoff calculated

using the Soil Conservation Service - Curve Number method [Soil Conservation Service (SCS)

(1972)]. The DSSAT-CSM however includes a modification to the SCS-CN method, by Williams

et al. (1984), that compensates for soil layers and also for initial soil water content at the time

of precipitation. Irrigation is assumed an additive component of total precipitation. Water

accumulates above a soil layer only if the drainage, downward soil water movement, for the layer

is greater then saturated hydraulic conductivity considered over a 24 hr period, which results

in the actual drainage being equal to the saturated hydraulic conductivity over a 24 hr perio.

Otherwise the actual drainage through the each layer is assumed to be the calculated vertical

drainage for the layer. Drainage through each layer is considered only after a total drainage for

the soil profile has been calculated, which is determined by a global soil drainage parameter.

Also, as mentioned, the Soil-Plant-Atmosphere module calculates the soil evaporation and plant
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root uptake. These fluxes are all calculated as equivalent depths and added or subtracted to

the soil water content for each layer on each day. The DSSAT-CSM uses a water balance

method that at times may oversimplify what is actually happening in the local soil profile. The

DSSAT-CSM version 4 uses the same SCS CN, method from version 3.5 and earlier.

The curve number method should not be assumed to provide accurate runoff and infiltration

values for specific storms [Tsuji et al. (1998a)]. Sadler et al. (2000) also found that the model

overestimates infiltration when using the SCS curve number method. So notably, this will affect

the accuracy of the DSSAT-CSM’s soil moisture estimation. However, it has been shown that

the SCS-CN within the DSSAT-CSM, can in fact perform well [Liu et al. (2011)].

2.3 Data Assimilation

Soil moisture is influenced by vegetation, ground cover and soil conditions. This dependency

is one that leads to spacial and temporal variability. To address variability or uncertainty of

soil moisture studies focus on improving the soil moisture estimates of the models.

In recent years there have efforts at improving the water balance module and methods in

DSSAT. Models such as Root Zone Water Quality Management, RZWQM, have been coupling

with the crop growth modules of the DSSAT-CSM to help improve the water profile data

[Ma et al. (2005, 2006)]. There has also been an increase in the use of in situ measurements,

observations and remotely sensed data combined with crop models to improve their predictions

[Chen et al. (2008)].

The DSSAT-CSM has been created independently of the research that has been done devel-

oped systems or methods with the ability to utilize in situ measurements to benefit knowledge

of crop production and crop growth. They have the ability to complement each other well and

could improve the understanding of crop growth and forecasting if used in combination with

each other. Each has their own but different advantages but each has drawbacks. With the

marriage of the two we can hope to eliminate or at the very least weaken the drawbacks effect

on the prediction of crop production.

We acknowledge that models are by nature imperfect however there may be ways to improve

the models without completely rewriting or making them more complex. One way to do this is



11

through the consideration of the observed or measured data. We also know that measurements

can be imperfect and have error but we also know that they are constrained and most likely

have a lower error value. We can take advantage of this lower error value and the constraints

that the observed data has by applying it to the model’s state variable estimates. The use of

state variables here could also be changed to focus on the optimizations of state parameters,

mainly through iterative model simulations.

Moulin et al. (1998) and Maas (1988) discussed the four main procedures for utilizing data

to improve models. These four procedures make up an area that is called data assimilation.

(a) direct use of a driving variable in the model

(b) updating of a state variable in the model

(c) re-initialization of the model

(d) re-calibration of the model

The meteorology field has used data assimilation for quite some time. The hydrological com-

munity is starting to use them more regularly and also find success with their implementation

[Paniconi et al. (2003); Alavi et al. (2009)].

As we consider data assimilation options or configurations, one of the biggest decisions is

choosing an appropriate system or algorithm for melding observed data and the model state

variables. The decision becomes important because there are several factors or assumptions

associated with the algorithm that can influence results or the efficiency of the overall system.

Before an algorithm or procedure is chosen the appropriateness or the method requires con-

sideration. Many aspects of advantages or disadvantages can play a role in this consideration.

Methods for data assimilation are designed for use under certain conditions or assumptions. If

these assumptions are not met or considered appropriately when implementing an algorithm,

it may lead to inaccurate results.

To choose an appropriate method, a good understanding of what type of data is used within

the algorithm and how the model will interact with the algorithm are aspects that are taken into

account. The scheme may not need a complex assimilation method to efficiently or effectively
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meld the data. An overly complex algorithm or method may be able to produce good estimates

but a simpler algorithm or method may be computationally faster and produce results that are

sufficiently comparable.

The method or algorithm chosen should not be too computationally costly, meaning that it

should not cause the scheme or model to run so slowly the results gained by its computations

are not worth the time lost to process them. This is often important because the number of

observations and associated properties used can be large due to spatial size or the number of

dimensions and in turn cause the need for many computations. Choosing a model can be a

simple process if the right representation for the analysis the modeling errors is chosen [Bouttier

and Courtier (2002)].

2.3.1 Direct Insertion

Direction insertion is a method that simply replaces the models estimated values for state

variables with the values of the measurements. So rather then allowing the model to compute

estimates of the state variables the measurements are used instead. This method is very

quick computationally however all influence or knowledge coming from the model is lost at

the timesteps where the state variables are modified. When measurements are required on a

very frequent interval an interpolation method is sometimes used for the timesteps between

actual measurements because measurements on this time scale can be difficult to obtain. It

does however allow insight into how the model is behaving and how it is likely to behave when

important model variables are changed or modified. Walker and Houser (2001) and Walker

et al. (2001) were able to produce promising results using direct insertion methods from in situ

soil moisture measurements.

The direct insertion scheme results in a very simple and unique forcing algorithm. However

the errors that are present in the measurements are often propagated all the way through the

assimilation scheme. This may weigh heavily on the estimates since all the assimilation weight

is placed onto the measurements. Alavi et al. (2009) reports on several experiments that have

used direct insertion for many years specifically within meteorology and oceanography and that

it has also been used more recently in hydrologic fields.
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2.3.2 Re-calibration and Re-initialization

The re-calibration procedure looks at modifying the model parameters for a specific site.

These parameters are first tested for model sensitivity to determine which parameters that will

have a greater impact on the model. Sets of simulations are created by varying the values

for each influential parameter. The model is considered to be calibrated when the sensitive

parameters have values that align the model state variable estimates closest to the values of

the measurements. The optimized parameters are typically site specific, therefore, calibration

must be done for every site because each site characteristic can often vary from the one used

during calibration. Consequently, this methodology can require significant amounts of data

and computation time.

Re-initialization is conducted in much the same manner as re-calibration. Instead of adjust-

ing the model’s state parameters the models’ initial values for the state variables are changed

until again the state estimates have values that are at a minimum difference from the measure-

ments.

2.3.3 Updating

Data assimilation “updating” schemes consist of taking a observation or measurement and

combining it with a model estimated state variable in manner to achieve an updated estimate

of the state variable. The goal of incorporating the observation is to obtain an optimal or

“true” state variable model estimate. To combine the model estimate and the measurement,

an assimilation algorithm or system, such as a Kalman filter, is required.

Updating techniques differ from direct insertion because they do not always completely

replace the model estimates but use measurements to correct or update the state variable

estimate only when measurements exist. Updating schemes also employ methods the take

into consideration the uncertainties that exist with the model state variables estimates and

the measurements to weight their values and produce a more optimal state variable estimate

[Reichle (2008)]. Updating schemes have shown to be a better alternative to direct insertion

[Heathman et al. (2003)].
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The goal, as stated, of the updating data assimilation is to determine an optimal state for

a given system variable. The reality is that there can be different assumptions or conditions

under which “optimal” states are achieved, here the definition of “optimal” is assumed to be

any improvement or minimization of errors under any circumstances given.

Updating data assimilation schemes or algorithms are classified into several categories based

on the timing of the observations and also the observation processing method that are used to

find the optimal state estimate. They are first divided into either sequential, also referred to as

real-time or filtering, assimilation or variational, also referred to as retrospective or smoothing,

assimilation [Bouttier and Courtier (2002); Reichle (2008)]. Sequential or filtering assimilations

only considers the observations that have been made, in real-time, up to the time of assimila-

tion. Whereas smoothing or retrospective assimilation includes observations from times in the

future. The assimilation systems can be further defined as either intermittent or continuous

at this point [Bouttier and Courtier (2002); Ide et al. (1997); Stauffer and Seaman (1990)].

This categorization was developed because intermittent assimilation systems process the ob-

servations in short periods of time or batches and continuous assimilation systems does so over

a longer periods in time. Intermittent methods are usually easier to manage computationally

but continuous methods produce corrections that are realistically smooth in time [Bouttier and

Courtier (2002)]. There are of course many combinations of these methods creating variations

on these categorizations, also making differences between systems sometimes hard to distin-

guish. Most of the assimilation algorithms discussed here will be considered intermittent, and

sequential.

The model state estimate or a priori state estimate is assumed to be given by a stochastic

process or model that has the following form,

xb,t = Mxb,t−1 +Gµt + wt−1 (2.1)

where M represents the model operator that advances the model forward, G the control input

operator, which is optional and assumed to be zero here, µ the control input, and w the

model noise. Subscripts with t indicate the location in time of the corresponding value. The
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measurement is related to the basic linear model by,

zt = H · xb,t + v (2.2)

where v represents the measurement noise.

Given the model for a basic linear model, presented as Equation 2.1, it is assumed that

for a given background or predicted state of the model, xb, the observation operator, H, for

any x near xb, is linear, such that H(x) − H(xb) = H(x − xb). It is also assumed that

both the observation and model covariances or magnitude of error are non-trivial and positive.

Unbiased errors are also assumed, meaning that the expectation of both the observations and

model errors is zero, E[xb−x] = E[zt−H ·x] = 0, where x represents the true model state and

zt an observation, and that the errors are also uncorrelated, [xb − x][zt −H · x]T = 0.

In order to determine the optimal true state estimate, a linear analysis is used to obtain

model corrections that are defined by linearly related observation deviations. These corrections

are also defined as optimal in the sense that the estimate is at a minimum variance.

The Gauss-Markov Theorem states that when given a linear model with errors that have

zero expectation and the errors are also uncorrelated and have equal variances the best linear

unbiased estimator, BLUE, is its least squares estimator. The variances are considered equal,

which is assumed here, if they come from the same distribution, a normal or Gaussian distri-

bution in this case. The least squares estimator is assumed to have a minimum variance and

it is also considered to be a maximum likelihood estimator.

The algorithms considered here, similar to linear regression approaches, are based on this

least squares estimator, and are defined by the optimum or smallest sum of the residuals,

S =

n∑
i=1

(xb,i − xi)2 (2.3)

Weighted least squares is a special form of the least squares method in which the residuals

are weighted and forms the BLUE if the weights of those residuals is equal to the inverse of

the variance. The weighted residual is commonly referred to as the Mahalanobis distance. For

this linear model the residula can be shown as the following cost or objective function [Reichle

(2008)],

J(x) =
(xb − x)2

σ2b
+

(z − x)2

σ2o
(2.4)
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where σ2b and σ2o are the model and observation variance respectively. The least squares in

general, attempts to minimize the sum of squares of the errors by setting the gradient of the

cost or objective function equal to zero. Weighted least squares follows this form by finding

the minimum variance from the minimization of the above cost function, which occurs at the

steepest slopes defined using the gradient. The a posteriori state estimate is assumed to be,

xa,t = xb,t +K(zt − xb,t) (2.5)

Also, if the a posteriori error covariance estimate or the updated background error covariance

for the model is defined as,

A = E[(x− xb)(x− xb)T ] (2.6)

It can be further be represented in terms of the analysis, model, and measurement errors,

A = (I−KH)B(I−KH)T + KRKT (2.7)

The background model error covariance, B, or a priori error covariance estimate is considered

to be the covariance of the linear state model estimation,

Bt = MBt−1M
T + Q (2.8)

where the model error covariance is Q.

Given the updated background model error estimate as x− xb, the aim is to minimize the

mean square estimator represented as E[(x− xb)2]. The equivalent of this is setting the trace

of the updated background model error covariance estimate to zero and differentiating it with

respect to the Kalman gain, K, ∂Tr(A)
∂K . When it is then solved for K, the results is,

K =
BH

HBHT + R
(2.9)

If the Kalman gain is assumed to be optimal then the updated background model error covari-

ance estimate simplifies to,

A = (I−KH)B (2.10)

The Kalman gain, K, is assumed to be optimal resulting in the minimum of variances, thus

giving the value for the cost function at which it is a minimum.
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The advantage of a Kalman filter is in the use of K, the Kalman gain, which allows the mea-

surements and model estimates to be weighted based on their given error levels or covariances.

The weighting or gain is then applied to obtain the optimal a posteriori estimate, xa,t.

This method, as shown, uses a priori estimates along with a posteriori estimates and a

given set of observations to determine the values of particular states. This is a formulation

of Bayesian theorem, based on the Bayes rule which states that the likelihood or conditional

probability of B, given A is equal to the probability of the A, given B, a posteriori, times the

probability of A, a priori, divided by the probability of B, marginal probability. Since Kalman

filter gain matrix results in a minimum variance and a minimum mean square error, which for

this Bayesian setting produces what is called a minimum-variance unbiased estimator.

The cost function can be minimized without calculating the Kalman gain, through direct

application of Bayes’ Theorem, if the assumption that the all the errors are represented by

Gaussian probability density functions, pdf, is used. In this manner the analysis pdf is given

as the the product of the observation pdf, and the background model pdf. The minimization of

the cost function is then provided as the inverse log of the analysis pdf which by definition of

all the assumptions yields the maximum likelihood.

This larger approach provides us with one method for determining the value for which

the cost function is minimized. To do this values are found, through iteration, that directly

minimize the cost function, by setting its gradient to zero. The process utilizes knowledge of its

gradient by applying a minimization algorithm [Holm (2003); Bouttier and Courtier (2002)].

If the gradient of the cost function is set to equal to zero,

∇J(x) = 0 = 2B−1(xa − xb)− 2HTR−1(z −H · xa) (2.11)

it can be found that the solution is equal to, equation 2.5, which in matrix form is,

xa = xb +
BH

HBHT + R
(z −H · xa) (2.12)

and is commonly rewritten as,

xa = (1−K)xb +Kz, whereK = σ2b/(σ
2
b + σ2o) (2.13)
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All variational data assimilation schemes are based on this objective function or cost func-

tion, J, which relates the disparity between the true value, and the model estimate and ob-

servation. The goal of the schemes are to minimize the cost function so that a least squares

estimate of the true value can be found. There are several data assimilation studies using this

method that have been implemented for soil moisture assimilation [Reichle (2008); Bouttier

and Courtier (2002)].

The following assimilation schemes also follow all of the above assumptions, which include,

both that the state variable estimates and observations are linear, the estimator itself is unbi-

ased, and the best linear unbiased estimator has a total minimum variance, with errors that

are Gaussian, a distribution defined by a mean and standard deviation, and white, given that

the distribution has a mean of zero. It should be noted that the following two methods under

certain assumptions yield the same result, even though they are conceptually different.

2.3.4 Kalman filter

The most common sequential methods are variations of the basic Kalman filter (KF). The

operation of a Kalman consists of tracking the conditional mean of statistically optimal es-

timation of a state variable [Entekhabi et al. (1994); Walker and Houser (2001)]. This is

accomplished through a series of cycles between a measurement correction and update steps

[Welch and Bishop (2001); Bouttier and Courtier (2002); Holm (2003)].

The Kalman filter is constructed around the BLUE or least squares concepts [Drecourt and

Madsen (2002)], as mentioned above. The Kalman filter is able to pass on error information

forward in time through explicit calculation of error covariances [Reichle (2008)]. This allows

the filter to address the presence of errors on several levels and as the model is progressing in

time.

The Kalman filter is an algorithm that takes the uncertainty of the measurement and the

uncertainty of the model estimate and weights their values accordingly. The weighted value

is added to the previous model estimate to achieve the optimal state variable or new model

estimate [Reichle (2008)].

The equations which form the Kalman filter are divided into two groups: time update and
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measurement update equations. The first set of equations provide a priori estimates of the

current state and error covariance while the second set of equations provide the a posteriori

estimate of the state estimate by including a new observation or measurement. After the

measurement update the new measurement has essentially been fused with the a priori estimate

using the a priori error covariance. This process cycles every time there is a new observation,

simulating a prediction and correction procedure. The a posteriori estimate is used as the new

time step a priori estimate. [Welch and Bishop (2001)]

There are several assumptions made by the Kalman filter. The first being that the model

error consists of Gaussian white noise having a mean of zero and has a covariance value of Q.

The second is that the observation error also consists of Gaussian white noise having a mean

of zero but has a covariance value of R. Lastly that the state variable is Gaussian and has a

mean (X) and covariance (σ) [Walker and Houser (2001); Bouttier and Courtier (2002)].

2.3.4.1 Extended Kalman filter & Ensemble Kalman filter

The Extended Kalman filter (EKF) mainly differs from the Kalman filter in the structure

of its model and observation operators. The KF is a applied to linear systems whereas the

EKF is its nonlinear equivalent [Welch and Bishop (2001)]. The operators must be linearized

in the EKF to account for observations that are typically related nonlinearly to the state

variables of interest [Eyre (1997)]. The Extended Kalman filter produces estimations based

on the first-order linearized approximations of the non-linear system, typically a Taylor series

approximation [Welch and Bishop (2001); Entekhabi et al. (1994)].

The ensemble Kalman filter (EnKF) was developed because higher order statistics of the

error covariances are ignored in the EKF resulting in an unbounded error covariance. The

EKF requires that error covariances be defined, every time an observation exists, for both the

model and observation matrices, making the algorithm computationally expensive to compute

for even reasonably sized conditions. To correct this issue a Monte Carlo approach is used in

the EnKF to approximate the error covariances. The approximation significantly increases the

algorithm efficiency and alleviates the unbounded error covariance problem [Evensen (1994)].

Reichle (2008) listed several formal differences present between the EKF and the EnKF. One
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difference being in the manner in which linearizations of the model and measurement operators

are determined. The EnKF is capable of taking into account more model errors then the EKF

and that the number of EnKF members must be optimized to compare computationally to

the EKF. Also present within the EnKF is the ability to consider model and measurement

errors that are spatially correlated. While the EKF, during the forecast step, integrates the

uncertainty or error covariance of one state estimate, the EnKF is computing in parallel a

collection or ensemble of state variable estimates in order to gather a state error covariance.

This makes the EKF, for highly nonlinear cases, harder to implement because the matrices are

very large. The reduced error covariance present in the EKF is represented as the state estimate

itself where as the EnKF uncertainty reduction is provided as the mean of the ensemble state

variables or the reduced spread between all of the ensemble members [Reichle (2008)].

Alavi et al. (2009) reports that EnKF can be used more efficiently for highly non-linear

systems than the EKF or variational analysis methods. These highly non-linear systems tend

to exist and form when trying to assimilate data on large spatial scales in multiple dimensions

using remotely sensed data from satellites. The models used for these systems often times use

non-linear approaches to relate the measurements or observations to the model estimates.

2.3.5 Optimal Interpolation

Optimal Interpolation, OI, can be best described as a simplified version of the EKF, where

the a priori error covariance estimate is replaced by an approximation. OI has been widely

used for weather prediction and has been useful for oceanographic data assimilation [Ide et al.

(1997)]. OI takes advantage of the BLUE by simplifying equations for Kalman gain and predic-

tion by only considering a few of the observations that are geographically close, when consider-

ing assimilations that have multiple observations at a given location. OI produces the forecast

error covariances, B, using an analytical model.

Two weaknesses arise with OI, one being the formation of a noisy analysis from heavily local

data and the second being the computation of the Kalman gain, K, specifically for observations

that require use of a linearized observation operator [Bouttier and Courtier (2002); Courtier

(1997)]. The required a priori observation and first guess errors are assumed to be known.
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Other assumptions for OI are that the initial guesses required are unbiased and that the first

guess is independent of the observations [Barth et al. (2008)]. Routing OI into four-dimensions,

for interpolation of time and space, is relatively easy. Research has been done to computation-

ally improve OI at less cost than using an EKF, specifically for larger data assimilation schemes

[Ide et al. (1997)].

2.3.6 Variational Analysis

The general objective of the variational analysis method is to find the optimal linear case

for a model by weighting the statistical quality of a minimized deterministic function, i.e. cost

function, against its minimization [Courtier (1997)]. The method adjusts the initial guess for

the a posteriori state estimate for the desired time of analysis. Useful information about the

guess is usually gathered by first guessing xa to be equal to xb.

Variational assimilation schemes often employ advanced numerical methods to minimize

the cost function, as opposed to finding where the derivative of J(x) is equal to 0, because

when trying to minimize J(x) often times there are large matrices or vectors that exist, as well

as non-linearities within the solution, making analytical solutions impossible [Reichle (2008)].

Often times in variational data assimilations approximations must be made in the analysis to

account for the fact that many models within the schemes aren’t differentiable and a non-linear

operator relating the measurement to the state estimate, known as the adjoint, cannot be found

[Liang and Qin (2008)].

The use of an adjoint solution or adjoint operator is computationally convenient because

the model and observation operators have been linearized, making solutions possible for the

often nonlinear and more complex models that are encountered in earth sciences [Alavi et al.

(2009); Bouttier and Courtier (2002); Liang and Qin (2008)].

To account for the non-linearity that can often be present for data assimilation schemes the

cost function is minimized using several guesses. However, in the linear case only one minimum

exists, making determination of the optimal state estimate relatively plain [Holm (2003)].

Two of the most common methods for minimization of the cost function use simulated

annealing or an adjoint solution of the cost function. The non-linearity and discontinuity that
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occurs when determining the global minimum of the cost function can often be avoided using

the simulated annealing function [Pathmathevan et al. (2003)].

Variational data assimilation schemes range from 1DVAR (one-dimensional) to 4DVAR

(four dimensional) based on their inclusion of spatial and time dimensions. Most variational

methods assume the model to be ’perfect’, denoted as being strongly-constrained, and so model

errors aren’t considered in the cost function. However another term can be included in the

cost function to allow for model error and time-changes of boundary conditions, this form is

denoted as weak-constrained [Reichle (2008)].

Most common 4DVAR data assimilation schemes, which include all space dimensions and

the time dimension, assume that the model estimations are perfect [Bouttier and Courtier

(2002)]. Liang and Qin (2008) states that although weak-constrained data assimilation schemes

can produce poor results if state parameters are incorrect, they can still provide valuable insights

into the model which is lost with strong-constrained data assimilations, and can help determine

inaccurate state parameters.

The computational differences between the 3DVAR and the 4DVAR are seen because the

4DVAR is smoothing scheme and the assimilation period considers both present and future

observations. This produces a state estimation curve that is continuous and smooth in time

[Holm (2003)].

In general variational data assimilation schemes typically use a longer period of time than

Kalman filter or OI schemes in which to produce an optimal fit considering all observations

occurring during this period. This allows information to be propagated forward and backward in

time [Bouttier and Courtier (2002); Rihan and Collier (2003)]. During the period of assimilation

all the errors are assumed to be independent and additive [Alavi et al. (2009)].

Variational data assimilation schemes have a small cost computationally and are straight-

forward and require less inputs or analysis to apply [Bouttier and Courtier (2002)]. Beginning a

data assimilation system with a 1DVAR allows for a good foundation for developing a 4DVAR

scheme [Pathmathevan et al. (2003)].

Analyses done by Ide et al. (1997) reveals that a three-dimensional variational assimilation

method has high similarity with sequential methods. 1DVAR data assimilation schemes have
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been applied with success for remotely-sensed data [Pathmathevan et al. (2003); Sabater et al.

(2007)]. Typically the 3DVAR or 4DVAR are used for soil moisture data assimilation schemes.

Less complex 1DVAR and also the more complex 4DVAR have been used successfully to model

soil moisture, [Entekhabi et al. (1994); Reichle (2008); Huang et al. (2008)]. 3DVAR data

assimilation systems essentially eliminate the need for local data selection of only the near-by

observations [Bouttier and Courtier (2002)].

The main drawbacks of the variational schemes are that the model is considered perfect and

there is no direct access to the analysis covariances [Courtier (1997)]. Also, the initial guess

for error covariance in the Kalman filter is less crucial than the initial guess for the variational

methods [Bouttier and Courtier (2002)].

2.3.7 Summary

The Kalman filter is the best conceivable algorithm if we are assuming a linear model and

that the errors are white, meaning they are uncorrelated and do not vary in time, and are

Gaussian, being defined by the mean or first statistical moment and the standard deviation or

second statistical moment [Bierman (1979)].

Reichle (2008) states that the EKF and EnKF are the best considerations for data as-

similation schemes because often times adjoint models, usually necessary for variational data

assimilation, are often not available or difficult to construct.

Even though Evensen (1994) stated that the linear approximation of the model operator,

M , and observation operator, H, in the Kalman filter may produce instabilities or possibility

divergence, the Kalman filter has still been used with success on a number of occasions [Walker

et al. (2001), Galantowicz et al. (1999), Reichle (2008); Reichle et al. (2008), Entekhabi et al.

(1994)]. The Kalman filter has been known to operate well even under circumstances that are

necessary for optimality are not present [Welch and Bishop (2001)].

It is known that for large systems where large error covariance matrices exist, the propaga-

tion of these matrices slows down the Kalman filter algorithms significantly, except in the case

of the EnKF [Drecourt and Madsen (2002); Reichle (2008)]. This occurs typically when large

spatial scales are used and also when the horizontal and vertical error covariances.
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The Kalman filter, as studied by Walker et al. (2001), was used to retrieve estimates of the

entire soil moisture profile. Variations of the EKF have also been frequently chosen to model

the one-dimensional vertical soil moisture profiles [Reichle et al. (2002)]. Entekhabi et al. (1994)

and Galantowicz et al. (1999) found success with the Kalman filter successful for updating soil

moisture profiles.

In some situations where the linear Kalman filter fulfills several assumptions, including that

the model and observations errors are assumed uncorrelated in time, it can produce results

that are identical to variational methods. For example, the 1DVAR weak-constrained and

Kalman Filter schemes have shown experimentally to produce the same result at the end of the

simulation period [Reichle (2008)]. The 4DVAR, as well, produces the same state estimations

as the Kalman filter at the end of the assimilation window assuming the linear case with no

model errors [Holm (2003)].

2.4 Conclusion

One concern about using data assimilation within a model is that changing state variables

could theoretically create divergence within the model and possibly halt the simulation prema-

turely if the assimilated values are significantly different than the model estimates. The most

severe case of this would occur when using direct insertion or having model errors that are

extremely high. It is the assumption that most algorithms will provide some constraint to the

model estimates to prevent this type of issue.

With this knowledge, the next in the process of data assimilation is to implement the

Kalman filter again using soil moisture observations to determine what benefit, if any, there is

for predictions of yield and biological crop growth, such as canopy weight, especially if poor

soil parameters exist.

Hunsaker et al. (2007a) and Hunsaker et al. (2007b) obtained a dataset from two wheat

experiments conducted during the winters of 2003-2004 and 2004-2005, which has soil moisture

measurements at several depths within the entire soil profile, as well as soil texture information,

grain yield and canopy weight measurements. Thorp et al. (2010a) and Thorp et al. (2010b)

created a calibrated DSSAT-CSM v4.5 for this location using this dataset. Having this dataset
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available and the calibrated DSSAT-CSM [Thorp et al. (2010b)], both of which have been

extensively studied and reiviewed, for this research site makes for cost and time effective research

and allows for an in-depth analysis of the results and implications against well-documented and

published work.

The Kalman filter algorithm has been evaluated as the best option for this research scenario,

because the direct measurements of soil moisture allow use of a linear relation to model esti-

mates. It is also assumed that the errors present in the model and measurements are Gaussian

and have a mean of zero. This filter has flexibility in implementation, specifically meaning that

the model estimates can be updated in real time, as well as the ability to address easily several

different sources of error. The algorithm has shown effectiveness in the area of soil moisture

already and successful implementation with several models.
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CHAPTER 3. Assimilating in situ soil moisture measurements into the

DSSAT-CSM using a Kalman filter

a paper to be submitted to Transactions of the ASABE

3.1 Abstract

With the ability to monitor soil moisture in time comes the opportunity to develop ways to

incorporate these measurements into predictive models, without compromising or overriding the

model physics. The importance of soil moisture to the growth of crops is well understood and

because of this it is recognized as one of the more important parts of crop modeling programs.

This research focused on improvements to the Decision Support System for Agrotechnology

Transfer - Cropping System Model (DSSAT-CSM) as determined by the accuracy of soil mois-

ture estimates. To accomplish this, data assimilation techniques were implemented to process

the uncertainty of the model estimates and in situ measurements of soil moisture. Consid-

eration of soil parameter uncertainty, which influences model estimates of soil moisture and

model output, was taken into account using a Monte Carlo approach. A Kalman filter was

used to combine the model estimates of soil moisture with in situ soil moisture measurements,

while varying several important soil parameters in the model using a Monte Carlo approach.

Covariances for the Kalman filter were calculated for the model and measurements based on

the model’s standard deviation from the Monte Carlo soil moisture estimates and the standard

deviation of the in situ soil moisture measurements. Data for this study was obtained from

a research study conducted on irrigated wheat during the winters of 2003-04 and 2004-05 in

Maricopa, Arizona, in which thorough field and crop data were collected. Results of the simu-

lations were compared against biomass and yield measurements to determine the effectiveness
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of the data assimilation scheme. The Monte Carlo approach with assimilation done in the top

layer of the soil profile was only able to moderately address uncertainty present in the soil

parameters. Improvement resulted for data assimilation of soil moisture through the reduction

of the error between the measured and simulated grain yield and canopy weight for 47% and

37% of the simulations for the 2003-2004 and for 25% and 32% of the simulations for the 2004-

2005 season, respectively. Assimilation was more effective for improving the model output of

grain yield for the 2004-2005 than the 2003-2004 season and canopy weight for the 2003-2004

season than the 2004-2205 season. The results of model estimated daily NO3 levels in the

soil layers from data assimilation simulations indicates that assimilation of soil moisture can

influence its levels. The data assimilation combined with a Monte Carlo approach showed the

use of remotely sensed soil moisture could lead to improvements of frequently studied model

outputs, such as grain yield and canopy weight. Further study is needed to fully understand

the most desirable conditions for soil moisture assimilation and what other influencing effects

data assimilation of soil moisture presents.

3.2 Introduction

The usefulness of crop models is well known, not only for improving economic returns but

for gaining knowledge in the research community [Batchelor (2002); Liang and Qin (2008); Ma

et al. (2009)]. In precision farming applications crop models have been specifically employed

for yield forecasting [Thorp et al. (2010a); Chen et al. (2008)]. Crop models allow researchers

and agricultural production managers to make well-informed research and crop management

decisions [Tsuji et al. (1998b); Jones et al. (2003); Tsuji et al. (1998a); Bert et al. (2007);

Heinzel et al. (2007)]. These decisions can be based upon the model estimates of biomass or

grain yield predictions, as well as nitrogen or water balance estimates produced by the model.

Inputs related to weather data, soil characteristics, management practices, and the cultivars

are the information used by crop models in applications to inform production goals and man-

agement decisions like yield forecasting, in season biomass production, irrigation scheduling,

and fertilizer application [Tsuji et al. (1998b); Jones et al. (2003); Boote et al. (1998)].

The DSSAT-CSM is a crop modeling system that has been particularly and extensively
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utilized for research and agricultural production [Jones et al. (2003)]. The individual crop

models within the DSSAT-CSM have successfully simulated crop growth in a wide range of

locations and conditions with the results being used for various applications [Sarkar and Kar

(2008); Rezzoug et al. (2008); Paz et al. (1998, 1999); Ma et al. (2005, 2006); Casanova et al.

(2005)].

Although the DSSAT-CSM has shown to be useful, in some situations the simplified model

physics of the crop model aren’t able to perform well enough to maintain its usefulness. Because

of this researchers have a desire for continued improvements for the DSSAT-CSM and crop

models in general [Batchelor (2002); Liang and Qin (2008); Sau et al. (2004); Ma et al. (2007);

Stastná and Zalud (1999)]. One area for continued improvement is within model soil moisture

estimates [Ma et al. (2007)]. The soil parameters of hydraulic conductivity, saturation, drained

upper limit, and lower limit influence improvements of soil moisture estimates because of their

influence and importance to soil water behavior [Balland et al. (2008); Stastná and Zalud

(1999)].

Soil moisture is of specific importance because it is crucial to many different aspects of crop

growth and consequently crop modeling predictions as well [Tsuji et al. (1998a); Jones et al.

(2003)]. Correctly simulating soil moisture is important because water is a crucial medium for

nutrient transport and exchange, cooling and other processes necessary for plant growth. It has

been stated that it is the most important factor for energy balance and flux consideration is

stored water [Casanova et al. (2005); Houser et al. (1998)]. Additionally, the drainage of water

through the profile influences the on level of nutrient availability. The necessary soil water

content for processes such as nutrient and oxygen movement can only be properly simulated

if the components of the water budget such as infiltration, runoff, drainage, evaporation, and

root water uptake rates are accurate [Tsuji et al. (1998a); Houser et al. (1998); Entekhabi et al.

(1994)]. Because soil moisture is particularly relevant to modeling crop growth it requires that

we are able to adequately model soil moisture [Tsuji et al. (1998a)].

Soil water estimates are used in the DSSAT-CSM specifically within the Soil-Plant-Atmosphere,

Plant, and Management modules making use of the relationship between soil water content and

transpiration rates for determination of the water balance [Jones et al. (2003)]. This relation-
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ship is one of the many processes that can effect grain yield [Novak et al. (2005)]. The soil water

content can indirectly effect yield predictions but more importantly its value directly relates to

water availability for in season crop growth and biomass production [Bert et al. (2007)]. Yield

forecasting consequently relies on the accuracy of model in season biomass predictions, and

more specifically the accuracy model soil moisture estimates.

The CERES-Wheat model is one of several plant sub-modules that are specifically designed

to exhibit the behaviors, specifically growth and yield, of an individual plant species or a group

of plant species. Each model is capable of simulating crop development and crop growth pro-

cesses while considering the effects of crop water and nitrogen deficits. Information exchange

for conditions such as weather and environment, is controlled by the DSSAT-CSM main pro-

gram, called the Land Unit Module. The Land Unit Module is responsible for transferring

data to the Plant module, and sub-modules such as CERES-Wheat, needed to simulate crop

growth. CERES-Wheat has been extensively validated in many different locations including a

wide array of soil and climate conditions, and varieties. Its successful performance has been

well-documented [Jones et al. (2003)]. The CERES-Wheat model has been used successfully

with assimilation studies using several types of remotely sensed data other than soil moisture

[Heinzel et al. (2007)].

Site specific management (SSM) opportunities, as a result of the growth in precision agricul-

ture techniques and technologies, rely on having knowledge about the level of spatial variability

in yield forecasts to improve agriculture and economic returns [Braga and Jones (2004)]. This

makes accurate estimates of the state parameters that describe field conditions, specifically soil

parameters, critical to properly implement crop models for use in SSM and situations were

detailed management practices are used.

There are cases where important soil parameters, such as hydraulic conductivity, are not

known or are highly spatially variable, which leads to high uncertainty in model outputs.

Accurate yield predictions and soil moisture estimates can result when soil parameters are

obtained using soil moisture measurements [Braga and Jones (2004)]. This suggests that soil

moisture measurements could be used in data assimilation schemes to address poor model

inputs. To conduct a thorough study of the soil moisture estimates provided by a crop model,
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it would be best to utilize in situ soil moisture measurements throughout the soil profile. This

would provide an opportunity for the study of the soil moisture estimates without having to

rely only on model physics when soil parameter uncertainty is present.

To incorporate measurements of state variables such as soil moisture, within modeling,

several data assimilation techniques have been developed [Maas (1988); Moulin et al. (1998)].

State variables are model conditions or estimates representing biological and environmental

quantities that change in time. The main purpose of data assimilation is to provide more

accurate model estimates which ultimately lead to better model predictions. Data assimilation

aims at improving model predictions by reducing the model output variation or producing more

accurate model output. Variation of model output can be high due to poor state parameter

estimates, initial condition estimates or model physics.

Data assimilation techniques are divided in four general approaches: forcing, updating,

re-initialization, and re-parameterization. The measurements are fused with the model in a

different manner for each technique. Direct insertion or forcing schemes simply replace the state

variable of interest within the model overwriting the model estimates altogether at every time

step of the model. Direct insertion has been employed over the years for meteorology as well as

hydrological applications [Alavi et al. (2009)] and was able to influence the model performance

and output, providing useful insight into model behavior [Walker and Houser (2001); Walker

et al. (2001)]. Updating techniques differ from direct insertion because they do not always

completely replace the model estimates but use measurements to correct or update the state

variable estimate only when measurements exist. Updating schemes also employ methods that

take into consideration the uncertainties that exist with the model’s estimates of state variables

estimates as well as the measurements in order to produce a more optimal state variable estimate

[Reichle (2008)]. Updating schemes have shown to be a better alternative to direct insertion

[Heathman et al. (2003)]. Updating schemes have been used for the assimilation of soil moisture

because of their flexibility to handle various levels of model and measurement uncertainty due

to varying spatial scales. Re-parameteritization and re-initialization are similar in the fact

that they both apply optimization algorithms to optimize the initial conditions (model start

values for the state variables) and state parameters (environmental conditions that generally
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don’t change in time). State parameters are different from state variables in the fact that

state parameters are model conditions or estimates representing biological and environmental

quantities that are assumed to remain constant. Through iteration these algorithms adjust the

initial conditions or state parameters until a minimum difference between the measured and

model estimated state has been obtained.

The Kalman filter is an updating data assimilation schemes that takes into account uncer-

tainties that are present in the model estimates as well as measurements. Variational analysis

methods such as three dimensional variational analysis (3DVAR) and four dimensional varia-

tional analysis (4DVAR) typically don’t consider model uncertainty and also process a collec-

tion measurements over a longer period of time calculating more accurate model estimates in

batches. More advanced updating assimilation schemes that use variations of the Kalman filter

take into account uncertainties defined in multiple dimensions and on a larger spatial scale

[Reichle (2008); Anderson (2001)]. The ability to consider these uncertainties make the use of

the Kalman filter more appealing than other assimilation schemes such as variational analysis

methods [Galantowicz et al. (1999)]. Kalman filters are appealing because it understood the

model have uncertainty due to simplifications or poor model inputs and measurements have

uncertainty due to natural random noise. Kalman filters operate in time with the model real-

time offering real-time updating of model estimates also making their use more desirable over

variational analysis methods which typically operate over longer periods processing the data in

small batches. Accounting for both model and measurement errors allows for a less uncertain or

varied state estimation within the crop model. The Kalman filter is applicable for assimilating

either in situ or remotely sensed data [Huang et al. (2008)].

All of these data assimilation techniques have been explored with soil moisture measure-

ments with various levels of success. Huang et al. (2008) reported a promising study using the

combination of a crop model, other than CERES-Wheat, and an ensemble Kalman filter uti-

lizing observed soil moisture measurements. Similar experiences have been reported by Reichle

et al. (2008, 2002), Burgers et al. (1998); Huang (2004); Dewit and Vandiepen (2007); Kumar

and Kaleita (2003), and Koo et al. (2007) focusing on soil moisture as well as other significant

model state variables. Research has been conducted with success focusing on soil moisture as-
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similation in one dimension using a Kalman filter [Galantowicz et al. (1999); Walker and Houser

(2001); Walker et al. (2001)]. However, assimilation of soil moisture into the CERES-Wheat

model found in the DSSAT-CSM and consequently its ability to effect yield have not yet been

studied.

The objectives of this research were:(1) to develop a Kalman filter strategy for assimilating

soil moisture into the DSSAT-CSM, (2) to evaluate the improvement towards measured of

assimilation predictions over model-only predictions for grain yield and canopy weight using

this data assimilation scheme, and (3) to use a Monte Carlo approach to improve model output

accuracy by reducing the variation of model output when soil parameter uncertainty is present.

3.3 Methods and Materials

3.3.1 CERES-Wheat

The CERES-Wheat module, in the Plant Module of the DSSAT-CSM, has broken down

the wheat plant life cycle into seven development stages: germination, emergence, terminal

spikelet, end ear growth, beginning grain fill, maturity and harvest. Growing degree days

calculated using the maximum and minimum daily temperatures determine the the rate of

development. Growth stage progression is dependent on either user defined days or internal

calculations.

Consideration of dry matter is part of the module’s physics as well. Daily intercepted light,

based on LAI, plant population and spacing, is converted to dry matter using a radiation use

efficiency parameter. Dry matter totals for each day are also influenced by water, nitrogen,

temperature, CO2 concentration, depending on the most limiting.

In crop models soil characteristics are viewed as some of the most crucial model parameters

[Stastná and Zalud (1999)], but they are often difficult and costly to obtain. They also tend to

have high uncertainty due to high spatial variability [Chirico et al. (2007)]. After collecting soil

texture data soil parameters are commonly obtained using a pedotransfer function (PTF), such

as ROSETTA [Schaap et al. (2001); Wosten et al. (2001)]. Soil parameters produced by PTFs

have been validated by using fitted retention curve data [Romano and Santini (1997)]. This
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method however can cause soil parameters, like hydraulic conductivity and field saturation to

produce values to result in less then accurate energy balance estimates [Ma et al. (2009)].

3.3.2 Kalman filter as a data assimilation algorithm

As described by Reichle et al. (2002) advanced data assimilation techniques, including the

ensemble Kalman filter (EnKF) and 4DVAR algorithms, vary in their ability to account for

both model or measurement uncertainties. The Kalman filter algorithm specifically accounts for

both, and is one reason why it was chosen as the data assimilation technique for this research.

Since directly soil moisture measurements are being used resulting in a linear relationship

to the model soil moisture estimates, the Kalman filter (KF) is considered to provide the

most optimum results, having an estimate with the least amount of variation, if both model

and measurement uncertainties are considered. For this situation the EnKF would produce

identical estimates to the KF. Variational filtering algorithms, such as 3DVAR and 4DVAR, at

the end of their assimilation period will provide the same estimates as the KF, if the model is

considered perfect, having zero errors.

When the KF must process large error or uncertainty matrices variational analysis methods

cost less computationally because they process all of the data simultaneously in the given

assimilation window. However, when the measurements arrive continually, the KF methods

allows for real-time data assimilation. The KF methods are also able to provide uncertainty

information about the filter’s optimal estimates, something the variational analysis methods

do not provide [Alavi et al. (2009)].

Since the DSSAT-CSM runs on a one day time step and the soil moisture measurements

are infrequent, the Kalman filter for this research will update model soil moisture estimates on

a non-continuous basis sequentially, meaning only measurements made up to the model time

step will be considered. This will then only update the model soil moisture estimates whenever

there is an in situ measurement available. The Kalman filter requires uncertainties from both

the model and measurements, are their determination is crucial to a properly operating Kalman

filter.

The Kalman filter considers the magnitudes of the covariances, which estimate the amount
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of noise or errors likely to be present, for the model estimates and measurements to track

the mean of the optimal state estimate. These estimates are assumed to be represent a value

that could be taken from a distribution described by the associated covariances. The linear

stochastic difference equation, on which the Kalman filter is based, represents a process, such

as soil moisture. The soil moisture value in time, xt, is represented by,

xt = Axt−1 +Bµk + wt−1 (3.1)

it is also assumed that the model has a linear relationship to a measurement, zt, that is

represented by,

zt = Hxt + vt (3.2)

H, the observational operator relates the value of the measurement to the state variable. The

measurement and model noise or error are represented by vt and wt, respectively. In Equation

3.1 A is the model operator and propagates the model estimates forward in time. The input

control variables µt, the optional control input, and B, the input control operator, represent

outside influence on the model. The model time-steps are represented using the subscripts t

for the current time-step and t− 1 for the previous time-step.

If we were to represent the present research conditions using the general model given by

Equation 3.1 the right-hand side would represent the DSSAT-CSM model processes that prop-

agate the state estimates of soil moisture forward in time. The measurement operator, H, is

equal to 1, since we have direct measurements of soil moisture.

In the case of non-linearly related model estimates and measurements, H generally consists

of a Taylor series approximation relating the measurements to the model estimates [Entekhabi

et al. (1994)]. The Kalman filter in this circumstance is referred to as the Extended Kalman

filter or EKF.

The model and measurement noise are assumed to be uncorrelated, or independent of each

other. They are also assumed to be white (having a mean of zero) and Gaussian or a distribution

fully described by a mean, µ, and standard deviation, σ. The Kalman filter estimate, under

these assumptions, is assumed to be the optimal least squares estimator or best linear unbiased
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estimator, and providing an estimate having a variation that is considered to be at its minimum

value.

Covariances representing the model and measurement errors, w and v, are given by Q and

R in Equations 3.3 and 3.4, respectively.

pdf(w) ∼ N(0, Q) (3.3)

pdf(v) ∼ N(0, R) (3.4)

In order to account for the noise or errors, w and v, that are present in Equations 3.1 and

3.2, the Kalman filter process consists of time update and measurement update equations. The

forecasting or time update equations producing a priori estimates, for the Kalman filter are,

x̂ -
t = Ax̂t−1 +Bµt (3.5)

P -
t = APt−1A

T +Q (3.6)

followed by the measurement update equations which generate a posteriori estimates,

Kt = P -
t H

T (HP -
t H

T +R)−1 (3.7)

x̂t = x̂ -
t +Kt(zt −Hx̂ -

t ) (3.8)

Pt = (I −KtH)P -
t (3.9)

where hats (̂) represent state variable estimates and the superscript minus ( -) represents an

estimate that is made prior to a measurement update. The model soil moisture estimate is

given as x̂ -
t and the optimal soil moisture as x̂t. The overall Kalman filter error covariance is

represented by P , and the Kalman gain by K.

The time update equations, Equations 3.5 and 3.6, can also be viewed as prediction equa-

tions for the model only estimates and likewise the measurement update equations, Equations

3.7, 3.8, and 3.9 , can be viewed as correction equations to those model estimates.

The advantage of a Kalman filter is in the use of K, the Kalman gain; defined by Equa-

tion 3.7, which allows the measurements and model estimates to be weighted based on their

given error levels or covariances. The weighting or gain is then applied to obtain the optimal
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estimate x̂t, the a posteriori state estimate. When the Kalman gain is calculated, the mea-

surement is weighted higher if R, the measurement error, is small making the Kalman gain

larger. Conversely, the model estimate is weighted higher when Q, the model error, is low or

the measurement error, R, is high. Lower Kalman gain results from a lower a priori covariance

estimate, P -
t .

An initial value of the a posteriori error covariance estimate, P0, is required for the Kalman

filter. The initial a posteriori error estimate was assumed to be equal to Q.

3.3.3 DSSAT Soil Water Balance

The soil water balance is part of the DSSAT-CSM Soil module. The Soil module’s sub-

modules not only include water balance principles but also soil nitrogen balance principles, the

dynamics for soil temperature and carbon balance principles.

The soil water balance for DSSAT-CSM was adapted from CERES-Wheat and was originally

developed by Ritchie and Otter (1985) [Jones et al. (2003)]. The soil water balance model for

CERES-Wheat was developed as a one-dimensional model, using irrigation, infiltration, vertical

drainage, unsaturated flow, soil evaporation and plant root uptake processes to compute the

daily water content changes experienced by each layer in the soil profile. Infiltration is simply

the difference between precipitation and runoff as determined by the Soil Conservation Service

Curve Number [Soil Conservation Service (SCS) (1972)]. Irrigation is considered an additive

component of total precipitation.

The DSSAT-CSM uses a water balance method that at times may oversimplify what is

actually happening in the local soil profile. The DSSAT-CSM version 4 uses the same SCS CN,

method from version 3.5 and earlier. The SCS CN method was designed to estimate runoff

from a watershed, but has been modified by Williams et al. (1984) to compensate for soil layers

and also for initial soil water content at the time of precipitation.

The curve number method should not be assumed to provide accurate runoff and infiltration

values for specific storms [Tsuji et al. (1998a)]. Sadler et al. (2000) also found that the model

overestimates infiltration when using the SCS curve number method. So notably, this will

affect the accuracy of the DSSAT-CSM’s soil moisture estimation and ultimately grain yield
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and canopy weight. However, it has been shown that the SCS-CN within the DSSAT-CSM can

simulate near-surface (0-30 cm) soil moisture that is in agreement with measured values [Liu

et al. (2011)].

To simulate soil moisture profiles the DSSAT-CSM models soil water drainage using a

“tipping bucket” method, when the water content is above the upper drained limit. The soil

parameter for diffusivity and differences between the adjacent layers’ soil water content are

applied to calculate the upward saturated flow.

Water accumulates above a soil layer only if the drainage, downward soil water movement,

for the layer is greater then saturated hydraulic conductivity for the day, which results in the

actual drainage being equal to the saturated hydraulic conductivity for the day. Otherwise the

actual drainage through the each layer is assumed to be the calculated vertical drainage for

the layer. Drainage through each layer is considered only after a total drainage for the soil

profile has been calculated, which is determined by a global soil drainage parameter. Also, as

mentioned, the Soil-Plant-Atmosphere module calculates the soil evaporation and plant root

uptake. These fluxes are all calculated as equivalent depths and added or subtracted to the

soil water content for each layer on each day.

For this given research it was assumed that there was no runoff encountered because all

irrigation took place inside dikes, thus the runoff curve number was set intentionally low to

allow all of the applied water to infiltrate.

3.3.4 Field Experiments

Hunsaker et al. (2007a) and Hunsaker et al. (2007b) obtained a dataset from two wheat

experiments conducted during the winters of 2003-2004 and 2004-2005, containing soil moisture

measurements at several depths within the entire soil profile, as well as soil texture information,

grain yield and canopy weight measurements. Thorp et al. (2010b) calibrated the CERES-

Wheat model in the DSSAT-CSM v4.5 for this location against yield data from this same

dataset. The calibrated DSSAT-CSM included adjustments to cultivar parameters and an ET

correction. The dataset and the calibrated DSSAT-CSM were used for this study because both

have been comprehensively studied and peer-reviewed.
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The two wheat irrigation research experiments conducted during the winters of 2003-2004

and 2004-2005 by Hunsaker et al. (2007a) resulted in a corresponding dataset containing soil

moisture, soil texture, biomass, and final yield measurements. The wheat fields consisted of 32

equal sized plots with each representing one of 12 different treatments. The soil was mapped

as a Casa Grande sandy loam classified to be fine-loamy, mixed, superactive, hyperthermic,

Typic Natrargid. The treatments were arranged in a complete random design with incomplete

blocking. The main objective of the experiment was to determine the effectiveness of irrigation

scheduling based on two different methods, FAO-56 (F) or NDVI (N), for determining the basal

crop coefficient, Kcb. The basal crop coefficient represents the influence of a specific crop on

evapotranspiration (ET). To develop the treatments each of the irrigation schedules included

high and low nitrogen applications and three levels of planting densities. The seasonal nitrogen

applications were 80 kg N ha−1 (L) and 215 kg N ha−1 (H). The high nitrogen level is the

locally recommended amount for the given sandy-loam soil type. After emergence, which was

in early February for both seasons, the nitrogen was injected during irrigation in the form of

soluble urea ammonium nitrate (32% N). Planting densities were divided as sparse (S; 75 plant

m−2), typical (T; 150 plant m−2), and dense (D; 300 plant m−2) [Hunsaker et al. (2007a)].

Table 3.1

Experimental Variables

Subtreatment Kcb Plant Nitrogen No. of

Abbreviation Method Density Level Replicates

FSH FAO (F) Sparse (S) High (H) 2

FSL FAO (F) Sparse (S) Low (L) 2

FTH FAO (F) Typical (T) High (H) 4

FTL FAO (F) Typical (T) Low (L) 4

FDH FAO (F) Dense (D) High (H) 2

FDL FAO (F) Dense (D) Low (L) 2

NSH NDVI (N) Sparse (S) High (H) 2

NSL NDVI (N) Sparse (S) Low (L) 2

NTH NDVI (N) Typical (T) High (H) 4

NTL NDVI (N) Typical (T) Low (L) 4

NDH NDVI (N) Dense (D) High (H) 2

NDL NDVI (N) Dense (D) Low (L) 2

Planting of the hard red spring wheat (Triticum aestivum L., cv. Yecora Rojo) took place
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on 10-12 December 2003 and 22 December 2004 with row the rows on 0.20 m spacing and

a dry soil surface. Irrigation dikes were constructed around all four sides of each plot along

with boardwalks across the center, supported by concrete blocks. The boardwalks allowed non-

destructive access to the plots as well as to the neutron access tubes located 1.0m away from

the center and 3.0m. Time-domain reflectometry (TDR) probes, 0.3m in length, were installed

0.5 m away from the neutron access tubes [Hunsaker et al. (2007b)].

Each of the NDVI plots had irrigations that were scheduled individually, because of the

variability of the Kcb coefficient, however all 16 of the FAO-56 had irrigations scheduled on the

same day. Irrigation was scheduled for the plots the day after the daily soil water depletion

of the effective root zone was greater then 45% of the total available water. To account for

irrigation inefficiencies, 110% of the estimated depth of soil water depletion was provided.

This irrigation procedure was expected to minimize water stress [Hunsaker et al. (2007b)].

This study focused on the FAO-56 treatments just as did the assimilation study performed by

Thorp et al. (2010a).

3.3.5 Field Measurements

The crop stages, soil moisture, and soil texture measurements were collected for each of the

32 individual treatment plots in the field, and were collected at different times. Soil moisture

measurements from all of these plots were considered for calculation of the soil moisture values

used in the assimilation procedure.

To gather biological crop data, destructive measurements were made using a sampling of

six plants in different areas with pre-assigned spots based on sampling date located in the

northern half of each plot. The biological measurements were taken to monitor wheat growth,

development, and ultimately yield. The plant density for each level was able to be verified

using these measurements. Measurements were categorized into various plant characteristics

by weight, including canopy and grain weight. This biomass data was collected every two weeks

and phenology data, every week until the end of the season. The Zadok’s number, indicating

the stage of plant growth, showed that for the 2003-2004 season maturity occurred near DOY

119 and just before DOY 123 for the 2004-2005 season. The canopy weight measurements
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around these dates took place on DOY 111, 125 and DOY 109, 123 for the 2003-2004 and 2004-

2005 seasons respectively. For the 2003-2004 season the average canopy weight between DOY

111 and 125 was used for comparison with the simulations and for the 2004-2005 season the

measurement from DOY 123 was used for comparison. The average maturity date in 2003-2004

as given by the open-loop or model only simulations and all assimilation simulations occurred

on DOY 177 and DOY 123 for the 2004-2005 season.

Soil moisture measurements were, on most occasions, collected weekly but also two to four

days after, the day or morning before each irrigation. Measurements were taken starting the day

before the first post-planting irrigation was scheduled. Measurements were taken for the top

30 cm using time domain reflectometry (TDR, Trase1, Soil Moisture Equipment Corp., Santa

Barbara, Cal.) [Hunsaker et al. (2007a)] and below 30 cm at 20 cm intervals down to 290 cm

using neutron probes(model 503, Campbell Pacific Nuclear, Martinez, Cal.). Both probes were

calibrated using gravimetric soil samples and achieved volumetric soil water content accuracies

of 0.02 m3 m−3 .

The soil moisture measurements were processed to determine the average across the whole

field. The average soil moisture across the field was only calculated and used for assimilation

if there were at least half of the 32 plots that reported a soil moisture measurement on any

day. The average soil moisture for the field was calculated on these days for each individual soil

layer. Out of the 51 days that had soil moisture measurements for at least one plot, only 32

days had at least half of the plots with a soil moisture measurement for the 2003-2004 season.

Hence, the data assimilation for the 2003-2004 season used 32 soil moisture measurements. For

the 2004-2005 season a total of 48 days had any plots with a soil moisture measurement, and

33 out of those 48 were used for data assimilation for the 2004-2005 season.

Soil texture data was also collected for each plot. This texture information was used in

the ROSETTA [Schaap et al. (2001)] program to determine characteristic soil parameters,

specifically hydraulic conductivity, saturation, drained upper limit and lower limit.

Weather data throughout the experiment was provided by a University of Arizona AZMET

weather station approximately 200 m away from the field site. An AZMET technician regularly

inspected the station to ensure it was operating properly.
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Complete senescence for each season occurred on DOY 135, and DOY 138, respectively.

The wheat was harvested and grain yields were collected on DOY 147 for both seasons. The

samples were collected from the south half of each plot having areas measuring 24 m2.

3.3.6 Kalman filter evaluation

Thorp et al. (2010a) used calibrated cultivar parameters for CERES-Wheat from Thorp

et al. (2010b) for a data assimilation strategy using leaf area index (LAI) was used to account

for uncertainties present in the model inputs. Despite having comprehensive field data the

calibrated model output from the assimilation of LAI still resulted in some high degree of

uncertainty. An updating data assimilation scheme based on a Kalman filter was selected so

uncertainties of both the model and measurements could be considered, and help to address

errors relating to large variation of model output and also model output that differed from

measured.

The simulations consisted of two unique configurations:

1. open-loop (calibrated model only)

2. calibrated model with the Kalman filter

Simulations for each of these configurations were completed for the 2003-2004 and 2004-

2005 season using each of the FA0-56 treatments. The simulations made use of Monte Carlo

methods which included the selection of sets from soil parameter distributions of hydraulic

conductivity, saturation, drained upper limit and lower limit. Model output of the wheat grain

yield and final canopy weight was collected from these simulations for analysis.

The DSSAT-CSM estimates soil moisture states every day for each layer but was updated

for this research to also calculate an a priori estimate of error covariance, P -
t , every day as

well. On days with no measurement meaning no assimilation was done, the a priori estimate of

error covariance was set equal to the equal to the a posteriori estimate, allowing the estimate

of error covariance to be tracked in time. This procedure is considered to be the time update

equations. On days with measurements a separate calculation was included and this calculated
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the optimal model estimate and an a posteriori based on the calculated Kalman gain given the

measurement value. These calculations represent the measurement update equations.

Soil moisture measurements for the entire DSSAT-CSM soil profile were available [Hun-

saker et al. (2007b)]. Only the measurement of the top 30 cm was used for the assimilation.

Because soil moisture in the soil layers is estimated using water balance methods based on soil

parameters, the soil moisture in the top of the soil profile governs the soil moisture in the lower

layers of the profile and is important to obtaining an accurate soil moisture profile. If accurate

soil parameters are used experiments could focus on using only measurements in the top few

layers because of this relationship. The daily water balance across the entire profile prior to

assimilation was compared the water balance across the entire profile after assimilation to judge

how significantly the soil water content was changing. Nitrogen concentration influences crop

growth and stress , ultimately impacting grain yield and canopy weight. The concentration

of nitrogen can change with the presence of soil water, so daily NO3 levels were compared

between the open-loop and data assimilation simulations.

The DSSAT-CSM uses a default soil layer structure with three layers in the top 30 cm.

Data assimilation schemes were configured for use of two soil layer structures with first being

the default soil layer structure and the second being a soil layer structure where instead of

three layers in the top 30 cm there were only two. The two-layer structure included layers 0-3

cm and 3-30 cm. This layer structure was used because the soil moisture measurements from

0-30 cm would be best represented by the soil water partitioning given by this soil structure.

Warnings are given by the DSSAT-CSM to maintain a top layer that isn’t much larger or

smaller than 5 cm because of the instabilities that it could cause within the soil water balance

functions. Since measurements are given as volumetric water content across the 0-30 cm depth,

the measurement assimilated into a layer of any thickness in the top 30 cm is assumed to have

the same value as the volumetric water content for each 0-30 cm measurement. This is because

the measurements do not provide any information to how the water is partitioned in the top

30 cm.

The improvement of the model output for grain yield and canopy weight from these simu-

lations towards the measured values, over the open-loop simulations’ output, combinations of
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Top 30 cm Layer Structure

# of Layers 3 Layers 2 Layers

Assimilated (5 cm, 15 cm, 30 cm) (3 cm, 30 cm)

1

0-5 cm 0-3 cm

5-15 cm 3-30 cm

15-30 cm -

2
0-5,5-15 cm 0-3, 3-30 cm

5-15, 15-30 cm -

3 0-5, 5-15, 15-30 cm -

Table 3.2: Kalman filter simulation combinations

different layers will assimilate the soil moisture measurements into the respective layers.

Table 3.2 shows the combinations of the data assimilation schemes that were considered for

the top 30 cm given two soil structures.

3.3.7 Determination of the Covariances

The Kalman filter requires a model error covariance as well as a measurement error covari-

ance for calculating the optimal estimate. The model and measurement errors are assumed to

be represented by a Gaussian distribution allowing the Kalman filter to be qualified as optimal

for our case. Random processes in nature are modelled well by Gaussian distributions [Welch

and Bishop (2001); Bierman (1979)]. This supports the assumptions necessary for applying the

Kalman filter are not violated when used for these conditions. The model and measurement

error distributions can be described by their respective covariance, Q and R.

A measurement error covariance, R, is required by the Kalman filter to be used for the

measurement update equations. Common sources of noise or error that are introduced into

measurements include random electrical noise and degradation because of the physical limi-

tations of the device [Welch and Bishop (2001)]. Most often the covariance of measurements

is dependent on the physical characteristics of the measuring device [Walker et al. (2001);

Galantowicz et al. (1999)]. Even devices such as TDR probes that have been calibrated us-

ing gravimetric data in the lab can have responses that differ from similar field measurements

[Zhang and Van Geel (2007)].
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To quantify the measurement errors to determine an error covariance, R, a standard devia-

tion for the measurements on the same days, for each layer across the field was calculated. Just

as with the soil moisture measurement averages, the days in which less then 15 plots reported

a soil moisture measurement weren’t included in the determination of the standard deviation.

The measurement error covariance was calculated from the measurements in 2003-2004 only

and assumed to be the same for the 2004-2005 season. The way in which the measurement

covariance was determined represents random noise that was produced during the measurement

process. The measurement covariance wasn’t adjusted any further because it sufficiently cap-

tured the random noise expected to be present and arbitrarily increasing the covariance more

could add redundant and needless error. We assume that the error covariance doesn’t directly

relate to spatial variability of the soil moisture measurements. This assumption was based on

the idea that we dealt with a relatively small scale and the soil moisture was averaged over the

entire field. It does however account for sensor error as well as random noise experienced by

the sensor.

The Kalman filter requires a covariance of the model error, Q, for the time update equations

and representing errors present in the model. The model error arises from several sources,

but can be hard to quantify. Models will inherently have errors due to the linearization or

simplifications of the state physics; they also suffer error due to inaccuracies present in input

data and state parameters. Estimates of these errors are often hard to determine and are

usually determined ad hoc [Walker et al. (2001); Evensen (1994); Alavi et al. (2009)].

The model error covariance, Q, calculation was done in a similar manner to the determi-

nation of the measurement error covariance. An open-loop model simulation for each of the

32 treatments plots was produced and the standard deviation across each layer on every day

throughout all simulations was found. The standard deviation was again averaged over the

whole soil profile. This calculation was considered to estimate the errors associated with poor

input parameters and in part estimates the errors of the model in response to these poor input

parameters. It was not assumed to be associated with the natural spatial variability of the

soil moisture. Each simulation used soil parameters that were derived from the soil texture

measurements taken for each of the 32 corresponding plots.
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3.3.8 Soil Parameters

The soil parameters produced by ROSETTA resulted in variability across all of the plots

that was assumed to influence the soil moisture estimates and ultimately the grain yield and

canopy weight. The average and standard deviation of the values across all of the plots for

the hydraulic conductivity, saturation, drained upper limit and lower limit were used to create

distributions for each parameter. Creation of these distributions was the first step taken to

implement a Monte Carlo approach. The Monte Carlo approach was used to address the

uncertainty of the soil parameters and to lessen the effect of the uncertainty on soil moisture

and ultimately grain yield and canopy weight. This in part due to the natural spatial variability

of the fields collected texture measurements but also to limitations of the ROSETTA model

[Balland et al. (2008)]. To address the variability of these soil parameters a Monte Carlo

sampling method was applied to produce sets of soil parameters that would be used in the

simulations. These distributions would result in a spread of model output that would be based

on the soil parameter uncertainty.

The soil parameter distributions had sample sizes of 1,000 for each of the soil parameters: the

lower limit (SLLL), drained upper limit (SDUL), saturation (SSAT), and hydraulic conductivity

(SKSS). These distributions were based on their respective mean and standard deviations

resulting from the ROSETTA soil parameter calculations. In Table 3.3, the desired means

and standard deviations for the soil parameters are listed. The distributions maintained their

physical relationships meaning that for a given simulation SSAT > SDUL > SLLL. The mean

field soil parameter values were used by Thorp et al. (2010a) in the field average soil profile

to obtain the results of the simulations for each of the FAO-56 treatments: FSL, FSH, FTL,

FTH, FDH, FDL.



46

Soil Parameter Description Mean Standard Deviation

SKSS Hydraulic conductivity (cm hr−1) 1.65 0.53

SSAT Saturation (mm mm−1) 0.407 0.005

SDUL Drained upper limit (mm mm−1) 0.236 0.027

SLLL lower limit (mm mm−1) 0.091 0.019

Table 3.3: Means and standard deviations across the field for the soil parameter distributions
given by the ROSETTA calculations

Figure 3.1: Simulated distributions of the four soil parameters used for the Monte Carlo ap-

proach

The DSSAT-CSM default soil profile structure consists of 10 layers: a small top layer (5

cm), a 10 cm second layer, followed by two 15 cm layers, and after that layers end every 30 cm,

down to 210 cm. The soil parameter distributions were only created and applied for the top 30

cm soil layers and the lower layers used the ROSETTA field average values for their respective

soil parameters.
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It was confirmed that the 1,000 member distributions created for the each of the soil param-

eters matched the desired values (Table 3.3). Figure 3.1 shows a histogram for each distribution.

Having sufficiently large distributions ensures that the Monte Carlo sampling method would

represent the domain of plausible values for each parameter.

Evaluation of the data assimilation schemes was based on results from sets of 1,000 sim-

ulations that were completed for each of the FAO-56 treatments for the open-loop and data

assimilation configurations. The results for grain yield and canopy weight from the data as-

similation Monte Carlo simulations were evaluated using the improvement towards measured

values over the open-loop output, and by the reduction of simulation output variability over

the open-loop simulations.

When the model output for grain yield or canopy weight results in improvement towards

measured values then the model is considered to have more accurately simulated grain yield

and canopy weight. The data assimilation shows that it is capable of overcoming uncertainty in

soil parameters if the standard deviation of the simulations are lower for the data assimilation

than for the open-loop simulations. Percent improvement indicates how many of the simula-

tions, represented by the spread of soil parameters, the data assimilation simulations produced

improvement of model output over the open-loop.

3.4 Results

Both seasons resulted in grain yield averages that were closest to measured for the data

assimilation scheme consisting of three top 30 cm layers with assimilation occurring into the

second layer. Slightly different responses in average difference of grain yield from measured

were seen between the two seasons for the data assimilation scheme consisting of three top 30

cm layers with assimilation occurring into the third layer. In the 2004-2005 season it was the

lowest but this was not the case for the 2003-2004 season.
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Figure 3.2: The model output for both seasons is from assimilating into the first layer of two
top 30 cm layers. The six FAO-56 (F) treatments are divided by planting densities of sparse
(S), typical (T), and dense (D) and by high (H) and low (L) applied nitrogen level. The error
bars represent the standard deviation across 1,000 simulations
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2003-2004 2004-2005

Layers Model Only Assimilation Model Only Assimilation

Assimilated Mean SD Mean SD Mean SD Mean SD

(kg ha−1) (kg ha−1) (kg ha−1) (kg ha−1) (kg ha−1) (kg ha−1) (kg ha−1) (kg ha−1)

0-5 cm 286 182 244 176 130 122 152 114

5-15 cm

377 185

324 192 122 113 136 198

15-30 cm 383 227 129 132 141 250

0-5, 5-15 cm 362 194 129 132 163 239

5-15, 15-30 cm 408 283 106 121 210 329

0-5, 5-15, 15-30 cm 404 335 129 132 322 377

0-3 cm 259 261 193 239 162 184 146 163

3-30 cm
396 240

407 280 182 199 226 350

0-3, 3-30 cm 423 302 162 184 208 363

Table 3.4: The average difference of simulated grain yield for each respective treatment from

measured grain yield along with the average standard deviation across all treatments for each

layer combination

2003-2004 2004-2005

Layers Model Only Assimilation Model Only Assimilation

Assimilated Mean SD Mean SD Mean SD Mean SD

(kg ha−1) (kg ha−1) (kg ha−1) (kg ha−1) (kg ha−1) (kg ha−1) (kg ha−1) (kg ha−1)

0-5 cm

594 301

606 309 905 241 897 240

5-15 cm 655 343 942 387 952 227

15-30 cm 720 375 1191 235 1216 485

0-5, 5-15 cm 686 366 1159 253 1174 473

5-15, 15-30 cm 855 598 1159 236 1184 622

0-5, 5-15, 15-30 cm 943 620 958 253 1019 801

0-3 cm 362 486 337 469 974 375 935 342

3-30 cm
620 441

806 679 1002 397 980 700

0-3, 3-30 cm 869 645 974 375 924 731

Table 3.5: The average difference of simulated canopy weight for each respective treatment

from measured canopy weight along with the average standard deviation across all treatments

for each layer combination
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The simulated data assimilation output of canopy weight for the average difference from

measured was closer to measured than the open-loop average difference from measured for 3 of

the 4 schemes in which assimilation was done only in the top layer. The average canopy weight

and grain yield for both open-loop and data assimilation schemes were both on average 6%

away from measured in the 2003-2004 season. For the 2004-2005 season data assimilation and

open-loop schemes had average canopy weights that were on average 10% away from measure

and average grain yields that were on average 3% away from measured.

The assimilations into the first layer produced interesting results in the 2003-2004 season by

having, on average, the lowest difference from measured values for both yield and canopy weight

for a data assimilation scheme consisting of two layers in the top 30 cm. This is surprising

because it is unlikely that the average measured soil moisture values accurately represent this

layer. The measured soil moisture values represent an average over the entire top 30 cm depth,

where the water in this soil layer is likely to be lower in the soil right before irrigation events,

and also represents a small percentage of water over the entire 30 cm layer even if it were

saturated. The model output of grain yield and canopy weight shows improvement when soil

moisture was assimilated into layers within 0-15 cm, especially in the top 5 cm. In 2004-2005

the average difference from measured for model output of grain yield and canopy weight across

data assimilation schemes had a response more fitting to what would be expected by the soil

moisture assimilation. That is, assimilation into the 30 cm layer alone mostly resulted in the

grain yield and canopy weight averages that were closest to measured.

Both seasons had only a data assimilation scheme that was able to reduce the standard

deviation and an average model output closer to measured than the open-loop with a soil layer

configuration of two top 30 cm layers and assimilation done into the layer from 0-3 cm. Figure

3.2 shows the average grain yield and canopy weight by treatment of the open-loop and the

assimilation schemes that showed these improvements, alongside the measured values.

Reduction of standard deviation would reflect that using the Monte Carlo approach within

the data assimilation was able to address uncertainty in the soil parameters. The standard

deviation in Table 3.5 and 3.4 was lower for the simulated grain yield than for the simulated

canopy weight when comparing corresponding schemes. The data assimilation schemes with
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Layers 2003-2004 2004-2005

Assimilated (%) (%)

5 cm 52 38

15 cm 54 18

30 cm 46 12

5, 15 cm 52 20

5, 30 cm 44 11

5, 15, 30 cm 46 13

3 cm 37 62

30 cm 47 21

3, 30 cm 44 30

Overall 47 25

Table 3.6: Percentage of simulations
where the assimilation grain yield was
closer to measured than the open-loop
averaged over the treatment simula-
tions

Layers 2003-2004 2004-2005

Assimilated (%) (%)

5 cm 42 52

15 cm 39 26

30 cm 38 16

5, 15 cm 44 24

5, 30 cm 34 21

5, 15, 30 cm 32 22

3 cm 35 57

30 cm 36 28

3, 30 cm 35 38

Overall 37 32

Table 3.7: Percentage of simulations
where the assimilation canopy weight
was closer to measured than the open-
loop averaged over the treatment sim-
ulations

lower standard deviations are the data assimilation schemes that assimilate soil moisture into

a layer of either 0-5 cm or 0-3 cm. No data assimilation scheme simulations resulted in a

reduction of the standard deviation for simulated canopy weight where the top 30 cm consisted

of three layers. Some reduction of standard deviation was seen for data assimilation simulations

using two top 30 cm layers.

Standard deviations for 2003-2004 season when considering grain yield for three top 30 cm

were not lower when compared to the open-loop for simulated grain yield. Data assimilation

into the first of two top 30 cm layers for both seasons showed reduced standard deviations.

Data assimilation into the first layer for a three top 30 cm soil layer structure for the 2004-2005

season had reduced standard deviations.

The model output shown in Figure 3.2 was created by the data assimilation scheme that

had the highest percentages of improvement. The percentage of improvement was considered

to be the number of data assimilation simulations that were closer to the measured grain yield

or canopy weight out of the entire set of simulations. The percentage of improvement trended

along with the amount of reduction of standard deviation when compared to the open-loop

standard deviation.

The same trends didn’t seem to exist for both seasons when considering nitrogen application
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or plant density for the treatments. The percentage of improvement for grain yield was higher

than for canopy weight in the 2003-2004 season. For the 2004-2005 season the canopy weight had

a higher percentage of improvement than the grain yield. Typically for treatment simulations

in both seasons resulting having a high percentage of improvement for one model output had

the other model output with a much lower percentage of improvement. In the 2004-2005 two

treatment simulations resulted in percentages of improvements for both canopy weight and

grain yield that were around 50%.

Large differences from measured could be seen for the data assimilation scheme and the

open-loop simulations, specifically treatment FSH, in Figure 3.2. When the open-loop simulated

output for specific treatments for grain yield and canopy weight was closer to measured than

the data assimilation simulated output it was only marginally better.

Statistical differences between open-loop and data assimilation simulations was determined

if the p-value was lower than 5% for a rank-sum test. All of the treatments for the 2004-

2005 season in Figure 3.2 had data assimilation simulations that were statistically different

from open-loop simulations for both grain yield and canopy weight. In the 2003-2004 season

treatment FSH, FTL, and FDL did not have data assimilation simulations that were statistically

different from open-loop simulations for grain yield and canopy weight.

Figure 3.2, Table 3.4 and Table 3.5 show that the data assimilation simulations and the

open-loop simulations trend in the same direction across treatments. The model output of

several of the treatment simulations in Figure 3.2 indicates that in the model the open-loop

and data assimilation schemes are being influenced more strongly by an estimate or parameter

other than soil moisture. The treatment simulations where this is most relevant are when the

model output is significantly further from measured.

In Figure 3.3 unrealistic soil moisture behavior as a consequence of the data assimilation

can be seen, for example, from day 80 to 100 in the 2003-2004 season. Once a measurement

occurs the model will adjust itself quickly and then the soil moisture will continue to decrease

as it had before. These sharp changes occur specifically when the Kalman gain weights the

measurement more strongly than the model and also when the model estimate and the general

trend of the estimate is in large disagreement with the measurement.
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Figure 3.3: Seasonal measurements and soil moisture levels in the 0-3 cm layer where two layers
are in the top 30 cm. for the open-loop and data assimilation scheme for each season, from the
assimilation of soil moisture into the 0-3 cm layer

The large variations in the soil moisture over time in the top layer of the soil profile layer,

seen in Figure 3.3, are due to evapotranspiration, ET, as well as the drainage into lowers layers

that occurs, especially for this well-drained soil. Since this layer is the crucial boundary layer

between soil processes such as drainage and ET, it affects key modeling processes, such as crop

and root growth. The crop growth depends on the energy balances that take place at this

surface and the soil moisture in this layer will influence these processes making it a critical

estimate.

Figure 3.3 indicates that the soil moisture for a layer of 0-3 cm tends to be overestimated

by the open-loop simulations in the 2003-2004 season. The soil moisture of the 0-3 cm layer
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is generally underestimated by the open-loop simulations for the 2004-2005, however. The soil

moisture measurements were likely smaller then the actual soil moisture for the layer from

15-30 cm because the soil moisture measurement represented 0-30 cm. The measurement was

also presumably larger then the actual soil moisture content in the 0-3 cm but yet the model

output experienced improvements for both seasons.

Tracking the daily water balance of the entire soil profile on days in which assimilations

was done in the top layer for the soil layer structure consisting of three top 30 cm layers

showed that the average difference between the depth of water before assimilation and after

assimilation wasn’t largely different. The actual average differences between daily water balance

before assimilation and after for this scheme were 0.127 mm and 0.016 mm for the 2003-2004

and 2004-2005 season respectively. Considering assimilation into a thicker layer such as the

second layer with a soil layer configuration of two 30 cm layers for the 2003-2004 the water

depth has an average difference of 0.653 mm. For the same season assimilating into the second

of three top 30 cm layers results in a difference between daily water depth before assimilation

and after assimilation of 0.338 mm.

Soil nitrate (NO3) levels are important to and vary based on crop growth [Boote et al.

(1998)]. If the crop growth is varied due to changes in soil moisture, the levels and need for

nitrogen are likely going to be influenced as well. For both seasons the level of mineralized N and

denitrified N had little to no change when assimilating into the top layer. When assimilating

into the second of three top layers in the 2003-2004 year the mineralization of N was decreased

by 3 kg ha−1 and denitrified N was decreased by 1 kg ha−1. This was the largest effect that

was present throughout any of the assimilation schemes for both seasons. Most schemes and

treatments did not experience much change.

Daily levels of soil nitrate, NO3, throughout the season occur at similar levels across the

treatments when the data assimilation is compared to open-loop simulations for the data as-

similation schemes that perform well, specifically the top layer assimilation schemes. However

the daily nitrogen levels of the data assimilation scheme simulations that assimilated into the

second layer and below were higher for every layer in the top 30 cm. These data assimilation

schemes were also the simulations that had model output that was the same or worse as the
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open-loop simulations. These trends were most notable for 2003-2004 season. Thorp et al.

(2010a) reports that high levels of nitrogen stress occurred in the 2004-2005 season. This re-

sulted in the model output for grain yield for this season to be driven by nitrogen sensitive

grain parameters. The performance of the data assimilation, based on the average grain yield

and canopy weight along with the standard deviations and percentage of improvement, during

this season could be attributed to the levels of nitrogen stress.

3.5 Conclusions

• A Kalman filter data assimilation scheme assimilating in situ soil moisture measurements

into layers of 0-5 cm was more likely to improve the model output of grain yield and canopy

weight, by improving the average model output when compared to the model open-loop

results.

• Assimilation proved more effective then the model open-loop simulations for a soil con-

figuration of two top 30 cm layers when assimilation was done into the layer from 0-3 cm,

by improving the average model output, lowering the standard deviation and having a

higher percentage of improvement when compared to the model open-loop results.

• Monte Carlo methods show a moderate ability to address soil parameter uncertainty for

assimilation of soil moisture into a small top layer.

• A soil layer structure with layers from 0-3 cm and 3-30 cm resulted in slightly higher

standard deviations as well as average model output that was moderately further away

from measured, for grain yield and canopy weight for both open-loop and data assimilation

configurations.

• Assimilation improvements were more likely to occur when assimilation was done in layers,

specifically for layers of 0-5 cm when the soil layer structure consists of three top 30 cm

layers and 0-3 cm for a soil layer structure consisting of two top 30 cm layers.

• Assimilation using soil moisture measurements averaged across the top 30 cm are not

as likely to overcome improper soil moisture estimates due to poor model inputs of soil
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parameters, indicating there is another variable governing model output.
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CHAPTER 4. Conclusions

4.1 Conclusion

Data assimilation simulations showed the most improvement of model output towards mea-

sured when assimilating soil moisture into layers from 0-5cm and 0-3cm of the soil profile.

When data assimilation did not perform better than the open-loop, the model output of the

open-loop simulations were generally not much different from those of the data assimilation

simulations.

Assimilation into the top two layers of three layers in the top 30cm showed comparable

performance to assimilation done into each of these layers individually. Assimilation of soil

moisture into the layer from 15-30cm showed slight improvement towards measured as well.

Alternatively, assimilating the soil moisture in 0-30cm didn’t improve model output likely due

to the lack of accurate water distribution because of the average soil moisture value represented

0-30cm.

Overestimation in the top 15cm likely had more of influence on the lower layers, due to

the physical relationship between layers, for the 2003-2004 season. In the 2004-2005 season

underestimation of soil moisture by the open-loop model was noticed specifically for the layer

from 0-3cm. It is likely that the measurements from 0-30cm underestimated the depth of soil

water likely to be in the lower 15cm and overestimated the water that was in the top 5cm.

Both seasons showed model output improvement towards measured for the 0-3cm even

The results of the simulations using the Kalman filter data assimilation successfully imple-

mented in the DSSAT-CSM, signifies that the DSSAT-CSM for this case seems to overestimate

or underestimate soil moisture predominately in the top layer. The influence that this has on

the lower layers and also crop growth can be seen by some of the improvements noted from the
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assimilation schemes. The results of the soil moisture assimilation also seem to indicate crop

growth’s strong relationship to soil water partitioning in the top 30cm.

Partitioning of the soil moisture within the top 30cm likely effects crop root growth, and

likewise the crop biomass partitioning. The location of water within the soil for the top layers

also determines where the nutrients travel and finally how the crop produces biomass. The

partitioning of the biomass within the plant itself may be influenced, strongly under some

circumstances, by the partitioning of soil water within the soil. The water distribution is

dependent on the physics of the water balance model, that is based around fundamental soil

parameters. This is a reason why the uncertainty of the input soil parameters was considered

in the simulations.

A high uncertainty in soil parameters results with more frequent soil moisture observations

being required for a assimilation scheme to provide accurate soil moisture estimates [Walker

(2002)]. Because of the importance of water distribution among layers to crop growth, location

of soil moisture observations are also a consideration. The uncertainty of the soil parameters

could require observations at multiple layers, specifically the layers where soil moisture most

significantly influences crop growth and have a higher amount of variation. Bert et al. (2007)

reports that priorities can be established for data collection if the influence of the uncertainty

that the measured variables have on the model is known. Which also can lead to more accurate

model estimates and results analysis as well as informing of model design. Bert et al. (2007)

also notes that little literature exists on the effect of input uncertainties on simulation results,

in light of their wide use.

Even though the soil moisture observations used with the Kalman filter assimilation schemes

had limitations as far as the location and frequency of the measurements were concerned, the

dataset nonetheless was still an invaluable source considering the time and effort that went into

its collection and calculation. The results from the Kalman filter highlight challenges commonly

face when modeling and also coupling observations with models. The Kalman filter performed

as was intended and provided beneficial model output allowing for a useful analysis.

The combination of the direct insertion scheme followed by the application of Kalman

filter and Monte Carlo methods overall has been useful to the understanding of the model soil



59

moisture estimation and the influence of soil parameters within the DSSAT-CSM. This by no

means validates this research as encompassing but is just another building block to construct a

more detailed view of the ideas, concepts and applications presented throughout the research.

The results leave room for further research and a more in depth review or application of

the research already done. The determined frequency of observations is strongly linked to the

uncertainty of the soil parameter inputs. The improvement of the soil parameters as inputs

for the model would lead to the need for less frequent observations from fewer layers, and vice

versa. The ability to quantify the error or deviation of results from the simulations based on

the uncertainty of these input parameters should be considered, as well.

Data assimilation could still address some of these errors that are still present, drawing

on the results presented to provide further insight into the use of the DSSAT-CSM and data

assimilation.

4.2 Future Direction

Based on the previous discussions several aspects of the research provide possible suggestions

for a more in depth study and examination for specifically addressing soil moisture estimation.

Since, the soil moisture observations that were used, were not evenly distributed throughout

the season, it may be beneficial to consider what frequency or schedule of observations are

most appropriate. The frequency of the soil moisture observations are assimilated has more

of an impact on the data assimilation effectiveness especially with uncertain soil parameters.

Soil moisture behavior varies based on the water content of the soil so considering at what

level of saturation is it important to have moisture observations. This updating frequency as

indicated by Walker (2002) is also dependent upon the errors present by the model as well as

those expected from the measurements. An analysis to determine at what interval and depths

the soil moisture observations are effective based on soil parameter uncertainty.

It would be best to look at other alternative or more intensive soil parameter determination

is required if uncertainty of the soil parameters are to be decreased. Research has shown

that site specific PTFs are a better choice for determining the van Genuchten soil parameters

than ROSETTA [Rubio (2008)]. Looking at methods to develop equations such as these could
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address the soil parameter uncertainty.

A thorough sensitivity analysis may be necessary for the soil parameters when using the

CERES-Wheat crop model, for soil moisture as well as nitrogen sensitive crop growth parame-

ters. In doing so the soil parameters can be optimized to help adequately partition soil moisture

and also nitrogen for future simulations. Since the weather dramatically effects the variability

of the soil moisture in the top 5cm, another aspect of consideration would be the difference

of the weather conditions for each season for this experiment. From this comparison it may

be able to explain situations in which the DSSAT-CSM overestimates soil moisture. Since the

overestimation could be linked to evapotranspiration and root uptake processes as well.

The wide implementation of crop models is dependent on their performance success and

effectiveness. The DSSAT-CSM model has proven its ability to accurately and perform well

under many different circumstances and geophysical conditions. Since the use of the DSSAT-

CSM for research and precision agriculture has led to an increased importance in its ability

to inform decisions based on the model predictions. These decision are based on economic

and educational returns but also on the basic need for food. With this in mind, continued

improvement of the DSSAT-CSM should still be a focus to be able to utilize new knowledge and

data. As technology improves the amount of information and its detail will increase as well. The

information is only useful if has well designed applications and well informed implementation. It

is necessary to further understand the relationship that exists when coupling data, specifically

in real-time, into the DSSAT-CSM. The effects and benefits of this type of research can lead

to improvements of the model design and predictions and in turn help improve all types of

benefits.
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APPENDIX A. Fortran Code

A.1 WATBAL ASSIM.FOR

SW ASSIM being called during the SEASINIT stage in the file for calculating water balance

components of the DSSAT-CSM.

IF (Assim_sw) THEN

CALL SW_ASSIM(CONTROL, ISWITCH, SOILPROP, assim_cont_mod,

& assim_data, SW)

CALL OPASSIM(CONTROL, ISWITCH, assim_data, assim_cont_mod)

ENDIF

SW ASSIM being called during the INTEGR stage in the file for calculating water balance

components of the DSSAT-CSM.

! Perform assimilation of soil water measurements in all layers

IF (Assim_sw) THEN

CALL SW_ASSIM(CONTROL, ISWITCH, SOILPROP, assim_cont_mod,

& assim_data, SW)

ENDIF

A.2 SW ASSIM.FOR

The SW ASSIM file is where the soil moisture estimates are updated if a data assimilation

scheme is being used.

C=======================================================================

C SW_ASSIM, Subroutine, Candance M. Batts and Derek G. Groenendyk
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C Calculates water balance assimilation.

C-----------------------------------------------------------------------

C REVISION HISTORY

C 07/14/2008 CMB Written

C 06/14/2010 DGG Updated KFProp Calls and general code

C-----------------------------------------------------------------------

C Called by: WATBAL_ASSIM module

C Calls: YR_DOY

C KFProp (File KFProp.FOR)

C=======================================================================

SUBROUTINE SW_ASSIM(CONTROL, ISWITCH, SOILPROP, assim_cont_mod,

& assim_data, SW)

USE ModuleDefs

USE AssimDefs

IMPLICIT NONE ! in Fortran 90, compiler flags more mistakes

SAVE

TYPE (ControlType) CONTROL

TYPE (AssimContType) assim_cont_mod

TYPE (AssimDataType) assim_data

TYPE (SwitchType) ISWITCH

TYPE (SoilType) , INTENT(IN) :: SOILPROP

CHARACTER*6 ERRKEY

INTEGER model_doy, model_year, SL, Assim_obs_per, DYNAMIC

INTEGER Start_layer, Assim_type, Assim_layers, bottomLayer

INTEGER SoilLayer, obs_doy

INTEGER obs_period, AL, NLAYR !period in between observation assims
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INTEGER yr, doy, indx, nlen ! phase of kalman filter

LOGICAL last_assim

REAL, DIMENSION(NL) :: SW

REAL swold, sw1delta, stemp1, theta, swobs, swpred

nlen = assim_cont_mod % Assim_obs

Assim_type = assim_cont_mod % Assim_type

Assim_layers = assim_cont_mod % Assim_layers

Assim_obs_per = assim_cont_mod % Assim_obs_per

Start_layer = assim_cont_mod % Start_layer

NLAYR = SOILPROP % NLAYR

DYNAMIC = CONTROL % DYNAMIC

bottomLayer = Assim_layers + Start_layer - 1

AL = 1

IF (DYNAMIC .EQ. SEASINIT) THEN

indx = 1

last_assim = .FALSE.

! To initialize the Kalman filter, specifically paposteriori.

IF (Assim_type .EQ. Assim_kalman) THEN

assim_data % kf_mode = 0

DO SoilLayer = Start_layer, bottomLayer

AL = SoilLayer - Start_layer + 1

CALL KFProp (CONTROL, ISWITCH, assim_cont_mod,

& assim_data, theta, swold, nlen, AL)

ENDDO

ENDIF
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ELSEIF (DYNAMIC .EQ. INTEGR) THEN

! called during integrate (CONTROL % DYNAMIC)

! for continuous (daily) data

CALL YR_DOY(CONTROL % YRDOY,YR,model_doy)

IF (indx .GT. nlen) THEN

last_assim = .TRUE.

ELSE

obs_doy = assim_data % obs_data(indx,1)

ENDIF

IF (obs_doy .EQ. model_doy) THEN

!update

ERRKEY = "Layers"

IF (bottomLayer .GT. 10) THEN

print *,bottomLayer

CALL ERROR (ERRKEY,1,"FILEX",55)

ENDIF

assim_data % kf_mode = 2

DO SoilLayer = Start_layer, bottomLayer

!print *,SoilLayer

!pause

SL = SoilLayer + 1

!also could use Assim_layers

IF (assim_cont_mod % Assim_obs_layers .LT.

& NLAYR) THEN

SL = SL - Start_layer + 1
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ENDIF

! simple direct insertion

IF (Assim_type .EQ. Assim_direct) THEN

SW(SoilLayer) = assim_data % obs_data(indx,SL)

! call kalman subroutine

ELSEIF (Assim_type .EQ. Assim_kalman) THEN

!print *,SL-1

!pause

theta = assim_data % obs_data(indx,SL)

swold = SW(SoilLayer)

CALL KFProp(CONTROL, ISWITCH, assim_cont_mod,

& assim_data, theta, swold, nlen, SL-1)

SW(SoilLayer) = theta

ENDIF

ENDDO

indx = indx + 1

ELSE

IF (Assim_type .EQ. Assim_kalman) THEN

assim_data % kf_mode = 1

DO SoilLayer = Start_layer, bottomLayer

AL = SoilLayer - Start_layer + 1

!AL = AssimLayer

!print *,AL

CALL KFProp (CONTROL, ISWITCH, assim_cont_mod,

& assim_data, theta, swold, nlen, AL)

ENDDO
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ENDIF

END IF

ENDIF

RETURN

END SUBROUTINE SW_ASSIM

A.3 KFPROP.FOR

In KFPROP the Kalman filter calculations are made based on the stage of the DSSAT-CSM

and the presence of a measurement.

C=======================================================================

C KFProp, Subroutine, Derek G. Groenendyk

C Calculates the Kalman filter variables

C-----------------------------------------------------------------------

C Soil Processes subroutine. Calls the following modules:

C-----------------------------------------------------------------------

C REVISION HISTORY

! 06/14/2010 DGG Written

C=======================================================================

SUBROUTINE KFProp(CONTROL, ISWITCH, assim_cont_mod, assim_data,

& theta, swold, nlen, AL)

USE ModuleDefs

USE AssimDefs

IMPLICIT NONE

SAVE

TYPE (AssimContType) assim_cont_mod



67

TYPE (ControlType) CONTROL

TYPE (SwitchType) ISWITCH

TYPE (AssimDataType) assim_data

CHARACTER FILEASSIM*(6)

INTEGER kf_mode, nlen, AL, Assim_layers, FILENUM

INTEGER bottomLayer, Start_layer, DYNAMIC, status

! phase of kalman filter

REAL swold, theta, swobs, swpred, X_0

REAL xaposteriori_0, paposteriori_0, A, H, Q, R

CHARACTER*6, PARAMETER :: ERRKEY = ’ALLCTE’

REAL, DIMENSION(assim_cont_mod % Assim_layers) :: Z

REAL, DIMENSION(assim_cont_mod % Assim_layers) :: xapriori

REAL, DIMENSION(assim_cont_mod % Assim_layers) :: xaposteriori

REAL, DIMENSION(assim_cont_mod % Assim_layers) :: residual

REAL, DIMENSION(assim_cont_mod % Assim_layers) :: papriori

REAL, DIMENSION(assim_cont_mod % Assim_layers) :: paposteriori

REAL, DIMENSION(assim_cont_mod % Assim_layers) :: K

DYNAMIC = CONTROL % DYNAMIC

Assim_layers = assim_cont_mod % Assim_layers

Start_layer = assim_cont_mod % Start_layer

Q = assim_cont_mod % Filter_Q ! process/model noise covariance

R = assim_cont_mod % Filter_R ! measurement noise covariance

kf_mode = assim_data % kf_mode

FILEASSIM = "KFProp"

bottomLayer = Start_layer + Assim_layers - 1
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swpred = swold ! model’s projected day value

swobs = theta ! obs value

!Define the system

A = 1

H = 1

IF (DYNAMIC .EQ. SEASINIT .AND. AL .EQ. 1) THEN

ALLOCATE (assim_data % Z(Assim_layers), STAT=status)

IF (status .NE. 0) CALL ERROR (ERRKEY,2,FILEASSIM,FILENUM)

ALLOCATE (assim_data % xapriori(Assim_layers), STAT=status)

IF (status .NE. 0) CALL ERROR (ERRKEY,3,FILEASSIM,FILENUM)

ALLOCATE (assim_data % xaposteriori(Assim_layers),

& STAT=status)

IF (status .NE. 0) CALL ERROR (ERRKEY,4,FILEASSIM,FILENUM)

ALLOCATE (assim_data % residual(Assim_layers), STAT=status)

IF (status .NE. 0) CALL ERROR (ERRKEY,5,FILEASSIM,FILENUM)

ALLOCATE (assim_data % papriori(Assim_layers), STAT=status)

IF (status .NE. 0) CALL ERROR (ERRKEY,6,FILEASSIM,FILENUM)

ALLOCATE (assim_data % paposteriori(Assim_layers),

& STAT=status)

IF (status .NE. 0) CALL ERROR (ERRKEY,7,FILEASSIM,FILENUM)

ALLOCATE (assim_data % K(Assim_layers), STAT=status)

IF (status .NE. 0) CALL ERROR (ERRKEY,8,FILEASSIM,FILENUM)

ENDIF

IF (DYNAMIC .EQ. INTEGR .OR. DYNAMIC .EQ. SEASINIT) THEN

If (kf_mode .NE. 0) THEN

xapriori = assim_data % xapriori

xaposteriori = assim_data % xaposteriori
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residual = assim_data % residual

papriori = assim_data % papriori

paposteriori = assim_data % paposteriori

K = assim_data % K

ENDIF

IF (kf_mode .EQ. 2) THEN !obs exists

! Assimilate observation theta1 into SW(1). Using swold,

! model predicted reading.

! Initial guesses for state and a posteriori covariance.

xaposteriori_0 = swpred ! model prediction

Z(AL) = swobs ! measurement observation

paposteriori_0 = paposteriori(AL)

! Predictor (Time Update) equations

xapriori(AL) = A*xaposteriori_0 ! model prediction

residual(AL) = Z(AL)-H*xapriori(AL) !does this make sense?

papriori(AL) = A*A*paposteriori_0+Q

! Corrector (Measurement Update) equations

K(AL) = H*papriori(AL)/(H*H*papriori(AL)+ R)!Kalman Gain

paposteriori(AL) = papriori(AL)*(1-H*K(AL)) ! P_k

xaposteriori(AL) = xapriori(AL)+K(AL)*residual(AL)!New Pred.

ELSEIF (kf_mode .EQ. 1) THEN !no obs exists

paposteriori_0 = paposteriori(AL)

papriori(AL) = A*A*paposteriori_0+Q

paposteriori(AL) = papriori(AL)

K(AL) = 0.0
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ELSEIF (kf_mode .EQ. 0) THEN !initialization run...

paposteriori_0 = R

papriori(AL) = A*A*paposteriori_0+Q

paposteriori(AL) = papriori(AL)

K(AL) = 0.0

ENDIF

theta = xaposteriori(AL)

assim_data % xapriori = xapriori

assim_data % xaposteriori = xaposteriori

assim_data % residual = residual

assim_data % papriori = papriori

assim_data % paposteriori = paposteriori

assim_data % K = K

ENDIF

RETURN

END SUBROUTINE KFProp
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APPENDIX B. Extra Figures

Figure B.1: Hunsaker et al. (2007b) field layout with each plot labeled with its respective
treatment. Detailed field distances and locations are also shown. The same layout was used
for both seasons.
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