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ABSTRACT 

Livestock and poultry producers face increasing challenge to reduce the negative 

impacts of their operations on the environment. Ammonia (NH3) released from animal 

manure to the atmosphere is one of the major environmental concerns associated with 

poultry production. There have been growing research efforts toward documenting or 

improving the inventory of NH3 emissions from animal production systems. Efforts also 

continue to develop process-based models for predicting gaseous, particularly NH3, 

emissions from animal feeding operations. In this thesis research, an environmentally 

-controlled dynamic gas emission chambers system was used to investigate the dynamic 

gaseous emissions, ingestion, and defecation activities of laying hens. Chapter 2 of this 

thesis describes the dynamic emissions of NH3 and carbon dioxide (CO2) relative to 

feeding and defecation activities of W-36 laying hens. Results presented include average 

daily feed consumption, manure production, relation of manure surface area to manure 

weight, daily NH3 and CO2 emission rates, and relations of NH3 and CO2 emissions to 

manure accumulation. The study revealed an inverse relationship between dynamic NH3 

emissions and defecation events of the hens as manure accumulates. Results from this 

study will contribute to development and validation of process-based emission models for 

predicting NH3 emissions from laying-hen houses. The dynamic nature of NH3 emissions 

vs. defecation event of the hen may help guide the application timing of manure treatment 

agents to reduce NH3 emissions from laying-hen houses.  

Chapter 3 assesses the effect of a diet containing corn distiller's dried grain with 

solubles (DDGS, 15% by weight) vs. control diet (no DDGS added) on NH3 emission and 

production performance of W-36 laying hens. Compared with hens fed the control diet, 
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hens fed the DDGS diet had 16% higher manure mass production (P<0.001) and 13% 

higher egg mass production (P<0.05). After 6 days of manure accumulation, NH3 

emissions for the DDGS diet regimen showed considerable reduction, as expressed in the 

units of g/hen-d (26%, P<0.1), g/kg manure-d (32%, P<0.05), g/kg egg-d (38%, P<0.01), 

or g/kg N intake-d (31%, P<0.01), when compared to the control diet regimen. Results of 

this study involving manure accumulation from live hens support previous findings of the 

NH3 emission-lowering effect of corn DDGS as observed in lab-scale studies involving 

static manure storage. Hence, corn DDGS (at 15% inclusion rate) seems to be a viable 

feed ingredient for laying hens that will lead to reduced NH3 emissions without 

negatively affecting the hen production performance. However field verification of hen 

production performance is warranted. 
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CHAPTER 1. GENERAL INTRODUCTION 

Introduction 

Ammonia (NH3) is the major pollutant gas released from poultry feeding 

operations. There have been growing research efforts toward documenting or improving 

the inventory of NH3 emissions from animal production systems. One classical 

multi-national study concerning NH3 concentrations and emissions from animal housing 

in northern Europe was reported by Groot Koerkamp et al. (1998). The most recent 

studies on NH3 emissions from commercial U.S. poultry operations include those 

reported by Liang et al. (2005) for laying hens, Wheeler et al. (2006) and Burns et al. 

(2007) for broiler chickens, and Li et al. (2008) for turkeys. Ammonia emissions from 

poultry manure storage as affected by different environmental conditions (e.g., stacking 

configuration, moisture content of manure, and storage temperature) have also been 

investigated (Li, 2006). Researchers have shown that prolonged exposure to high levels 

of NH3 can cause reduced body weight gain and egg production in laying hens (Deaton et 

al., 1982). High NH3 concentration inside livestock facilities can have negative impacts 

on farm workers (Donham, 2000). Ammonia released from livestock operations may also 

pose health risks on vicinal residents (McCubbin et al., 2002, Auvermann and Rogers, 

2002, Wing and Wolfe, 2000).  

The Occupational Safety and Health Administration (OSHA) of the United States 

has set permissible NH3 level for 8-hr exposure to 50 ppm, whereas the National Institute 

of Occupational Safety and Health (NIOSH) has set the 8-hr permissible NH3 level to 25 

ppm. The American Conference of Governmental Industrial Hygienists (ACGIH) 

recommends a limit of 35 ppm for a 15-minute exposure. Increasing attention is being 
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directed toward seeking practical strategies to mitigate air emissions from animal feeding 

operations, e.g., through dietary manipulation (Liang et al., 2005; Roberts et al., 2007) 

and topical application of treatment agents on manure (Li et al., 2008).  

The 2002 report by the National Academy of Sciences called for development of 

process-based models to enhance the ability to better understand and predict NH3 

emissions from animal feeding operations. To that end, multi-disciplinary efforts have 

been made to develop such models, as reported by Mansell et al. (2005) and Zhang et al. 

(2005). In this process, it became clear that information is missing or lacking concerning 

the dynamics of NH3 emissions as affected by the biophysical factors in animal housing.  

Laying-hen houses in the United States generally use high-rise (HR) or manure- 

belt (MB) style, with MB style gaining popularity because of improved indoor air quality. 

The HR houses feature in-house manure storage for an extended period (typically one 

year), whereas MB houses feature more frequent removal of manure (daily to weekly).  

The objective of the first part of this thesis research, as reported in Chapter 2, was 

to delineate dynamic emissions of NH3 and CO2 as related to feeding and defecation of 

laying hens under different manure accumulation durations, as may be encountered in 

commercial MB houses.  

In recent years, with the increasing production of fuel ethanol with corn, its 

co-product, distiller's dried grain with solubles (DDGS), has gained increasing attention 

as feedstuff for poultry production. The DDGS contains 7% to 10% fiber (Spiehs et al., 

2002). Researchers have reported increasing dietary fiber supplement in the diet leads to 

transfer of nitrogen (N) from urinary excretion to fecal excretion for rats (Tetens et al., 

1996) and also for pigs (Kreuzer and Machmuller, 1993). Roberts et al. (2007) reported 
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laying-hen diets containing 10 % corn DDGS decreased NH3 emission from the hen 

manure for up to 50% during 7-day storage tests. However, Roberts et al. (2007) did not 

find significant redistribution of N in poultry manure, and the reduction of NH3 emission 

was believed to mainly result from the lower pH value in the manure of DDGS diet group. 

More information regarding the effect of DDGS diet on laying-hen manure NH3 and CO2 

emissions, particularly with live hens as manure is produced and accumulated, needs to 

be gathered. Hence, the objective of the second part of the thesis research, as reported in 

Chapter 3, was to compare a DDGS diet vs. Control diet in terms of feed intake, manure 

production, egg production, and NH3 and CO2 emissions of W-36 laying hens. 

Thesis organization 

This thesis has been prepared in journal paper format of Transactions of the 

ASABE, with two manuscripts. The thesis includes four chapters − a General Introduction, 

one manuscript entitled “Ammonia and Carbon Dioxide Emissions vs. Feeding and 

Defecation Activities of Laying Hens,” another manuscript entitled “Feeding, Defecation 

and Gaseous Emission Dynamics of W-36 Laying Hens,” and a General Conclusion. 

Figures and tables relevant to each paper are included at the end of each chapter. 
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Abstract 

This study involved two experiments (Experiments 1 and 2) that characterize 

dynamic ammonia (NH3) and carbon dioxide (CO2) emissions associated with feeding 

and defecation activities of W-36 laying hens. The manure handling scheme used was 

reflective of commercial manure-belt (MB) housing operations. Four dynamic emission 

chambers and measurement system were developed and used in the study, featuring 

continuous measurement of the following variables: (a) NH3 and CO2 concentrations of 

inlet and outlet air, (b) air temperature and relative humidity, (c) airflow rate through the 

chambers, (d) feeder weight and thus feeding activity, and (e) manure pan weight and 

thus defecation activity. Daily feed use of the hens averaged 102 g/hen-d and manure 

production averaged 117 g/hen-d (as-is). A regression equation was developed that 

relates manure projected surface area to manure weight. Ammonia emission rate (ER) 

ranged from 0.03 g/hen-d on the first day of manure accumulation to 0.23 g/hen-d after 6 

d of manure accumulation or 0.37 g/hen-d after 8 d of manure accumulation. Ammonia 

emissions tend to be inversely related to defecation events as manure accumulates. 
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Namely, higher manure production during light hours is associated with slower increase 

of NH3 emission, and lower manure production during dark hours yields faster increase 

of NH3 emission. Ammonia emission rate (ER, g/hen-d) shows an exponential relation 

with manure accumulation time (T, day), of the form, 
3

20.0027 0.025NHER T T= × + ×  

(R
2
=0.998). CO2 ER was relatively steady throughout the trial period, averaging 3.3 and 

2.5 g/hen-hr, respectively, during light and dark hours of the day. Results from this study 

will contribute to development and validation of process-based farm emission models for 

predicting NH3 emissions from laying-hen houses. The dynamic nature of NH3 emissions 

vs. defecation can help guide application timing of manure treatment agents to mitigate 

NH3 emissions from laying-hen houses.  

Keywords: NH3 emission, CO2 emission, defecation, laying-hen house, process-based 

modeling 

Introduction 

Ammonia (NH3) is the major gas of environmental concern associated with 

poultry feeding operations. There have been growing research efforts toward 

documenting or improving the inventory of NH3 emissions from animal production 

systems. One classical multi-national study concerning NH3 concentrations and 

emissions from animal housing in northern Europe was reported by Groot Koerkamp et 

al. (1998). The most recent studies on NH3 emissions from commercial U.S. poultry 

operations include those reported by Liang et al. (2005) for laying hens, Wheeler et al. 

(2006) and Burns et al. (2007) for broiler chickens, and Li et al. (2008) for turkeys. 

Ammonia emissions from poultry manure storage as affected by different environmental 

conditions (e.g., stacking configuration, moisture content of manure, storage temperature) 
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have also been investigated (Li, 2006). Moreover, increasing attention is being directed 

toward seeking practical strategies to mitigate air emissions from animal feeding 

operations, e.g., through dietary manipulation (Liang et al., 2005; Roberts et al., 2007) 

and topical application of treatment agents on manure (Li et al., 2008).  

The 2002 report by the National Academy of Sciences called for development of 

process-based modeling to enhance the ability to better understand and predict NH3 

emissions from animal feeding operations. To that end, multi-disciplinary efforts have 

been made to develop such models as reported by Mansell et al. (2005) and Zhang et al. 

(2005). In this process, it became clear that information is missing or lacking about the 

dynamics of NH3 emissions as affected by the biophysical factors in animal housing.  

Laying-hen housing in the United States generally uses either high-rise (HR) or 

manure-belt (MB) style, with the MB style gaining popularity because of improved 

indoor air quality. High-rise houses feature in-house manure storage for an extended 

period (typically one year), whereas MB houses feature more frequent removal of 

manure (daily to weekly).  

The objective of this study was to delineate dynamic emissions of NH3 and CO2 

as related to feeding and defecation of laying hens under different manure accumulation 

durations, as may be encountered in commercial MB houses.  

Materials and Methods 

Feeding, Defecation and Gas Emissions Measurement System  

This study was conducted using four newly developed dynamic gas emission 

chambers, each measuring 86 cm L × 45 cm W × 66 cm H, that were located inside an 

environmentally-controlled room at the Iowa State University Livestock Environment 
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and Animal Physiology (LEAP) Lab II (figs. 1a & 1b). The chamber walls were 

constructed with transparent plexiglass panels (5-mm thickness). Inside each transparent 

emission chamber was an iron-framed wire-mesh cage (44 cm L × 34 cm W × cm 58 H 

cm) that was able to accommodate up to three adult hens with a floor space of 500 

cm
2
/hen (77 in

2
/hen). Fresh air to each chamber was supplied through an air distribution 

plenum to improve spatial uniformity, and the air supply was powered with a diaphragm 

air pump (100 l/min capacity, DDL 120-101, GAST Manufacturing Inc., Benton Harbor, 

Michigan, USA1) placed in the inlet side of the chamber, thereby creating a positive 

pressure ventilation system. Airflow rate through each chamber was measured with a 

thermoelectric air mass flow meter (GFM57, Aalborg Instruments & Controls Inc., 

Orangeburg, NY, USA) placed in the supply air stream. Before the first trial, all four flow 

meters were connected in series to check interchangeability or consistency and the results 

were within the performance specification without any inter-meter correction. Air flow 

through each chamber was adjustable via a by-pass, so that the target concentrations of 

NH3 or CO2 inside the chamber could be controlled.  

To capture the feeding and defecation events, two electronic balances (2200±0.1 

g, Model GX2000, A&D Company Limited, Tokyo, Japan) with a 0–2.2 VDC analog 

output (sampling rate of 0.1 s by the data acquisition system) were used in each chamber, 

one for measurement of the feeder weight or feeding activity and the other for the 

manure pan weight or defecation activity of the birds. The balances had automatic 

response adjustment to compensate for vibration or drafts. One air temperature and 

relative humidity (RH) sensor (HMP45A/D, Vaisala, Woburn, MA, USA) was placed in 

                                                      
1
 Mention of company or product names is for presentation completeness and does not imply 
endorsement by the authors or their affiliations nor exclusion of other suitable products.  
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each cage to measure the dry-bulb temperature and RH. The exhaust air from each 

chamber was connected to a 5 cm (2 inch) PVC pipe that was routed to the building vent 

outlet. A nipple drinker was used to supply drinking water. A plastic cup with tubing was 

placed underneath each drinker to catch and divert any water leakage into the manure 

pan. 

Samples of the exhaust air from each chamber were successively taken by a 

sampling pump (0–20 L/min, Teflon wetted parts, Model No. 2107CA20B, Gardner 

Denver Inc., Sheboygan, WI, USA) at 3-min intervals, with the first 2 min for 

stabilization and the last 1 min for measurement. This sampling sequence yielded a 

measurement cycle of 12 min for each chamber. In addition, the supply air was sampled 

every 36 min (i.e., every three sampling cycles of the chambers) to obtain the 

background gas concentrations. The successive sampling was accomplished through 

controlled operation of eight solenoid valves (PKV-2R-D1/4NF, Takasago Electric Inc., 

Midori-ku, Nagoya, Japan). A Teflon filter (4.5 cm diameter) connected to a Teflon 

tubing (1.63 cm diameter) was placed in front of each solenoid valve. A photoacoustic 

multi-gas analyzer (Model 1412, INNOVA AirTech Instruments A/S, Ballerup, Denmark) 

was used to measure NH3 and CO2 concentrations and dew-point temperature of the 

sample air. The analyzer uses an internal pump to draw sample air at a flow rate of 

approximately 1.8 L/min, and operated in 22 s cycles (i.e., 2 s for chamber flushing, 3 s 

for tube flushing, 1 s for sample integration, and the rest for mechanical operation of the 

analyzer) for the measurements of the sample air. The multi-gas analyzer was challenged 

or calibrated, as needed, with zero air, 25 ppm NH3 (balanced with air) span calibration 

gas and 3000 ppm CO2 (N2 balance) calibration gas every two weeks. Response of the 
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gas analyzer to changes in NH3 concentration had been tested previously to confirm the 

validity of the 3-min sampling per chamber. Detailed description of the photoacoustic 

multi-gas analyzer performance has been given by Moody et al. (2008). 

Analog outputs from the temperature and RH sensors, INNOVA gas analyzer, 

electronic balances, and the mass flow meters were logged at 10-s intervals into a 

measurement and control module (Model CR10, Campbell Scientific, Inc., Logan, UT). 

All measurements were recorded as average of output values over the 10-s intervals.   

To assess the integrity of the dynamic emission chambers system, CO2 recovery 

tests were performed on all chambers before the experiment. An alcohol lamp containing 

100% alcohol (C2H5OH) was placed on the manure pan electronic balance in each 

chamber during the recovery test, so that the dynamic as well as cumulative alcohol 

consumption could be obtained from the weight changes. The theoretical volume of CO2 

generation by the alcohol combustion under standard temperature and pressure (STP) 

condition (T = 273.15K or 0°C, P = 101.325 kPa or 1 ATM), VCO2 (L), was calculated by 

the following equation, 

    
2

2
22.4

46.068

alcohol
CO

T M
V

× ×
= ×      [1] 

where Malcohol is the combustion rate of the 100% alcohol (g/hr); T is the duration of 

alcohol oxidation (hr); 46.068 is the molecular weight of alcohol (g/mole); and 22.4 is 

the gas molar volume under the STP of 0°C and 1 ATM (L/mole).  

Next, the mass flow meter reading at T = 294.25K and P = 101.325 kPa was 

converted to the STP of 0°C and 1 ATM using the following ideal gas law equations:  

    Ideal IdealFM FM

FM Ideal

P VP V

T T

××
=      [2] 
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    Ideal FM FM
Ideal

FM Ideal

T P V
V

T P

× ×
=

×
     [3] 

where PFM = 101.3 kPa and TFM= 294.25K are, respectively, pressure and temperature 

corresponding to the air flow meter output VFM; and PIdeal = 101.323 kPa and TIdeal = 

273.15K are, respectively, pressure and temperature corresponding to 22.4 L/mole gas; 

VIdeal is the air flow rate under STP of 0°C and 1 ATM (L/min). The measured CO2 

production of each chamber by the system, V’CO2, is of the form,  

    
2

' ( )CO Outlet Inlet IdealV C C V T= − × ×      [4] 

where COutlet and CInlet are, respectively, outlet and inlet CO2 volumetric concentration in 

parts per million (ppm); T is the duration of alcohol combustione(hr). 

The recovery ratio (RR) was expressed as:  

    2

2

'
100%

CO

CO

V
RR

V
= ×      [5] 

The RR values for the chambers generally ranged from 95% to 104%. Gas emissions 

from each chamber measured subsequently were adjusted based on the respective RR.  

Before the recovery test and the experimental trials, the four air mass flow meters 

were either connected in series to check the consistency (new flow meters in Experiment 

1) or checked with one calibrated meter (#4) and calibration equations (in Experiment 2). 

The following calibration equations were developed for the four flow meters during 

Experiment 2. 

    1 10.928 12.29CFR OFR= × +    (R
2 
= 0.997)  [6] 

    2 20.976 2.98CFR OFR= × +    (R
2 
= 0.9999) [7] 

    
3 30.906 12.56CFR OFR= × +    (R2 = 0.998)  [8] 
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4 4CFR OFR=    [9] 

Where CFR is Corrected Flow Rate of the flow meter and OFR is the Output Flow Rate 

of the flow meter. 

Experiments with W-36 Laying Hens 

Experiment 1:  

The experimental W-36 hens were procured from a commercial layer farm in 

Iowa. They were brought back to the LEAP Lab II and randomly assigned to the 

emission chambers, 3 hens per cage or chamber. The hens were given 7 days to 

acclimatize to the chamber environment, followed by 5 to 7 d of data collection. The 

hens were fed the same diet as used on the farm, with N content of 2.04% – 2.23%. A 

total of six trials were conducted, involving 36 hens, for this part of the study. The hens 

averaged 1.48 (± 0.03 S.D.) kg in starting body weight and ranged from 82 to 109 weeks 

in age. Detailed information about the hens and the dietary N contents is shown in Table 

1. 

 During the experiment, fresh feed was added to the feeder between 18:00 and 

19:00 hr daily. Fluorescent light was provided at an illumination intensity of 20 lux, on 

for 16 hr (05:00 to 21:00h) and off for the remaining 8 hr (21:00 to 05:00h). Manure pans 

were replaced after the acclimatization period and again after the data collection period. 

Eggs of each chamber were collected and weighed daily. Hens were weighed at the 

beginning and the end of each trial. 

Experiment 2: 

Experimental hens were obtained from a commercial farm in Iowa. A total of 12 

Hy-Line W-36 hens were involved in this study. The hens had a starting body weight of 
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1.45 (± 0.06 S.D.) kg and 48 wk of age. The same diet as used on the farm with N 

content of 2.75% was fed. The same photoperiod of 16L:8D as used in Experiment 1 was 

used in this experiment. 

A Latin Square Design was used to achieve the different manure accumulation 

periods of 1, 2, 4, or 8 d, each with a minimum of 4 replicates per accumulation period. 

In addition to those measurements made in Experiment 1, digital pictures of manure 

distribution in the pan were taken at the end of each accumulation period and the manure 

samples collected. Binary images were generated from the digital pictures and projected 

areas of the manure accumulation calculated. Moreover, at the end of each respective 

accumulation period, manure in the pan was collected, frozen and subsequently shipped 

to the collaborator’s laboratory at University of California-Davis for manure property 

analysis (including TKN, urea, uric acid, ammonia, pH, total solids, and volatile solids). 

At the time of this thesis writing, the manure samples had not been analyzed due to lack 

of personnel in the Manure Analysis Laboratory at University of California in Davis; 

hence data were not available for inclusion.  

Data Analysis 

The NH3 and CO2 emissions were calculated from the following equations:  

    
3

( ) 17.03

22.4 3

Outlet Inlet Ideal
NH

C C V
ER

− × ×
=

×
   [10] 

    
2

( ) 44.01

22.4 3

Outlet Inlet Ideal
CO

C C V
ER

− × ×
=

×
   [11] 

    ( 16 8) / 24TWA L DER ER ER= × + ×    [12] 

where ERNH3 is NH3 emission rate (g/min); ERCO2 is CO2 emission rate (g/min); 17.03 

g/mol is the molecular weight of NH3; 44.01 g/mol is the molecular weight of CO2; 22.4 
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L/mol is the gas molar volume under STP of 0°C and 1 ATM. Videal is ventilation rate of 

the chamber at STP of 0°C and 1 ATM (L/min). ERTWA is daily time weighted average 

ER; ERL is light period average ER; ERD is dark period average ER. 16 is total number 

of light hours in a day; 8 is total number of dark hours in a day; 24 is the daily hours. 

To assess the influence of defecation events on dynamic gas emissions, dynamic 

defecation events in each chamber need to be detected and recorded. Because the manure 

pan weight was recorded continually every 10 s, defecation events were identified by 

comparing the adjacent manure pan weight data. Namely, when the difference between 

two adjacent manure pan weights exceeded the preset threshold (0.5 g), a defecation 

event was considered to have occurred and the difference in pan weight was considered 

as the amount of the defecation. Figure 2 shows a sample of defecation events in one 

cage of 3 hens for a 24-hr period. Since the raw output data from the manure pan scale 

contained inevitable sources of noise arising from things like vibration of the manure pan 

from manure dropping on it or vibration from movements of the hens, data filtration was 

applied to the raw data. Specifically, every manure pan weight reading was compared 

with its previous reading. If the current reading was 0.5 g higher than the previous 

reading a potential defecation event was considered to have occurred; then the manure 

pan weights 30 s before and after the potential event were examined to ensure that the 

manure pan weights were constant both before and after the event. Manure defecation 

and gas ER were determined for light or dark period, as well as the time-weighted daily 

mean or total.   

Hourly feed use was calculated as the difference in stabilized feeder weight 

between start and end of each hour. Hourly defecation amount was calculated by 
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summing up the amount of all defecation events during that hour.  

Projected area of the hen manure accumulated for 1, 2, 4 or 8 d in the manure pan 

was determined through image analysis generated from Experiment 2. Figure 3 shows 

photos of the manure pan for different manure accumulation durations, and Figure 4 

shows the corresponding 2-dimensional binary images.  

Statistical Analysis 

      Regression analysis was conducted to develop empirical relationships between 

the response variables (e.g., gaseous emissions vs. manure accumulation time, project 

surface area vs. manure weight). The significance of coefficient and intercept of each 

equation was tested, with a P-value of < 0.1 being considered significant. Student’s t-test 

was used to test the significance of the difference between dark-time and light-time NH3 

ER increase rates. JMP 6.0 program (JMP Statistical Discovery 6.0.0, SAS Institute Inc., 

Cary, NC, USA) was used to carry out all the statistical analyses. 

Results and Discussion 

Feeding Activities and Defecation Behavior 

The mean hourly feed intake and mean hourly defecation are shown in Table 2. 

The relationship between hourly feed intake and hourly defecation is shown in Figure 5 

and further quantified with regression analysis. The hourly defecation (WDefecation, 

g/hen-hr) and feed intake (WFeed, g/hen-hr) had the following relationship,  

  20.046(0.008) 1.001(0.086) 1.97(0.21)Defecation feed feedW W W= − × + × +  (R
2
 = 0.94) [13] 

 

All coefficients were significantly different from zero (P<0.0001). 

Values in parentheses are SE of the coefficients.  
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Equation [13] shows that the hourly defecation followed hourly feed intake in a 

quadratic fashion, although the relationship for feed intake of < 8 g/hen-hr was quite 

linear. Figure 6 shows the average value of hourly manure production vs. hourly feed 

intake within 24 hours. Data in Table 2 also show that, on average, hens consumed 4 

grams of feed during the dark period and 98 grams of feed during the light period, 

accounting for 4% and 96%, respectively, of the total daily feed intake (102 g/hen-d). 

The laying hens produced about 20 grams of manure in the dark period and 97 grams of 

manure during the light period, i.e., 17% and 83%, respectively, of the total daily fresh 

manure production (117 g/hen-d). 

Data on manure weight for different accumulation periods and the corresponding 

projected surface area (A, cm2) are summarized in Table 3. The quadratic relationship 

between A and manure weight W (g) is shown in Figure 7, and of the following form 

(P<0.0001),  

    
20.0002(0.00003) 0.75(0.05)A W W= − × + ×   (R2 = 0.92) [14] 

Ammonia (NH3) Emission as Affected by Manure Accumulation Time 

The NH3 emission rates and related variables for different manure accumulation 

periods from Experiments 1 and 2 are shown in Tables 4 and 5. The mean NH3 ER on the 

first day of manure accumulation was 0.03 g/hen-d in both experiments. Ammonia ER 

reached 0.23 g/hen-d after 6 d of manure accumulation in Experiment 1, as compared to 

0.37 g/hen-d after 8 d of manure accumulation in Experiment 2. Ammonia ER observed 

in the current study compared fairly well with the 0.054 g/hen-d reported by Liang et al. 

(2005) for commercial MB layer house with daily manure removal. The somewhat 

higher ER for the commercial house could result from factors such as manure left on the 
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belt and/or higher temperature in the house during summertime and thus higher 

ventilation rate (thus higher air velocity over the manure surface). Based on the averaged 

daily NH3 ER data from Experiments 1 and 2, the empirical relation of NH3 ER (ERNH3, 

g/hen-d) to manure accumulation time (T, day) were developed, and of the following 

form (P<0.001),  

    
3

20.0027(0.0003) 0.025(0.0017)NHER T T= × + ×   (R2 = 0.998) [15] 

Effect of Defecation on NH3 Emission  

Figure 8 shows the hourly profiles of manure weight and NH3 emissions of the 

3-hen cage during a 7-d accumulation. It can be noted from the manure weight profiles 

that hens defecate very little during the dark period and much more during the light 

period of the day, coinciding with the feeding activities. The concurrent manure weight 

and NH3 ER profiles also reveal the different ER behavior for light vs. dark period. 

Interestingly, ER seems to follow an inverse relationship with manure weight change. 

Namely, during the light period when most defecation occurred and manure weight 

steadily rose, NH3 ER showed little increase or even some decrease. On the other hand, 

during the dark period when there was little defecation and manure weight declined 

(probably due to moisture evaporation), ER showed a steady increase. This trend was 

more apparent with longer duration of manure accumulation. In Experiment 1, during 6 d 

of manure accumulation, NH3 ER increased at an average rate of 0.15 (P<0.0001) 

mg/hen-hr
2
 for the dark hours, which was significantly higher (P<0.0001) than the rate of 

NH3 ER increase of 0.02 (P<0.05) mg/hen-hr
2 
for the light hours. In Experiment 2, during 

8 d of manure accumulation, NH3 ER increased at an average rate of 0.10 (P<0.0001) 

mg/hen-hr2 for the dark hours, which was again significantly higher (P<0.0001) than the 
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NH3 ER increase rate of 0.03 (P<0.01) mg/hen-hr
2
 for the light hours. The inverse trend 

of NH3 emission vs. defecation is further illustrated by the changes in ER relative to the 

defecation amount (Figures 9 and 10). The hourly changes in ER were determined by 

subtracting mean ER of the previous hour from mean ER of the current hour. The 

partitioning of daily NH3 emissions and rate of change into light vs. dark periods is 

shown in Table 6 for Experiment 1 and in Table 7 for Experiment 2. Statistical analysis 

showed that for most of the experiment time, especially for longer manure accumulation 

durations, hourly NH3 ER increase for the dark hours was significantly higher than that 

for the light hours. This inverse relationship presumably stems from that the newly 

defecated manure covers the old manure surface which is more responsible for NH3 

emission; that new manure needs time to decompose to generate NH3. Hence the newly 

produced manure covers part of the old manure, thereby reducing the effective surface 

area for NH3 emission. This may also explain why the inverse relationship was not as 

apparent during the first 2 d because the manure pan was mostly empty and there was not 

much NH3 emission surface area to cover or block. This result has an important practical 

implication in that topical application of manure treatment agents, such as those reported 

by Li et al. (2008), would be more effective when applied during the dark period.  

Effect of Feeding and Defecation on CO2 Emission 

Compared to NH3 emission, CO2 emission was relatively stable during the light 

or dark hours throughout the manure accumulation period. The higher CO2 emission 

during the light period was mainly due to the higher feeding activities and thus the higher 

metabolic rate of the hens. Figure 11 shows a sample of CO2 emission from one chamber 

for an 8 d period and the corresponding feed weight profile and daily feed intake during 
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the same period is showing in Figure 12. In Experiment 1, during 6 d of manure 

accumulation CO2 production or emission averaged 3.4 g/hen-hr during light period 

(73.5% of daily emission) and 2.5 g/hen-hr during dark period (26.5% of daily emission). 

The daily time-weighted average (TWA) emission was 3.1 g/hen-hr (Table 8). Similar 

results were observed in Experiment 2. Namely, during the 8 d of manure accumulation, 

CO2 ER averaged 3.2 g/hen-hr for light period (72.9% of daily emission), 2.5 g/hen-hr 

for dark period (27.1% of daily emission) and daily TWA of 3.0 g/hen-hr (Table 9). 

These values compared well with those as reported by Chepete et al. (2004), i.e., 3.5, 2.7 

and 3.2 g/hen-hr for light, dark and TWA, respectively, for W-36 hens (1.53 kg at 64 wk 

of age) under thermoneutral conditions.   

Although the CO2 emissions remained relatively stable, some increase was noted 

as the manure accumulated. Using the CO2 ER for light and dark hours for the first day 

as the respective base, in Experiment 1, over the 6 d of manure accumulation the 

subsequent daily CO2 ER was shown to increase on average by 0.06 g/hen-hr for the 

light period and 0.11 g/hen-hr for the dark period, or 0.11% and 0.61% of the first day 

respective photoperiod CO2 ER. The mean daily CO2 emission level kept increasing until 

the 5th day of the manure accumulation. In Experiment 2, over 8 d of manure 

accumulation the CO2 increasing rate on average was 0.03 g/hen-hr for light period and 

0.04 g/hen-hr for dark period, respectively, or 0.06% and 0.21% of the first day 

respective photoperiod CO2 ER. The mean daily CO2 emission level kept increasing until 

the 5
th
 day of the manure accumulation. The lower average increasing rates for both light 

period and dark period in Experiment 2 were due to the low increasing rates in the 7
th
 

and 8
th
 days. This increase was speculated to arise from release of CO2 from manure 
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(uric acid) decomposition. The increasing of CO2 ER seems to coincide with the 

increasing of NH3 ER. However, as shown in Tables 8 and 9 and Figure 13, CO2 ER for 

longer manure accumulation tends to approach stabilization. This behavior of CO2 

production has an implication on use of metabolic CO2-mass balance for indirectly 

estimating building ventilation rate, as illustrated by Li et al. (2005). 

Summary and Conclusions 

This study investigated NH3 and CO2 emissions from W-36 laying hens as related 

to feeding and defecation events of the birds and manure accumulation period (1 to 8 d). 

The hens were kept in 3-bird cages (500 cm
2
/hen or 77 in

2
/hen cage floor area) inside 

environmentally-controlled (24–26°C) dynamic emission chambers. The hens were 

provided a 16L:8D photoperiod and ad-lib feeding. The following observations and 

conclusions were made.  

• The hens had a daily feed consumption of 102 g/hen-d and manure production of 

117 g/hen-d (as-is basis). Daily feed use was partitioned as 96% during light 

period (L) and 4% during dark period (D). Similarly, daily manure production 

was partitioned into 83% L and 17% D.  

• NH3 emission rate ranged from 0.03 g/hen-d on day 1 of manure accumulation, 

0.23 g/hen-d after 6 d of manure accumulation, and 0.37 g/hen-d after 8 d of 

manure accumulation. Daily NH3 emission was partitioned into 69–70% L and 

31–30% D.  

• An empirical regression equation was developed that relates daily NH3 emission 

to manure accumulation time under thermoneutral conditions. This relationship 

may be used to estimate the NH3 emissions from manure-belt layer houses. 



 22 

• NH3 emissions of the hens show an inverse relation to defecation activities. This 

phenomenon is insightful to effective application of manure treatment agents for 

mitigating NH3 emissions from hen manure.  

• An empirical regression equation was developed that relates projected manure 

surface area to accumulated manure weight for the laying hens. The NH3 

emissions per unit projected manure surface area may be useful to assessing the 

impact of different production situations (e.g., cage-free) on NH3 emissions. 

• CO2 emission was 70 g/hen-d on day 1 of manure accumulation and 78 g/hen-d 

after 6–8 d of manure accumulation. In both Experiments 1 and 2 CO2 ER 

inclined in the first 5 days and then stabilized afterwards. Daily CO2 emission 

was partitioned into 73% L and 27% D.   
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Table 1. Information of the experimental hens and feed for Experiment 1 

Hen Body Weight (kg), mean (±S.D.) 
Trial 

Hen Age 

(wk) 
Start End 

Feed Nitrogen Content 

(%) 

1 105 1.47(±0.04) 1.49 (±0.03) 2.12% 

2 109 1.49 (±0.02) 1.46 (±0.04) 2.04% 

3 98 1.47 (±0.01) 1.46 (±0.03) 2.36% 

4 104 1.52 (±0.02) 1.49 (±0.03) 2.35% 

5 82 1.46 (±0.02) 1.45 (±0.03) 2.23% 

6 86 1.46 (±0.03) 1.49 (±0.03) 2.22% 
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Table 3. Manure weight, projected area, and projected area to weight ratio of laying hens 

in groups of 3 hens vs. manure accumulation time in Experiment 2  

Manure Accumulation Time, d 
Variables 

1 2 4 8 

Number of observations 4 4 4 4 

Start body weight, kg (SE) 1.45 (0.06) 

End body weight, kg (SE) 1.47 (0.08) 

Daily feed intake, g/hen (SE) 97 (1.5) 

Manure weight, g (SE) 277 (28) 514 (96) 1000 (11) 1904 (221) 

Projected area, cm2 (SE) 232 (41) 428 (55) 531 (32) 735 (64) 

Area/weight, cm2/g (SE) 0.82 (0.09) 0.87 (0.07) 0.53 (0.03) 0.39 (0.05) 
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Figure 1a. An overview of the dynamic gas emissions chambers and measurement setup 

located in the Iowa State University Livestock Environment and Physiology (LEAP) Lab 

II. 
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Figure 1b. Schematic representation of the dynamic gas emissions chambers and control 

and measurement setup located in the Iowa State University LEAP Lab II.  
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Figure 2. An example of diurnal defecation activities by a cage of 3 laying hens. 
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Figure 3. Photos of manure accumulation from a cage of 3 hens for 1, 2, 4 or 8 d.  

 
Figure 4. Binary images of manure accumulation for 1, 2, 4 or 8 d corresponding to the 

digital images shown in Figure 3. 
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Figure 5. Relationship between Hourly defecation vs. hourly feed intake of laying hens.  

 

 
 

Figure 6. Average hourly manure production vs. hourly feed intake of laying hens. Lights 

were on from 0500 to 2100 h and off from 2100 to 0500 h. 
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Figure 7. Relationship between projected surface area and weight of laying-hen manure. 
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Figure 8. NH3 ER and manure weight profiles of 3-hen cage over a 7-day manure 

accumulation(MWD: Dark period manure weight; MWL: Light period manure weight; 

NH3ERD: Dark period NH3 ER; NH3ERL: Light period NH3 ER)
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Figure 9. Hourly NH3 ER change vs. hourly defecation of Hy-LineW-36 laying hens on 

the 6
th
 day of manure accumulation.  

 

 
Figure 10. Bi-hourly NH3 ER change vs. bi-hourly defecation of Hy-LineW-36 laying 

hens on the 6
th
 day of manure accumulation.  
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Figure 11. A sample of CO2 emission rate from laying hens during an 8-day monitoring 

period. 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 

 

 
 

Figure 12. A sample of feed weight profile and daily feed intake from laying hens during 

an 8-day monitoring period (FWL: Light period feed weight; FWD: Dark period feed 

weight) 

0

10

20

30

40

50

60

70

80

90

0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0 12

Time of day (h)

C
O

2
 E

R
 (
m
g
/h
en

-m
in
)

Light period CO2 ER (mg/hen-min) Dark period CO2 ER (mg/hen-min)

FW
D

FWL



 43 

 

 
Figure 13. Mean daily time-weighted average (TWA) CO2 ER during 6 days of manure 

accumulation. 
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Abstract 

This study evaluates the effect of corn distiller's dried grain with solubles (DDGS) 

diet (15% by weight) vs. standard or control (Ctrl) diet on W-36 laying hens in terms of 

feed intake, manure production, egg production, and ammonia (NH3) and carbon dioxide 

(CO2) emissions. Four dynamic emission chambers and measurement system were 

developed and used in the study, continually measuring the gaseous (NH3 and CO2) 

concentrations of inlet and outlet air, temperature and relative humidity, airflow rate 

through each chamber, feeder weight, manure pan weight and thus feeding and 

defecation activities of the hens. Daily feed consumption of the hens was similar for both 

dietary regimens, averaging 102 g/hen-d for the DDGS hens and 105 g/hen-day for the 

Ctrl hens. Manure production of the DDGS hens was 16% higher than that of the Ctrl 

hens, 133 vs. 115 g/hen-d g/hen-d (as-is) (P<0.001). Egg production of the DDGS hens 

was 13% higher than that of the Ctrl hens, 48 vs. 42 g/hen-d (P<0.05). After 3 days of 

manure accumulation, NH3 emission rate (ER) for the DDGS hens was 19% lower than 

that for the Ctrl hens, 0.07 vs. 0.09 g/hen-d (P=0.23). After 6 days of manure 
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accumulation, NH3 emission rate (ER) of the DDGS hens was 26% lower than that of the 

Ctrl hens, 0.17 vs. 0.23 g/hen-d (P<0.1). Hence this study shows that inclusion of DDGS 

in laying-hen diet may be a viable strategy to reduce NH3 emission without adversely 

affecting production performance of the hens. Field-scale verification test is necessary to 

confirm the lab-scale results. 

Keywords. Laying hen, DDGS, Ammonia emission mitigation 

Introduction 

Ammonia (NH3) is an irritant, colorless gas with a characteristic pungent odor. It 

is a common by-product generated from the decomposition of organic components in 

animal waste. Ammonia has various potential negative impacts on the environment 

(NRC, 2003). Ammonia can also be harmful to both animals and human beings. 

Research has shown that prolonged exposure to high concentrations of NH3 can cause 

significant lower body weight gain and reduced egg production in laying hens (Deaton et 

al., 1982). Ammonia released from livestock operations may also pose risks on human 

health (McCubbin et al., 2002, Auvermann and Rogers, 2002, Wing and Wolfe, 2000). 

Each year about 30% of total NH3 generated from made-made activities is released from 

poultry facilities (Battye et al., 1994). There have been growing research efforts toward 

documenting or improving the inventory of NH3 emissions from animal production 

systems. One classical multi-national study concerning NH3 concentrations and 

emissions from animal housing in northern Europe was reported by Groot Koerkamp et 

al. (1998). The most recent studies on NH3 emissions from commercial U.S. poultry 

operations include those reported by Liang et al. (2005) for laying hens, Wheeler et al. 

(2006) and Burns et al. (2007) for broiler chickens, and Li et al. (2008) for turkeys. 
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Ammonia emissions from poultry manure storage as affected by different environmental 

conditions (e.g., stacking configuration, moisture content of manure, storage temperature) 

have also been investigated (Li, 2006).  

The Occupational Safety and health Administration (OSHA) has set permissible 

NH3 level for 8-hr exposure to 50 ppm, whereas the National Institute of Occupational 

Safety and Health (NOISH) has set the 8-hr permissible NH3 exposure level to 25 ppm. 

The American Conference of Governmental Industrial Hygienists (ACGIH) recommends 

a limit of 35 ppm for 15-minute exposures. Various practical strategies such as dietary 

manipulation (Liang et al., 2005; Roberts et al., 2007) and topical application of 

treatment agents on manure (Li et al., 2008) have been investigated in order to mitigate 

NH3 emission from animal feeding operations. 

Corn distiller's dried grain with solubles (DDGS) is a co-product of fuel ethanol 

production. With the accelerating development of biofuel industry, DDGS with its 

relatively low price and valuable nutrient content is becoming more available as feedstuff 

in the poultry industry. The DDGS contains high levels of dietary fiber (Spiehs et al., 

2002), which has been reported by researchers to increase the transfer of nitrogen from 

urinary excretion to fecal excretion for rats (Tetens et al., 1996) and pigs (Kreuzer and 

Machmuller, 1993). Roberts et al. (2007) reported laying hen diet containing 10% corn 

DDGS led to as much as 50% reduction in NH3 emission from the laying-hen manure 

over a 7-day storage period as compared with NH3 emission from hen manure from 

standard or control diet. However, Roberts et al. (2007) did not find significant 

redistribution of N in poultry manure, and the reduction of NH3 emission was believed to 

mainly result from the lower pH value in the manure of the DDGS diet group. The study 



 47 

by Roberts et al. (2007) involved storage of the hen manure in a static state. In 

commercial production, fresh manure will be added to the existing accumulation and it is 

removed out of the hen house at intervals ranging from daily to weekly.    

Therefore, the objective of this study was to characterize and compare gaseous 

(NH3, CO2) emissions, feeding and defecation activities, feed intake, and egg production 

of laying hens fed diet containing DDGS (15% by weight) vs. standard or Control (Ctrl) 

control diet containing no DDGS. 

Materials and Methods 

Feeding, Defecation and Gas Emissions Measurement System  

This study was conducted using four newly developed dynamic gas emission 

chambers (figs. 1a & 1b). An iron-framed wire-mesh cage was placed inside each 

transparent emission chamber. Fresh air to each chamber was supplied through an air 

distribution plenum to improve spatial uniformity. To capture the feeding and defecation 

events, two electronic balances were used in each chamber, one for measurement of the 

feeder weight or feeding activity and the other for the manure pan weight or defecation 

activity of the birds. Samples of the exhaust air from each chamber and supply air were 

successively taken by a sampling pump (0–20 L/min, Teflon wetted parts, Model No. 

2107CA20B, Gardner Denver Inc., Sheboygan, WI, USA). A photoacoustic multi-gas 

analyzer (Model 1412, INNOVA AirTech Instruments A/S, Ballerup, Denmark) was used 

to measure NH3 and CO2 concentrations and dew-point temperature of the sample air. To 

assess the integrity of the dynamic emission chambers system, CO2 recovery tests were 

performed on all chambers before the experiment. Gas emissions from each chamber 

measured subsequently were adjusted based on the result of recovery test. Detailed 
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description of the dynamic emissions measurement system has been given in Chapter 2 

of this thesis (Ning et al., 2008).  

Experimental Design 

Experimental hens were obtained from a commercial farm in Iowa, where a field 

comparative study was conducted. A total of six hen houses were involved in this study, 

with three of them receiving a diet that contained 15% (by weight) corn DDGS and the 

other three paired houses receiving commercial diet or control (Ctrl) diet that contained 

no DDGS. Each trial of the experiment involved 12 W-36 hens that came from one pair 

of the houses, 6 from DDGS house and 6 from Ctrl house. Hens in each dietary regimen 

were randomly assigned to 2 cages or chambers, 3 hens per cage or chamber. Hens were 

fed the same diet as used on the originating farm throughout the experiment. Each trial 

consisted of 7 d of acclimatization, followed by 5 to 7 d of data collection. A total of 6 

trials were conducted, involving a total of 72 hens. The hens weighed 1.48 (± 0.03 S.D.) 

kg and ranged from 79 to 109 wk of age at the start of the trials. Detailed information 

concerning the experimental hens and diets is shown in Table 1. 

During the experiment, fresh feed was added to the feeder between 18:00 and 

19:00h daily. Fluorescent light was provided at an illumination intensity of 20 lux, on for 

16 hr (05:00 to 21:00h) and off for the remaining 8 hr (21:00 to 05:00h). Manure pans 

were replaced after the acclimatization period and again after the data collection period. 

Eggs from each chamber were collected and weighed daily. Hens were weighed at the 

beginning and the end of each trial. 

Data Analysis 

The NH3 and CO2 emissions were calculated from the following equations:  
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3
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NH

C C V
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− × ×
=

×
   [1] 

    
2
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C C V
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− × ×
=

×
   [2] 

where ERNH3 is NH3 emission rate (g/min); ERCO2 is CO2 emission rate (g/min); 17.03 is 

the molecular weight of NH3 (g/mole); 44.01 is the molecular weight of CO2 (g/mole); 

22.4 is the gas molar volume under STP of 0°C and 1 ATM (L/mole); and Videal is 

ventilation rate of the chamber at STP of 0°C and 1 ATM (L/min).  

Emission rates, expressed in 5 different units, were calculated based on equations 

[1] and [2] and hens’ performance data. The respective calculation equations are as 

follows: 

a. Emission rate in g/chamber-d:   

            
/min,1 /min,2 /min,

/

...
( ) 1440

g g g N

g chamber d

ER ER ER
ER

N
−

+ + +
= ×  [3] 

where ERg/min,N is the ER at N
th minute of the day; 1440 is the total daily minutes. 

b. Emission rate in g/hen-d:  

          
/

/

g chamber d

g hen d

ER
ER

H

−

−
=    [4] 

where H is the number of hens per cage. 

c. Emission rate in g/kg manure-d:   

        
/

/

g chamber d

g kgManure d

ER
ER

W

−

−
=    [5] 

where W (kg) is the weight of accumulated manure (as-is basis) at the end of the day.  

d. Emission rate in gram NH3 per kg N intake per day (g NH3/kg N intake-d):  
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×
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where F is daily feed intake (kg) and NC is feed N content. 

e. Emission rate in gram NH3 per kg egg produced per day (g/kg egg-d): 

            
/

/
/

g chamber d

g kgEgg d

Total

ER
ER

E D

−

−
=         [7] 

where Etotal (kg) is the total egg mass production during the manure accumulation time. D 

(d) is the number of days of manure accumulation.  

Daily defecation amount was calculated by adding all the defecation events 

within 24 hr, which was essentially exclusive of manure moisture evaporation. In other 

words, the daily manure production determined with the electronic monitoring system by 

and large represents the fresh manure amount.  

Daily egg mass production for each chamber was calculated by adding up the 

weight of eggs produced with in 24 hr in one chamber. Daily hen-day performance for 

each chamber was calculated by using the total number of eggs produced in 24 hr divided 

by the number of hens in that chamber. 

Statistical Analysis  

Emission data for the DDGS and Ctrl hens were compared by using Student’s 

t-test with P-value of 0.10 considered statistically significant. JMP 6.0 (JMP Statistical 

Discovery 6.0.0, SAS Institute Inc., Cary, NC, USA) was used to carry out all the 

statistical analyses.  

Results and Discussion 

The DDGS and Ctrl hens showed similar daily feed intake, 102 (± 11.2) vs. 105 

(± 13.3) g/hen-d, respectively (Table 2). The DDGS hens defecated 16% more than the 
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Ctrl-fed hens, 133 vs. 115 g/hen-d, respectively (P<0.001). The higher defecation for the 

DDGS hens might have resulted from lower dry-matter digestibility of the higher-fiber 

diet. The DDGS hens had a mean daily egg mass production of 48 g/hen-d, which was 

13% higher (P=0.04) than the 42 g/hen-d egg mass production of the Ctrl hens (Table 2). 

However this result does not necessarily indicate that hens fed with DDGS diet will have 

higher egg production. As shown by the data in Table 1, the DDGS hens were younger 

than the Ctrl hens in all trials. Egg production performance of W-36 hens from 72 to 108 

weeks has a negative relationship with hen age (Hy-Line Commercial Management 

Guide, 2008). The average hen age in DDGS and Ctrl groups was 96 week and 100 week, 

respectively, which would correspond to a standard egg production performance of 77% 

and 75%. The average performance obtained in this study was 78% for the DDGS group 

and 69% for the Ctrl group. With the very limited number of hens in this small lab-scale 

study, the data should be considered as preliminary and field verification is needed to 

further assess the effect of DDGS diet on egg production.  

Table 3 shows the daily NH3 ER during 6 days of manure accumulation. On the 

6
th
 day, the DDGS regimen showed an NH3 ER of 0.17 g/hen-d, or 26% lower than the 

ER of 0.23 g/hen-d for the Ctrl regimen (P<0.1). There was no significant difference 

between the two regimens until the 5th day (P=0.03). The accumulative NH3 emissions 

for both DDGS and Ctrl groups were also calculated based on daily emission data and 

are shown in Figure 2. 

Considering the DDGS hens had a higher daily fresh manure production than the 

Ctrl hens, ER with the unit of g/kg manure-d was used as another way to express the 

impact of DDGS diet on NH3 emission. On this basis, ER of the DDGS regimen showed 
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32% less than the Ctrl regimen on the 6
th
 day’s manure accumulation (P<0.05). Roberts 

et al. (2007) reported up to 50% NH3 ER reduction from hen manure that was collected 

from 10% corn DDGS diet vs. Ctrl diet during a 7-day static manure storage. 

Also as shown in Table 1, N content of the DDGS diet was higher than N content 

of the Ctrl diet. Hence, comparison of NH3 ER between the DDGS and Ctrl regimens in 

the unit of g/kg N intake-d was made and presented in Table 3. The average NH3 ER for 

the DDGS hens was 70 g/kg N intake-d which was 31% lower than the average NH3 ER 

of 101 g/kg N intake-d for the Ctrl hens on the 6
th
 day of manure accumulation (P<0.01).  

NH3 ER in the unit of g NH3/kg egg-d production was further compared and 

presented in Table 3. The average NH3 ER for the DDGS hens on the 6
th day was 3.5 

g/kg egg-d which was 38% less than the average NH3 ER 5.7 g/kg egg-d for the Ctrl hens 

(P<0.01). 

Considering different manure removal schedules in MB houses, for daily manure 

removal there would be no significant reduction in NH3 ER for the DDGS diet group as 

compared to the Ctrl diet group. For MB houses with 3-day manure removal schedule, 

the DDGS diet group would lead to a significant reduction in NH3 ER in 3 different units, 

i.e., g/kg manure-d, g/kg N intake-d, and g/kg egg-d. For 6-day manure removal schedule, 

the DDGS diet group would have a significant lower NH3 emission in all four units 

expressed in this study. 

The CO2 ERs for both dietary regimens during the 6 days of manure 

accumulation are shown in Table 4. The results show that on the 6
th
 day of manure 

accumulation, CO2 ER for the DDGS group (71.5 g/hen-d) tended to be lower than that 

for the Ctrl diet group (78.8 g/hen-d) (P<0.1). This result seems to imply that less NH3 
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production in the DDGS regimen was also associated with lower CO2 

generation/emission, as manure CO2 and NH3 both result from the break-down of uric 

acid. 

Summary and Conclusions 

This study investigated the effect of corn distiller’s dried grain with solubles 

(DDGS) diet (15% inclusion by weight) vs. control (Ctrl) diet on W-36 laying hens in 

terms of feed intake, manure production, egg production, and ammonia (NH3) and carbon 

dioxide (CO2) emissions. The hens were kept in 3-bird cages (500 cm
2
/hen or 77 in

2
/hen 

cage floor area) that were placed inside environmentally-controlled (24–26°C) emission 

chambers. A 16L:8D photoperiod and ad-lib feeding program were used. The following 

conclusions and observations were made.  

• Hens fed the DDGS diet had an average daily feed intake of 102 g/hen-d, as 

compared with 105 g/hen-d for hens fed the Ctrl diet. 

• The DDGS hens had an average daily manure production of 133 g/hen-d, which 

is 16% higher than the 115 g/hen-d produced by the Ctrl hens (P<0.001). 

• The DDGS hens had an average egg mass production of 48 g/hen-d which is 13% 

higher than the 42 g/hen-d egg mass production for the Ctrl hens (P<0.05), 

although the DDGS hens averaged 4 weeks younger than the Ctrl hens. This 

information should be considered preliminary and further field evaluation is 

needed.  

• The DDGS diet yielded 24% to 33% (varying from 5% to 38%) overall reduction 

in NH3 emission during a 6-day manure accumulation as compared to the Ctrl 

diet. The reduction magnitude depended on the physical unit of the emission 
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(g/hen-d, g/kg manure-d, g/kg egg-d, or g/kg N intake-d) and the manure 

accumulation time, with longer accumulation time tending to have greater 

reduction. 

• CO2 emission was somewhat lower for the DDGS diet. 
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Table 1: Information on the experimental W-36 hens and diets 

Pair Trial # Diet type Feed Nitrogen (%) Hen Age (wk) 

1 1 Control 2.12% 105 

1 1 DDGS 2.36% 104 

1 2 Control 2.04% 109 

1 2 DDGS 2.35% 108 

2 3 Control 2.20% 102 

2 3 DDGS 2.36% 98 

2 4 Control 2.06% 108 

2 4 DDGS 2.35% 104 

3 5 Control 2.23% 82 

3 5 DDGS 2.41% 79 

3 6 Control 2.22% 86 

3 6 DDGS 2.40% 83 

Control 2.15% (0.03%) 99 (4.8) 
Average (SE) 

DDGS 2.37% (0.01%) 96 (4.9) 
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Table 4: Carbon dioxide emission of Hy-Line W-36 laying hen fed DDGS or control diet. 

CO2 ER, g/hen-day Manure 

Accumulation, d 
Control (SE) DDGS (SE) 

% Reduction by 

DDGS 

1 71.6 (1.6) 68.5 (1.2) 4% 

2 73.7 (2.3) 70.9 (2.3) 4% 

3 75.1 (1.9) 72.9 (2.3) 3% 

4 76.8 (1.5) 75.0 (2.5) 2% 

5 79.5 (2.0) 74.7 (2.3) 6% 

6 78.8 (2.8) 71.5
*
 (2.1) 9% 

P-value of the DDGS vs. control dietary regimens: *P<0.1, **P<0.05, ***P<0.01, 
****

P<0.001
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Figure 1a. An overview of the dynamic gas emissions chambers and measurement setup 

located in the Iowa State University Livestock Environment and Physiology (LEAP) Lab 

II.  

 

 

 

 



 62 

Balance 1-2

Balance 1-1

T,RH #1

Cage #1

Balance 4-2

Balance 4-1

T,RH #4

Cage #4

Balance 3-2

Balance 3-1

T,RH #3

Cage #3

FM#3

Balance 2-2

Balance 2-1

T,RH #2

Cage #2

INNOVA 1412

CR 10

SV #1 SV #2 SV #3 SV #4

Ambient 

Fresh Air

To Exhaust To Exhaust To Exhaust To Exhaust

T: Dry Bulb Temperature
RH: Relative humidity

FM: Flow meter

SV: Solenoid valve

: Air Flow direction

: Signal direction

Manifold #1

Sampling 

pump

Manifold #2 To Exhaust
To Ambient

Control signal 

from CR10

Control signal 

from CR10

Control signal 

from CR10

Control signal 

from CR10

Output Control 

signal

Data download 

stream

Ambient 

Fresh Air

Ambient 

Fresh Air

Ambient 

Fresh Air

FM#4FM#2FM#1

From 

Ambient

Control signal 

from CR10

SV #5

 
Figure 1b. Schematic representation of the dynamic gas emissions chambers and control 

and measurement setup located in the Iowa State University LEAP Lab II. 
 



 63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Comparison of daily NH3 emission rate (ER) and accumulative NH3 ER 

between DDGS and control dietary regimens. 
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CHAPTER 4. GENERAL CONCLUSIONS 

This thesis research was conducted to fulfill two objectives: a) to delineate the 

dynamic behaviors of ammonia (NH3) and carbon dioxide (CO2) emissions from 

laying-hen manure as it accumulates with time, and b) to quantify the impact of 

DDGS-supplemented diet on reduction of NH3 emission from laying hens as compared 

with a standard or control (Ctrl) diet. The manure accumulation situation was reflective 

of potential operational practices with commercial manure-belt layer houses.  

The first objective was accomplished by characterizing NH3 and CO2 emissions 

from Hy-Line W-36 laying hens as related to feeding and defecation events of the birds 

with manure accumulation period of 1–6 d. The hens were kept in 3-bird cages (500 

cm2/hen or 77 in2/hen cage floor area) that were placed inside environmentally-controlled 

(24–26°C) emission chambers. A 16L:8D photoperiod and ad-lib feeding were used. The 

following conclusions were drawn.  

• The hens had a daily feed use of 102 g/hen-d and manure production of 117 

g/hen-d (as-is basis). Daily feed use was partitioned as 96% during light period (L) 

and 4% during dark period (D). Similarly, daily manure production was 

partitioned into 83% L and 17% D.  

• NH3 emission rate ranged from 0.03 g/hen-d on 1 day of manure accumulation, 

0.23 g/hen-d after 6 d of manure accumulation, and 0.37 g/hen-d after 8 d of 

manure accumulation. Daily NH3 emission was partitioned into 69-70% L and 

31-30% D.  
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• An empirical equation was developed that relates daily NH3 emission to manure 

accumulation time under thermoneutral conditions. This relationship may be 

useful to estimating NH3 emissions from manure-belt layer houses. 

• CO2 emission was 70 g/hen-d on 1 day of manure accumulation and 78 g/hen-d 

after 6-8 d of manure accumulation. In both Experiments 1 and 2 CO2 ER 

inclined in the first 5 days of manure accumulation, and stabilized afterwards. 

Daily CO2 emission was partitioned into 73% L and 27% D.     

• NH3 emissions of the hens show an inverse relation to defecation activities. This 

phenomenon is insightful to effective application of manure treatment agents for 

mitigating NH3 emissions from hen manure.  

• An empirical equation was developed that relates projected manure surface area 

to accumulated manure weight for the laying hens. NH3 emissions per unit 

projected manure surface area may be useful to assessing the impact of different 

production situations (e.g., cage–free) on NH3 emissions.  

The second objective was accomplished by quantifying the effect of 15% corn 

DDGS diet on Hy-Line W-36 laying hens, including feed intake, manure production, egg 

production and ammonia and carbon dioxide emissions. The study revealed the 

following: 

• The hens fed the DDGS diet had an average daily feed use of 102 g/hen-d, as 

compared with 105 g/hen-d for hens fed control diet. 

• The DDGS hens had an average daily manure production of 133 g/hen-d which is 

16% higher than 115 g/hen-d for the control hens (P<0.001). 

• The DDGS hens had an average egg production of 48 g/hen-d which is 13% 
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higher than the 42 g/hen-d egg production for the control hens (P<0.05), although 

the DDGS hens averaged 4 weeks younger than the Ctrl hens. This information 

should be considered preliminary and further field evaluation is needed.  

• The DDGS diet yielded 24% to 33% (varying from 5% to 38%) overall reduction 

in NH3 emission during a 6-day manure accumulation as compared to the Ctrl 

diet. The reduction magnitude depended on the physical unit of the emission 

(g/hen-d, g/kg manure-d, g/kg egg-d, or g/kg N intake-d) and the manure 

accumulation time, with longer accumulation time tending to have greater 

reduction. 

• The DDGS diet regimen had somewhat lower CO2 emission than the control diet 

regimen. 
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