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ABSTRACT 

Temporal data on aboveground biomass and nutrient uptake by species and 

functionally diverse native perennial plant species and communities is needed to enhance the 

performance of in-field buffer conservation practices.  Comparisons on the performance of 

monocultures and polycultures of four native perennial prairie species having different 

functional traits (e.g., forb, grass, nitrogen-fixer) relative to monocultures of corn soybean, 

brome, and switchgrass were conducted in terms of aboveground biomass production and N 

& P uptake at peak performance, at the beginning and end of the growing season, and over 

the course of the whole year. Data collection occurred in 2006, a year after plots were 

established. Our findings show that the polyculture treatments did not outperform their 

component species in monoculture for peak values of aboveground biomass and N and P 

uptake. This was the opposite of what was expected. However, the polyculture treatment with 

the highest diversity did exhibit the greatest relative aboveground net primary productivity. 

The perennial species, particularly the C3 species, had higher biomass production and 

nutrient uptake at the beginning and end of the growing season compared to annual crops.  

The species stiff goldenrod was one species that performed as well as Corn for peak 

aboveground biomass and nutrient uptake. These results suggest that high diversity plant 

communities may potentially be the best choice for use in in-field buffer conservation 

practices when production and nutrient uptake at the beginning and end of the growing 

season as well as over the course of the year are wanted. High yielding monocultures could 

be good when considering high performance at a single mid summer point in the growing 

season, however, having multiple species that can accomplish these same functions would be 
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beneficial in the long run should some species (like Stiff Goldenrod) fluctuate in productivity 

from year to year (Camill et al., 2004) . 

 
 

Key Words:  

Aboveground Biomass, Aboveground Net Primary Productivity (ANPP), Functional 

Diversity, Species Diversity. 
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CHAPTER 1: GENERAL INTRODUCTION 

 

1.0 Introduction 

In Iowa, agricultural plant communities are dominated by corn and soybeans in 

monoculture. Monocultures, while aimed at maximizing agricultural crop production, can 

lose and degrade the resource bases that production is dependent on, such as soil, nutrients, 

and water. Early in the growing season, corn and soybeans are not large enough to contribute 

to stabilizing the soil or utilizing excess water from rain and nutrient losses occur. At the end 

of the growing season, crops senesce and are harvested reducing the amount of plant cover 

on the fields, thus providing limited means by which to utilize excess water and help prevent 

nutrient losses from the fields. The nutrient and soil losses from agricultural fields make up a 

large portion of the non-point source losses that contribute to reductions in water quality in 

major water bodies such as the hypoxic zone in the Gulf of Mexico. 

The Natural Resource Conservation Service (NRCS-USDA) has designed various in-

field buffer conservation methods to address some of the previously mentioned water quality 

issues at their source. These in-field buffers introduce strips of vegetation in the agricultural 

field to reduce nutrient losses. Typically, introduced species (smooth brome) and 

monocultures of native species (switchgrass) are used in the plant communities that comprise 

these in-field buffers (NRCS (IA)-USDA, 2000, 2002, and 2003; Tufekcioglu et al., 2003). 

Some drawbacks to the vegetation proposed by NRCS-USDA for in-field buffers are that the 

vegetation tends to be low in diversity (when considering switchgrass) or it is not necessarily 

naturally adapted to the region being considered (like in the case of smooth brome). Using 
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plant communities composed of diverse native species may help improve these in-field buffer 

conservation methods.  

Plant communities with high species diversity as well as high functional diversity 

were found to have higher peak biomass production than those plant communities with lower 

diversity (Tilman et al., 1997 and 2001). Hooper and Dukes (2004) also observed increased 

aboveground net primary productivity (ANPP) by plant communities with higher diversity in 

the seventh and eighth year when theses communities had become more established. Camill 

et al. (2004) reported that regardless of age, plant communities of tallgrass prairie established 

in the Midwest significantly increased their ANPP when nitrogen levels increased. This 

demonstrates how regionally adapted vegetation is able to capture and utilize nutrients when 

nitrogen levels become high. In addition, those species within the tallgrass prairie that were 

introduced species exhibited growth in the first years after establishment but significantly 

decreased in succeeding years. Based on these findings, it is suggested that using more 

diverse mixtures of native perennial vegetation would improve upon the effectiveness of in-

field buffers to capture nutrients. 

For this research project, it is hypothesized that using more diverse vegetation for in-

field buffer conservation methods and using vegetation that is naturally adapted to the region 

in which it will be used (in this case, using prairie vegetation for the Midwest) will improve 

these in-field conservation methods. Both components would work together to promote a 

plant community that is more resilient when subjected to fluctuations in weather and climatic 

conditions, as well as, increasing a plant community’s capacity to capture more nutrients.  
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2.0 Thesis Organization 

This thesis is organized into an Introduction, Field Study, and General Conclusions. 

The Introduction contains a short introduction to the research study, a description of the 

thesis’ organization, a literature review pertaining to the research topics, and chapter 

references. The Field Study looks at field research and related data collected. This section 

includes a short introduction, a materials and methods section, results, discussion, 

conclusion, and chapter references. The last main part of the thesis is the General 

Conclusions, which provides an overall summary of this work, implications of this work, and 

recommendations for future study. Other sections that are included in this thesis are an 

Appendix section that contains figures, tables, and other related data and information not 

formally presented in the three main sections, and a list of Acknowledgements.  

 

3.0 Literature Review 

For the purpose of this study, this literature review will address the following topics: 

• 3.1 In-field buffer conservation methods 

• 3.2 Diversity 

o Species diversity 

o Functional diversity 

o Functional diversity in Plant Communities 

• 3.3 Community and Ecosystem Functions 

o Properties and processes 

o Static and Dynamic Functions 
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o Indicators for Assessing System Performance 

o Diversity/Productivity Relationships 

• 3.4 Modeling Species Diversity 

o Types of species interaction models 

 

3.1 In-Field Buffer Conservation Methods 

Methods which integrate additional plant communities within a cropping system (in-

field buffers) have been designed and used as conservation practices. A few of these methods 

include contour buffer strips (NRCS Code 332), grassed waterway (NRCS Code 412), and 

vegetative barriers (NRCS Code 601) (NRCS, 2000, 2002, and 2003; Lowrance et al., 2002). 

These methods aid in reducing soil loss due to sheet & rill erosion and wind erosion; they 

reduce concentrated flow erosion and reduce sediment delivery; they increase wildlife 

habitat; reduce contaminate transport (nutrients, pesticides, sediment, etc.); and increase 

carbon storage (Lowrance et al., 2002). While helpful in this regard, in-field buffers are 

usually comprised of vegetation having low diversity (e.g., monocultures of switchgrass used 

in filter strips) or are introduced species that may not be adapted to the region (e.g., a smooth 

bromegrass and red clover mixture used in grassed waterways) (NRCS, 2000, 2002, and 

2003). Typically, more diverse vegetation has been used in edge-of-field and streamside 

buffers such as riparian buffers, which utilize 2 or 3 zones of vegetation (tree, shrub, and 

grass zones). The particular vegetation type of each zone is made more flexible by allowing 

different combinations to suit landowner preferences (ex. not wanting trees) (Schultz et al., 

2004).  In one such riparian buffer located in the Bear Creek Watershed in central Iowa, a 

zone consisting of native prairie vegetation was able to remove “more than 40 percent of 
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total nitrogen and phosphorus and more than 40 percent of the nitrate and phosphate in 

surface runoff” (Lowrance et al., 2002). This same performance, as seen in the riparian 

buffers, may be of benefit if native mixtures are used in in-field buffers conservation 

practices.  

 

3.2 Diversity 

Many times when the word diversity is used, it is referring to the collection of species 

within a given community. The focus can be as narrow as a single trophic level (ex. a 

community of plants) to as broad as an entire ecosystem (ex. plants, herbivores, predators, 

decomposers, etc.). 

Species Diversity 

In particular, species diversity refers to the number of different types of species 

present in a sample (richness) and/or the number of individuals per a given species that are 

present in a sample (abundance) (Coffey, 2002; Krebs, 1985).  A community or ecosystem 

can have high species abundance but very low species richness (many of one type of 

species). Such a community would not be as diverse as a community with high species 

richness (many different species). At the same time, when a community has high species 

richness but low species abundance for all but a few species present, the community is said to 

have low species evenness. If the same community has high species abundance for most or 

all of the species present, the community is said to have high species evenness. A community 

with high species evenness is considered to be more diverse than one with low species 

evenness and greater still than one with low species richness. 
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Having greater species diversity means that there are more species present that have 

different traits for dealing with changes in the environment and environmental disturbances. 

Thus, if some disturbance were to occur, some species would be able to thrive and 

compensate for those species that are reduced by the disturbance (Tilman and Downing, 

1994). Additionally, the various traits that multiple species have, allow them to exploit 

different aspects of their environment that other species can not access (niches), contributing 

to greater total community productivity (Lambers et al., 2004; Stocking, 2002).  

While species diversity is good in this regard, there is the potential of having high 

species diversity yet at the same time, having many species that tend to have the same traits 

and for the most part perform the same functional role(s) in a community (Tilman and 

Downing, 1994). Such a community would have many species but lack functional diversity.  

Functional Diversity 

Functional diversity encompasses having many species that all perform different 

functional roles within a community. The species within a community can be categorized 

into functional groups based on some common trait or traits (such as morphological traits-

form and structure (Tilman et al., 1997; Stein, 1984), physiological traits – functions and 

organic processes (Leishman et al., 1992; Stein, 1984), and phenological traits – recurring 

traits that are influenced by climate (Leishman and Westoby, 1992; Tilman et al., 1997; 

Stein, 1984), etc.) that are inherent to all the species assigned to a given group (Leishman and 

Westoby, 1992). These grouped species also tend to perform certain functional roles in 

common in the community (Leishman and Westoby, 1992). Categorizing species into 

functional groups is important because it provides a method by which to take an ecologically 

complex system and simplify it for the purposes of predicting (1) system responses to stress 
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(competition and availability of resources (Grime, 1977)), (2) disturbance (partial or total 

destruction of plant biomass (Grime, 1977)), and (3) changes in community properties and 

processes (Symstad and Tilman, 2001).  

Having greater functional diversity insures that the plant community will have species 

with multiple traits regarding various functional processes thus making the plant community 

better able to use resources more completely. In context of plant community use in in-field 

buffer conservation methods, complete use of resources such a nitrogen and phosphorus 

means these nutrients are not be loss from the system to become pollutants in water systems. 

Functional Diversity in Plant Communities 

As with any community, diverse plant communities are composed of many species 

which can be grouped into different functional groups based on common traits or roles in a 

given community. Determining which and how many categories are necessary to adequately 

account for various community properties and processes is still ongoing (Leishman and 

Westoby, 1992; Symstad and Tilman, 2001). Some past functional groups that have been 

used for categorizing plant community functional groups are given in Table 3.1. C3 grasses, 

C4 grasses, and legumes were the most frequently used categories. Some suggestions for 

determining what functional groups should be considered are: (1) make sure that the 

functional groups are not too broad (Symstad and Tilman, 2001), and (2) when defining 

functional groups, do not just focus on the functional role/trait of interest, as other traits can 

play a role in how the functional group impacts community response in a given situation 

(Symstad and Tilman, 2001).  
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Table 3.2.1. Functional Groups Used by Other Researchers 
Functional Groups References 
C3 grasses 1, 2, 3, 4 
C4 grasses 1, 2, 3, 4, 5 
Perennial forbs 5 
Sub-shrubs 5 
Annual forbs 5 
Legumes 2, 3, 6 
Forbs 2 
Woody trees 2 
Perennial C4 grass 7 
Perennial C3 grass 7 
Non-legume forbs 3 
Woody plants 3 
Early season annuals 6 
Late season annuals 6 
Perennial bunchgrasses 6 
Annuals/biennials 4 
Non-native perennials 4 
Native perennial composites 4 
Native perennial legumes 4 
Non-legume/non-composites native perennial forbs 4 
Mid succession forbs/shrubs 8 
Late succession forbs/shrubs 8 
Mid succession C3 grasses/cool season grasses 8 
Late succession C3 grasses/cool season grasses 8 
Mid succession C4 grasses/warm season grasses 8 
Late succession C4 grasses/warm season grasses 8 
1. Tilman and Downing (1994); 2. Lambers et al. (2004); 3.Tilman et al. (1997); 4. Camill et al. (2004); 5. 
Leishman et al. (1992); 6. Hooper and Dukes (2004); 7. Kenkel et al. (2000); 8. Levang-Brilz and Biondini 
(2002) 
 

 

3.3 Community and Ecosystem Functions 

Properties and Processes  

There are two types of community and ecosystem functions: properties and processes 

(Hooper et al, 2005). Properties refer to the pools of water, energy, and materials and their 

amounts (like nutrients and biomass) that are in a community. Processes refer to the rates of 

flow of the properties through the community, like nutrient cycling and productivity (Chapin 
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et al., 1995; Hooper et al, 2005) (see Table 3.3.1). These properties and processes such as 

plant production or nutrient uptake can be used as measures of the performance of one plant 

community relative to another.  

 

Table 3.3.1. Examples of Ecosystem Processes and Properties 
Properties/Processes Measurements 
Species interactions Competition, predation, mutualism 
Trophic level biomass or process 
rate 

Plant biomass (standing crop) 

 Plant productivity (biomass produced in a certain time interval) 
 Consumer biomass 
 Consumption (predation, herbivory) 
 Decomposer biomass 
 Decomposer activity 

 Decomposition rate 
Nutrient uptake/retention Nutrient uptake efficiency of plants 
 Maintenance of initial concentrations of minerals and organic nutrients in 

the plant-soil system 
Soil properties Water Content 
 Organic matter content 
 Cation exchange capacity 
 pH- 
Community respiration Respiration 
 CO2- production 
Schläpfer and Schmid (1999); Chapin et al. (1995) 

 

 

Diversity / Productivity Relationships 

The relationship between diversity and productivity is of importance because 

understanding this relationship (for example, what levels of diversity will yield greater 

productivity in plant communities) will allow us to better compose plant communities for use 

in-field buffer conservation practices  

Relationships of diversity - community/ecosystem productivity are influenced by 

evenness and sampling effect. Evenness, as mentioned before, is the richness of a community 

relative to that community’s abundance. When plants are grown together in experiments, the 
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properties and processes (in this case, productivity) are considered to be a certain percentage 

for each species grown in monoculture. For example, if two plants are grown together in 

polyculture, each species is thought to produce 50% of what they would in monoculture 

(assuming high evenness or equal abundance) because 50% of the number of each plant 

species is present in polyculture from that in monoculture. If the plants in polyculture 

produce more than 50% of what they produce in monoculture they are considered to have 

overyielded and if the plants produce less than 50% of what they produce in monoculture 

they are considered to have underyielded (Hooper et al., 2005; Lambers et al., 2004). 

Sampling effect is a term used to describe how the design of a diversity/productivity 

experiment impacts the results of that experiment and specifically refers to the increased 

probability of a pattern occurring between productivity and diversity when species that are 

dominant (those that tend to be the most abundant in a given community (Fridley, 2001)), 

complementary (those that have different resource requirements and therefore when growing 

together utilize environmental resources more completely (Fridley, 2001; Loreau, 2000)), or 

facilitators (a species’ beneficial effects on resources that increases the productivity of 

another species (Fridley, 2001)) are randomly chosen from a species pool (Fridley, 2001; 

Hooper and Dukes, 2004) for inclusion in a treatment. This increased probability of a pattern 

occurring becomes greater when the number of species chosen from a species pool for a 

treatment is increased (Fridley, 2001). Functional diversity can impact the 

productivity/diversity relationship in that complementarity and facilitation becomes stronger 

with greater differences in functional traits being present (Hooper et al., 2005). This stronger 

occurrence of complementarity and facilitation can, in turn, potentially lead to the occurrence 
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of patterns in the productivity/diversity relationship (Fridley, 2001; Hooper and Dukes, 

2004).   

Sampling effect has been debated by researchers regarding community assemblage 

(Hooper et al., 2005) and random extinction in diversity/productivity experiments. This has 

to do with the potential for patterns of extinction to occur due to random chance (not true 

patterns) (Fridley, 2001; Hooper and Dukes, 2004). In the case of extinction experiments, 

species are randomly chosen from out of a species pool, to determine which will continue to 

grow while all others are said to have experienced extinction. Some would say that random 

extinction is not relevant because extinction would not occur randomly but that various 

conditions that do or do not occur would determine which species would experience 

extinction (Fridley, 2001; Hooper and Dukes, 2004; Hooper et al., 2005). Others would 

disagree and say that random extinction is legitimate, thus resulting in the debate as to how 

results should be interpreted (Fridley, 2001; Hooper and Dukes, 2004; Hooper et al., 2005). It 

is the opinion of this author that randomly excluding species from a treatment on the bases of 

extinction is only legitimate if some common occurrence(s) could result in those species 

becoming lost from the plant community. This would then add the component of comparing 

conditions that would cause such extinctions (the various treatments that would be included 

in the experiment).  

Tilman et al. (1997) concluded that functional diversity has a greater impact on 

ecosystem processes than species diversity but that both are correlated and have significant 

effects on ecosystem properties and processes. Based on the sampling effects, there should be 

a strengthened pattern of functional diversity-productivity because of a greater chance of 
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choosing complementary and facilitator species due to the nature of increasing functional 

diversity.  

Indicators for Assessing System Performance  

Community and ecosystem functions that have been measured in past research on 

diversity are total aboveground biomass, live aboveground biomass, dead (standing and/or 

litter) aboveground biomass, total belowground plant biomass, live belowground biomass, 

dead belowground biomass; total net primary productivity (TNPP), aboveground net primary 

productivity (ANPP), belowground net primary productivity (BNPP); plant nitrogen; plant 

phosphorus; light penetration; soil NO3
- and NH4

+; nutrients in stream and runoff water (total 

N and P, nitrate, phosphate); soil infiltration rates; total soil organic carbon; root nutrient 

influx rates (N and P); soil microbial biomass; stream bank erosion; and presence/absence of 

wildlife (small mammals, birds, etc.). A few of the results obtained when using these 

functions as indicators of community or ecosystem performance are given below.  

Total, Above, and Belowground Plant Biomass. Lambers et al. (2004) measured 

aboveground biomass to determine biomass as a yield. An index of looking at overyielding 

and underyielding was used to make comparisons between treatments. Overyielding, in this 

case, was the degree to which a treatment produced more than expected based on 

monoculture production while underyielding was the degree to which a treatment produced 

less than expected based on monoculture production. It was observed that underyielding 

species were exclusively forbs while overyielding species were C3 grasses, C4 grasses, and 

legumes. Additionally, the presence of legumes usually positively affected the yields of most 

species. In comparing plant communities, Schultz et al. (2004) notes that riparian areas put 

into buffers have 8 times more below ground biomass than adjacent crop field. In contrast, 
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Kenkel et al. (2000), found no difference in aboveground biomass between high diversity 

plots and low diversity plots. 

Plant Productivity. Plant productivity refers to how plants perform regarding biomass 

production over a given time frame. This can be useful in determining how a plant 

community performs over the length of an entire growing season as opposed to looking at 

individual points throughout the growing season. In Tilman et al. (1997), both functional 

diversity and functional composition had significant effects on plant productivity. In 

particular, having a C4 grass present in mixed plots increased productivity 40% (consistent 

with lower tissue N concentrations in C4 grasses), while having a legume present in mixed 

plots increased productivity 59% (consistent with ability to fix N).  In general many species 

experienced lower productivity in monocultures and low diversity plots than in high diversity 

plots. This was also experienced in the study by Tilman et al. (1996). In contrast, Hooper and 

Dukes (2004) observed that the relationships between productivity and diversity depended on 

the year since plots were established. In the 3rd year since establishment, the perennial 

bunchgrasses group was the most productive, the early season annuals group was the least 

productive, with no mixture exceeding the productivity of the perennial bunchgrass group in 

monoculture (Hooper and Dukes, 2004). On the 8th year, it was observed that productivity 

increased as species richness increased with several groups in mixtures out producing the 

highest producing single functional group (the late-season annuals) (Hooper and Dukes, 

2004). The lowest producer was a single functional group, early-season annuals (Hooper and 

Dukes, 2004). Finally, on the 9th year, the highest producing treatment was once again the 

single functional group bunchgrasses which exceeded all the mixtures (Hooper and Dukes, 

2004). In general, Hooper and Dukes (2004) experienced similar observations as Tilman et 



 14

al. (1997) and Tilman et al. (1996) such that the groups that had the most positive increase in 

productivity in mixtures were the functional groups that did not have the highest productivity 

in monoculture. Additionally, N-fixers improved the productivity of other functional groups 

as reflected in high measures of overyield similar to what Tilman et al. (1997) experienced. 

This is expanded on in the study by Tilman and Downing (1994) in which resistance and 

resilience (bounce back) of species experiencing drought were observed. Those plots with 

high species richness experienced higher resistance and resilience than low diversity plots. 

Lastly, Levang-Brilz and Biondini (2002) measured total plant biomass, aboveground 

biomass, and below ground biomass to determine relative growth rates. It was observed that 

mid successional grasses had higher relative growth rates than late successional grasses. The 

status of mid successional and late successional plants have to do with how quickly different 

species of plants come into an area after disturbance and become established. The late 

successional species would take the longest to start growing and become established in area 

after disturbance.  

Plant Nitrogen. In the study conducted by Tilman et al. (1997),  both functional 

diversity and functional composition had significant effects on plant total N and %N such 

that all 5 functional groups used in the study (C3 grasses, C4 grasses, woody plants, legumes, 

non-legume forbs) contributed to %N but legumes in particular contributed to plant total N. 

In contrast, Levang-Brilz and Biondini (2002), observed no differences in plant N when soil 

N levels were low, but when soil N levels were high, the C3 grasses and mid successional 

grasses have lower N productivity than C4 grasses and late successional grasses. 

Plant Phosphorus. C3 grasses and mid successional grasses had lower P productivity 

(higher P concentration) than C4 grasses and late successional grasses when soil N levels 
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were high, while no difference was observed when soil N levels were low (Levang-Brilz and 

Biondini, 2002). 

Light Penetration. In their research, Tilman et al. (1996) and Tilman et al. (1997) 

used light interception to estimate biomass for their plots. Tilman et al. (1997) determined 

that both functional diversity and functional composition had significant effects on light 

penetration and thus plant biomass. 

Others. In the article by Schultz et al. (2004), it is noted that native grass filters 7-m 

wide reduced the total nitrogen, total phosphorus, nitrate, and phosphate in surface runoff by 

more than 60% and reduced the sediment loss from crop fields by more than 95%. 

Multispecies riparian buffer systems also had up to 5 times greater infiltration after the first 

six growing seasons than  corn, soybean, and pasture systems (Schultz et al., 2004 and  

Bharati et al., 2002), and tended to generate 65% more total organic carbon in the top 50 cm 

of soil than crop fields (Schultz et al., 2004). Riparian buffers had a 2.5 fold increase in soil 

microbial biomass and a 4 fold increase in denitrification than crop fields and decreased 

stream bank erosion by 80% compared to cropped or heavily grazed stream banks (Schultz et 

al., 2004). Additionally, streams with buffers had increased substrate leading to increased 

fish diversity. Also, small rodents like mice and voles preferred the riparian and prairie 

vegetation over introduced cool season grasses, and riparian buffers supported 5 times more 

bird species than riparian areas that were heavily grazed or in row-crop (Schultz et al., 2004). 

These findings suggest other benefits of using native vegetation in riparian buffers such as 

increase wildlife habitat, soil organic carbon generation, and reduces in nutrient 

concentrations in runoff water and these benefits may also have their place in in-field buffer 

methods. 
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4.0 Hypothesis and Objectives 

Based on the findings in the literature, it is proposed as part of this research that using 

more diverse and locally-adapted native perennial plant communities in in-field buffer 

conservation practices will increase their capacity to capture nutrients for utilization in 

biomass production, with the potential of enhanced resistance and resilience to environmental 

fluctuations such as climate change.  Baseline information on the performance of 

functionally diverse native perennial plant communities is needed to improve the design of 

in-field conservation methods. Specifically, it is hypothesized that perennial plant 

communities having higher species diversity will be more productive and will take up more 

nutrients over the length of the growing season relative to plant communities with lower 

species diversity. Although productivity and nutrient uptake of annual crop species may 

exceed that of perennial monocultures and polycultures during the peak growing season, their 

performance will be substantially lower during the critical early and late season time periods. 

The objective of this study is to compare the performance of monocultures and 

polycultures of four native perennial prairie species having different functional traits (e.g., 

forb, grass, nitrogen-fixer) relative to monocultures of corn, soybean, brome, and switchgrass 

in terms of aboveground biomass production, nutrient uptake, light interception, plant area 

index (PAI), and temporal patterns at the beginning, ending, and over the whole growing 

season.  

An additional objective related to this study is to investigate the potential of using 

light interception as a nondestructive means for determining biomass. Such a technique if 

feasible would help to reduce the amount of time needed to obtain biomass data, as well as, 
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reducing the amount of disturbed area in treatment plots for other measurements to be 

conducted in future research projects. 
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CHAPTER 2.  FIELD STUDY 

 

 ABSTRACT 

Temporal data on aboveground biomass and nutrient uptake by species and 

functionally diverse native perennial plant species and communities is needed to enhance the 

performance of in-field buffer conservation practices.  Comparisons on the performance of 

monocultures and polycultures of four native perennial prairie species having different 

functional traits (e.g., forb, grass, nitrogen-fixer) relative to monocultures of corn soybean, 

brome, and switchgrass were conducted in terms of aboveground biomass production and N 

& P uptake at peak performance, at the beginning and end of the growing season, and over 

the course of the whole year. Data collection occurred in 2006, a year after plots were 

established. Our findings show that the polyculture treatments did not outperform their 

component species in monoculture for peak values of aboveground biomass and N and P 

uptake. This was the opposite of what was expected. However, the polyculture treatment with 

the highest diversity did exhibit the greatest relative aboveground net primary productivity. 

The perennial species, particularly the C3 species, had higher biomass production and 

nutrient uptake at the beginning and end of the growing season compared to annual crops.  

The species stiff goldenrod was one species that performed as well as Corn for peak 

aboveground biomass and nutrient uptake. These results suggest that high diversity plant 

communities may potentially be the best choice for use in in-field buffer conservation 

practices when production and nutrient uptake at the beginning and end of the growing 

season as well as over the course of the year are wanted. High yielding monocultures could 
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be good when considering high performance at a single mid summer point in the growing 

season, however, having multiple species that can accomplish these same functions would be 

beneficial in the long run should some species (like Stiff Goldenrod) fluctuate in productivity 

from year to year (Camill et al., 2004) . 

 
Key Words:  

Aboveground Biomass, Aboveground Net Primary Productivity (ANPP), Functional 

Diversity, Species Diversity,  

 

1.0 Introduction  

In-field buffer conservation methods are one way of reducing non-point source 

pollution from agricultural fields. Buffers such as contour buffer strips (NRCS Code 332), 

grassed waterways (NRCS Code 412), and vegetative barriers (NRCS Code 601) 

(NRCS(IA)-USDA, 2000, 2002, and 2003; Lowrance et al., 2002) provide permanent 

vegetatative cover for taking up soil nutrients that would otherwise be lost to leaching or tile 

drainage and reducing soil losses from soil erosion. Typically, introduced species (smooth 

brome) and monocultures of native species (switchgrass) predominate in these in-field 

buffers (NRCS (IA)-USDA, 2000, 2002, and 2003; Tufekcioglu et al., 2003); however, using 

plant communities composed of diverse native species may help improve these in-field 

conservation methods.  

Tufekcioglu et al. (2003) reported how perennial vegetation has the advantage of 

earlier spring growth and therefore captures nitrogen during time periods when the annual 

crops, corn and soybeans, have low or no growth. This time frame relates to when nitrogen 
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losses from agricultural fields are high. The annual crops did however produce more live 

biomass and captured more nitrogen in live biomass during mid summer. In contrast, when 

comparing native perennial grassland communities having different levels of species 

diversity, plant communities with high species diversity as well as high functional diversity 

were found to have higher peak biomass production than those plant communities with lower 

diversity (Tilman et al., 1997, 2001). Hooper and Dukes (2004) also observed increased 

aboveground net primary productivity (ANPP) by more diverse grassland plant communities 

with higher diversity, but only after 7-8 years after becoming established. Camill et al. (2004) 

reported that regardless of age, ANPP in tallgrass prairie plant communities significantly 

increases when nitrogen levels increase.   

These and other studies report diversity performance at some point(s) in time 

(example, peak values) or over the course of the growing season (example, net primary 

productivity (NPP)), but few mention how these plant communities perform at multiple 

points in the year as well as over an entire growing season. This gap in information, if made 

available, would be valuable in determining how diverse plant communities of native 

perennial vegetation can be used to improve upon existing in-field buffer conservation 

methods. It would allow one to know in what situations plant communities of differing 

compositions would be of greatest benefit depending on what condition(s) are being 

addressed. 

We propose that integrating diverse mixtures of native perennial vegetation within 

annual cropping systems could improve capacity of these integrated agroecosystems to 

capture and retain nutrients.  As a first approximation towards testing this hypothesis, we 

conducted a field experiment to compare effects of contrasting levels of species and 
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functional diversity on agroecosystem performance with regard to biomass production, 

nutrient uptake, and annual net productivity.  Our results serve as baseline information for 

designing in-field conservation buffers and other agricultural practices targeting amelioration 

of nutrient and carbon cycling processes 

 
 
 

2.0 Hypotheses and Objectives 

 It is proposed as part of this research that using more diverse and locally-adapted 

native perennial plant communities in in-field buffer conservation practices will increase 

their capacity to capture nutrients for utilization in biomass production with the potential of 

enhanced resistance and resilience to environmental fluctuations such as climate change.  

Baseline information on the performance of species diverse and functionally diverse native 

perennial plant communities is needed to improve the design of in-field conservation 

methods. Specifically, it is hypothesized that perennial plant communities having higher 

species diversity will be more productive (in terms of total aboveground biomass production 

and ANPP) and will take up more nutrients over the length of the growing season relative to 

plant communities with lower species diversity. Although productivity and nutrient uptake of 

annual crop species may exceed that of perennial monocultures and polycultures during the 

peak growing season, their performance will be substantially lower during the critical early 

and late season time periods. 

The objective of this study is to compare the performance of monocultures and 

polycultures of four native perennial prairie species having different functional traits (e.g., 

forb, grass, nitrogen-fixer) as well as comparing these four prairie species to monocultures of 
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corn, soybean, brome, and switchgrass in terms of aboveground biomass production, nutrient 

uptake, light interception, plant area index (PAI), and across the growing season. An 

additional objective related to this study is to investigate the potential of using light 

interception as a nondestructive means for determining biomass. Such a technique has been 

tested in cropping systems such as rice (Casanova et al., 1998), onions (Challa et al., 2000), 

barley in monoculture and in polyculture with rape (Christensen and Goudriaan, 1993), and 

olive trees orchards (Mariscal et al., 2000) and its applicability in tallgrass prairie systems is 

of interest for future research related to this study. If feasible, this technique would help to 

reduce the amount of time needed in obtaining biomass data, as well as, reducing the amount 

of disturbed area in treatment plots for other measurements to be conducted in future research 

projects. 

 

3.0 Materials and Methods  

3.1 Study Site  

This study examines the biomass production and nutrient uptake performance of plant 

communities from both species diversity and functional diversity perspectives. Eight plant 

species were established in monoculture and polyculture in plots at the Agronomy and 

Agricultural and Biosystems Engineering Research Farm (AABERF) located about 7 miles 

west of Ames, Iowa. 

Eight plant species, listed in Table 3.1.1, were used to represent the following plant 

communities: a corn field, a soybean field, a brome pasture, a switchgrass buffer, and a 

restored prairie (see Table 3.1.2). The restored prairie was the only plant community that was 
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planted at multiple levels of species diversity (richness). All the other plant communities 

consisted of a single species.  

In total there were 15 treatments used, one treatment each for the corn field, soybean 

field, brome pasture, and switchgrass buffer; four treatments for the restored prairie in 

monoculture; and seven treatments for the restored prairie in polyculture (Table 3.1.2). Plots 

for each treatment were 5 m by 5 m in area and were established in a field previously planted 

to corn. This field contained Webster, Nicollet, and Clarion soils, and was divided into three 

blocks to account for these potential differences in soil type throughout the field site. Each 

treatment had three replicates, one in each of the three blocks. 

Year-old transplants obtained from Prairie Nursery (Westfield, WI) and Spence 

Restoration Nursery (Muncie, IN) were used to establish the switchgrass, big bluestem, 

Canada wild rye, false blue indigo, and stiff goldenrod species, while the remaining species 

(corn, soybeans, and brome) were established by planting seed.  

 

Table 3.1.1. Experiment Plant Species and Functional Traits 
Plant Name Species Functional Traits 
  Duration CO2 Fixation Life Form Legume 
Corn Zea mays Annual C4 Grass N 
Soybeans Glycine max Annual C3 Forb Y 
Brome Bromus inermis Perennial C3 Grass N 
Switchgrass Panicum virgatum Perennial C4 Grass N 
Big Bluestem Andropogon gerardi Perennial C4 Grass N 
Canada Wild Rye Elymus Canadensis Perennial C3 Grass N 
Stiff Goldenrod Solidago rigida  Perennial C3 Forb N 
Blue False Indigo Baptisia australis perennial C3 Forb Y 
Bidwell et al. (2007); Prairie Nursery  (2005); USDA, NRCS (2001, 2002a, 2002b, 2002c, 2004a, 2004b, 
2004c) 

 

All treatments were established in May 2005 and measurements were collected from 

May to October of 2006.  Weeding occurred throughout the growing season for all treatments 
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and replications. The corn and soybean treatments were rotated the following year to mimic 

actual farming practices. Only plots planted to corn in a given year were fertilized (168 kg N 

from Urea Ammonium Nitrate (UAN) ha-1, 150 lb UAN ac-1). An alternative site adjacent to 

the research plots at the AABERF, planted to corn after soybeans with 168 kg N ha-1 (from 

UAN) applied, was used in place of the original experimental design corn plots due to 

damage by rodents. The alternative site was about 5 meters distance from the original 

experimental plots and possessed similar soil and climatic conditions. Standing residual 

biomass from 2005 was cut down prior to perennial emergence in 2006. Pruning shears were 

used to cut the residual biomass down to within 5cm above ground level and the cut residual 

biomass was removed from within the plots and placed in the allies between the plots.  

 

Table 3.1.2. Experiment Treatments 
Treatment Plant Community # Species Plants Used Plant Code 
1 Corn Field 1 Corn Cor 
2 Soybean Field 1 Soybeans Soy 
3 Brome Pasture 1 Brome Bro 
4 Switchgrass Buffer 1 Switchgrass Swi 
5 Restored Prairie 1 Big Bluestem  BigB 
6 Restored Prairie 1 Canada Wild Rye Can 
7 Restored Prairie 1 Blue False Indigo BluF 
8 Restored Prairie 1 Stiff Goldenrod Sti 
9 Restored Prairie 2 BigB + Can BigB + Can 
10 Restored Prairie 2 BigB + BluF BigB + BluF 
11 Restored Prairie 2 BigB + Sti BigB + Sti 
12 Restored Prairie 2 Can + BluF Can + BluF 
13 Restored Prairie 2 Can + Sti Can + Sti 
14 Restored Prairie 2 BluF + Sti BluF + Sti 
15 Restored Prairie 4 BigB + Can + BluF + Sti BigB + Can + 

BluF + Sti 
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3.2 Data Collection  

Precipitation 

Weather information was obtained from a weather monitoring station set up at the 

research farm (AABERF) near the treatment plots (approximately 0.41 km from the plots). 

Daily temperature, precipitation, solar radiation, and wind direction were monitored.  

Light Interception 

Light interception measurements were taken every two weeks throughout the growing 

season for all fifteen treatments using a Decagon AccuPAR PAR/LAI Ceptometer (Decagon 

Devices, Inc, Pullman, WA). For each treatment replicate, six measurements were taken, 

each consisting of an average of 10 rapid readings above the vegetation and 10 below (Flénet 

et al., 1996; Kiniry et al., 2001; Kiniry et al., 2002d).  Measurements were taken between 

10am and 2pm on days when the skies were relatively cloud-free (Flénet et al., 1996; Kiniry 

et al., 2001; Kiniry et al., 2002d). 

Aboveground Biomass Collection and Processing 

Biomass sampling occurred every 6 weeks throughout the growing season starting at 

emergence when growth across the plots was consistent and ending in October after 

corn/soybean harvest (Flénet et al., 1996). Due to the size of the plots, there were 5 collection 

times throughout the season with only one sample taken from a plot per scheduled collection. 

A measuring square constructed of PVC tubing was used to clip an area of aboveground 

plant material (1m x 1m)  and the areas were marked to prevent future sampling in the same 

location within the same year (Kiniry et al., 2002d).  All biomass samples were separated 

into live and dead categories, and mixed-species treatments were also separated by species. 

All components for each treatment replicate were weighed together and individually.  
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A 20% by weight subsample of each treatment sample was measured for leaf area 

(Flénet et al. 1996), using a LI-3100C Area Meter (LI-COR, Lincoln, NE). Leaf area of 

component species within polyculture treatment samples was determined for each species 

separately. Additionally, live and dead components were run through the leaf area meter 

separately for each species and treatment. Subsamples were added back into their respective 

component groups within each total sample, and treatment samples were dried at 60ºC 

(140ºF) for four to seven days and weighed. Once weights had stabilized, dry-weight 

biomass was determined (Kiniry et al. 2002c).  

Plant Nutrient Uptake 

After the aboveground plant biomass samples of each treatment for all collection 

periods were oven dried, the live component (of each treatment sample) was ground to fit 

through a 1mm sieve using a Model 4 Wiley Laboratory Mill (Thomas Scientific, 

Swedesboro, NJ). Each replicate sample and within sample species was analyzed separately.  

These ground samples were then sent to the USDA Forestry Service Northern Research 

Station Lab (Grand Rapids, MN) to be analyzed for plant total nitrogen and total phosphorus. 

Samples were analyzed for nitrogen using a combustion method on a Leco TruSpec 

Carbon/Hydrogen/Nitrogen Determinator combustion analyzer (LECO Corporation; St. 

Joseph, MI); while samples were ashed, brought into solution using HCl, and then 

colorimeterically analyzed for phosphorus (Alban, 1971) using a Thermo Elemental IRIS 

Intrepid Inductively Coupled Plasma-Optical Emission Spectroscopy instrument (Thermo 

Fisher Scientific, Inc.; Waltham, MA). Some treatments had missing samples for component 

species during certain collection periods due to differences in timing of plant emergence, 

senescence, harvesting, or to insufficient sample quantity.   
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3.3 Analysis of Biomass Overyielding and Underyielding 

To make yield comparisons between treatments we have chosen use the following 

indices: Dmax, Dmin, RY, and RYT.  

The Dmax and Dmin indices indicate whether the total aboveground biomass of a 

polyculture treatment has exceeded the total aboveground biomass of the highest yielding 

component species in monoculture (Dmax) or is less than the total aboveground biomass of the 

lowest component species in monoculture (Dmin) (Loureau, 1998, Hooper and Dukes, 2004).  

Dmax = (OT – Max (Mi))/Max (Mi)       (1) 

Dmin = (OT – Min (Mi))/Min (Mi)       (2) 

where Max(Mi) is the monoculture yield of the highest yielding component species in 

monoculture, Min(Mi) is the monoculture yield of the lowest yielding component species in 

monoculture, and OT = Σ Oi or the sum of the observed mixture yields of each component 

species within a mixture. According to this concept, the presence of over/underyielding is 

termed transgressive, whereas its lack is referred to as nontransgressive (Trenbath, 1974).  

Thus, if Dmax > 0, the polyculture is transgressively overyielding, and if Dmin < 0, the 

polyculture is transgressively underyielding.  

Relative yield (RY) refers to the how well the observed yields of each component 

species in the mixture meet the expected yields for those species, and the relative yield total 

(RYT) shows how well the observed yield of the total mixture meets the expected yield for 

that total mixture. These terms are expressed by the following indices: 

RYi = Oi/Mi          (3) 

RYT = Σ RYi           (4) 
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where Oi is the observed yield of component species i when in mixture, Mi is the yield of 

component species i when in monoculture, and Σ RYi is the sum of all component species’ 

RYi in a given mixture. If RY < 1/s (where s is the number of species in the mixture), the 

component species has underyielded; if RY > 1/s, then the component species has 

overyielded; and if RY = 1/s, the component species performed as expected (Loureau, 1998, 

Hooper and Dukes, 2004). The sum of the relative yields for all species in a mixture gives a 

relative yield total (RYT), and it is given as a fraction.  Thus, RYT < 1 indicates the total 

mixture has underyielded; RYT > 1 indicates the total mixture has overyielded, and RYT =1 

indicates that the mixture has performed as expected (Loureau, 1998, Hooper and Dukes, 

2004). RY and RYT do not indicate whether the total mixture transgressively 

over/underyields, just whether the yield is greater or less than what would be expected based 

on yields in monoculture.  

 

3.4 Analysis of Aboveground Net Primary Productivity (ANPP)  

For this study, we calculated ANPP, defined here as “the total photosynthetic gain, 

less respiratory losses, of vegetation per unit ground area” “for a given period of measure” 

(Scurlock et al, 2002), based on a model that uses both the live and standing dead 

components of biomass samples and sums the positive change in these two components for 

each sample interval to obtain ANPP (Scurlock et al, 2002; Singh et al., 1975).  

ANPP = Sum (ΔL + ΔD)I       (8) 

where ΔL is the change in live biomass, ΔD is the change in standing dead biomass, and 

i  is the sample time interval. To determine which components to include in the model for 

each sampling interval, a decision matrix, the “Smalley method” (Smalley 1959, Linthurst 
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and Reimold, 1978; Scurlock et la., 2002) was used (increase (↑); decrease (↓); no change 

(0), (-) sums to a negative value; (+) sums to a positive value):  

1) When   ↑live   &   ↑dead,    use  Σ(live +dead) 

2) When   ↓live   &   ↓dead,  use “0” 

3) When   ↑live   &   ↓dead,  use live 

4) When   ↓live   &   ↑dead 

if   Σ(live +dead)  =   —,   use “0” 

if   Σ(live +dead)  =   +,     use Σ (live +dead) 

All the values for each sampling interval are summed to obtain the value for the whole 

growing season.  

In using this approach for computing ANPP, it is assumed that growth, death, and 

decomposition do not occur at the same time, and that the ANPP at any given time interval is 

never negative (Scurlock et al, 2002). It’s also assumed that a partial estimation of live 

biomass mortality occurs when there is an increase in dead biomass (Linthurst and Reimold, 

1978; Scurlock et al, 2002). The model does not take into account growth of new biomass 

when the mortality of live biomass is high and is most subject to error when there is a 

decrease in both live and dead biomass components (Linthurst and Reimold, 1978). Based on 

these assumptions, the method being used in this study to determine ANPP gives a better 

indication of NPP than solely using a one time peak value, but it still may underestimate 

actual values particularly since only aboveground biomass is being considered. 
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3.5 Analysis  

Analysis of variance (ANOVA) was used to analyze each data set for significance, 

and a Tukey’s multiple comparison test was used to make comparisons between treatments 

within individual collection times. Prior to analyzing the data, each data set was tested for 

normality (whether the data set meets model assumptions) and the data was transformed by 

obtaining the logarithm, square, square root, or, other of the data when needed to stabilize the 

variances in the data set for analysis (Kuehl, 2000). In addition, a linear regression was used 

to determine fit of light interception as a non-destructive means for determining aboveground 

biomass. All statistical analyses were conducted using SAS 9.1 (SAS, 2003) 

 

 4.0 Results  

4.1 Precipitation  

The precipitation at the research site during 2006 was lower during much of the 

growing season than the 57 year average (1951-2007 period) for the research farm site in 

Boone County, Iowa (Herzmann, 2007) (Figure 4.1.1). Only in the latter quarter of the 

growing season did precipitation reach typical values experienced at the research farm.  

These weather conditions may have affected the growth of the plants used in this study, but 

comparable data obtained under weather conditions closer to average would be needed to 

determine to what extent the weather impacted plant growth. 
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Figure 4.1.1. Monthly Cumulative Precipitation in 2006 
*AAERF average monthly precipitation averaged using data from 1951-2007 (57 yrs) 

 
 

 

4.2 Aboveground Biomass  

General patterns 

The Sti and Cor treatments had the highest peak aboveground biomass values at a 

single point in time (Figure 4.2.1A). The Sti treatment, which received no fertilizer, produced 

statistically similar values of peak aboveground biomass compared to the Cor which received 

168 kg N ha-1 (Figure 4.2.1A). An unfertilized corn treatment, planted near the plots used in 

this study, produced 1220 g m-2 of peak aboveground biomass and the Sti treatment exceeded 

this value at 1494 g m-2 (Figure 4.2.1A). The most diverse treatment (BigB+Can+BluF+Sti) 

had the highest ANPP over the whole growing season (Figure 4.2.1B).  Of all the treatments 



 35

the BluF in monoculture was the lowest producing treatment both at individual sampling 

times and over the whole growing season (ANPP) (Figure 4.2.1) 

In the spring, the perennial vegetation had initiated growth around April 18th in 2006 

and thus had more biomass than the annual crops which had not yet started growing by the 

first data collection period on May 15th. Among the perennial treatments, the polyculture 

treatments did not produce significantly more biomass than their component species in 

monoculture (Figure 4.2.2A). A few of the perennial treatments did however have greater 

biomass than the Swi treatment (Can, Sti, Can+Sti, BluF+Sti). All of these treatments 

contained C3 species and the Swi treatment is a C4 species; and the C3 species tend to start 

growing sooner than the C4 species.  

By October 30, 2006, the C3 species were the only plants that were still producing 

live biomass with the exception of the BluF treatment which senesced (prior to the fifth 

collection period on October 30, 2006) like the C4 species (Figure 4.2.2B). No polyculture 

treatment out performed its component species in monoculture and none of the treatments 

(monoculture and polyculture) out performed the Bro treatment. When the polyculture 

treatments were considered on a total aboveground biomass basis (Figure 4.2.2C), they still 

had not outperformed their component species in monoculture, and one polyculture treatment 

(BigB+Can) performed worse than both of its component species in monoculture 

(transgressively underyielded) (Figure 4.2.2C). In addition, the Sti and BigB+Sti treatments 

had greater total aboveground biomass than the Bro treatment. 

Data for plant area index reflected similar results as those described for aboveground 

biomass and therefore is not presented. 
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Figure 4.2.1. Aboveground Biomass over the 2006 Growing Season: A. Peak Total 
Aboveground Biomass*, and B. Aboveground Net Primary Productivity (ANPP)** 
*Values for means and statistics obtained from log transformed data. 
**Values for means and statistics obtained from un-transformed data; two reps used for Cor treatment to meet assumptions for normality. 
***Treatments with the same letter are not significantly different from each other at the alpha = 0.05 level 
****Total includes both live and dead aboveground biomass and biomass for all species in each treatment 
***** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti 
= stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
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Figure 4.2.2 Aboveground Biomass at the Beginning and End of the Growing Season 2006. 
A. Live/Total Aboveground Biomass (May 15, 2006)*, B. Live Aboveground Biomass 
(October 30, 2006)**, and C. Total Aboveground Biomass (October 20, 2006)*. 
* Values for means and statistics obtained from untransformed data.  
**Values for means and statistics obtained from log transformed data. 
***The Corn and Soybean treatments were not included in these figures as they had yet to begin growing (May 
15, 2006) or had been harvested prior to this collection date (October 30, 2006). 
**** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy 
= soybean, Cor = Corn, Sti = stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild 
rye, BigB + BluF = big bluestem and blue false indigo, BigB + Sti = big bluestem and stiff goldenrod, Can + 
BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff goldenrod, BluF + Sti = 
blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false 
indigo, and stiff goldenrod. 
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Effects of species diversity on productivity 

Overyielding/Underyielding. Indices for looking at overyielding/underyielding were used to 

examine diversity effects on peak aboveground biomass production and ANPP. None of the 

polyculture treatments transgressively overyielded (Dmax) or underyielded (Dmin) (Table 

4.2.1). Whether a component species in polyculture exceeded its production in monoculture 

was dependant on how a polyculture’s component species performed in monoculture relative 

to how other component species in the same polyculture performed in monoculture. In almost 

every case, one of the component species in each polyculture treatments had higher than 

expected biomass (0.5 for the two species mixtures and 0.25 for the 4 species mixtures) while 

the other component species had lower than expected biomass (column RY in Table 4.2.1). 

For the BigB+Can+BluF+Sti treatment, there were two species with greater than expected 

biomass and two with lower than expected biomass. Additionally, the component species in a 

given polyculture with the highest production in monoculture (see Figure 4.2.1) had higher 

than expected yields, thus the Sti treatment always had greater than expected biomass in 

polyculture and the BluF treatment always had lower than expected biomass in polyculture 

(Table 4.2.1). This indicates that there was probably competition occurring between the 

component species in each polyculture. 

The performance of the total polyculture was dependant on whether the polyculture 

was being analyzed at a single point in time (ex. peak values) or as cumulative production 

over the whole growing season (ex. ANPP). The BigB+Can+BluF+Sti treatment had the 

highest ANPP for the whole season and greatly exceeded its highest component species in 

monoculture (Dmax, Table 4.2.2), but when this same treatment is assessed at one point in 

time (peak values) the treatment has lower than expected biomass (RYT, Table 4.2.1). This is 
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also seen regarding the BigB+Can treatment which had lower ANPP than its component 

species with the lowest biomass in monoculture (Dmin, Table 4.2.2), but when this same 

treatment is analyzed at one point in time (peak values) the treatment does not transgressively 

underyield (Dmin), it only has lower biomass than expected (RYT, Table 4.2.1). Of all the 

treatments, the BlueF+Sti treatment is the only one to exceed expected biomass (RYT, Table 

4.2.1). 

 

Table 4.2.1. Indices of Overyielding/Underyielding in Polyculture Treatments for Peak 
Aboveground Biomass 
Treatment Component 

Species 
Dmax Dmin RY RYT 

BigB+Can  -0.11 0.06  0.95 
 BigB   0.55  
 Can   0.40  

BigB+ BluF  -0.30 1.11  0.82 
 BigB   0.65  
 BluF   0.17  

BigB+ Sti  -0.23 0.30  0.87 
 BigB   0.30  
 Sti   0.57  

Can+ BluF  -0.27 0.84  0.78 
 Can   0.71  
 BluF   0.07  

Can+Sti  -0.28 0.36  0.86 
 Can   0.29  
 Sti   0.57  

BluF+Sti  -0.15 2.99  1.10 
 BluF   0.32  
 Sti   0.78  

BigB+Can+BluF+Sti  -0.34 2.04  0.98 
 BigB   0.18  
 Can   0.34  
 BluF   0.15  
 Sti   0.31  

*Data used in the calculations were from untransformed data.  
** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
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Table 4.2.2. Indices of Overyielding/Underyielding in Polyculture Treatments for ANPP 
Treatment Dmax Dmin 
BigB+Can -0.26 -0.15 
BigB+BluF -0.31 0.95 
BigB+Sti -0.21 0.17 
Can+BluF -0.39 0.98 
Can+Sti -0.17 0.06 
BluF+Sti -0.03 3.06 
BigB+Can+BluF+Sti 1.06 7.63 
*Data used in the calculations were from untransformed data.  
**Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
 

4.3 Plant Nutrients 

General Trends 

 The nitrogen and phosphorus concentrations from live aboveground biomass were 

highest in the spring, declined throughout the summer, and then increased again at the end of 

the growing season (Figure 4.3.1C-F), which is the opposite trend for live biomass (Figure 

4.3.1A and B). The highest values for total plant N and total plant P occurred when the 

nutrient concentrations were lower but live biomass was greater (Figure 4.3.2 and Table 

4.3.1). 

 While nutrient concentrations vary by species, the amount of biomass produced by 

that species impacts the amount of plant N and P found. For example, when comparing the 

treatments Soy and Sti during the August 9th collection period, their phosphorus 

concentrations were 2551 ppm and 1429 ppm, their live aboveground biomass production 

was 275 g m-2 and 1455 g m-2, and their plant phosphorus was 0.70 g m-2 and 2.07 g m-2, 

respectively (Figure 4.3.3).  

Although perennial vegetation was established and growing in the early spring (May) 

and late fall (October) collection times, plant total N and total P from the polyculture 



 41

treatments were not significantly greater than their component species (Figure 4.3.4).   In the 

spring, Sti exhibited highest N and P uptake next to Cor and Soy, as well as when compared 

to BigB, BluF, Swi, and most of the polycultures that did not contain the Sti species. 

Additionally, the BigB+Sti and Can+Sti treatments also utilized significantly more 

phosphorus than the Bro treatment (Figure 4.3.4A and Figure 4.3.4B). In the late fall there 

were no significant differences in nutrient uptake. 

In the early spring the C4 species (BigB and Swi) and the C3 legume BluF had lower 

plant N and P than the C3 forb Sti  (Figure 4.3.4A and Figure 4.3.4B). This may have more to 

due with the amount of biomass produced up to that point (May) since in general C3 plants 

tend to start growing sooner than C4 plants (Figure 4.2.2A). 

A similar trend occurs in the late fall, as only the C3 species were actively growing 

during the October collection period (Figure 4.3.4C and Figure 4.3.4D). This is not 

completely consistent as not all perennial C3 species in the study behaved similarly. The 

BluF species was one C3 species that had senesced earlier than the other C3 species behaving 

more like the C4 species (Figure 4.3.4C and Figure 4.3.4D) and (Figure 4.2.2B).  

Effects of Species Diversity on Nutrient Uptake 

While the highest yielding component species in monoculture of a two species 

polyculture tended to have greater than expected biomass, this did not always hold true when 

considering plant N and plant P. In some cases the component species with the highest 

nutrient uptake in monoculture had higher than expected values (ex. BluF+Sti treatment, 

Figure 4.3.3, Table 4.3.2 and Table 4.3.3), sometimes the component species with higher 

nutrient uptake in monoculture had lower than expected values (ex. BigB+Can treatment, 

Figure 4.3.3, Table 4.3.2 and Table 4.3.3), and in a few cases, both component species in the  
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Figure 4.3.1. Comparison of Trends of Treatments throughout the 2006 growing season. A 
and B. Live Aboveground Biomass, C and D. Nitrogen Concentration from Live 
Aboveground Biomass, and E. and F. Phosphorus Concentration from Live Aboveground 
Biomass. 
*Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = stiff 
goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, BigB + 
Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
**All values for means obtained from unchanged data. 
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Figure 4.3.2. Comparison of Trends of Live Aboveground Biomass throughout the 2006 
growing season. A. Live Aboveground Biomass (Monoculture Treatments), B. Live 
Aboveground Biomass (Polyculture Treatments), C. Plant Nitrogen (Monoculture 
Treatments), D. Plant Nitrogen (Polyculture Treatments), E. Plant Phosphorus (Monoculture 
Treatments), and F. Plant Phosphorus (Polyculture Treatments). 
*Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = stiff 
goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, BigB + 
Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
**All values for means obtained from unchanged data. 
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Table 4.3.1. Collection Period of Peak Values 
Treatment Live Aboveground 

Biomass 
N (%) Plant N (g m-2) P (ppm)  Plant P (g m-2) 

BigB 3 1 3 1 3 
Can 3 5 2 5 2 
BluF 4 1 3 1 3 
Sti 3 5 3 5 3 
Bro 2 4 2 4 2 
Swi 3 1 2 1 2 
Soy 3 2 3 2 3 
Cor 3 2 3 2 3 
BigB + Can 3 1 3 1 2 
BigB + BluF 3 1 3 1 3 
BigB + Sti 3 1 3 1 3 
Can + BluF 3 1 3 1 3 
Can + Sti 3 5 2 1 3 
BluF + Sti 3 1 2 5 2 
BigB + Can + BluF + Sti 3 1 3 1 3 
**Values are for live aboveground biomass. 
**Dates: 1 = May 15, 2006; 2 = June 28, 2006; 3 = August 9, 2006; 4 = September 21, 2006; and 5 = October 30, 2006.  
***Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
 
 
 
 
polyculture had lower than expected values of plant N and/or plant P (ex. BigB+Sti and 

Can+Sti treatments, Figure 4.3.3A and Table 4.3.2) and (ex. BigB+Sti treatment, (Figure 

4.3.3B and Table 4.3.3). The BigB+Sti treatment was one treatment that had lower than 

expected values of nutrient uptake for both plant N and plant P. In all cases, none of the 

polyculture treatments had both component species with higher than expected values. The 

BigB+Can+BluF+Sti treatment had two species with higher than expected values and two 

species with lower than expected values for both the plant N and plant P (Table 4.3.2 and 

Table 4.3.3), similar to what occurred regarding aboveground biomass. Two of the 

polyculture treatments (BigB+BluF and Can+BluF) containing BluF (an N-fixer) 

transgressively underyielded in plant N production (Table 4.3.2). 
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Figure 4.3.3. Peak Plant Nutrients from Live Aboveground Biomass over the 2006 Growing 
Season: A. Plant Nitrogen*, and B. Plant Phosphorus**. 
*Values for means and statistics obtained from log transformed data. 
**Values for means and statistics obtained from untransformed data; one replicate for the FS treatment was removed in order to meet 
assumption for normality 
*** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
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Figure 4.3.4 Plant Nutrients from Live Aboveground Biomass at the Beginning and End of 
the Growing Season 2006. A. Nitrogen (May 15, 2006)*, B. Phosphorus (May 15, 2006)*, C. 
Nitrogen (October 20, 2006)**, and D. Phosphorus (October 30, 2006)**. 
* Values for means and statistics obtained from untransformed data.  
**Values for means and statistics obtained from log transformed data. 
***The Corn and Soybean treatments were not included in these figures as they had yet to begin growing (May 15, 2006) or had been 
harvested prior to this collection date (October 30, 2006). 
**** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
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Table 4.3.2. Plant N at Peak Live Biomass 
Treatment Component 

Species 
Dmax Dmin RY RYT 

BigB+Can  0.00 0.21  1.15 
 BigB   0.29  
 Can   0.85  

BigB+ BluF  -0.17 -0.14  0.85 
 BigB   0.69  
 BluF   0.16  

BigB+ Sti  -0.52 0.24  0.62 
 BigB   0.23  
 Sti   0.39  

Can+ BluF  -0.24 -0.05  0.93 
 Can   0.85  
 BluF   0.08  

Can+Sti  -0.52 0.51  0.71 
 Can   0.34  
 Sti   0.37  

BluF+Sti  -0.34 0.68  0.76 
 BluF   0.16  
 Sti   0.60  

BigB+Can+BluF+Sti  -0.47 0.67  0.98 
 BigB   0.18  
 Can   0.36  
 BluF   0.14  
 Sti   0.29  

*Data used in the calculations were from untransformed data.  
**Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
 
 

Of the two species (Can and Sti) that had higher than expected values for plant N and 

plant P, the Can species performed the best in both cases (Tables 4.3.2 and Table 4.3.3). For 

all polyculture treatments except the Can+Sti, the Can treatment performed better than 

expected when other species were present. This seems to be the opposite of what occurs for 

the BigB species in polycultures of greater diversity since the BigB had less than expected 

plant N and P in all cases except when grown with BluF (Table 4.3.2 and Table 4.3.3) 

Of all the polyculture treatments only the BigB+Can treatment transgressively 

overyielded for plant N (Dmax, Table 4.3.2) but this same treatment transgressively  
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Table 4.3.3. Plant P at Peak Live Biomass 
Treatment Component 

Species 
Dmax Dmin RY RYT 

BigB+Can  -0.18 -0.03  0.92 
 BigB   0.28  
 Can   0.64  

BigB+ BluF  -0.29 1.39  0.81 
 BigB   0.67  
 BluF   0.14  

BigB+ Sti  -0.43 0.07  0.69 
 BigB   0.27  
 Sti   0.43  

Can+ BluF  -0.19 1.31  0.87 
 Can   0.77  
 BluF   0.10  

Can+Sti  -0.32 0.51  0.87 
 Can   0.34  
 Sti   0.52  

BluF+Sti  -0.30 3.45  0.83 
 BluF   0.15  
 Sti   0.67  

BigB+Can+BluF+Sti  -0.34 3.23  1.12 
 BigB   0.20  
 Can   0.43  
 BluF   0.15  
 Sti   0.34  

*Data used in the calculations were from untransformed data.  
**Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
 

 

underyielded for plant P (Dmin, Table 4.3.3). BigB+BluF and Can+BluF were two that 

underyielded but only for plant N (Dmin, Table 4.3.2) 

 
 
4.4 Indirect Measurement Techniques  

 Determining how much aboveground biomass a treatment produces takes a 

considerable amount of time especially if one wants to take samples at multiple periods 

throughout the growing season. For each collection, destructive samples must be taken which 
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reduces the amount of undisturbed area in a given treatment plot (area that could potentially 

be used for other measurements). The samples then have to be dried and weighed which 

takes more time.  

If a technique could be used to obtain the same information with less destructive 

methods and steps, much time and resources could be saved. Potential limitations of such a 

method would be the inability to distinguish individual plant species or components of a total 

treatment. 

When the light interception as log of IPAR (intercepted photosynthetically active 

radiation) data was plotted against the log of total aboveground biomass data, it was found 

that the results of the linear regressions for each treatment varied depending on the particular 

species involved (Table 4.4.1). The BigB (see Figure 4.4.1a), BigB+Can, and 

BigB+Can+BluF+Sti treatments had the best fit regression lines with R2 values of  0.91, 

0.93, and 0.91 respectively., When data for all treatments were plotted to determine a single 

regression (Figure 4.4.2a), the equation only took into account 63% of variability suggesting 

that each treatment and species would require its own regression.  

Values that occurred after the treatment’s total aboveground biomass began to decline 

were not used in the regressions (Table 4.4.1). For the BigB, Sti, BigB+Can, and Can+BluF 

treatments, an R2 value equal to or greater than those listed in Table 4.4.1 was observed when 

data points from one collection period after total aboveground biomass decline were used. In 

a few cases (Swi, Soy, BigB+BluF, BigB+Sti, Can+Sti, and BluF+Sti) using data points up to 

decline for live aboveground biomass (in reference to biomass collection periods) produced a 

better R2 value for plotted regressions (Table 4.4.1). Decline in live aboveground biomass for 

these treatments occurred sooner than that of total aboveground biomass decline. The highest 
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R2 value (0.90) for the Swi treatment occurred when including one extra collection period 

past decline of live aboveground biomass (Table 4.4.1).  

The growth of the Bro and Can treatments were such that there was a decline in the 

summer followed by an second increase in growth in the fall, characteristic of C3 species, 

where as the other species used had one main growth period of varying length during the 

growing season. When data points after the initial decline point were included in the 

regression of these species, the R2 values declined.  

An alternative method that has been used is plotting cumulative IPAR in place of 

IPAR for the regreassions (Casanova et al., 1998; Challa et al., 2000; Christensen and 

Goudriaan, 1993; and Mariscal et al., 2000). When the aboveground biomass of treatments 

were plotted against cumulative IPAR (Table 4.4.2) the fit of the regressions increased for all 

treatments particularly when using those data points that occur during the period of biomass 

decline  for each treatment. This can be seen in the BigB+BluF treatment where data from all 

the collection periods were included in the regression using cumulative IPAR but only data 

from the first three collection periods was included when using IPAR (Tables 4.4.1 and 

4.4.2). Some observations remained the same in spite of the change to using cumulative 

intercepted PAR such as low fit of the regression when plotting all treatments together (0.67, 

Table 4.4.2 and Figure 4.4.2b) and low fit of regressions for the C3 species Bro and Can 

when using data point occurring after the first decline in biomass (data not shown).   
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Table 4.4.1.  Regression of Log IPAR vs. Log Total Aboveground Biomass 
Treatment Data Used* R2 P-value (α = 0.05) Equation for Log Regression 
BigB $ 1, 2, 3, 4 0.91 <0.0001 y = 1.0201x - 0.1941 
Can 1, 2, 3 0.73 0.0033 y = 0.7166x + 0.7495 
BluF 1, 2, 3, 4 0.88 <0.0001 y = 0.6825x + 0.4323 
Sti $ 1, 2, 3, 4 0.74 0.0003 y = 0.7074x + 0.8793 
Bro 1, 2 0.88 0.0055 y = 0.9603x - 0.1169 
Swi #$ 1, 2, 3, 4 0.90 <0.0001 y = 0.9181x - 0.0026 
Soy #     2, 3 0.87 0.0069 y = 1.6317x - 2.5462 
Cor #     2, 3 0.87 0.0068 y = 11.306x - 32.159 
BigB + Can $ 1, 2, 3, 4 0.93 <0.0001 y = 0.608x + 1.0059 
BigB + BluF # 1, 2, 3 0.82 0.0007 y = 0.875x + 0.0021 
BigB + Sti # 1, 2, 3 0.83 0.0006 y = 0.4847x + 1.3668 
Can + BluF $ 1, 2, 3, 4 0.80 <0.0001 y = 0.5931x + 0.9328 
Can + Sti # 1, 2, 3 0.83 0.0006 y = 0.5916x + 1.181 
BluF + Sti 1, 2, 3, 4 0.83 <0.0001 y = 0.6353x + 1.1729 
BigB + Can + BluF + Sti # 1, 2, 3 0.91 <0.0001 y = 0.7079x + 0.7776 
all --- 0.63 <0.0001 y = 0.775x + 0.4899 
*Data used refers to the particular collection time when the data was collected:  1= May 15, 2006; 2=June 28, 2006; 3=August 9, 2006; 
4=September 21, 2006; and 5=October 30, 2006. 
***Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
# Treatments using data points up to decline in live aboveground biomass. 
$Treatments using data points one collection period past aboveground biomass decline. 
 
 
Table 4.4.2.  Regression of Log Cumulative IPAR vs. Log Total Aboveground Biomass 
Treatment Data Used* R2 P-value (α = 0.05) Equation for Log Regression 
BigB $ 1, 2, 3, 4 0.95 <0.0001 y = 0.8575x + 0.0611 
Can 1, 2, 3 0.75 0.0024 y = 0.5857x + 1.024 
BluF 1, 2, 3, 4 0.87 <0.0001 y = 0.5629x + 0.6477 
Sti $ 1, 2, 3, 4 0.81 <0.0001 y = 0.5475x + 1.211 
Bro 1, 2 0.87 0.0069 y = 0.7726x + 0.2893 
Swi # 1, 2, 3 0.90 0.0001 y = 0.8198x + 0.1559 
Soy     2, 3, 4 0.93 <0.0001 y = 1.4815x - 2.2152 
Cor #     2, 3 0.99 <0.0001 y = 2.3513x - 4.8045 
BigB + Can 1, 2, 3 0.95 <0.0001 y = 0.5377x + 1.1349 
BigB + BluF 1, 2, 3, 4, 5 0.89 <0.0001 y = 0.7731x + 0.1719 
BigB + Sti $ 1, 2, 3, 4, 5 0.92 <0.0001 y = 0.46x + 1.3898 
Can + BluF 1, 2, 3 0.80 0.0012 y = 0.5462x + 1.0187 
Can + Sti # 1, 2, 3 0.87 0.0002 y = 0.5125x + 1.3372 
BluF + Sti # 1, 2, 3 0.82 0.0008 y = 0.566x + 1.2909 
BigB + Can + BluF + Sti 1, 2, 3 0.94 <0.0001 y = 0.6174x + 0.9527 
all --- 0.67 <0.0001 y = 0.6497x + 0.7125 
*Data used refers to the particular collection time when the data was collected:  1= May 15, 2006; 2=June 28, 2006; 3=August 9, 2006; 
4=September 21, 2006; and 5=October 30, 2006. 
**Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
# Treatments using data points up to decline in live aboveground biomass. 
$Treatments using data points one collection period past aboveground biomass decline. 



 52

 

 Log of IPAR

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

Lo
g 

To
ta

l A
bo

ve
gr

ou
nd

 B
io

m
as

s 
(g

 m
-2

)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2
A.

 

Log Cumulative of IPAR

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Lo
g 

To
ta

l A
bo

ve
gr

ou
nd

 B
io

m
as

s 
(g

 m
-2

)

1.0

1.5

2.0

2.5

3.0

3.5
B.

 

Figure 4.4.1. Log of IPAR vs Log of Total Aboveground Biomass for Big Bluestem: A. BigB 
Data Points using Fraction of IPAR from Table 4.4.1 and B. BigB Data Points using 
Cumulative IPAR from Table 4.4.2. 
*Values for means and statistics obtained from log transformed data. 
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Figure 4.4.2. Log of IPAR vs Log of Total Aboveground Biomass for All Treatments 
Together: A. All data points from Table 4.4.1 and B. All data points from Table 4.4.2. 
*Values for means and statistics obtained from log transformed data. 
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5.0 Discussion  

 

5.1 Biomass Production and Nutrient Utilization 

Monocultures and Polycultures  

When the performance of monocultures and polycultures were compared at peak 

production, it was found that the polycultures did not outperform the monocultures and in 

several cases (e.g. Sti, in BigB+Sti, Can+Sti, BluF+Sti, and BigB+Can+BluF+Sti; BigB in 

BigB+Can and BigB+BluF; and Can in Can+BluF) the component species with the highest 

performance in monoculture outperformed their respective polycultures. This trend occurred 

for both biomass production and for nitrogen and phosphorus utilization. Similar trends were 

observed by Aarssen (1997), Huston (1997), and Tilman et al. (1997), such that the 

polyculture treatments produced as much as but not more biomass than the highest producing 

species in monoculture. In the case of this study, Sti was the highest producing perennial 

species in monoculture and none of the polycultures had peak values that outperformed the 

Sti monoculture. This “initial exponential takeover by the faster-growing species” (Pacala 

and Tilman, 2001) has also been termed “sampling effect” in experiments because the 

highest producing species tends to be randomly chosen as a part of the experimental design. 

As the treatments begin to have more species assigned to them, the probability that a high 

producing species will be chosen increases. As Pacala and Tilman (2002) and Tilman et al. 

(2001) suggest, this trend will potentially change with time, generally starting in the third 

year of growth and transitioning to a system affected by “niche complementarity.” Under this 

effect, the growth of the highest producing species reaches a maximum and levels off 

(Donald, 1951) while competition takes effect with the lower producing species in the 
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community starting to increase their production. This results in the biomass of the total 

mixture exceeding that of the highest producing species in monoculture (overyielding). This 

idea is consistent with findings by MacArthur and Levins (1967), Tilman et al. (1997), and 

Tilman et al. (2001), and Camill et. (2004). For example, Camill et al. (2004) observed that 

Sti in an 8 year chronosequence of re-established tallgrass prairie increased production up 

through the 4th year after which there was a decline in production into the 6th year followed 

by another cycle of increasing production up through the end of the 8th year. Similarly, with 

time, we might expect a transition from “initial exponential takeover by the faster-growing 

species” to “niche complementarity” (Pacala and Tilman 2002) in our treatment plots.  

A difference in the previous trends was observed when the same monocultures and 

polycultures were compared as ANPP. When the 4 species polyculture treatment was 

compared to the monocultures and 2 species polycultures over the whole growing season the 

4 species polyculture out performed all other treatments (monocultures and 2 species 

polycultures) regarding ANPP. There is the potential that this observation also extends to 

nutrient utilization as well based on how closely plant N and P production reflects, though 

not in all cases, the amount of aboveground biomass produced; but this could not be 

determined conclusively in our study.  This observation of ANPP supports the hypothesis 

that more diverse plant communities will be more productive and utilize more nutrients than 

less diverse plant communities over the length of the growing season.  

Introduced and Native Species 

As part of the hypotheses, it was suggested that native species would prove to be 

more resistant and resilient to climatic and environmental changes making native species a 

better choice in plant communities used for conservation methods; however, this hypothesis 
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was beyond the scope of this experiment to examine and further testing would be required to 

make this determination.  

Functional Groups 

Functional type was important in identifying different patterns of production and 

nutrient utilization among species at specific sampling times during the growing season. In 

general, the C3 species began their growth earlier in the spring and continued their growth 

later into the fall (senesced later) than the C4 species; and the C4 species had higher 

production in the summer than the C3 species. However, there were limitations in using these 

general descriptions of functional group growth patterns as not all species in a given 

functional group behaved in the same manner. For example, BluF (a C3 species) senesced 

early (as typically seen in C4 species), while the C3 forb Sti had high production in the 

summer like the C4 species. Craine et al. (2003) used the principal component analysis (PCA) 

to group a series of grassland plant species into categories using 62 traits of the plants. In 

doing this they, observed the same occurrence of high biomass production from Sti being 

similar to C4 grass species. Symstad and Tilman (2001) reported a few shortcomings in using 

the functional groups they did for their study. The first was that the category of forb as a 

functional group may have been too broad based on no change in production when another 

functional group in mixture with the forbs was removed. Additionally, they suggested 

looking beyond just the traits of interest (such as nutrient uptake) being investigated as other 

traits like rooting structure can also impact those traits of interest and need to be considered 

in defining different functional groups.  This would imply that solely using functional groups 

to categorize different species may not be a satisfactory approach to use when trying to 

identify common patterns in performance or other species’ traits among species within a 
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plant community. This is contrary to the assumption that plant communities can be 

generalized based on their functional attributes and instead suggests a need to characterize 

individual species and use species specific information when designing plant communities 

for a given purpose. 

5.2 Management Implications  

One concern with using native plants in conservation practices is the length of time it 

takes for these plants to become established when used in areas that may have high rates of 

erosion and plants communities are being used to stabilize a site from further deterioration 

(NRCS (IA)-USDA, 2003). The sooner the vegetation produces a cover, particularly in the 

spring when peak runoff tends to occurs, the sooner soil erosion will be reduced. Thus, 

certain plants may not be considered an option if fast establishment is necessary. Choosing 

native species that perform well in monoculture, particularly C3 species with high growth in 

the spring, can help to boost the total biomass of a mixture during the initial establishment 

years (compared to how mixtures may perform without the higher yielding species) until the 

other species in the mixture increase their biomass production in later years. 

If nutrient utilization is a concern regarding use of plants in conservation methods, 

choosing plants that have high N and P concentrations may be an option, however, one 

would need to consider how much biomass these same plants produce. A species may have 

high plant nutrient concentrations (the ratio of nutrients to biomass produced by a plant), but 

the same species can have a lower quantity of plant nutrients relative to another species that 

had lower plant nutrient concentrations if that second species produces a greater amount of 

biomass. This can be seen when comparing the N concentrations (Figure 4.3.1c and d) and 

plant N (Figure 4.3.2c and d) of the Sti and BluF treatments. The BluF treatment had higher 
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nutrient concentrations but the Sti treatment had a higher quantity of plant nutrients. Craine 

et al. (2002) observed that plants with higher N concentrations tended to have lower biomass 

production relative to plants with low N concentrations. As long as there are ample nutrients 

available for plants with higher nutrient requirements to use, these plants will be productive, 

but if soil nutrients become low, these same plants may perform poorly (Craine et al. 2002). 

An alternative may be to use plants having low nutrient concentrations but high biomass 

production. These plants’ total plant N and P would likely be greater relative to plants with 

high nutrient concentrations, and would have the added advantage of maintaining high 

productivity even if soil nutrient concentrations become low (Craine et al. 2002).  In the 

study by Symstad and Tilman (2001) it was noted that the C3 grasses had the ability to close 

in gaps of open ground due to their rhizomatous growth form which allowed these species to 

reduce soil N in the rooting zone as well as reduce N leaching. This suggests that using C3 

grasses in mixtures would also be beneficial in nutrient utilization. 

Highly diverse mixtures of perennial vegetation can be beneficial in in-field buffer 

conservation methods when the goal is to achieve high biomass production and nutrient 

uptake over the course of the whole growing season. However if biomass production or 

nutrient utilization is needed for a certain critical point in the growing season, installing 

monocultures of a species with the highest production during that portion of the growing 

season would be best. Craine et al. (2003) suggested that the greater the diversity in a plant 

communities, the greater the chance of having species that have differences in “seasonality of 

production, successional status, or response to variation in climate.” This would increase the 

likelihood of the plant community having other species present to compensate for decreases 

in some species’ production. 
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Depending on the objectives for installing in-field buffers, different specific species 

may be desirable. Ultimately, more species-specific information, about growth habits and 

functions of different perennial species, is needed to better guide the design of conservation 

practices, as currently data is extremely limited.  

 

5.3 Non-destruction Biomass Measurement  

The applicability of using intercepted PAR (obtained using the Decagon Ceptometer) 

as a non destructive means of determining total aboveground biomass is related to how well 

individual treatments can be plotted in regression.  In the literature, it was reported that 

intercepted PAR could be used to determine aboveground biomass in crops such as rice 

(Casanova et al., 1998), onions (Challa et al., 2000), barley in monoculture and in polyculture 

with rape (Christensen and Goudriaan, 1993), and olive trees (Mariscal et al., 2000). Unlike 

the method initially used in this study, these other studies reported plotted biomass against 

cumulative intercepted PAR instead of against intercepted PAR. When the treatments in the 

study were plotted using cumulative intercepted PAR, the fit of the regressions increased for 

all treatments particularly when using those data points that occur during decline in plant 

community biomass. Some observations remained the same in spite of the change to using 

cumulative intercepted PAR such as low fit of the regression when plotting all treatments 

together and low fit of regressions for the C3 species Bro and Can when using data point 

occurring after the first decline in biomass.   

Because each treatment and particularly each species had differing regressions, each 

treatment in an experiment would require its own set of collected data by destructive means 

to obtain an appropriate regression as a proxy for estimating aboveground biomass.  Further, 
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given the expected changes in plant community growth patterns over time (Pacala and 

Tilman 2002), new data would need to be collected by destructive techniques in order to 

derive accurate regression equations. Thus, although the light interception technique has the 

potential of greatly reducing measurement time, its application may be constrained by 

changes in plant community performance over time, as well as by variation in responses due 

to changing weather conditions (Mariscal et al., 2000). Testing the regression obtained in this 

study in the years to follow will help to verify whether this particular technique is practical 

for biomass determination. Additional testing using C3 species would also be needed.  

 

 

6.0 Conclusions  

The findings supported the hypothesis that diverse mixtures of native perennial plant 

species have greater capacity for biomass production and nutrient uptake relative to 

monocultures of annual or perennial plants when considered over the course of the entire 

growing season. The increase in ANPP was observed in a mixture of four species based on 

review of ANPP but mixtures with two species did not have an increase in production over 

high yielding monocultures. While annual crops such as Cor experienced higher production 

and nutrient utilization during peak growth periods in the growing season, one perennial 

species (Sti) produced similar amounts of biomass. This highlights the important of selecting 

high yielding species in mixture, such as stiff goldenrod, especially during the early 

establishment period if a high yielding plant community is the objective. As expected, the 

perennial plant communities also exhibited greater biomass production and nutrient capture 

during early spring and late fall periods when annual crop production was low or nonexistent. 
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In particular, species with early spring growth and extended late fall growth were most 

effective and should be considered in composing mixtures of perennial vegetation. 

Using light interception as a means of non-destructively determining biomass may 

not work well in most experiments where constant changes in the total plant community’s 

biomass may change from year to year as a new regression would need to be calculated for 

each change and each treatment being considered; however, testing of the regressions in the 

years to follow will help to verify the applicability of this technique.   

More research is needed to understand how species diversity, particularly plant 

functional traits, and functional redundancy influence the resilience of native and introduced 

plant communities to changes in weather, climate or environment, and the trade-offs between 

short-term gains in productivity and long-term advantages of resilience. If such information 

supported that diverse native plant communities are more resilient and resistant to 

environmental and climatic changes relative to plant communities composed of introduced 

species, it would help give further credence in support of using native plant communities in 

in-field buffer conservation methods. 
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CHAPTER 3: GENERAL CONCLUSIONS 

 

1.0 Summary of Study 

The objectives of this study were to compare the performance of monocultures and 

polycultures of four native perennial prairie species having different functional traits (e.g., 

forb, grass, nitrogen-fixer) relative to monocultures of corn, soybean, brome, and switchgrass 

in terms of aboveground biomass production, nutrient uptake, light interception, plant area 

index (PAI), and temporal patterns at the beginning, ending, and over the length of growing 

season. In it was hypothesized that perennial plant communities having higher species 

diversity would be more productive and would take up more nutrients over the length of the 

growing season relative to plant communities with lower species diversity. 

An additional objective related to this study was to test the feasibility of using light 

interception as a nondestructive means for determining biomass. It was hypothesized that 

using a such a technique would help to reduce the amount of time needed to obtain biomass 

data, as well as, reduce the amount of disturbed area in treatment plots for other 

measurements to be conducted in regarding future research.  

Based on the results of this study it was concluded that plant communities of at least 

four species have greater ANPP over the length of the growing season as well as having the 

added benefit of early season and late season production and N and P uptake in acceptance of 

the hypothesis suggested. It was also noted that the traits of plant species used in diverse 

plant communities are important in allowing the mixture to perform well throughout the 

growing season. For example, including high yielding species will contribute to peak 

performance, and including early and late season growers will allow for production and 
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nutrients utilization at critical times of nutrient loss. Additionally, high producing species 

could provide the added benefit of fuller vegetative cover for the first couple of years until 

the plant community becomes more established particularly when such a requirement is 

necessary for installing in-field buffers. 

Results on the non-destructive biomass method proposed showed that the technique 

would require separate initial collections of biomass for all treatments involved to obtain the 

regressions that would be needed for biomass determination. In addition, treatment specific 

regressions would be needed due to variations in the trends of each species and treatment. 

Because it is highly likely that there would be changes in plant community production with 

time, new regressions would need to be obtained to accurately determine each treatments 

biomass, thus in light of this findings, the technique would not be practical in opposition to 

what was hypothesized. Still testing the regression obtained against future field season 

observations will help to verify these conclusions. 

 

2.0 Implications for Management 

Using diverse mixtures of perennial vegetation in in-field conservation methods 

would help to improve on in-field buffer conservation methods based on the results 

mentioned earlier. Care needs to be taken in choosing those species that would comprise the 

plant community as some species that might be considered for inclusion are listed as being of 

one functional group but may have a tendency to behave differently than expected. High 

yielding species would be beneficial to add to a plant community if early establishment is 

necessary in the operation of the in-field buffer conservation method. For situations requiring 

nutrient utilization, having high production species with low nutrient concentrations in the 
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mixture would be beneficial as these plants will potentially uptake as much if not more 

nutrients than species with high nutrient concentrations with the added benefit of appreciable 

levels of production when nutrient levels are low. 

 

3.0 Recommendations for Future Study 

Potential future work base on this study include the need to obtain more baseline 

information concerning species specific traits particularly for those species that are less well 

studied, to better understand how these species perform individually as well as in mixtures 

throughout the length of and at critical points in the growing season. 

Investigating belowground biomass and nutrient utilization in addition to 

aboveground biomass and nutrient utilization would give a better picture of total plant 

community functions for determining whether more diverse plant communities outperform 

monoculture plant communities. 

A longer term study would also be of benefit in determining how individual species in 

a mixture perform over many years well past the establishment period and to determine if 

diverse plant communities as a whole increase their production and capacity to utilize 

nutrients with time. 

Another beneficial study would make comparisons between diverse mixtures of 

native versus introduced species, to learn whether native plant communities are more 

resistant and resilient in situations of environmental and climatic change. Redundancy in 

species traits used in plant communities for increased resistance and resilience could also be 

studied. 
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Transplants were used to establish many of the plots used in this study. For future 

study, using seed to establish the plots would be beneficial to determining how seeding rates 

impact success of plot establishment. In addition, weeding by hand was used to suppress 

weed growth in the plots but such methods would probably not be used by those who would 

seek to utilize in-field buffer conservation methods. Investigating different methods of weed 

suppression in diverse native plant communities would be beneficial to promoting the use of 

these plant communities in conservation methods. 

A study to better understand productivity relationships in diverse plant communities 

would be beneficial to composing plant communities for conservation practices. Such a study 

could use two species mixtures with treatments planted at different ratios of each species so 

that there is a whole spectrum ranging from all of one species to all of the other species. This 

would allow for observation of whether one species or the other is dominating the mixture or 

if there is complementary or facilitation occurring. 

Lastly, along with field testing of the regressions obtained in this study, other 

potential methods of non-destructive biomass determination could be investigated to help in 

the reduction of time spent collecting and measuring plant biomass from the field thus 

increasing the amount of time available for other measurements. This could decrease the 

amount of disturbed area present in treatment plots for conducting other field measurements. 

It would also provide the option of planning smaller treatment plots for space to have more 

treatments for those starting new projects. 
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A.1.0 Aboveground Biomass 
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Figure A.1.1. Total Aboveground Biomass over the 2006 Growing Season 
A. Monoculture Treatments and B. Polyculture Treatments 
*Live includes only live (not dead) aboveground biomass and biomass for all species in each treatment 
** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
***Values of means from untransformed data 
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Figure A.1.2. Aboveground Net Primary Productivity for the 2006 Growing Season. 
With Biomass For Each Time Increment 
*Total includes both live and dead aboveground biomass and biomass for all species in each treatment 
** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
***Treatments with the same letter are not significantly different from each other at the alpha = 0.05 level; values for means and statistics 
obtained from un-transformed data, Corn treatment utilizes 2 reps to meet assumptions for normality.  
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Table A.1.1.  Comparative Values for Aboveground Biomass. 
Species Time During 

Growing Season 
Location Aboveground Biomass (g m-2) Reference 

Big Bluestem July Oklahoma 580 Springer, et al., 
2007 

 July Minnesota ~71.43 (live AGB in 
monoculture)* 
~70.0 (live AGB in 16 species 
polyculture) 

Fargione, et al., 
2006** 

 July 1998, 1999 
Sept. 1998,  1999 

Pennsylvania 551, 242 
655, 349 

Sanderson, et al., 
2004 

Canada Wild 
Rye 

July Minnesota ~60.00 (live AGB in 
monoculture) 
~3.00 (live AGB in 16 species 
polyculture) 

Fargione, et al., 
2006** 

Blue False 
Indigo 

August 2000 
August 2001 

Minnesota 100 (BluF part in mix with little 
bluestem) (site 1) 
15 (BluF part in mix with little 
bluestem) (site 2) 

Fischbach, et al., 
2006 

Stiff 
Goldenrod 

August 2002 
 
August 2003 

Minnesota 439.92 (unfertilized), 747.87 
(fertilized) 
517.23 (unfertilized), 880.23 
(fertilized) 

Strengbom, et al., 
2006 

 Aug. 2002 and Aug. 
2003 

Minnesota  Strengbom, et al., 
2006 

 July Minnesota ~60.0 (live AGB in 
monoculture) 
~15.0 (live AGB in 16 species 
polyculture) 

Fargione, et al., 
2006** 

Smooth 
Brome 

June 
End Year Average 

Iowa 320.2 
431.5 

Haan, et al., 2006 

 June 27, 2005 Iowa 498.0 (peak live  AGB)*** Unpublished Data 
Switchgrass Mid August Iowa ~1000.0 (peak live AGB) Tufekcioglu, et al., 

2003 
 July 1998, 1999 

September 1998,  
1999 

Pennsylvania 472, 205 
1046, 368 

Sanderson, et al., 
2004 

 July Minnesota ~142.86 (live AGB in 
monoculture) 
~10.0 (live AGB in 16 species 
polyculture) 

Fargione, et al., 
2006** 

 End Year Average Canada 1143.33 (average of 3 cultivars) Madakadze, et al., 
1998 

Soybean Mid August Iowa ~550 (peak live AGB) + 
~400 (litter AGB) 

Tufekcioglu, et al., 
2003 

 August 8, 2005 Iowa 1700.2 (total AGB) Unpublished Data 
Corn Mid August Iowa ~1800 (peak live AGB) Tufekcioglu, et al., 

2003 
 August 8, 2005 Iowa 6191.3 (total AGB) Unpublished Data 
*AGB = aboveground biomass, **Values were back calculated from data presented in the journal article, ***BluF = Blue False 
Indigo, 
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Table A.1.2. Indices of Overyielding/Underyielding in Polyculture Treatments for Peak 
Aboveground Biomass 
Treatment Component 

Species 
Dmax Dmin RY RYT Di DT Dμ 

BigB+Can  -0.11 0.06  0.95  -0.03 -0.05 
 BigB   0.55  0.11   
 Can   0.40  -0.20   

BigB+ BluF  -0.30 1.11  0.82  0.06 -0.18 
 BigB   0.65  0.29   
 BluF   0.17  -0.66   

BigB+ Sti  -0.23 0.30  0.87  -0.07 -0.13 
 BigB   0.30  -0.40   
 Sti   0.57  0.15   

Can+ BluF  -0.27 0.84  0.78  0.05 -0.22 
 Can   0.71  0.41   
 BluF   0.07  -0.86   

Can+Sti  -0.28 0.36  0.86  -0.05 -0.14 
 Can   0.29  -0.42   
 Sti   0.57  0.14   

BluF+Sti  -0.15 2.99  1.10  0.40 0.10 
 BluF   0.32  -0.36   
 Sti   0.78  0.56   

BigB+Can+BluF+Sti  -0.34 2.04  0.98  -0.47 -0.02 
 BigB   0.18  -0.29   
 Can   0.34  0.35   
 BluF   0.15  -0.40   
 Sti   0.31  0.24   

*Data used in the calculations were from untransformed data.  
** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
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A.2.0 Plant Area Index (PAI) 
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Figure A.2.1. PAI from Total Aboveground Biomass over the 2006 Growing Season 
A. Monoculture Treatments and B. Polyculture Treatments 
* Total includes both live and dead aboveground biomass and biomass for all species in each treatment 
** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod.. 
***Corn treatment values are based on leaves only 
****Values of means for June, and Sept. were converted from log transformed data 
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Figure A.2.2. PAI from Live Aboveground Biomass over the 2006 Growing Season 
A. Monoculture Treatments and B. Polyculture Treatments 
*Live includes only live (not dead) aboveground biomass and biomass for all species in each treatment 
** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
***Corn treatment values are based on leaves only 
****Values of means for June, and Sept. were converted from log transformed data 
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Figure A.2.3.  PAI from Total* aboveground biomass on October 30, 2006.  
*(includes both live and dead plant material) 
** Values for means and statistics obtained from unchanged data.  
*** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
****The Corn and Soybean treatments were not included in these figures as they had been harvested prior to this collection date. 
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Figure A.2.4 Peak PAI from Total Aboveground Biomass over the 2006 Growing Season 
*Total includes both live and dead aboveground biomass and biomass for all species in each treatment 
** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
***Treatments with the same letter are not significantly different from each other at the alpha = 0.05 level 
****Values for means and statistics obtained from unchanged data.. 
*****The lines across the graph indicate the values of the BB, CWR, FBI, and STF treatment in monoculture for ease of comparison with 
the polyculture treatments 
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Figure A.2.5.  PAI from Aboveground Biomass* on May 15, 2006.  
*Values for live aboveground biomass (excludes dead plant material) and total aboveground biomass (includes both live and dead plant 
material) were the same for this collection period. 
**Values for means and statistics obtained from log transformed data.  
*** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
****The Corn and Soybean treatments were not included in these figures as they had not started growing by this collection date. 
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Figure A.2.6.  PAI from Live Aboveground Biomass* on October 30, 2006.  
*Live aboveground biomass (excludes dead plant material)  
**Values for means and statistics obtained from log transformed data. ** Values for means and statistics obtained from unchanged data.  
*** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
****The Corn and Soybean treatments were not included in these figures as they had been harvested prior to this collection date. 

 

 

Table A.2.1. Comparative Values for LAI/PAI 
Species Sample 

Date 
Location LAI References 

Big Bluestem July Oklahoma 8 at 2.7 plants m-2 
 

Springer, et al., 
2007 

Canada Wild 
Rye 

--- --- --- --- 

Blue False 
Indigo 

--- --- --- --- 

Stiff Goldenrod --- --- --- --- 
Smooth Brome --- --- --- --- 
Switchgrass --- --- --- --- 
Soybeans --- --- --- --- 
Corn --- Nebraska Peak values ranged from 4 to 8 depending 

on the year 
 

Lindquist, et al., 
2005 
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Figure A.2.7. Peak PAI from Total Aboveground Biomass over the 2006 Growing Season: 
Totals with all species within polyculture treatments 
*Total includes both live and dead aboveground biomass and biomass for all species in each treatment 
** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod.. 
***Treatments with the same letter are not significantly different from each other at the alpha = 0.05 level 
****Values for means and statistics obtained from unchanged data.. 
*****The lines across the graph indicate the values of the BigB, Can, BluF, and Sti treatment in monoculture for ease of comparison with 
the polyculture treatments 
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A.3.0 Percent Nitrogen from Live Aboveground Biomass 
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Figure A.3.1. Percent Nitrogen from Live Aboveground Biomass over the 2006 Growing 
Season A. Monoculture Treatments and B. Polyculture Treatments 
*Live includes only live (not dead) aboveground biomass and biomass for all species in each treatment 
** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
***All values for means and statistics obtained from unchanged data. 
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Figure A.3.2. Percent Nitrogen from Live Aboveground Biomass Collected on October 20, 
2006**. 
* Values for means and statistics obtained from untransformed data.  
**Values for means and statistics obtained from untransformed data. 
*** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
****The Corn and Soybean treatments were not included in these figures as they had been harvested prior to this collection date. 
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Figure A.3.3. Peak Percent Nitrogen from Live Aboveground Biomass over the 2006 
Growing Season 
*Live aboveground biomass excludes dead plant material but does include aboveground biomass for all species in each treatment 
** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
***Values for means and statistics obtained from unchanged data. 
****Lines across the graph indicate mean values for CORN, SOY, SW, and BR treatments for comparison purposes. 
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Figure A.3.4. Percent Nitrogen from Live Aboveground Biomass Collected on A. May 15, 
2006*  
* Values for means and statistics obtained from untransformed data.  
**Values for means and statistics obtained from untransformed data. 
*** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
****The Corn and Soybean treatments were not included in these figures as they had been harvested prior to this collection date. 
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Table A.3.1. Comparative Values for Percent Nitrogen Concentration 
Species Sample Date Location Percent Nitrogen References 
Big Bluestem ? North 

Dakota 
1.59 (32 ppm N 
fertilizer) 
1.23 (1 ppm N fertilizer) 

Levang-Brilz, et al., 2002 
 

 August 1998 Illinois 1:1 NO3
-:NH4

+ 
0.84 (0.1 mmol L-1) 
1.09 (1.0 mmol L-1) 
1.38 (3.0 mmol L-1) 

Lane and BassiriRad, 
2002 

 August 1998 Illinois 4:1 NO3
-:NH4

+ 
0.82 (0.1 mmol L-1) 
1.04 (1.0 mmol L-1) 
1.24 (3.0 mmol L-1) 

Lane and BassiriRad, 
2002 

Canada Wild 
Rye 

? North 
Dakota 

2.70 (32 ppm N 
fertilizer) 
1.36 (1 ppm N fertilizer) 

Levang-Brilz, et al., 2002 
 

 August 1998 Illinois 1:1 NO3
-:NH4

+ 
1.32 (0.1 mmol L-1) 
1.71 (1.0 mmol L-1) 
2.10 (3.0 mmol L-1) 

Lane and BassiriRad, 
2002 

 August 1998 Illinois 4:1 NO3
-:NH4

+ 
1.58 (0.1 mmol L-1) 
1.63 (1.0 mmol L-1) 
1.95 (3.0 mmol L-1) 

Lane and BassiriRad, 
2002 

Blue False 
Indigo 

--- --- --- --- 

Stiff Goldenrod August 2002, 
2003 
August 2002, 
2003 

Minnesota 1.02, 1.01 (unfertilized) 
1.08, 1.06 (fertilized) 

Strengbom, et al., 2006 

 August 1998 Illinois 1:1 NO3
-:NH4

+ 
0.82 (0.1 mmol L-1) 
1.16 (1.0 mmol L-1) 
1.46 (3.0 mmol L-1) 

Lane and BassiriRad, 
2002 

 August 1998 Illinois 4:1 NO3
-:NH4

+ 
0.95 (0.1 mmol L-1) 
1.24 (1.0 mmol L-1) 
1.46 (3.0 mmol L-1) 

Lane and BassiriRad, 
2002 

 ? North 
Dakota 

2.76 (32 ppm N 
fertilizer) 
1.22 (1 ppm N fertilizer) 

Levang-Brilz, et al., 2002 
 

Smooth Brome ? North 
Dakota 

2.38 (32 ppm N 
fertilizer) 
0.01 (1 ppm N fertilizer) 

Levang-Brilz, et al., 2002 
 

Switchgrass ? North 
Dakota 

2.33 (32 ppm N 
fertilizer) 
1.71 (1 ppm N fertilizer) 

Levang-Brilz, et al., 2002 
 

Soybeans --- --- --- --- 
Corn --- --- --- --- 
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Table A.3.2. % Nitrogen at Peak Biomass 
Treatment Time At Peak % N  Time At Peak Live Biomass 
  Dmax Dmin   Dmax Dmin 
BigB 1 --- ---  3 --- --- 
Can 5 --- ---  3 --- --- 
BluF 1 --- ---  4 --- --- 
Sti 5 --- ---  3 --- --- 
BigB+Can 1 -0.27 0.15  3 -0.64 0.20 
BigB+BluF 1 -0.17 -0.09  3 -0.36 1.04 
BigB+Sti 1 -0.09 0.15  3 -0.27 0.2360 
Can+BluF 1 -0.29 0.22  3 -0.35 -0.31 
Can+Sti 5 -0.09 0.14  3 -0.28 0.43 
BluF+Sti 1 -0.17 0.14  3 -0.29 0.33 
BigB+Can+BluF+Sti 1 -0.24 0.31  3 -0.50 0.68 
Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = stiff 
goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, BigB + 
Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
Dates: 1 = May 15, 2006; 2 = June 28, 2006; 3 = August 9, 2006; 4 = September 21, 2006; and 5 = October 30, 2006. 
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A.4.0 Plant Nitrogen from Live Aboveground Biomass 
 
 

Table A.4.1. Plant N at Peak Plant N 
Treatment Component 

Species 
Dmax Dmin RY RYT Di DT Dμ 

BigB+Can  0.00 0.21  1.15  0.10 0.15 
 BigB   0.29  -0.41   
 Can   0.85  0.71   

BigB+ BluF  -0.25 -0.14  0.84  -0.20 -0.16 
 BigB   0.69  0.39   
 BluF   0.14  -0.72   

BigB+ Sti  -0.52 0.24  0.62  -0.31 -0.38 
 BigB   0.23  -0.54   
 Sti   0.39  -0.23   

Can+ BluF  -0.31 -0.05  0.96  -0.16 -0.04 
 Can   0.85  0.71   
 BluF   0.10  -0.80   

Can+Sti  -0.41 0.85  0.95  -0.10 -0.05 
 Can   0.53  0.05   
 Sti   0.42  -0.16   

BluF+Sti  -0.05 1.17  1.07  0.32 0.07 
 BluF   0.22  -0.56   
 Sti   0.85  0.71   

BigB+Can+BluF+Sti  -0.47 0.67  0.96  -0.50 -0.04 
 BigB   0.18  -0.29   
 Can   0.36  0.46   
 BluF   0.13  -0.50   
 Sti   0.29  0.17   

Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = stiff 
goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, BigB + 
Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
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Table A.4.2. Plant N at Peak Live Biomass 
Treatment Component 

Species 
Dmax Dmin RY RYT Di DT Dμ 

BigB+Can  0.0030 0.2096  1.1489  0.0966 0.1489 
 BigB   0.2948  -0.410   
 Can   0.8540  0.708   

BigB+ BluF  -0.1689 -0.1446  0.8509  -0.1569 -0.1491 
 BigB   0.6948  0.390   
 BluF   0.1560  -0.688   

BigB+ Sti  -0.5244 0.2393  0.6186  -0.3126 -0.3814 
 BigB   0.2320  -0.536   
 Sti   0.3866  -0.227   

Can+ BluF  -0.2375 -0.0534  0.9284  -0.1553 -0.0716 
 Can   0.8529  0.706   
 BluF   0.0755  -0.849   

Can+Sti  -0.5207 0.5063  0.7109  -0.2727 -0.2891 
 Can   0.3396  -0.321   
 Sti   0.3713  -0.257   

BluF+Sti  -0.3350 0.6835  0.7615  -0.0466 -0.2385 
 BluF   0.1595  -0.681   
 Sti   0.6020  0.204   

BigB+Can+BluF+Sti  -0.4675 0.6734  0.9753  -0.4921 -0.0247 
 BigB   0.1788  -0.285   
 Can   0.3640  0.456   
 BluF   0.1397  -0.441   
 Sti   0.2929  0.172   

Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = stiff 
goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, BigB + 
Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
 
 
 
Table A.4.3 Comparative Values for Plant Nitrogen (g m-2) 
Species Sample Date Location Plant Nitrogen References 
Big Bluestem ? North 

Dakota 
1.59 (32 ppm N 
fertilizer) 
1.25 (1 ppm N fertilizer) 

Levang-Brilz, et al., 
2002 
 

Canada Wild 
Rye 

--- --- --- --- 

Blue False 
Indigo 

--- --- --- --- 

Stiff Goldenrod August 2002, 
2003 
August 2002, 
2003 

Minnesota 4.48, 5.27 (unfertilized) 
7.52, 8.75 (fertilized) 

Strengbom, et al., 2006 

Smooth Brome --- --- --- --- 
Switchgrass --- --- --- --- 
Soybeans --- --- --- --- 
Corn --- --- --- --- 
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A.5.0 Phosphorus Concentration from Live Aboveground Biomass 
 

Date

May  Jun  Jul  Aug  Sep  Oct  Nov  

Ph
os

ph
or

us
 (p

pm
)

0

1000

2000

3000

4000

5000

6000

BigB 
Can 
BluF 
Sti 
Bro 
Swi 
Soy 
Cor

A.

 

Date

May  Jun  Jul  Aug  Sep  Oct  Nov  

P
ho

sp
ho

ru
s 

(p
pm

)

0

1000

2000

3000

4000

5000

6000

BigB+Can 
BigB+BluF 
BigB+Sti 
Can+BluF 
Can+Sti 
BluF+Sti 
BigB+Can+BluF+Sti 

B.

 
 
Figure A.5.1. Phosphorus Concentration from Live Aboveground Biomass over the 2006 
Growing Season 
A. Monoculture Treatments and B. Polyculture Treatments 
*Live includes only live (not dead) aboveground biomass and biomass for all species in each treatment 
** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
***All values for means and statistics obtained from unchanged data. 
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Figure A.5.2. Peak Phosphorus Concentration from Live Aboveground Biomass over the 
2006 Growing Season 
*Live aboveground biomass excludes dead plant material but does include aboveground biomass for all species in each treatment 
** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
***Values for means and statistics obtained from unchanged data. 
****Lines across the graph indicate mean values for CORN, SOY, SW, and BR treatments for comparison purposes 
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Figure A.5.3. Phosphorus Concentration from Live Aboveground Biomass Collected on A. 
May 15, 2006* and B. October 20, 2006**. 
* Values for means and statistics obtained from untransformed data.  
**Values for means and statistics obtained from log transformed data. 
*** Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = 
stiff goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, 
BigB + Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
****The Corn and Soybean treatments were not included in these figures as they had been harvested prior to this collection date. 
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Table A.5.1. Comparative Values for Percent Phosphorus Concentration 
Species Sample Date Location Fraction Phosphorus References 
Big Bluestem ? North Dakota 0.0040 (32 ppm N fertilizer) Levang-Brilz, et al., 2002 

 
Canada Wild Rye ? North Dakota 0.0053 (32 ppm N fertilizer) Levang-Brilz, et al., 2002 

 
Blue False Indigo --- --- --- --- 
Stiff Goldenrod ? North Dakota 0.0073 (32 ppm N fertilizer) Levang-Brilz, et al., 2002 

 
Smooth Brome ? North Dakota 0.0058 (32 ppm N fertilizer) Levang-Brilz, et al., 2002 

 
Switchgrass ? North Dakota 0.0076 (32 ppm N fertilizer) Levang-Brilz, et al., 2002 

 
Soybean --- --- --- --- 
Corn --- --- --- --- 
 
 
 
 
 
Table A.5.2. Phosphorus Concentration 
Treatment Time At Peak P Concentration  Time At Peak Live Biomass 
  Dmax Dmin   Dmax Dmin 
BigB 3 --- ---  3 --- --- 
Can 2 --- ---  3 --- --- 
BluF 3 --- ---  4 --- --- 
Sti 3 --- ---  3 --- --- 
BigB+Can 2 -0.30 0.07  3 -0.18 -0.03 
BigB+BluF 3 -0.17 0.13  3 -0.29 1.39 
BigB+Sti 3 -0.04 0.02  3 -0.43 0.07 
Can+BluF 3 -0.20 -0.11  3 -0.19 1.31 
Can+Sti 3 -0.26 0.05  3 -0.32 0.51 
BluF+Sti 2 -0.22 -0.01  3 -0.30 3.45 
BigB+Can+BluF+Sti 3 -0.21 0.20  3 -0.34 3.23 
Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = stiff 
goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, BigB + 
Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
Dates: 1 = May 15, 2006; 2 = June 28, 2006; 3 = August 9, 2006; 4 = September 21, 2006; and 5 = October 30, 2006. 
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A.6.0. Plant Phosphorus from Live Aboveground Biomass 
 

 
Table A.6.1. Plant P at Peak Plant P 
Treatment Component 

Species 
Dmax Dmin RY RYT Di DT Dμ 

BigB+Can  -0.16 -0.03  0.93  -0.10 -0.07 
 BigB   0.25  -0.51   
 Can   0.69  0.37   

BigB+ BluF  -0.29 0.80  0.77  0.02 -0.23 
 BigB   0.67  0.34   
 BluF   0.10  -0.80   

BigB+ Sti  -0.43 0.07  0.69  -0.26 -0.31 
 BigB   0.27  -0.47   
 Sti   0.43  -0.15   

Can+ BluF  -0.20 0.74  0.84  0.09 -0.16 
 Can   0.76  0.53   
 BluF   0.07  -0.86   

Can+Sti  -0.32 0.48  0.86  -0.07 -0.14 
 Can   0.34  -0.32   
 Sti   0.52  0.04   

BluF+Sti  -0.44 1.67  0.43 0.72 -0.08 -0.28 
 BluF   0.21  -0.59   
 Sti   0.51  0.03   

BigB+Can+BluF+Sti  -0.34 2.18  1.08  -0.40 0.08 
 BigB   0.20  -0.21   
 Can   0.42  0.68   
 BluF   0.12  -0.54   
 Sti   0.34  0.37   

Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = stiff 
goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, BigB + 
Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
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Table A.6.2. Plant P at Peak Live Biomass 
Treatment Component 

Species 
Dmax Dmin RY RYT Di DT Dμ 

BigB+Can  -0.18 -0.03  0.92  -0.11 -0.08 
 BigB   0.28  -0.45   
 Can   0.64  0.29   

BigB+ BluF  -0.29 1.39  0.81  0.10 -0.19 
 BigB   0.67  0.34   
 BluF   0.14  -0.73   

BigB+ Sti  -0.43 0.07  0.69  -0.26 -0.31 
 BigB   0.27  -0.47   
 Sti   0.43  -0.15   

Can+ BluF  -0.19 1.31  0.87  0.20 -0.13 
 Can   0.77  0.55   
 BluF   0.10  -0.81   

Can+Sti  -0.32 0.51  0.87  -0.07 -0.13 
 Can   0.34  -0.31   
 Sti   0.52  0.04   

BluF+Sti  -0.30 3.45  0.83  0.21 -0.17 
 BluF   0.15  -0.69   
 Sti   0.67  0.35   

BigB+Can+BluF+Sti  -0.34 3.23  1.12  -0.38 0.12 
 BigB   0.20  -0.21   
 Can   0.43  0.71   
 BluF   0.15  -0.38   
 Sti   0.34  0.37   

Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = stiff 
goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, BigB + 
Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 

 
 
 
 
 
 
 
 
 
 
. 
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A.7.0. Others 
 
 

Table A.7.1. Collection Period of Peak Values 
Treatment Biomass* PAI* %N** Bio N m-2** ppm P** Bio P m-2** 
BigB 3 4 1 3 1 3 
Can 5 5 5 2 5 2 
BluF 4 4 1 3 1 3 
Sti 3 2 5 3 5 3 
Bro 4 4 4 2 4 2 
Swi 5 5 1 2 1 2 
Soy 4 3 2 3 2 3 
Cor 4 3 2 3 2 3 
BigB + Can 3 3 1 3 1 2 
BigB + BluF 4 4 1 3 1 3 
BigB + Sti 4 3 1 3 1 3 
Can + BluF 3 5 1 3 1 3 
Can + Sti 4 2 5 2 1 3 
BluF + Sti 4 3 1 2 5 2 
BigB + Can + BluF + Sti 3 5 1 3 1 3 
*Values are for total aboveground biomass (live + dead material) 
**Values are for live aboveground biomass. 
***Dates: 1 = May 15, 2006; 2 = June 28, 2006; 3 = August 9, 2006; 4 = September 21, 2006; and 5 = October 30, 2006.  
Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = stiff 
goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, BigB + 
Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
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Table A.7.2. Ranking* of Treatments for Peak Values Aboveground Biomass, PAI, Percent 
Nitrogen and Plant Total Nitrogen 
Treatment Biomass** ANPP PAI** %N***  N g m-2 

*** 
P 
ppm*** 

P g m-2 
*** 

BigB 7 8 6 4 9 2 7 
Can 9 7 14 14 13 13 8 
BluF 14 15 13 3 8 9 14 
Sti 2 2 1 10 2 5 2 
Bro 15 14 7 15 15 15 15 
Swi 11 12 11 1 10 1 9 
Soy 13 13 8 2 6 4 13 
Cor 1 3 4**** 8 1 7 1 
BigB + Can 8 9 10 12 11 11 10 
BigB + BluF 10 11 9 6 12 6 11 
BigB + Sti 4 6 5 5 7 3 5 
Can + BluF 12 10 15 11 14 14 12 
Can + Sti 5 5 2 13 4 12 3 
BluF + Sti 3 4 3 7 3 10 6 
BigB + Can + BluF + 
Sti 

6 1 12 9 5 8 4 

*Ranking: 1 is highest value and 15 is lowest value 
**Values are for total aboveground biomass (live + dead material) 
***Values are for live aboveground biomass. 
****Corn treatment PAI is actually an LAI value. 
Abbreviations: BigB = big bluestem, Bro = brome, Can = Canada wild rye, BluF = blue false indigo, Soy = soybean, Cor = Corn, Sti = stiff 
goldenrod, Swi = switchgrass, BigB + Can = big bluestem and Canada wild rye, BigB + BluF = big bluestem and blue false indigo, BigB + 
Sti = big bluestem and stiff goldenrod, Can + BluF = Canada wild rye and blue false indigo, Can + Sti = Canada wild rye and stiff 
goldenrod, BluF + Sti = blue false indigo and stiff golden rod, BigB + Can + BluF + Sti = big bluestem, Canada wild rye, blue false indigo, 
and stiff goldenrod. 
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