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Abstract 

 

The purpose of this research was twofold: (i) to develop a system for screening 

lignocellulosic biomass feedstocks for biochemical conversion to biofuels and (ii) to 

evaluate brown midrib corn stover as feedstock for ethanol production. 

 In the first study (Chapter 2), we investigated the potential of corn stover from 

bm1-4 hybrids for increased ethanol production and reduced pretreatment intensity 

compared to corn stover from the isogenic normal hybrid.  Corn stover from hybrid 

W64A X A619 and respective isogenic bm hybrids was pretreated by aqueous 

ammonia steeping using ammonium hydroxide concentrations from 0 to 30%, by 

weight, and the resulting residues underwent simultaneous saccharification and co-

fermentation (SSCF) to ethanol.  Dry matter (DM) digested by SSCF increased with 

increasing ammonium hydroxide concentration across all genotypes (P>0.0001) 

from 277 g kg-1 DM in the control to 439 g kg-1 DM in the 30% ammonium hydroxide 

pretreatment.  The bm corn stover materials averaged 373 g kg-1 DM of DM digested 

by SSCF compared with 335 g kg-1 DM for the normal corn stover (P<0.0001).  Of 

the bm mutations, bm3 had (i) the greatest effect on cell-wall carbohydrate 

hydrolysis of corn stover, (ii) the lowest initial cell-wall carbohydrate concentration, 

(iii) the lowest dry matter remaining after pretreatment, and (iv) the highest amount 

of monosaccharides released during enzymatic hydrolysis.  However, bm corn 

stover did not reduce the severity of aqueous ammonia steeping pretreatment 

needed to maximize DM hydrolysis during SSCF compared with normal corn stover. 
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In the remaining studies (Chapters 3 thru 5), a system for analyzing the 

quality of lignocellulosic biomass feedstocks for biochemical conversion to biofuels 

(i.e., pretreatment, enzymatic hydrolysis, and fermentation) was developed.  To 

accomplish this, a carbohydrate availability model was developed to characterize 

feedstock quality.  The model partitions carbohydrates within a feedstock material 

into fractions based on their availability to be converted to fermentable sugars, 

including non-structural carbohydrates (CN) (monosaccharides, starches, 

oligosaccharides), biochemically available carbohydrates (CB) (structural 

carbohydrates susceptible to enzymatic hydrolysis) with an associated 1st-order 

availability rate constant (kB) and unavailable carbohydrates (CU) (hemicellulose and 

cellulose in close association with lignin).  The model partitions the non-

carbohydrate dry matter into extractives, lignin, and ash.  Quality parameters were 

determined using a biomass quality assay that combined established wet-chemistry 

analyses techniques, including total non-structural carbohydrates (TNC), alcohol 

insoluble residue (AIR), simultaneous saccharification and fermentation (SSCF), and 

Klason lignin.  The assay was used to analyze four compositionally diverse biomass 

feedstocks: corn cobs (Zea mays L.), hybrid poplar (Populus x canadensis Moench), 

kenaf (Hibiscus cannabinus L.) and switchgrass (Panicum virgatum L.).  In these 

feedstocks, CN ranged from 27 to 127 g kg-1 DM, CB ranged from 34 to 344 g kg-1 

DM, kB ranged from 0.071 to 0.415 h-1, total available carbohydrates (CA) ranged 

from 61 to 517 g kg-1 DM, and Klason lignin ranged from 139 to 244 g kg-1 DM. 

The next study evaluated multiple high-throughput (HTP) modifications to the 

original assay methods, including (i) using filter bags with batch sample processing, 
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(ii) replacement of AIR with neutral detergent fiber (NDF) as a cell-wall isolation 

procedure, and (iii) elimination of the fermentation organism in the SSCF procedures 

used to determine biochemically available carbohydrates.  The original and the HTP 

assay methods were compared using corn cobs, hybrid poplar, kenaf, and 

switchgrass.  Biochemically available carbohydrates increased with the HTP 

methods in the corn cobs, hybrid poplar, and switchgrass, but remained the same in 

the kenaf.  Total available carbohydrates increased and unavailable carbohydrates 

decreased with the HTP methods in the corn cobs and switchgrass and remained 

the same in the hybrid poplar and kenaf.  There were no differences in total 

carbohydrates (CT) between the two methods.  The HTP methods consistently 

assayed less lignin than did the original method.  Despite the slight differences 

parameter values, the HTP assay methods essentially gave a similar summary of 

the feedstock quality as did the original assay methods while significantly reducing 

the time and cost for feedstock quality analysis.  The HTP assay methods was used 

to analyze 19 additional biomass feedstocks, including cool-season grasses, warm-

season grasses, corn residues, and woody materials.    

The final study evaluated the variability of biomass quality parameters in a set 

of corn stover samples, and developed calibration equations for determining 

parameter values using near infrared reflectance spectroscopy (NIRS).  Fifty-two 

corn stover samples harvested in Iowa and Wisconsin in 2005 and 2006 were 

analyzed using the HTP assay for determining feedstock quality for biochemical 

conversion.  Non-structural carbohydrates ranged from 84 to 155 g kg-1 DM, CB 

ranged from 354 to 557 g kg-1 DM, kB ranged from 0.20 to 0.33 h-1, CA ranged from 
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463 to 699 g kg-1 DM, and neutral detergent lignin (NDL) ranged from 32 to 74 g kg-1 

DM.  Significant differences (P<0.0001) among samples were observed for all 

parameters, except for the availability rate constant of CB.  Near infrared reflectance 

spectroscopy calibration equations were developed for CN, CB, CA, CU, CT, and NDL.  

It was not possible to generate a meaningful calibration equation for kB.
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Chapter 1. 

General Introduction  

 

Dissertation organization  

 

This dissertation is organized into six chapters.  The first chapter contains a general 

introduction, consisting of a description of the dissertation organization and 

objectives and a comprehensive literature review.  The second chapter contains the 

manuscript “Bioavailability of cell-wall carbohydrates in brown midrib corn hybrids 

during pretreatment and conversion to ethanol.”  The third chapter contains the 

manuscript “Carbohydrate availability model for determining lignocellulosic biomass 

feedstock quality.”  The fourth chapter contains the manuscript “High-throughput 

assay for screening biomass feedstocks for biochemical conversion to fuel”.  The 

fifth chapter contains the manuscript “Rapid biomass quality determination of corn 

stover using near infrared reflectance spectroscopy.”  All manuscripts were prepared 

for publication in Bioenergy Research.  The sixth chapter contains general 

conclusion derived from the four manuscripts.   

 



   2 

Objectives 

 

The overall objectives of this dissertation work were twofold: (1) to evaluate 

brown midrib corn stover as feedstock for ethanol production and (2) to develop a 

system for characterizing lignocellulosic biomass quality that can be used to screen 

biomass feedstocks in the laboratory and at future biorefineries.  The objective of the 

first study (Chapter 2) was to determine how brown midrib mutations bm1-bm4 in 

corn and pretreatment severity influence substrate availability of corn stover for 

ethanol production.  The objectives of the second study (Chapter 3) were to develop 

a series of parameters for characterizing biomass quality of feedstocks for 

biochemical conversion to fuel and to develop an assay to determine the quality 

parameters.  The objectives of the third study (Chapter 4) were to evaluate multiple 

high throughput modifications to the biomass quality assay developed in the 

previous study and to validate the high throughput assay on diverse feedstock types, 

including cool-season grasses, warm-season grasses, corn residues, and woody 

materials.  The objectives of the fourth study (Chapter 5) were to evaluate the 

variability of quality parameters for a set of corn stover samples and to determine 

which, if any, parameter values could be predicted using near infrared reflectance 

spectroscopy.   
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Literature Review 

 

Production of domestic renewable fuels lessens U.S. dependence on foreign 

petroleum resources, decreases the net environmental impacts of liquid fuel usage 

when compared to petroleum-derived fuels, and provides additional demand for U.S. 

agricultural products [1, 2].  The Energy Independence and Security Act of 2007 

mandates the production of 136 billion L of renewable fuels by 2022, with 60 billion L 

derived from lignocellulosic materials [3] via biochemical and/or thermochemical 

conversion platforms.  It is expected that a considerable portion of the lignocellulose-

derived fuels will be produced by biochemical conversion – that is, pretreatment 

followed by enzymatic hydrolysis and fermentation – due to the high 

commercialization potential of this conversion technology, as evidence by the 

current number of federal-funded demonstration projects using biochemical 

conversion technology [4]  

 

Pretreatment, hydrolysis, and fermentation  

 

Fermentation and enzymatic hydrolysis, an enzyme-catalyzed process, are thought 

to be the most flexible biochemical means to produce biobased industrial products 

[2] and transportation fuels [1] from lignocellulosic materials.  

The goal of pretreatment is to improve the accessibility of cell-degrading 

enzymes in order to increase fermentable sugar yields from lignocellulosic materials.  

Increased accessibility is achieved by altering the physical and chemical association 
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between lignin and hemicellulose and by disrupting the crystalline structure of 

cellulose [4].  An effective pretreatment technology possesses the following 

characteristics: improves the formation of fermentable sugars during hydrolysis, 

avoids degradation or loss of carbohydrates, limits formation of byproducts inhibitory 

to hydrolysis and fermentation, such as furfural, weak acids, and phenols, and is 

cost effective [6].  Pretreatment constitutes approximately 33% of the cost total of 

processing [7], so employment of low-cost technologies is highly desirable.  

Pretreatment methods can be classified as physical, chemical, or biological; 

however some methods utilize both physical and chemical means.  Some of the 

more promising technologies include comminution or particle size reduction, steam 

explosion, ammonia fiber explosion (AFEX), acid treatment, and alkali treatment, but 

many other methods have been studied [5, 6, 8].       

The purpose of hydrolysis is to convert structural carbohydrates to 

fermentable sugar.  In addition to enzymatic hydrolysis, hydrolysis can be carried 

using concentrated or dilute mineral acids.  Concentrated acid hydrolysis operates at 

room temperature using 72% sulfuric acid and dilute acid hydrolysis occurred at 

elevated temperatures (100–220 ºC) using acid concentrations of about 1% by 

weight [9].  However, the harsh conditions can result in degradation of fermentable 

sugars to undesirable compounds (i.e., furfural and hydroxymethylfurfural) and 

collection and recycling of acid is necessary for this process to be economic viable 

[10].  Acid hydrolysis also requires the use of corrosion resistant equipment and the 

resulting hydrolyzed material must be neutralized before fermentation.                  
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Enzymatic hydrolysis has many advantages over acid hydrolysis, including 

milder reaction conditions, limited degradation of pentose sugars during cellulose 

hydrolysis, and less need for corrosive-resistant equipment.  As a result, processing 

costs are lower for enzymatic hydrolysis [11].  In addition, hydrolysis and microbial 

fermentation can occur simultaneously in the same reactor, reducing the potential for 

end product inhibition of hemicellulases and cellulases due to the accumulation of 

monomeric sugars.  This process is referred to as simultaneous saccharification and 

fermentation (SSF).  Enzymatic hydrolysis is catalyzed by hemicellulase and 

cellulase enzymes, which are mixtures of several enzymes that work synergistically 

to breakdown hemicellulose and cellulose into their component sugars.  Much of the 

recent research in the area of enzymatic hydrolysis has focused on improvement of 

cellulase activity and development of more economical methods for cellulase 

production [12].  At present, high enzyme costs prohibit competition of cellulose-

derived commodity fuels and chemicals with conventional production methods [13].  

However, the U.S. Department of Energy has contracted with commercial enzyme 

producers to drastically lower cellulase costs [14]. 

Soluble carbohydrates are converted to a variety of chemical products during 

fermentation by a host of microorganisms, including bacteria and fungi species.  Of 

these products, ethanol production has been studied most extensively.  Ethanol from 

biomass, or cellulosic ethanol, is produced by hydrolyzing cellulose to glucose and 

fermenting the sugar to ethanol by yeast.  Production of ethanol from pentose 

sugars (xylose and arabinose), hydrolyzed from hemicellulose, is less attractive 

because yeasts can not directly ferment ethanol, yields are low, and detoxification of 
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the hemicellulose hydrolyzate is necessary to achieve favorable conversion [15, 16, 

17].   

 

Biomass feedstocks 

 

U.S. agricultural and forest lands have the potential to supply over 1 billion metric 

dry tons of lignocellulosic materials annually, for production of renewable fuels, 

chemicals, and other products [18].  Most of the biomass supply originates from two 

main sources: agricultural and forestry residues and dedicated energy crops.    

Agricultural and forestry residues can be described as excess biomass 

resulting after the harvest of agriculture and silviculture crops.  Generation of these 

residues can be characterized as being relatively dispersed and therefore they 

would require collection and transportation to a central facility for use in a biomass 

conversion process.  Agricultural and forestry residues include materials such as 

corn stover, wheat straw, manure from livestock operations, tree residues from 

logging, and trees not merchantable for lumber production.  

 Dedicated energy crops refer to lignocellulosic crops grown specifically for 

energy production, whether for combustion to produce electricity or for conversion to 

fermentable carbohydrates for production of liquid transportation fuels.  As with 

agricultural and forestry residues, production of dedicated energy crops is 

characterized as being dispersed.  Grain may be considered a dedicated energy 

crop; however its primary purpose is for food and feed, rather than for production of 

biobased products.  Dedicated biomass crops are grouped into two categories: 
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herbaceous energy crops and short-rotation woody crops [9].  Herbaceous crops are 

plant species that contain minimal or no woody tissues and are harvested one to 

three times per year.  Herbaceous energy crops include crops such as forage 

sorghum, kenaf, reed canarygrass, miscanthus, switchgrass, big bluestem, and 

eastern gamagrass.  Short-rotation woody crops contain primarily woody tissues and 

are harvested on a 3 to 10 year rotation.  Woody crops include species such as 

hybrid popular, eucalyptus, willow, silver maple, sycamore, and mesquite.             

The National Research Council [2] has identified cropland idled under the 

Conservation Reserve Program as possibly available to produce additional biomass.  

This federal program provides payments to land owners and farmers who remove 

highly erodible cropland from production for a period of 10 to 15 years.  These lands 

could be planted to perennial cool or warm season grasses, depending on the 

location, and produce modest biomass yields, while continuing to control erosion.    

Currently corn stover is the most abundant biomass feedstock with an 

estimated 75 million dry metric tons available for collection, annually [18].  

Biochemical conversion of corn stover is limited by the recalcitrance of cell-wall 

materials in corn stover to hydrolysis is impacted by a number of structural features 

including crystallinity, lignification, and acetylation [19].  The close association of 

cell-wall carbohydrates with lignin creates a physical barrier to their accessibility by 

hydrolytic enzymes [20, 21].  Genetic manipulation of lignification while maintaining 

lignin structure-function within the plant has potential to improve ethanol yield from 

lignocellulosic feedstocks.   
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The brown midrib (bm) mutations in corn presents an avenue for altering 

lignin concentration and/or composition [22].  Corn bm genotype exhibit a reddish 

brown pigmentation associated with lignified tissues of the leaf midrib and stalk pith, 

at the four to six-leaf of growth. Since its discovery in dent corn in 1924, four bm 

mutants have been documented: bm1 [23], bm2 [24], bm3 [25], and bm4 [26].  The 

bm1 mutation results from differential expression of the cinnamyl alcohol 

dehydrogenase gene [27].  The bm3 mutation results from structural changes in the 

caffeic acid O-methyltransferase gene [28] and a number of deletion mutations have 

been identified [29].  No information is currently available on the genes affected in 

the bm2 or bm4 mutations.  

Investigation of bm corn stover as feedstock for ethanol production has been 

limited.  Vermerris et al. [30] evaluated glucose yields from the enzymatic 

saccharification of unpretreated corn stover from bm single and double mutations 

and a inbred non-bm control.  They found that glucose released during enzymatic 

hydrolysis from bm1 and bm3 corn stover was higher than the non-bm control while 

the bm2 and bm4 mutations produced glucose yields that were similar to the control 

[30].  The bm1-bm3 double mutation produced the highest glucose yield which was 

roughly twice the yield of the control [30].  When the control, bm2, and bm3 

materials were subjected to varying severities of pH-controlled pretreatment, there 

were no differences in xylose release during pretreatment across genotypes [30].     
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Biomass quality characterization   

 

Evaluating the quality of lignocellulosic biomass feedstocks is important throughout 

the feedstock supply chain.  Characterizing biomass quality is important to plant 

breeders, agronomists, and foresters, at the beginning of the supply chain, for 

evaluating genetic improvements and management practices for feedstock 

production.  Biomass quality is equally important to biorefinery personnel at the end 

of the supply chain.  Feedstock quality information could be used to determine the 

economic value of a load of biomass at the point of delivery and make process 

adjustment in the biorefinery based on incoming feedstock quality.   

Biomass grading systems have been developed for the forage industry, but a 

single system has not been widely implemented because grading systems are 

specific to forage species and end-use [31].  Grading systems are based either on 

analytical values, - determined using wet chemistry methods or near infrared 

reflectance spectroscopy (NIRS) - organoleptic assessment, or a combination of the 

two methods [32].   Systems based on analytical parameters, such as crude protein 

and relative feed value, would not be applicable for grading cellulosic ethanol 

feedstock because the parameters are related to value of biomass as a feedstuff for 

ruminant animals, not for producing ethanol.  Systems which use visual 

characteristics, such as dustiness, color, or maturity, are subjective and many of the 

characteristics are unrelated to the potential of a feedstock for conversion to ethanol.   

Laboratory methods used to characterize lignocellulosic biomass properties 

have potential as de facto-biomass quality analyses.  These methods comprise 
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analyses used to determine lignocellulosic composition (hemicellulose, cellulose, 

lignin content) including monomeric sugar composition of the lignocellulose 

constituents (glucose, xylose content, etc.), fermentability (ethanol or fermentable 

sugar yield), cellulose polymerization, cellulose crystallinity, and degree of 

acetylation [19, 33, 34].   

Compositional analysis and enzymatic saccharification analyses are the most 

often employed characterization methods used by biomass researchers; however, 

each technique has advantages and disadvantages as a method for determining 

biomass quality. Compositional analysis can provide extensive data on the 

carbohydrate makeup of a biomass sample, but it does not indicate the availability of 

component sugars in carbohydrate groups, specifically hemicellulose and cellulose, 

for hydrolysis and fermentation.  This is a result of the differences in the structural 

features of plant cell wall materials, including specific surface area, cellulose 

crystallinity, cellulose reactivity, degree of polymerization, lignin content, and degree 

of acetylation [33].   Fermentable sugar yields from enzymatic saccharification have 

been successfully correlated to these structural features for a broad range of 

biomass materials [19]; therefore, enzymatic saccharification serves as a simplified 

method to determine the impact of structural features on the availability of 

hemicellulose and cellulose for hydrolysis.  Simultaneous saccharification and 

fermentation (SSF) is an often used saccharification method in biofuels research; 

however, direct comparison of results produced by different researchers is made 

difficult but there is minimal standardization in hydrolysis and fermentation conditions 

between researchers which make direct comparison of results difficult [35].   
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Enzymatic saccharification also does not provide the spectrum of carbohydrate data 

that compositional analysis is capable of providing.  Combining compositional 

analysis and enzymatic saccharification into single method would produce a concise 

and robust assay for determining quality of lignocellulosic biomass feedstocks. 

The objectives of the following studies were to evaluate brown midrib corn 

stover as feedstock for ethanol production and develop a system for characterizing 

lignocellulosic biomass quality that can be used to evaluate genetic improvements 

and management practices for producing biomass feedstocks. If successful, 

derivatives of this method might be deployed at future biorefineries for process 

control.    
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Abstract  

 

Brown midrib (bm) mutations in corn (Zea mays L.) result in altered lignin structure 

and composition of cell walls, an important factor influencing the recalcitrance of 

lignocellulosic materials to biochemical conversion for biofuel production.  We 

investigated the potential of corn stover from bm1-4 hybrids for increased ethanol 

production and reduced pretreatment intensity compared to corn stover from the 

isogenic normal hybrid.  Corn stover from hybrid W64A X A619 and respective 
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isogenic bm hybrids was pretreated using aqueous ammonia steeping by soaking 

materials for 24 h in ammonium hydroxide concentrations of 0, 3.75, 7.5, 15, and 

30% (w/w) and resulting residues underwent simultaneous saccharification and co-

fermentation (SSCF) to ethanol.  The bm genotypes generally had lower 

hemicellulose, cellulose, and lignin concentrations than the normal genotype.   A 

high correlation coefficient (R=0.88) was observed between dry matter (DM) 

digested during SSCF and ethanol yield, so DM digested by SSCF was used as a 

surrogate for ethanol production.  Dry matter digested by SSCF increased with 

increasing ammonium hydroxide concentration across all genotypes (P>0.0001) 

from 277 g kg-1 DM in the control to 439 g kg-1 DM in the 30% ammonium hydroxide 

pretreatment.  The bm corn stover materials averaged 373 g kg-1 DM of DM digested 

by SSCF compared with 335 g kg-1 DM for the normal corn stover (P<0.0001).  Of 

the bm mutations, bm3 had (i) the greatest effect on cell-wall carbohydrate 

hydrolysis of corn stover, (ii) the lowest initial cell-wall carbohydrate concentration, 

(iii) the lowest DM remaining after pretreatment, and (iv) the highest amount of 

monosaccharides released during enzymatic hydrolysis.  Use of bm corn stover did 

not reduce the severity of aqueous ammonia steeping pretreatment needed to 

maximize DM hydrolysis during SSCF compared with normal corn stover.      

 

Keywords Aqueous ammonia pretreatment, Brown midrib mutation, Corn stover, 

Lignocellulosic feedstocks, Simultaneous saccharification and co-fermentation 
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Abbreviations  

bm          brown midrib 

bm1        brown midrib-1 genotype 

bm2        brown midrib-2 genotype 

bm3        brown midrib-3 genotype 

bm4        brown midrib-4 genotype 

DM         dry matter 

SSCF     simultaneous saccharification and co-fermentation 

SHF       separate hydrolysis and fermentation 

NDF       neutral detergent fiber 

ADF        acid detergent fiber 

ADL        acid detergent lignin  

FPU        filter paper units 

CBU       cellobiose units  

HPLC     high performance liquid chromatography 

DML       dry matter loss 

IVDMD    in vitro dry matter digestibility  
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Introduction 

 

Production of domestic renewable fuels lessens U.S. dependence on foreign 

petroleum resources, decreases the net environmental impacts of liquid fuel usage 

when compared to petroleum-derived fuels, and provides additional demand for U.S. 

agricultural products [1, 2].  The Energy Independence and Security Act of 2007 

mandates the production of 136 billion L of renewable fuels by 2022, with 60 billion L 

derived from lignocellulosic materials [3] via biochemical and/or thermochemical 

conversion platforms.  

Corn (Zea mays L.) stover is the most abundant agricultural biomass 

resource in the U.S. [4] and has been examined extensively as a lignocellulosic 

feedstock for ethanol production [5].  Corn stover is the residue remaining after grain 

harvest, including the leaves, stalk, husks, and cobs of the corn plant.  Pretreatment 

followed by enzymatic hydrolysis and fermentation has been studied as a means to 

convert cell-wall carbohydrates in corn stover to ethanol [6].   

The recalcitrance of cell-wall materials in corn stover to hydrolysis is impacted 

by a number of structural features including crystallinity, lignification, and acetylation 

[7].  The negative relationship between cell-wall digestibility and lignification in both 

ruminant nutrition and biomass conversion is well documented [7, 8, 9].  Lignin is a 

complex polymer derived from monolignols – p-coumaryl alcohol, coniferyl alcohol 

and sinapyl alcohol – produced via the phenylpropanoid pathway.  Lignin deposition 

occurs after cell elongation ceases, forming cross-linked structures with 

hemicellulose and possibly other cell-wall constituents [8, 10].  Functionally, lignin 
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facilitates water transport in xylem tissues, provides mechanical strength for plant 

stems, and defends against attack by pests and pathogens [11].  However, its close 

association with cell-wall carbohydrates creates a physical barrier to their 

accessibility by hydrolytic enzymes [8, 9].  Genetic manipulation of lignification while 

maintaining lignin structure-function within the plant has potential to improve ethanol 

yield from lignocellulosic feedstocks.   

   

Brown midrib mutation  

 

The brown midrib (bm) mutations in corn presents an avenue for altering lignin 

concentration and/or composition [12].  Corn bm genotype exhibit a reddish brown 

pigmentation associated with lignified tissues of the leaf midrib and stalk pith, at the 

four to six-leaf of growth. Since its discovery in dent corn in 1924, four bm mutants 

have been documented: bm1 [13], bm2 [14], bm3 [15], and bm4 [16].  The bm1 

mutation results from differential expression of the cinnamyl alcohol dehydrogenase 

gene [17].  The bm3 mutation results from structural changes in the caffeic acid O-

methyltransferase gene [18] and a number of deletion mutations have been 

identified [19].  No information is currently available on the genes affected in the bm2 

or bm4 mutations. 

Application of bm mutations in corn for improvement of forage quality has 

been investigated extensively over the past 40 years [10, 20].  Overall, lignin 

concentration of bm genotypes has been found to be lower than isogenic normal 

counterparts resulting in a increase in dry matter (DM) digestibility of forage from bm 
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corn when compared to conventional corn [21, 22].  Increases in DM intake, milk 

production, and body weight gain have been observed in lactating dairy cattle when 

fed bm corn silage compared to silage from normal corn [23, 24].  Keith et al. [25] 

also reported an increase in DM intake in steers and heifers when bm compared to 

normal corn silage was fed.  

In contrast, performance of bm corn stover as feedstock for ethanol 

production has not been examined extensively.  Vermerris et al. [26] evaluated 

glucose yields from the enzymatic saccharification of unpretreated corn stover from 

bm single and double mutations and an inbred, non-bm control.  They found that 

glucose released from bm1 and bm3 corn stover was higher than the non-bm 

control, whereas the bm2 and bm4 mutations produced glucose yields that were 

similar to the control [26].  The bm1-bm3 double mutation produced the highest 

glucose yield which was roughly twice the yield of the control [26].  When the control, 

bm2, and bm3 materials were subjected to varying severities of pH-controlled 

pretreatment, there were no differences in xylose release during pretreatment across 

genotypes [26].  To our knowledge, no additional work has been done to investigate 

the potential of bm corn stover as a bioenergy feedstock.       

The applicability of bm corn stover as a feedstock in a biochemical conversion 

platform - i.e., pretreatment followed by enzymatic hydrolysis and fermentation - is of 

particular interest, due to the high commercialization potential of this conversion 

technology.  Pretreatment increases the accessibility of cell-wall carbohydrates 

during hydrolysis by altering the physical and chemical association between lignin 

and hemicellulose and disrupting the crystalline structure of cellulose [27].  
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Pretreatment costs are estimated to constitute approximately 20% of the total cost of 

producing ethanol from lignocellulosic materials [28], so reductions in pretreatment 

requirements are highly desirable.  Pretreatment intensity is likely the most important 

process variable directly impacting the rate and extent of enzymatic hydrolysis.  We 

hypothesize that bm genotypes will produce more ethanol than conventional 

genotypes, as well as reduce the pretreatment intensity necessary to maximize 

ethanol yield.  

 

Pretreatment, enzymatic hydrolysis, and fermentation 

 

A number of physical, chemical, and biological methods have been investigated as 

pretreatment technologies [27, 29, 30].   For this study, aqueous ammonia soaking 

was selected as the pretreatment method because it has been examined extensively 

on a range of herbaceous biomass feedstocks [31, 32, 33] and it can be 

implemented at room temperature and atmospheric pressure.  Simultaneous 

saccharification and co-fermentation (SSCF) was used as the combined enzymatic 

hydrolysis and fermentation method in this study.  Use of SSCF allows for hydrolysis 

of structural carbohydrates and fermentation of hexose and pentose sugars to occur 

in one vessel using a single fermentation organism.  It also overcomes end-product 

inhibition of enzymes and reduces the possibility of bacterial contamination which 

can occur in separate hydrolysis and fermentation (SHF) systems [30].     
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The objective of this study was to determine how brown midrib mutations 

bm1-bm4 in corn and pretreatment severity influence substrate availability of corn 

stover for ethanol production.  

 

Materials and Methods 

 

An experiment was conducted to compare the effects of four bm mutations in corn 

and the severity of pretreatment by aqueous ammonia steeping on the hydrolysis of 

carbohydrates during pretreatment and SSCF of corn stover for ethanol production.  

Corn stover samples containing the bm1, bm2, bm3, and bm4 mutations and an 

isogenic normal sample were pretreated in solutions of 0, 3.75, 7.5, 15, and 30% 

(w/w) ammonium hydroxide for 24 h.  Pretreatment residues underwent SSCF using 

a mixture of commercial cellulase and cellobiase enzymes and a hexose and 

pentose fermentor.  Ethanol production was measured during SSCF and the 

fermentation residues collected by filtration.  Initial substrates, pretreatment 

residues, and fermentation residues were digested and the neutral sugars analyzed 

to determine carbohydrate digestibility during pretreatment and fermentation.    

    

Corn stover preparation  

 

Plots of corn hybrid W64A x A619 (normal) and bm1, bm2, bm3, and bm4 isogenic 

lines of hybrid W64A X A619 were grown near Ames, Iowa in 2005 in a randomized 

complete block design with three replications.  Corn stover (leaves, stalk, and husks) 
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was harvested in October 2005 using a commercial silage chopper modified for 

small plot research following manual harvest of the corn ear (grain and cob).  

Subsamples of the harvested corn stover were dried at 38°C for 4 d, ground using a 

Udy mill (Udy Corporation, Fort Collins, CO) to pass through a 1-mm screen, and 

allowed to equilibrate to laboratory conditions.  Dry matter was determined for 

ground samples by drying 0.5 g of sample at 103°C in a forced-air oven for 4 h to 

correct for the moisture contained in the samples in subsequent analyses. Initial 

samples were analyzed for neutral detergent fiber (NDF), acid detergent fiber (ADF), 

and acid detergent lignin (ADL) to determined hemicellulose, cellulose, and ADL 

concentration.  Neutral detergent fiber and ADF were determined according to Vogel 

et al. [34] using the ANKOM fiber system [35, 36].  Acid detergent lignin was 

analyzed using the ANKOM procedure [37] and corrected for ash concentration by 

ashing the samples at 550°C for 4 h in a muffle furnace.   Hemicellulose 

concentration was calculated as the difference between NDF and ADF values and 

cellulose concentration was calculated as the difference between ADF and the sum 

of ADL and ash concentration.     

 

Pretreatment  

 

Duplicate sets of samples were pretreated with 0, 3.75, 7.5, 15, and 30% (w/w) 

ammonium hydroxide solutions using an ammonia steeping procedure similar to Isci 

et al. [38].  Samples weighing 0.5 g were transferred into preweighed F57 filter bags 

(ANKOM Technology, Macedon, NY), shortened to 4.5 cm to improve bag 
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movement within the pretreatment reactor, and the bags were subsequently heat 

sealed.  The filter bags are designed for sequential digestion methods [34] and 

simplify the sample transfer and washing procedures that normally accompany 

small-scale pretreatment trials.  Samples receiving the same pretreatment solution 

within each field replicate plus two blank bags containing no sample material (12 

total filter bags) were placed into 1-L polyethylene bottles with 200 mL of the 

respective pretreatment solution.   The bottles were capped, shaken until the filter 

bags were thoroughly saturated with solution, and allowed to incubate for 24 h at 

room temperature (23°C) in a fume hood.  After incubation, filter bags were manually 

squeezed to remove excess pretreatment solution and washed using deionized 

water for 15 min, with intermittent manual squeezing to remove any residual 

ammonium hydroxide.  One set of filter bags was freeze-dried for subsequent SSCF, 

which is necessary because heated drying can collapse the cell wall matrix of 

pretreated biomass [39], limiting enzyme accessibility.  The other set was dried for 4 

h at 103 °C and reweighed to determined DM loss during pretreatment.  Blank bags 

were used to adjust for weight loss in the filter bags during pretreatment.  Following 

weighing, pretreatment residues were stored in a desiccator until further analysis.      

 

Simultaneous Saccharification and Co-Fermentation (SSCF) 

 

The set of pretreated and freeze-dried samples were digested by SSCF using a 

modification of the procedure described by Wyman et al. [6].  Speyzme CP 

(Genencor, Rochester, NY; Lot No. 301-05021-011) and Novozyme® 188 (Sigma-
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Aldrich No. C6150; Lot No. 037K0698) were used as hydrolytic enzymes and 

recombinant Escherichia coli ATCC® 55124 (KO11) (American Type Culture 

Collection, Rockville, MD) was used as a fermentation organism capable of 

fermenting both hexose and pentose sugars to ethanol.  Spezyme CP was assayed 

at 71 filter paper units (FPU) mL-1 [40] and Novozyme® 188 was assayed at 268 

cellobiase units (CBU) mL-1 [41].    

Stock enzyme, chloramphenicol, and inoculum solutions were made as 

follows:  The enzyme solution was prepared using sterile deionized water such that 

the activity of the Spezyme CP was 60 FPU g-1 of the sample material and the 

activity of the Novozyme® 188 was 2 CBU FPU-1 in the final 10-mL fermentation 

volume.  The chloramphenicol solution was prepared by filter sterilizing a stock 

solution of 400 g mL-1 chloramphenicol through a 0.2 µm nylon filter.  The inoculum 

solution was prepared using a 1-mL pellet of freeze-dried, chloramphenicol resistant 

E. coli KO11 culture.  A 100 mL working volume of culture broth, containing 1% (w/v) 

tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl, and 2% (w/v) glucose was 

prepared in a 250 mL DeLong fermentation flask with aluminum closure (Bellco 

Glass, Vineland, NJ) and autoclaved at 121°C for 20 min.  The E. coli pellet and 2 

mL of filter sterilized 2 mg mL-1 chloramphenicol solution were added aseptically to 

the fermentation flask and the flask was vortexed and incubated at 35°C for 24 h in a 

shaking water bath (New Brunswick Scientific, Edison, NJ) at 150 rpm.  

Pretreated, freeze-dried materials weighing 0.3 g were loaded into 25 mL 

DeLong fermentation flasks fitted with aluminum closures (Bellco Glass, Vineland, 

NJ) to maintain anaerobic conditions during fermentation.  To the flasks, 1 mL 1.0 M 
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phosphate buffer (pH 5.8), 1 mL growth media solution (0.1 g mL-1 tryptone, 0.05 g 

mL-1 yeast extract, 0.1 g mL-1 NaCl), and 5 mL deionized water was added and 

autoclaved at 121 °C for 20 min.  After cooling, 1 mL of enzyme solution, 1 mL of 

chloramphenicol solution, and 1 mL of E. coli inoculum was added aseptically to 

each flask.  The final 10-mL fermentation volume was buffered to pH 6.0 and 

contained 1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl, and 40 g mL-

1 chloramphenicol.    

Samples were incubated at 35°C for 96 h in a shaking water bath at 150 rpm.  

Maximum ethanol production would ideally be analyzed at the endpoint of 

fermentation (96 h); however, previous SSCF experiments have shown that under 

fermentable-sugar limiting conditions, E. coli KO11 converts ethanol to acetic acid 

(unpublished data).  A previous experiment using the same procedures as above 

and a substrate of pretreated corn stover found that ethanol concentration was 

maximized at 24 h of fermentation.      

  After 24 h of incubation, flasks were sampled aseptically for ethanol 

production by centrifuging a 2 mL aliquot of fermentation broth at 11,900 g for 10 

min and syringe filtering the liquid fraction through a 0.2 m cellulose acetate filter.  

The residue pellets were resuspended with 1.5 mL of sterile deionized water, 

returned to the flasks, and incubation continued.  After 96 h of incubation, the 

fermentation residues were collected by vacuum filtering the fermentation liquids 

through preweighed Whatman #54 filter papers (20-25 m particle size retention) 

and washing the residue with 50 mL of deionized water.  Filter papers were dried for 

4 h in a 103°C oven, and reweighed to determine dry matter digested during SSCF.  
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Blank filter papers and composite samples of the unfermented freeze-dried materials 

were also dried to correct for moisture in the preweighed filter papers and moisture 

in the initial SSCF samples, respectively.  Following weighing, SSCF residues were 

stored in a desiccator until further analysis.      

 

Chemical analyses 

 

Fermentation filtrates were analyzed for ethanol by high performance liquid 

chromatography (HPLC) with a refractive index detector (Varian 355 RI Detector, 

Varian, Palo Alto, CA) using an Aminex® HPX-87H column (Bio-Rad Laboratories, 

Hercules, CA).  Separations were made using 0.01 N sulfuric acid as the mobile 

phase at a flow rate of 0.6 mL min-1, a column temperature of 65°C, and an injection 

volume of 20 L.         

Monosaccharides released during pretreatment and SSCF were determined 

by analyzing neutral sugar composition of the initial substrates, pretreatment 

residues, and SSCF residues using the 2-step hydrolysis procedure in the Uppsala 

Method [42].  Due to the limited amount of SSCF materials, the procedure was 

scaled to a sample size of 0.05 g.  Samples were weighed into 50-mL test tubes and 

incubated with 1.25 mL of 12 M sulfuric acid for 1 h at 30 °C.  The test tubes were 

diluted to 0.4 M by addition of 35 mL of water and autoclaved at 125°C for 1 h.  After 

cooling, 1-ml aliquots of the hydrolysates were diluted to a volume of 100 mL in 

deionized water and filtered using 0.45 µm cellulose acetate syringe filters.  Filtrates 

were analyzed for arabinose, xylose, mannose, galactose, and glucose by HPLC 
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with an electrochemical detector (Dionex ED 50 Electrochemical Detector, Dionex, 

Sunnyvale, CA) using a Carbopac PA200 column (Dionex, Sunnyvale, CA).  

Separations were made using 2 mM NaOH as the mobile phase at a flow rate of 

0.48 mL min-1, a column temperature of 30°C, and an injection volume of 25 L. 

 

Statistical analysis  

 

The corn stover field trial was conducted using a randomized complete block design 

with three replications, as explained previously.  All subsequent laboratory 

procedures were conducted using the same block structure.  Statistical analysis was 

done using SAS software [43].  The significance of the effects of pretreatment 

severity (ammonium concentration), corn stover genotype, and their interaction on 

dry matter loss during pretreatment, ethanol production and dry matter digestibility 

during SSCF, and monomeric sugars released during pretreatment and SSCF was 

determined using the general linear model procedure.  All comparisons were 

determined to be significant at p < 0.05, unless otherwise stated.  Trends in data 

were fitted using the following monomolecular model with the NLIN procedure in 

SAS where appropriate:    

Y = A (1 – Be-kx) 

where 

Y = response variable 

A = asymptote value of response variable (theoretical maximum or minimum value) 

B = constant associated with Y-intercept 
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k = rate constant for response to pretreatment severity 

x = ammonium hydroxide concentration  

 

Results  

 

The bm genotypes had lower hemicellulose, cellulose, and lignin concentrations 

than the normal genotype, with the exception of bm2 which had a similar 

hemicellulose concentration to its normal counterpart (Table 2.1).  On average, bm 

genotypes had 285 g kg-1 DM of hemicellulose, 318 g kg-1 DM of cellulose, and 19 g 

kg-1 DM of ADL compared with 319 g kg-1 DM of hemicellulose, 369 g kg-1 DM of 

cellulose, and 27 g kg-1 DM of ADL for the normal genotype.  Across genotypes, 

xylose accounted for, on average, 28% and glucose accounted for 64% of the total 

neutral sugars (Table 2.1).  Differences in xylose concentration were fairly consistent 

with hemicellulose results, with the normal genotype having a higher xylose 

concentration than bm1 and bm2.  The normal genotype did not yield higher glucose 

levels than the bm genotypes, but glucose concentration was higher in bm2 and 

bm4 than in the bm3 hybrid.  Differences in arabinose and galactose concentration 

were observed; however, these differences were negligible in comparison to 

differences in xylose and glucose concentration.       

 Dry matter remaining after pretreatment ranged from 754 g kg-1 DM in the 

normal genotype at 0% ammonium hydroxide to 614 g kg-1 DM in the bm3 genotype 

at 15% ammonium hydroxide (Figure 2.1).  Dry matter recovered decreased as the 

concentration of ammonium hydroxide increased during pretreatment (P<0.0001).  
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The effect of genotype was also significant (P<0.0001), with the normal genotype 

retaining more DM after pretreatment than the bm mutants.  The bm3 mutant had 

the greatest DM loss, losing on average 32 g kg-1 DM more DM than the other bm 

genotypes.   Changes in neutral sugar composition during pretreatment were 

dominated by xylose and glucose (Table 2.2).  Xylose and glucose loss did not 

increase with increasing ammonium hydroxide concentration.  Xylose release was 

the same across genotypes, but glucose release was higher in the bm hybrids than 

the normal hybrids. 

 Ethanol production expressed on the basis of the initial DM prior to 

pretreatment ranged from 137 to 192 g kg-1 DM at 24 h of fermentation (Figure 2.2).  

Ethanol yield varied across genotype (P<0.05) and ammonium hydroxide 

concentration (P<0.0001).  However, the trends in several genotypes (bm1, bm2, 

and bm4) across the range of ammonium hydroxide treatments were inconsistent.  

This resulted in lack of fit when trends were modeled using a monomolecular 

equation.   A high correlation coefficient (R=0.88) was observed between DM 

digested during SSCF and ethanol yields, so DM digested by SSCF was used as a 

surrogate for ethanol production (Figure 2.3).   

The DM digested by SSCF is expressed on the basis of the initial DM prior to 

pretreatment and is displayed in Figure 2.4.  Dry matter digested increased with 

ammonium hydroxide concentration across all genotypes (P<0.0001) from 277 g kg-1 

DM in the control pretreatment to 439 g kg-1 DM in the 30% ammonium hydroxide 

pretreatment.  On average, 38 g kg-1 DM more DM was digested in the bm 

genotypes compared with the normal genotype (P<0.0001).  No differences in DM 
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digested was observed between the bm genotypes (P=0.38).  Responses to 

ammonium hydroxide concentration were fitted appropriately using a monomolecular 

model for each genotype.  The interaction of genotype and ammonium hydroxide 

concentration was not significant (P=0.99).  Neutral sugars released during SSCF 

were dominated by xylose and glucose (Table 2.3).  Xylose and glucose released 

increased as the ammonium hydroxide concentration in pretreatment increased.  

Xylose hydrolysis was higher in the bm3 genotype at 100 g kg-1 DM compared to all 

other genotypes which averaged 85 g kg-1 DM.  Glucose hydrolysis was higher in 

the bm genotypes, averaging 200 g kg-1 DM, compared the normal genotype at 171 

g kg-1 DM.  Interactions between genotype and ammonium hydroxide concentration 

on xylose and glucose released during SSCF were also not significant. 

 

Discussion  

 

The lower lignin concentration of the bm materials is consistent with past studies [10, 

20].  The order of the genotypes in decreasing lignin concentration (normal, bm4, 

bm1, bm2, bm3) was the same as observed by Lechtenberg et al. [22] with materials 

in the Tr inbred background.  Cell wall (hemicellulose, cellulose, and lignin), 

hemicellulose, and cellulose concentration were all lower in the bm genotypes in this 

study.  Differences in cellulose and hemicellulose concentrations of normal and bm 

corn stover have not been documented across studies, but it is generally accepted 

that bm materials have lower cell wall concentrations than their normal counterparts 

due, in part, to lower lignin concentrations [10].       
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Carbohydrate availability in corn stover from bm genotypes was increased 

compared with isogenic normal corn stover, both in terms of carbohydrates 

converted to ethanol during enzymatic hydrolysis and fermentation and 

carbohydrates solubilized during pretreatment.  These results are fairly consistent 

with the work of Vermerris et al. [26].  However, increased levels of glucose were 

observed in all bm materials compared with the normal corn stover, whereas 

Vermerris et al. [26] only reported improvements with bm1 and bm3 materials.   

Of the bm mutations, the bm3 mutation had the greatest effect on cell-wall 

carbohydrate digestibility of the corn stover.  The bm3 corn stover had the lowest 

initial cell-wall carbohydrate concentration, the lowest dry matter remaining after 

pretreatment, and the highest amount of monosaccharides released during 

enzymatic hydrolysis.  Barnes et al. [21] examined in vitro dry matter digestibility 

(IVDMD) of bm1, bm3, and normal corn stover across a series of harvests and found 

the bm3 material to be superior in IVDMD compared with the normal and bm1 

materials.  Follow up studies with bm1-bm4 genotypes, further confirm the 

improvement in IVDMD of corn stover with the bm3 mutation compared with the 

other bm genotypes and the normal genotype [10, 20].  In vitro dry matter 

digestibility is analyzed using a two-step digestion process with rumen 

microorganisms and acid-pepsin to simulate the action of the ruminant digestion 

system.  There are clear differences in ruminant digestion and pretreatment, 

enzymatic hydrolysis, and ethanol fermentation processes; however, the enzymatic 

hydrolysis mechanisms of rumen microorganisms are similar to hydrolysis with 

commercial cellulase enzymes.   Based on this, much of our knowledge about cell-
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wall digestibility of bm materials as feedstocks for ruminants would be applicable to 

evaluating bm materials as feedstocks for ethanol production.         

Values for DM digested by SSCF at the 30% ammonium hydroxide 

concentration are all within 3% of the maximum DM digested values predicted by the 

monomolecular models, which suggests that the range of ammonium hydroxide 

concentrations used in this study adequately bracket the response of the genotypes 

to pretreatment severity in the aqueous ammonia soaking pretreatment technology.   

Admittedly, the 0% ammonium hydroxide concentration does not truly present a 

control treatment due to the need to sterilize (121°C for 20 min) the corn stover prior 

to SSCF.  If these materials were not sterilized and microbial contamination was not 

to occur during SSCF, it is expected that DM digested in the 0% ammonium 

hydroxide treated materials would be much lower than what was observed.     

Lack of a significant genotype X ammonium hydroxide concentration 

interaction term with DM digestion during SSCF indicates that the various genotypes 

responded similarly to increasing pretreatment severity.  Pretreatment technologies 

using aqueous ammonia have been known to reduce lignin concentration in 

lignocellulosic materials with increasing pretreatment intensity [44].  Dry matter 

digested during SSCF was 38 g kg-1 DM higher in the bm genotypes and 50 g kg-1 

DM higher in the bm3 genotype and than normal genotype.  These values are much 

lower than the differences in IVDMD observed between bm and normal corn stover 

materials.  Barnes et al. [21] found an average increase of 100 g kg-1 DM in IVDMD 

with corn stover having the bm3 mutation and bm1-bm3 double mutation versus 

normal corn stover.  Increases in digestibility of 92 and 129 g kg-1 DM were observed 
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in bm3 corn stems compared than normal corn stems [45, 46].  It is likely that the 

aqueous ammonia soaking pretreatment is so effective at delignification that it 

effectively reduces the differences in digestibility between bm and normal 

genotypes. However, this is an opposite result than reported by Hartley and Jones 

[46], who found that the digestibility of cell walls treated with NaOH increased more 

in bm than normal corn stover. The difference is likely because alkaline pretreatment 

can result in significant delignification [27], but oxidative conditions are required [47].  

 It is unclear how bm and normal materials would perform with pretreatment 

technologies, where limited or no delignification occurs, such as liquid hot water and 

dilute acid pretreatment [27].  Future comparisons of isogenic normal corn stover 

and bm corn stover, particularly bm3 materials, as feedstocks for ethanol production 

should be accomplished using a range of pretreatment technologies to understand 

how the performance of pretreatment processes – alkaline hydrolysis, acid 

hydrolysis, oxidation, etc. – are affected by feedstock lignin concentration and 

structure and which technologies have the greatest potential for pretreating bm 

materials.  Additionally, the extent of digestion was only investigated in this study, 

but the rate of digestion is also an important process variable which affects the size 

and quantity of SSCF vessels and ultimately the economic feasibility of an ethanol 

biorefinery.  Future investigations with bm and normal corn stover materials for 

biofuel production should consider both the extent and rate of digestion during 

SSCF.         
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Table 2.1. Fiber and neutral sugar composition of corn stover from hybrid W64 X A619 

(normal) and isogenic brown midrib (bm) hybrids grown near Ames, Iowa in 2005.*   

 Hybrid   

 Constituent, g kg-1 
dry matter 

W64A X 
A619 normal 

W64A X 
A619 bm1 

W64A X 
A619 bm2 

W64A X 
A619 bm3 

W64A X 
A619 bm4 SE† 

Extractives‡ 276b 376a 392a 358a 355a 22.0 

Hemicellulose 319a 277b 278b  297ab 286b   9.1 

Cellulose 369a  317b 302b 322b 330b     12.0 

Lignin§   27a    20bc    19cd   16d   23b       1.2 

Arabinose     25.1b      24.2b     24.8b     28.0a     24.2b       0.55 

Xylose        200a 176b 178b  189ab  189ab       5.4 

Mannose      7.6      7.1      7.0     7.8     7.0       0.42 

Galactose       15.3bc     16.3b     16.0b    18.3a    14.7c       0.41 

Glucose   407ab       413ab       441a       390b       442a     15.2 

*Data are means of triplicate samples. Values in the same row with unlike superscript letters are significantly 
different (P < 0.05). 

†Standard error of the mean.  

‡Neutral detergent extractives. 

§Acid detergent lignin. 
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Figure 2.1. Dry matter remaining after pretreatment with ammonium hydroxide from corn 

stover of W64 X A619 hybrid (normal) and isogenic brown midrib (bm) hybrids.  SE=11 

(n=3). 
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Table 2.2. Neutral sugars lost during pretreatment with ammonium hydroxide from corn 

stover of hybrid W64 X A619 (normal) and isogenic brown midrib (bm) hybrids. 

 

  Arabinose  Xylose Mannose Galactose Glucose 

  —————————  g kg-1 dry matter ————————— 

Genotype       

    normal  5.3 28 3.0 5.8 76 

    bm1  5.2 24 2.4 6.4 84 

    bm2  6.2 33 2.8 6.7     123 

    bm3  7.5 33 3.4 7.7 98 

    bm4  5.1 30 2.5 5.7 99 

       SE†   0.43     2.1  0.28  0.17     7.2 
       
Ammonium hydroxide conc., %     

      0  5.4 28 2.7 5.6 87 

      3.75  5.3 25 2.8 6.1 97 

      7.5  5.7 28 2.7 6.5 99 

    15  6.7 32 3.0 7.0     103 

    30  6.2 34 2.9 7.0 93 

       SE   0.43     2.1 0.28  0.17     7.2 
       

ANOVA 

Source df      

Genotype (G) 4 0.0009 0.0158 NS <0.0001 0.0005 

   normal vs bm 1   NS‡ NS NS  0.0002 0.0036 

   within bm types 3 0.0007 0.0086 NS <0.0001 0.0045 

Conc. (C) 4 NS NS NS <0.0001 NS 

G X C 16 NS NS NS NS NS 

†Standard error of the mean. 

‡NS = Not significant (P>0.05). 
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Figure 2.2. Ethanol production from corn stover of hybrid W64 X A619 (normal) and isogenic 

brown midrib (bm) hybrids pretreated with ammonium hydroxide.  Ethanol production is 

expressed on a dry matter (DM) basis of the initial material prior to pretreatment.  SE=11 

(n=3). 
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Figure 2.3. Correlation between dry matter (DM) digested during simultaneous 

saccharification and co-fermentation (SSCF) and ethanol production from corn stover of 

hybrid W64 X A619 (normal) and isogenic brown midrib (bm) hybrids pretreated with 

ammonium hydroxide.  Dry matter digested during SSF and ethanol production are 

expressed on a dry matter basis of the initial material prior to pretreatment. 
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Figure 2.4.  Dry matter (DM) digested during simultaneous saccharification and co-

fermentation (SSCF) from corn stover of hybrid W64 X A619 (normal) and isogenic brown 

midrib (bm) hybrids pretreated with 0 to 30% (w/w) ammonium hydroxide.  Dry matter 

digested is expressed on a dry matter basis of the initial material prior to pretreatment.  

SE=19 (n=3). 
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Table 2.3. Neutral sugars hydrolyzed during simultaneous saccharification and co-

fermentation (SSCF) from corn stover of hybrid W64 X A619 (normal) and isogenic brown 

midrib (bm) hybrids. 

 

  Arabinose  Xylose Mannose Galactose Glucose 

  —————————  g kg-1 dry matter ————————— 

Genotype       

    normal  14.3 87 3.0 7.1 171 

    bm1  14.0 86 3.2 7.3 199 

    bm2  13.1 80 2.8 6.6 200 

    bm3  16.1     101 3.4 8.2 191 

    bm4  13.6 86 2.9 6.4 209 

       SE†     0.46     2.8  0.16  0.18     10.1 
       
Ammonium hydroxide conc., %     

      0    9.9   53 2.4 5.3 160 

      3.75  14.0   78 3.0 7.1 175 

      7.5  15.0   90 3.2 7.6 191 

    15  15.5 103 3.3 7.8 208 

    30  16.7 117 3.4 7.9 235 

       SE     0.46      2.8  0.16  0.18      10.1 
       

ANOVA 

Source df      

Genotype (G) 4  0.0005  0.0002 NS <0.0001 NS 

   normal vs bm 1  NS‡ NS NS NS  0.0141 

   within bm types 3  0.0002 <0.0001 NS <0.0001 NS 

Conc. (C) 4 <0.0001 <0.0001 0.0005 <0.0001 <0.0001 

G X C 16 NS NS NS NS NS 

†Standard error of the mean. 

‡NS = Not significant (P>0.05). 
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Abstract  

 

Development of a system for characterizing lignocellulosic biomass quality is 

necessary for evaluating genetic improvements and management practices for 

producing biomass feedstocks for biochemical conversion (i.e., pretreatment, 

enzymatic hydrolysis, and fermentation).  This project was conducted to develop a 

series of parameters for determining feedstock quality and to develop a laboratory 

assay to determine the quality parameters.  A carbohydrate availability model was 
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developed, which partitions feedstock carbohydrates within a feedstock material into 

fractions based on their availability to be converted to fermentable sugars, including 

non-structural carbohydrates (CN) – monosaccharides, starches, oligosaccharides –, 

biochemically available carbohydrates (CB) – structural carbohydrates susceptible to 

enzymatic hydrolysis – with an associated 1st-order availability rate constant (kB), 

and unavailable carbohydrates (CU).  The model partitions the non-carbohydrate dry 

matter into extractives, lignin, and ash.  The assay combines established 

compositional analysis and digestibility techniques, including total non-structural 

carbohydrates (TNC), alcohol insoluble residue (AIR), simultaneous saccharification 

and fermentation (SSCF), and Klason lignin, to determine model parameters.  The 

assay was used to analyze four compositionally diverse biomass feedstocks: corn 

cobs (Zea mays L.), hybrid poplar (Populus x canadensis Moench), kenaf (Hibiscus 

cannabinus L.) and switchgrass (Panicum virgatum L.).  In this group of feedstocks, 

CN ranged from 27 to 127 g kg-1 DM, CB ranged from 34 to 344 g kg-1 DM, kB ranged 

from 0.071 to 0.415 h-1, total available carbohydrates (CA) ranged from 61 to 517 g 

kg-1 DM, and lignin ranged from 139 to 244 g kg-1 DM.  Based on the parameter 

values, corn cobs would be most amenable to biochemical conversion to ethanol of 

the feedstocks tested.     

 

Keywords Biomass quality, Lignocellulosic feedstocks, Biochemical conversion, 

Simultaneous saccharification and co-fermentation 
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Abbreviations  

HTP        high throughput 

NIRS       near infrared reflectance spectroscopy 

SSF         simultaneous saccharification and fermentation 

TD           true digestibility 

DM          dry matter 

TNC        total non-structural carbohydrates 

AIR         alcohol insoluble residue 

SSCF     simultaneous saccharification and co-fermentation 

CV          coefficient of variation 

NDF        neutral detergent fiber 
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Introduction 

 

U.S. agricultural and forest lands have the potential to supply over 1 billion metric 

dry tons of lignocellulosic materials annually, for production of renewable fuels, 

chemicals, and other products [1].  Processing even a small portion of these 

feedstock materials into biofuels will require a framework for quality determination, 

analogous to the grading and standardization system for grains established under 

the United States Grains Standard Act [2].  Because a significant portion of the 

lignocellulose-derived fuels will be produced by biochemical conversion – that is, 

pretreatment followed enzymatic hydrolysis and fermentation – due to the high 

commercialization potential of this conversion technology, we posit that development 

of a biomass quality system requires: (i) quality parameters that can be correlated to 

process data and (ii) high throughput (HTP) methods to precisely determine quality 

parameter values.   

 

De facto biomass quality measures 

 

Biomass grading systems have been developed for the forage industry, but a single 

system has not been widely implemented because of differences in forage species 

and animal type [3].  Grading systems are based either on analytical values, – 

determined using wet chemistry methods or near infrared reflectance spectroscopy 

(NIRS) – organoleptic assessment, or a combination of the two methods [4].   

Systems based on analytical parameters, such as crude protein and relative feed 
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value, are not directly applicable for grading cellulosic ethanol feedstock because 

the parameters are related to value of biomass as a feedstuff for ruminant animals, 

not for producing ethanol.  Systems which use visual characteristics, such as 

dustiness, color, or maturity, are subjective and many of the characteristics are 

unrelated to the potential of a feedstock for conversion to ethanol.   

Laboratory methods used to characterize lignocellulosic biomass properties 

have potential as de facto-biomass quality analyses.  These methods comprise 

analyses used to determine lignocellulosic composition (hemicellulose, cellulose, 

lignin content) including monomeric sugar composition of the lignocellulose 

constituents (glucose, xylose content, etc.), enzymatic saccharification potential 

(ethanol or fermentable sugar yield), cellulose polymerization, cellulose crystallinity, 

and the degree of acetylation [5,6,7].   

Compositional analysis and enzymatic saccharification tests are the most 

often employed characterization methods used by biomass researchers; however, 

each technique has advantages and disadvantages as a method for determining 

biomass quality. Compositional analysis can provide extensive data on the 

carbohydrate makeup of a biomass sample, but it does not indicate the availability of 

these component sugars in carbohydrate groups (e.g., hemicellulose and cellulose), 

for hydrolysis and fermentation.  Differences in availability result from the differences 

in the structural features of plant cell wall materials, including specific surface area, 

cellulose crystallinity, cellulose reactivity, degree of polymerization, lignin content, 

and degree of acetylation [6].   Fermentable sugar yields from enzymatic 

saccharification have been successfully correlated to these structural features for a 
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broad range of biomass materials [5]; therefore, enzymatic saccharification serves 

as a simplified method to determine the impact of structural features on the 

availability of hemicellulose and cellulose for hydrolysis.  Simultaneous 

saccharification and fermentation (SSF) is an often used saccharification method in 

biofuels research; but, direct comparison of SFF results produced by different 

researchers is complicated by a lack of standardization in hydrolysis and 

fermentation conditions between researchers [8].   Enzymatic saccharification also 

does not provide the spectrum of carbohydrate data that compositional analysis is 

capable of providing.  Combining compositional analysis and enzymatic 

saccharification into single method would produce a concise and robust assay for 

determining quality of lignocellulosic biomass feedstocks. 

The objective of this paper is to address the first requirement of developing a 

biomass quality system, to develop quality parameters that are process-related, in 

the context of a biochemical conversion platform.     

                            

Theory 

 

Model Development  

 

We have developed a model which provides the conceptual framework for 

determining lignocellulosic biomass quality using a combined compositional analysis 

and enzymatic saccharification assay.  This model is based on a true digestibility 

(TD) model for ruminant feedstuffs (Figure 3.1) [9].   The TD model partitions plant 
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dry matter based on its potential for ruminal digestion into cell solubles (CS), 

digested fiber (CD), and undigested fiber (CI) with a 1st-order rate constant (k), lag 

time (L), and fermentation time (t) to describe digestion kinetics.  Cell solubles 

include soluble sugars, starches, pectins, and proteins.  Digested fiber comprises 

cellulose and hemicellulose and undigested fiber consist of lignin and the remaining 

cellulose and hemicellulose.  True digestibility is calculated according to Equation 1.   

TD = CS + CD (1 - e-k(t-L)) [1] 

The carbohydrate availability model we have developed partitions plant dry 

matter constituents based on their availability for biological conversion – that is, 

enzymatic hydrolysis and fermentation – as opposed to availability for ruminant 

digestion (Figure 3.2).   Carbohydrates are separated into three groups based on the 

relative severity of conditions necessary to hydrolyze them to fermentable sugars.  

These groups include: non-structural carbohydrates (CN), biochemically available 

carbohydrates (CB), and unavailable carbohydrates (CU).  The CN fraction includes 

monomeric sugars, oligosaccharides, starches, and fructans and requires none or 

minimal processing to be converted to fermentable sugars.  These sugars can be 

potentially lost during processing at a biorefinery if washing is needed to remove 

inhibitory compounds contained in the biomass.  The CB fraction includes structural 

carbohydrates, hemicellulose and cellulose, which are susceptible to enzymatic 

hydrolysis.  This group is comparable to digested fiber in the TD model, with its 

availability with time described using a first-order constant, kB.  The CU group 

consists of carbohydrates which are unavailable for biological conversion, mainly 

hemicellulose and cellulose in close association with lignin and inaccessible to 
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enzymes.  Total available carbohydrates, CA, and total carbohydrates, CT, are 

calculated according to Equations 2 and 3. 

CA = CN + CB     [2] 

CT = CN + CB + CU     [3] 

The remaining constituents are lignin, ash, and extractives, which from the 

standpoint of biological conversion, generally represent anti-quality factors.  Lignin 

concentration has been found to be the most important factor governing enzymatic 

saccharification of lignocellulosic biomass to fermentable sugars [10].  Ash content is 

of interest because high levels can cause excessive wear on material handling 

equipment, increase energy requirements to grind biomass, and cause fouling in 

combustors and gasifiers if fermentation residues are converted thermochemically 

for heat and power [11].  Fermentation inhibitors, such as furfural, weak acids, and 

phenols [12], are contained in the extractives faction.  Proteins are also a constituent 

of extractives, but do not constitute an anti-quality factor.  

Carbohydrate and lignin are most likely to be of most interest to biorefineries.  

Differing levels of these parameters can affect process operation parameters such 

as residence time during pretreatment, enzyme loading rates, loading rates for the 

fermentation organisms, and solids loading rates in reactors. This information can be 

employed to determine the premium or dockage level for each load of biomass 

delivered by a producer and to establish a regime for blending biomass to produce a 

uniform substrate or to make on-line process adjustments based on the quality of the 

incoming material.   
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Materials and Methods 

 

Model parameters were determined using a composite gravimetric and 

spectroscopic assay based on a combination of forage quality, cell wall isolation, 

enzymatic hydrolysis, and fermentation procedures (Figure 3.3).  Parameter values 

were calculated on the basis of grams of constituent per kg dry matter (DM) of the 

initial sample.  Total-non structural carbohydrates (TNC) were used to determine CN.   

Alcohol insoluble residue (AIR) was prepared by removing cell-soluble materials 

from the initial sample to produce a cell wall isolate suitable for subsequent 

digestion.  Extractives concentration was calculated by subtracting the sum of the 

AIR and TNC values from 1000.    

Biochemically available carbohydrates and the rate constant kB were 

determined by digesting the AIR by simultaneous saccharification and co-

fermentation (SSCF) using a co-fermenting organism for periods of 4, 8, 24, 48, 72, 

and 96 hours.  Lignin concentration was determined by analyzing the AIR for Klason 

lignin.  Ash concentration was determined by ashing the AIR sample.  Unavailable 

carbohydrates concentration was calculated as the difference between the AIR value 

and the sum of CB, lignin, and ash values.    

 

Feedstocks  

 

Switchgrass ‘Cave-in-Rock’ (Panicum virgatum L.) and kenaf ‘Tainung 2’ (Hibiscus 

cannabinus L.) were harvested from a field plots near Ames, Iowa in November 
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2006.  Whole corn ‘Pioneer hybrid 34A20’ (Zea mays L.) plants were harvested from 

a field plots near Ames, Iowa in October 2007 and the corn cobs were separated 

from all other corn grain and stover components by hand.  Hybrid poplar ‘Eugenei’ 

(Populus x canadensis Moench) was harvested from Iowa State University poplar 

breeding plots located in Ames, Iowa in December 2006 and chipped to an average 

particle size of approximately 2 cm.  All samples were dried at 60°C in a forced air 

oven for 72 h [13] and ground using a Wiley mill (Thomas Scientific Inc., 

Swedesboro, NJ) fitted with a 1-mm sieve.  Dry matter was determined for ground 

samples by drying 1 g of sample at 103°C in a forced air oven for 4 h to make 

moisture corrections for all laboratory analyses [13].   

 

Laboratory Procedures  

 

Total non-structural carbohydrates were determined according to a modified 

procedure of Guiragossian et al. [14], in which, 0.125 g of sample was refluxed in 25 

mL of 0.2 N sulfuric acid for 1 h followed by filtering through Whatman No. 42 filter 

paper.   To a 1-mL aliquot of the filtrate diluted by a factor of 20, 1 mL of 5% phenol 

solution and 5 mL of 18 M sulfuric acid were added, and the solution’s absorbance 

was measured at 490 nm.  TNC values were determined using a glucose reference 

calibration and calculated on the basis of grams of glucose per kg sample DM.       

Alcohol insoluble residue samples were prepared by sequentially digesting 6 

g of the initial sample with α-amylase, protease, and amyloglucosidase [15].  

Following enzyme treatment, AIR materials were precipitated and washed using 
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three volumes of 80% (v/v) ethanol.  After precipitation with ethanol, the method [15] 

calls for two washes of acetone followed by oven-drying the sample.  We believed 

that this could irreversibly collapse the cell wall matrix of the materials, limiting 

subsequent hydrolysis with cellulase enzymes [16].  To remove excess ethanol, 

samples were washed with two volumes of deionized water and then freeze-dried.  

Alcohol insoluble residue samples were hydrolyzed and fermented using SSCF 

procedures described by Murphy et al. [17] using enzyme loading rates of 60 FPU g-

AIR-1 Spezyme CP and 2 CBU FPU-1 Novozyme 188 [8].  Alcohol insoluble residue 

samples weighing 0.5 g were loaded into 25 mL DeLong fermentation flasks fitted 

with aluminum closures (Bellco Glass, Vineland, NJ) to maintain anaerobic 

conditions during fermentation.  To the flasks, 1 mL 1.0 M phosphate buffer (pH 5.8), 

1 mL growth media solution (0.1 g mL-1 tryptone, 0.05 g mL-1 yeast extract, 0.1 g mL-

1 NaCl), and 5 mL deionized water was added and autoclaved at 121°C for 20 min.  

After cooling, 1 mL of enzyme solution, 1 mL of chloramphenicol solution, and 1 mL 

of E. coli inoculum was added aseptically to each flask.  The final 10-mL 

fermentation volume was buffered to pH 6.0 and contained 1% (w/v) tryptone, 0.5% 

(w/v) yeast extract, 1% (w/v) NaCl, and 40 g mL-1 chloramphenicol.  Flasks were 

incubated at 35°C for 4, 8, 24, 48, 72, or 96 h in a shaking water bath at 150 rpm.  

Saccharification residues were recovered by vacuum-filtration using pre-weighed 

Whatman No. 42 filter paper, washed with deionized water, and dried for 4 h at 

103°C.     

Klason lignin was determined on AIR samples according to the two-step 

sulfuric acid digestion described by Theander et al. [18].  Alcohol insoluble residue 
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subsamples weighing 0.1 g were loaded into 50-mL test tubes and incubated with 

1.25 mL of 12 M sulfuric acid for 1 h at 30°C in a water bath.  Solutions were diluted 

to 0.4 M by addition of 35 mL of water and autoclaved at 125°C for 1 h.  Klason 

lignin residues were recovered by vacuum filtration using pre-weighed glass filter 

paper, washed with deionized water, and dried for 4 h at 103°C.  Klason lignin 

concentrations were corrected for residual mineral concentration by ashing the filters 

at 550°C for 4 h.  Ash concentrations were determined by ashing a 0.5-g subsample 

of AIR at 550°C for 4 h in pre-weighed crucibles.  

   

Statistical analysis  

 

Feedstock samples were analyzed using a randomized complete block design with 

three replications.  Statistical analysis was done using SAS software [19].  The 

significance of the effect of feedstock was analyzed for all model parameters.  SSCF 

data was fitted using a monomolecular model (Equation 4) with the NLIN procedure 

to estimate CB and kB:    

C(t) = CB (1- e- kB
 t)     [4] 

where  

C(t) = dry matter digested by SSCF with time (g AIR kg-1 initial DM) 

CB = biochemically available carbohydrates (g AIR kg-1 initial DM) 

kB = rate constant for CB (h-1) 

t = digestion time (h)  
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Results and Discussion  

 

Simultaneous saccharification and co-fermentation data was fit using Eq. 4 to 

determine CB and kB values (Figure 3.4).  Parameter values for the four feedstocks 

analyzed are presented in Table 3.1.  Large ranges in values were observed across 

the feedstock species for most of the parameters.  Non-structural carbohydrates 

ranged from 27 to 127 g kg-1 DM, CB ranged from 34 to 344 g kg-1 DM, kB ranged 

from 0.071 to 0.415 h-1, CA ranged from 61 to 517 g kg-1 DM, CU ranged from 419 to 

641 g kg-1 DM, CT ranged from 701 to 935 g kg-1 DM, and lignin ranged from 139 to 

244 g kg-1 DM.   

The coefficient of variation (CV) values ranged from 0.9 to 26.1 for the model 

parameters.  Coefficient of variation values provide a general estimate of how 

precisely a value is determined.  All parameters had CV values less than 10, with 

exception of the rate constant, kB, which had a CV of 26.1.  Based on these values, 

all dry matter constituent values were measured with relatively high precision.  The 

high CV value for kB is a product of the high variation in SSCF data from the 4 and 8 

h samples.  Using kinetics that approximate the rate constant for the 1st-order 

saccharification period [20], rather than using a series of time points, should improve 

the precision in determining kB.              

The negative extractives value for corn cobs is not theoretically possible.  

However, because extractives are measured indirectly as the difference between 

1000 and the sum of the AIR and TNC values, slight overestimations in AIR and 

TNC can cause some feedstocks to have negative extractives values in the model.  
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As indicated earlier, TNC is determined on the basis of glucose per mass of dry 

matter.  Total non-structural carbohydrates are overestimated in feedstocks having 

significant concentrations of non-structural polysaccharides, such as starch, due to 

the mass increase through the hydrolysis of polysaccharides to glucose.  This in 

combination with feedstocks having low extractives concentrations and the general 

tendency for the acid digestion TNC procedure used in the assay to overestimate 

TNC, are the likely cause of negative extractives values as quantified by the model. 

Such negative extractives values are a minor concern because the extractives 

parameter is likely one of the least important parameters in determining the overall 

quality of biomass feedstocks.        

Of the model parameters biochemically available carbohydrates, CB, is the 

single most important parameter because in lignocellulosic biomass feedstocks it 

represents the largest source of fermentable carbohydrates, i.e., those available for 

biofuel production.  The assay produced CB values from 34 to 344 g kg-1 DM.  If the 

feedstocks were to be subjected to a potential commercially viable pretreatment 

technology (e.g., aqueous ammonia soaking, pH-controlled pretreatment, ammonia 

fiber explosion), it is anticipated that the concentration of carbohydrates made 

available for enzymatic hydrolysis would be higher than predicted by the CB values 

in all feedstocks.  This is because these methods have more severe reaction 

conditions (i.e., higher temperatures, longer reaction times, higher pressures, more 

caustic reagents ) than the AIR method used in the assay.  Total sugar yields during 

enzymatic hydrolysis of corn stover pretreated using leading pretreatment 

technologies have been reported in the range of 800 – 950 g kg-1 initial cell-wall 
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carbohydrate [21].  By comparison, total sugar yields during enzymatic hydrolysis of 

the four feedstocks analyzed with the assay ranged from 50 to 450 g kg-1 initial cell-

wall carbohydrate.   

It is reasonable to argue for the use of a leading pretreatment technology in 

place of the AIR method in light of the relatively limited cell-wall hydrolysis which 

occurred.  Most pretreatment technologies hydrolyze hemicellulose to varying 

extents [22], resulting in a loss of carbohydrates from CB.  To that end, using a 

pretreatment technology and reaction conditions suited for highly recalcitrant 

feedstocks (i.e., woody materials) on a highly bioavailable feedstock (i.e., corn cobs) 

would likely result in significant hemicellulose hydrolysis during pretreatment and 

underestimation of CB.  As such, the pretreatment method would need to be 

adjusted for a particular feedstock.  The intent of this assay is to produce parameter 

estimates related to the pretreatment, enzymatic hydrolysis, and fermentation 

processes which can be correlated to performance of a range of biomass 

feedstocks; the lower intensity nature of AIR is consistent with this intent.   

Although the primary intent of this validation exercise was not to compare 

these feedstocks to one another, there are clearly differences in the amount and 

availability of carbohydrates between feedstocks. Corn cobs are superior to the 

other feedstocks because of its higher total carbohydrate concentration and 

biochemically available carbohydrates, and lower lignin and ash concentrations.  

Hybrid poplar performed the worst in the assay, due to its low carbohydrate 

availability and high lignin concentration.  Kenaf and switchgrass values were 

intermediate between corn cobs and hybrid poplar.  It is clear that the model and 
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assay are applicable to a wide range of biomass feedstocks; however, determination 

of model values for a larger population of feedstocks would better indicate how 

parameter values compare within and across various feedstock types (e.g., warm 

season grasses, woody species, high-fiber dicots, etc.).  

During completion of the laboratory procedures for this assay, several 

challenges were identified which need to be addressed before this method can be 

adopted for routine biomass quality analysis.  The multiple solvent washing steps in 

the AIR procedure and the filtration procedure used to recover SSCF and Klason 

residues are extremely time-consuming and limit sample throughput.  Use of filter 

bags and batch processing of samples, both commonly used in forage quality 

research [23], can be used to address both these problems.  The AIR procedure is 

not compatible with filter bags, so use of an alternative method to produce a cell-wall 

isolate, such as neutral detergent fiber, would be necessary.        

The carbohydrate availability model provides a conceptual framework for 

determining quality of lignocellulosic biomass feedstocks for biochemical conversion.  

The assay used to estimate model parameters employs a combination of 

compositional analysis and enzymatic saccharification techniques and determined 

the values of model parameters for compositionally-diverse biomass feedstocks with 

high precision.  In comparison to compositional analysis as stand-alone method to 

measure biomass quality, the carbohydrate availability model and assay provide vital 

compositional analysis data for carbohydrates and lignin concentrations.  And in 

comparison to enzymatic saccharification tests, the model and assay partition 

carbohydrates based on their availability for fermentation to ethanol via enzymatic 
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hydrolysis, whereby indirectly measuring the net effects of cell-wall structural 

features.  Moreover, the assay can be used for a range of feedstock species without 

the requirement for process optimization for specific feedstock types.  However, 

further refinement of the assay methods is needed to improve the throughput of the 

assay for large sample populations.    
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Figure 3.1. True digestibility (TD) model for ruminant livestock. 
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Figure 3.2. Carbohydrate availability model for lignocellulosic biomass feedstocks. 
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Figure 3.3. Overview of laboratory procedures for carbohydrate availability assay. 
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Figure 3.4. Dry matter (DM) hydrolyzed during simultaneous saccharification and co-

fermentation (SSCF) of alcohol insoluble residues from biomass feedstocks.    
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Table 3.1. Carbohydrate availability model parameter values for diverse biomass 

feedstocks.   

Feedstock Extractivesa CN  CB    kB  CA  CU CT Lignin Ash 

 ———— g kg-1 DM ———— h-1 ———————— g kg-1 DM ———————— 

Corn cobs -81 172 344 0.07 517 419 935 139 6 

Hybrid poplar 46 27 34 0.41 61 641 701 244 9 

Kenaf 88 37 118 0.42 154 578 732 167 13 

Switchgrass 29 102 85 0.20 187 561 748 191 32 

SEb 3.0 3.7 2.2 0.041 3.6 2.9 3.9 3.3 0.4 

CVc 8.4 7.6 2.6 26.1 2.7 0.9 0.9 3.0 4.5 

a Extractives = Alcohol soluble extractives CN = Non-structural carbohydrates, CB = Biochemically available 
carbohydrates, kB = Rate constant for CB, CA = Total available carbohydrates, CU = Unavailable carbohydrates, CT 
= Total carbohydrates, Lignin = Klason lignin, Ash = cell-wall ash 
b Standard error of the mean 
c Coefficient of variation  
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Abstract  

 

Development of a method for analyzing the quality of biomass feedstocks for 

biochemical conversion to fuel (i.e., pretreatment followed by enzymatic hydrolysis 

and fermentation) requires high-throughput assay methods.  We evaluated multiple 

modifications to a an existing biomass quality assay that partitions feedstock 

carbohydrates into three fractions based on their availability to be converted to 

fermentable sugars. Modifications included (i) using filter bags with batch sample 

processing, (ii) replacement of alcohol insoluble residue (AIR) with neutral detergent 
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fiber (NDF) as a cell-wall isolation procedure, and (iii) elimination of the fermentation 

organism in the simultaneous saccharification and fermentation procedures used to 

determine biochemically available carbohydrates.  The original and the high 

throughput (HTP) assay methods were compared using corn cobs (Zea mays L.), 

hybrid poplar (Populus x canadensis Moench), kenaf (Hibiscus cannabinus L.) and 

switchgrass (Panicum virgatum L.).  Biochemically available carbohydrates (CB) 

increased with the HTP methods in the corn cobs, hybrid poplar, and switchgrass, 

but remained the same in the kenaf.  Total available carbohydrates (CA) increased 

and unavailable carbohydrates (CU) decreased with the HTP methods in the corn 

cobs and switchgrass and remained the same in the hybrid poplar and kenaf.  There 

were no differences in total carbohydrates (CT) between the two methods.  The HTP 

methods consistently assayed less lignin than did the original method.  Despite the 

slight differences parameter values, the HTP assay methods essentially gave a 

similar summary of feedstock quality as did the original assay methods while 

significantly reducing the time and cost for feedstock quality analysis.  Quality 

parameter values for 23 biomass feedstocks analyzed using the HTP assay are also 

included in the article.    

 

Keywords Biomass quality, Lignocellulosic feedstocks, Biochemical conversion, 

Simultaneous saccharification and co-fermentation 

 

Abbreviations  

HTP        high throughput 
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DM          dry matter 

TNC        total non-structural carbohydrates 

AIR         alcohol insoluble residue 

SSCF     simultaneous saccharification and co-fermentation 

KL           Klason lignin 

NDF        neutral detergent fiber 

NDL        neutral detergent  
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Introduction 

 

Development of a system for determining quality of lignocellulosic biomass for 

biochemical conversion (i.e., pretreatment followed enzymatic hydrolysis and 

fermentation) requires: (i) quality parameters that can be correlated to process data 

and (ii) high throughput (HTP) methods to precisely determine quality parameter 

values.   We have developed a carbohydrate availability model for determining 

feedstock quality that partitions plant dry matter (DM) constituents based on their 

availability for biochemical conversion to fuels [1] (Figure 4.1).  The carbohydrate 

availability model separates carbohydrates into three groups based on their potential 

to be converted to fermentable sugars. These groups include: non-structural 

carbohydrates (CN) (monosaccharides, oligosaccharides, and starches) 

biochemically available carbohydrates (CB) (hemicellulose and cellulose hydrolyzed 

by cellulolytic enzymes) with an associated 1st-order availability rate constant (kB), 

and unavailable carbohydrates (CU) (hemicellulose and cellulose in close 

association with lignin).  Non-carbohydrate constituents are separated into 

extractives, lignin, and ash.  Additional carbohydrate parameters, total available 

carbohydrates, CA, and total carbohydrates, CT, are calculated according to 

Equations 1 and 2.  

CA = CN + CB     [1] 

CT = CN + CB + CU     [2] 

Model parameters were determined using a gravimetric and spectroscopic 

assay based on a composite of forage quality, cell wall isolation, enzymatic 
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hydrolysis, and fermentation procedures [1].  Total-non structural carbohydrates 

(TNC) were used to determine CN.   Alcohol insoluble residue (AIR) was prepared by 

removing cell-soluble materials from the initial sample to produce a cell wall isolate 

suitable for subsequent analytical procedures.  Biochemically available 

carbohydrates and kB were determined by digesting the AIR using simultaneous 

saccharification and co-fermentation (SSCF) techniques for 4, 8, 24, 48, 72, and 96 

h and fitting the data using Equation 3.  Lignin concentration was determined by 

analyzing the AIR for Klason lignin (KL) and ash concentration was determined by 

ashing the AIR sample.  

C(t) = CB (1- e-k
B

t) [3]    

where  

C(t) = dry matter digested by SSCF with time (g AIR kg-1 initial DM) 

CB = biochemically available carbohydrates (g AIR kg-1 initial DM) 

kB = rate constant for CB (h-1) 

t = digestion time (h)  

We identified several issues with the analytical methods used in the assay 

that limited sample throughput and thereby could hinder acceptance of the assay as 

a routine method for biomass feedstock quality [1].  The AIR procedure requires five 

solvent washing steps.  Between each washing the sample is allowed to settle for a 

24 h period and the supernatant removed from the sample.  This 5-day washing 

period combined with the initial starch and protein digestion time and ensuing 

freeze-drying period results in a total of 7 days to generate AIR materials for the 

additional analyses.  The AIR sample is then divided into subsamples for each of six 
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SSCF times, KL, and ash.  After SSCF and KL procedures are complete sample 

residues are recovered individually by vacuum filtration.   All these individual steps 

result in an assay that is time-consuming and expensive.  Filter bags and batch 

processing of samples which are commonly used in forage quality analyses [2] could 

be implemented in this assay to significantly reduce time and labor requirements of 

the wet-chemistry procedures.  The AIR procedure requires residue precipitation 

with ethanol [3], which is not compatible with use of filter bags, so use an alternative 

cell-wall isolation method is necessary.  Neutral detergent fiber (NDF) has been 

used since the 1960’s as a cell-wall isolation method for ruminant feedstuffs [4].  The 

NDF procedure is completed in a significantly shorter period of time (~90 min.) than 

the AIR procedure and the widespread use of the NDF procedure has largely been 

the motivating factor for inclusion of filter bag technology into routine forage quality 

analysis [2].           

Additionally, the SSCF procedure uses six time points to estimate k and 

requires a hexose and pentose co-fermenting organism to prevent potential end-

product inhibition of the enzymes from increases in fermentable sugar 

concentrations in the saccharification vessel.  Because the monomolecular model in 

Equation 3 adequately describes the digestion curve for CB [1], kB and CB can be 

determined using three time points [5] with a linearized logarithmic equation [6].   

Moreover, sufficient dilution of the saccharification vessel would alleviate the need 

for a fermentation organism.  Both of these changes would further reduce time and 

labor requirements of the assay.         
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 Finally, the assay procedures have only been validated on four feedstocks: 

corn cobs (Zea mays L.), hybrid poplar (Populus x canadensis Moench), kenaf 

(Hibiscus cannabinus L.), and switchgrass (Panicum virgatum L.).   Application of 

the assay on a more extensive population of feedstocks sample would improve its 

validity as standard method for determining biomass feedstock quality.     

The objectives of the study were to evaluate the high throughput 

modifications to the wet-chemistry methods of the carbohydrate availability assay, 

including (i) filter bags with batch sample processing, (ii) neutral detergent fiber for 

cell-wall isolation, (iii) estimation of the digestibility rate constant for the 

biochemically available carbohydrate fraction using natural logarithm linearization 

with three time points, and (iv) elimination of the fermentation organism for cell-wall 

digestion.  With these changes, we sought out to evaluate the high throughput assay 

on diverse feedstock types, including cool-season grasses, warm-season grasses, 

corn residues, and woody materials.        

 

Materials and Methods   

 

Feedstocks 

 

Corn cobs (Zea mays L.), hybrid poplar (Populus x canadensis Moench), kenaf 

(Hibiscus cannabinus L.), and switchgrass (Panicum virgatum L.) were used as 

substrates for comparison of the original and HTP assay methods.  Nineteen 

additional feedstocks were analyzed using the HTP assay.   Species, cultivar, and 
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collection location and date information for all feedstocks in included in Table 4.1.  

All samples were dried at 60°C in a forced air oven for 72 h [7] and ground using a 

Wiley mill (Thomas Scientific Inc., Swedesboro, NJ) fitted with a 1-mm sieve.  Dry 

matter was determined for ground samples by drying 1 g of sample at 103°C in a 

forced air oven for 4 h to make moisture corrections for all laboratory analyses [7].   

 

Original assay procedures  

 

Cellulase (Spezyme CP, Genencor, Rochester, NY; Lot No. 301-05021-011) and 

(Novozyme188, Sigma-Aldrich, St. Louis, MO; Lot No. 037K0698) β-glucosidase 

were used as hydrolytic enzymes and co-fermentator Escherichia coli ATCC 55124 

(KO11) was used as a fermentation organism.  Spezyme CP was assayed at 71 

FPU mL-1 [8] and Novozyme 188 was assayed at 268 CBU mL-1 [9].  

Total-non structural carbohydrates were used to determine CN.   Alcohol 

insoluble residue was prepared by removing cell-soluble materials from the initial 

sample to produce a cell wall isolate suitable for subsequent digestion.  

Biochemically available carbohydrates and kB were determined by digesting the AIR 

using SSCF techniques for periods of 4, 8, 24, 48, 72, and 96 h.  SSCF data was fit 

using the NLIN procedure in SAS [10] to estimate CB and kB using the 

monomolecular model in Equation 3.  Lignin concentration was determined by 

analyzing the AIR for KL with correction for residual ash.  Ash concentration was 

determined by ashing the AIR sample.  CU, CA, and CT were calculated as    

CU = AIR – CKL – Ash  
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CA = TNC + CB 

 CT = CA + CU 

where 

AIR = alcohol insoluble residue (g AIR kg-1 initial DM) 

TNC = total non-structural carbohydrates (g glucose kg-1 initial DM) 

CKL = ash-free, residual AIR concentration after acid digestion (g AIR kg-1 initial DM) 

CAsh = residual AIR after ashing (g AIR kg-1 initial DM) 

The original assay methods are described in Murphy et al. [1].  Total non-

structural carbohydrates were determined according to a modified Guiragossian et 

al. [11] procedure, in which, 0.25 g of sample was refluxed in 0.2 N sulfuric acid for 1 

h.  TNC values were calculated on the basis of grams of glucose per kg sample DM.       

Alcohol insoluble residue samples were prepared by sequentially digesting a 

6-g initial sample with α-amylase, protease, and amyloglucosidase [3].  Following 

enzyme treatment, AIR materials were precipitated and washed using three volumes 

of 80% (v/v) ethanol.  To remove excess ethanol, samples were washed with two 

volumes of deionized water and then freeze-dried.  Between washes, residue was 

allowed to settle for 24 h and the supernatant removed by vacuum suction.  Alcohol 

insoluble residue samples were hydrolyzed and fermented using SSCF procedures 

described by Murphy et al. [12] using enzyme loading rates of 60 FPU g-AIR-1 

Spezyme CP and 2 CBU FPU-1 Novozyme 188 [13].  Alcohol insoluble residue 

samples weighing 0.5 g were loaded into 25 mL DeLong fermentation flasks fitted 

with aluminum closures (Bellco Glass, Vineland, NJ) to maintain anaerobic 

conditions during fermentation.  To the flasks, 1 mL 1.0 M phosphate buffer (pH 5.8), 
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1 mL growth media solution (0.1 g mL-1 tryptone, 0.05 g mL-1 yeast extract, 0.1 g mL-

1 NaCl), and 5 mL deionized water was added and autoclaved at 121°C for 20 min.  

After cooling, 1 mL of enzyme solution, 1 mL of chloramphenicol solution, and 1 mL 

of E. coli inoculum was added aseptically to each flask.  The final 10-mL 

fermentation volume was buffered to pH 6.0 and contained 1% (w/v) tryptone, 0.5% 

(w/v) yeast extract, 1% (w/v) NaCl, and 40 g mL-1 chloramphenicol.  Flasks were 

incubated at 35°C for 4, 8, 24, 48, 72, or 96 h in a shaking water bath at 150 rpm.   

Klason lignin was determined on AIR samples according to the two-step 

sulfuric acid digestion procedure [14].  Alcohol insoluble residue subsamples 

weighing 0.1 g were loaded into 50-mL test tubes and incubated with 1.25 mL of 12 

M sulfuric acid for 1 h at 30°C.  Solutions were diluted to 0.4 M by addition of 35 mL 

of water and autoclaved at 125°C for 1 h.  Klason lignin residues were recovered by 

filtration using pre-weighed glass filter paper, washed with deionized water, and 

dried for 4 h at 103°C.  Klason lignin concentrations were corrected for residual 

mineral concentration by ashing the filters at 550°C for 4 h.  Ash concentrations 

were determined by ashing a 0.5-g subsample of AIR at 550°C for 4 h in pre-

weighed crucibles.  

 

High throughput laboratory assay  

 

A mixture of cellulase (Spezyme CP, Genencor, Rochester, NY; Lot No. 301-05021-

011), xylanase (Multifect xylanase, Genencor, Rochester, NY; Lot No. 301-05357-

223), and β-glucosidase (Novozyme 188, Sigma-Aldrich, St. Louis, MO; Lot No. 
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037K0698) enzymes were used as saccharification enzymes.  All enzymes were 

applied in excess [15] in the high throughput assay, so that enzyme availability did 

not limit cell-wall digestibility in the samples. 

As with the original methods, CN was determined using the TNC procedure.  

Neutral detergent fiber was used as the cell-wall isolation procedure.  Preliminary 

experiments were conducted to compare enzymatic hydrolysis of NDF samples of 

the four comparison feedstocks with and without a fermentation organism (E. coli 

KO11) using the following procedures.  We found that at a solids loading rate of 

1.5% (w/v) enzyme inhibition did not occur and that the availability rate constant for 

CB, kB, was most accurately estimated for the four feedstocks in the incubation 

period between 0 and 4 h (unpublished data). Consequently, NDF samples were 

hydrolyzed using a mixture of cell-wall degrading enzymes for 4 or 96 h to estimate 

CB and kB:    

CB = C0 – C96 

kB = [ln (C0 – C96) – ln (C4 – C96)] / (4 – 0) 

where 

Co = NDF concentration (g NDF kg-1 initial DM) 

C4 = residual NDF concentration following 4 h of enzymatic digestion (g NDF kg-1 

initial DM) 

C96 = residual NDF concentration following 96 h of enzymatic digestion (g NDF kg-1 

initial DM) 

Neutral detergent fiber samples were also digested with concentrated sulfuric 

acid to determine neutral detergent lignin (NDL) concentration following by ashing to 
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adjust for the residual cell-wall ash concentration.  Neutral detergent lignin, total 

available carbohydrates (CA), unavailable carbohydrates (CU), and total 

carbohydrates (CT) were calculated as  

NDL = CNDL – CAsh   

 CA = CN + CB 

CU = C0 – CNDL 

 CT = CN + CB + CU 

where 

CNDL = residual NDF concentration after acid digestion (g NDF kg-1 initial DM) 

CAsh = residual NDF concentration after acid digestion and ashing (g NDF kg-1 initial 

DM) 

TNC = total non-structural carbohydrates (g glucose kg-1 initial DM) 

All sample analyses were done in duplicate following the laboratory 

procedures in Figure 4.2.  Total non-structural carbohydrates were determined using 

the same procedure as in the original assay methods.  Neutral detergent fiber was 

completed using the filter bag method [2] with the ANKOM fiber system [16].  After 

the final hot water wash, NDF samples intended for lignin and ash analysis were 

dehydrated with acetone and dried at 103°C for 4 h before being reweighed.  The 

NDF samples for enzymatic hydrolysis were allowed to cool in the fiber analyzer for 

5 min and aseptically transferred into a saccharification flask.  Saccharification flasks 

consisted of 1-L DeLong flasks fitted with aluminum closures (Bellco Glass, 

Vineland, NJ).  To the flasks, 80 mL of 1.0 M phosphate buffer (pH 5.8) and 680 mL 

of deionized water were added and autoclaved at 121°C for 20 min.  Prior to addition 
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of the NDF samples, flasks were warmed to 35°C in a hot water bath.  After addition 

of the NDF samples, 2 mL of Spezyme CP, 1 mL of Multifect Xylanase, and 0.1 mL 

of Novozyme 188 per sample were added to flasks and the flasks swirled to mix the 

samples and enzyme solutions.  The total working volume of the saccharification 

flask was approximately 800 ml buffered to pH 6.0.  Flasks were incubated at 35°C 

in a shaking water bath for 4 or 96 h at 100 rpm.  After digestion, filter bags were 

washed with deionized water to removed solublized materials, dehydrated with 

acetone, and dried at 103°C for 4 h before being reweighed. 

Neutral detergent lignin was completed on the NDF residues according to the 

ANKOM method [17].  Each batch of filter bags was incubated in 500 mL of 72% 

sulfuric acid (12 M) for 3 h at room temperature.  After digestion, filter bags were 

washed with deionized water to removed solublized materials, dehydrated with 

acetone, and dried at 103°C for 4 h before being reweighed.  Ash concentration was 

determined by ashing the NDL residues at 550°C for 4 h in a muffle furnace and 

used to correct NDL values for residual ash.    

   

Statistical analysis  

 

Statistical analysis was done using SAS software [10].  The significance of the 

effects of assay procedures (original versus high throughput) and feedstock type 

was analyzed for all model parameters using the general linear procedure.  Contrast 

statements were used to further analyze differences between assay procedures 
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within each feedstock.  All comparisons were determined to be significant at p < 

0.05.   

 

Results and Discussion  

 

Comparison of assay methods 

 

Parameter values for corn cobs, hybrid poplar, kenaf, and switchgrass analyzed 

using the original and throughput assay methods are displayed in Table 4.2.  Non-

structural carbohydrate values were not different between the assays.  Because both 

methods used the same TNC procedure to determine CN, this result was entirely 

expected.  Biochemically available carbohydrates increased from the original to the 

HTP methods for the corn cobs, hybrid poplar, and switchgrass, but remained the 

same for the kenaf.  Biochemically available carbohydrates increased from 344 to 

702 g kg-1 DM in the corn cobs, from 34 to 57 g kg-1 DM in the hybrid poplar, and 

from 85 to 273 g kg-1 DM in the switchgrass.  The availability rate constant for CB, kB, 

ranged from 0.071 to 0.415 h-1 with the original methods and from 0.131 to 0.256 h-1 

with the HTP methods.  Though kB values changed considerably between to the two 

methods, there were no significant differences in kB between the methods among 

the four feedstocks.  The coefficient of variation (CV) of kB in the original methods, 

estimated by model fitting a series of digestion values, was 26.1.  The natural 

logarithm linearization used in the HTP methods reduced the CV to 11.9.  Total 

available carbohydrates increased and CU decreased with the HTP methods in the 
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corn cobs and switchgrass and remained the same in the hybrid poplar and kenaf.  

There was no difference in CT and lignin concentrations decreased in all feedstocks 

between the two methods. 

 Both methods quantified total carbohydrate and total non-carbohydrate pools 

similarly; however, there was shift in dry matter partitioning within both pools 

between the two assay methods.  The proportion of total carbohydrates that is 

biochemically available increased with the HTP method, presumably due to the 

pretreatment effects of the cell wall isolation methods used.  The NDF and AIR 

procedures function as low-intensity biomass pretreatment methods.  Because of the 

combination of longer treatment times at higher temperatures and the presence of 

stronger hydrolytic reagents in the NDF procedure, pretreatment intensity is greater 

in the NDF procedure than the AIR procedure.  As a result, it would be expected that 

the CB concentration would be greater in the HTP methods – using NDF – than the 

original methods – using AIR – and our results largely support this reasoning.   

The fraction of cell-wall carbohydrates susceptible to enzymatic hydrolysis in 

the kenaf was unchanged with increasing pretreatment intensity, suggesting the 

kenaf cell-wall is less responsive to increased pretreatment intensity than other 

feedstock species.  Absence of a change in CB concentration with kenaf is possibly 

related to the bast and core fiber composition of the kenaf canes [18] and the high 

syringl to guaicyl lignin ratio of the bast fiber [19], which has been suggested to limit 

hydrolysis of cell wall polysaccharides [20].   This leads to kenaf being a high-quality 

fiber crop [21], but perhaps a poor model feedstock for biomass quality methods 

development.   
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In the non-carbohydrate pool, there was a shift in dry matter from lignin to 

extractives (non-carbohydrate, non-lignin constituents) between the original and 

HTP methods.  Neutral detergent lignin values were lower that KL values most likely 

a result of the solublilization of lignin components [22] due to the use of sodium 

sulfite in the NDF method [23].   

 The HTP assay methods required considerably less time to analyze the 23 

feedstock samples than it took to analyze the four initial samples with the original 

assay methods.  Complete analysis of the four feedstocks, in triplicate, using the 

original methods took approximately 3 months, whereas analysis of all 23 

feedstocks, in duplicate, using the HTP methods took 7 days.  Admittedly, the HTP 

assay requires a fiber analyzer at cost of $5000, but this investment can easily be 

recovered through a reduction in analysis time and savings in labor.  

   The feedstocks were characterized similarly in both procedures, but with 

considerably time savings using HTP methods.  As such, the HTP assay is the 

preferred methodology to analyze the quality of biomass feedstocks for biochemical 

conversion according the carbohydrate availability model [1].     

 

Comparison of feedstock types 

 

A total of 23 feedstocks, grouped into corn residues, cool-season grasses, warm-

season grasses, sugar-crop, fibrous dicots, legume, and woody materials, were 

analyzed using the HTP assay methods (Table 4.3).  Box plots for CN, CB, kB, CA, 

CU, and lignin for the corn residues, cool-season grasses, warm-season grasses and 
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wood materials are displayed in Figure 4.3.  Of these four feedstock groups, 

variability was generally the highest in the corn residues and the lowest in the woody 

materials.  The corn residues, cool-season grasses, and warm-season grasses had 

higher CN, CB, and CA concentrations and lower CU concentrations than the woody 

materials.  There was limited variability in kB across feedstocks types.  Neutral 

detergent lignin was higher in the woody materials; however, NDL concentrations in 

the miscanthus and switchgrass fell within the range of the woody materials.  The 

miscanthus was harvested in the early spring, following overwintering, which causes 

soluble plant constituents to be leached and indigestible cell-wall components, such 

as lignin, to be concentrated.  The switchgrass was harvested in November 2006 

from a similar location as the big bluestem, eastern gamagrass, and indiangrass 

harvested in September 2007.  The higher lignin concentration in the switchgrass is 

likely linked to anatomical and morphological differences between the samples [20], 

as a result of the later harvest date.     

Though the feedstocks analyzed represent a single sample, most of which 

were grown in different environments and harvested at slightly different maturities, 

the corn cobs and husks appear to be the most suitable feedstocks for biochemically 

conversion, due to their comparatively high CB concentrations.       
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Figure 4.1. Carbohydrate availability model for lignocellulosic biomass feedstocks. 
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12 M  H2SO4 for 3h; Wash 
with hot water and acetone 

Ash at 550 °C for 4 h  
96-h Saccharification 

Residue
Ash  

Figure 4.2. Overview of laboratory procedures for carbohydrate availability assay 
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Table 4.1. Description of lignocellulosic biomass feedstocks analyzed using carbohydrate 

availability assay.    

Feedstock Scientific name Location 
Harvest/collection 

date  
Corn residues     
Corn cobs Zea mays L. 'Pioneer 34A20'  Ames, IA Sept. 2007 
Corn fiber  Zea mays L. ADM, Decatur, IL Mar. 2007 
Corn husks Zea mays L. 'Pioneer 34A20'  Ames, IA Sept. 2007 
Corn leaves Zea mays L. 'Pioneer 34A20'  Ames, IA Sept. 2007 
Corn stalks Zea mays L. 'Pioneer 34A20'  Ames, IA Sept. 2007 
Corn stover Zea mays L. 'Pioneer 34A20'  Ames, IA Sept. 2007 
Cool-season 
grasses  

   

Reed canarygrass Phalaris arundinacea L.  Ames, IA Oct. 2007 
Tall fescue Festuca arundinacea Schreb. Ames, IA Oct. 2004 
Warm-season 
grasses 

   

Big bluestem Andropogon gerardii Vitman 'Rountree' Ames, IA Sept. 2007 
Eastern gamagrass Tripsacum dactyloides (L.) L. 'Pete'  Ames, IA Sept. 2007 
Indiangrass Sorghmastrum nutans (L.) Nash 

'Rumsey 54' 
Ames, IA Sept. 2007 

Miscanthus Miscanthus x giganteus Monticello, IL Apr. 2007 
Switchgrass Panicum virgatum L. 'Cave-in-Rock' Ames, IA Nov. 2006 
Sugar-crop     

Sweet sorghum Sorghum bicolor (L.) Moench 'Topper 76' Ames, IA Sept. 2007 
Fibrous dicots    

Amaranth Amaranthus cruentus L.  Ames, IA Sept. 1998 
Kenaf Hibiscus Cannabinus L. 'Tainung 2'  Ames, IA Nov. 2006 
Legume    

Forage soybean Glycine max (L.) Merr.  Ames, IA Sept. 2001 
Woody materials     
Black alder Alnus glutinosa (L.) Gaertn Ames, IA Mar. 2008 
Eastern cottonwood Populus deltoides Marshall 'ISU 91x04-

03' 
Ames, IA Dec. 2006 

Hybrid poplar Populus x canadensis Moench 'Eugenei' Ames, IA Dec. 2006 
Hybrid willow  Salix matsudana x alba 'Austree' Ames, IA Mar. 2008 
Silver maple Acer saccharinum L.  Ames, IA Mar. 2008 
White aspen  Populus alba L. 'ISU 2106' Ames, IA Mar. 2008 
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Table 4.2. Comparison of carbohydrate availability model parameter values for original and 

high throughput biomass assay methods.   

  Original methods using Alcohol Insoluble Residue 

Feedstock CN
a CB    kB CA  CU CT KL 

 —— g kg-1 DM —— h-1 ———————— g kg-1 DM ———————— 

Corn cobs 172 344 0.07 517 419 935 139 

Hybrid poplar 27 34 0.41 61 641 701 244 

Kenaf 37 118 0.42 154 578 732 167 

Switchgrass 102 85 0.20 187 561 748 191 

SEb 3.7 2.2 0.041 3.6 2.9 3.9 3.3 

CVc 7.6 2.6 26.1 2.7 0.9 0.9 3.0 
 High throughput methods using Neutral Detergent Fiber 

 CN  CB    kB  CA  CU CT NDLd 

 —— g kg-1 DM —— h-1 ———————— g kg-1 DM ———————— 

Corn cobs 169 702 0.23 871 77 948 72 

Hybrid poplar 20 57 0.23 77 631 709 174 

Kenaf 32 121 0.26 152 590 743 76 

Switchgrass 97 273 0.13 371 397 768 105 

SE 10.2 5.7 0.018 11.1 8.1 10.9 3.6 

CV 18.1 2.8 11.9 4.3 2.7 1.9 4.8 

 % Change in parameter values from original methods to high throughout methods 

Corn cobs -2 +104*** +220 +69*** -82*** +1 -49*** 

Hybrid poplar -24 +68** -45 +27 -1 +1 -29*** 

Kenaf -14 +3 -38 -1 +2 +1 -54*** 

Switchgrass -4 +222*** -33 +99*** -29*** +3 -45*** 
a CN = Non-structural carbohydrates, CB = Biochemically available carbohydrates, kB = Rate constant for CB, CA 
= Total available carbohydrates, CU = Unavailable carbohydrates, CT = Total carbohydrates, KL = Klason lignin 
b Standard error of the mean 
c Coefficient of variation  
d NDL = Neutral detergent lignin 
*,**,*** Significant at the 0.05, 0.01, and 0.001 probability level, respectively 
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Table 4.3. Carbohydrate availability model parameter values for various feedstocks.   

Feedstock CN
a

  CB    kB  CA  CU CT NDL 

 —— g kg-1 DM —— h-1 ———————— g kg-1 DM ———————— 

Corn residues         
Corn cobs 169 702 0.23 871 77 948 72 
Corn fiber  274 264 0.17 538 292 830 21 
Corn husks 162 729 0.24 891 66 957 36 
Corn leaves 102 521 0.23 623 125 748 42 
Corn stalks 58 332 0.22 390 394 784 95 
Corn stover 102 509 0.22 610 209 819 59 
Cool-season grasses         
Reed canarygrass 90 327 0.17 416 155 571 87 
Tall fescue 124 459 0.16 583 48 631 41 
Warm-season grasses        
Big bluestem 92 401 0.16 492 301 793 91 
Eastern gamagrass 93 454 0.17 547 184 731 88 
Indiangrass 109 385 0.20 494 287 781 67 
Miscanthus 59 259 0.15 318 478 796 129 
Switchgrass 97 273 0.13 371 397 768 105 
Sugar-crop         
Sweet sorghum 207 203 0.23 410 181 591 57 
Fibrous dicots        
Amaranth 107 154 0.29 261 259 520 72 
Kenaf 32 121 0.26 152 590 743 76 
Legume        
Forage soybean 70 218 0.30 289 129 417 99 
Woody materials         
Black alder 49 64 0.21 113 626 739 129 
Eastern cottonwood 28 50 0.18 78 675 753 136 
Hybrid poplar 20 57 0.23 77 631 709 174 
Hybrid willow  33 72 0.21 105 651 756 130 
Silver maple 33 72 0.24 105 722 827 110 
White aspen  33 83 0.19 116 659 775 96 

SEb 5.7 6.4 0.032 8.1 6.7 6.8 3.1 
a CN = Non-structural carbohydrates, CB = Biochemically available carbohydrates, kB = Rate constant for CB, CA = 
Total available carbohydrates, CU = Unavailable carbohydrates, CT = Total carbohydrates, NDL = Neutral 
detergent lignin 
b Standard error of the mean 
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Figure 4.3. Comparison of quality parameters for corn residues, cool-season grasses, warm-

season grasses and woody materials.
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Abstract  

 

Near infrared reflectance spectroscopy (NIRS) has been used extensively in the 

forage industry for rapid measurement of forage constituents and could be useful for 

determining quality of biomass feedstocks at the point of delivery.  We evaluated the 

variability of biomass quality parameters in a set of corn stover samples and 

developed calibration equations for determining parameter values using NIRS.  Fifty-

two corn stover samples harvested in Iowa and Wisconsin in 2005 and 2006 were 
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analyzed using a high throughput assay for determining feedstock quality for 

biochemical conversion.  Non-structural carbohydrates ranged from 84 to 155 g kg-1 

dry matter (DM), biochemically available carbohydrates (CB) ranged from 354 to 557 

g kg-1 DM, availability rate constant of CB ranged from 0.199 to 0.330 h-1, total 

available carbohydrates ranged from 463 to 699 g kg-1 DM, and neutral detergent 

lignin ranged from 32 to 74 g kg-1 DM.  Significant differences (P<0.0001) among 

samples were observed for all parameters, except for the availability rate constant of 

CB.  Near infrared reflectance spectroscopy calibration equations were developed for 

cell-soluble carbohydrates, biochemically available carbohydrates, total available 

carbohydrates, unavailable carbohydrates, total carbohydrates, and neutral 

detergent lignin.  It was not possible to generate a meaningful calibration equation 

for the availability rate constant of CB.  There is significant variability within the corn 

stover population for several key quality-related carbohydrate and lignin constituents 

which can be predicted reliably using NIRS.                   

 

Keywords Biomass, Lignocellulosic feedstock, Feedstock quality, Near infrared 

reflectance spectroscopy  

 

Abbreviations  

HTP     high throughput 

NIRS      near infrared reflectance spectroscopy 

DM          dry matter 

TNC        total non-structural carbohydrates 
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NDF        neutral detergent fiber 

NCNDE   non-carbohydrate neutral detergent extractives 

MPLS      modified partial least squares  

bm3         brown midrib-3 

SEC        standard error of calibration
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Introduction 

 

Development of a system for determining quality of lignocellulosic biomass for 

biochemical conversion to fuels –i.e., pretreatment followed by enzymatic hydrolysis 

and fermentation– requires: (i) quality parameters that can be correlated to process 

data and (ii) high throughput (HTP) methods to precisely determine quality 

parameter values.  

The carbohydrate availability model (Figure 5.1) developed by Murphy et al. 

[1] provides a conceptual framework for evaluating the quality of feedstocks for 

biochemical conversion.  An assay was developed by Murphy et al. [1] to determine 

the model quality parameters and further refined for high throughput screening of 

feedstock samples [2].  These assay methods are applicable for screening large 

sample sets in the research environment where determination of quality parameters 

in a period in days or weeks is acceptable.  However, determining quality of 

feedstocks at delivery to a biorefinery would require that quality parameters be 

measured in a matter of minutes.  This would allow incoming lots (e.g., truckloads, 

bales, modules) of materials to be sorted and blended into a consistent quality 

product stream as it is conveyed into the biorefinery for processing [3].     

 Near infrared reflectance spectroscopy (NIRS) has been applied extensively 

for rapid measurement of constituents in a range of biological products, including 

cereal and oilseed grains, forage and feedstuffs, fruits and vegetables, dairy 

products, meats, timber and paper, wool, and soils [4].  NIRS has been successfully 

used to measure moisture, nitrogenous compounds, carbohydrates, fiber 
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constituents, lignin, ash, and digestibility on a range of forage and feedstuffs, 

including several proposed biomass feedstocks –corn (Zea mays L.) stover and 

switchgrass (Panicum virgatum L.) [5].  Real-time knowledge of feedstuffs 

composition and digestibility using NIRS allows for continual adjustment of livestock 

rations to maximize production, analogous to blending biomass lots to maintain a 

consistent process feedstock.   

Significant variability in quality parameter values from the carbohydrate 

availability model has been documented across a range of biomass feedstock types 

[2].  Sufficient variability in constituent values within samples of a single feedstock 

type is necessary for development of robust NIRS calibration equations.  The 

objectives of this study were to evaluate the variability of quality parameters for a set 

of corn stover samples and to determine which, if any, parameter values could be 

predicted using NIRS.     

 

Materials and Methods 

 

Feedstocks  

 

Corn stover samples were obtained from a larger collaborative field experiment 

between Iowa State University and the University of Wisconsin – Madison conducted 

in 2005 and 2006.  A total of 28 genetically diverse hybrids, breeding populations, 

and population crosses, all originating from elite corn germplasm, were selected for 

this study.  Iowa samples were grown at Ames and Ankeny, IA in 2005 and at Ames 
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and Belmond, IA in 2006.  Wisconsin samples were grown at Arlington and Madison, 

WI in 2005 and 2006.  All corn entries were grown in triplicate at each location in 

each year.  After manual removal of corn ears, plots were harvested with a modified 

silage chopper, subsampled, and dried at 38°C for 96 h.  Samples were ground 

using a cyclone mill (UDY Corporation, Fort Collins, CO) to pass a 1-mm sieve.  

Composite samples of the ground material were made by combining 2 g of each of 

the six samples from each location (Iowa and Wisconsin) in each year (2005 and 

2006) for a total of 52 samples.  Dry matter (DM) was determined for ground 

samples by drying 1 g of sample at 103°C in a forced air oven for 4 h to make 

moisture corrections for all laboratory analyses [6].   

 

Quality Analysis 

 

Quality parameters were determined using a high throughput assay developed by 

Murphy et al. [2].  Non-structural carbohydrates (CN) were determined using the total 

non-carbohydrates (TNC) procedure.  Neutral detergent fiber (NDF) was used as a 

cell-wall isolation procedure.  NDF samples were subjected to enzymatic hydrolysis 

using a mixture of cell-wall degrading enzymes for 4 or 96 h to estimate 

biochemically available carbohydrates (CB) and its rate availability rate constant, 

(kB):    

CB = C0 – C96 

kB = [ln (C0 – C96) – ln (C4 – C96)] / (4 – 0) 

where 
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Co = NDF concentration (g NDF kg-1 initial DM) 

C4 = residual NDF concentration following 4 h of enzymatic digestion (g NDF kg-1 

initial DM) 

C96 = residual NDF concentration following 96 h of enzymatic digestion (g NDF kg-1 

initial DM) 

NDF samples were also digested with sulfuric acid to determine neutral 

detergent lignin (NDL) concentration following by ashing to adjust for the residual 

cell-wall ash concentration.  Neutral detergent lignin, total available carbohydrates 

(CA), unavailable carbohydrates (CU), and total carbohydrates (CT) were calculated 

as  

NDL = CNDL – CAsh   

 CA = CN + CB 

CU = C0 – CNDL 

 CT = CN + CB + CU 

where 

CNDL = residual NDF concentration after acid digestion (g NDF kg-1 initial DM) 

CAsh = residual NDF concentration after acid digestion and ashing (g NDF kg-1 initial 

DM) 

 

Laboratory Procedures  

 

Samples were analyzed using a randomized complete block design with two 

replications.  The NDF procedure we used is limited to a total of 24 samples per 
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batch, so the 52 samples were split randomly into three batches for each type of 

analysis (NDF, NDF + 4h saccharification, and NDF+ 96 h saccharification) and 

replication.  Two samples were run in duplicate so that each batch had an equal 

number of samples.  High-digestibility brown midrib and lower-digestibility wild-type 

corn stover samples [7] were added to each batch for quality control and a blank bag 

was added to correct for changes in bag weight during analysis procedures for a 

total of 21 bags per batch.   

Total non-structural carbohydrates were determined according to a modified 

procedure of Guiragossian et al. [8], in which, 0.125 g of sample was refluxed in 25 

mL of 0.2 N sulfuric acid for 1 h followed by filtering through Whatman No. 42 filter 

paper.   To a 1-mL aliquot of the filtrate diluted by a factor of 20, 1 mL of 5% phenol 

solution and 5 mL of 18 M sulfuric acid were added, and the solution’s absorbance 

was measured at 490 nm.  TNC values were determined using a glucose reference 

calibration and calculated on the basis of grams of glucose per kg sample DM.       

Neutral detergent fiber was completed using the filter bag method [9] with the 

ANKOM fiber system [10].  After the final hot water wash, NDF samples intended for 

lignin and ash analysis were dehydrated with acetone and dried at 103°C for 4 h 

before being reweighed.  NDF samples for enzymatic hydrolysis were allowed to 

cool in the fiber analyzer for 5 min and aseptically transferred into a saccharification 

flask.  Saccharification flasks consisted of 1-L DeLong flasks fitted with aluminum 

closures (Bellco Glass, Vineland, NJ).  To the flasks, 70 mL of 1.0 M phosphate 

buffer (pH 5.8) and 595 mL of deionized water were added and autoclaved at 121°C 

for 20 min.  Prior to addition of the NDF samples, flasks were warmed to the 
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temperature for saccharification of 35°C in a hot water bath. All enzymes were 

applied in excess, so that enzyme availability did not limit cell-wall hydrolysis in the 

samples.  After addition of the NDF samples, 2 mL of Spezyme CP (Genencor, 

Rochester, NY; Lot No. 301-05021-011), 1 mL of Multifect Xylanase (Genencor, 

Rochester, NY; Lot No. 301-05357-223), and 0.1 mL of Novozyme 188 (Sigma-

Aldrich, St. Louis, MO; Lot No. 037K0698) per sample were added to flasks and the 

flasks swirled to mix the samples and enzyme solutions.  All enzymes were applied 

in excess, so that enzyme availability did not limit cell-wall hydrolysis in the samples.  

The total working volume of saccharification was approximately 700 ml buffered to 

pH 6.0.  Flasks were incubated at 35°C in shaking water bath for 4 or 96 h at 100 

rpm.  After digestion, filter bags were washed with deionized water to removed 

solublized materials, dehydrated with acetone, and dried at 103 °C for 4 h before 

being reweighed. 

Neutral detergent lignin was completed on NDF residues according to the 

ANKOM method [11].  Each batch of filter bags was incubated in 500 mL of 72% 

sulfuric acid (12 M) for 3 h at room temperature.  After digestion, filter bags were 

washed with deionized water to remove solublized materials, dehydrated with 

acetone, and dried at 103°C for 4 h before being reweighed.  Ash concentration was 

determined by ashing the NDL residues at 550°C for 4 h in a muffle furnace and 

used to correct NDL values for residual ash.    
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Near infrared reflectance spectroscopy 

 

Ground samples were scanned in triplicate using a Foss NIRSystems 6500 

Spectrophotometer (NIRSystems, Silver Springs, MD) from 400 to 2500 nm at 2 nm 

intervals.  Scans were averaged and calibration equations developed by modified 

partial least squares (MPLS) using reference wet-chemistry values for all quality 

parameters.  Calibration equations were evaluated and validated using six-sample 

subsets with cross validation to prevent over fitting.  Calibration equations were 

selected according to procedures described by Windham et al. [12]. 

   

Statistical analysis  

 

Statistical analysis was done using SAS software [13].  Differences among corn 

stover samples within each quality parameter were assessed using the general 

linear procedure.  All comparisons were determined to be significant at p < 0.05.   

 

Results  

 

Model parameter values for all corn stover samples are presented in Table 5.1.  

Differences among corn stover samples were observed in all parameters 

(P<0.0001), with exception of kB (P=0.17).  Non-structural carbohydrates ranged 

from 84 to 155 g kg-1 DM, CB ranged from 354 to 557 g kg-1 DM, kB ranged from 

0.199 to 0.330 h-1, CA ranged from 463 to 699 g kg-1 DM, and NDL ranged from 32 to 
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74 g kg-1 DM.  The sample set contains eight brown midrib-3 (bm3) samples, which 

purport to have lower lignin concentrations and a higher carbohydrate bioavailability 

[7].  The bm3 samples generally had higher CB and CA concentrations and lower 

NDL concentrations than the non-bm samples across the four environments in this 

study. 

 Near infrared reflectance spectroscopy calibration equations were developed 

for all parameters.  Calibration statistics for each quality parameter are presented in 

Table 5.2 and regressions of NIRS predicted and actual parameter values are 

displayed in Figure 5.2.  Performance of the calibration equations was evaluated 

using the coefficient of determination (r2), bias, and slope of the regression.  Control 

limits for evaluation criteria are: (i) the absolute value of the bias can not exceed 0.6 

times the standard error of calibration (SEC), (ii) the r2 value is greater than 0.8, and 

(iii) the slope of regression line is between 0.95 and 1.05 [12,14].   Equations for CN, 

CB, CA, CU, CT, and NDL met all criteria.   The equation for kB did not satisfy the 

control limits for any evaluation criteria.    

 

Discussion 

 

Lack of an observed difference in kB for this group of corn stover samples is a result 

of the relatively narrow range (0.199-0.330 h-1) of values and the comparatively high 

error associated with measuring kB.  Murphy et al. [2] observed a range of kB values 

from 0.131 to 0.301 h-1 for a group of 23 biomass feedstocks using the same assay 

procedures.  The range in kB values for the corn stover samples was only slightly 
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less than the range for the group of biomass feedstocks, suggesting the methods 

used to determine kB are only precise enough to detect large differences between 

biomass feedstocks samples.    

  Suitable calibration equations were developed for all parameters directly 

related to organic constituents: extractives, CN, CB, CA, CU, CT, and NDL.  The 

availability rate constant of CB is based on temporal changes in an organic 

constituent group and could, presumably, be measured using NIRS just as 

digestibility kinetics are measured in forages [5].   

Prior NIRS studies of biomass feedstocks have focused on compositional 

analysis [3,15].  Compositional analysis provides extensive data on the carbohydrate 

makeup of a biomass sample; it does not indicate the availability of structural 

carbohydrate, specifically glucan and xylan, for hydrolysis and fermentation.  This is 

a result of the differences in the structural features of plant cell wall materials, 

including specific surface area, cellulose crystallinity, cellulose reactivity, degree of 

polymerization, lignin content, and degree of acetylation [16,17,18].  The constituent 

groups quantified by our biomass quality assay [2] partition sample dry matter both 

on the basis of compositional group – carbohydrates and lignin – and availability for 

biochemical conversion – non-structural carbohydrates, biochemically available 

carbohydrates, total available carbohydrates, and unavailable carbohydrates.   

The sample set used in this study represents a finite population; however, 

because of the inclusion of highly digestible genotypes, including several bm 

hybrids, this population represents a large portion of the population of corn stover 

samples.  The calibration equations developed are not applicable over the full range 
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of corn stover samples, but it has been demonstrated that NIRS calibration 

equations could be developed to rapidly measure quality parameters of corn stover, 

as well as other feedstock types.  Expansion of the calibration sample set to include 

corn stover samples from diverse environments would improve greatly the 

applicability and robustness of the calibration equations.     

These results indicate that there is significant variability within the corn stover 

population for several quality-related carbohydrate and lignin constituents, and that 

the concentration of these constituents can be predicted reliably using NIRS. 
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Figure 5.1. Carbohydrate availability model for lignocellulosic biomass feedstocks. 
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Table 5.1. Carbohydrate availability model parameter values for corn stover from corn 

genotypes grown in Wisconsin and Iowa in 2005 and 2006.    

Entry Location  Year CN 
a CB    kB  CA  CU CT NDL 

   — g kg-1 DM — h-1 —————— g kg-1 DM —————— 

W64A X A619 WI 2005 109 466 0.22 575 175 750 52 
W64A X A619 bm3 WI 2005 155 544 0.29 699 54 753 32 
WQS C3 Syn2 WI 2005 140 476 0.24 617 146 763 41 
WQS C3 X HC33 WI 2005 121 476 0.25 597 188 785 51 
W601S X LH244 WI 2005 91 501 0.23 592 192 785 47 
W602S X LH198 WI 2005 120 503 0.26 623 187 810 51 
W603S X LH227 WI 2005 106 487 0.28 593 218 811 58 
W604S X TR7245 WI 2005 111 490 0.20 602 193 794 50 
W605S X HC33 WI 2005 109 490 0.24 599 208 807 56 
LH227 X LH279 WI 2005 110 502 0.25 612 209 821 58 
DK5143 WI 2005 109 493 0.23 603 201 804 54 
Mycogen F697 (bm3) WI 2005 118 557 0.27 675 71 745 37 
W64A X A619 WI 2006 126 369 0.29 495 168 663 54 
W64A X A619 bm3 WI 2006 132 520 0.30 653 62 714 40 
WQS C3 Syn2 WI 2006 131 399 0.33 530 179 709 52 
WQS C3 X HC33 WI 2006 119 406 0.24 524 196 720 59 
W601S X LH244 WI 2006 103 423 0.23 526 232 758 59 
W602S X LH198 WI 2006 113 439 0.24 552 208 760 63 
W603S X LH227 WI 2006 86 427 0.24 513 250 763 71 
W604S X TR7245 WI 2006 121 405 0.28 526 212 737 53 
W605S X HC33 WI 2006 120 384 0.27 503 201 705 59 
LH227 X LH279 WI 2006 96 411 0.28 507 254 762 68 
DK5143 WI 2006 84 436 0.23 519 242 761 62 
Mycogen F697 (bm3) WI 2006 118 519 0.26 637 69 706 43 
W64A X A619 IA 2005 108 404 0.23 512 252 765 66 
W64A X A619 bm3 IA 2005 128 489 0.29 617 120 737 46 
WQS C3 Syn2 IA 2005 113 433 0.30 546 213 758 60 
WQS C3 X HC33 IA 2005 106 381 0.24 487 269 755 68 
W601S X B126 IA 2005 124 442 0.31 567 221 788 54 
W602S X SGI912 IA 2005 113 411 0.23 523 230 753 62 
W603S X B129 IA 2005 104 410 0.23 514 234 748 66 
W604S X TR7245 IA 2005 126 396 0.25 522 247 769 59 
Renk 232  IA 2005 123 404 0.27 527 226 753 61 
B73 X Mo17 IA 2005 98 377 0.29 475 284 759 74 
B129 X TR7322 IA 2005 98 394 0.24 492 244 736 73 
BS31(R)C0 X B116 IA 2005 113 376 0.26 488 241 730 72 
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BS31(R)C2 X B116 IA 2005 98 400 0.26 497 259 757 72 
Mycogen F697 (bm3) IA 2005 108 524 0.28 631 128 760 46 
W64A X A619 IA 2006 119 370 0.29 489 228 717 56 
W64A X A619 bm3 IA 2006 115 503 0.25 618 96 714 40 
WQS C3 Syn2 IA 2006 134 377 0.27 510 206 716 48 
WQS C3 X HC33 IA 2006 115 377 0.32 493 234 727 54 
W601S X B126 IA 2006 94 369 0.27 463 270 733 58 
W602S X SGI912 IA 2006 126 385 0.28 511 211 722 54 
W603S X B129 IA 2006 131 393 0.28 524 179 702 65 
W604S X TR7245 IA 2006 121 355 0.22 476 214 690 53 
Renk 232  IA 2006 101 435 0.29 536 214 749 70 
B73 X Mo17 IA 2006 108 373 0.28 481 250 732 64 
B129 X TR7322 IA 2006 110 364 0.24 474 210 684 70 
BS31(R)C0 X B116 IA 2006 113 357 0.25 470 230 700 62 
BS31(R)C2 X B116 IA 2006 123 354 0.26 477 211 688 57 
Mycogen F697 (bm3) IA 2006 133 485 0.30 618 113 731 41 
    SEb 6.0 6.3 0.03 8.9 5.8 8.4 3.2 
a CN = Non-structural carbohydrates, CB = Biochemically available carbohydrates, kB = Rate constant for CB, CA = 
Total available carbohydrates, CU = Unavailable carbohydrates, CT = Total carbohydrates, NDL = Neutral 
detergent lignin 
b Standard error of the mean 
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Table 5.2. Near infrared reflectance spectroscopy (NIRS) calibration results for corn stover 

from genotypes grown in Wisconsin and Iowa in 2005 and 2006. 

Parameter CN 
a CB    kB  CA  CU CT NDL 

 ——— g kg-1 DM ———— h-1 —————————— g kg-1 DM —————————— 

Math treatment ————————————————— 1, 4, 4, 1 ——————————————— 

Mean  115 432 0.265 546 197 745 6 

Range 87 - 155 354 - 557 0.20 - 0.30 463 - 699 54 - 284 663 - 821 32 - 74 

Stdevb 13.9 57.2 0.048 60.4 55.8 35.3 10.0 

SELc  6.0 6.3 0.025 8.9 5.8 8.4 3.2 

SECd 4.8 13.9 0.044 11.7 12.2 8.4 2.3 

SECVe 5.5 16.6 0.049 18.1 15.2 11.4 3.2 

R2 0.880 0.941 0.146 0.963 0.952 0.944 0.948 

F value 11.0 5.2 9.2 16.6 7.5 17.6 8.9 

1-VRf 0.862 0.917 0.006 0.913 0.929 0.895 0.903 
a CN = Non-structural carbohydrates, CB = Biochemically available carbohydrates, kB = Rate constant for CB, CA = 
Total available carbohydrates, CU = Unavailable carbohydrates, CT = Total carbohydrates, NDL = Neutral 
detergent lignin 
b Standard deviation 
c Standard error of laboratory results 
d Standard error of calibration 
e Standard error of cross-validation 
f Ratio of unexplained variance to total variance 
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Figure 5.2. Correlations between actual values from the carbohydrate availability assay and 

predicted values from near infrared reflectance spectroscopy (NIRS) calibration equations 

for corn stover samples grown in Iowa and Wisconsin in 2005 and 2006.  
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Chapter 6. 

General Conclusions  

 

The primary focus of my research was to develop a system for screening 

lignocellulosic biomass feedstocks for biochemical conversion to biofuels.  

Development of this screening system was completed sequentially: initially, a 

series of parameters were developed for characterizing the quality of biomass 

feedstocks for biochemically conversion based on the true digestibility model for 

ruminant feedstuffs [1].  These parameters were synthesized into a carbohydrate 

availability model which partitions the carbohydrate portion of feedstock dry 

matter (DM) in into three groups based on their availability to undergo 

biochemical conversion: cell-soluble carbohydrates, CN, biochemically available 

carbohydrates, CB, and unavailable carbohydrates, CU.  Next, a wet-chemistry 

assay was developed and refined for quantifying these three quality parameters, 

as well as lignin concentration.  The wet-chemistry assay was used to analyze a 

diverse group of biomass feedstocks, including cool-season grasses, warm-

season grasses, corn residues, and woody materials.  Finally, we demonstrated 

that near infrared reflectance spectroscopy (NIRS) could be used to rapidly 

determine quality parameter values.  Such a high-throughput system would be 

necessary for implementation of the screening system at a biorefinery.   

 The biomass quality assay worked well for herbaceous feedstocks.  We 

observed large variations in CN, CB, and neutral detergent lignin (NDL) across 

feedstocks types and within the feedstock types, particularly the corn residues.  
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In contrast, there was little variation within the woody species and CB values 

were very low (50-83 g kg-1 DM) and CU values very high (626-722 g kg-1 DM).  

This suggests the assay is likely not as applicable for woody species as 

herbaceous materials.  Using a more disruptive cell-wall isolation method than 

the neutral detergent fiber (NDF) procedure for woody material would be 

necessary to improve partitioning of cell-wall carbohydrates from CU to CB.  This 

should provide more stratification of CB and CU values across woody species and 

the improve differentiation of quality for these materials.               

The end-goal of this research was to develop a standard, easily deployed 

methodology for analyzing end-use value of biomass feedstocks and, in doing 

so, to lay the groundwork for grading and commoditizing biomass feedstocks.  

This goal is within reach, but additional work needs to be done before it can be 

realized.   

The chemical analysis method having the most parallelisms, in terms of 

development, standardization, and acceptance, to the feedstock quality methods 

we developed is the detergent fiber system for analyzing forage and other 

ruminant feedstuffs.  Development of the detergent fiber system was initiated by 

Peter Van Soest in the early 1960’s to identify a suitable replacement for the 

antiquated proximate analysis system.  His work produced the NDF procedure 

and the acid detergent fiber (ADF) procedure, which made it possible to describe 

the nutritional value of feedstuffs in the terms of intake and digestibility.  The ADF 

method was first published in 1963 [2] and was accepted, thereafter, as a 

standard method by the Association of Official Analytical Chemists (AOAC) with 
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little resistance [3].  The NDF was first published in 1970 [4] and finally gained 

AOAC approval in 2002 [5] thanks to the efforts of David Mertens over the prior 

20-year period.  The delay in acceptance of the NDF procedure were mainly a 

result of the numerous variants of the procedure developed over time and used 

with different feedstuff types [6], although there were likely was some political 

issues that caused additional delays.  

The obstacles the biomass quality assay will face during the 

standardization process will be similar to that faced by the NDF procedure.  In 

particular, a handful of key techniques used in this assay that will likely delay 

securing an AOAC-approved method, including the types of cell-degrading 

enzymes used, their loading rates, and the use of the NDL procedure to quantify 

lignin.  An enzyme loading rate experiment(s) could be done to evaluate how the 

cocktail of commercial enzymes used in our assay and different enzyme products 

and loading rates affects quantification of CB.  Ben Goff at Iowa State University 

and I are currently in the process of comparing the NDL method (with and without 

the of use sodium sulfite in the NDF procedure) to other procedures for 

quantifying lignin, including Klason lignin, permanganate lignin, and acid 

detergent lignin, and their relationship to carbohydrate availability in biomass 

feedstocks and digestibility in forages.  Regardless whether the goal is AOAC 

approval or not, both of issues need to be addressed to understand their effect 

on quantifying the quality parameters.     

Development of an AOAC method for evaluating the quality of biomass 

feedstocks for biochemical conversion would be a career accomplishment; 
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however, it is ultimately more important that we developed a system that works 

and is implemented in the cellulosic ethanol industry.  Although the work 

completed in this dissertation to develop this biomass quality system is concrete, 

with exception of some minor changes to the procedures in the assay, we have 

yet to demonstrate how changes in feedstock quality affect key process variables 

in the pretreatment, hydrolysis, and fermentation train.  The most immediate 

future work with this biomass quality system should focus on understanding how 

changes in the magnitude of parameters, particularly CN, CB, CU, and NDL, 

influence process variables, such as optimal pretreatment technology, 

pretreatment intensity, solids loading rates, and enzyme loading rates.  

Successful demonstration of the value of our biomass quality system for process 

control and optimization within a cellulosic ethanol plant would open the door to 

collaboration with cellulosic ethanol companies to develop NIRS calibrations for 

measuring quality parameters at the point of delivery to the plant and equations 

to relate quality parameter values to important process variables in their process.  

Hopefully this would lead to more industry-wide acceptance of our biomass 

quality system and a government-approved method for commoditizing biomass 

feedstocks.     

The effort required to gain AOAC-approval for the biomass quality assay 

and gain industry acceptance of our biomass quality system will be non-trivial.  

Nonetheless, development and implementation of a feedstock quality system is 

paramount to the widespread success of the cellulosic ethanol industry in the 

twenty-first century, as was the Grain Standards Act of 1916 to the growth of the 
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grain marketing and export industry in the United States in the twentieth century 

[7].   
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