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Many organisms, from bacteria to primates, use stochastic movement patterns to

find food. These movement patterns, known as search strategies, have recently be-

come a focus of ecologists interested in identifying universal properties of optimal

foraging behavior. In this dissertation, I describe three contributions to this field.

First, I propose a way to extend Charnov’s Marginal Value Theorem to the spatially

explicit framework of stochastic search strategies. Next, I describe simulations that

compare the efficiencies of sensory and memory-based composite search strategies,

which involve switching between different behavioral modes. Finally, I explain a new

behavioral analysis protocol for identifying the factors that influence pollinator for-

aging. The utility of this protocol is demonstrated using data gathered on sweat bees

(Agapostemon) in Western Nebraska.
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Preface

For many organisms, ranging from bacteria to primates, foraging for food is critical

for survival. Understanding how organisms forage has long been a central goal of

behavioral ecology. By studying the factors that influence foraging behavior, we

can gain insights into the interactions between organisms and their environments,

and make predictions about how organisms will react to changing environmental

conditions.

Frequently, a foraging organism does not know where food resources are located,

and hence must rely on search strategies to find them. Empirical observations indicate

that a variety of species use random movement patterns to locate resources. These

stochastic search strategies include movement patterns like Brownian motion, Lévy

walks and straight-line (ballistic) motion. The effectiveness of different stochastic

movement patterns in locating resources largely depends on the spatial distribution

of resources. Therefore, a forager’s evolutionary fitness rests heavily on the interaction

between its movement strategy and the type of landscape it is exploring.

In this dissertation, I use mathematical models of organism movement to analyze

foraging behavior. A key theme throughout the dissertation is how the stochastic pro-

cesses of organism movement and resource distribution combine to influence foraging

success. Three main research projects compose this dissertation. Chapter one de-

scribes a new approach to modeling optimal search strategies for foraging organisms.
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Chapter two is an investigation of the efficiencies of different potential search modu-

lation mechanisms. Chapter three presents a new framework for analyzing pollinator

foraging behavior. Each of these chapters emphasizes a different quantitative ap-

proach: chapter one focuses on analytic mathematical methods, chapter two focuses

on simulation, and chapter three focuses on statistical analysis and field methods.

Chapter 1 Overview

Optimal foraging theory is devoted to the study of how organisms should exploit

food resources to maximize efficiency. Traditionally, this field has been dominated

by spatially implicit patch-use models that emphasize the role of different patch-

leaving criteria on foraging efficiency. Random search models, in which resources are

represented as points on a landscape and a forager moves according to a stochastic

process, are a departure from the traditional approach. In this chapter, I seek to

connect patch-use models with random search models.

Many animals have been observed to execute composite stochastic movement pat-

terns, consisting of intensive and extensive search modes. The decisions that a forager

in a random search models makes about search mode are analogous to the decisions

that a forager in a patch-use model makes about patch departure. In both cases, the

criteria the forager uses is crucial in determining its foraging efficiency.

In my models, foragers move via Brownian motion in intensive mode and ballistic

(i.e., straight-line) motion in extensive mode. The locations of resources are specified

by particular spatial point processes. I consider two types of mode-switching criteria:

giving-up time, and optimal zone. A giving-up time forager uses the time elapsed

since its last resource encounter to determine when to switch modes. An optimal

zone forager determines the regions of a landscape that warrant intensive search.
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I analyze both of these strategies using mean first passage times. I consider both

one and two-dimensional cases, and show how the models can accommodate any

spatial distribution of resources. I consider a few examples, and suggest ways that

this modeling framework can provide a bridge between random search and patch-

use models. In particular, I explain how the optimal zone composite search model

represents a spatially explicit analog of Charnov’s marginal value theorem.

Chapter 2 Overview

Empirical observations indicate that a variety of organisms use composite random

search strategies to find resources. In many cases, there is evidence that non-proximate

sensory cues are used to identify areas that warrant intensive search. These cues are

not precise enough to allow a forager to directly orient itself to a resource, but can be

used as a criterion to determine the appropriate search mode. Together with Travis

Hinkelman, Chad Brassil, and Brigitte Tenhumberg, I developed a model of compos-

ite search based on non-proximate sensory cues. With simulations, we compared the

search efficiencies of composite foragers that use resource encounters as their mode-

switching criterion with those that use non-proximate sensory cues. Non-proximate

sensory foragers had higher search efficiencies across a range of different resource dis-

tributions, and were more robust to changes in resource distribution. Our results

suggest that current assumptions about the role of resource encounters in models of

optimal composite search should be re-examined.
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Chapter 3 Overview

Pollinator behavior is key to determining the gene flow between flowers. In extreme

cases, pollinator behavior can contribute to hybridization or speciation. Bias (the

preference of one species of flower over another) and constancy (the preference to

visit flowers of the same species sequentially) are two phenomena that are of partic-

ular interest to ecologists. Unfortunately, it is difficult to assess these phenomena in

field observations, because the spatial arrangement of flowers confounds the results.

Together with a research team including Kathy Roccaforte, Chad Brassil, Sabrina

Russo, and Dan Gates, I developed a maximum likelihood framework that incor-

porates a variety of factors, including bias, constancy, and flower locations. This

framework is novel in its ability to detect bias and constancy in field settings. We

demonstrate the framework using data gathered on sweat bee behavior in western

Nebraska.
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Chapter 1

Optimal Composite Search Strategies

1.1 Introduction

Mathematical models of optimal foraging provide predictions about the most effi-

cient way for animals to acquire food resources. These predictions can serve as null-

models to compare against empirical observations. There are two general modeling

approaches in optimal foraging theory: classic patch-use models, and random search

models [8]. The former, perhaps best exemplified by Charnov’s marginal value theo-

rem [22], describe how foragers should exploit discrete, well-defined resource patches.

These classic models emphasize how foragers determine when to leave patches; the

details of how foragers find the patches are frequently neglected. In contrast, random

search models represent resources as points, and describe the movement patterns that

foragers should execute to find these points.

In recent years, researchers have called on their colleagues to unify these tradi-

tionally disparate modeling approaches [8, 10] under the heading “stochastic optimal

foraging theory”. Contributions to the synthesis these modeling approaches date back

to at least 2008, when Plank and James [89] suggested a rough analogy between a
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random search model and Charnov’s marginal value theorem. In this chapter, I ex-

plore the connections between random search models and the marginal value theorem

more deeply. I consider how optimally foraging organisms should use different criteria

to switch between distinct stochastic search patterns.

1.1.1 Classic patch-use models

Before turning to random search models, it is worth reviewing the patch-use models

that have traditionally underpinned optimal foraging theory. Identifying the key

features of these patch-use models will provide a foundation for the random search

models that follow. Charnov’s marginal value theorem [22] is one of the cornerstones

of classic optimal foraging theory. In Charnov’s model, there are an infinite number

of resource patches, divided into a finite number of types. A patch’s type determines

how its resource level changes in response to harvesting. The expected travel time

between patches is fixed, patches are never revisited, and the probability of visiting

a particular patch type is equal to the fraction of patches that are that type. When

in a patch, a forager continuously depletes the resources there, causing its resource

intake rate to diminish. To optimize it’s overall resource intake rate, a forager in

Charnov’s model should behave according to the marginal value theorem: it should

leave a patch when its resource intake rate in that patch equals its expected resource

intake rate, averaged over the entire habitat.

A serious problem with Charnov’s model was identified soon after its publication:

the behavior of the model’s optimal forager is completely determined before it even

begins foraging [85]. The model represents foraging as a deterministic process, so the

optimal behavior is predetermined by simultaneously solving a set of equations; hence

the forager’s behavior is not influenced by its experiences. In the real world, foraging is
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not a continuous, deterministic process; instead, it is better characterized by discrete,

stochastic resource encounters [85]. In this situation, a forager’s instantaneous intake

rate does not provide perfect knowledge of a patch’s quality. Instead, a forager must

infer the quality of a patch from the discrete encounters.

Two basic criteria have been proposed for how foragers should evaluate patch

quality: giving-up density (GUD) and giving-up time (GUT). A GUD forager stays

in a patch until the density of resources in the patch reaches a specified level. This is

a relatively easy criterion to apply when resource intake is a continuous process, as it

is in Charnov’s model. When resources encounters are discrete, stochastic events, it

seems reasonable to define resource density as the number of remaining resources in

a patch divided by the patch’s area. There is a problem with this definition, though:

if the forager knows the number of resources that remain in a patch, then why does

the forager not move to those resources and consume them?

Unlike the GUD criterion, the GUT criterion can logically apply to discrete,

stochastic resource encounters. The GUT criterion was elaborated [45, 46, 47, 44, 86]

to allow a forager to use more information than just the elapsed time since its last

resource encounter. In its most complex incarnations, these models use dynamic pro-

gramming to find the optimal decision at every possible state of the system. These

models are too specific to provide attractive null models for foraging theory. The

beauty of Charnov’s marginal value theorem is that it provided simple patch resi-

dence times that could be compared with empirical data. Dynamic programming

optimal decision models predict a series of conditional decisions; testing these is ex-

tremely difficult [110].

The problems that Charnov’s model has with stochasticity have been widely dis-

cussed [85, 78, 59, 83] but a direct solution to the problem—namely, a spatially

explicit representation of resource encounters—has received less attention than it de-
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serves. Charnov’s model, and its patch-use model descendants, provide only spatially

implicit representations of the within-patch interactions between the forager and re-

sources. This leads to ambiguities about the relationships between the number of

resources a forager has consumed, the amount of time it has spent in a patch, and

the future expected profitability of a patch.

The lack of spatially explicit representation is a criticism that applies to classic

patch-use models, not only at the intra-patch level, but also at the inter-patch level.

A fully spatially explicit model would take into account both the location of resources

within patches and the location of patches on the landscape. Furthermore, the very

assumption that patches are even well-defined entities is a limitation. In many natural

environments, patches lack clearly demarcated boundaries.

Arditi and Dracogona [4] addressed these issues, by creating a fully spatially ex-

plicit model that allows resources to take on arbitrary spatial distributions. Resources

in Arditi and Dracogna’s model can be points scattered across the plane, patches of

any shape, or a combination of these forms. Unlike most patch-use models, this

model is fully spatially explicit. Unfortunately, the behavior it predicts is unrealistic.

When resources are distributed as points, the model essentially predicts that an opti-

mal forager should solve the traveling salesman problem, a huge computational task

that is NP-hard. When resources occupy continuous regions, the trajectory of the

optimal forager is calculated using the calculus of variations. Although Arditi and

Dracogna’s model identifies the true optimal behavior for a forager, its predictions

are too precise to be a useful null model. When an optimal model predicts a specific

trajectory through space, it is unrealistic to assume that empirical observations will

exactly match that trajectory, and it is difficult to assess how close observed move-

ments are to the optimal path. If, for example, an observed forager makes a slightly

non-optimal choice early in its trajectory, the rest of its movement path might differ
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widely from the optimal model. Furthermore, the movements of animals typically

observed in natural systems display much more complexity than the perfect lines and

curves of an optimal deterministic model. These factors limit the utility of Arditi and

Dracogna’s model.

1.1.2 Random Search Models

Random search models provide an alternative approach to modeling foraging behav-

ior. Unlike patch-use models, random search models provide a spatially explicit rep-

resentation of animal movement. In a random search model, resources are represented

as points. A forager has a small fixed perceptual radius, within which it can detect

resources. It does not have prior knowledge of the location of resources, and must

move through space until a resource falls within its perceptual radius. The movement

pattern executed by a forager is called its search strategy, and is a stochastic process.

The use of stochastic processes as models of animal movement has a long history

[117, 108, 27]. Stochastic movement models are often preferred over deterministic ones

on the grounds of pragmatism and realism. An ideal model would include the full set

of deterministic rules that dictate an animal’s behavior. Such a model would describe,

with complete certainty, how the animal responds to any given set of environmental

conditions. This type of deterministic model is unattainable—even if the complete

set of rules that govern an animal’s behavior is known, tracking all of the relevant

environmental variables would be impossibly complex. By treating unknown factors

probabilistically, stochastic models provide a tractable alternative [113].

Ballistic motion is the simplest of all random search strategies. A forager using this

strategy travels in a straight line in a randomly selected direction until it encounters

a resource. After consuming a resource, a forager randomly selects a new direction,
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and again heads in a straight line until it encounters another resource.

Random walks are among the most frequently invoked random search strategies.

In these models, a forager selects a step—a line segment—by selecting a distance

and direction according to specified probability distributions. The forager moves

along the step until it reaches the end, or until it encounters a resource, in which

case it truncates the step. At the end of a step, it selects a new step. When the

distribution of directions is uniform and the step lengths are fixed, the resulting

stochastic process is called a simple random walk. A biased random walk is a random

walk with a direction distribution concentrated along a specific direction. These are

useful in modeling animal movement affected by phenomena like prevailing winds or

ocean currents. A correlated random walk is a random walk in which the direction

distribution for steps depends on the direction of the previous step. These are useful

in modeling animal movement that has an element of directional persistence.

Brownian motion is a stochastic process that, on a heuristic level, can be thought

of as the limit of a simple random walk, as the step sizes approach zero. The re-

sulting trajectories are continuous, but nowhere differentiable. Brownian motion is

characterized by a diffusivity parameter D, which determines the rate of change of

the mean square displacement. It is among the most commonly invoked stochastic

models of animal movement.

When the step lengths of a random walk are drawn from a probability distribution

with finite variance, the random walk converges to Brownian motion at sufficiently

long time scales. In other words, a zoomed out version of such a random walk would

be indistinguishable from Brownian motion. Brownian motion, and random walks

that converge to Brownian motion, are called diffusive. If a particle moves according

to one of these stochastic processes, its displacement from its initial position scales

in proportion to t1/2. If a particle’s displacement from its initial position scales
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Brownian
m≥3

Lévy
m=2

Ballistic
mÆ1+

Figure 1.1: Power-law random walks

slower than t1/2 (i.e., if it scales as t↵, ↵ < 1/2), its motion is sub-diffusive. If a

particle’s displacement from its initial condition scale faster than t1/2 (i.e., if it scales

as t↵, ↵ > 1/2), its motion is super-diffusive. Ballistic motion is an example of

super-diffusive motion.

Lévy walks are super-diffusive random walks that have received much attention

in modeling animal movement [117, 116, 95, 99]. In these random walks, step lengths

are selected from power-law distributions. That is, p(l) ⇠ l�µ, where µ is a parameter

between 1 and 3. For µ = 1, the probability distribution ceases to be a distribution at

all, resulting in ballistic motion. For µ > 3, the variance of the probability distribution

is finite, and the resulting random walk converges to Brownian motion at sufficiently

long times. Hence power-law walks with µ > 3 are referred to as Brownian walks.

Lévy walks occupy a region between ballistic and Brownian motion. Some authors

reserve the term Lévy walks for the case µ = 2, but here a more broad definition of the

term is used. Trajectories of Lévy walks are “scale-free”, that is, they are self-similar

fractals. This implies that a searcher employing a Lévy strategy does not have to

adjust the scale of its behavior to the environment under consideration. Hence Lévy

walks provide flexible and parsimonious descriptions of animal movement. Ballistic,

Lvy, and Brownian walks are shown in figure 1.1.
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In recent years, considerable discussion has been sparked by the claim that Lévy

walks are a ubiquitous foraging strategy [14, 63, 106, 27]. The empirical evidence

for animals moving via Lévy walks is controversial. Some researchers think that

the appearance of Lévy walks is a statistical artifact [37, 6]. Others maintain that

Lévy walks provide accurate descriptions of the data, but arise from other stochastic

processes [89, 99, 95]. Still others hold that Lévy walks constitute an evolved strategy

[9, 7].

This latter viewpoint is largely motivated by claims that Lévy walks (in particular,

Lévy walks with parameter µ=2) constitute a theoretically optimal search strategy.

These claims were initially based on mean-field analysis of “non-destructive” search-

ing [116]. “Non-destructive” searching refers to situations where resources do not

disappear after a forager encounters them. These claims were further supported by

more rigorous mathematical analysis done for the one-dimensional case [93]. Two-

dimensional simulations sometimes show that these conclusions hold [93] and some-

times do not [63].

The theoretical work on the optimality of Lévy walk searches has been hugely in-

fluential, but several important points of uncertainty remain. Initial claims that sim-

ulations and analysis of non-destructive foraging on uniformly distributed resources

can serve as a stand-in for destructive foraging on clustered resources have been shown

to be false [98]. Thus, it is important to conduct separate simulations and analysis for

the destructive case. The generalizability of mathematically rigorous one-dimensional

models to higher dimensions has not yet been firmly established.

Finally, and perhaps most importantly, the set of candidate strategies for “optimal

search strategy” has been widely debated. The initial studies that identified Lévy

walks with parameter µ = 2 as optimal came from examining Brownian motion,

ballistic motion, and the set of Lévy walks that occupy the spectrum in between those
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two extremes. More complicated strategies that consist of combinations of random

walks, and strategies that involve memory or sensory information were not included.

In some ways, the restriction to the ballistic-Lévy-Brownian family of strategies makes

sense, because these strategies occupy the simplest descriptions of movement. All of

these strategies are non-oriented, and require no memory or sensory ability (outside

of the perceptual radius) for the forager. On the other hand, there are other relatively

simple models that agree with empirical data and are theoretically more efficient than

Lévy walks. Key among these is the composite search strategy.

1.1.3 Composite search

Foragers should seek to match their search effort to the relative profitability of dif-

ferent parts of their habitats. In the context of random search, this can be accom-

plished by dividing search into intensive and extensive search modes, the former to

be employed in resource rich areas and the latter in resource poor areas. In inten-

sive mode, a forager searches an area thoroughly by taking short step lengths with

frequent reorientations. In extensive search mode, a forager moves efficiently across

resource poor areas by making long straight-line steps with few interruptions. This

combination of search modes is known as a composite search strategy [89]. The eco-

logical literature generally refers to composite searches as area-restricted search [120]

or area-concentrated search [13].

There are numerous examples of animals that utilize composite search strategies.

These include slime moulds [68], beetles [39], honeybees [114], fish [54], birds [84],

ungulates [114], turtles [114] and weasels [49]. Sometimes organisms use resource

encounters to determine when to engage in intensive and extensive search modes; ex-

amples include Ladybird beetle (Coccinella septempunctata) larvae feeding on aphids
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[21] and houseflies (Musca domestica) feeding on sucrose drops [11]. In other situa-

tions, sensory cues determine when to switch search mode. Parasitoids like Nermeritis

canecens [118], Venturia canescens [11], and Cardiochiles nigriceps [109] use chem-

ical cues to determine when to search intensively for hosts. When deciding when

to leave a foraging site, wolf spiders rely more heavily on visual and vibratory cues

than elapsed time since their last prey encounter [87]. Procellariiform seabirds use

chemicals like dimethyl sulfide to identify where to engage in intensive search [82].

Further examples of animals that use sensory cues to determine search mode include

ciliates like Paramecium and Tetrahymena [72, 71, 51], bacteria, like Escherichia coli

and Salmonella typhimurium [1, 35, 80], cod larvae [34], and fruit flies [29].

Several methods for modeling composite random search have been investigated:

composite correlated random walks, intermittent search, and non-correlated compos-

ite walks. In composite correlated random walks, both the distribution of turn angles

and the distribution of step lengths depend on whether the forager is in intensive or

extensive mode [88]. Correlated random walks are not as parsimonious a description

as non-oriented random walks, because there are parameters associated with the ori-

entation distribution in each mode. Furthermore, there is a fundamental relationship

between correlated random walks and Lévy walks [99]. The sharp corners present

in random walk models of animal movement are often modeling or observational

artifacts. The true motion of an animal tends to be a continuously differentiable

curve, which is best modeled by a Langevian equation. The resulting trajectories

are compatible with both correlated random walks and non-oriented walks from the

Brownian-Lévy-ballistic spectrum, depending on the sampling resolution used for dis-

cretization. In light of this underlying compatibility, we restrict the analysis in this

chapter to non-oriented random searches.

Intermittent random searches are related to composite searches [15, 16]. Like com-
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posite searches, intermittent searches involve intensive and extensive search modes. In

intermittent searches, foragers can only detect resources in intensive mode. Foragers

switch from one search phase to the other with fixed rates per unit time. Hence the

time spent in a given search mode follows an exponential distribution. This differs

from the composite searches that I will focus on, which allow foragers to discover

resources in extensive search, and which use different criteria for mode-switching.

Plank and James [89] proposed a model for composite search that involves Brow-

nian motion in the intensive mode and ballistic motion in the extensive mode (figure

1.2). This basic model was later generalized by Reynolds [101], and further in chapter

2 of this work, to allow for Lévy walks in each search mode. Simulation work de-

scribed in chapter 2 indicates that Brownian/ballistic composite search outperforms

composite searches based on less extreme dichotomies, so we focus on these here.

Nonetheless, analytic exploration of the efficiency of composite searches using Lévy

search modes remains an open area.

Plank and James used their model of composite search to show that claims about

the optimality of Lévy searches with µ = 2 were misleading. They broadened the

field of candidate strategies beyond the Brownian/Lévy/ballistic spectrum to include

composite search strategies, and showed that composite search strategies faired better

than their non-composite competitors. Furthermore, they showed that composite

search strategies can produce trajectories that look much like Lévy walks; hence

empirical observations that are consistent with Lévy walks could also be consistent

with composite search strategies.
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Figure 1.2: Sample trajectory, with alternating periods of Brownian and ballistic
motion

1.1.4 The Patch-use/ composite search connection

The patch-use models and random search models described above represent two differ-

ent paradigms for describing foraging. Patch-use models tend to be spatially implicit

and emphasize how foragers decide when to leave a patch. Random search models

are spatially explicit, and emphasize the role of movement in encountering resources.

Bridging the gap between these two approaches promises to yield interesting insights

into animal behavior [8]. Composite search models, like that of Plank and James,

represent a step toward this unification.

In composite search models, intensive search and extensive search can be seen as

analogous to the within-patch foraging and between patch travel in patch-use models.

In Plank and James’ composite search model, a forager switches from extensive to
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intensive mode if it encounters a resource. If a fixed giving-up time elapses with-

out a subsequent resource encounter, the forager switches from intensive mode to

extensive mode. The giving-up time mode-switching criterion is a familiar part of

the patch-use literature. Plank and James claim that their composite search model

is a generalization of the Marginal Value Theorem, however this is not quite the case.

In the patch-use context, GUT-based foraging does not exactly correspond to MVT

optimal foraging. A GUT-forager has a memory, something that a patch-use MVT

forager lacks. Furthermore, a MVT has complete knowledge of the landscape, which

a GUT-based forager does not. Nonetheless, Plank and James’ insight about finding

a MVT-like model for random search is intriguing, and I pursue that question further

in this work.

I begin by analyzing optimal giving-up times for a composite random searcher.

My work expands on that of Plank and James in several ways. First, I consider the

case of destructive foraging, while Plank and James considered only non-destructive

foraging. Second, I consider how search efficiency depends on the spatial distribution

of resources. This involves explicitly accounting for the types of point processes that

generate resource distributions, and specifically on the auto-correlation of resource

locations. This departs from the uniform approximations taken by Plank and James.

Third, I use Fourier series to find implicit solutions for optimal giving-up times based

on specific resource configurations. Fourth, I extending the the analysis beyond a

single spatial dimension.

After considering composite foragers that use giving-up time as their mode-switching

criterion, I propose a composite random search model that is a better analogy to the

MVT searcher of patch-use theory. To do this, I develop a framework that determines

the optimal zones on a landscape for intensive and extensive search. I consider this

in both one and two dimensions, and discuss why it is the most appropriate spatially
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explicit interpretation of the marginal-value theorem. Finally, I discuss the ecological

implication of my results, and future directions for work.

1.1.5 Mathematical connections

In the following, I model foraging for resources in terms of first passage times. Ba-

sically, this modeling framework views a forager as a particle that moves through

a landscape until it runs into, and is absorbed by a resource. The efficiency of

the forager is then inversely proportional to the first passage time of the process.

This modeling framework follows in the direction of a variety of previous researchers

[93, 89, 10, 76, 77, 67].

Several related mathematical concepts are worth noting. The narrow escape prob-

lem concerns the time it takes for a particle to exit a domain, when most of the domain

is reflecting but some is absorbing escape [107]. This problem is especially of interest

to cellular biologists, but the underlying mathematics is similar to the first passage

foraging problems we study.

In statistical physics, the trapping problem is basically a rephrasing of the first

passage time problem. This problem has applications in chemical kinetics, and tends

to be addressed with the tools of large deviation theory [18, 74].

Finally, one can model foraging by drawing a disk around a forager representing

its perceptual radius, and monitoring how the area traced by the disk changes as the

forager moves. When the disk moves via Brownian motion, the geometrical object

traced is called the Wiener sausage. The name is a pun, derived because mathe-

maticians know Brownian motion as a Wiener process, and in three dimensions, the

geometrical object looks somewhat like a sausage. For a measure-theoretic view of

the Wiener sausage, see [69] and [33].
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1.2 Model Description and Analysis: Optimal GUT

forager

In section 1.21, I describe a model for an optimal GUT composite forager in one-

dimension. I explain how the foraging efficiency depends on the spatial distribution

of resources. In section 1.22, I consider how this model could be extended to two-

dimensional landscapes.

1.2.1 GUT forager: one-dimensional case

Consider a forager in one dimension that uses giving-up time as its criterion for

switching from intensive to extensive search mode. The forager moves in extensive

search mode until it encounters (and immediately consumes) a resource. A resource

encounter triggers the forager to enter intensive search mode. The forager remains in

intensive mode until a specified amount of time, called its giving-up time, ⌧ , elapses

without encountering another resource. If this happens, the forager reverts to exten-

sive search mode. In my model, I assume that intensive search is Brownian motion

and extensive search is ballistic motion. I also assume that, in both search modes, the

forager travels with velocity one, so that measures of distance and time are equivalent.

Suppose that the forager has just encountered and consumed a resource. Without

loss of generality, suppose that this resource is at the origin. The distances to the

resources that are closest to the forager on its right and left are random variables,

which we label as YL and YR, respectively. Later in this chapter, I examine how

optimal foraging strategies depend on the distribution of these random variables. For

now, let these random variables take on fixed values, YL = yL and YR = yR. The

position of the forager is given by a stochastic process X(t). For times before ⌧ , this
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process obeys the stochastic differential equation:

dX(t) =
p
2DdW (t), X(0) = 0

Here W (t) is a standard Wiener process, and D is a constant that determines the

diffusivity of the Brownian motion. To be specific, E
�

X (t)2
�

= 2Dt. If X reaches

one of the endpoints of the interval [�yL, yR], it terminates. If X remains in the

interval until time ⌧ , then it switches to ballistic motion, at which point is described

by:

X(t) = �(t� ⌧) +X(⌧)

Here � is a random variable that takes on value 1 with probability 1/2 and �1

with probability 1/2.

Let u(x, t) be the probability density function for the location of the forager while

it is engaged in intensive search. The first stochastic differential equation above can be

translated into the related Fokker-Planck equation governing its probability density

function:

ut(x, t) = Duxx(x, t), �yL < x < yR; 0 < t < ⌧

u(�yL, t) = u(yR, t) = 0, 0 < t < ⌧

u(x, 0) = �(x), �yL < x < yR

Note that the endpoints of the interval, �yL and yR, are absorbing boundaries.

The Dirac function initial condition represents the fact that the forager is located at
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the origin at time zero with probability one. The above equation can be solved via

separation of variables and a Fourier series expansion to yield:

u(x, t) =
1
X
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The probability that the forager has not encountered a resource by time t, where

t < ⌧ , is found by integrating u(x, t) over the interval (�yL, yR), which yields:

Pin(t) =

ˆ y
R

�y
L
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Let the time that elapses before the forager encounters a resource be represented

by the random variable T . Let F (t) = Prob (Tt) be the cumulative density function

for T , and let f(t) = F 0
(t) be the associated probability density function. Note that,

if T < ⌧ , then the forager has only engaged in intensive search, and the probability

that it has encountered a resource is F (t) = Prob (Tt) = 1 � Pin(t). If T > ⌧ ,

then the forager has spent time ⌧ engaged in unsuccessful intensive search, and then

switched to extensive search. If the forager is at position x when it makes the switch

to extensive search, then it moves to the left with probability 1
2 and travels a distance

|x+ yL|, or to the right with probability 1
2 and travels a distance |yR � x|. Thus the

expected time that a forager spends in extensive mode before encountering a resource

is 1
2 |x+ yL|+ 1

2 |yR � x| = 1
2 (yR + yL).

Let E(T ; yL, yR) be the expected value of T , conditional on YL = yL and YR = yR.

We can compute this as:
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E(T ; yL.yR) =
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The integral in this expression can be evaluated term-by-term using the series

expression for Pin(t), yielding:
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For a fixed yL and yR, we can determine the optimal giving-up time, ⌧ ⇤. In figure

1.3, we see that this time exists at approximately ⌧ ⇤ = 3. For some combinations of

yL and yR, composite search is not optimal, and it is better to engage in exclusively

Brownian or exclusively ballistic search. Figure 1.4 shows an example in which purely

ballistic motion is optimal; that is, ⌧ ⇤ = 0. The mean first passage time monotonically

increases with giving-up time. It eventually asymptotes at the mean first passage

time for a pure diffusion. In the case of the parameters in figure 1.5, this is at 234.75.

Figure 1.5 shows an example in which purely Brownian motion is optimal; that is,
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Figure 1.3: An example of the relationship between giving-up-time ⌧ and mean first
passage time E (T ; yL, yR) . D = 1.
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Figure 1.4: An example of the relationship between giving-up-time ⌧ and mean first
passage time E (T ; yL, yR) . D = 1.

⌧ ⇤ = 1. In this case, the mean first passage time approaches the diffusion time, 1.125

as ⌧ ! 1, and this time is less than the purely ballistic time of 1.5.

Figure 1.6 shows the mean first passage time plots for a variety of different yL, yR

parameter combinations. The plots in each row have the same inter-resource distance

(i.e., yL + yR).

For a fixed length between resources of yL + yR = 25, we can examine the mean

first passage time as a function of yL and ⌧ . The resulting surface is displayed in

figure 1.7. Taking a cross-section with yL fixed yields the type of plots in figures
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Figure 1.5: An example of the relationship between giving-up-time ⌧ and mean first
passage time E (T ; yL, yR) . D = 1.

1.3-1.6.

It is difficult to analytically derive precise ranges of yL and yR such that favor

pure Brownian, composite, and pure ballistic, respectively. Numerical exploration

reveals some patterns in the regions of (yL, yR) parameter space that favor each strat-

egy. These are shown in figure 1.8, in which purple corresponds to a purely ballistic

strategy, lavender to a composite strategy, and white to a purely Brownian strategy.

Several patterns are apparent. First, composite search is optimal when the forager

starts near to one resource and far from the other (yL ⌧ yR or vice versa). Second,

when the distance between resources becomes very large (yL + yR > 20), virtually no

initial conditions favor composite search.

One might logically ask: why is a pure Brownian strategy ever optimal? The

answer lies in the difference between physical Brownian motion, which is comprised

of microscopic steps taken at finite velocity, and the Wiener process, which is the

mathematical representation of Brownian motion. The latter is an abstraction. The

probability density for the displacement of a Wiener process exhibits a strange phe-

nomenon: even at very small times, the density is non-zero very far from the initial

condition. This physically unrealistic phenomenon means that the model’s utility
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Figure 1.7: Relationships between giving-up-time ⌧ and mean first passage time re-
lationship between giving-up-time ⌧ and mean first passage time E (T ; yL, yR) for a
variety of values of yL. Total interval length is 25. D = 1.

breaks down at very small time scales. This short time-scale regime is evident when

mean first passage time decreases monotonically with GUT.

As an aside, one can directly compare the mean first passage times under pure

Brownian and pure ballistic motion. Let E (T ; yL, yR, ⌧) be the mean first passage

time with giving-up time ⌧ .

E (T : yL, yR, 0) =
1

2

(yL + yR)

and

lim

⌧!1
E (T ; yL, yR, ⌧) =

1

2

yLyR,

so, in order for pure Brownian motion to be superior, it is required that yR < 1

or yL > y
R

y
R

�1 . Note that these criteria just imply that a pure Brownian strategy is

superior to a pure ballistic strategy; they do not rule out that a composite strategy

is superior to both.
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Figure 1.8: Horizontal coordinate is yL, vertical coordinate is yR. D = 1. Purple
shading indicates regions where purely ballistic motion is optimal. Only regions with
yL + yR < 100 are plotted.

So far, the model I’ve described has assumed that yL and yR are fixed. Consider

now the case where YL and YR are random variables. In order to conduct this analysis,

I first review some terminology from spatial point processes on the real line. Much

of this information is distilled from helpful references like [57] and [30].

A spatial point process on Rn is defined as follows. First, let C be the set of all

counting measures on Rn. For a compact set B ⇢ Rn, let

�B,k = {N 2 C|N(B) = k} ,

and let ⇤ be the �-field generated by the collection of all of these subsets. A spatial

point process is a measurable function N : ⌦ ! C, where (⌦, A, P ) is some probability

space. Thus, each point process maps an event ! to a counting measure N! on Rn. If
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B ⇢ Rn is compact, then N(B) is a random variable representing the number of points

of the process in B. The finite-dimensional distribution of a point process N are the

joint probability distributions of the random variables (N(B1), N(B2), ..., N(Bk)) for

any non-negative integer k, where the Bi are compact subsets of R2. The collection

of finite-dimensional distributions for N are sufficient to completely specify N ; i.e.,

if two point processes have the same finite-dimensional distributions, then they are

identical. N is stationary if any translation of N has the same distribution as N . N

is isotropic if its distribution is invariant under rotation.

The intensity of a point process N is defined as ⌫ (B) = E (N(B)), for a compact

set B ✓ Rn. If there is a function � on Rn that satisfies ⌫ (B) =

´
B
� (s) ds, then �

is called the intensity function of N .

The second factorial moment measure of the point process is defined for compact

sets A,B ✓ Rn as:

↵2
(A⇥ B) = E (N(A)N(B))� E (N(A))E (N(B))

If there is a function % on Rn ⇥ Rn that satisfies ↵2
(C) =

´
c
%(x, y) dx dy for all

compact C ✓ Rn ⇥ Rn , then % is called the pair density function for N .

The pair-correlation function for N is defined as:

⇢ (x, y) =
% (x, y)

�(x)�(y)
, x, y 2 Rn

When N is stationary and isotropic, as in is the cases I consider in this chapter,

the pair-correlation function can be written as a function of the distance between two

points: ⇢(r) = ⇢ (|x� y|) = ⇢ (x� y, 0).

The Palm-intensity function of N is defined as h (r) = �⇢ (r). It is this function
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h that I will primarily be concerned with in this chapter. h(r) gives the density of

points at radius r from the origin, conditional on the origin being a point in the

process.

The nearest-neighbor distribution function is given by:

D(r) = Po (N (b⇤r (0)) > 0) ,

where b⇤r (0) is the punctuated neighborhood of radius r around the origin, and Po

denotes the palm probability distribution (i.e., conditioned on a point being at the

origin). Letting d(r) = D0
(r) be the associated probability density, one obtains

YL ⇠ d. Because I assumed YL is the closer of the two resources, the distance

distribution to YR is not directly found from D. Instead, I use a hazard rate approach

to find it. For notational simplicity, let the probability density functions for YL and

YR be hL and hR, respectively. Then, the overall expected time to resource encounter

is given by:

E(T ) =

ˆ 1

0

ˆ 1

0

hL (yL)hR (yR)E (T ; yL, yR) dyL dyR

To emphasize that this is a function of the parameter ⌧ , this can be written as:

¯t(⌧) =

ˆ 1

0

ˆ 1

0

hL (yL)hR (yR)E (T ; yL, yR) dyL dyR.

Minimizing with respect to ⌧ amounts to solving:

ˆ 1

0

ˆ 1

0

hL (yL)hR (yR)
@

@⌧
(E (T ; yL, yR)) dyL dyR = 0.

In order to determine the optimal giving-up time, it is necessary to combine the
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analysis from the fixed resource case with information about the resource distribution.

If resources are distributed uniformly at low density, then the cases where yL ⇡ yR

will dominate, which corresponds to a situation that favors a pure ballistic strategy.

If resources are distributed in clusters, there is a relatively high probability that

yL ⌧ yR, or vis versa, and composite search is favored (the lavender regions in figure

1.8).

1.2.2 GUT forager: two-dimensional case

In the two-dimensional case, the resources are disks of radius ", where " is the percep-

tual radius of the forager. This reflects and underlying symmetry which will frequently

be exploited in this chapter: the combination of point resources and a forager with

perceptual radius " is equivalent to a point forager searching for targets of radius ".

Assume that the forager begins its trajectory at the origin, having just consumed a

resource. Initially, it’s trajectory is given by the stochastic differential equation:

dX(t) =
p
2DdW(t), X(0) = (0, 0)T

Here X(t) = (X1(t), X2(t))
T and W(t) = (W1(t), W2(t))

T are both vectors of random

variables. If time ⌧ elapses without a resource encounter, the forager enters ballistic

motion, and its trajectory is given by:

X(t) = (t� ⌧) (cos (✓) , sin (✓))T +X(⌧)

Here ✓ is a random variable, with uniform distribution on the interval [0, 2⇡]. One

way to compute the mean-first passage time for the forager’s diffusive phase would be

to directly consider the Fokker-Planck equation, with boundary conditions proscribed
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by the resource disks in R2. This approach is useful for computing first passage times

of a specific realization of a point process, but is otherwise cumbersome. An easier

approach involves radial averaging.

To use this technique, consider the probability of a forager encountering a resource

between a radial distance of r and r + dr. This turns out to be related to the mean

free path, given by l (r) = (h (r) 2�)�1. Here 2� is the approximate cross-sectional

area of a resource. Let Q(r) be the probability of a particle traveling in a straight line

from the origin and surviving until it reaches r. By examining the behavior of the

particle in a thin annulus between r and r + dr we can obtain a differential equation

for Q(r), as

Q (r + dr)�Q (r) = �Q (r)h (r) 2� dr

So, dQ
dr

= �Q(r)
l(r) . This needs to be converted to an encounter rate; i.e., so that the

dependent variable is time. By using the expression for mean radial displacement,

r = 2

p
Dt, one can write the average instantaneous radial velocity as dr

dt
=

q

D
t
=

2D
r

.

Therefore,
dQ

dt
= � 2D

r l (r)
Q (r)

With this expression, and the radially symmetric form of the Laplacian, one can

find the partial differential equation for the probability distribution of a a forager’s

location in intensive search mode:

@u

@t
=

D

r

@

@r

✓

r
@u

@r

◆

� 2D

r l (r)
u (r, t)

@u

@r
(0, t) = 0, u (r, 0) = � (r)

Solving this equation involves separation of variables. Suppose that u(r, t) =
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R(r)T (t). Then the partial differential equation becomes:

T 0
(t)

T (t)
=

D

rR(r)
(R0

(r) + r R00
(r))� 2D

r l(r)

The left-hand side of this equation is a function of t, while the right-hand side is a

function of r, hence they both must be equal to a constant, ��2. Then T (t) = e��2t.

The differential equation for R becomes:

rR00
(r) +R0

(r) +

✓

�2

D
r � 2

l(r)

◆

R(r) = 0

Solving this eigenvalue problem with the boundary conditions dR
dr

(0) = 0, limr!1R (r) =

0 yields an eigenfunction expansion for u (r, t). Once this has been obtained, the mean

survival time can be determined as:

E(T ; l) =

ˆ 1

0

t f(t) dt =

ˆ ⌧

0

t f(t) dt+

✓

⌧ +

ˆ 1

0

l (r) u (r, ⌧) dr

◆

Pin(⌧)

= ⌧ F (⌧)�
ˆ ⌧

0

F (t) dt+

✓

⌧ +

ˆ 1

0

l (r) u (r, ⌧) dr

◆

Pin(⌧)

= ⌧ (1� Pin(⌧))�
ˆ ⌧

0

(1� Pin(t)) dt+

✓

⌧ +

ˆ 1

0

l (r) u (r, ⌧) dr

◆

Pin(⌧)

=

ˆ ⌧

0

Pin(t) dt+ Pin(⌧)

ˆ 1

0

l (r) u (r, ⌧) dr

The notation E (T ; l) emphasizes the dependence of the expected survival time on

the function l (r).
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1.3 Model Description and Analysis: Optimal zone

forager

Now consider the case of a forager that has the ability to determine which regions of

an environment are worthy of intensive search and which regions are not. We will call

this forager an optimal zone forager. Like the optimal GUT forager, the optimal zone

forager’s strategy is based on switching between intensive and extensive search mode.

Unlike the GUT forager, the optimal zone forager uses its location on the landscape

to determine its search mode. The optimal zone metaphorically colors a map of the

landscape black and white; black areas are the ones that it will search using Brownian

motion, white areas are ones it will search using ballistic motion. Such a forager has

a priori knowledge of where all of the resources on a landscape are, but it cannot use

that knowledge to move directly from one resource to the next. Instead, the optimal

forager can only use that information to determine zones for intensive search.

The optimal zone forager represents the ideal strategy for a searcher that switches

between Brownian and ballistic search mode. In other words, optimal zone foraging

is the behavior expected of an omniscient forager, provided that its search strategy is

confined to non-oriented, bimodal stochastic search. It answers the question “where

should a forager search intensively?”, and thus provides a useful benchmark with

which to judge empirically observed foraging behaviors.

Let ⌦ be a landscape. The optimal zone forager will determine a subset of the land-

scape, ⌦I ✓ ⌦, to search intensively. The complement of this area, ⌦E = ⌦\⌦I , is the

part of the landscape that the forager will search extensively. These regions are deter-

mined by the particular realization of the point process that generates the resources.

Consider a specific realization of the resource point process. Let EI (x0) (respectively,

Ee (x0)), be the expected time for a forager at position x0 engaged in Brownian motion
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Figure 1.9: Schematic diagram of a composite forager (green) moving in two-
dimensional space, searching for resources (black). The forager’s trajectory (blue)
starts in intensive mode, then shifts to extensive mode.

(respectively, ballistic motion) to encounter a resource. ⌦I = {x 2 ⌦|EI (x) < Ee (x)}
and ⌦E = {x 2 ⌦|EI (x) > Ee (x)}. Figure 1.9 shows a schematic diagram of the for-

aging process.

1.3.1 Optimal zone forager: one-dimensional case

First, consider the basic case of determining optimal zones for intensive and exten-

sive search in one dimension. In this case, resources are distributed on R, and it

suffices to consider the resources immediately adjacent to the forager’s initial loca-

tion. Suppose that resources are located at the origin and L, and the forager has

initial location 0 < x0 < L. Then EI (x0) =

1
2Dx0 (L� x0) and Ee (x0) =

L
2 . If

L < 4D, then (0, L) ⇢ ⌦I . If L > 4D, then
⇣

0, L�
p
L2�4LD
2

⌘

S

⇣

L+
p
L2�4LD
2 , L

⌘

⇢ ⌦I
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Figure 1.10: Optimal zones for a one-dimensional composite forager with D = 1.
Black circles are resources. Red indicates regions that should be searched intensively,
blue indicates regions that should be searched extensively.

and
⇣

L�
p
L2�4LD
2 , L+

p
L2�4LD
2

⌘

⇢ ⌦E.

Given the spatial coordinates of resources on an landscape, one can directly de-

termine ⌦I and ⌦E. An example is illustrated in figure 1.10. Ten resources are

distributed on the interval [0, 1]. The endpoints of the interval are reflecting, and the

resources are absorbing. In the figure, resources are shown with as disks with a finite

radius, but in the model, they are points. Using the scheme above, the regions of

intensive and extensive search are identified and color-coded.

1.3.2 Optimal zone forager: two-dimensional case

The case of a two-dimensional landscape is more complicated. In the one-dimensional

case, the resources on each side of the forager provide natural boundaries for the mean

first passage problem. In two dimensions, any simulated landscape will contain a

finite number of resources. If the landscape has infinite area, then mean first passage

times will diverge. To avoid this, I represent the landscape as a disk of radius ⇢

with reflecting boundaries. The landscape within the reflecting disk is assumed to

be representative of the entire landscape. I will retain the notation ⌦ to denote the

landscape. The resources are smaller disks, denoted by Ti (for “target”) centered at

positions {ri}Ni=1 of radius ✏ << ⇢. Let ⌦

⇤
= ⌦\STi. The boundary of the resource

disks, @T =

SN
i=1 @Ti, is absorbing. The exterior boundary of the domain is denoted

by @⌦. A = ⇡ is the area of ⌦. As in the one-dimensional case, the goal is to the
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e

rS

∂W∂T

r1

r2

r3

Figure 1.11: Schematic diagram of the variables used in the model of the two-
dimensional optimal zone forager.

expected mean first passage time for intensive and extensive search. Given an initial

condition rS 2 ⌦, we will determine EI (rS) and Ee (rS). The notation is chosen to

follow the work of [23]; r is used because the domain is a disk, S is short for “starting”.

The relative sizes of EI (rS) and Ee (rS) will determine whether the forager should

engage in intensive or extensive search at that position. Figure 1.11 shows a schematic

diagram of the domain.

The probability density of the location of the forager, u (r, t; rS) satisfies the Kol-

mogorov forward equation:

�ru (r, t; rS) =
1

D

@u

@t
(r, t; rS) , r 2 ⌦

⇤, t > 0

@nu (r, t; rS) = 0, r 2 @⌦, t > 0
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u (r, t; rS) = 0, r 2 @T, t > 0

u (r, 0; rS) = � (r� rS) , r 2 ⌦

⇤

Using the adjoint of this differential operator, we can write the Kolmogorov backward

equation, which expresses the probability of the forager being at rS at time 0 given

it is at r at time t.

�r
S

v (rS, t; r) =
1

D

@v

@t
(rS, t; r) rS 2 ⌦

⇤, t > 0

@nv (rS, t; r) = 0, rS 2 @⌦, t > 0

v (rS, t; r) = 0, rS 2 @T, t > 0

v (rS, 0; r) = � (r� rS) , r 2 ⌦

⇤

This equation allows for the derivation of an equation for the mean first passage time

[60]. Let pin (rS, t) be the probability that a forager starting at rS remains in ⌦

⇤ at

time t. Then:

pin (rS, t) =

ˆ
⌦⇤

v (rS, t; r) dr.

Integrating both sides of the Kolmogorov backward equation over ⌦⇤ with respect to

r yields:
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�pin (rS, t) =
1

D

@pin
@t

(rS, t) rS 2 ⌦

⇤, t > 0

@npin (rS, t) = 0, rS 2 @⌦, t > 0

pin (rS, t) = 0, rS 2 @T, t > 0

pin (rS, 0) = 1, rS 2 ⌦

⇤

Let F (t; rS) be the probability distribution for the mean first passage time of a forager

that starts at position rS, and let f (t; rS) =
@F
@t

(t; rS) be the associated probability

density. Then F (t; rS) = 1� pin (t; rS) and f (t; rS) =
@p
@t
(t; rS) .

Using integration by parts, the mean first passage time, E (rS), satisfies:

E (rS) =

ˆ 1

0

t f (t; rS) dt = �
ˆ 1

0

t
@pin
@t

(t, rs) dt =

ˆ 1

0

pin (t; rS) dt.

The problem of mean first passage time for a diffusing particle in a two-dimensional

domain with relatively small disk-shaped targets has been examined by Chevalier et

al. [23]. I will use their approach and much of their notation in the following to

analyze the mean first passage time for intensive search mode. One should read their

paper for a fuller description of the solution method, but I will summarize it here.

The EI notation will temporarily be dropped, because this section focuses on the

intensive mean first passage time. Integrating both sides of the PDE for pin with

respect to t from 0 to 1 yields:
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�E (rS) = � 1

D
rS 2 ⌦

⇤

@nE (rS) = 0, rS 2 @⌦

E (rS) = 0, rS 2 @T.

The Green’s function, G (r; rS), satisfies:

��rG (r; rS) = � (r� rS) , r 2 ⌦

⇤

@nG (r; rS) = 0 r 2 @⌦

G (r; rS) = 0 r 2 @T.

The Green’s function has Neuman boundary conditions on ⌦ and the mean first

passage time has Dirichlet boundary conditions on @T , so

ˆ
@⌦⇤

@nG (r; rS)E (rS) dr =

ˆ
@T

@nG (r; rS)E (r) dr+

ˆ
@⌦

@nG (r; rS)E (r) dr = 0.

Similarly,

ˆ
@⌦⇤

@nE (r)G (r; rS) dr = 0.
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By Green’s formula,

ˆ
⌦⇤

E (r)�G (r; rS)�G (r; rS)�E (r) dr =

ˆ
@⌦⇤

@nG (r; rS)E (r)�@nE (r)G (r; rS) dr = 0.

Therefore,

E (rS) = �
ˆ
⌦⇤

E (r) � (r� rS) dr = �
ˆ
⌦⇤

E (r)�G (r; rS) dr = �
ˆ
⌦⇤

G (r; rS)�E (r) dr.

And hence,

E (rS) =
1

D

ˆ
⌦⇤

G (r; rS) dr.

Determining the Green’s function for the domain ⌦

⇤ is difficult. Chevalier et

al. begin by describing the simplest case, in which there is only one resource, and

absorbing target at rT . It is possible to write the Green’s function in terms of a

pseudo-Green’s function, H (r; r0):

G (r; rS) = p0 (rS) +H (r; rS)�H (r; rT ) + g✏.

Here p0 (rS) is a correcting function, selected to make G (r; rS) = 0 for all r 2 @T . g✏

is an error term, and is O (✏).

The pseudo-Green’s function H (r; rS) is defined by:

��Hr (r; r
0
) = � (r� r0)� 1

A
, r 2 ⌦

@nH (r; r0) = 0 r 2 @⌦
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H (r; r0) = H (r0; r)

ˆ
⌦

H (r0; r) dr0 = 0.

The pseudo-Green’s function can be decomposed into two parts:

H (r; rT ) = G0 (r; rT ) + � (r; rT ) ,

where G0 (r; rS) is the infinite-space Green’s function, and � (r; rS) is the regular part

of H as r ! rS. These functions satisfy the following:

��G0 (r; rT ) = � (r� rT ) , r 2 R2

@nG0 (r; rT ) = 0 r ! 1

G0 (r; rT ) = 0 r ! 1.

��� (r; rT ) = � 1

A
, r 2 ⌦

@n� (r; rT ) = �@nG0 (r; rT ) r 2 @⌦

� (r; rT ) = �G0 (r; rT ) r 2 @T
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In order to satisfy the boundary condition on @T , define the function p0 (rS) by:

p0 (rS) = G0 (✏) + � (rT ; rT )�H (rT ; rS) .

Using the Green’s function, one sees that

E (rS) =
A

D
(G0 (✏) + � (rT ; rT )�H (rT ; rS)) +O �

✏2G0 (✏)
�

.

Following Chevalier et al., one can use the same approach for the case of two tar-

gets, r1 and r2. In this case, one must determine the splitting probabilities, P1 (r) and

P2 (r), which determine the probability of ending at target 1 and target 2, respectively.

The splitting probabilities satisfy the PDE’s:

�Pi (r) = 0 r 2 ⌦

⇤

@nPi (r) = 0 r 2 @⌦

Pi (r) = 1 r 2 @Ti

Pi (r) = 0 r 2 @Tj, j 6= i.

The splitting probabilities can be related to the Green’s function via:

Pi (rS) = �
ˆ
@T

i

G (r; rS) dr.

Guided by the one target case, one can obtain:
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G (r; rS) = p (rS) +H (r; rS)� P1 (rS)H (r; r1)� P2 (rS)H (r; r2) + g✏.

In the following, for a given initial condition rS let Hij = H (ri; rj), p0 = p0 (rS),

Pi = Pi (rS). Then successively setting r = r1 and r = r2 as ✏! 0 yields:

p0 +H1S � P1H11 � P2H12

p0 +H2S � P1H21 � P2H22.

Together with P1 + P2 = 1, these equations allow one to solve for P1, P2, and p0,

and hence for the Green’s function. These quantities determine G (r; rS), and hence

E (rS).

This method can be extended to any finite number of targets r1, r2, . . . , rN . In

this case, the Green’s function is:

G (r; rS) = p0 (rS) +H (r; rS)�
N
X

i=1

P (ri)H (r; ri) + g✏.

This leads to a set of N + 1 equations:

PiHii +

X

j 6=i

PjHji � p0 = HiS

N
X

i=1

Pi = 1.

After solving for p0 and {Pi}Ni=1, one can calculate the mean first passage time as:
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E (rS) =
A

D

 

N
X

k=1

H�1
kk

!�1 N
X

k=1

Pk +

X

j 6=k

PjHjkH
�1
kk �HkSHkk

!

.

The geometry of this problem yields the following:

G0 (|r� rS|) = � 1

2⇡
ln (|r� rS|)

� (r; rS) =
1

2⇡

✓

� ln

✓ |rSr� rS|
r2S

◆

+

1

2

�

r2 + r2S
�� 3

4

◆

,

where r = |r| and rS = |rS|.
The method just described, from Chevalier et al., allowed me to determine the

approximate mean first passage time for a forager in intensive mode, EI (rS).

Next, the mean-first passage time under ballistic motion must be determined for

each location, Ee (rS). Assume that the forager in extensive mode selects a direction

from a uniform distribution on [0, 2⇡]. There are two possible outcomes: either the

forager’s trajectory will intersect one of the targets (each of radius ✏), or it will reach

the domain boundary @⌦. If the forager reaches the boundary before encountering a

resource, its trajectory is reflected in a randomly selected direction.

An alternative modeling approach is to assume that ballistic trajectories reflect

deterministically, like a light ray, with the angle of incidence equal to the angle of

reflection. This presents a problem, though. The reflected trajectories will continue

forever, without reaching certain regions called “caustics”. If all of the resources were

located within the caustics, this would produce an infinite time to resource encounter.

Therefore, I use a model with random reorientations at reflecting boundaries.

For a given starting position rS and a randomly selected flight orientation �, one

can calculate whether that ray rS + t (cos (�) , sin (�)) intersects
SN

i=1 B✏ (ri) or @⌦
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Figure 1.12: Mean first passage times for Brownian motion, D = 0.1. Targets have
radius ✏ = 0.01.

first. In the former case, the time of first intersection is the first passage time; in

the latter case, the mean free path h =

A
2N✏

is added. Adding the mean free path is

an approximate way of dealing with all of the “post-reflection” trajectory. The first

passage times are averaged uniformly over � 2 [0, 2⇡]. This yields Ee (rS), the mean

first passage time for extensive motion.

Figure 1.12 plots EI (rS) for a specific configuration of resources. Figure 1.13 plots

Ee (rS) for the same configuration of resources. By comparing these, one obtains a

plot of the regions that warrant intensive search; this is plotted in figure 1.14.

1.4 Discussion

Researchers have long been interested in identifying optimal random search strategies.

These strategies are of particular interest in foraging theory. The optimal strategies

predicted by models can be used as benchmarks against which to measure real-world
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Figure 1.13: Mean first passage times for ballistic motion. Targets have radius ✏ =
0.01.

Figure 1.14: Optimal zones for intensive search (purple) and extensive search (cream).
D = 0.1, ✏ = 0.01. Resources are green.
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foragers against. Deviations from these predictions indicate the presence of external

factors, such as predator avoidance or competition with conspecifics. Over a decade

ago, Viswanathan [116] argued that Lévy walks constituted an optimal search strat-

egy, and hence should be ubiquitous in nature. Since then, a huge amount of research

has been devoted to the theoretical efficiency of Lévy walks, and to their empirical

observation in nature [7]. Many researchers [96, 101, 95, 98, 89, 36, 91] have argued

that composite searches are theoretically more efficient than Lévy walks and provide

a more accurate fit to observed data. In this chapter, I have sought to be extend

previous mathematical analysis of composite search strategies.

The models introduced in this chapter make predictions about optimal composite

search behavior based on explicit consideration of the distribution of resources on

the landscape. Different strategies are expected to be favored on different types of

landscapes, and the models in this chapter take this into account. The analyses

performed in this chapter can accommodate a broad range of resource distributions.

The key difference between the GUT and optimal zone models is the criteria

used for switching between intensive and extensive search modes. The GUT model,

which adds to previous work on composite search, assumes that foragers use elapsed

time since last resource encounter as the mode-switching criterion. There is no a

priori reason that an optimal composite search should be based on GUT. A more

efficient foraging strategy is to identify areas that are worthy of intensive search. The

optimal zone forager does this, and provides a benchmark for the ideal behavior of a

composite random searcher. Indeed, the GUT forager can be viewed as a heuristic

approximation of the optimal zone forager. The GUT forager uses time between

resource encounters to try to estimate when it is in an optimal zone. Giving-up-time

is a useful rule-of-thumb for approximating the ideal behavior of the optimal zone

forager.
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The one-dimensional GUT model generates predictions for specific configurations

of resources. This can be used together with the distribution of inter-resource dis-

tances to make predictions for many different types of resource distributions (in

any number of spatial dimensions). Alternatively, the two-dimensional GUT forager

model can produce predictions for many types of resource distributions using radial

averaging. The optimal zone model makes predictions based on specific realizations

of resource locations; it does not require knowledge of the underlying distribution

that generates the resource locations.

The optimal zone forager can be interpreted as a spatially-explicit analog of the

the Marginal Value Theorem. The Marginal Value Theorem is spatially implicit.

It represents resources as discrete, well-defined patches. Resource harvesting within

patches is a deterministic, continuous process. In many situations, resources are

actually arbitrarily distributed points in space, and are not restricted to patches.

These resources are stochastically encountered in discrete events. The optimal zone

model provides a description of ideal composite search in such situations. Like the

marginal value theorem, the optimal zone model determines how a forager should

make decisions about switching between behavioral two modes. In the MVT case,

those modes are within-patch harvesting and between patch travel, while in the opti-

mal zone model those modes are intensive and extensive search. Also like the MVT,

and unlike GUT-based composite search models, the optimal zone model gives the

behavior of an “ideal forager” that has complete information about the landscape; it

does not rely on rules-of-thumb to make decisions.

The models presented here will be useful for several reasons. The GUT model

allows researchers to easily identify landscapes that are suited to composite search

(as opposed to purely ballistic search). It will allow researchers to test the hypothesis

that foragers use elapsed time to assess resource density. The optimal zone model
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provides a Marginal Value Theorem-like benchmark with which to compare observed

animal movement patterns. Overlaying the optimal zones predicted by the model for

specific landscapes with empirically observed search paths will help determine how

closely foragers adhere to maximally efficient behavior.

The models make several major assumptions that might limit their utility. The

composite search foragers are assumed to engage in bimodal Brownian/ballistic search.

Both of these search modes are non-oriented. While this may be appropriate for very

simple organisms, [71, 51], it is unlikely to be an accurate description of animals that

use more complicated sensory systems. The assumption that foragers have only two

distinct movement modes is clearly an oversimplification. A promising future direc-

tion of work would be generalizing the analysis in this chapter to allow for directional

biases in movement (due to sensory abilities or environmental conditions) and a con-

tinuum of search intensity levels (for example, the adaptive Lévy walks discussed by

Reynolds 2010) [98]. The optimal zone model assumes that the zones obey a basic

superposition principle, and that optimal radius around each resource is constant as

resources are depleted. Both of these assumptions should be analyzed in more detail.

Future work on these models should include comparing the theoretical predictions

with observed animal search paths. Good candidate organisms for such empirical

observations are pelagic birds, parasitoids and other insects, and plankton. The

assumptions about composite search made by these models may seem like oversimpli-

fications of the complexities of real-world foraging behavior; however, simple models

like the Marginal Value Theorem and Lévy walks have proved to be extremely useful

in understanding important general concepts. Composite random search models will

likely be just as useful, and it is hoped that the analysis presented here will contribute

to understanding what constitutes an optimal composite search.
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Chapter 2

Composite random search strategies

based on non-proximate sensory cues

2.1 Introduction

For many organisms, the ability to efficiently find food resources is a key determi-

nant of fitness [12]. It is advantageous for foraging animals to focus search effort on

resource rich areas and minimize energy spent searching resource poor areas [117].

This search tactic has been termed composite search [89], area-restricted search [120],

area-concentrated search [13], or intermittent search [16]. A forager using a composite

search strategy alternates between intensive and extensive search modes. In intensive

mode, a forager thoroughly searches resource rich areas by making short moves and

reorienting frequently; in extensive mode, it moves directly across resource poor areas

by making long, straight-line moves with few interruptions.

Composite search behavior is widespread, observed in taxa as diverse as slime

moulds [68], beetles [39], honeybees [114], fish [53], birds [84], ungulates [114], tur-

tles [114], and weasels [49]. Given the ubiquity of composite search, an important
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question arises: how should a forager determine when to switch from intensive to

extensive mode, and vice versa? Questions about optimal foraging have traditionally

been addressed with patch models that envision intensive search taking place within

patches and extensive search as movement between patches [22, 85]. These models are

not directly applicable to cases where resources do not occur in well-defined patches,

and instead take on more general spatial distributions [5]. Optimal foraging on such

landscapes is more properly addressed using random search theory [117, 61, 95]. In

random search models, resources are represented as points, and animal movement is

modeled with stochastic processes. Unlike patch models, random search models are

spatially explicit; resource locations in these models can be specified according to any

spatial point pattern and are not limited to the case of clearly defined patches.

Recently, many studies have compared the efficiencies of different random search

movement patterns [62, 63, 101], and composite searches have been a particular focus

[98, 89, 97]. The criteria that foragers use to switch between modes have received far

less attention. Most analyses of optimal composite search presume that foragers use

a “giving-up time” (GUT) as their mode-switching criterion [98, 89, 97]. A forager

using this criterion switches from extensive to intensive mode upon encountering a

resource. It then stays in intensive mode until a fixed amount of time (the GUT) has

elapsed without a subsequent resource encounter. GUT models accurately describe

some foraging situations, such as ladybird beetle larvae (Coccinella septempunctata)

feeding on aphids [21] and houseflies (Musca domestica) feeding on sucrose drops [11].

Rather than keeping track of time, many animals use sensory cues to determine

when to switch between intensive and extensive mode. Parasitoids like Nermeritis

canecens [118], Venturia canescens [11], and Cardiochiles nigriceps [109] use chemical

cues to determine when to search intensively for hosts. When deciding when to

leave a foraging site, wolf spiders rely more heavily on visual and vibratory cues
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than elapsed time since their last prey encounter [87]. Procellariiform seabirds use

chemicals like dimethyl sulfide to identify where to engage in intensive search [82].

Further examples of animals that use sensory cues to determine search mode include

ciliates like Paramecium and Tetrahymena [72, 70], bacteria, like Escherichia coli and

Salmonella typhimurium [1, 80, 35], cod larvae [34], and fruit flies [29].

In many situations, sensory cues are not precise enough to allow a forager to imme-

diately locate and travel to resources; instead, the forager uses the cues to determine

whether an area is profitable enough to warrant intensive search. For this reason,

we refer to these mode-switching cues as non-proximate. When a forager’s search

brings it very close to a resource, it can use proximate cues to directly move to the

resource and consume it. In random search models, proximate cues are only available

within a small distance, called the proximate radius, from a resource. Proximate cues

lead a forager to deterministically move to the resource, while non-proximate cues

determine the type of stochastic movement pattern the forager executes at a larger

scale. Proximate and non-proximate cues may represent different sensory modali-

ties (e.g., non-proximate olfactory cues and proximate visual cues) or different levels

of precision for a single sensory modality (e.g., non-proximate olfactory cues at the

landscape scale and more precise olfactory gradient following at closer range). For

many microorganisms, like bacteria and plankton, the proximate cue is simply coming

into physical contact with a resource. Non-proximate cues are particularly important

when limited sensory capabilities, very dilute cues, or turbulent and unpredictable

signal profiles prevent foragers from directly orienting toward a resource [50].

Most theoretical work on composite random search strategies has focused on GUT

as the only mode-switching criterion. The role of non-proximate sensory cues as

potential mode-switching criteria has been largely ignored (but see [50]). In this

study, we introduce a modeling framework that describes two classes of composite
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search strategies: those with mode transitions triggered by resource encounters and

elapsed time (the GUT criterion), and those with mode transitions triggered by non-

proximate sensory cues. This modeling framework includes the added flexibility of

incorporating a full spectrum of random movement patterns for both intensive and

extensive mode. We used large simulations to compare the efficiencies of different

search strategies. Searching efficiency depends in part on the spatial distribution

of resources [26], so we compared search strategies on a variety of landscape types,

characterized by different levels of resource aggregation and density. Further, we

examined the performance of the search strategies in response to changes in resource

aggregation to test the robustness of the search strategies to environmental change.

We found that the search strategy based on non-proximate sensory cues outperformed

the search strategy based on resource encounters across all landscape types, and was

more robust to changes in resource aggregation.

2.2 Modeling Framework

2.2.1 Model overview

In our modeling framework, resources are represented as points distributed across a

landscape, and a forager is represented as a moving point with a small fixed proxi-

mate radius. When a resource falls within the forager’s proximate radius, the forager

moves in a straight line to the resource and consumes it; otherwise, it implements

a random search strategy. Random search strategies consist of a set of probabilistic

movement rules. Although the resulting movement patterns are stochastic, the prob-

ability distributions that generate the movement provide a structure for the search.

Random search strategies are often used in foraging models because they agree with
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the movement patterns observed in many foraging animals, and because few animals

possess the capability to execute a purely systematic search [117].

2.2.2 Movement patterns

Lévy walks are stochastic processes that provide a versatile tool for modeling animal

movement [10, 95]. A Lévy walk with parameter µ is a random walk with step

lengths l drawn from a Pareto distribution, p(l) ⇠ l�µ, 1 < µ  3. Different values

of µ produce different types of random walks. As µ ! 1, the resulting random walk

approaches ballistic (i.e., straight-line) motion. For random walks with step lengths

drawn from a Pareto distribution with µ � 3, the generalized central limit theorem

shows that the resulting random walk converges to Brownian motion at sufficiently

large temporal and spatial scales (for details, see 2.6). Thus, Lévy walks can be seen

as spanning a spectrum of movement behavior, ranging from ballistic motion (µ = 1)

on one extreme to Brownian-like motion (µ = 3) on the other.

Our model deals with both non-composite and composite foragers. Non-composite

foragers move by Lévy walks with parameter µ. Composite foragers switch between

extensive and intensive search modes. In extensive search mode, foragers move ac-

cording to a Lévy walk with parameter µ
ext

. In intensive search mode, foragers move

according to a Lévy walk with parameter µ
int

. Previously, composite searches have

been modeled with Brownian motion in the intensive mode and ballistic motion in

the extensive mode [89]. This was later generalized to consider a full range of Lévy

walks in extensive mode [97]. Our model represents a further generalization, and is

the first work that allows a full range of Lévy walks for both intensive and extensive

search modes.
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2.2.3 Mode-switching criteria

Our model considers two type of composite foragers: GUT foragers, which use re-

source encounters as their search mode criterion, and sensory foragers, which use

non-proximate sensory cues as their search mode criterion. A GUT forager switches

from extensive to intensive search when it encounters a resource. After encountering

a resource, the forager reverts to extensive search as soon as a specified time (the

GUT) elapses without a subsequent resource encounter.

For the sensory forager, we created a generalized non-proximate sensory field. We

denote the intensity of non-proximate sensory cues generated by a resource i detected

at a location x by fi(x). The shape of the function fi(x) will depend on the particular

sensory mechanisms involved; here, in order to make the model as general as possible,

we assume that the strength of non-proximate sensory cues generated by a resource

follows a Gaussian distribution with variance �2 centered at that resource. This is

particularly appropriate if, for example, the sensory cues are chemical signals that

travel via diffusion. The total non-proximate sensory field is obtained by superim-

posing the fields produced by each resource, f (x) =

P

i fi (x). The non-proximate

sensory forager monitors this field at the end of every step in its random walk. If

the value of the field is below a specified threshold, the forager engages in extensive

search; if it is above the threshold, it engages in intensive search (Fig. 2.1).

2.3 Model Simulation

2.3.1 Simulation objectives

Using the modeling framework above and Netlogo [121], we simulated three classes

of foraging strategies: non-composite, GUT, and non-proximate sensory. Within
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Figure 2.1: A schematic representation of the behavior of a non-proximate sensory
forager. Resources are black dots on the two-dimensional landscape (bottom). The
radius of a dot is the forager’s proximate radius. A non-proximate sensory field (red
surface) is generated by the resources. A non-proximate sensory forager has a fixed
threshold (green plane) that it uses as a mode-switching criterion. When a forager
reaches the end of a step-length, it assess the sensory field; if the field is above the
threshold value (circled areas on landscape), the forager engages in intensive search.
The forager’s movement is represented by the blue line. In this case, it eventually
consumes a resource (red disk).

each of these strategy classes, we sought to identify the movement parameters and

mode-switching threshold that maximized search efficiency (defined as the number

of resources consumed divided by the total distance moved). For the non-composite

foragers, this amounted to optimizing the movement parameter µ. For GUT for-

agers, we optimized µ
int

, µ
ext

, and the GUT. For non-proximate sensory foragers, we

optimized µ
int

, µ
ext

, and the level of the sensory field that would trigger switches in

search mode (i.e., sensory field threshold, SFT). Using an optimization algorithm (see

2.7.1), we found the optimal parameter combination for each class of forager on each

type of landscape, and compared the efficiencies of these optimal foragers. Then, we
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examined the sensitivity of search efficiency to each of the optimized parameters (see

2.7.2). We also explored how a forager optimized to one type of landscape would fare

in another; we quantified this ability with a measure called robustness (see 2.7.3).

The sensitivity and robustness analyses were conducted with R [92].

2.3.2 Landscape characteristics

The landscape was simulated as square, 111 units in length and width. The units

in NetLogo simply offer a spatial scale; coordinates are floating point numbers, and

are not restricted to discrete values. Resources were distributed across the landscape

according to a Neyman-Scott process (see 2.7.4). We selected this point process be-

cause it allowed us to adjust both the intensity and aggregation of the process. The

distribution of the number of points in sample sets closely resembles a negative bino-

mial distribution [123], but there is no stationary spatial point process that directly

generates a negative binomial distribution of points in its sample sets [31]. The re-

source distributions were specified by two parameters: the radius of the clusters of

resources and the total initial number of resources. We used 100, 400, 700, and 1000

as our initial resource levels, and cluster radii of 4, 8, 16, 32, and 64.

2.3.3 Forger characteristics

Foragers in our simulations traveled with a uniform speed of 0.25 units per time step

and had a proximate radius of 0.5 units. When a forager consumed a resource, it

stayed at that point for one unit of time. Consumed resources were not replaced;

hence our simulations represent destructive foraging (resource depletion). If a forager

encountered a resource during a step of a random walk, that step was truncated. The

non-proximate sensory field was composed of Gaussian distributions with variance
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one.

2.4 Results

2.4.1 Optimal parameters

The optimal search parameters of the non-proximate sensory foragers displayed a

different pattern than those of the GUT foragers. For all degrees of resource aggre-

gation, the best non-proximate sensory foraging strategies involved Brownian motion

in intensive mode (µ
int

= 3). The optimal non-proximate sensory foragers used an

extensive mode that depended on the landscape (although these extensive modes

were always ballistic or close to ballistic). Thus, optimal non-proximate sensory for-

agers used intensive and extensive movement parameters that are consistent with

conventional composite search (although the criteria they use for mode-switching dis-

tinguishes them from previous composite search models). The optimal parameter for

non-composite search generally ranged from µ = 1.0 on landscapes with low resource

aggregation to µ = 1.8 on landscapes with high resource aggregation (Table 2.1).

Although optimizing the parameter for non-composite Lévy walks is a well-studied

problem, the case of destructive foraging on patchily distributed resources is not; such

situations were once assumed to be equivalent to non-destructive foraging on uniform

landscapes, but this is not true [98]. Our non-composite results are largely in agree-

ment with previous results about destructive searches on landscapes generated by

cellular automata [98].

The optimal search parameters for composite foragers showed several interesting

patterns. Conventional composite search strategies, which use ballistic motion in ex-

tensive search and Brownian motion in intensive search [89], provide a useful baseline
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Table 2.1: Parameter combinations for three different search strategies producing the
highest mean searching efficiency for different resource densities and cluster radii.
Resource aggregation decreases with increasing cluster radius.

Resource Cluster NCS

1
GUT Strategy NPS Strategy

2

Density Radius µ µ
ext

µ
int

GUT µ
ext

µ
int

SFT

3

100 4 1.6 1.0 3.0 250 1.2 3.0 0.0005

100 8 1.4 1.0 3.0 400 1.4 3.0 0.0005

100 16 1.2 1.0 2.6 250 1.6 3.0 0.0005

100 32 1.4 1.0 1.8 150 1.4 3.0 0.0005

100 64 1.2 1.0 1.4 100 1.6 3.0 0.0005

400 4 1.6 1.0 3.0 150 1.2 3.0 0.0005

400 8 1.6 1.0 3.0 150 1.2 3.0 0.0020

400 16 1.4 1.0 2.6 150 1.0 3.0 0.0010

400 32 1.2 1.0 2.0 100 1.0 3.0 0.0010

400 64 1.2 1.0 1.6 50 1.2 3.0 0.0040

700 4 1.6 1.0 3.0 100 1.2 3.0 0.0020

700 8 1.4 1.0 3.0 100 1.0 3.0 0.0010

700 16 1.4 1.0 2.6 50 1.2 3.0 0.0160

700 32 1.2 1.0 2.0 50 1.0 3.0 0.0320

700 64 1.0 1.0 1.0 — 1.0 3.0 0.0320

1000 4 1.8 1.0 3.0 100 1.0 3.0 0.0005

1000 8 1.6 1.0 3.0 100 1.0 3.0 0.0005

1000 16 1.4 1.0 2.4 50 1.0 3.0 0.0320

1000 32 1.4 1.0 2.0 50 1.0 3.0 0.0640

1000 64 1.0 1.0 1.0 — 1.0 2.8 0.0640

1
Non-composite search strategy

2
Non-proximate sensory search strategy

3
Sensory field threshold

for comparison. For all degrees of resource aggregation, the best GUT foraging strate-

gies involved ballistic motion in extensive mode (µ
ext

= 1) (Table 2.1). The optimal

intensive mode for GUT foragers depended on the degree of resource aggregation. On

landscapes with a high degree of resource aggregation, optimal GUT foragers used

Brownian motion in intensive mode (µ
int

= 3). Thus, the optimal GUT foragers for

landscapes with a high degree of resource aggregation behaved as a conventional com-

posite searcher. The optimal GUT foragers for other landscapes used the conventional

extensive strategy but deviated from the conventional intensive strategy (µ
int

< 3).
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2.4.2 Search strategy comparisons

After identifying optimal parameters for non-composite, GUT, and non-proximate

sensory foragers, we compared the search efficiencies of these foraging strategies. The

composite search strategies outperformed the non-composite search strategy when

resources were highly aggregated, and the relative advantage of composite search in-

creased with the degree of resource aggregation (Fig. 2.2). Composite search also

produced lower variability in search efficiency than non-composite search when re-

sources were highly aggregated (Fig. 2.3). For all search strategies, both search

efficiency (Fig. 2.2) and variability in search efficiency (Fig. 2.3) increased with

degree of resource aggregation.

The non-proximate sensory strategy performed better than the GUT strategy

across the full spectrum of resource aggregation (Fig. 2.2). At first glance, this result

may seem obvious; having sensory capabilities is clearly better than not having them

at all. Recall, however, that the non-proximate sensory forager is not simply an

enhanced GUT forager. The GUT forager has the ability to keep track of time since

the last resource encounter, an ability that the non-proximate sensory forager lacks.

The non-proximate sensory forager’s performance advantage over the GUT forager

can be attributed to two main causes. First, the sensory forager has more opportuni-

ties to switch search mode. The GUT forager only switches mode upon encountering

resources or when the time threshold expires. The sensory forager examines the sen-

sory field at every resource encounter and at the end of every step of its random walk;

this happens very frequently when move lengths are short (i.e., when µ is close to

3.0). When the sensory forager engages in intensive mode, it is not making a large

time commitment, because it has frequent opportunities to revert to extensive mode.

When the GUT forager engages in intensive search, it is stuck in that mode until
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Figure 2.2: Normalized searching efficiency for three search strategies across 5 levels
of resource aggregation and 4 levels of resource density: (A) 100, (B) 400, (C) 700, (D)
1000. Searching efficiency was normalized for comparison across resource densities.
Resource aggregation decreases with increasing cluster radius. Error bars represent
95% confidence intervals. The x-axis is presented on the log2 scale.

the time threshold elapses. Second, the GUT forager’s search strategy relies on the

spatial autocorrelation of resources. When a GUT forager encounters a resource, it

enters intensive search, under the assumption that other resources are nearby. In

contrast, the sensory forager can be triggered into intensive search by local deviations

in the sensory field, which is beneficial regardless of the spatial autocorrelation of the

resources. This effect is evident in figure 2.2, where the advantage of sensory search

over GUT search increases slightly as landscapes become more dispersed.
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Figure 2.3: Coefficient of variation in searching efficiency for three search strategies
across 5 levels of resource aggregation and 4 levels of resource density: (A) 100, (B)
400, (C) 700, (D) 1000. Resource aggregation decreases with increasing cluster radius.
The x-axis is presented on the log2 scale.

2.4.3 Sensitivity

For both composite search classes, searching efficiency was most sensitive to movement

behavior in extensive mode, µ
ext

(Fig. 2.4). The difference in searching efficiency

between the optimal µ
ext

and the worst µ
ext

was up to 70%. In contrast, the difference

in searching efficiency between the optimal µ
int

and the worst µ
ext

was no more than

45%.

Setting the threshold parameter (the time threshold for GUT foragers, the sensory

field threshold for non-proximate sensory foragers) below the optimal value caused

greater decreases in efficiency than when these parameters were set above the optimal
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value. When the time threshold is set too low, the GUT forager spends too much

time in extensive mode; in the extreme, setting the time threshold to zero leads to a

reduction in efficiency of nearly 40%. When the sensory field threshold is set too low,

the non-proximate sensory forager spends too much time in intensive search; in the

extreme, setting this threshold to zero leads to a reduction in efficiency of over 60%

(figure 2.4).
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Figure 2.4: Representative example of sensitivity analysis for the three parameters
associated with giving-up time and non-proximate sensory search strategies (resource
density = 400; cluster radius = 4). Points represent proportional difference in search-
ing efficiency for a single run relative to the mean searching efficiency produced by the
optimal parameter combination. Parameter values were normalized for comparison.
µ

int

is the intensive movement parameter, µ
ext

is the extensive movement parameter,
GUT is the giving-up time, and SFT is the sensory field threshold. Lines represent
smoothing splines fitted to the relationship. Sensitivity analysis based on 100 runs of
the model for each parameter value. See Appendix B.2 for additional details.
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2.4.4 Robustness

Our robustness analysis (explained in detail in 2.7.3) allowed us to determine how

a forager optimized for a particular level of resource aggregation would fare in land-

scapes with different levels of resource aggregation. The non-proximate sensory strat-

egy was less affected by changes in resource aggregation than the GUT strategy, par-

ticularly for foragers that were optimized for dispersed resources (black lines in Fig.

2.5). The optimal GUT strategy for harvesting dispersed resources approximated

non-composite search behavior (i.e., the values for µ
ext

and µ
ext

converged) (Table

2.1). Placing these foragers in landscapes with more aggregated resources drastically

reduced their searching efficiency (black dashed lines in Fig. 2.5). In contrast, GUT

foragers optimized for clumped resources were relatively robust to decreasing degrees

of resource aggregation (grey dashed lines in Fig. 2.5). The non-proximate sensory

strategy was relatively robust to deviations from the resource distribution pattern to

which a forager was optimized (solid lines in Fig. 2.5).

2.5 Discussion

Composite search strategies, which consist of extensive and intensive search modes,

help foragers focus search effort on resource rich regions and devote less effort to

resource poor regions. The central objective of this study was to compare the ef-

ficiency of two possible criteria for switching search modes: giving-up time (GUT)

and non-proximate sensory cues. To our knowledge, GUT is the only mode-switching

mechanism previously used in composite search models [63, 97, 89], and our model

with mode-switching based on non-proximate sensory cues is novel. As discussed in

the introduction, composite searches based on non-proximate cues are a general tactic

used by a wide variety of organisms, and hence this model has broad applications.
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Figure 2.5: Robustness of non-proximate sensory (NPS) and giving-up time (GUT)
search strategies across 5 levels of resource aggregation and 4 levels of resource density:
(A) 100, (B) 400, (C) 700, (D) 1000. The performance of foragers that evolved in
landscapes with clumped (grey lines) or dispersed (black lines) resources was tested in
landscapes with different degrees of resource aggregation. Robustness was calculated
as the proportional difference in mean searching efficiency between a forager that is
new to a landscape type and a forager that evolved in that landscape type. Points
represent the mean proportional difference in searching efficiency, D

R

, and error bars
represent the 2.5% and 97.5% quantiles of the bootstrapped data set. See Appendix
B.3 for additional details. Resource aggregation decreases with increasing cluster
radius. Points are offset from x-coordinates for clarity of presentation. The x-axis is
presented on the log2 scale.

Our simulations revealed that non-proximate sensory foragers outperformed GUT

foragers across a full spectrum of resource distributions, ranging from highly aggre-

gated to highly dispersed. In addition, non-proximate sensory foragers were more

robust to changes in resource distribution, implying that they would be better able

to cope with environmental change. These results indicate that it is better to inform
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search behavior with a non-directional sensory cue than with resource encounters

and elapsed time. Together with empirical evidence indicating that sensory cues are

more important than recent resource encounters in determining foraging mode [87],

our simulations suggest that the existing GUT composite search paradigm should be

considered as only a subset of a broader class of composite search strategies.

In an attempt to keep our model as general as possible, we have neglected several

important ecological factors. First, we did not consider the costs involved in the

evolution or development of the cognitive and sensory abilities foragers would need

to detect non-proximate cues versus the cost to keep track of time. Second, we

only considered non-proximate sensory fields that were Gaussian; the exact shape of

these fields will depend on the specific environment and cues under examination. For

example, chemical cues are often transported via prevailing winds [100]. Third, our

simulation was done in two dimensions; for many species, especially marine organisms,

a three-dimensional model would be more appropriate. Finally, we did not take into

account factors like cooperative foraging, interspecific competition, or predation risk.

The balance between food acquisition and predation risk is a particularly important

determinant of a forager’s fitness [19]. Following [98], we could incorporate proxies

for predation risk in our model, such as forcing GUT searchers to use giving-up-times

that are shorter than optimal, or by making resource detection within the proximal

radius imperfect (under the assumption that vigilance against predators detracts from

a forager’s ability to consistently detect resources). However, in some situations [115],

more convoluted movement exposes a forager to less predation risk, not more. One

solution would be to directly and spatially explicitly include predators in the model.

For our non-proximate sensory foragers, the sensory field generated by resources could

be combined with an inhibitory field generated by predators, so that intensive search

is encouraged by proximity to resources, but discouraged by proximity to predators.
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The aim of this study, though, is to understand baseline foraging behavior before

considering how it interacts with predation risk.

The modeling framework outlined in this study has the potential to help bridge

the gap between two traditionally disparate fields of study: random search theory

and classic patch use theory. The former focuses on animal movement patterns, the

latter on patch use decisions [8]. Recent work [10] has sought to establish a “stochastic

optimal foraging theory” to unify these approaches; our model could contribute to that

effort. One of the foundational results of classic foraging theory is Charnov’s Marginal

Value Theorem (MVT), which dictates that an optimal forager should deplete patches

so that the intake rate in each patch is equal to the expected intake rate averaged

over the rest of the environment [22]. The predictions of the MVT provide a useful

benchmark to measure real-world foragers against. Unfortunately, the MVT is not

easily translated to the realm of random search theory, where resources have arbitrary

spatial distributions (hence patches are not well-defined) and resource encounters are

typically discrete events (hence instantaneous intake rate is not well-defined).

On landscapes where resources are distributed as points, the best possible forager

would solve a famous optimization problem known as the traveling salesman problem.

The traveling salesman problem essentially asks: given a set of points, what is the

shortest possible route that visits each point exactly once? Many books are devoted to

solution algorithms for this challenging problem [3, 64], and it is unlikely that animals

solve this problem to arrive at the optimal strategy. Therefore, the question of how

to best describe optimal foraging on spatially distributed point resources remains. If

the MVT could successfully be translated into the context of random search, then we

would have a useful null-model for such landscapes.

Plank and James [89] proposed an analogue between between patch-use models

and composite random search models: within patch harvesting corresponds to inten-
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sive search, while between-patch travel corresponds to extensive search. They further

suggested that optimal GUT composite searchers represent the random search ver-

sion of MVT optimal foragers. There are important differences between the optimal

behavior predicted by these two models, though. MVT optimal foragers make de-

cisions based on the current local and global resource levels. They are omniscient,

and hence have no need to use past experience or memory. This contrasts with

GUT optimal foragers, whose behavior is highly dependent on stochastic resource

encounters. The non-proximate sensory optimal foragers introduced in this chap-

ter might provide a better analogue to MVT optimal foragers. Like MVT optimal

foragers, non-proximate sensory optimal foragers make instantaneous assessments of

local and global resource conditions to determine when to switch behavioral modes.

Just as MVT optimal foragers provide a useful null-model for foraging on landscapes

with resource patches, non-proximate sensory optimal foragers could provide a useful

null-model for foraging on landscapes with resources distributed as arbitrary point

patterns. The non-proximate sensory forager model predicts areas that warrant in-

tensive search; by overlaying this with observed animal movement trajectories, one

could determine how close those animals come to optimal behavior.

2.6 Appendix: Lévy walks with µ = 3

In this section, we examine the properties of Lévy walks with µ = 3. Many studies

about random search strategies, including this one, use Lévy walks with parameters

µ 2 (1, 3] to represent a spectrum of movement types, ranging from ballistic motion

on one extreme to Brownian motion on the other [97, 101, 62]. It is thus important

to verify that the µ = 3 case can indeed be characterized as Brownian. The catego-

rization of Lévy walks with µ = 3 has been treated with ambiguity in the ecological
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literature. [62, 96, 89] and [95] all label Lévy walks with µ = 3 as Brownian motion.

[98, 108, 10] and [63] state that power-law walks with µ > 3 are Brownian, and either

classify the µ = 3 case as superdiffusive or do not mention it at all. We seek to

provide clarification here.

The categorization of a stochastic process depends on how its mean-square dis-

placement, hx2i, scales with time. For Brownian motion, hx2i ⇠ t, while for su-

perdiffusion, hx2i ⇠ t↵, ↵ > 1. As we explain below, Lévy walks with µ = 3 scale

as hx2i ⇠ ln (t) t, a marginal case between Brownian motion and superdiffusion.

Ecology papers rarely remark on this hx2i ⇠ ln (t) t scaling behavior, and, to our

knowledge, never provide a mathematical explanation. In this section, we provide a

concise derivation for ecological readers. Our approach follows the continuous time

random walk framework presented in [124], where a similar scaling relationship was

derived for random walks on a spatial lattice. We examine the one-dimensional case

for simplicity, but the same arguments carry over to higher dimensions.

Let � (x, t) be the probability density function for a random walk to be located

at position x at time t. The jump probability density function, h (x, t), determines

the probability of transitioning from one position to another. The probability that a

walker makes a jump of distance between x and x + �x in the time between t and

t+�t is
´ x+�x

x

´ t+�t

t
h (y, ⌧) d⌧ dy. For a Lévy walk with µ = 3, constant velocity v,

and proximate radius l0, the jump probability density function is

h (x, t) =
1

2

p (t) � (|x|� vt)

p (t) =

8

>

>

<

>

>

:

2 l20 t
�3 t � l0

0 t < l0

.

The choice of velocity and proximate radius do not affect the scaling relationship, so



70

we choose v = l0 = 1. The delta function couples the length of a step with the time

it takes to execute it, so taking a step of length |x| requires time t = |x|. Therefore,

the probability density for the step times, p(t), determines both the distance and

duration of steps. The factor of 1
2 arises because the walker can take a step to either

the left or right.

Consider the probability that a walker arrives at position x at time t at the exact

end of a step-length. The associated probability density function, ! (x, t), satisfies

the equation

! (x, t) = � (t) � (x) +

ˆ 1

�1

ˆ t

0

! (y, ⌧)h (x� y, t� ⌧) d⌧ dy. (2.1)

The first term on the right hand side arises because the walker starts at the origin.

The second term sums all contributions from steps that start at position y and time

⌧ and end at position x at time t. This is not quite an equation for the probability

density � (x, t); for that, we must consider that a walker can pass a given position

during a step. The probability that a walker passes position x at time t in a single

step from the origin is given by the density function

g (x, t) =
1

2

� (|x|� t)

ˆ 1

t

p (⌧) d⌧ =

1

2

� (|x|� t) t�2.

With this, we can obtain an equation for � (x, t):

� (x, t) =

ˆ 1

�1

ˆ t

0

g (y, ⌧)! (x� y, t� ⌧) d⌧ dy. (2.2)

This accounts for all possible ways of finishing the previous step at exactly position

x � y at time t � ⌧ , then passing position x at time t during the next step. We

next take both Fourier and Laplace transforms of (2.1) and (2.2). A capital letter
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for a function name and a switch in the argument from t to s will indicate a Laplace

transform; a carat over the function and a switch in the argument from x to k will

indicate a Fourier transform. Using convolution properties, we find ˆ

⌦ (k, s) = 1
1�Ĥ(k,s)

and ˆ

� (k, s) = ˆG (k, s) ˆ⌦ (k, s), so

ˆ

� (k, s) =
ˆG (k, s)

1� ˆH (k, s)
. (2.3)

The Fourier-Laplace transformed function ˆ

� (k, s) is particularly useful, because the

following relationship yields the Laplace transform of the mean-square displacement:

ˆhx2i =
ˆ 1

0

x2
� (x, s) e�ikxdx = �@

2
ˆ

�

@k2
(0, s) . (2.4)

To find ˆ

� (k, s), we need to calculate the Fourier-Laplace transforms of h (x, t) and

g (x, t). For the former,

ˆH (k, s) =

ˆ 1

1

ˆ 1

�1
� (|x|� t) t�3e�ste�ikxdx dt

=

ˆ 1

1

t�3e�t(s+ik)dt +

ˆ 1

1

t�3e�t(s�ik)dt .

Let z = s + ik, � (z) =

´1
1 t�3e�tzdt, and observe that ˆH (k, s) = � (s+ ik) +

� (s� ik). To calculate � (z), we perform integration by parts twice and obtain

� (z) =
1

2

�

e�z � ze�z � z2Ei (�z)
�

,

where Ei (z) is the exponential integral function, which can be written as Ei (�z) =

� + ln (z)�P1
k=1

(�1)k+1zk

k k! . Performing a small z expansion for � (z) yields

� (z) =
1

2

�

1� 2z � z2 ln (z)
�

+O
�|z|2� .
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A similar approach can be used to calculate ˆG (k, s). Letting z = s+ ik and  (z) =

1
2

´1
1 t�2e�tzdt, we have ˆG (k, s) =  (s+ ik) +  (s� ik). To calculate  (z), note

that  (z) = 1
z

⇣

e�z

2 � � (z)
⌘

, so

 (z) =
1

2

�

e�z
+ z Ei (�z)

�

,

and the small z expansion is

 (z) =
1

2

(1 + (� � 1) z + z ln (z)) +O
�|z|2� .

The small z expansions for � (z) and  (z) give small k and s expansions for ˆH (k, s)

and ˆG (k, s), respectively, and, by (2.3), for ˆ

� (k, s). Using (2.4), we obtain, for small

s,

ˆhx2i ' �1 + 3s (� � 1) + 2 ln (s) + 2s� ln (s) + 2s (ln (s))2

s2 (2 + s ln (s))2
.

The Tauberian theorems [38] relate the asymptotic behavior of a function as t ! 1
to the behavior of its Lapalce transform as s ! 0. In this case, for large t,

⌦

x2
↵ ' t ln (t)

2

� 1

4

t+
1

4

(3� 3 � � ln (t) + 2 � ln (t)) ,

Keeping only the largest term and ignoring constants,

⌦

x2
↵ ' t ln (t) .

Therefore, even though simulation studies like this one loosely refer to Lévy walks

with µ = 3 as Brownian, they actually represent marginal behavior between the

diffusive and superdiffusive regimes.

It’s important to note the difference between Lévy flights, in which a walker takes
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instantaneous jumps, and Lévy walks, in which a walker moves continuously with

finite velocity along each step [63]. For the former case, central limit theorems can be

used to categorize how mean-square displacement scales with the number of steps. For

power-law step-length distributions with µ > 3, the standard central limit theorem

implies convergence to Brownian motion; for µ = 3, Gnedenko and Kolmogorov’s

generalized central limit theorem implies that the random walk’s distribution is in

the (confusingly named) non-normal domain of attraction of the normal distribution

[43]. The continuous time random walk approach used above allows for the analysis

of actual Lévy walks instead of their Lévy flight cousins.

2.7 Appendix: Model details

2.7.1 Parameter Optimiziation

We used a grid-based search to explore the searching efficiency associated with large

regions of the parameter space of our simulation model. A non-composite forager

is characterized by a single parameter µ. We ran non-composite simulations using

parameter values µ = 1.0, 1.2, 1.4, ..., 3.0 on each landscape type (specified by ini-

tial resource distribution and resource aggregation). For the composite foragers, we

examined 4 initial resource densities, 5 cluster radii, 2 search strategies (GUT and

non-proximate sensory), and 11 values for each of the 3 search parameters (µ
ext

, µ
int

,

switching threshold). In the first sweep of the parameter space, we conducted 100

runs for each parameter combination for a total of 5,324,000 runs (4 densities * 5

radii * 2 strategies * 11

3
= 1331 search parameter combinations * 100 runs). Each

run of the model consisted of 20,000 discrete time steps. The full grid-based search

produced a rough fitness surface based on the searching efficiency of each parameter
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combination. The fitness surface allowed us to exclude regions of the parameter space

that led to poor searching efficiency, thereby focusing our computational resources on

increasing replication in regions of the parameter space that were likely to contain

the optimal parameter combination. We used an iterative process (described below)

to narrow the regions of the parameter space selected for increased replication. The

iterative process did not produce a finer-scale resolution of the parameter space but

rather increased the replication for subsets of the parameter combinations used in

the full grid-based search. Within each landscape type, we used the mean searching

efficiency from the full grid-based search to select the top 13 of the 1331 (1%) possi-

ble parameter combinations. For each parameter, we used the range of values found

within the top 1% to reduce the parameter space. For example, suppose the top 1%

parameter combinations included µ
ext

values that ranged from 1.0-1.4, µ
int

values from

2.6-3.0, and GUT values from 100-200. Then we would have increased replication for

the 27 parameter combinations (µ
ext

, µ
int

, GUT) that represented parameter values

within those ranges: µ
ext

= 1.0, 1.2, 1.4; µ
int

= 2.6, 2.8, 3.0; GUT = 100, 150, 200.

For some landscape types, this approach did not reduce the parameter space substan-

tially. Thus, we conducted 200 runs for each parameter combination in the reduced

parameter space and again calculated the top 1% of the parameter combinations to

further reduce the parameter space. This process was repeated until the optimal

parameter combination was comprised of at least 500 runs because preliminary ex-

ploration of the model indicated that 500 runs produced good estimates of mean

searching efficiency.
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2.7.2 Sensitivity

We examined the sensitivity of searching efficiency to each search parameter by vary-

ing one search parameter while holding the other two parameters at their optimal

values. µ
ext

and µ
int

ranged from 1 to 3, GUT ranged from 0 to 500, and the sensory

field threshold ranged from 0 to 0.256 (Table 2.2). The µ parameters have a naturally

bounded range, but the threshold parameters have arbitrary upper bounds, which

were selected based on preliminary explorations of parameter space. We normalized

the parameter values to fall between 0 and 1 to facilitate comparisons across the differ-

ent ranges of the parameters. We calculated the proportional difference in searching

efficiency as D
S

= (y � ȳ
o

)/ȳ
o

, where y was the searching efficiency for a single run

and ȳ
o

was the mean searching efficiency for the optimal parameter combination. We

fitted smoothing splines to the relationship between D
S

and the normalized value of

each parameter for each landscape type. The shape of the smoothing splines provided

an indication of the sensitivity of searching efficiency to changes in each parameter.

In two cases (see Table 2.1), the optimal µ
ext

and µ
int

were the same, which made the

best giving-up time parameter irrelevant. Thus, those landscape types were excluded

from the sensitivity analysis.

2.7.3 Robustness

To assess the robustness of the optimal strategies to changes in resource aggregation,

we examined how a search strategy that maximized the searching efficiency for one

landscape type performed in landscape types with different degrees of resource aggre-

gation. Specifically, we calculated robustness as DR = (ȳi,j � ȳi,i)/ȳi,i, where ȳi,j was

the mean searching efficiency in landscapes of type i for a forager that was optimized

for a landscape of type j. In this formula, landscape types are indexed by cluster



76

Table 2.2: Parameter values used in the simulation model

Parameter Value

Resources

Initial number of resources 100, 400, 700, 1000

Number of clusters

1
15

Radius of resource cluster

2
4, 8, 16, 32, 64

Forager

Speed (distance/time step) 0.25

Detection radius 0.5

Lévy exponent (µ)

Extensive search mode 1.0, 1.2, 1.4, 1.6, . . ., 3.0

Intensive search mode 1.0, 1.2, 1.4, 1.6, . . ., 3.0

Mode-switching criteria

3

Giving-up time 0, 50, 100, 150, 200, . . ., 500

Sensory field threshold 0, 0.0005, 0.001, 0.002, . . ., 0.128, 0.256

1
Poisson random variable with an expected value of 15

2
Resource aggregation decreases with increasing cluster radius

3
Forager employs only one mode-switching criteria in a run of the simulation

radius. We examined how foragers optimized for very clumped and very disperse

landscapes (j = 4 and j = 64, respectively) performed on a full range of landscape

types (i = 4, 8, 16, 32, 64). This analysis was done on four different levels of resource

density (100, 400, 700, 1000). Then we resampled the data with replacement (i.e.,

bootstrap method) 500 times for each landscape type and calculated the mean and

2.5% and 97.5% quantiles of the distribution of robustness values.

2.7.4 Resource distribution

Resources were distributed across landscapes according to Neyman-Scott processes

[57]. The algorithm involved randomly drawing the number of resource aggregations,

or clusters, from a Poisson distribution with an expected value of 15 (Table 2.2). The

center of each cluster was randomly assigned to a point in the landscape (i.e., parent

point). Then resources were sequentially assigned to a random parent and randomly

placed within a specified radius (i.e., cluster radius) of the parent point until all re-
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Cluster Radii 4 Cluster Radii 8 Cluster Radii 16 Cluster Radii 32 Cluster Radii 64

Figure 2.6: Sample landscapes for different cluster radii. 700 resources per landscape.

sources were distributed among the parents. Thus, for each run of the simulation, the

algorithm randomly determined the number of clusters and the number of resources

per cluster, but the initial total resource density and the cluster radius were fixed.

By changing a single parameter (i.e., cluster radius), we were able to vary the degree

of aggregation of resources, which ranged from tightly clumped (cluster radius = 4)

to dispersed (cluster radius= 64). Representative landscapes are shown in figure 2.6

2.7.5 Boundary conditions

Landscape boundary conditions play an important role in individual-based models

[17]. Most simulations use one of three types of boundary conditions: reflecting,

periodic, or absorbing. Reflecting boundaries are appropriate for modeling animals

that live in a restricted environment, like animals on an island, but are otherwise

unrealistic [17]. Reflecting boundary conditions can also be interpreted as having a

new forager enter the landscape at the exact place where the previous forager left it.

This biases the initial conditions for the new forager and creates edge effects.

Periodic boundary conditions can be interpreted in three different ways. First, the

landscape is literally a torus; this tends not to occur in nature. Second, the landscape

is infinite, but repeating; this is problematic when resource consumption is destruc-

tive, and a forager’s actions at one point on a landscape affect an infinite number
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of other points. Third, a new forager enters the landscape at a point determined by

where the original forager left it; like with reflecting boundary conditions, this has the

potential to create edge effects. Our modeling framework presents a few additional

problems associated with periodic boundary conditions. The resource distributions

and the sensory field are generated under the assumptions that the topology of the

landscape is a plane; periodic boundary conditions would mean that resources on op-

posite ends of the landscape are close to each other, leading to logical inconsistencies.

In our model we implemented a modified version of absorbing boundary conditions.

The major challenge with absorbing boundary conditions is that a forager could leave

the landscape by chance almost immediately after entering it. The performance

of such a forager would not provide much information about the efficiency of the

strategy it employed. Therefore, we chose to force each forager to spend 20,000

discrete time steps foraging on the landscape. If the forager was absorbed by a

boundary, it was randomly dropped back into the landscape to resume foraging. This

can be interpreted as a forager leaving the landscape, then returning later to resume

foraging. We chose 20,000 time steps, because this was a sufficient time for foragers

to appreciably deplete landscapes. Finally, we included a small resource-free buffer

zone at the edge of the landscape. The entire landscape was a square 111 units long

and 111 units wide, but only the 101 unit long, 101 unit wide square in the center

contained resources. Resource-free buffer zones occupied 5 unit thick strips at the

top, bottom, left, and right edges of the landscape. This ensured that all resources

could be approached from every direction, and that no resources were protected by

edge effects.
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Chapter 3

A new framework for analyzing

pollinator foraging behavior

3.1 Introduction

Pollinator foraging behavior is a topic of great interest in evolutionary biology [105],

ecology [122], and animal behavior [41]. Researchers in all of these disciplines have

made significant advances toward understanding pollinator behavior. Nonetheless,

important questions remain about how to disentangle the factors that determine which

flowers a pollinator visits. These factors can include preferences for specific flower

colors [90], sizes [104], odors [103], shape [79], or species [119]. Other factors include

previous individual experience [112], socially shared information [48], predation risk

[94], the composition of the surrounding community of plants [52], and the spatial

configuration of plants [28].

The role of the spatial configuration of plants can be particularly difficult to sepa-

rate from other factors. If a pollinator moves from flower A to flower B, is it because

of flower B’s traits, or simply because of its convenient location? Researchers have at-
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tempted to circumvent this problem using experimental arrays of flowers [58, 28, 81],

and these studies have yielded important insights about pollinator preferences. While

the regularity of an experimental array might seem to remove spatial configuration

as a confounding factor, it does not; the sequence of flowers that a pollinator visits is

always contingent upon the precise spatial configuration of flowers. An experimental

array is only one specific configuration that pollinators could potentially experience. It

is impossible to make arrays for every possible spatial configuration of flowers. Given

that researchers can only observe pollinator behavior on a finite number of spatial

configurations, how should these configurations be selected? An obvious answer is to

chose those configurations that are already available in the natural world: that is, to

use field observations rather than experimental arrays. This leaves the problem of

how to disentangle spatial configuration from other factors that influence pollinator

foraging. We propose a maximum likelihood framework for analyzing field observa-

tions of pollinator foraging. This framework allows researchers to quantify factors like

pollinator preference, independent of the confounding effects of spatial configuration.

Furthermore, it uses observations of pollinator behavior in environments that have

not been subject to experimental modifications. This simplifies the assessment of

pollinator behavior, and avoids introducing confounding artificial influences into the

pollinator’s environment.

In section 3.2, we define several important concepts in pollinator behavior. In

section 3.3, we describe one of the key motivations for understanding pollinator for-

aging: hybridization and speciation of flowering plants. In section 3.4, we describe

how spatial configuration of flowers offers special challenges for understanding forag-

ing behavior, and we discuss previous attempts to address this problem. In section

3.5, we describe our maximum likelihood framework. In section 3.6, we describe a

study system involving sweat bees in Western Nebraska, and we use this system to
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demonstrate the usefulness of our maximum likelihood framework. In section 3.7,

we describe the results from the study system and we discuss this framework more

generally.

3.2 Preference, Constancy, and Bias

Constancy and preference are two behavioral patterns exhibited by pollinators that

have important consequences for the reproduction of flowering plants. Constancy

refers to the tendency of a pollinator to visit flowers of the same species (or morph)

in sequence [119]. If a pollinator with high constancy visits a flower of species A, it

will be predisposed to make its next visit to another flower of that species. The term

preference has been used with some ambiguity in the literature [119]; here, we will use

the term bias to avoid confusion. Bias refers to the tendency of a pollinator to visit

a particular species (or morph). Bias can result from an innate, evolved affinity to a

certain type of flower. It can also result from the individual experience of a pollinator,

if, for example, the pollinator learns to associate a high food reward with a flower

type. Importantly, bias is distinct from constancy. Bias and constancy can together

make a pollinator visit one species (or morph) of a flower more than another, but

due to different mechanisms. The combined effects of these tendencies is sometimes

labeled preference.

An example will illustrate these behavioral patterns. Suppose that a pollina-

tor visits a field that contains two species of flower, species A and species B. A

pollinator with high constancy but no bias might exhibit a sequence of visits like

AAAAAAAAABBBBBBBB. This pollinator has a tendency to stay with the same

species that it just visited, but it does not visit one species more than the other. A

pollinator with a bias for species A but no constancy might exhibit a sequence of vis-
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its like AAABAABABAAABAAA. This pollinator visits species A more frequently

than species B, yet also switches between species. A pollinator with a visit sequence

like AAAAAAAAABAAAAA exhibits a preference for species A, but it is unclear

whether the preference is due to constancy or bias.

In this chapter, we will primarily be concerned with identifying constancy and bias,

and not uncovering the phenomena that give rise to these behaviors. The causes of

constancy and bias are rooted in the foraging strategy employed by the pollinators.

We briefly review some of these strategies here. Pollinators exploring new terrain

often use a stochastic search pattern called a Lévy walk [95]. Lévy walks are also

used when previously discovered food resources disappear, and pollinators must find

new ones [102]. Depending on the species involved, pollinators can use visual or

olfactory cues to detect flowers, and to discriminate between flowers types [24, 103].

Social pollinators share information with each other, both within the hive [48], and

by applying scent marks to depleted flowers [42].

Memory plays a key role in determining which flowers a pollinator visits. Pol-

linators have both short-term memory (which persists for seconds to minutes) and

long-term memory (which persists for days) [25]. Some pollinator species are able

to store many flower locations in their long-term memory, and use this information

to visit a predictable sequence of flowers, called a trapline, in each foraging bout

[112, 73]. Bumblebees, butterflies, hummingbirds, and bat have all been observed

to engage in trapline foraging [2]. Prior to establishing a trapline, pollinators must

rely on search mechanisms. It is also important for pollinators to modify traplines

as resources change (due to changes in available flowers) and as new resources are

discovered [73].

Short-term memory plays an important role for pollinators that are exploring a

new area or modifying existing traplines. There are several hypotheses about how
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short-term memory limitations can give rise to constancy [25]. As pollinators move

from flower to flower, they store a search image that describes the appearance of the

flowers that they are looking for. Keeping a single search image in short-term memory

is easier than keeping multiple images; hence, short-term memory limitations could

make pollinators focus on one flower type at a time. A similar phenomenon involve

the handling procedures for obtaining food for flowers. As with search images, a

pollinator may only be able to hold the motor skill procedure for one flower type in

its short-term memory at a time. When a pollinator foragers on a new flower type,

this experience may “overstrike” its previous experience, establishing a new search

image and handling routine in its short-term memory [58].

3.3 Consequences for hybridization and speciation

One of the major motivations for studying pollinator foraging behavior is to under-

stand the consequences for gene flow between flowering plants. These consequences

are nicely summarized by Hersch and Roy [52], and we will recapitulate them here.

Both bias and constancy play important roles in assortative mating between plants

[52]. Pollinator bias toward a particular species will enhance that species’ overall fit-

ness. Bias for a particular morph within a species reduces gene flow between morphs,

and in extreme cases, may ultimately lead to speciation. Species level constancy main-

tains genetic barriers and prevents the formation of hybrids. Morph level constancy

reduces gene flow within a species, and can ultimately lead to speciation. Inconstancy

by pollinators at the species level can contribute to hybridization.

Many studies have examined the consequences of pollinator bias and constancy in

speciation or hybridization. Chamerion angustifolium is a bee-pollinated species of

fireweed that has two major ploidy types [55]. Polyploidy, the existence of more than
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two sets of homologous chromosomes in the cells of an organism, is one of the few

identified mechanisms that can lead to sympatric speciation [55]. C. angustifolium

has two different ploidy types: a diploid (the cells of these plants have two homologous

chromosomes), and an autotetraploid (the cells of these plants have four homologous

chromosomes. Although these two ploidy types occupy largely different geographic

regions, there are some zones where they come in contact. In these contact zones,

pollinator behavior offers one potential mechanism for preventing hybridization. The

study of pollinator behavior in this system is described in [55, 66, 56].

Pollinator bias and/or constancy may be an important factor in maintaining re-

productive isolation between sympatric, closely-related plant species that share the

same pollinators. This possibility was investigated in the neotropical herbs Costus

pulverulentus and C. scaber [65], but it was found that other mechanisms of reproduc-

tive isolation played larger roles. The effects of pollinator behavior on reproductive

isolation of Rhinanthus minor and Rhinanthus angustifolius was shown to be complex,

and depended on the relative abundances of the two plants [81].

Quantitative trait locus analysis (QTL) provides a method of determining which

floral genes impact pollinator behavior. QTL analysis was used to investigate how

specific genes of sympatric, closely related Louisiana Irises, Iris fulva and I. brevi-

caulis, lead to floral traits that favor pollination by different species [75]. Similar work

was conducted on sympatric, closely related monkeyflower species Mimulus cardinalis

and Mimulus lewisii [104].

3.4 Spatial configuration of flowers

The simplest way to evaluate pollinator bias and constancy involves observing polli-

nator flights within a specified area. To measure bias, the number of pollinator visits
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Figure 3.1: A hypothetical trajectory of a bee foraging on two species of flower. It is
ambiguous whether the bee displays constancy, or whether this constancy is simply
induced by the spatial arrangement of the flowers.

to each flower species is recorded, and then compared to the expected number of

visits, given the number of flowers of each species in the plot. To measure constancy,

the number of flower transitions within and between species is recorded, and then

compared to the expected values of these quantities, given the number of flowers of

each species within the plot. Bateman’s constancy index [119] provides an easy metric

that incorporates this information.

A key problem with such simple approaches to evaluating bias and constancy is

that they neglect the spatial arrangement of flowers. Pollinator movements are often

dictated by the distances between flowers. If a pollinator is foraging in a clump of a

particular plant species, it is likely that its visit pattern will show sequences of visits

to plants of the same species. This will occur even if the pollinator has no intrinsic

propensity to be constant for that plant species; it is only an effect of the clumped

distribution of flowers. Figure 3.1 shows an example of this situation. This problem

of spatial arrangement in bias and constancy studies has been widely recognized

[52, 55, 65, 66, 81, 56, 25, 111].
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One approach to solving this problem is to monitor pollinator movement on

experimental arrays of flowers. Examples of this type of study can be found in

[90, 52, 58, 81]. Experimental arrays allow researchers to manipulate the number

of plants of each species and the distances between each plant. Unfortunately, this

does not eliminate the problem of spatial arrangement of flowers; it only changes

the spatial arrangement. Consider, for example, a pollinator that naturally displays

constancy. If it forages on a grid of alternating flower types, the nearest neighboring

flowers will always be of a different species than the one it just visited. Thus, it is

possible that the pollinator will not display constancy, even though that is its natural

tendency.

If plant species are randomly assigned to positions within the array, problems still

remain. It is unlikely that the grid arrangement provides accurately represents the

pattern of flowers a pollinator would experience in a nature. There is no “neutral”

landscape on which to test foraging behavior. All pollinator behavior is contingent

on the spatial arrangement of flowers, and introducing an artificial arrangement does

not fix this problem. Given that a “neutral” landscape is unobtainable, the most

logical choice is to use a natural landscape. The key with using observations on a

natural landscape is determining how to disentangle the effects of spatial distribution

of flowers when making inferences about bias and constancy from visit data. We will

describe several previous approaches, before suggesting an alternative method.

Husband and Schemske [56] identified the problem of spatial configuration, and

used a randomization technique to analyze pollinator movement data. They observed

pollinators in natural plots (i.e., not arrays). The flower locations from the plot

were used in simulations of pollinator visits. Simulated flights were generated by

selecting flight lengths from the empirical distribution of observed flight lengths. Once

a flight length is selected, the pollinator moved to a flower that was within that flight
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distance. This randomization procedure was used to simulate many pollinator flights,

and the results were analyzed to determine if they agreed with constancy measured

in the original data. A truncation effect may produce artifacts in this randomization

procedure. That is, if a long flight is selected from the move-length distribution,

all flowers within that distance will be eligible, and hence the realized flight could be

shorter than the selected flight. Over many flights, this means that the realized move-

length distribution will be very different than the observed move-length distribution.

An alternative randomization technique, in which the flower that had the distance

was closest to the selected flight length is chosen, may introduce artifacts because of

the discrete nature of observed flight lengths.

A model of pollinator-mediated plant disease transmission was created by Ferrari

et al. [40]. In this model, pollinator movement was modeled as a diffusive process,

and hence probability of pollinator flights between plants was assumed to depend

on distance via Bessel functions. The number of flowers per plant and the time

spent foraging on each plant helped were also incorporated into the model of disease

transmission. Disease outbreaks were simulated on different arrays of virtual plants.

This study highlighted the effects of the spatial configuration of plants on pollinator

movement, and motivated further work by Yang et al [122].

Yang et al [122] used observations on an experimental array of flowers to param-

eterize a movement model. The model included distance-dependence (assumed to

behave as an exponential distribution) and bias as possible factors influencing polli-

nator visits. Once the parameters for the movement model had been identified from

the array observations, the model was used to simulate pollinator movement. The

movement model then provided them with the flexibility to simulate movement data

for spatial arrangements beyond those the array observations.

To our knowledge, [56] is the only existing effort to assess pollinator bias and/or
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constancy from observations on naturally occurring plants that accounts for spatial

configuration. Our goal in this work is to provide a different approach to account for

spatial configuration of plants in the assessment of bias and constancy on naturally

occurring plants. This approach is built on a maximum likelihood framework. Unlike

[56], it does not rely on simulation. Our framework avoids potential artifacts produced

by simulation, and provides researchers with an easy-to-implement method to assess

pollinator bias and/or constancy in natural environments.

3.5 Maximum Likelihood Framework

Consider a plot that contains flowers at locations {xi}Ni=1. The flowers are divided

into two species; call them G and S (this notation is motivated by the actual species

names of the flowers in our demonstration study). We will abuse notation slightly,

and also use G and S to be the set of indices of {xi} corresponding to those species.

The probability that a pollinator moves from one flower to another could potentially

depend on the distance between flowers. The relationship between distance and visit

probability is not known a priori, but there are several probability distributions that

are good candidates for distance kernel functions. For example, an exponential distri-

bution with parameter ✓ is a good candidate for the way that visit probability decays

with distance. Let

D = {di,j}Ni,j=1 = {kxi � xjk}Ni,j=1

be the matrix of inter-flower distances. For a given kernel f with parameter(s) ✓, let

f (x, ✓) be the relative probability of visiting a flower a distance x from the current

flower. Note that the term “relative probability” is used, because the actual probabil-

ity of visiting those flowers will depend on the number of and distances to all the other
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available flowers. Define a matrix of these relative probabilities by D⇤
=

�

d⇤i,j
 N

i,j=1
,

where d⇤i,j =

8

>

>

<

>

>

:

f (di,j, ✓) i 6= j

0 i = j

.

Let b be the bias parameter, which specifies the odds of a pollinator to visit a

species G flower versus a species S flower, all other things being equal. If b = 1, the

pollinator is equally likely to visit the two flowers. If b = 2, it is twice as likely to visit

the a species G flower. If b =

1
2 , it is twice as likely to visit the a species S flower.

Let c be the constancy parameter, which specifies the odds of a pollinator visiting

a flower of the same species it last visited versus the other species, all other things

being equal. If c = 1, the pollinator is equally likely to visit the two flowers. If c = 2,

it is twice as likely to visit the flower of the species it just came from.

Define a bias matrix B = {bi,j}Ni,j=1 where

bi,j =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

b i 6= j, j 2 G

1 i 6= j, j 2 S

0 i = j

.

Define a constancy matrix C = {ci,j}Ni,j=1 where

ci,j =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

c i 6= j, i, j 2 G or i, j 2 S

1 i 6= j, i 2 G and j 2 S or

0 i = j

i 2 S and j 2 G.

Define a weight matrix W = {wi,j}Ni,j=1 by wi,j = bi,jci,jd⇤i,j. In order to convert

these weights into visit probabilities, each column must be normalized. Define P =
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{pi,j}Ni,j=1, where pi,j =

w
i,jP

N

j=1

w
i,j

. Note that the probability transition is determined

by the set (f, ✓, b, c), where f is a family of functions (for example, the exponential

family), and ✓ the vector of parameters (often a single parameter) that specifies the

exact distance kernel function.

Suppose that j plots are observed. In each plot, several pollinators are followed

from flower to flower. Each pollinator is caught and killed once it leaves the plot. A

flight from one flower to another is called a transition. In the following, we assume that

all of the pollinators of a given species exhibit the same basic foraging characteristics,

and hence the transitions observed in a given plot can be pooled across individuals.

This assumption is difficult to verify, as the number of transitions observed per polli-

nator is frequently small (< 10). The most obvious way this assumption could fail is

if different individual pollinators have different learned preferences. Even if this is the

case, by observing at least several pollinators of a particular species, it is possible to

discern general foraging characteristics from pooled data. The fact that individuals

are killed upon exiting the plot ensures that the idiosyncratic behavior of a single

individual will not have undue influence on the results.

For plot number k, let P (k) be the associated probability matrix. Let T (k)
=

n

t(k)1 , t(k)2 , . . . , t(k)m
k

o

be the list of observed transitions in plot k, where each t(k)i is an

ordered pair of integers that specifies a pollinators flight from one flower to another

(initial flower, terminal flower). Writing p (i, j, k) = p(k)i,j , the log likelihood function

for the observed flights in plot k is:

Lk

�

f, ✓, b, c|T (k)
�

= �
m

k

X

i=1

ln

⇣

p
⇣

t(k)i , k
⌘⌘

.

Finally, the total log likelihood function is:
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L (f, ✓, b, c|T ) :=
j
X

k=1

Lk

�

f, ✓, b, c|T (k)
�

.

The distribution functions that we considered were: beta prime, Dagum, Erlang,

exponential, Lindley, and Sigh Maddala. AIC identified that the exponential distri-

bution fit best, and this was consistent regardless of the inclusion of other parameters

like bias or constancy.

Directional persistence is another factor that could potentially influence flower

visits. Directional persistence means that a pollinator that moves from flower A to

flower B is most likely to select its next flower C so that C is close to the ray extend-

ing from A through B. Adding directional persistence into the maximum likelihood

framework introduced complications to the previously described maximum likelihood

framework, because the probability of visits is affected by the previous flower visited

(not just the current flower the pollinator is on). To accomplish this, we defined a

tensor of persistence weights, {zi,j,k}Ni,j,k=1, where zi,j,k is the relative probability of

transitioning from flower j to flower k given the last transition was from flower i to

flower k. This weight was determined using a Von-Mises probability distribution.

zi,j,k =

8

>

>

<

>

>

:

g
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j
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i
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.

Here g (x; , µ,) =

e cos(x�µ)

2⇡I
0

() ; µ is the location parameter and  is the dispersion

parameter. These weights were incorporated into the total weights as above.

The factors that we have thus far considered are: distance, bias, constancy, and

directional persistence. This list could easily be expanded to include environmental

factors, preference for certain morphological traits, or any number of other phenomena

that could potentially influence foraging behavior. The distance factor is characterized
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Figure 3.2: Prairie near Cedar Point Biological Station. Ogallala, Nebraska.

by both a distribution family (for example, exponential), and a parameter set (in the

example of an exponential distribution, the single parameter is the expected value).

The other factors depend on one of more parameters (for example, the bias constant).

We can identify the best distance distribution and the best parameters by maximizing

the likelihood give the observed transitions. Once this is done, we can compare a

model that has all of the factors with simpler models that just contain subsets of

those factors. This is accomplished using the Akaikie Information Criterion (AIC).

3.6 Study system and field methods

To illustrate the utility of the maximum likelihood framework (described below) for

assessing pollinator bias and constancy, we examined the behavior of Agapostemon,

a metallic green sweat bee, in Western Nebraska. The study site was at Cedar Point

Biological station on Lake McCauneghy near Ogallala, NE (figure 3.2). Two species

of flower, Thelesperma filifolium (Greenthread; Asteraceae family) and Tradescantia

occidentals (Spiderwort; Commelinaceae family) are common in the area, and are

pollinated by Agapostemon.
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To begin data collection, team members waited to spot a pollinator. Once a

pollinator was spotted, tracking began with its first flower visit. A team member

observed this first flower visitation from a distance. As the pollinator moved on, a

second team member waited to identify its next flower visitation. This observation

continued, with team members observing which flowers were visited from a distance.

Once the pollinator moved a safe distance away (at least 5 meters), the team member

that observed a specific flower visitation would mark that flower with a flag. The flags

were placed at the base of the flowers, well below the inflorescences. The flags were

numbered, and colored to represent whether the pollinator spent time foraging on an

inflorescence, or whether it rejected the inflorescence (arriving at the inflorescence,

but immediately departing without foraging on it). The tracking process continued

until a pollinator had either visited 8 different flowers, or until it tried to leave the

local area. At this time, team members netted the pollinator, killed it, and preserved

it for identification. The information about the bee’s visits was recorded, and the

flags were removed.

The visits of the first pollinator defined a plot for further pollinator tracking. The

two flowers that were furthest apart in the initial pollinator’s visit sequence were

designated as flower X and flower Y; the distance between them was designated as L.

A line of length 2L through points X and Y was created, extending a distance of L
3

on either side of the flowers. A square plot was created, with the midpoint between

X and Y at the center. All of the flowers in the plot were labeled with numbered

flags at their bases, well below the inflorescences. The distance from each flower to

X and Y was recorded, so that a mapped version of the plot could be reconstructed

later via triangulation. These distances were measured using a laser distance finder.

A compass was used to determine the orientation of the plot.

Having established a plot with spatially mapped flowers, tracking of further pol-
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Figure 3.3: Selected pollinator trajectory. Blue dots are spiderwort, yellow dots are
greenthread. Dimensions of the plot are in meters, with the first focal flower at the
origin.

linator visits was faster. Six different plots were constructed this way, and a total of

39 pollinators were tracked. Of these, 34 ended up being identified as Agapostemon.

The trajectory of one of the observed pollinators is illustrated in figure 3.3. A chart

of flower transitions observed in a particular plot is shown in figure 3.4.

3.7 Results and Discussion

Our analysis showed that a model that incorporates distance and constancy was the

best, according to the Akaike Information Criterion. The AIC score is based on the

log likelihood of each model (with suitably optimized parameters), with a penalty

for including extra parameters. The AIC score is a good way to compare models,

because it balances goodness of fit against the number of parameters. According to
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Plot number: 1

Number of Flowers in Plot:
y 24
b 6

Pollinator visitation info
Pollinator 1 y y y b y y y
Pollinator 2 b b y y y
Pollinator 4 y y y y
Pollinator 9 y y y b y
Pollinator 19 y y b y b y y y
Pollinator 21 y y y b y
Pollinator 24 y b y
Pollinator 26 y y b y b y y y y
Pollinator 28 b y y y
Pollinator 30 y y y y
Pollinator 31 y y y y y
Pollinator 32 b y y y y y y
Pollinator 34 b y b y y y
Pollinator 36 y y y y y y y y y
Pollinator 39 y y y y

Total visits
y b
71 14

Transition info
Pollinator 1 8y, y< 8y, y< 8y, b< 8b, y< 8y, y< 8y, y<
Pollinator 2 8b, b< 8b, y< 8y, y< 8y, y<
Pollinator 4 8y, y< 8y, y< 8y, y<
Pollinator 9 8y, y< 8y, y< 8y, b< 8b, y<
Pollinator 19 8y, y< 8y, b< 8b, y< 8y, b< 8b, y< 8y, y< 8y, y<
Pollinator 21 8y, y< 8y, y< 8y, b< 8b, y<
Pollinator 24 8y, b< 8b, y<
Pollinator 26 8y, y< 8y, b< 8b, y< 8y, b< 8b, y< 8y, y< 8y, y< 8y, y<
Pollinator 28 8b, y< 8y, y< 8y, y<
Pollinator 30 8y, y< 8y, y< 8y, y<
Pollinator 31 8y, y< 8y, y< 8y, y< 8y, y<
Pollinator 32 8b, y< 8y, y< 8y, y< 8y, y< 8y, y< 8y, y<
Pollinator 34 8b, y< 8y, b< 8b, y< 8y, y< 8y, y<
Pollinator 36 8y, y< 8y, y< 8y, y< 8y, y< 8y, y< 8y, y< 8y, y< 8y, y<
Pollinator 39 8y, y< 8y, y< 8y, y<

Transition Totals8y, y< 478y, b< 98b, y< 138b, b< 1

Figure 3.4: Example of transition data for a plot. y=Greenthread, b=Spiderwort
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Figure 3.5: Model rankings based on Akaike information criterion.
model  parameters -LogLik AIC Delta AIC
Distance, Constancy 2 429.877 863.754 0.
Distance, Bias, Constancy 3 429.737 865.474 1.72
Distance, Constancy, Dir. Per 3 429.877 865.754 2.
Distance, Bias, Constancy, Dir. Per. 4 429.737 867.474 3.72
Distance, Bias 2 434.974 873.948 10.194
Distance 1 435.979 873.958 10.204
Distance, Bias, Dir. Per. 3 434.974 875.948 12.194
Distance,Dir. Per. 2 435.979 875.958 12.204
Constancy 1 519.819 1041.64 177.884
Bias, Constancy 2 519.297 1042.59 178.84
Constancy, Dir. Per. 2 519.819 1043.64 179.884
Bias, Constancy, Dir. Per. 3 519.297 1044.59 180.84
Nothing 0 523.763 1047.53 183.772
Bias 1 523.58 1049.16 185.406
Dir. Per. 1 523.763 1049.53 185.772
Bias, Dir. Per. 2 523.58 1051.16 187.406

[20], a good rule of thumb is that an �AIC (the deviation in AIC from the best

model) less than two implies a model still has substantial support, an �AIC between

3 and 7 means considerably less support, and an �AIC greater than 10 means the

model is very unlikely. It is interesting to note that neither bias nor directional

persistence was a part of the best model. This implies that Agapostemon shows no

bias to forage on Greenthread over Spiderwort or vice versa, and it does not have a

tendency to maintain its heading from its previous interflowed flight. If pollinators

show constancy but not bias, it means that they do not a priori favor one flower

species over the other, but they tend to stick to one species during a foraging bout.

This is the case for Agapostemon. The model rankings based on AIC are shown in

figure 3.5.

The maximum likelihood analysis that we performed does not identify the precise

mechanisms that lead to flower discrimination. For example, we are not sure what

cues that Agapostemon uses to select flowers. We can make some rough inferences,

though. The distance kernel identified from our data analysis was exponential, which

is consistent with “ballistic”, (i.e., nearly straight-line) motion. A normal distribution

distance kernel would have been expected from diffusive behavior. This implies that
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a mathematical movement model for these pollinators should involve straight-line

trajectories, not Brownian motion. This information has important consequences:

the plant disease model in [40] modeled the probabilities of pollinator flights between

plants to be consistent with Brownian motion. If pollinator transition probabilities

decay less sharply with interflower distance, as with ballistic motion, then plant dis-

ease would spread more rapidly. Furthermore, gene flow would be more spatially

extensive than it would be under Brownian motion.

The primary goal of this study was to demonstrate the utility of a new maximum

likelihood framework for analyzing pollinator bias and constancy. The motivation

for identifying these behavioral phenomena is largely due to the role that pollinator

foraging plays in floral reproductive isolation. In this study system, the consequences

for reproductive isolation are not that interesting; there is clearly no hybridizing

occurring between these distinctly different flower species. This methodology could be

implemented in many ecological situations, to evaluate the role of pollinator behavior

in gene flow.

Our framework for assessing pollinator bias and constancy offers three major ben-

efits: it accounts for the spatial configuration of plants, it uses observations of pollina-

tors in natural settings (i.e., not on experimental arrays), and it does not rely on simu-

lation. To our knowledge, no existing studies of pollinator bias and constancy possess

these three features. The importance of the spatial configuration of plants in assess-

ing bias and constancy has been widely appreciated [52, 55, 65, 66, 81, 56, 25, 111].

The benefits of the other two major advantages of our framework have yet to be

quantified. Aside from the logistical complications in establishing artificial arrays,

it is unknown how much artificial arrays make pollinators depart from the behavior

that they exhibit in natural settings. It is also unknown what, if any, role artifacts

play in randomization techniques. Future work should compare results obtained from
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analyzing data using both our maximum likelihood framework and randomization

techniques. If the results are in agreement, it would be an encouraging sign that both

approaches are useful. We feel that, whether they use our framework or randomiza-

tion, more researchers should use observations of pollinator behavior in natural (i.e.,

not experimentally modified) systems, and account for the spatial configuration of

plants.
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Chapter 4

Supplementary Material

In these supplementary materials, I provide details about modeling foraging on land-

scapes with clumped resource distributions. First, I give a brief overview of spatial

point processes, following the approach of Daley and Vere-Jones [30]. Next, I focus on

a popular distribution used in ecology: the negative binomial distribution. Following

Diggle’s observations [32], I discuss the negative binomials shortcomings in foraging

models. Finally, I explain results of foraging simulations on landscapes generated by

alternative point processes.

4.1 Spatial Point Processes

4.1.1 Defining Spatial Point Processes

Daley and Vere-Jones [30] authored a detailed, multivolume treatment of spatial point

processes. I summarize some of the essential points here.

For simplicity, this section will consider spatial point processes on R2, although

these ideas are easily generalized. Let B (R2
) be the �-algebra of Borel sets of R2. Let

N be the set of all locally finite nonnegative integer measures on R2. If N 2 N and
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Y 2 B (R2
), then N (Y ) can be interpreted as the number of points in Y . For each

k = 0, 1, 2, . . ., and each Y 2 B (R2
), let U (k, Y ) = {N 2 N : N (Y ) = k}. That is,

U (k, Y ) is the set of all locally finite integer measures that have a value of k on the set

Y . Let M be the �-algebra generated by all sets of the form U (k, Y ). Then (N , M)

is a measurable space. For a fixed Y 2 B (R2
), the mapping ⇢Y : N ! N [ {0}

defined by ⇢Y (N) = N (Y ) is a measure on N . Note that the elements N 2 N are

themselves measures on R2.

Let (⌦, E , P ) be a probability space. Then a spatial point process is a measur-

able mapping N from (⌦, E , P ) to (N , M). Here N represents a mapping from a

probability space to a measure space; this contrasts with the usage in the previous

paragraph, where N was an element of the measure space. For each outcome ! 2 ⌦,

the point process N assigns a measure N! 2 N . That is, N is an assignment ! ! N!.

(⌦, E , P ) is a probability space, so N is a random variable, each realization of which

is a measure on R2. Thus one says that N is a random measure on R2.

This is a lot of notation, so here is a list:

• ⌦ is the sample space. Each ! 2 ⌦ corresponds to a realization of the point

process.

• E is the �-algebra of events, and P is the associated probability measure.

• N is a set of measures on R2. Each N 2 N corresponds to a pattern of points

(i.e., a nonnegative integer-valued measure) on R2.

• M is the �-algebra on N , defined so that the ⇢Y mappings above are measures.

• A measurable mapping N from (⌦, E , P ) to (N , M) is a spatial point process.

Thus, a spatial point process associates a measure (which can be interpreted as

a pattern of points) with each outcome in the sample space.
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• N! is a realization of N associated with the event ! 2 ⌦. N! is a measure on

R2.

4.1.2 Probability Generating Functionals

For a fixed Y 2 B (R2
), the distribution of the random variable N (Y ) is called a

one-dimensional distribution of N . For n 2 N and Y1, Y2, . . . , Yn 2 B (R2
), the joint

distribution of (N (Y1) , N (Y2) , N (Yn)) is called a finite-dimensional distribution of

N . The finite-dimensional distributions of a spatial point process N (and, in particu-

lar, the one-dimensional distributions of N) are completely determined by something

called the generating functional, which will be explained here.

If X is a discrete random variable that takes on values {x1, x2, . . . , xn} with

probabilities P (X = xi) = pi, then the probability generating function for X is

GX (z) = E
�

zX
�

=

1
X

k=1

pk z
x
k .

Given the probability generating function, one can find the associated probability for

each value from the relationship pk =
Gk(0)
k! .

If X1, X2 . . . , Xd are discrete random variables, then the joint probability gener-

ating function is

GX
1

, ...,X
d

(z1, z2, . . . zd) = E
⇣

zX1

1 zX2

2 · · · zXd

d

⌘

.

One can further generalize this concept for spatial point processes. Let N be a

spatial point process on R2, and let {y1, y2, . . . , ym} represent a realization of this

point process. Note that this uses the dual interpretations of a spatial point process:

as a random measure and as a random set of points. Suppose that A1, A2, . . . , Ad
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are pairwise disjoint subsets of R2. Let h : R2 ! C1 (�1, 1) be defined by h (x) =
Pd

k=1 zk IAk

(x), where IA
k

is the indicator function on Ak. Then

E

 

m
Y

k=1

h (yk)

!

= E

 

d
Y

k=1

zN(A
k

)
k

!

.

With this as motivation, define the probability generating functional G : U !
C1 (�1, 1), where U is the set of Borel measurable functions h satisfying |h (x)|  1,

as follows:

G (h) = E

 

m
Y

k=1

h (yk)

!

,

where the expectation is taken over all realizations of the spatial point process N .

4.1.3 Negative Binomial Spatial Point Processes

A negative binomial process is a point process with one-dimensional distributions

that follow a negative binomial distribution. That is, for each Y 2 B (R2
),

E
�

zN(Y )
�

= (1 + µ (Y ) (1� z))↵(Y ) .

For each Y 2 B (R2
), µ (Y ) and ↵ (Y ) are the parameters for a negative binomial

distribution. The challenge in building a negative binomial spatial point process is

finding a way for the one-dimensional distributions to be put together in a logically

consistent way (e.g., so that the process satisfies the definition of a point process

outlined above).

There are two well-known ways to build a negative binomial spatial point process:

1) a compound Poisson process, and 2) a mixed poisson process.

1. Compound Poisson Process: This process is built by first generating a set of
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locations with a Poisson process with intensity µ, then placing a random number

of points at that location. The number of points at a selected location is drawn

from a logarithmic distribution of the form pn =

⇢n

n
ln

⇣

1
1�⇢

⌘

. The resulting

probability generating functional is

G (h) = exp

✓ˆ
R2

ln ((1� ⇢h (x)) / (1� ⇢))

ln (1� ⇢)
µ dx

◆

.

2. Mixed Poisson Process: This process is built by first selecting � from a gamma

distribution with shape parameter ↵ and scale parameter �, and then using

� as the intensity parameter for a Poisson process. The resulting probability

generating functional is

G (h) =

✓

1 +

ˆ
R2

(1� h (x))�µ dx

◆�↵

.

4.1.4 Desirable Properties

Diggle and Milne [32] argue that there are three properties that are desirable for

spatial point processes: stationarity, orderliness, and ergodicity.

1. A point process is stationary if it is invariant under spatial translation. To

be precise, for u, v 2 R2 and Y 2 B (R2
), define Suv = u + v and SuY =

{x+ u : x 2 Y }. This induces a transformation on Tu : N ! N by TuN (Y ) =

N (SuY ). Then N 2 N is stationary if N and TuN have the same finite-

dimensional distributions for all u 2 R2. Stationarity is important, because it

means that there are no special points on a landscape. Points can be aggregated

or dispersed, but their position does not depend on any external landscape vari-

able. Fortunately, both the compound Poisson process and the mixed Poisson
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process are stationary.

2. A point process is orderly if two points cannot occupy the same location. To

be precise, if lim|dx|!0 Pr {N (dx) > 1} = 0, then N is an orderly point process.

This is a desirable feature, because most resources (whether they be seeds,

prey, fruit, etc.) cannot occupy the same position at the same time. The mixed

Poisson process is orderly; the compound Poisson process is not.

3. A point process is ergodic if the spatial averages over a large scale of a single

realization are the same as the average over a small scale of many realizations.

In mathematical terms, Pr {limr!1 r�1N! (Br) = E (N)} = 1. Ergodicity is a

desirable factor, because it allows a single realization to be used as “represen-

tative” of typical outcomes of the process. This is important in ecology; for

example, consider the spatial locations of trees in a forest. It is only possible

to observe a single realization of the process that generated the trees, but, if

we assume ergodicity, then large scale patterns can be seen as indicative of the

underlying process. The compound Poisson process is ergodic, but the mixed

Poisson process is not. In fact, each realization of the mixed Poisson process is

just a uniform Poisson process, and has no clumpiness at all. Simulating real-

izations of a mixed Poisson process thus misses the clumpiness that is usually

considered the defining characteristic of negative binomial processes.

It turns out that there are no stationary, ergodic, orderly spatial point processes

with negative binomial one-dimensional distributions [57]. There are some processes

(like Matern and Neyman-Scott processes) that possess those three properties, and

have roughly negative binomial one-dimensional distributions. Of course, if either

the orderly or ergodic requirement is removed, then the compound or mixed Pois-
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son processes (respectively) can be used to generate exactly negative binomial one-

dimensional distributions.

4.2 Simulations

In the first set of simulations, clusters are distributed by a Poisson process with in-

tensity � = �r ln (1� p). The number of resources in each cluster is drawn from a

logarithmic distribution with parameter p. The resulting one-dimensional distribu-

tions of the spatial process for resources follows a negative binomial distribution with

parameters r and p. The expected value for the number of resources in region with

unit area is r p
1�p

. In all of the following simulations, r p
1�p

= 1. Note that this spatial

point process is stationary and ergodic, but not orderly. Figure 4.1 shows three dif-

ferent representative landscapes for different parameter combinations. The height of

the points represents the number of resources located at that point.

In these simulations, a forager executes a random walks, and travels with unit

speed. When it comes within 0.1 units of a cluster, it moves to the cluster and

consumes all of the resources there. The landscape is (�10, 10) ⇥ (�10, 10), but

periodic boundary conditions make it a torus. If the forager exits on one side it

emerges on the other. Foraging is destructive (i.e., resources are not replenished after

being consumed). A forager’s initial position is selected randomly.

In its random walk, the forager selects a “segment length” and a direction. The

segment length and direction specify a target for the forager to move towards. If

the forager encounters a cluster while traversing a segment length, it truncates the

segment, and selects a new segment length and direction. For our purposes, the

direction is always chosen from a uniform distribution, so the resulting random walk

is non-oriented. The probability distribution for the segment lengths determine the
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Figure 4.1: Realizations of negative binomial point processes for different parameter
combinations. Vertical axis indicates the number of resources per location.

type of random walk. A Lévy walk results from using a power law distribution.

Making all of the segment lengths very tiny results in (approximately) Brownian

motion. Note that we are modeling the forager’s trajectory as a continuous path, so

each straight-line segment is simulated by many tiny steps.

In each simulation, a landscape is generated and a forager spends 1000 time units

searching it. At the end of that time, its searching efficiency is calculated as resources

consumed divided by time. This was repeated 300 times per parameter combination.

Figure 4.2 shows the distribution of searching efficiencies across a range of aggregation

levels, from dispersed (low p) to highly aggregated (high p), and for two types of

random walks (Lévy and Brownian).
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Figure 4.2: Simulated foraging efficiencies on (non-orderly) negative-binomial land-
scapes.

The point processes used to produce the landscapes above were not orderly, be-

cause multiple resources could occupy a single location. This situation is often not

biologically realistic. An alternative approach is to use a stationary, ergodic, and

orderly point process, such as a Neyman-Scott process. This type of process is gener-

ated by a set of Poisson distributed parent points, each of which produces a Poisson

distributed cluster of daughter points. The one-dimensional distributions are not neg-

ative binomial, but they approximate negative binomial in the case of tight clusters.

The important parameters are the intensity of the parent process, , and the intensity

of the daughter process, ↵. The product of these intensities determines the expected
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value of the total number of points; in the simulations below, we keep this product

constant. Figure 4.3 shows three representative landscapes:
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Figure 4.3: Realizations of Neyman-Scott point processes for different parameter
combinations.

Figure 4.4 shows the distributions of searching efficiencies for different values of

. Low values of  correspond to highly aggregated landscapes; high values of 

correspond to dispersed landscapes. Only 100 runs were done for each parameter

combination of these models.



109

.05 .15 .25 .25 .45 .55
0.00

0.05

0.10

0.15

0.20

k

Ef
fic
ie
nc
y

Brownian

.05 .15 .25 .25 .45 .55
0.10

0.15

0.20

0.25

0.30

0.35

k

Ef
fic
ie
nc
y

Levy

Figure 4.4: Simulated foraging efficiencies on Neyman-Scott landscapes.

Two general observations:

1) Lévy walks tend to be more efficient than Brownian motion, because there is a

lower probability of revisiting the same terrain.

2) More clumped landscapes result in a higher variance in searching success.
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