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Mathematical modeling has broad applications in neuroscience whether we are

modeling the dynamics of a single synapse or the dynamics of an entire network of

neurons. In Part I, we model vesicle replenishment and release at the photoreceptor

synapse to better understand how visual information is processed. In Part II, we

explore a simple model of neural networks with the goal of discovering how network

structure shapes the behavior of the network.

Vision plays an important role in how we interact with our environments. To fully

understand how visual information is processed requires an understanding of the way

signals are transformed at the very first synapse: the ribbon synapse of photoreceptor

neurons (rods and cones). These synapses possess a ribbon-like structure on which

approximately 100 synaptic vesicles can be stored, allowing graded responses through

the release of different numbers of vesicles in response to visual input. These responses

depend critically on the ability of the ribbon to replenish itself as ribbon sites empty

upon release. The rate of vesicle replenishment is thus an important factor in shaping

neural coding in the retina. In collaboration with experimental neuroscientists we

developed a mathematical model to describe the dynamics of vesicle release and

replenishment at the ribbon synapse.

To learn more about how network architecture shapes the dynamics of the network,

we study a specific type of threshold-linear network that is constructed from a simple



directed graph. These networks are particularly well suited for our study because

the network construction guarantees that differences in dynamics arise solely from

differences in the connectivity of the underlying graph. By design, the activity of these

networks is bounded and there are no stable fixed points. Computational experiments

show that most of these networks yield limit cycles where the neurons fire in sequence.

Can we predict the order in which the neurons fire? To this end, we devised an

algorithm to predict the sequence of firing using the structure of the underlying graph.

Using the algorithm we classify all the networks of this type on five or fewer nodes.
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Dynamics of Ribbon Synapses
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Chapter 1

Introduction to Part I

Vision plays an important role in how we interact with our environments. In fact, half

of our cerebral cortex is dedicated to processing the visual world [5]. Part I explores

how visual information is processed at the very first synapse of the visual pathway,

the photoreceptor synapse. We specifically look at the role of a structure called the

synaptic ribbon.

In this introductory section we will discuss some background information about

the structure and function of the visual system. Visual processing begins when light

enters the retina and is absorbed by photoreceptor neurons. Photoreceptor neurons

are the principal light-sensitive cells in the retina. When light enters the retina, it

passes through several layers of cells1 before being absorbed by the outer segments

of photoreceptors (see Figure 1.1). The absorption of light initiates the process of

phototransduction which ultimately triggers changes in membrane potential. These

signals are passed to a layer of bipolar cells2, and then to a layer of ganglion cells.

The ganglion cells send axons to the optic nerve and are the only source of outputs

1The other cells in the retina are relatively transparent, so when light passes through them there
is very little image distortion.[5]

2Photoreceptors also synapse onto horizontal cells, which modify the bipolar cells laterally.
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from the retina.

Figure 1.1: Diagram of retinal pathway: (1) photoreceptor rods, (2) photoreceptors
cones, (3) horizontal cells, (4) bipolar cells, (5) amacrine cells, (6) retinal ganglion
cells. Adapted from [40].

To better understand vision, we wish to first understand how visual information

is processed at the photoreceptor synapse. To do this we need to set up some

necessary background information about the biology of these synapses. We will start

by discussing neurons and how they communicate with each other. Then we will look

more specifically at how photoreceptor neurons communicate. Finally we will describe

the synaptic ribbon, a specialized structure in photoreceptor synapses, and discuss

what is currently known about its role in the vesicle cycle and information processing.

Following the introduction, Chapters 2-4 discuss our work involving the ribbon

synapse. These results were obtained in collaboration with experimental neurosci-

entists in the Thoreson Lab at the University of Nebraska Medical Center. Our
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contribution has been to develop theoretical models describing the dynamics of release

and replenishment in the ribbon synapse. Results from Sections 2.1-2.3 were published

in [36] and results from Sections 3.1-3.2 were published in [38].

1.1 Synaptic transmission

Neurons are cells involved in the transmission of information in the nervous system.

The neurons receive inputs from other neurons at the dendrites and once a threshold is

reached the neuron can send a signal, often in the form of an action potential, down its

axon to other cells. The pattern of action potentials codes the information being sent.

This information transfer between the two cells takes place at the synapse. Figure

1.2 shows a diagram of a conventional synapse. The information is passed between

neurons through the release of vesicles, which are small spheres made of membrane

and packed with neurotransmitters.

synaptic 

vesicles
axon

postsynaptic 

receptors

neurotransmitters

SYNAPSE signal

Figure 1.2: Diagram of a synapse: When a signal reaches the terminal, it triggers
vesicles to dock and fuse with the cell membrane and release neurotransmitters. These
neurotransmitters travel across the synaptic cleft and bind with the receptors on the
postsynaptic cell.
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When an action potential reaches the cell terminal, it triggers vesicle exocytosis.

Vesicle exocytosis is the process in which the vesicles dock and fuse with the cell

membrane and release their neurotransmitters into the synaptic cleft, the space

between the two cells. The area of the cell membrane where this occurs is referred

to as the “active zone.” The neurotransmitters then bind with the receptors on the

postsynaptic cell, passing the information. For example, these receptors may open or

close ion channels or activate second messenger systems.

Vesicles are recycled through endocytosis, which is the process by which vesicles

are reformed using parts of the cell membrane and refilled with neurotransmitters.

These recycled vesicles then become part of the mobile vesicle pool inside the cell.

1.2 Photoreceptor neurons

We are particularly interested in studying synaptic transmission at photoreceptor

neurons. Photoreceptor neurons are the first cells of the visual system. Photoreceptors

are located in the retina and their function is to convert light into changes in membrane

potential. Light is absorbed by membranous disks, located on the outer segments,

containing photopigment. There are two main types of photoreceptors: rods and cones.

Rods are involved in night vision, motion detection, and peripheral vision and they are

dense everywhere but the center of the eye. Cones are located in the center of the retina

and are involved in color vision and detecting finer detail. Unless otherwise specified,

all the experimental data in Part I refers only to cone photoreceptors, specifically in

the aquatic tiger salamander.

In a conventional synapse the neuron responds to action potentials with discrete

vesicle events. Photoreceptor cells instead respond directly to the absorption of

photons by releasing vesicles constantly in darkness and slowing release as light
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increases, i.e. the cell is depolarized in darkness and an increase in light causes the

cell to hyperpolarize. The graded responses given by photoreceptor cells allow for

a quicker processing of information as well as a larger range of responses [19]. This

graded release is facilitated by a structure called the synaptic ribbon, described in the

next section.

1.3 Synaptic ribbon

The synaptic ribbons present in cone photoreceptors are plate-like rectangular3 pro-

teinaceous structures anchored to the inside of the cell membrane close to the Ca2+

channels [33]. Daily and seasonal changes in the size, shape, number, and location of

synaptic ribbons can occur based on light conditions [39]. Vesicle release at the active

zone is controlled by the opening and closing of the calcium channels. In cones, less

than three channel openings are required to cause the fusion of a single vesicle, which

allows for precise timing of release to accurately reflect changes in light intensity [3].

The increase in intracellular Ca2+ also speeds the replenishment of vesicles, allowing

for sustained release [1].

Recall that in conventional synapses vesicles dock and fuse directly with the

cell membrane. The vesicles in ribbon synapses are instead first collected on the

synaptic ribbon. In the cone photoreceptors of the aquatic tiger salamander there are

approximately 11 rows of 5 vesicles stacked on each side of the ribbon, for a total of

110 vesicles [2]. The vesicles become tethered to the ribbon via tiny filaments and

then move along the ribbon towards the active zone. Not much is known about how

the vesicles move down the ribbon to the active zone, but recent research posits that

vesicles passively diffuse along the ribbon without an active transport mechanism

3Synaptic ribbons in different cells may have different shapes. For example, ribbons in the
auditory system can be spherical or ellipsoidal rather than rectangular ([32],[17]).
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Figure 1.3: Electron micrographs of synaptic ribbons in rod terminals: The larger
arrows indicate the active zone at the bottom of each ribbon and the smaller arrows
indicate the hexagonally packed vesicles tethered to the ribbon. Adapted from [37].

[10]. Once the vesicles reach the bottom two rows of the ribbon they are considered

part of the rapidly releasable pool (RRP). Experiments have shown that the ribbon

may play a role in priming the vesicles for release [31]. As a result, the RRP can

be released almost immediately following the opening of calcium channels. Once the

RRP is depleted, additional vesicles from the reserve pool on the ribbon take their

place. Empty sites on the ribbon are refilled by the mobile vesicles in the cell terminal.

See Figure 1.4 for a cartoon of the vesicle cycle in a ribbon synapse.

There are many theories regarding the function of the synaptic ribbon. The ribbon

appears to support high rates of sustained vesicle release [33], but how the ribbon

achieves this is still an open question. One theory is that the ribbon acts as a “conveyor

belt” shuttling vesicles toward the active zone [23]. Another theory posits that it

serves to hold the vesicles in contact with each other to facilitate multivesicular release
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via compound fusion [23]. Another theory asserts that the ribbon slows the delivery

of vesicles, regulating the timing of release [16]. Yet another proposes that the ribbon

functions to store the vesicles close to the active zone [45].

Figure 1.4: A cartoon depicting the vesicle cycle in the ribbon synapse [35].

1.4 Questions about release and replenishment at

the synaptic ribbon

With the goal of better understanding how visual information is processed at the

photoreceptor synapse in mind, we ask some questions about the role of the synaptic

ribbon in the vesicle cycle of this synapse.

The number of vesicles released is stimulus-dependent, with stronger stimuli

resulting in more vesicles released. What causes this stimulus-dependence in the vesicle

release? Does it depend solely on the probability of release or does it also depend

the number of vesicles currently available on the ribbon? To answer this question we

created a model of release and replenishment using experimentally measured quantities
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to predict the unknown quantities of pool size and release probability. This allowed us

to independently predict the pool size and the release probability to determine which

changes with the stimulus strength. See Chapter 2.

There is an upper limit on the rate of sustained vesicle release. What is the

rate-limiting factor for release? Studies indicate that vesicle replenishment is the

rate-limiting step in sustained release [16], so we take a closer look at replenishment.

Vesicles move randomly in the cell terminal without a directed movement toward the

ribbon or active zone [24]. This may be due to the fact that ribbon synapses lack

synapsins, proteins that help bind vesicles to the actin cytoskeleton, allowing the

vesicles to diffuse freely [14]. Is this random motion of vesicles the rate-limiting step

for replenishment? To answer this question we designed a three-dimensional random

walk model of vesicle replenishment to calculate the replenishment timescale. We

conclude that the random motion is not rate-limiting for replenishment. See Section

3.1.

It is known that Ca2+ speeds the replenishment process [1]. By what mechanism

does Ca2+ speed replenishment? To answer this question we modified our random

walk model to test whether Ca2+ acted on the ribbon or on the vesicles. We conclude

that Ca2+ affects the probability of attachment at sites on the ribbon rather than

directly affecting vesicles. See Section 3.2.

To further study replenishment we ask two additional replenishment-related ques-

tions: (1) How many vesicles collide with the ribbon per second? and (2) How long

does it take for the ribbon to fill? We can use our random walk model of replenishment

to answer both. See Section 3.3.

Our random walk model does not take into account the geometry of the synaptic

ribbon, so we designed a computational model to test the effects of ribbon geometry.

The computational model indicates that ribbon geometry does play a role in replen-
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ishment, so we also explore changes in local concentration near the ribbon and the

effect of attachment probability on replenishment in an effort to explain the effects of

geometry. The results appear in Section 4.
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Chapter 2

Model of vesicle release and

replenishment

Photoreceptors respond to changes in light by releasing vesicles from the ribbon.

The amount of release depends on several key quantities: available pool size, release

probability, and quantal amplitude. The available pool size, N , is the number of

vesicles on the ribbon that are primed and ready for release. The release probability, P ,

is the probability that a vesicle on the ribbon will be released. The quantal amplitude,

Q, is the postsynaptic influence of a single vesicle. We experimentally measure the

response of photoreceptors to a given stimulus by measuring the postsynaptic currents1

(PSCs) evoked in the postsynaptic cells onto which the photoreceptor synapses. Since

the postsynaptic current is a linear sum of mini-EPSCs2 [7], we can then estimate the

number of vesicles released from the postsynaptic current using the quantal amplitude.

The amount of release depends on the stimulus, so which of N , P , and/or Q

contribute to this stimulus-dependence? Changes in quantal amplitude occur on a

1PSCs are generally measured in units of picoamps (pA).
2 Mini-EPSCs (mEPSCs) are the change in current resulting from a single vesicle releasing its

neurotransmitters.
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longer timescale than our experiments [4, 15, 18, 43]. Thus Q cannot change quickly

enough to be the cause of the stimulus-dependent changes in postsynaptic response.

Stimulus-dependent changes in postsynaptic response are often due to Ca2+-dependent

changes in P [36], but it is also possible that stronger stimuli allow Ca2+ to spread

further up the ribbon, effectively increasing N . With these possibilities in mind, are

the stimulus-dependent changes then due only to changes in the release probability,

P , or are they a result of changes in N as well?

In this section we will discuss a paradox that arises when asking this question. We

then provide a model that estimates N and P independently, based on experimental

data, allowing us to resolve this paradox. We will also describe a generalization of the

model. The results in Sections 2.1-2.3 are published in [36]. The generalized model

results in Section 2.4 are an unpublished extension of this work.

2.1 Dynamics of release and replenishment

Vesicles on the ribbon are released when the photoreceptor is stimulated and the

amount released depends on the stimulus. As the vesicles are released, the empty sites

on the ribbon are replenished by vesicles freely diffusing in the cell terminal. To study

release and replenishment we model the available pool size during alternating periods

of release and replenishment. Figure 2.1 shows a cartoon of the model. The variable

A(t) tracks the number of vesicles on the ribbon at time t. When the stimulus is on,

A(t) decreases due to vesicle release and when the stimulus is off, A(t) increases due to

vesicle replenishment. When designing the model, we make several key assumptions.

We assume that no replenishment occurs during the periods of release. We also assume

identical stimuli for the basic model, but the generalized model allows for multiple

stimulus types in the same trial. By patching together the release and replenishment
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Figure 2.1: Cartoon of release/replenishment model

dynamics, using the ending value of one period as the initial value of the next, we can

create a model of available pool size.

Release dynamics. The cumulative release at time t, c(t), is governed by the

differential equation:

dc

dt
=
ps(Ai − c)

τr
(2.1)

where ps is the stimulus-specific probability of release, Ai is the pool size at the

beginning of the ith pulse, and τr is the time constant of release. In salamander cones,

the cumulative release curve can be fit by a two term exponential, one of the release

time constants, τr, is around 5 ms and the other is too long to be accurately measured

in our experimental setup, so we omit it from the model. The timescale τr regulates

the release for strong stimuli (e.g. steps to -19 mV), and for weaker stimuli (e.g. steps

to -39 mV) the time constant is made effectively slower by the release factor ps. Hence
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for strong stimuli we have ps = 1. Solving the differential equation yields

c(t) = Ai(1− e−pst/τr). (2.2)

Thus the release during the ith pulse is given by

Ri = c(∆t) = PsAi (2.3)

where Ps = 1−e−ps∆t/τr . Note that for 25 ms steps to -19 mV, P−19 = 1−e−5 ≈ 0.9933.

This is consistent with previous work showing that steps to -19 mV are strong enough

to stimulate the release of nearly the entire pool of vesicles [2].

Replenishment dynamics The cumulative replenishment at time t, a(t), is gov-

erned by the differential equation:

da

dt
=
n− a
τa

(2.4)

where n is number of sites unoccupied at the end of a pulse and τa is the time constant

of replenishment. In salamander cones, replenishment is modeled with a two term

exponential with time constants τfast = 815 ms and τslow = 13 s. Since the experiments

occur on a much faster timescale than τslow, we ignore τslow in our model. Solving the

differential equation yields

a(t) = n(1− e−t/τa). (2.5)

Thus the amount of replenishment after the ith pulse is given by

a(T ) = n(1− β) (2.6)
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where β = e−T/τa . Recall that we have chosen to omit the slow replenishment time

constant, so after the initial release we assume only the fast-replenishing sites have

time to fill during our replenishment period. Depending on the stimulus, we have a

different fraction, fs, of vesicles that are subject to the fast time constant. For steps

to -19 mV, f−19 = 0.76 and for steps to -39 mV, f−39 = 0.55. Thus the number of

available sites at the end of the ith pulse is n = fsAs − Ai(1− Ps), where As is the

maximum pool size for stimulus s.

2.2 Measuring available pool size

2.2.1 Pulse train experiments

To study the release and replenishment dynamics we consider a pulse train experiment.

In this setup the cone is voltage-clamped near resting membrane potential and a

steady train of pulses, i.e. voltage jumps, is applied to the presynaptic cell. Each pulse

has duration ∆t ms, and the time between pulses is T ms. During a given pulse the

voltage jumps up to a chosen voltage step (e.g. a step to -19 mV) and between steps

the voltage returns to -79 mV (see Figure 2.2). The postsynaptic currents (PSCs)

are measured in the postsynaptic horizontal cells. Since postsynaptic response is the

result of a linear sum of independent quantal release events (mEPSCs) [7], we can

use the postsynaptic measurements to estimate the number of vesicles released from

the cones3. Once the release and replenishment reach an equilibrium where release is

limited by replenishment, we can measure the limiting release. Our goal is to design

a model that can predict maximum pool size and release probability using the first

release and limiting release values measured during such an experiment.

3The mean amplitude of an mEPSC in the salamander retina, i.e. how much a single vesicle
contributes, is around 6.5 ± 1.6 pA [7].
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Figure 2.2: Pulse trains for voltage jumps to -19 mV,-29 mV, -39 mV, and -49 mV.
Note that the stronger pulses have larger first release peaks [36].

2.2.2 An apparent paradox

Previous work uses a method of back-extrapolation to estimate the maximum pool

size, A [25]. This method considers the cumulative release curve and fits a line to

the steady state response that occurs when release is limited by replenishment. Back-

extrapolating to the time 0 gives an estimate of A. This method predicts that the

maximum pool size is significantly smaller for weaker stimuli (see Figure 2.3). The

amplitude of the releasable pool predicted by back-extrapolation is 80 pA for -39 mV,

105 pA for -29 mV, and 132 pA for -19 mV [36].

One of the pitfalls of the back-extrapolation method is that it assumes that the

replenishment rate is constant. As we saw in Section 2.1, the replenishment rate is

certainly not constant in salamander cones. This causes the method to underestimate
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Figure 2.3: Back-extrapolation method for -19 mV, -29 mV, and -39 mV pulses: Panel
A shows a plot of cumulative amplitude in pA and Panel B show a plot of cumulative
charge in fC [36]. To predict maximum pool size we back-extrapolate from the steady
state to t = 0.

the maximum available pool size since replenishment is faster when the ribbon has

more available space. The method is close for the stronger stimuli because the pulse

train stabilizes to the limiting release right away when exposed to a strong stimulus.

It also does not take into account the fast and slow replenishing sites. After the first

pulse, slow sites don’t have time to fill between pulses, so the limiting release reflects

only the replenishment of the fast sites.

2.3 Using our model to predict pool size

In our model, we let both the maximum pool size As and the release probability Ps

vary independently to determine which causes the voltage-dependent changes in vesicle

release. We want to estimate both As and Ps in terms of the measured first release

(R1)s and limiting release Rs for each stimulus s.
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2.3.1 Derivation of pool size and release probability

formulas

Let Ai be the pool size at the beginning of the ith pulse, ci(t) be the cumulative

release t milliseconds into the ith pulse, and ai(t) be the cumulative replenishment t

seconds into the ith pulse. Then we can compute Ai by taking the pool size at the

beginning of the previous pulse, subtracting the release during that pulse, and adding

the amount replenished before the ith pulse, i.e. Ai = Ai−1− ci−1(∆t) +ai−1(T ). Note

Figure 2.4: Schematic of the pulse train setup [36]: A(t) keeps track of pool size at
time t. Stimulus pulses of duration ∆t cause vesicle release and between pulses we
have replenishment periods of duration T . Note that the pool size decreases during the
pulses due to vesicle release and increases in between the pulses due to replenishment.
The maximum possible pool size is denoted by A.
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that ci(∆t) = AiPs and ai(T ) = (fsAs − Ai−1(1− Ps))(1− β). Thus

Ai = bAi−1 + c (2.7)

where b = β(1− Ps) and c = fsAs(1− β). Solving the recursion we get

Ai = A1b
i−1 + c

1− bi−1

1− b
. (2.8)

The details of solving the recursion appear in Lemma 2.1. Taking the limit as i→∞

gives

A∞ = lim
i→∞

Ai = lim
i→∞

(
A1b

i−1 + c
1− bi−1

1− b

)
=

c

1− b
=

fsAs(1− β)

1− β(1− Ps)
, (2.9)

which represents the pool size at the beginning of each pulse during the steady state.

Since Ri = PsAi is the amount released during the ith pulse, then the limiting release

is given by

Rs = PsA∞ =
PsfsAs(1− β)

1− β + βPs
. (2.10)

Solving for As yields

As =
Rs(1− β + βPs)

Psfs(1− β)
=
Rs

fs

(
1

Ps
+

β

1− β

)
. (2.11)

Also, note that (R1)s = A1Ps = AsPs. Solving for Ps and substituting into our

equation for As gives

As =

(
β

1− β

)
Rs(R1)s

(fs(R1)s −Rs)
. (2.12)
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Using the fact that (R1)s = AsPs, we can also find an expression for Ps,

Ps =

(
1− β
β

)
fs(R1)s −Rs

Rs

. (2.13)

Equations 2.12 and 2.13 give formulas for independently estimating the maximum

pool size and release probability for each stimulus given the first release and limiting

release.

2.3.2 Estimating pool size and release probability from data

During pulse trains with steps to -19 mV and -39 mV we measure the amplitude of the

first pulse as well as the limiting release. Limiting release is estimated by measuring

the cumulative increase in amplitude 1–2 seconds into the pulse train [36]. With

f−19 = 0.76, f−39 = 0.55, ∆t = 25ms, τa = 815ms, and τr = 5ms, we can estimate the

pool size for the two stimulus types. The results are recorded in Table 2.1. Note that

although the amplitude of the first pulse varies significantly with stimulus strength,

the predicted pool sizes are roughly the same. Using our formula to predict the release

probabilities in the 5 mM EGTA cases, we see P−19 ≈ 1 for the strong stimuli and

P−39 ≈ 0.5 for the weak stimuli. This supports the hypothesis that changes in release

probability alone cause voltage-dependent changes in release. Note that the first

release during strong pulses is nearly identical to the estimated pool size, consistent

with a release probability of 1. Also recall that back-extrapolation predicted a pool

size of 80 pA for a stimulus of -39 mV while our model estimates that the pool size is

closer to 131 pA.

Additional experiments were done with a weaker Ca2+ buffer of 0.05mM EGTA

compared to 5 mM EGTA. These results were similar to those with 5 mM EGTA

(see Table 2.1). The slightly smaller first responses in the experiments with 0.05 mM
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stimulus EGTA T PSC amplitude Predicted pool size, As Ratio

(first pulse, R1) (PSC amplitude) A−39/A−19

-19 mV 5 mM 50 ms 128.2±10.9 pA 131.3 pA 1.0
-39 mV 5 mM 50 ms 70.9±7.4 pA 131.2 pA
-19 mV 5 mM 125 ms 135.5± 15.8 pA 136.9 pA 0.96
-39 mV 5 mM 125 ms 71.3± 12.8 pA 131.2 pA
-19 mV 0.05 mM 50 ms 91.1± 18.2 pA 110.9 pA 1.02
-39 mV 0.05 mM 50 ms 38.5± 9.5 pA 113.6 pA

Table 2.1: Pool size predictions for several experimental conditions [36].

EGTA are likely due to the smaller number of ribbon contacts per postsynaptic HC

(an average of 2.79 and 2.95 ribbon contacts for experiments with 5 mM EGTA versus

an average of 1.98 ribbon contacts for experiments with 0.05 mM EGTA)[36]. This

provides additional evidence that the increased spread of Ca2+ does not increase the

available pool size.

2.4 Generalization of release/replenishment

model

In this section, we generalize the model from Section 2.3. We originally assumed that

all pulses were of equal strength and duration. In the generalized model, both pulses

and replenishment periods can vary in duration and pulses can also vary in stimulus

strength. The results in this section make use of several lemmas and a proposition

whose statements and proofs appear in Section 2.4.4.

2.4.1 Generalized pulse trains

We consider a generalized pulse train with n periods of release and replenishment. The

length of the `th period is ∆t`. We do not necessarily alternate between release and
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Figure 2.5: Generalized model setup: Ai,` denotes available pool size at the beginning
of the `th period of the ith cycle and ∆t` is the duration of the `th period.

replenishment. Once we have cycled through all n periods we started at the beginning

and repeat the periods in the same order. We denote the available pool size at the

beginning of the `th period of the ith cycle by Ai,` and assume the ribbon is full at

t = 0, so A = A1,1 is the maximum available pool size. See Figure 2.5. Let ai,`(t) be

the total change in pool size t seconds into period ` of cycle i with ai,`(0) = 0. If index

j denotes a release period then the dynamics is governed by

dai,j
dt

= − 1

τj
(Ai,j + ai,j).

If index k denotes a replenishment period then the dynamics is governed by

dai,k
dt

=
1

τk
(A− (Ai,k + ai,k)).

2.4.2 Setting up and solving the recursion

Note that this setup gives

Ai,` = Ai,`−1 + ai,`−1(∆t`−1) for 1 < ` ≤ n and i ≥ 1 (2.14)

Ai,1 = Ai−1,n + ai−1,n(∆tn) for i > 1 (2.15)

A1,1 = A (2.16)
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Then we get

Ai,1 = Ai−1,1 +
n∑
`=1

ai−1,`(∆t`). (2.17)

In release periods ai,j(t) = −Ai,j(1 − e−t/τj) and in replenishment periods ai,k(t) =

(A− Ai,k)(1− e−t/τk). Let α` = e−∆t`/τ` so we can rewrite the terms in the sum using

ai,`(∆t`) = (θ(`)A− Ai,`)(1− α`) (2.18)

where

θ(`) =

 1 if ` indexes a replenishment period

0 if ` indexes a release period

Using Equations 2.14-2.16 and simplifying we can write Equation 2.17 in terms of

Ai−1,1:

(2.19)Ai,1 = Ai−1,1

(
n∏
`=1

α`

)
+ A

(∑
`∈L

(1− α`)
n∏

r=`+1

αr

)

for i ≥ 2 where α` = e−∆t`/τ` , and L = {` : θ(`) = 1}. See the proof of Proposition

2.4 in Section 2.4.4 for the details. Now we have a recurrence in Ai,1, which we can

solve using ordinary generating functions. Note that the recurrence is of the form

Ai = bAi−1 + c where b =
∏n

`=1 α` and c = A
∑

`∈L(1− α`)
∏n

r=`+1 αr. Then ordinary

generating functions gives a solution of

Ai,1 = Abi−1 + c

(
bi−1 − 1

b− 1

)
.

Note that since b =
∏n

`=1 α` < 1, then

A∞,1 = lim
i→∞

Ai,1 =
c

1− b
= A

∑
`∈L(1− α`)

∏n
r=`+1 αr

1−
∏n

`=1 α`
.

Thus we have a limit cycle.
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For ` s.t. θ(`) = 0, we have that the total release during that period is given by

Ri,` = Ai,`(1− α`).

Lemma 2.2 gives a closed formula for Ai,` in terms of Ai,1, so

Ri,` = Ai,1(1− α`)
`−1∏
r=1

αr + A
`−1∑
r=1

θ(r)(1− αr)(1− α`)
`−1∏

s=r+1

αs.

2.4.3 Special cases of the generalized model

Release only. Consider the case where each period is a release period. Then L = ∅.

So for the recursion we have

Ai,1 =

(
n∏
`=1

α`

)
Ai−1,1,

which has solution

Ai,1 = A

(
n∏
`=1

α`

)i−1

.

When we take the limit we get

A∞,1 = lim
i→∞

Ai,1 = A · 0 = 0

as expected.

Replenishment only. Consider the case where each period is a replenishment

period. Then L = {1, . . . , n}. So for the recursion we have

Ai,1 =

(
n∏
`=1

α`

)
Ai−1,1 + A

n∑
`=1

(1− α`)
n∏

r=`+1

αr =

(
n∏
`=1

α`

)
Ai−1,1 + A

(
1−

n∏
`=1

α`

)
,
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which has solution

Ai,1 = A

(
n∏
`=1

α`

)i−1

+ A

1−

(
n∏
`=1

α`

)i−1
 .

When we take the limit we get

A∞,1 = lim
i→∞

Ai,1 = A

as expected.

Alternating release and replenishment periods. Consider the case where we

have alternating periods of release and replenishment, starting with release. Then

L = {2, 4, . . . , n}. So for the recursion we have

Ai,1 =

(
n∏
`=1

α`

)
Ai−1,1 +A

∑
` even

(1−α`)
n∏

r=`+1

=

(
n∏
`=1

α`

)
Ai−1,1 +A

n∑
`=1

(−1)`
n∏

r=`+1

αr,

which has solution

Ai,1 = A

(
n∏
`=1

α`

)i−1

+

(
A

n∑
`=1

(−1)`
n∏

r=`+1

αr

)(
1− (

∏n
`=1 α`)

i−1

1−
∏n

`=1 α`

)
.

When we take the limit we get

A∞,1 = lim
i→∞

Ai,1 =
A
∑n

`=1(−1)`
∏n

r=`+1 αr

1−
∏n

`=1 α`
.

We can calculate the total release during release period ` by

Ri,` = Ai,1(1− α`)
`−1∏
r=1

αr + A(1− α`)
`−1∑
r=1

(−1)r
`−1∏

s=r+1

αs.
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Alternating release and replenishment, original model. In the case of our

experiment we have α1 = α, α2 = β, L = {2}, and n = 2. So for the recursion we have

Ai,1 = Ai−1,1αβ + A(1− β),

which has solution

Ai,1 = A(αβ)i−1 + A(1− β)
1− (αβ)i−1

1− αβ
.

Taking the limit we get

A∞,1 = lim
i→∞

Ai,1 =
A(1− β)

1− αβ
.

Note that Ri,1 = Ai,1(1− α) for all i. So

Ri,1 = A(αβ)i−1(1− α) + A(1− β)(1− α)
1− (αβ)i−1

1− αβ
.

Thus R = limi→∞Ri,1 =
A(1− α)(1− β)

1− αβ
, which matches our prediction from Section

2.3.1 (without the f).

Two different release periods, but identical replenishment. Here we have

alternating periods of release and replenishment with two different release periods,

starting with release, so L = {2, 4}. We also assume that all of the replenishment

periods have the same dynamics. Let β := α2 = α4. So for the recursion we have

Ai,1 = β2α1α3Ai−1,1 + A(1− β)(1 + α3β),
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which has solution

Ai,1 = A(β2α1α3)i−1 + A(1− β)(1 + α3β)
1− (β2α1α3)i−1

1− β2α1α3

.

Taking the limit we get

A∞,1 = lim
i→∞

Ai,1 =
A(1− β)(1 + βα3)

1− β2α1α3

.

2.4.4 Supporting lemmas

In this section, we give the proof of the recursion in Equation 2.17. We also give

proofs of the supporting lemmas used to prove Proposition 2.4 (Equation 2.19).

Lemma 2.1. The solution to the recursion Ai = bAi−1 + c is Ai = A1b
i−1 + c

1− bi−1

1− b
.

In the following proof we use a standard generating function technique for solving

recursions found in [42].

Proof. To solve using generating functions we first multiply the recursion by xi and

sum over i ≥ 2 to get:

∑
i≥2

Aix
i = b

∑
i≥2

Ai−1x
i + c

∑
i≥2

xi.

Let A(x) =
∑

i≥1Aix
i. Then

A(x)− A1x = bxA(x) + c

(
1

1− x
− 1− x

)
.

Solving for A(x) yields:
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A(x) = A1
x

1− bx
+ c

x2

(1− x)(1− bx)
= A1x

∑
i≥0

bixi + cx2
∑
i≥0

xi
∑
i≥0

bixi

=
∑
i≥1

(
A1b

i−1 + c
i−2∑
k=0

bk

)
xi =

∑
i≥1

(
A1b

i−1 + c
1− bi−1

1− b

)
xi.

Thus, Ai = A1b
i−1 + c

(
1− bi−1

1− b

)
.

Recall α` = e−∆t`/τ` and θ(`) =

 1 if ` indexes a replenishment period

0 if ` indexes a release period
.

Lemma 2.2. Ai,` = Ai,1

`−1∏
r=1

αr + A
`−1∑
r=1

θ(r)(1− αr)
`−1∏

s=r+1

αs.

Proof. We induct on `. Note that for ` = 1 we have

Ai,1

0∏
r=1

αr + A
0∑
r=1

θ(r)(1− αr)
0∏

s=r+1

αs = Ai,1.

So the result holds for ` = 1. Let ` > 1 and assume that the result holds for all smaller

`. Then

Ai,` = Ai,`−1 + ai,`−1(∆t`−1) by Equation 2.14

= Ai−1,` + (θ(`− 1)A− Ai,`−1)(1− α`−1) by Equation 2.18

= Ai,`−1α`−1 + θ(`− 1)A(1− α`−1)

=

(
Ai,1

`−2∏
r=1

αr + A

`−2∑
r=1

θ(r)(1− αr)
`−2∏

s=r+1

αs

)
α`−1 + θ(`− 1)A(1− α`−1)

by the induction hypothesis

= Ai,1

`−1∏
r=1

αr + A

`−2∑
r=1

θ(r)(1− αr)
`−1∏

s=r+1

αs + θ(`− 1)A(1− α`−1)
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= Ai,1

`−1∏
r=1

αr + A
`−1∑
r=1

θ(r)(1− αr)
`−1∏

s=r+1

αs.

Lemma 2.3.
n∑
`=1

(1− α`)
`−1∑
r=1

θ(r)(1− αr)
`−1∏

s=r+1

αs =
n−1∑
`=1

θ(`)(1− α`)

(
1−

n∏
r=`+1

αr

)
Proof.

n∑
`=1

(1− α`)
`−1∑
r=1

θ(r)(1− αr)
`−1∏

s=r+1

αs = θ(1)(1− α1)

(
n∑
r=2

(1− αr)
r−1∏
s=2

αs

)

+θ(2)(1− α2)

(
n∑
r=3

(1− αr)
r−1∏
s=3

αs

)
+ · · ·+ θ(n− 1)(1− αn−1)(1− αn)

=
n∑
`=1

θ(`)(1− α`)
n∑

r=`+1

(1− αr)
r−1∏
s=`+1

αs

=
n∑
`=1

θ(`)(1− α`)
n∑

r=`+1

(
r−1∏
s=`+1

αs −
r∏

s=`+1

αs

)

=
n∑
`=1

θ(`)(1− α`)

(
1−

n∏
r=`+1

αr

)

Proposition 2.4. Ai,1 = Ai−1,1

(
n∏
`=1

α`

)
+ A

(∑
`∈L

(1− α`)
n∏

r=`+1

αr

)
Proof. We know that

Ai,1 = Ai−1,1 +
n∑
`=1

ai−1,`(∆t`) = Ai−1,1 +
n∑
`=1

(θ(`)A− Ai−1,`)(1− α`).

Then we have

Ai,1 = Ai−1,1 +
n∑
`=1

θ(`)A(1− α`)
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−
n∑
`=1

(
Ai−1,1

`−1∏
r=1

αr + A

`−1∑
r=1

θ(r)(1− αr)
`−1∏

s=r+1

αs

)
(1− α`) by Lemma 2.2

= Ai−1,1 +
n∑
`=1

θ(`)A(1− α`)− Ai−1,1

n∑
`=1

`−1∏
r=1

αr(1− α`)

+A
n∑
`=1

(1− α`)
`−1∑
r=1

θ(r)(1− αr)
`−1∏

s=r+1

αs

= Ai−1,1

n∏
`=1

α` +
n∑
`=1

θ(`)A(1− α`)− A
n−1∑
`=1

θ(`)(1− α`)

(
1−

n∏
r=`+1

αr

)
by Lemma 2.3

= Ai−1,1

(
n∏
`=1

α`

)
+ A

(∑
`∈L

(1− α`)−
∑
`∈L

(1− α`)

(
1−

n∏
r=`+1

αr

))

= Ai−1,1

(
n∏
`=1

α`

)
+ A

(∑
`∈L

(1− α`)
n∏

r=`+1

αr

)
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Chapter 3

Random walk model of vesicle

replenishment

Previous work indicates that vesicle replenishment is the rate-limiting step in sustained

vesicle release [16], so in this chapter we take a closer look at the replenishment process.

What part of the replenishment process limits release? In Section 3.1, we design a

simple random walk model to theoretically predict the time constant of replenishment,

τa, initially discussed in Section 2.1. Using the model we can determine which

parameters affect replenishment. We discover that τa relies on four fundamental

parameters: vesicle diffusion, vesicle concentration, vesicle size, and the probability of

attachment to the ribbon. The model predicts an exponential replenishment curve

with time constant

τa =
1

Dρδs

where D is the vesicle diffusion coefficient, ρ is the vesicle concentration, δ is the

diameter of a single vesicle, and s is the attachment probability. The nature of vesicle

movement within the synapse leads us to ask if the random diffusion of vesicles is
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rate-limiting. We compare experimental data with our model results and conclude

that diffusion is not, in fact, rate-limiting.

Further exploring replenishment in Section 3.2, we introduce two variations of

the original model to investigate the role of Ca2+ on replenishment. The results in

Sections 3.1 and 3.2 are published in [38].

We can also use the model to calculate several other quantities of interest: how

many vesicles hit the ribbon per second (hit rate) and how long it takes to fill up the

ribbon (expected waiting time). The derivations in Section 3.3 are unpublished.

3.1 Replenishment timescale

In this section we wish to answer the question: Is vesicle diffusion a rate-limiting

step for replenishment? We first discuss how to measure the replenishment curve

experimentally. Then since vesicles move randomly in the cell terminal without a

directed movement toward the ribbon or active zone [24], we create a random walk

model of vesicle movement and replenishment.

3.1.1 Paired pulse recordings

To experimentally measure the replenishment of vesicles onto the synaptic ribbon, we

use paired pulse recordings. First, when the ribbon is full, a large voltage jump, or

pulse, is applied to the cell (similar to the pulse trains in Section 2.2.1) and vesicle

release is measured. The size of the voltage jump is such that all vesicles from the

ribbon are released. After t seconds a second pulse of the same amplitude is applied

and vesicle release is again measured (see Figure 3.1). This is repeated for multiple

values of t to approximate the replenishment curve. For each inter-pulse interval, t,

we plot the ratio R2/R1 where R1 is the release on the first pulse and R2 is the release
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on the second pulse (see Figure 3.1). The ratio, R2/R1, can be thought of as the

percentage of vesicles replenished. In the case of salamader cones, the replenishment

curve can be fit with a double exponential with time constants τfast=815 ms (76%)

and τslow=13 s [38].

A B

Figure 3.1: Panel A shows an example of two paired pulse recordings with interpulse
intervals of 500ms and 2s. Note that the longer interpulse interval gives more time for
the ribbon to replenish and hence the the second pulse is larger in the 2s trial. Panel
B shows the replenishment curve. The horizontal axis gives the interpulse interval
and the vertical axis gives the ratio of the two responses. This ratio can be thought of
as the percentage replenished. Adapted from [38].

In the next section our goal is to predict the time constant of replenishment theoretically

using a random walk model.

3.1.2 Derivation of the replenishment time constant

To answer this question, we developed a three-dimensional random walk model. We

modeled the vesicle motion in the synapse by spherical vesicles undergoing random

walks on a rectangular lattice of spacing δ. During each time step, ∆t, every vesicle

moves to an adjacent lattice site in each dimension. We update each of the three

dimensions simultaneously, resulting in a diagonal move overall. The (macroscopic)
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diffusion coefficient,

D =
δ2

2∆t
,

relates δ and ∆t in the (microscopic) random walk model, so these quantities cannot

be chosen independently [6]. Moreover, we would like to assume that each lattice

site can be occupied by at most one vesicle, and that the occupation probabilities for

distinct lattice sites are independent. These two assumptions can only be satisfied if

we choose δ to be equal to the vesicle diameter.

Figure 3.2: Random walk model of ribbon replenishment: the vesicles undergo a
random walk on a rectangular lattice of spacing δ [38].

We use p to denote the probability that a given lattice site (or tethering site) on

the ribbon will become occupied in a given time step. If we assume the vesicles are

distributed randomly and uniformly within the cell, the probability of a given lattice

site being occupied is independent from one time step to the next. For a lattice site

far from the ribbon, this probability is simply given by the vesicle density per lattice

site, ρδ3, where ρ is the overall density of vesicles inside the cell. Since the ribbon
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sites can only be accessed from one side, for ribbon sites we have collision probability

p =
1

2
ρδ3.

Let s be the attachment probability, the probability that a vesicle that comes into

contact with the ribbon will “stick.”1 Then sp is the probability of a vesicle actually

sticking to a ribbon site in a given time step. Thus the probability of having to wait

at least t seconds before a ribbon site is “permanently” occupied is:

P (t) = (1− sp)t/∆t,

with t/∆t giving the total number of time steps that have elapsed in t seconds. Note

that 1− sp is the probability that a given lattice site on the ribbon is not occupied

permanently in a given time step.

Now we make a crucial approximation for P (t), which is valid for sp << 1.2 The

approximation stems from the fact that ln(1 + x) ≈ x for |x|<< 1. To use it, we

first take the natural log of the P (t) equation, and then plug in ∆t = δ2/2D and

p = ρδ3/2:

lnP (t) =
t

∆t
ln(1− sp) ≈ t

∆t
(−sp)

= −2Dps

δ2
t = −2Dρδ3s

2δ2
t = −(Dρδs)t.

Exponentiating both sides we obtain

P (t) ≈ e−t/τa , where τa =
1

Dρδs
.

1i.e. become tethered to the ribbon until release, not drifting away at a future time step.
2In fact, the approximation is still quite good up to values of sp ∼ 0.1.
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Solving for P (t) without making the approximation we get

P (t) = e−t/τexact , where τexact =
−δ2

2D ln(1− 1
2
ρδ3s)

.

Next, observe that the expected number of ribbon sites that are filled at time t,

assuming all sites are empty at t = 0, is given by

a(t) =
n∑

m=1

m

(
n

m

)
(1− P (t))mP (t)n−m = n(1− P (t)).

The second equality is obtained using a familiar variant of the Binomial Theorem.

Recall that
∑n

m=0

(
n
m

)
xmyn−m = (x+ y)n, by the Binomial Theorem. Differentiating

with respect to x:
n∑

m=1

m

(
n

m

)
xm−1yn−m = n(x+ y)n−1.

Now, letting x = 1− P (t) and y = P (t), we obtain

n∑
m=1

m

(
n

m

)
(1− P (t))m−1P (t)n−m = n.

Finally, multiplying both sides by 1−P (t) we obtain the desired result. Note that each

term in the sum corresponds to the probability that exactly m sites are “permanently”

occupied at time t, weighted by m. On the other hand, given that each of the n

ribbon sites has an occupation probability of 1− P (t) at time t, it is intuitive that

the expected number of occupied sites at this time is a(t) = n(1− P (t)).

Using the approximate expression for P (t) we derived above, we obtain, a(t), the

expected number of vesicles on the ribbon at time t, in terms of our fundamental

constants:

a(t) = n(1− e−t/τa), where τa =
1

Dρδs
. (3.1)
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3.1.3 Comparison of model predictions with data

We wish to determine whether diffusion is rate-limiting for replenishment and thus

sustained release. We answer this question by comparing the experimentally measured

time constant with the model predictions. Recall that in Section 3.1.1, we fit an

exponential replenishment curve with two time constants to the data with τfast=815

ms (76%) and τslow=13 s.

Table 3.1 shows the experimental values for all of the fundamental constants for

salamander cones. Since we are interested in knowing whether diffusion is rate-limiting,

we use our model to calculate the fastest possible timescale of vesicle replenishment

due to vesicle diffusion. To do this we set the attachment probability s equal to 1.

Hence if all vesicles that collide with the ribbon due to diffusion attach to it with

probability s = 1 then the predicted time constant is

τa =
1

(.11)(2210)(.045)
seconds = 91 ms.

Thus the model predicts that the fastest replenishment time constant for salamander

cone ribbons is 91 ms, which is about an order of magnitude faster than the experi-

mentally measured τfast of 815 ms. This suggests that other factors beyond the rate of

vesicle collisions with the ribbon, such as an attachment probability s < 1, time of

descent down the ribbon, and/or vesicle priming must play a role in slowing down the

rate of vesicle accretion.

Since our theoretical model does not take into account ribbon geometry aside from

assuming that the sites are only accessible from one side, it is reasonable to use this

model to predict the replenishment time constant for other ribbon and conventional

synapses provided their vesicles also exhibit random motion. The vesicles in rod

bipolar cells, goldfish bipolar cells, and hippocampal cells all appear to exhibit random
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constant meaning measured value
n max no. of vesicles on the ribbon 110 vesicles [2]
D vesicle diffusion coefficient 0.11 µm2/s [24]
ρ (mobile) vesicle density 2210 vesicles/µm3 [37]
δ vesicle diameter 45 nm = 0.045 µm[28]
s attachment probability 0 < s ≤ 1

Table 3.1: Experimentally measured parameters for model of replenishment in sala-
mader cones.

motion [10, 14, 29]. Rod bipolar cells and goldfish bipolar cells both contain ribbons

[10, 14], but hippocampal cells do not [29]. Table 3.2 gives the parameters for rod

bipolar cells, goldfish bipolar cells, and hippocampal cells. In these cells, note that

our model predicts a replenishment time constant that is slower than the measured

replenishment time constant, indicating that the motion of vesicles may be rate-limiting

for replenishment in these synapses.

Rod Bipolar Cells Goldfish Bipolar Cells Hippocampal Cells
Diffusion coefficient, D 0.015 µm2/s [14] 0.015 µm2/s [14] 0.0042 µm2/s [29]

Vesicle diameter, δ 38 nm [10] 30 nm [22] 38 nm [13]
Vesicle Concentration, ρ 1933 v/µm3 [10] 445 v/µm3 [14, 24] 270-465 v/µm3 [12, 26]

Measured τa 400 ms [30] 4 s [20] 7 s[34, 41, 9]
Predicted τa 908 ms 5 s 13-23 s

Table 3.2: Model predictions for the fastest possible timescale of replenishment for
other synapses based on experimentally measured D, δ, and ρ.

3.2 Role of calcium in replenishment

In this section we use variations on our model to test two different mechanisms by which

calcium (Ca2+) and calmodulin (CaM), a calcium-binding messenger protein, might

govern the attachment probability, s. It is known that Ca2+ speeds replenishment

[1]. However, the mechanism by which this occurs is unknown. Data suggests that
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Ca2+/CaM do not accelerate vesicles from the top of the ribbon to the release sites,

nor do they increase the fusion rate at the membrane [38]. Increased intracellular Ca2+

does not affect the mobility of vesicles in the terminal [24, 14]. Hence D and ρ would

not be affected by calcium. It appears that vesicle size (quantal amplitude) is also

not affected by calcium [38], so we posit that Ca2+/CaM increases the attachment

probability, s. In this section, we will use two variations of the model to test two

hypotheses regarding the role of Ca2+/CaM. The first variant, which we call Model 1,

assumes that Ca2+/CaM acts as a switch making some vesicles more “sticky” than

others. In the second variant, Model 2, we assume Ca2+/CaM again acts as a switch,

but this time on the ribbon tethering sites, making some ribbon sites more “sticky”

than others but leaving the vesicles unchanged. Perhaps surprisingly, these two models

produce qualitatively different results. This may enable us to distinguish between the

two possible functions of Ca2+/CaM embedded into each model, by comparing the

model predictions to experimental observations.

δ } δ

}

Model 0 Model 1 Model 2

Figure 3.3: Calcium Hypotheses: Model 0 is the initial setup from Section 3.1.2, Model
1 assumes changes in s occur at the vesicles, and Model 2 assumes changes in s occur
at the ribbon sites [38].
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3.2.1 Calcium affects vesicles

For Model 1, suppose we have two populations of vesicles, A and B. Vesicles in

population A have higher attachment probability when they collide with the ribbon,

given by attachment probability sA. Vesicles in population B have a lower attachment

probability, given by attachment probability sB. Then, 0 < sB ≤ sA ≤ 1. Let f be the

fraction of vesicles in population A, with 1− f the fraction in population B. Since the

ribbon sites are identical, the probability of a vesicle collision resulting in attachment

is simply given by the weighted average of these attachment probabilities:

s = fsA + (1− f)sB.

The rest of the model remains unchanged. In particular, we still have

a(t) = n(1− e−t/τa), where τa =
1

Dρδs
,

and s is the “average” attachment probability computed above. If the effect of

Ca2+/CaM is to change the fraction f of vesicles in the stickier population, then this

effect will manifest itself as a change in the vesicle accretion timescale, τa. Inhibition

of Ca2+/CaM should cause a decrease in f , and hence an increase in τa. Note that

this model does not predict the existence of a second timescale, even though there are

two populations of vesicles.

3.2.2 Calcium affects the ribbon

For Model 2, suppose all vesicles are identical, but we have two populations, A and B,

of tethering sites on the ribbon. The ribbon sites in population A are more sticky,

modeled by a higher attachment probability sA, while the ribbon sites in population
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B are less sticky, with sB < sA. We let nA and nB denote the number of sites in each

population, with n = nA + nB. If f is the fraction of ribbon sites in population A,

then nA = fn and nB = (1− f)n.

Since attachment probabilities are different for different ribbon sites, we must use

different expressions for P (t): PA(t) = (1 − sAp)t/∆t for the sites in population A,

while PB(t) = (1− sBp)t/∆t for population B. The result is that expected number of

vesicles on the ribbon at time t is given by the sum of two terms:

a(t) = nA(1− e−t/τA) + nB(1− e−t/τB), where τA =
1

DρδsA
, and τB =

1

DρδsB
.

Note that since sA > sB, the population A timescale is faster, τA < τB. The presence of

two timescales makes this model qualitatively different from Model 1. This difference

is also seen in thinking about the effect of Ca2+/CaM in this model. If Ca2+/CaM

changes the fraction of ribbon sites f that belong to the stickier population, then this

will manifest itself as a change in the amplitudes nA and nB for each component of

a(t). Inhibition of Ca2+/CaM should cause a decrease in f , and hence a decrease

in nA and an increase in nB. This model predicts no Ca2+/CaM effect on the time

constants, in contrast to Model 1.

3.2.3 Comparison to experimental results

Recall that paired pulse experiments showed that the replenishment curve can be fit

with a double exponential. Table 3.3 shows the results of experimentally decreasing

Ca2+/CaM using BAPTA, nifedipine, Calmidazolium, and MLCK [38]. When the

fast timescale is constrained to match the control, we see that the fit is comparable to

the unconstrained case, but the percentage of fast-replenishing sites is much lower.

Thus, inhibiting Ca2+/CaM in these experiments caused slight changes in the fast
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timescale, but more substantial changes to the amplitude of the fast component. This

is consistent with the predictions seen in Model 2, where we have two time constants

and inhibition of Ca2+/CaM causes the amplitude of the fast component to decrease.

We conclude that Ca2+/CaM more likely acts on ribbon sites rather than vesicles. It

is possible that vesicles are affected by Ca2+/CaM as well, but changes in the fast

timescale were not consistent across trials.

3.3 Other quantities of interest

3.3.1 Hit rate

In this section we compute the hit rate, i.e. the number of vesicles coming in contact

with the ribbon per second. One way to compute the hit rate is to do so macroscopically

by first calculating the flux near the ribbon and then multiplying by the surface area

of the ribbon. We consider the concentration of vesicles to be zero on the ribbon.

The concentration of mobile vesicles not attached to the ribbon is ρ as before. Thus

over the distance δ (one lattice step from a ribbon site to a nonribbon site) we have

a change in concentration from ρ to 0 giving us a flux of J = D
ρ− 0

δ
=
Dρ

δ

vesicles

µm2 · s
[6]. The total surface area of the ribbon is nδ2 µm2. Thus computing the hit rate

using this method yields H =
Dρ

δ
nδ2 = Dρδn =

n

τa
vesicles/s where τa =

1

Dρδ
is the

replenishment time constant from our previous calculations.

We can also microscopically compute the hit rate. First, find the expected number

of sites filled in a single time step. We know that the probability of a ribbon site

becoming occupied in the next time step is
1

2
ρδ3 and there are n sites on the ribbon.

Thus the expected number of sites filled in a single time step is given by
1

2
ρδ3n. We

know that each time step ∆t is
δ2

2D
seconds. Thus the formula for hit rate in our
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model is

H =

1

2
ρδ3n vesicles

1 time step
· 1 time step

δ2

2D
seconds

= Dρδn vesicles/s,

in agreement with the flux-based calculations above.

Lastly, we can again confirm this result by approximating the hit rate from

da

dt
, which is the formula for the rate of accumulation of vesicles onto the ribbon

from previous calculations. The hit rate computed above ignores the decrease in

available surface area due to vesicles already on the ribbon and thus corresponds to

the accumulation rate only for small values of t. Recall that a(t) = n(1− e−t/τa) is

the expected number of vesicles on the ribbon at time t where τa =
1

Dρδs
. Here we

assume s = 1 since we are just finding how many vesicles come in contact with the

ribbon per second and ignoring how many stick. For t = 0 the rate of accumulation

also corresponds to the hit rate since the form of a(t) assumes that the ribbon is empty

at t = 0. Then
da

dt
=

n

τa
e−t/τa , so at t = 0 we have that the rate of accumulation is

n

τa
= Dρδn vesicles/s. So again the hit rate is given by H = Dρδn vesicles/s.

In summary, when the ribbon is empty, the hit rate is

H =
n

τa
= Dρδn vesicles/s,

but as the ribbon becomes filled the hit rate decreases as

H(t) =
n

τa
e−t/τa .

Note that H = H(0) and

∫ ∞
0

H(t)dt =
n

τa

∫ ∞
0

e−t/τadt =
n

τa
(−τae−t/τa)

∣∣∣∣∞
0

=
n

τa
τa = n.
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3.3.2 Expected waiting time

To calculate the expected waiting time, Twait, to fill all n lattice sites on the ribbon,

we first consider an individual lattice site. Let P (t) be the probability that we wait

at least t seconds to fill the given lattice site. Then 1− P (t) is the probability that

the given lattice site fills before t seconds have passed and r(t) = (1 − P (t))n is

the probability that all n sites have filled before t seconds have passed. Hence the

probability we wait exactly t seconds is r′(t)dt.

Thus the expected waiting time Twait is given by

Twait = E[t] =

∫ ∞
0

tr′(t)dt = τaHn

where τa is the vesicle accretion timescale and Hn =
n∑
k=1

1

k
is the nth harmonic number.

This result is proven in Lemma 3.1.

Lemma 3.1.

∫ ∞
0

tr′(t)dt = τaHn where r(t) = (1− e−t/τa)n, and Hn =
n∑
k=1

1

k
is the

nth Harmonic number.

Proof. We have r′(t)dt = n
τa
e−t/τa(1− e−t/τa)n−1dt, so

∫ ∞
0

tr′(t)dt =
n

τa

∫ ∞
0

te−t/τa(1− e−t/τa)n−1dt

=
n

τa

∫ ∞
0

te−t/τa
n−1∑
k=0

(
n− 1

k

)
(−1)ke−kt/τadt

=
n

τa

n−1∑
k=0

(
n− 1

k

)
(−1)k

∫ ∞
0

te−(k+1)t/τadt

=
n

τa

n−1∑
k=0

(
n− 1

k

)
(−1)k

τ 2
a

(k + 1)2

= τa

n−1∑
k=0

n

(
n− 1

k

)
(−1)k

1

(k + 1)2
.
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Using the identity (k + 1)

(
n

k + 1

)
= n

(
n− 1

k

)
and reindexing, we can rewrite

τa

n−1∑
k=0

n

(
n− 1

k

)
(−1)k

1

(k + 1)2
= τa

n∑
k=1

(
n

k

)
(−1)k−1 1

k
.

Now, we claim that
n∑
k=1

(
n

k

)
(−1)k−1 1

k
= Hn. First note that

∫ 1

0

1− xn

1− x
dx =

∫ 1

0

n−1∑
k=0

xkdx =
n−1∑
k=0

∫ 1

0

xk =
n∑
k=1

xk−1

k

∣∣∣∣1
0

=
n∑
k=1

1

k
= Hn.

Then, letting u = 1− x, we have,

∫ 1

0

1− xn

1− x
dx = −

∫ 0

1

1− (1− u)n

u
du

=

∫ 1

0

1−
∑n

k=0

(
n
k

)
(−1)kuk

u
du

=

∫ 1

0

1−
(
n
0

)
(−1)0u0 −

∑n
k=1

(
n
k

)
(−1)kuk

u
du

= −
n∑
k=1

(
n

k

)
(−1)k

∫ 1

0

uk−1du

=
n∑
k=1

(
n

k

)
(−1)k−1

[
uk

k

∣∣∣∣1
0

]
=

n∑
k=1

(
n

k

)
(−1)k−1 1

k
.

Thus,
n∑
k=1

(
n

k

)
(−1)k−1 1

k
= Hn and therefore

∫ ∞
0

tr′(t)dt = τaHn.

Recall that we predicted τa = 91 ms and H110 is approximately 5.2882, so the expected

waiting time Twait is 481 ms. Note that this calculation is useful to set the duration for

computer simulations in the computational model of replenishment (see Chapter 4).
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Expected waiting time in Model 1 Recall that in Model 1, we have two popu-

lations of vesicles where sA and sB are the attachment probabilities for population

A and population B, respectively. Then the expected waiting time for Model 1 is

Twait = τaHn =
Hn

Dρδs
where s = fsA + (1− f)sB and f is the fraction of vesicles in

population A.

Expected waiting time in Model 2 Recall that in Model 2, the stickiness occurs

in the ribbon sites instead. We have nA ribbon sites with attachment probability sA

and nB sites with attachment probability sB. We know that the probability of having

to wait at least t seconds before a ribbon site in population A is occupied is given by

PA(t) = e−t/τA where τA = 1
DρδsA

and the probability of having to wait at least t seconds

before a ribbon site in population B is occupied is given by PB(t) = e−t/τB where

τB = 1
DρδsB

. Then r(t) = (1− PA(t))nA(1− PB(t))nB = (1− e−t/τA)nA(1− e−t/τB)nB

is the probability that all n = nA + nB sites have filled before t seconds have passed.

Hence the probability we wait exactly t seconds is r′(t)dt.

Now, we have that the expected waiting time for the ribbon to fill is

Twait =

∫ ∞
0

tr′(t)dt

=

∫ ∞
0

(
t(1− e−t/τA)nA(1− e−t/τB)nB−1e−t/τB

nB
τB

+t(1− e−t/τB)nB(1− e−t/τA)nA−1e−t/τA
nA
τA

)
dt.

=
nB
sB

nA∑
i=0

nB−1∑
j=0

(
nA
i

)(
nB − 1

j

)
(−1)i+j

1

(j + τB
τA
i+ 1)2

+
nA
sA

nB∑
k=0

nA−1∑
l=0

(
nB
k

)(
nA − 1

l

)
(−1)k+l 1

(l + τA
τB
k + 1)2
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Chapter 4

Computational model

The random walk model of vesicle replenishment described in Chapter 3 does not take

into account the geometry of the ribbon. What effect does ribbon geometry have on

replenishment? In this chapter we discuss a computational model of replenishment

including ribbon geometry that was designed to complement the theoretical model.

This model is currently unpublished. In Section 4.1 we describe the setup of the

model. Then in Section 4.2, we compare the results of the computational model

with the results of the theoretical model to determine the role geometry plays in

replenishment. The Matlab code for the computational model of replenishment can

be found in Appendix A.

4.1 Description of the computational model

The cell space is modeled by a 3-dimensional array with entries in {0, 1} where 1s

indicate locations of vesicles within the cell. The array is randomly generated with

a given concentration of 1s computed from the vesicle concentration ρ. The total

number of 1s denoted by N . The matrix S is a N×3 matrix where the ith row records
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the current position of the ith vesicle within the array. In each time step the matrix

is updated by adding a random N × 3 matrix with entries in {−1, 1}. This ensures

that each vesicle moves one lattice space per dimension in each time step, a diagonal

move overall. A set of n coordinates, where n is the maximum number of vesicles that

fit on the ribbon, are designated as “ribbon sites.” The coordinates of these sites are

recorded in the matrix SiteMat and during each time step the coordinates of all N

vesicles are checked against SiteMat to determine how many vesicles are occupying

ribbon sites. Then with probability s, the attachment probability discussed in Section

3.1.2, a vesicle occupying a ribbon site becomes permanently stuck and does not

update in subsequent time steps. This is done by zeroing out the corresponding row

in the update matrix. At each time step we record how many vesicles are permanently

stuck to the ribbon. This gives us the computational replenishment curve, which we

can compare with our theoretical prediction.

Figure 4.1 shows the arrangement of ribbon sites in the rectangular ribbon case

and the “nonribbon” case. The placement of sites in the nonribbon case allows us to

study the effects of ribbon geometry. For cases with the rectangular ribbon, we also

make sure that the ribbon is solid by not allowing any updates that would represent a

vesicle passing through the ribbon. This is achieved by returning any vesicles that pass

through the ribbon in the current time step to their original position before moving

to the next time step.

Note that because of the way the vesicles update it is possible for vesicles to occupy

the same lattice site during the same time step. For small concentrations (around 300

v/µm3), less than 1% of the vesicles are occupying the same site as another vesicle

and for larger concentrations (around 2300 v/µm3), less than 10% of the vesicles are

occupying the same site as another vesicle.

Since the theoretical model does not take into account geometry, the computational
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Figure 4.1: Ribbon and nonribbon attachment sites: The left panel shows the ribbon
sites arranged in a flat rectangular plate based off the structure seen in cone photore-
ceptors. The right panel shows the sites spread out in the cell space to act as a control
when studying the effects of ribbon geometry.

model and the theoretical model should be close in the nonribbon case1. Figure 4.2

shows the comparison between the two models in the nonribbon case for several

different concentrations and attachment probabilities. Note that the models closely

match across a wide range of parameters.

4.2 Effect of ribbon geometry on replenishment

Since the theoretical model does not take into account the geometry of the ribbon

we use our computational model to approximate the replenishment curve in the case

where we have a rectangular ribbon attached to the edge of the cell space.

Figure 4.3 indicates that the geometry of the ribbon does in fact play a role

in replenishment. The ribbon sites in this case have a rectangular shape based

on the ribbons in cone photoreceptors and the trials are run for varying vesicle

1Recall that in the analytical model we have a factor of 1/2 that represents the fact that the ribbon
sites are only accessible from one side. When using the analytical model to predict replenishment in
nonribbon cases, we leave out the factor of 1/2 since these sites are accessible from all sides.
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concentrations and attachment probabilities. For low attachment probability and high

vesicle concentration, the computational model trial average shows faster replenishment

than predicted by the analytical model. For high attachment probability and low vesicle

concentration, the computational model trial average shows slower replenishment than

predicted by the analytical model.

Recall that cone photoreceptor synapses have a high vesicle concentration and

based on our random walk model of replenishment in Chapter 3 are also likely have a

low attachment probability. Studying the case of high vesicle concentration and low

attachment probability in our computational model, we note that the computational

trial average is faster than the theoretical model prediction. This indicates that having

a synaptic ribbon for this parameter regime actually speeds replenishment compared

to having no ribbon where the vesicles dock directly with the cell membrane. This

may provide evidence for why photoreceptor cones contain ribbons, but exactly how

the ribbon accelerates replenishment in this case is still unclear.

In the case of high attachment probability and low concentration, we hypothesize

that once the ribbon starts to fill up, the local concentration near the ribbon decreases

causing the ribbon to fill slower than predicted. To test this we calculate the concen-

tration of vesicles close to the ribbon and far away from the ribbon. Figure 4.4 shows

the results of this calculation. The concentration near the ribbon drops steeply as

the ribbon fills up and the concentration further away stays relatively constant. This

drop in local concentration is most pronounced in the high s/low ρ cases. This may

account for the slower replenishment we see in these cases.

Since the theoretical model incorporates the factor of 1/2 indicating that the sites

are only accessible from one side, but not specific ribbon geometry, the theoretical

prediction gives a reasonable approximation for time constant of vesicles reaching the

cell membrane in a terminal without a ribbon. Figure 4.3 indicates that having a
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ribbon actually may slow replenishment in synapses with low vesicles concentration.

This suggests that having a ribbon would not be advantageous in synapses with low

vesicle concentration and random motion of vesicles. This is consistent with the case

of hippocampal synapses which have a low vesicle concentration and random motion,

but do not contain ribbons [29].

4.3 Future work

Local concentration. The computational model discussed in Chapter 4 revealed

that the local concentration near the ribbon drops sharply near the ribbon as the

ribbon fills up. This contradicts our assumption that the vesicle concentration is

constant. To improve our random walk model, we would like to find a formula to

describe the change in concentration as the ribbon fills up.

Movement on ribbon and vesicle fusion. The random walk model does not

take into account the movement of vesicles along the ribbon. As more becomes known

about this process, we would like to incorporate this step into the model. This model

also does not take into account vesicle release. Adding these features will allow us to

explore more questions regarding the function of the ribbon.
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Figure 4.2: Comparison to the theoretical model: The computational model results
for the nonribbon case (see Figure 4.2) are averaged over 100 trials and the gray
area represents one standard deviation from the mean. We show trials for a low (300
vesicles/ µm3) and a high concentration (2300 vesicles/ µm3) as well as three different
attachment probabilities (0.1, 0.5, and 1). Note that the theoretical and computational
models appear to closely match across a variety of parameters, as expected in the
nonribbon case.



54

vesicle concentration

a
tt

a
ch

m
e

n
t 

p
ro

b
a

b
il

it
y

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

110

Time (sec)

N
u
m

b
e
r 

o
f 
V

e
s
ic

le
s
 A

c
c
ru

e
d

ρ = 300 vesicles/µm
3
, D = 0.11 µm

2
/sec, s = 0.5

 

 

Analytical Model

Computational Trial Average

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

110

Time (sec)

N
u
m

b
e
r 

o
f 
V

e
s
ic

le
s
 A

c
c
ru

e
d

ρ = 300 vesicles/µm
3
, D = 0.11 µm

2
/sec, s = 0.1

 

 

Analytical Model

Computational Trial Average

0 0.5 1 1.5 2 2.5 3 3.5
0

10

20

30

40

50

60

70

80

90

100

110

Time (sec)

N
u
m

b
e
r 

o
f 
V

e
s
ic

le
s
 A

c
c
ru

e
d

ρ = 300 vesicles/µm
3
, D = 0.11 µm

2
/sec, s = 1

 

 

Analytical Model

Computational Trial Average

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

10

20

30

40

50

60

70

80

90

100

110

Time (sec)

N
u
m

b
e
r 

o
f 
V

e
s
ic

le
s
 A

c
c
ru

e
d

ρ = 2300 vesicles/µm
3
, D = 0.11 µm

2
/sec, s = 0.1

 

 

Analytical Model

Computational Trial Average

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

110

Time (sec)

N
u
m

b
e
r 

o
f 
V

e
s
ic

le
s
 A

c
c
ru

e
d

ρ = 2300 vesicles/µm
3
, D = 0.11 µm

2
/sec, s = 0.5

 

 

Analytical Model

Computational Trial Average

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

10

20

30

40

50

60

70

80

90

100

110

Time (sec)

N
u
m

b
e
r 

o
f 
V

e
s
ic

le
s
 A

c
c
ru

e
d

ρ = 2300 vesicles/µm
3
, D = 0.11 µm

2
/sec, s = 1

 

 

Analytical Model

Computational Trial Average

Figure 4.3: Effect of ribbon geometry on replenishment: The computational model
results for the rectangular ribbon case (see Figure 4.2) are averaged over 100 trials
and the gray area represents one standard deviation from the mean. We show trials
for a low (300 vesicles/ µm3) and a high concentration (2300 vesicles/ µm3) as
well as three different attachment probabilities (0.1, 0.5, and 1). Note that the
computational model shows the greatest deviation from the theoretical prediction in
the low concentration/high attachment probability case.
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Figure 4.4: Local concentration: The above plots show the difference between the
local concentration near the ribbon (in red) and away from the ribbon (in blue) for
two different overall vesicle concentrations (300 vesicles/µm3 and 2300 vesicles/µm3)
and two different attachment probabilities (s = 0.1 and 1) in the case where the
ribbon sites are arranged in a rectangular plate. Notice the sharp drop in the local
concentration near the ribbon when the ribbon first begins to fill. The percentage
drop is largest for the low concentration/high attachment probability case.
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Part II

Neural Sequences in

Threshold-Linear Networks
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Chapter 5

Introduction to Part II

Part II focuses on neural networks and the interplay between network connectivity

and neural activity. In particular, we are interested in studying how network structure

shapes the behavior of the network.

To do this, we study the dynamics of a combinatorial family of competitive

threshold-linear networks constructed from simple directed graphs (the CTLN model)

as defined in [21]. This family of networks is particularly well suited for our study

because the network construction guarantees that differences in dynamics arise solely

from differences in the connectivity of the underlying graph. This allows us to focus

on the properties of the graphs themselves when trying to predict the behavior of

the corresponding network. This robust family of dynamical systems exhibits several

different nonlinear behaviors including limit cycles, quasiperiodic attractors, and chaos.

Figure 5.1 shows an example of a network that exhibits multiple behaviors depending

on the choice of initial conditions.

In this part, we begin by giving some background about competitive threshold-

linear graphs and the CTLN model. We then use the CTLN model to study how

the graph structure affects the resulting dynamics. Computational experiments show



58

that most CTLN networks yield limit cycles. We present an algorithm that uses

the structure of the underlying graph to predict the sequence of firing of neurons

in the limit cycle. Our algorithm predicts the sequence correctly for most small

graphs, but sometimes fails for certain classes of larger graphs. To gain further insight

into how the structure of the underlying graph shapes the dynamics, we classify the

behavior we see for small networks (n ≤ 5 nodes) arising from oriented graphs. Both

of these results work towards the larger goal of better understanding high-dimensional

nonlinear dynamics.
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Figure 5.1: An example on n = 8 nodes having several different behaviors based on
initial conditions: Panel A shows the graph. Panel B shows one of two stable fixed
points, Panel C shows a limit cycle, and Panel D shows a chaotic attractor. The
traces of activity are color-coded to match the colors of the nodes in the graph. The
plots on the far right show random two-dimensional projections of the 8-dimensional
trajectories corresponding to the limit cycle and the chaotic attractor. Adapted from
[21].
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5.1 Threshold-linear networks

The CTLN model is a specific type of threshold-linear network. Neuroscientists use

threshold-linear networks to model recurrent neural networks [27]. These networks

are thought to be involved in perception and memory processes [11]. Development of

the mathematical theory behind threshold-linear networks is ongoing [44, 11, 21].

Definition 5.1. A threshold-linear network on n neurons is defined by the following

system of differential equations:

dxi
dt

= −xi +

[
n∑
j=1

Wijxj + θ

]
+

, i ∈ [n]. (5.1)

where xi is the firing rate of the ith neuron, W is the matrix of connection strengths,

θ ∈ R is the external drive to the network, and [y]+ = max{0, y} is the threshold

nonlinearity.

In our neural network context, the −xi represents the leak term and guarantees

that the activity of neuron i will die out in the absence of other inputs. Inside the

nonlinearity we have a sum of inputs from all other neurons weighted by the connection

strengths. In inhibitory networks (Wij ≤ 0), the parameter θ must be positive in order

for the nonlinear term to be nonzero.

We study the behavior of threshold-linear networks of n neurons as they are one

of the simplest examples of a nonlinear system of ordinary differential equations. In

particular, we are interested in studying the dynamics of a competitive threshold-linear

network defined from a simple directed graph.

Definition 5.2. A competitive threshold-linear network is governed by Equation 5.1

with the added restriction that Wij ≤ 0 and Wii = 0 for all i, j = 1, . . . , n and θ > 0.
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In the next section we will describe the CTLN model, which is a particular type of

competitive threshold-linear network.

5.2 Description of the CTLN model

The Combinatorial Threshold-Linear Network model (CTLN model) was first intro-

duced by Curto et al. in [8] and further explored by Morrison et al. in [21]. This model

was designed as a way to study high-dimensional nonlinear dynamics without using

a linear approximation [21]. Linear models are limited as tools for approximation

as they do not demonstrate complex behaviors such as limit cycles, multistability,

and chaos. The nonlinearity in the CTLN model captures the full range of nonlinear

behaviors, but is still simple enough that it is possible to develop a corresponding

mathematical theory. In this chapter we describe the CTLN model and necessary

background.

Definition 5.3. The Combinatorial Threshold-Linear Network (CTLN) model refers

to the competitive threshold linear network constructed from a simple directed graph

with only two values for the inhibitory connection strengths. For any δ > 0 and

0 < ε < 1, the n× n connectivity matrix W is given by

Wij =


0 if i = j

−1 + ε if i← j in G

−1− δ if i8 j in G

(5.2)

where i ← j represents a directed edge from node j to node i in the graph G and

i8 j means that no such edge exists in G [21].

The CTLN networks are therefore fully inhibitory, with each node acting on its
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neighbors by quieting their activity. A biological motivation for the model is shown in

Figure 5.2. Inhibitory interneurons (gray circles) inhibit all neighboring excitatory

pyramidal cells (colored triangles) equally [8]. Connections between excitatory neurons

therefore have two strengths. A directed edge represents an overall connection strength

of −1 − ε, i.e. inhibition has been weakened by an excitatory connection. Lack of

an edge represents an overall connection strength of −1− δ. The following theorem

from [21] gives constraints on the graph and the relationship between δ and ε that

guarantees bounded activity, but disallows stable fixed points.

A B

Figure 5.2: Diagram of excitatory and inhibitory connections: The left panel shows
inhibitory interneurons (gray circles) and excitatory pyramidal cells (colored triangles).
Arrows indicate connections between neurons. The right panel shows just the excitatory
neurons and their connections. Adapted from [8].

Theorem 5.4. [21] Let G be an oriented1 graph with no sinks (i.e. every vertex has

outdegree at least 1), and consider the associated CTLN model with W = W (G, ε, δ).

If ε <
δ

1 + δ
, then the network has bounded activity and no stable fixed points.

By forbidding stable fixed points, Theorem 5.4 guarantees that the activity of the

network is either oscillatory or chaotic. Computational experiments show that most of

the small networks for which Theorem 5.4 holds exhibit limit cycles where the neurons

1An oriented graph is a directed graph with no bi-directional connections.
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often appear to fire in sequence. The construction of the CTLN model guarantees

that any differences in dynamics arise solely from differences in the underlying graph.

Our goal is to use the structure of the graphs to predict the resulting sequences. In

the following sections we will assume θ = 1, ε = 0.25, δ = 0.5, and we will focus on

oriented graphs with no sinks. Theorem 5.4 holds in these cases. The next section

shows some examples of these networks and their behaviors.

5.3 Examples and behaviors

In this section, we will explore examples of CTLN networks with a small number of

nodes. We will start with the simplest example of a network satisfying the conditions

of Theorem 5.4, a three-cycle as seen in Figure 5.3. Since a directed edge represents a

less inhibited connection, the activity of such networks often follows the direction of

the arrows, though not always. Note that in this case the dynamics are a limit cycle

where the peak firing of the three nodes happens in the same order as the three-cycle

in the graph.

This three-cycle is the only graph on n = 3 nodes that meets the criteria of

Theorem 5.4, i.e. is an oriented graph with no sinks. On n = 4 nodes there are seven

such graphs and on n = 5 there are 152 such graphs. See Appendix C for the full

catalogue of oriented graphs with no sinks on n ≤ 5 nodes. The number of graphs

explodes when looking at oriented graphs with no sinks on n > 5 nodes.

Figure 5.4 shows several examples of networks and their dynamics on n = 5 nodes.

Panels A, B, and C show networks with limit cycles and the Panel D shows a chaotic

attractor. Note that some of the nodes have different peak firing rates. In many cases

on n = 5 nodes we see three nodes with a relatively high peak firing rate and the

remaining two nodes have a much smaller firing rate as seen in Figure 5.4 Panel A. We
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Figure 5.3: Example on n = 3 nodes: In the top left we show the only oriented graph
on n = 3 vertices with no sinks. The top right panel shows the dynamics of this
network: a limit cycle where the nodes fire in the order 123. The bottom left shows the
transposed adjacency matrix (which is used for the CTLN model construction). The
bottom right shows the matrix of connection strengths constructed using Equation
5.2. Adapted from [21].

sometimes see synchronous firing of nodes, where the nodes fire at exactly the same

rate, often resulting from a graph automorphism, as in Panel C. Chaotic attractors

occur in networks as small as n = 5 nodes. See Figure 5.4 Panel D for an example.

Note that it is possible for a network to have multiple limit cycles or chaotic attractors.

For example, the network in Panel D has four different chaotic attractors, only one of

which is shown.

Could we have predicted these dynamics by looking at the graphs? The limit

cycles in panels A and B, each follow a cycle in the corresponding graph. This is

common in smaller graphs, but for larger n we have seen examples where this is not

the case. Also, what happens when there is more than one 5-cycle in the graph? Note

that the graph in Panel B has two 5-cycles, 12534 and 15423, but the network has

only one limit cycle. Why does the network preferentially choose one 5-cycle over

the other? Figure 5.5 shows an example on n = 7 nodes. Note that the limit cycle
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shown in the activity trace corresponds to a 6-cycle in the graph. Why does node 2

stop firing? It receives input from three other nodes while nodes 3 and 5 only receive

two inputs each. Additionally, there are multiple 7-cycles in the graph. Why doesn’t

the limit cycle correspond to one of these 7-cycles? These are all questions that our

algorithm must address. The algorithm must be able to discern between limit cycles

and chaos, predict the firing sequence for limit cycles, and must also identify which

nodes stop firing, if any.
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Figure 5.4: Examples on n = 5 nodes: Panels A1-D1 show some examples of oriented
graphs on n = 5 nodes. Panels A2-D2 show the dynamics of the networks corresponding
to the graphs. Panel A2 shows a typical limit cycle. Note that nodes 4 and 5 fire at a
much lower rate than nodes 1, 2, and 3. Panel B1 shows an example of a balanced
subgraph. Note that each node has indegree 2 and outdegree 2. Panels C1-C2 show
an example with synchronous firing: nodes 1,4, and 5 fire at the same rate. This
is caused by the graph automorphism in C1. Panels D1-D2 show an example of a
network with a chaotic attractor. Note that we show a longer trial in D2 to show the
chaotic behavior.
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Chapter 6

Sequence prediction algorithm

In this section, we will discuss an algorithm we designed to predict the neural sequence

from the graph for CTLN networks. The basic premise of this algorithm comes from

the idea of removing the “weakest” node and looking at the dynamics of the remaining

network. Once we know how the smaller network behaves we work to figure out a way

to tell where the deleted node fits in the sequence. We start with a description of the

algorithm, discuss some examples, and then state some conjectures about when the

algorithm is successful. We will look first at the case of tournaments1 without sinks

and then examine oriented graphs without sinks.

6.1 Description of the algorithm

The algorithm has two separate phases. In the deconstruction phase, we will first

deconstruct the graph by deleting one vertex at a time, keeping track of the order

of deletion. Then in the reconstruction phase, we start with a base sequence based

on our deconstruction and rebuild the neural sequence by adding back in the deleted

1A tournament is a complete simple directed graph, where complete means that there is an edge
between each pair of vertices.
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Figure 6.1: Example of algorithm on n = 5

vertices in reverse order. Let G be a tournament on n vertices with no sinks.

Deconstruction phase. At each step of the algorithm we delete one of the vertices

of G with smallest indegree such that the resulting reduced tournament has no sinks.

We continue to delete vertices until we can no longer do so. This occurs when the

resulting tournament is a three-cycle (see Proposition 6.1). We refer to this three-cycle

as the core cycle. At each step we record the current tournament and the vertex we

deleted. See Figure 6.1 for an example. Note that the choice of vertex to delete is not

necessarily unique, so it is possible for the algorithm to output multiple sequences.



69

Reconstruction phase. To reconstruct the sequence, we start with the three-cycle

from the last step of the deconstruction phase. Recording the vertices in order of the

three-cycle we insert the other vertices into this sequence in reverse order of deletion.

Proceeding backwards through the list of deleted vertices, we add each vertex back

into the sequence following the vertex that feeds into it in the graph from the preceding

step in the deconstruction. If more than one vertex feeds into the vertex to be added,

we look at the subgraph induced by these possibilities and if one of these possibilities

is a sink in the induced subgraph, we place the vertex to be added after the sink in

the sequence. See Figure 6.1 for an example. Note that it is possible for the algorithm

to fail if there are two or more edges feeding into the node we are adding back in.

Node death. When reconstructing the sequence, there are rules to predict the

death of a node. If the vertex we delete at a given step has indegree zero then we do

not add that node back in during reconstruction. If the vertex we delete at a given

step has indegree one with the one edge coming from a vertex not in the core cycle

then we do not add that node back in during reconstruction.

Final sequence. To predict the final sequence, we first consider the full list of

possibilities. If there are two possibilities that are identical except one is missing a

node, then we choose the shorter sequence. If the possibilities are different but the

same length, some neurons might fire synchronously. We predict the synchronous

firing of a subset of neurons if that subset appears in the same cyclic order in each of

the possibilities but with a different starting point. The neurons not in the subset

appear in the same order in all possibilities. For example, we would predict that 2, 3,

and 4 fire synchronously if the algorithm output sequences 12345, 13425, and 14235.
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Implementation of the algorithm in Matlab. We have developed a Matlab

code to automate the prediction algorithm. The code can be found in Appendix B.

Proposition 6.1. For a tournament G with no sinks, the deconstruction phase of the

algorithm will terminate if and only if the graph corresponding to the current step is a

three-cycle.

Proof. Let G be a tournament on n vertices with no sinks. Assume you reach a step

in the algorithm where there are currently m nodes remaining and deleting any vertex

results in an illegal graph. Then each node must have at least one incoming edge from

a vertex with outdegree exactly 1. This implies that every vertex has outdegree exactly

1. Thus the graph has a total outdegree of m, i.e. we have m total edges. The number

of edges can also be given by
(
m
2

)
since it is a tournament, so m =

(
m
2

)
. Solving for

m gives m = 3. Since we have outdegree 1 at every node, the current graph is a

3-cycle. Also note that if the graph at the current step is a three-cycle, then deleting

any vertex, will result in a graph with two vertices and a directed edge between them.

Thus one of the vertices is a sink, so the deconstruction phase terminates at at step

n− 3.

6.2 Performance of the algorithm

Proposition 6.2. For ε = 0.5, δ = 0.25, and θ = 1, the algorithm correctly predicts

the neural sequence for tournaments without sinks on n ≤ 5 nodes.

The proof of this proposition is done by checking each case computationally. We

also note that for oriented graphs, the algorithm appears to predict which neurons

will have high firing rates. For small examples, we often see three neurons with higher

firing rates than the remaining neurons. These three high-firing neurons appear to
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correspond to the neurons in the core cycle predicted by the algorithm. Further

exploration of tournaments lacking sinks on n > 5 nodes indicates that there are

networks where the algorithm does not correctly predict the behavior, often in the

form of spurious predictions or incorrectly predicting neuron death. Analysis of these

graphs indicates that the networks for which the algorithm fails appear to have the

common property of having a balanced subgraph on n ≥ 5 nodes or are an outerneuron

construction.

Definition 6.3. A balanced subgraph is a complete induced subgraph of an oriented

graph G where all nodes have the same outdegree. Note that for a balanced subgraph

of size m, where m is odd, the outdegree of each vertex is m−1
2

. There are no balanced

subgraphs of even size. See Panel B in Figure 5.4 for an example of a balanced graph

on 5 vertices. Each vertex has indegree 2 and outdegree 2.

Definition 6.4. The outerneuron construction is the process of taking a simple

directed graph on n vertices and adding two vertices to the graph: one vertex with

edges directed to all vertices in the original graph (a pseudo-source) and one vertex

who receives directed edges from all the vertices in the original graph (a pseudo-sink).

We then add a directed edge from the pseudo-sink to the pseudo-source to guarantee

that the new graph on n+ 2 vertices has no sinks.

We have looked at all tournaments having no sinks on up to n = 7 vertices.

Proposition 6.2 gives that the algorithm works for the 11 such graphs on n ≤ 5

vertices. On n = 6 nodes there are 44 graphs and on n = 7 nodes there are 400

such graphs. The algorithm fails for only two of the n = 6 graphs, one with a

spurious prediction and one with a spurious deletion. Both of these graphs have a

balanced subgraph on 5 vertices. For n = 7, if we ignore graphs with an outerneuron

construction and graphs with balanced subgraphs with n ≥ 5 vertices (153 total), the
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algorithm only fails for 5 out of the remaining 247 graphs. Additionally, of the 153

graphs having an outerneuron construction or a balanced subgraph with n ≥ 5, 62 of

these are still correctly predicted by the algorithm.

6.3 Extending the algorithm to oriented graphs

We have also explored the success of the algorithm on oriented graphs without sinks

on n ≤ 5 nodes. Recall that unlike tournaments, oriented graphs do not require

an edge between every pair of vertices. As a result we are not guaranteed that the

algorithm will terminate at a three-cycle for oriented graphs. In fact, we have seen

examples on n = 5 where the algorithm terminates in a 4- or 5-cycle. A comprehensive

list of oriented graphs without sinks on n ≤ 5 nodes appears in Appendix C. The

algorithm correctly predicts the behavior in all but 6 of the 160 total networks on

n ≤ 5 nodes. Using the algorithm on the Graph #147, 148, 149, 152, and 158 predicts

the correct sequence, but also produces a spurious prediction. For example, the

network corresponding to Graph #147 has a limit cycle with sequence 12(45)3 where

the parentheses indicate that neurons 4 and 5 fire synchronously. The algorithm makes

three predictions: 12453, 12543, and 12534. The first two predictions result in a correct

final sequence of 12(45)3, but 12534 is a spurious prediction. Using the algorithm on

Graph #153, a node is deleted that does not die, which keeps the algorithm from

predicting the synchronous activity.

One weakness that arises when using the algorithm on oriented graphs rather than

tournaments is that it is possible to disconnect the graph during deconstruction. Since

the reconstruction rules will not necessarily make sense in this case, additional rules

will be necessary for the deconstruction of oriented graphs to avoid breaking the graph

into multiple components. We also still sometimes make incorrect predictions in the
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case of graphs with the outerneuron construction and/or a balanced subgraph. The

next section shows a comprehensive study of all the oriented graphs on n ≤ 5 vertices

in order to investigate ways to adjust the algorithm for oriented graphs.

6.4 An application: classification of oriented

graphs on n ≤ 5

To investigate why the algorithm fails in some cases, we perform an exhaustive study

and classification of oriented graphs on n ≤ 5 nodes. See Appendix C for a complete

list of graphs and their classification. If we look at the graphs for which the algorithm

failed, we see that they all fall into a category where there are two or more different

n = 4 subgraphs possible in the first step in the algorithm. Using this classification

we hope to start refining the algorithm to work in more generality.

In the next section we also sort the graphs by dynamics. Note that the graphs

in the same entry in the dictionary often also appear in the same category of the

classification in Appendix C.

6.5 Dictionary of attractors for n ≤ 5

In this chapter we create a dictionary of graph behaviors. We sort the graphs into

groups based on the dynamics of the corresponding network. Each entry in the

dictionary corresponds to a specific limit cycle or chaotic attractor. AT denotes

“attractor type.” For each entry, we show a representative graph for that particular

attractor type along with its dynamics. To make the dynamics plots we use ε = 0.5,

δ = 0.25, and θ = 1 as before. Initial conditions used are listed above the dynamics

plots. We use an asterisk (*) to indicate which initial condition we used to create the
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plot. The sequence listed is for the representative graph only. We underline low-firing

neurons and synchronous neurons are in parentheses. All graphs listed in that entry

exhibit the same behavior (up to permutation) as the representative graph for some

initial condition. If a graph has more than one attractor we annotate the graph

number with ic1, ic2, etc. The labelling of the graphs corresponds to the numbering

in the catalogue found in Appendix C. The compilation of the dictionary was carried

out in collaboration with Katherine Morrison.
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Basic Dictionary of Attractors 
 

AT-1 (limit cycle) 

    
Rep. graph 1, seq 123.  All graphs: 1, 2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38. 
 
AT-2 (limit cycle) 

   
Rep. graph 6, seq 1234.  All graphs: 6, 7, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 
130. 
 
AT-3 (limit cycle) 

   
Rep. graph 140, seq 123(45).  All graphs: 140, 141, 142, 147, 148. 
 
AT-4 (limit cycle) 

   
Rep. graph 82, seq 15234.  All graphs: 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 136, 
137, 138, 139, 149.   
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AT-5 (limit cycle) 

             
Rep. graph 5, seq 1234.  All graphs: 5, 43, 44, 45, 46, 47. 
 
AT-6 (limit cycle) 

            
 
Rep. graph 48, seq 12345.  All graphs: 48, 49, 50, 51. 
 
AT-7 (limit cycle) 

   
Rep. graph 152, seq 125345. All graphs: 152 
 
AT-8 (limit cycle) 

       
Rep. graph 160, seq 12345.  All graphs: 160. 
 
  

1

34

2

100 110 120 130 140 150 160 170 180 190 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

fir
in

g 
ra

te

X0 = [1  0  0  0]

−0.05 0 0.05 0.1
0.8

0.85

0.9

0.95

1
mean pop activity = 0.94803

derivative of total activity

to
ta

l p
op

 a
ct

iv
ity

1

2

34

5

100 110 120 130 140 150 160 170 180 190 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

fir
in

g 
ra

te

X0 = [1  1  0  0  0]

−0.05 0 0.05 0.1
0.8

0.85

0.9

0.95

1
mean pop activity = 0.94484

derivative of total activity

to
ta

l p
op

 a
ct

iv
ity

1

2

34

5

100 110 120 130 140 150 160 170 180 190 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

fir
in

g 
ra

te

X0 = [1  1  0  0  0]

−0.05 0 0.05 0.1
0.8

0.85

0.9

0.95

1
mean pop activity = 0.94159

derivative of total activity

to
ta

l p
op

 a
ct

iv
ity

1

2

34

5

100 110 120 130 140 150 160 170 180 190 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

fir
in

g 
ra

te

X0 = [1  1  0  0  0]

−0.05 0 0.05 0.1
0.8

0.85

0.9

0.95

1
mean pop activity = 0.9475

derivative of total activity

to
ta

l p
op

 a
ct

iv
ity



77

 
 
AT-9 (limit cycle) 

   
 
Rep. graph 159, seq 12534.  All graphs: 159. 
 
AT-10 (limit cycle) 

   
Rep. graph 111, seq 15243.  All graphs: 111_ic1, 111_ic2*, 131_ic1, 133_ic1, 133_ic2. 
 
AT-11 (limit cycle) 

   
Rep. graph 39, seq 1235.  All graphs: 39, 40, 41, 42, 114_ic1, 114_ic2, 115_ic2, 131_ic2. 
 
AT-12 (limit cycle) 

   
Rep. graph 153, seq (145)23.  All graphs: 153, 154. 
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AT-13 (limit cycle) 

   
Rep. graph 116, seq (15)234.  All graphs: 116 
 
AT-14 (limit cycle) 

   
Rep. graph 132, seq 12(35)4.  All graphs: 132 
 
AT-15 (limit cycle) 

   
Rep. graph 8, seq 12431243.  All graphs: 8_ic1*, 8_ic2, 100_ic1, 100_ic2, 101_ic1, 101_ic2, 102_ic1, 
102_ic2, 103_ic1, 103_ic2, 104_ic1, 104_ic2, 105_ic1, 105_ic2, 106_ic1, 106_ic2, 107_ic1, 107_ic2, 108_ic1, 
108_ic2, 109_ic1, 109_ic2, 110_ic1, 110_ic2, 143_ic1, 144_ic1, 145_ic2, 146_ic2, 155_ic2, 157_ic2, 158_ic2. 
 
AT-16 (limit cycle) 

   
Rep. graph 112, seq 1254312543.  All graphs: 112_ic1, 112_ic2*, 113_ic1, 113_ic2, 115_ic1, 134_ic1, 
134_ic2, 135_ic1, 135_ic2, 143_ic2, 144_ic2, 145_ic1, 146_ic1, 155_ic1, 156_ic1, 156_ic2, 157_ic1, 158_ic1. 
 
  

1

2

34

5

100 110 120 130 140 150 160 170 180 190 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

fir
in

g 
ra

te

X0 = [1  1  0  0  0]

−0.05 0 0.05 0.1
0.8

0.85

0.9

0.95

1
mean pop activity = 0.9173

derivative of total activity

to
ta

l p
op

 a
ct

iv
ity

1

2

34

5

100 110 120 130 140 150 160 170 180 190 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

fir
in

g 
ra

te

X0 = [1  1  0  0  0]

−0.05 0 0.05 0.1
0.8

0.85

0.9

0.95

1
mean pop activity = 0.91563

derivative of total activity

to
ta

l p
op

 a
ct

iv
ity

1

34

2

100 110 120 130 140 150 160 170 180 190 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

fir
in

g 
ra

te

X0 = [1  0  1  0]

−0.05 0 0.05 0.1
0.8

0.85

0.9

0.95

1
mean pop activity = 0.92477

derivative of total activity

to
ta

l p
op

 a
ct

iv
ity

1

2

34

5

100 110 120 130 140 150 160 170 180 190 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

fir
in

g 
ra

te

X0 = [0  1  1  0  1]

−0.05 0 0.05 0.1
0.8

0.85

0.9

0.95

1
mean pop activity = 0.92692

derivative of total activity

to
ta

l p
op

 a
ct

iv
ity



79

 
 
AT-17 (quasiperiodic) 

   
Rep. graph 151, seq 12312(45)312(45)312(45)3.  All graphs: 151_ic1*, 151_ic2, 151_ic3. 
 
AT-18 (chaotic) 

    
Rep. graph 150.  All graphs: 150_ic1, 150_ic2*, 150_ic3, 150_ic4. 
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6.6 Future work

Balanced subgraphs and outerneuron constructions. For the subset of graphs

whose sequences cannot be predicted by our current algorithm, we need to adjust the

current algorithm or design a new algorithm to handle these cases.

Refining the algorithm for oriented graphs. Using the classification of oriented

graphs on n ≤ 5 nodes, we can look for commonalities in the graphs where the algorithm

fails and adjust the algorithm accordingly.

Exploring larger networks. After classifying the networks and behaviors for

oriented graphs on n ≤ 5 one of the next steps is to take a closer look at graphs with

n > 5.

Proving conjectures about algorithm. We have many conjectures about the

prediction algorithm, so we would like to look for proofs or counterexamples.

Conjecture 6.5. In an oriented graph with no sinks on n = 5 nodes, two nodes fire

synchronously if the algorithm predicts two sequences that are identical except for with

the two nodes switched and neither node is part of the core cycle.

Conjecture 6.6. During the reconstruction phase, if node u has indegree zero in the

corresponding subgraph, then this node dies.

Conjecture 6.7. During the reconstruction phase, if node u, with indegree 1 in the

corresponding subgraph, is added to the sequence following a node that was not part of

the base sequence then u dies, unless u is part of a balanced subgraph.
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Conjecture 6.8. If the node we are placing back in the sequence has indegree > 1,

then consider the subgraph induced by the vertices which contribute to the indegree. If

the induced subgraph has a sink then place the vertex after the sink in the sequence.
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Appendix A

Code for random walk model of

replenishment

This appendix gives the Matlab code for the random walk model of replenishment.

There are six functions total:

• Trials for plot

• R evolve

• create SiteMat

• R update

• N evolve

• N update

The main function Trials for plot takes ribbon type (1 for ribbon and 0 for nonribbon),

vesicle diameter (in µm), diffusion coefficient (in µm2/s), attachment probabilities for

both populations (as in Models 1 and 2), the fraction in population A, the vesicle
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concentration (in vesicles/µm3), and the number of trials and outputs a cell array

where entry {i, j, 1} is a vector of the number of vesicles on the ribbon at each time

step in the computational model and entry {i, j, 2} is a vector of the number of vesicles

on the ribbon at each time step as predicted by the theoretical random walk model

for the ith concentration value and the jth trial. Plotting these two vectors against

time gives us the replenishment curves in both cases.

function [Trials] = Trials_for_plot(ribbon ,delta ,Diff ,s_A ,

s_B ,f,concen ,numtrials)

%%%%%% initial state %%%%%%%%

W = 50; %width of matrix (pick an even number)

H = 50; %height of matrix

D = 31; %depth of matrix

n = 110; %number of ribbon sites , must be a multiple of 10

f = 1; %fraction of fast -replenishing sites 0.757 for -10

mV and 0.54 or -30mV

s = s_A*f+s_B*(1-f); %average attachment probability

dim_vec = [H,W,D];

timevector = floor ((( harmonic(n)*2)/( delta ^3*s))./( concen

.* fracmob)); %corresponding length of time for each

conc.

concenmax = length(concen); %number of concentration

values

Trials = cell(concenmax ,numtrials ,2); %collect data

%%%%%% start trials %%%%%%%%%%%

for concenidx = 1: concenmax
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rho = concen(concenidx); %vesicle density per

micrometer ^3

den = rho*delta ^3; %density of occupied lattice sites

T = timevector(concenidx); %number of time steps

for trial = 1: numtrials

%%%%%%% creates initial state matrix %%%%%%%

for i = 1:D

Mat(:,:,i) = rand(H,W) >(1-den);

end

m = nnz(Mat); %number of vesicles

[r, c, l] = ind2sub(size(Mat),find(Mat == 1));

S_initial = [r,c,l]; % matrix whose rows are the

coordinates of the vesicles

%%%%%% chooses update function %%%%%%%

if ribbon == 1

evolve_fun = @( S_initial) R_evolve(S_initial ,dim_vec ,T

,s_A ,s_B ,f,n,shape);

else

evolve_fun = @( S_initial) N_evolve(S_initial ,dim_vec ,T

,s_A ,s_B ,f,n);

end

tic

[S_array ,vec] = evolve_fun(S_initial); % update matrix T

times

toc
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if ribbon ==1

tau_approx = @(s) 1/( Diff*rho*delta*s); %approx time

constant for ribbon

else

tau_approx = @(s) 1/(2* Diff*rho*delta*s); %approx time

constant for nonribbon

end

end

x = 1:T-1;

x1 = [0 x].*( delta ^2/(2* Diff));

y = zeros(1,T);

z = zeros(1,T);

for i=1:T

y(i) = length(vec{i}); %vector of vesicles on ribbon

at each time step

z(i) = (n*f)*(1-exp(-x1(i)/tau_approx(s_A)))+(n*(1-f))

*(1-exp(-x1(i)/tau_approx(s_B))); %vector of

theoretically predicted number of vesicles at each

time step

end

Trials{concenidx ,trial ,1} = y;

Trials{concenidx ,trial ,2} = z;

figure; % plot theoretical prediction vs. computational

trial

plot(x1,y,'-k')
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hold on;

plot(x1,z,'-b')

hold off;

end

end

end

function [S_array ,vec] = R_evolve(S,dim_vec ,Tsteps ,s_A ,s_B

,f,n)

% evolve function for ribbon case

SiteMat = create_SiteMat(dim_vec ,n/10); % creates matrix

of ribbon sites

W = dim_vec (1);

D = dim_vec (3);

perm = randperm(n); %permutation of num of vesicles to

randomly determine populations A and B

frac = floor(f*n); %number in population A

indices = [];

for k = 1: length(S(:,1))

if S(k,1) >(W/2) -1 && S(k,1) <(W/2)+1 && S(k,2) <10 && S(

k,3) >((D+1) /2) -3 && S(k,3) <((D+1)/2)+3

indices = [indices , k];

end

end

newindices = setdiff ([1: size(S,1)],indices);
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S = S(newindices ,:);

RibbonMat = ones(size(S)); %matrix of ones with rows

corresponding to vesicles on ribbon zeroed out

FilledMat = [];

[rowdim ,coldim] = size(S);

S_array = zeros(rowdim ,coldim ,Tsteps);

S_array (:,:,1) = S;

vec = cell(1,Tsteps);

vec {1} = [];

for t = 2: Tsteps

index = find(ismember(S,SiteMat ,'rows'));

ves_idx = [vec{t-1}];

index = setdiff(index ,ves_idx);

for j = 1: length(index)

vesicle_idx = find(RibbonMat (:,1) ==0);

if isempty(find(ismember(S(vesicle_idx ,:),S(index(

j) ,:),'rows') ,1)) == 1

if isempty(find(ismember(SiteMat(perm (1: frac)

,:),S(index(j) ,:),'rows'))) == 0

if rand (1) <= s_A

RibbonMat(index(j) ,:) = 0;

FilledMat = [FilledMat; S(index(j) ,:)];

end

else

if rand (1) <= s_B
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RibbonMat(index(j) ,:) = 0;

FilledMat = [FilledMat; S(index(j) ,:)];

end

end

end

end

vec{t} = find(RibbonMat (:,1) == 0);

S = R_update(S,RibbonMat ,dim_vec ,FilledMat ,shape ,n);

S_array (:,:,t) = S;

end

end

function SiteMat = create_SiteMat(dim_vec ,ht)

%creates matrix of the indices of the ribbon

W = dim_vec (1);

D = dim_vec (3);

SiteMat = [];

for ii = [W/2-1,W/2+1]

for jj = 1:ht;

for kk = (D+1)/2-2:(D+1) /2+2;

SiteMat = [SiteMat ;[ii ,jj,kk]];

end

end

end
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function [S_new] = R_update(currentS ,RibbonMat ,dim_vec ,

FilledMat ,n)

%update function for the ribbon case

[rowdim ,coldim ]=size(currentS);

changeS=randi ([0,1],size(currentS));

changeS =2* changeS -1;

D = dim_vec (3);

Illegal_Mat = FilledMat;

for ii = 1:n/10

for jj = (D+1)/2-2:(D+1) /2+2

Illegal_Mat = [Illegal_Mat ;[ dim_vec (1)/2,ii,jj

]];

end

end

test_changeS = changeS .* RibbonMat;

test_S = currentS+changeS;

for ii = 1: length(dim_vec)

test_S(:,ii) = min(max(test_S(:,ii) ,1),dim_vec(ii));

end

change_entries = find(ismember(test_S ,Illegal_Mat ,'rows'))

;

changeS(change_entries ,:) = 0;

changeS = changeS .* RibbonMat;

preS = currentS+changeS;

for jj = 1: length(dim_vec)
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S_new(:,jj) = min(max(preS(:,jj) ,1),dim_vec(jj));

end

end

function [S_array ,vec] = N_evolve(S,dim_vec ,Tsteps ,s_A ,s_B

,f,n)

% evolve function for the nonribbon case

SiteMat = [[4 ,7 ,6];[4 ,16 ,6];[4 ,25 ,6];[4 ,34 ,6];[4 ,43 ,6];

[15 ,7 ,6];[15 ,16 ,6];[15 ,25 ,6];[15 ,34 ,6];[15 ,43 ,6];

[26 ,7 ,6];[26 ,16 ,6];[26 ,25 ,6];[26 ,34 ,6];[26 ,43 ,6];

[37 ,7 ,6];[37 ,16 ,6];[37 ,25 ,6];[37 ,34 ,6];[37 ,43 ,6];

[4 ,7 ,10];[4 ,16 ,10];[4 ,25 ,10];[4 ,34 ,10];[4 ,43 ,10];

[15 ,7 ,10];[15 ,16 ,10];[15 ,25 ,10];[15 ,34 ,10];[15 ,43 ,10];

[26 ,7 ,10];[26 ,16 ,10];[26 ,25 ,10];[26 ,34 ,10];[26 ,43 ,10];

[37 ,7 ,10];[37 ,16 ,10];[37 ,25 ,10];[37 ,34 ,10];[37 ,43 ,10];

[4 ,7 ,14];[4 ,16 ,14];[4 ,25 ,14];[4 ,34 ,14];[4 ,43 ,14];

[15 ,7 ,14];[15 ,16 ,14];[15 ,25 ,14];[15 ,34 ,14];[15 ,43 ,14];

[26 ,7 ,14];[26 ,16 ,14];[26 ,25 ,14];[26 ,34 ,14];[26 ,43 ,14];

[37 ,7 ,14];[37 ,16 ,14];[37 ,25 ,14];[37 ,34 ,14];[37 ,43 ,14];

[4 ,7 ,18];[4 ,16 ,18];[4 ,25 ,18];[4 ,34 ,18];[4 ,43 ,18];

[15 ,7 ,18];[15 ,16 ,18];[15 ,25 ,18];[15 ,34 ,18];[15 ,43 ,18];

[26 ,7 ,18];[26 ,16 ,18];[26 ,25 ,18];[26 ,34 ,18];[26 ,43 ,18];

[37 ,7 ,18];[37 ,16 ,18];[37 ,25 ,18];[37 ,34 ,18];[37 ,43 ,18];

[15 ,7 ,22];[15 ,16 ,22];[15 ,25 ,22];[15 ,34 ,22];[15 ,43 ,22];

[26 ,7 ,22];[26 ,16 ,22];[26 ,25 ,22];[26 ,34 ,22];[26 ,43 ,22];
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[37 ,7 ,22];[37 ,16 ,22];[37 ,25 ,22];[37 ,34 ,22];[37 ,43 ,22];

[15 ,7 ,26];[15 ,16 ,26];[15 ,25 ,26];[15 ,34 ,26];[15 ,43 ,26];

[26 ,7 ,26];[26 ,16 ,26];[26 ,25 ,26];[26 ,34 ,26];[26 ,43 ,26];

[37 ,7 ,26];[37 ,16 ,26];[37 ,25 ,26];[37 ,34 ,26];[37 ,43 ,26]];

W = dim_vec (1);

D = dim_vec (3);

perm = randperm(n); %permutation of num of vesicles to

randomly determine populations A and B

frac = floor(f*n); %number in population A

indices = [];

for k = 1: length(S(:,1))

if S(k,1) >(W/2) -1 && S(k,1) <(W/2)+1 && S(k,2) <10 && S(

k,3) >((D+1) /2) -3 && S(k,3) <((D+1)/2)+3

indices = [indices , k];

end

end

newindices = setdiff ([1: size(S,1)],indices);

S = S(newindices ,:);

RibbonMat = ones(size(S));

FilledMat = [];

[rowdim ,coldim] = size(S);

S_array = zeros(rowdim ,coldim ,Tsteps);

S_array (:,:,1) = S;

vec = cell(1,Tsteps);

vec {1} = [];
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for t = 2: Tsteps

index = find(ismember(S,SiteMat ,'rows'));

ves_idx = [vec{t-1}];

index = setdiff(index ,ves_idx);

for j = 1: length(index)

vesicle_idx = find(RibbonMat (:,1) ==0);

if isempty(find(ismember(S(vesicle_idx ,:),S(index(

j) ,:),'rows') ,1)) == 1

if isempty(find(ismember(SiteMat(perm (1: frac)

,:),S(index(j) ,:),'rows'))) == 0

if rand (1) <= s_A

RibbonMat(index(j) ,:) = 0;

FilledMat = [FilledMat; S(index(j) ,:)];

end

else

if rand (1) <= s_B

RibbonMat(index(j) ,:) = 0;

FilledMat = [FilledMat; S(index(j) ,:)];

end

end

end

end

vec{t} = find(RibbonMat (:,1) == 0);

S = N_update(S,RibbonMat ,dim_vec);

S_array (:,:,t) = S;
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end

end

function [S_new] = N_update(currentS ,RibbonMat ,dim_vec)

%update function for the nonribbon case

[rowdim ,coldim ]=size(currentS);

changeS=randi ([0,1],size(currentS));

changeS =2* changeS -1;

changeS=changeS .* RibbonMat;

preS=currentS+changeS;

S_new = zeros(length(currentS) ,3);

for i=1: length(dim_vec)

S_new(:,i)=min(max(preS(:,i) ,1),dim_vec(i));

end

end
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Appendix B

Code for sequence prediction

algorithm

In this appendix, we present the Matlab code for the implementation of the neural

sequence algorithm. There are three functions total:

• run Algorithm

• DeconstructGraph

• ReconstructCycle

The main function, run Algorithm takes the transposed adjacency matrix of a graph

as an input and outputs the list of predicted limit cycles for the corresponding network.

This function calls two subfunctions for the two phases of the algorithm: Deconstruct-

Graph and ReconstructCycle, also included here. This particular implementation of

the algorithm was done in collaboration with Katherine Morrison.

function [ExpectedLimitCyles] = run_Algorithm(sA)
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% This function takes a transposed adjacency matrix (sA

matrix) as an input and outputs a list of expected

limit cycles.

DeletedNodes =[ ];

% This should always be initialized as empty

DeletedNodesList =[ ];

% This should always be initialized as empty

CoreCyclesList =[ ];

% This should always be initialized as empty

[DeletedNodesList ,CoreCyclesList] = DeconstructGraph(sA,

DeletedNodes ,DeletedNodesList ,CoreCyclesList);

n=size(sA ,2);

ExpectedLimitCycles=zeros(size(CoreCyclesList ,1) ,2*n);

% We will reconstruct a full cycle for every core cycle

and we will have every unique core cycle listed as well

since we expect unstable fixed points at those core

cycles. We will allow the ExpectedLimitCycles to have

length up to 2*n because of the potential for period

doubling -- hopefully we won 't have any cycles longer

than this , but if we do, we'll get an error here

UnstableFixedPoints=unique(CoreCyclesList ,'rows');

% Insert all unique core cycles at the end of our

ExpectedLimitCycles list

for i=1: size(CoreCyclesList ,1)

DeletedNodes=DeletedNodesList(i,:);
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CoreCycle=CoreCyclesList(i,:);

FullCycle=ReconstructCycle(sA,DeletedNodes ,CoreCycle);

ExpectedLimitCycles(i, 1: length(FullCycle))=FullCycle;

% Insert each reconstructed full cycle into a long row

padded with zeros

end

ExpectedLimitCycles

end

function [DeletedNodesList ,CoreCyclesList] =

DeconstructGraph(sA ,DeletedNodes ,DeletedNodesList ,

CoreCyclesList)

% sA is the full adjacency matrix

% DeletedNodes is a row vector of the nodes deleted thus

far along a single path to to one core cycle

% DeletedNodesList is a matrix that will have rows of

length n-3 added to it once a full row vector of

DeletedNodes has been completed (this row vector will

be padded with zeros if the size of the core cycle is

greater than 3

% CoreCyclesList is a matrix that will have rows of length

n added to it as each core cycle is found (the core

cycle will be padded with zeros to make it length n)

% This function recursively calls itself (in the manner of

a depth -first search) until there are no additional
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nodes that can be deleted and yield a valid graph. At

this point , the vector of deleted nodes is padded with

zeros and added as a row vector to DeletedNodesList.

The corresponding core cycle is computed , padded with

zeros , and added as a row vector to CoreCyclesList

if nargin <2

DeletedNodes =[ ];

end

if nargin <3

DeletedNodesList =[ ];

end

if nargin <4

CoreCyclesList =[ ];

end

NodesToDelete=FindDeleteNodes(sA ,DeletedNodes);

for i=1: length(NodesToDelete)

[DeletedNodesList ,CoreCyclesList] = DeconstructGraph(

sA ,[ DeletedNodes , NodesToDelete(i)],

DeletedNodesList ,CoreCyclesList);

% Keep recursively calling the function , adding the

next node to delete to the end of the vector

DeletedNodes (in the function call but not outside

it so that we can loop through and call the

function multiple times with different nodes to
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delete added on the end)

end

n=size(sA ,2);

if isempty(NodesToDelete)

% In this case , we 've gotten down to a core cycle

after an empty loop

DeleteRow=zeros(1,n-3);

DeleteRow (1: length(DeletedNodes))=DeletedNodes;

% Fill in the first entries of DeleteRow so that the

remaining entries are all the padded zeros

DeletedNodesList =[ DeletedNodesList;DeleteRow ];

CycleRow=zeros(1,n);

[sAsubmat ,labels ]= MakeSubmat(sA,DeletedNodes);

CoreCycleIndices (1)=1;

% Always start the cycle at an index of 1 (which will

have a label corresponding to the lowest remaining

node)

for j=1: length(labels)-1

NextIndex=find(sAsubmat(:, CoreCycleIndices(j))==1)

;

% This finds the unique node in the core cycle

that CoreCyclesIndices(j) feeds into

CoreCycleIndices(j+1)=NextIndex;

end

CycleRow (1: length(labels))=labels(CoreCycleIndices);
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% Fill in the first entries of CycleRow so that the

remaining entries are all the padded zeros

CoreCyclesList =[ CoreCyclesList;CycleRow ];

end

function FullCycle=ReconstructCycle(sA, DeletedNodes ,

CoreCycle)

% sA is the full adjacency matrix

% DeletedNodes is a row vector of all the nodes to delete

in the graph to get down to the core cycle

% CoreCycle is a row vector of the nodes in the core cycle

in order according to which node feeds into which

% This function reconstructs the full cycle by

appropriately reinserting the deleted nodes in reverse

order of when they were deleted.

DeletedNodes=DeletedNodes(DeletedNodes ~=0);

% This removes any padded zeros from the end

CoreCycle=CoreCycle(CoreCycle ~=0);

% This removes any padded zeros from the end

cycle=CoreCycle;

for i=length(DeletedNodes):-1:1

% run through the DeletedNodes in reverse order

NodeToInsert=DeletedNodes(i);

[sAsubmat , labels ]= MakeSubmat(sA , DeletedNodes (1:i-1))

;
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% This reconstructs the subgraph when the nodes before

the current node have been deleted -- when we 're

on the last node , i.e. i=1, DeletedNodes (1:i-1)

will be empty and we 'll just get back the original

sA and labels =1:n

IdxToInsert=find(labels == NodeToInsert);

% This finds the index in the submatrix corresponding

to the node to be inserted

IdxIntoNode=find(sAsubmat(IdxToInsert , :)==1);

% This finds all the indices of nodes that feed into

the node to be inserted (i.e. the locations of 1s

in the row corresponding to the node to be inserted

)

if length(IdxIntoNode) >=3

NodesInSubMat = sAsubmat(IdxIntoNode ,IdxIntoNode);

SinkNode = find(sum(NodesInSubMat ,1) ==0);

if length(SinkNode) == 1

IdxIntoNode = SinkNode;

cycle=InsertNode(cycle , NodeToInsert , labels(

IdxIntoNode));

else

disp(['Error -- vertex ' num2str(NodeToInsert) '

has 3 or more inputs in the subgraph for the

delete sequence ' mat2str(DeletedNodes) '.

Check this graph by hand to update algorithm '])
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;

return

end %added

% At this point , we kill the function via 'return '

because the algorithm doesn 't know how to

handle this situation. This should be updated

once we've seen graphs that have this feature

and determine a heuristic for how to handle

this situation

elseif length(IdxIntoNode)==2 && sAsubmat(IdxIntoNode

(1),IdxIntoNode (2))==0 && sAsubmat(IdxIntoNode (2),

IdxIntoNode (1))==0

% In this case there are 2 nodes that feed into

the NodeToInsert and they are not adjacent to

each other , so the algorithm says that the new

node should be inserted into the sequence after

both incoming vertices

cycle=InsertNode(cycle , NodeToInsert , labels(

IdxIntoNode (1)));

% This guarantees that we are only placing nodes

back into the sequence if they directly follow

a node from the core cycle

cycle=InsertNode(cycle , NodeToInsert , labels(

IdxIntoNode (2)));

elseif length(IdxIntoNode)==2



102

% One of the nodes to insert feeds into the other.

The one that is fed into should have the new

node inserted after it

if sAsubmat(IdxIntoNode (1),IdxIntoNode (2))==1

% Then node 2 feeds into node 1, so the new

node should be inserted after node 1

cycle=InsertNode(cycle , NodeToInsert , labels(

IdxIntoNode (1)));

else

% Then node 1 feeds into node 2, so the new

node should be inserted after node 2

cycle=InsertNode(cycle , NodeToInsert , labels(

IdxIntoNode (2)));

end

elseif length(IdxIntoNode)==1

if isempty(intersect(CoreCycle ,labels(IdxIntoNode)

)) == 0

cycle=InsertNode(cycle , NodeToInsert , labels(

IdxIntoNode));

end

end

end

FullCycle=cycle;
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Appendix C

Catalogue of n ≤ 5 oriented graphs

with no sinks

This appendix includes a list of all the oriented graphs on n ≤ 5 vertices with no sinks.

The graphs on n = 5 vertices are sorted by which n = 4 subgraph(s) they reduce to in

the first step of the algorithm from Chapter 6. We group the n = 4 graphs into four

classes: #2, 3, and 4 reduce to a three-cycle, #5 is a 4-cycle, #6 and 7 have three

strong neurons and one weak, and #8 has two distinct limit cycles. For graphs whose

networks exhibit more than one behavior, like #8, we list the initial conditions for

each attractor type. Table C.1 gives an index for the classification indicating which

category each of the oriented graphs on n = 5 nodes without sinks fall into.
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Reduces to Graph indices Attractor type
2/3/4 9–38 AT-1

39–42 AT-11
5 43–47 AT-5

48–51 AT-6
6/7 52–81 AT-2

82–99 AT-4
8 100–110 AT-15

111 AT-10
112–113 AT-16

2 or 2 114 AT-11
2 or 5 115 AT-11, AT-16
5 or 5 116 AT-13

2/3/4 or 6/7 117–130 AT-2
131 AT-10, AT-11

5 or 6 132 AT-14
6/7 or 6/7 133 AT-10

134–135 AT-16
136–139 AT-4
140–142 AT-3

2/3/4 or 8 143–146 AT-15, AT-16
6/7 or 8 147–148 AT-3

149 AT-4
8 or 8 150 AT-18

151 AT-17
3, 3, or 3 152 AT-7
4, 6, or 7 153 AT-12
7, 7, or 7 154 AT-12
2, 6, or 8 155 AT-15, AT-16
6, 6, or 8 156 AT-16
3, 7, or 8 157 AT-15, AT-16
2, 8, or 8 158 AT-15, AT-16

7, 7, 7, 7, or 7 159 AT-9
none 160 AT-8

Table C.1: Index for classification of oriented graphs with no sinks on n = 5 nodes:
The left column gives the indices of the possible n = 4 subgraph(s) that appear after
step one of the algorithm, the middle column shows the indices of the graphs that
have this reduction (based on the classification indexing), and the right column shows
which attractors these graphs have (based on the dictionary). Subgraphs 2, 3, and 4
are grouped together since they have the same behavior and subgraphs 6 and 7 are
similarly grouped.
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Canonical Labelling of Oriented Graphs on n≤5 nodes

1
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ic2 = [1 0 0 1]
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