
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Dissertations, Theses, and Student Research Papers
in Mathematics Mathematics, Department of

5-2011

Groups and Semigroups Generated by Automata
David McCune
University of Nebraska-Lincoln, s-dmccune1@math.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/mathstudent

Part of the Algebra Commons, and the Science and Mathematics Education Commons

This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Dissertations, Theses, and Student Research Papers in Mathematics by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

McCune, David, "Groups and Semigroups Generated by Automata" (2011). Dissertations, Theses, and Student Research Papers in
Mathematics. 26.
http://digitalcommons.unl.edu/mathstudent/26

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathstudent?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathstudent?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathematics?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathstudent?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathstudent/26?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages

GROUPS AND SEMIGROUPS GENERATED BY AUTOMATA

by

David McCune

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Doctor of Philosophy

Major: Mathematics

Under the Supervision of Professor Susan Hermiller and Professor John Meakin

Lincoln, Nebraska

May, 2011

GROUPS AND SEMIGROUPS GENERATED BY AUTOMATA

David McCune, Ph.D.

University of Nebraska, 2011

Adviser: Susan Hermiller and John Meakin

In this dissertation we classify the metabelian groups arising from a restricted class of

invertible synchronous automata over a binary alphabet. We give faithful, self-similar

actions of Heisenberg groups and upper triangular matrix groups. We introduce a

new class of semigroups given by a restricted class of asynchronous automata. We

call these semigroups “expanding automaton semigroups”. We show that this class

strictly contains the class of automaton semigroups, and we show that the class of

asynchronous automaton semigroups strictly contains the class of expanding automa-

ton semigroups. We demonstrate that undecidability arises in the actions of expand-

ing automaton semigroups and semigroups arising from asynchronous automata on

regular rooted trees. In particular, we show that one cannot decide whether or not

an element of an asynchronous automaton semigroup has a fixed point. We show

that expanding automaton semigroups are residually finite, while semigroups given

by asynchronous automata need not be. We show that the class of expanding au-

tomaton semigroups is not closed under taking normal ideal extensions, but the class

of semigroups given by asynchronous automata is closed under taking normal ideal

extensions. We show that the class of expanding automaton semigroups is closed

under taking direct products, provided that the direct product is finitely generated.

We show that the class of automaton semigroups is not closed under passing to resid-

ually finite Rees quotients. We show that every partially commutative monoid is an

automaton semigroup, and every partially commutative semigroup is an expanding

automaton semigroup.

iii

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisors, Susan Hermiller and John Meakin,

for all of their support and for the countless hours spent in weekly meetings and

reading drafts of my papers. In addition, I’d like to thank them for all of their

help with the lengthy job search; thanks for editing my job materials and helping

me with various talks. Thanks especially to Susan for introducing me to Cayley

graphs, and to John for introducing me to the Stallings foldings paper. The beauty of

these concepts helped my third-year-graduate-student self decide to study groups and

semigroups. I would also like to thank the other members of my advisory committee:

Mark Brittenham, Jamie Radcliffe, and Vinodchandran Variyam. I would like to

thank Mark and Jamie for reading over my thesis, and I’d especially like to thank

Jamie for his charming British accent. I’d like to thank all of my buddies in the

UNL math department, even though spending time with many of them only hindered

my progress toward graduation. There are too many to name, but thanks to Firuz

Kamalov, my soulmate Jesse Burke, the sweet, sweet Mike McCoy, and the Mathletes

volleyball and flag football teams (I’ve never had so much fun repeatedly losing).

Also, a special thanks to Yanqui Guo for always smiling–your incessant happiness

gives me hope for a better world. I’d also like to thank my family: Mom and Dad,

Diane, Grandpa and Grandma, Uncle Rob and Aunt Sandy, and Aunt Judy and Uncle

Calvin. A special thanks is due to Aunt Sharon and Uncle David, who repeatedly let

me transform their house into a personal laundry facility. Thanks also to Ben and

Eric; if I had my way, the three of us would still be living together in that soulless,

unlit hovel playing Counter-Strike and eating two-pound baked potatoes from Jason’s

Deli. Lastly, thanks to my fiancé Lori, who has been a constant source of support

and who is a stone cold fox.

iv

Contents

Contents iv

1 Introduction 1

2 Preliminaries 7

2.1 Definitions and Examples . 7

2.1.1 Synchronous Automata . 7

2.1.2 Asynchronous Automata . 15

2.2 Solving the Word Problem . 20

3 Semigroups Arising from Asynchronous Automata 24

3.1 Distinguishing Classes of Semigroups 24

3.2 Decision Properties and Dynamics . 30

3.3 Algebraic Properties . 39

3.3.1 Residual Finiteness and Periodicity 39

3.3.2 Subgroups . 41

3.4 Closure Properties and further examples 45

3.4.1 Closure Properties . 45

3.4.2 Rees Congruences on Automaton Semigroups 50

3.4.3 Free Partially Commutative Monoids and Semigroups 54

v

3.5 Degree -1 Expanding Automata . 62

4 A Class of Metabelian Automaton Groups 66

5 Faithful, Self-Similar Actions of Heisenberg Groups and Upper

Triangular Matrix Groups 87

Bibliography 92

1

Chapter 1

Introduction

Groups generated by automata first received systematic study in the 1960’s (see [8]

by Glushkov, for example). In the 1970’s and early 1980’s, it became clear that au-

tomaton groups provided many examples of infinite finitely generated torsion groups

(see [1] by Ales̆in and [11] by Grigorchuk). Thus this class of groups provides impor-

tant contributions to the general Burnside problem (although the first known infinite

finitely generated torsion group was not given by an automaton–see [9] by Golod).

In addition, Grigorchuk proved in 1983 that the class of automaton groups contains

groups of intermediate growth (see [12]). Indeed, almost all known groups of inter-

mediate growth are automaton groups. More recently, Bartholdi and Nekrashevych

have shown that automaton groups have deep connections with dynamical systems,

and have used these groups to solve longstanding problems in holomorphic dynamics

(see [2]).

The automata used to generate automaton groups are invertible synchronous au-

tomata. Recently, many generalizations of automaton groups have been studied,

all of these generalizations arising from generalizations of invertible synchronous au-

tomata. If we allow invertible synchronous automata to have infinitely many states,

2

then groups generated by such automata are called self-similar. An introduction

to these groups can be found in Nekrashevych’s book [22]. In [31], Slupik and

Sushchansky study semigroups arising from partial invertible synchronous automata.

Cain, Reznikov, Sushchansky, Silva, and Steinberg investigate automaton semigroups,

which are semigroups that arise from (not necessarily invertible) synchronous au-

tomata (see [4], [23], and [29]). In [13], Grigorchuk et al. study groups arising from

asynchronous automata. This dissertation contributes to the study of groups and

semigroups arising from automata.

In Chapter 2 we introduce the notation and background concepts necessary for

understanding the remaining chapters. We give definitions of the various kinds of

automata that we will use, as well as definitions of the semigroups that arise from these

automata. We also give an algorithm for solving the word problem for semigroups

arising from synchronous automata. This algorithm is well known, and is essentially

the algorithm of minimization of an automaton described by Eilenberg in [7]. We

also give examples of automaton groups, self-similar groups, automaton semigroups,

and expanding automaton semigroups (an expanding automaton is a restricted kind

of asynchronous automaton). All of these groups and semigroups can be defined in

terms of their actions on a tree.

In Chapter 3 we focus on semigroups generated by asynchronous automata, al-

though most of the material focuses on semigroups that can be realized by expanding

automata. We obtain algebraic results about semigroups arising from expanding au-

tomata (as well as those arising from asynchronous automata) and study the dynamics

of these semigroups acting on trees.

In Section 3.1 we distinguish various classes of semigroups. We say that a semi-

group S is a boundary expanding automaton semigroup if there is an expanding

automaton such that the states of the automaton generate S as the semigroup of

3

transformations on the boundary of the corresponding tree. Boundary asynchronous

automaton semigroups are defined analogously. Propositions 3.1.1, 3.1.3, 3.1.4, 3.1.5,

3.1.6 combine to show the following.

Theorem (Propositions 3.1.1, 3.1.3, 3.1.4, 3.1.5, and 3.1.6). Let AS denote

the class of automaton semigroups, EAS denote the class of expanding automaton

semigroups, ∂EAS denote the class of boundary expanding automaton semigroups,

AAS denote the class of asynchronous automaton semigroups, and ∂AAS denote the

class of boundary asynchronous automaton semigroups. Then

AS (EAS (∂EAS (∂AAS.

In addition,

EAS (AAS ⊆ ∂AAS.

Currently, the relationship between the class of boundary expanding automaton

semigroups and the class of asynchronous automaton semigroups is unclear. Also, it

is unknown if there are boundary asynchronous automaton semigroups that are not

asyncrhonous automaton semigroups.

In Section 3.2 we investigate the dynamics of these semigroups on regular rooted

trees. Given a set Σ, let Σ∗ denote the free monoid generated by Σ and let Σω denote

the set of right-infinite words over Σ. The two main results are the following.

Theorem 3.2.3. 1. There is no algorithm which takes as input an expanding au-

tomaton A = (Q,Σ, t, o) and states q1, q2 ∈ Q and decides whether or not there

is a word w ∈ Σ+ with q1(w) = q2(w).

2. There is no algorithm which takes as input an expanding automaton A =

(Q,Σ, t, o) and states q1, q2 ∈ Q and decides whether or not there is an infi-

4

nite word η ∈ Σω such that q1(η) = q2(η).

Theorem 3.2.5. 1. There is no algorithm that takes as input an asynchronous

automaton A over an alphabet Σ and a state q of A and decides whether or

not q has a fixed point in Σ+, i.e. decides if there is a word w ∈ Σ+ such that

q(w) = w.

2. There is no algorithm that takes as input an asynchronous automaton A over

an alphabet Σ and a state q of A and decides whether or not q has a fixed point

in Σω, i.e. decides if there is an infinite word η ∈ Σω such that q(η) = η.

The above two theorems show that expanding automaton semigroups and asyn-

chronous automaton semigroups have far richer dynamical behavior on trees than

do automaton semigroups (or automaton groups), as both problems become easily

decidable if the input is a synchronous automaton. We also show that there is an

algorithm which takes as input an asynchronous automaton A = (Q,Σ, t, o) and a

word w ∈ Q+ and decides if w induces an injection from Σ∗ to Σ∗.

In Section 3.3 we investigate the basic algebraic theory of semigroups arising from

expanding automata. We show that boundary expanding automaton semigroups are

residually finite (Proposition 3.3.2), and that there are restrictions on the periodicity

structure of expanding automaton semigroups (Proposition 3.3.3). We also show

in Proposition 3.3.4 that a group G is an automaton group (respectively self-similar

group) if and only if G is an expanding automaton semigroup (respectively expanding

self-similar semigroup), and we show that if H is the unique maximal subgroup of an

expanding automaton semigroup then H is a self-similar group (Proposition 3.3.6).

Proposition 3.3.6 implies that if A is an invertible synchronous automaton, then the

group of units of S(A) is a self-similar group (Corollary 3.3.7).

5

In Section 3.4 we investigate closure properties. We show that the class of ex-

panding automaton semigroups is not closed under normal ideal extensions (Propo-

sition 3.4.2) but asynchronous automaton semigroups are closed under normal ideal

extensions (Proposition 3.4.3). We show that the direct product of two expanding au-

tomaton semigroups is an expanding automaton semigroup, provided that the direct

product is finitely generated. We also show that the class of automaton semigroups

is not closed under taking residually finite Rees quotients (Proposition 3.4.6).

In Section 3.4 we also construct further examples of expanding automaton semi-

groups. In particular, we construct free partially commutative monoids and free

partially commutative semigroups as expanding automaton semigroups (Theorems

3.4.8 and 3.4.11).

To close chapter 3, in Section 3.5 we show that the power problem is decidable

for boundary expanding automaton semigroups that arise from expanding automata

of degree −1 (we use “degree” in the sense of Sidki in [27]).

In Chapter 4 we classify the metabelian groups that arise from a restricted, finite

class of automata which we call simply-sectioned automata. We call the groups arising

from these automata simply-sectioned groups (definitions are given in the chapter).

The automaton given by Grigorchuk and Zuk in [16] which produces the (metabelian)

lamplighter group is a simply-sectioned automaton, so this work seeks to discover

what kinds of metabelian groups arise from “lamplighter-like”automata. This gives a

partial answer to a question asked by Zoran S̆unić, who asked which simply-sectioned

groups are virtually solvable. The goal of this chapter is to prove the following (Z2

denotes the cyclic group of order 2).

Theorem 4.0.5. Let G be a metabelian simply-sectioned group. Then G is one

of the following: the trivial group, Z2, Z2 × Z2, the dihedral group of order 8, Z,

6

the infinite dihedral group, Z × Z, the lamplighter group, the klein bottle group, the

group with presentation 〈a, b | a2 = 1, b2a = ab2〉, or the group with presentation

〈a, b | a2 = b4 = (ab)4 = 1〉.

In Chapter 5, we construct faithful, self-similar actions of higher-dimensional

Heisenberg groups and upper triangular matrix groups over Z. Propositions 5.0.17

and 5.0.19 combine to show the following.

Theorem (Propositions 5.0.17 and 5.0.19). The Heisenberg group of dimension

2n + 1 is a self-similar group. The group of upper triangular matrices of dimension

n is also a self-similar group.

7

Chapter 2

Preliminaries

2.1 Definitions and Examples

2.1.1 Synchronous Automata

In this section we give the background necessary to discuss actions on trees arising

from synchronous automata. Introductions to the material in this section can be

found in [4] by Cain, [15] by Grigorchuk and S̆unić, or Nekrashevych’s book [22].

Given a set Σ, let Σ+ denote the free semigroup generated by Σ and let Σ∗ denote

the free monoid generated by Σ. In a free monoid Σ∗, we will always denote the

identity element by the empty word ∅. Given an element w ∈ Σ∗ and an n ∈ N, let

wn denote the word ww...w, where the word w appears n times. Let | · | : Σ∗ → N

denote the word-length function on Σ∗. The monoid Σ∗ can be given the structure of

a regular rooted tree as follows. The vertex set of the tree is Σ∗, and there is an edge

from w to wσ for all w ∈ Σ∗ and σ ∈ Σ. We denote this tree by T (Σ∗).

A synchronous automaton is a quadruple A = (Q,Σ, t, o) where Q is a finite

set of states, Σ is a finite alphabet, t : Q × Σ → Q is a transition function, and

8

o : Q × Σ → Σ is an output function. An invertible synchronous automaton is

a synchronous automaton such that the restricted function o|{q}×Σ : {q} × Σ →

Σ induces a permutation of Σ for all q. We view a synchronous automaton A =

(Q,Σ, t, o) as a finite, directed, labeled graph in the following way. The vertex set

of the graph is Q and there is an edge from q1 to q2 labeled by σ1|δ1 if and only

if t(q1, σ1) = q2 and o(q1, σ1) = δ1. Given an edge σ1|δ1 in this graph, we refer

to σ1 as the input letter of the edge, and δ1 as the output letter of the edge. The

interpretation of this graph is that if the automaton A is in state q1 and reads the

symbol σ1, then A changes to state q2 and outputs the letter δ2. Thus, if we fix

q0 ∈ Q, the automaton can read a sequence of symbols σ1...σk and output a sequence

δ1...δk where t(qi−1, σi) = qi and o(qi−1, σi) = δi for all i = 1, ..., k.

Each state q ∈ Q induces a function fq : Σ∗ → Σ∗ in the following way: fq acting

on β ∈ Σ∗, denoted fq(β), is defined to be the sequence that the automaton outputs

when the automaton starts in state q and reads the sequence β. We also insist that

fq(∅) = ∅. The function fq extends to a function f ′q : T (Σ∗)→ T (Σ∗) in the natural

way. We abuse notation and identify q with fq and f ′q, as context should eliminate any

confusion. If A is synchronous, then its states will generate level-preserving functions

on the corresponding tree.

Viewing elements of state sets of synchronous automata as functions on a tree

leads to the following definition.

Definition 2.1.1. Let A = (Q,Σ, t, o) be a synchronous automaton. Then the au-

tomaton semigroup corresponding to A, denoted S(A), is the semigroup generated by

the states of A. A semigroup S is said to be an automaton semigroup if there exists

a synchronous automaton A such that S ∼= S(A).

Given a set Σ, let Σω denote the set of right-infinite words of Σ. Geometrically,

9

Σω is the boundary of the tree T (Σ∗). Given an element v ∈ Σ∗, let vω denote the

element vvv... of Σω. If A = (Q,Σ, t, o) is a synchronous automaton, then we can also

view an element q ∈ Q+ as a transformation Σω → Σω. The following proposition

(which can be found in [4] by Cain) summarizes when two elements of an automaton

semigroup are equal.

Proposition 2.1.2. [Lemma 2.2 of [4]] Let A = (Q,Σ, t, o) be a synchronous

automaton and w1, w2 ∈ Q+. Then the following are equivalent:

1. w1 = w2 in S(A).

2. w1(v) = w2(v) for all v ∈ Σ∗.

3. w1(ρ) = w1(ρ) for all ρ ∈ Σω.

Thus, if A is synchronous, we can consider the action of S(A) on Σ∗ or Σω without

changing the semigroup.

Note that by construction, elements of automaton semigroups are graph endomor-

phisms of regular rooted trees, where a graph endomorphism of T is a function from

T to T that sends vertices to vertices and edges to edges. In other words, elements

of automaton semigroups are level-preserving endomorphisms of regular rooted trees.

Let T be a regular rooted tree of degree d, i.e. each vertex of the tree has d “children”.

Label T in the following manner. The first level vertices are labeled 1, ..., d from left

to right in ascending order. The children of the vertex labeled “1” are labeled with

words of length 2 of the form 1i where 1 ≤ i ≤ d and the labeling ascends from left to

right. Continue the labeling analogously. Note that the subtrees wT are isomorphic

to T for any vertex w in T . Let Td denote the transformation semigroup on d objects.

We write an element t of Td as [k1, ..., kd] where t(i) = ki. Then the endomorphism

10

semigroup of T , denoted End T decomposes as a wreath product:

EndT = Td o EndT .

That is,

EndT = Td n (EndT × ...× EndT)

where EndT appears d times in the above equation and Td acts on (EndT)d by

transformations of the coordinates. Thus we can write an element s of EndT with

a formula s = ρ(s1, ..., sd) where ρ ∈ Td and s1, ..., sd ∈ EndT . We call this the

wreath decomposition of s. Geometrically, ρ is the action of s on the first level of

the tree and si is the endomorphism induced by s on the subtree iT . For the rest of

this dissertation, we will denote a function τ : X = {x1, ..., xn} → X∗ by [w1, ..., wn]

where τ(x1) = w1. If s1 = ρ(x1, ..., xd) and s2 = η(y1, ..., yd) are elements of EndT ,

then we compose them (right-to-left) by the formula

s1s2 = ρ(x1, ..., xd)η(y1, ..., yd) (2.1)

= ρη(xη(1)y1, ..., xη(d)yd)

Let s = [i1, ..., id](s1, ..., sd) be an element of EndT where T is the d-ary regular

rooted tree. For the remainder of this dissertation, we let τs denote the transfor-

mation that s induces on the first level of the tree, i.e. τs = [i1, ..., id]. If τs is the

trivial permutation Σ → Σ, then we simply write s = (s1, ..., sn). Given an ele-

ment s = τs(s1, ..., sd) in EndT , we call the endomorphism si the section of s at

i. The endomorphism si is characterized by the equation s(iw) = τs(i)si(w) for all

w ∈ {1, ..., d}∗. Inductively, for any w ∈ {1, ..., d}∗, let sw denote the section of s at

11

Figure 2.1: Example 2.1.3

w. The endomorphism sw is characterized by the equation s(ww′) = s(w)sw(w′) for

all w ∈ {1, ..., d}∗.

Let A = (Q,Σ, t, o) be a synchronous automaton and let q ∈ Q. Then for each

q ∈ Q, the section of q at σ is t(q, σ) (interpreted as a function from T (Σ∗) to T (Σ∗))

for all σ ∈ Σ. Similarly, the section of q at w ∈ Σ∗ is found by viewing the word w

as an input path starting at q. The terminal vertex of this path is qw. We use the

wreath decompositions of tree endomorphisms to describe the automaton of which

they are states. See the example below.

Example 2.1.3. Let A be the automaton over the alphabet {0, 1} described by the

wreath decomposition a = (a, a) and b = [1, 1](a, b). In other words A = (Q,Σ, t, o)

where Q = {a, b}, Σ = {0, 1}, t(a, 0) = t(a, 1) = a, t(b, 0) = a, t(b, 1) = b, o(a, 0) = 0,

o(a, 1) = 1, and o(b, 0) = o(b, 1) = 1. See Figure 2.1. Note that the state a pointwise

fixes {0, 1}∗, and so a is the identity element of S(A). Note also that bm(0ω) = 1m0ω,

and so b has infinite order. Thus S(A) is the free monoid of rank 1.

Given a synchronous automaton A = (Q,Σ, t, o) and a word w = q1...qn in Q+,

note that we can use Equation 2.1 to construct an automaton B from A such that

w is a state of B. To do this, first compute τw = τq1 ...τqn . Then, using Equation

2.1, compute w1, ..., w|Σ|. As |{wv : v ∈ Σ∗}| ≤ |{v ∈ Σ∗ : |v| ≤ n}|, iterating this

process will eventually yield a finite automaton with w as a state.

12

Let A = (Q,Σ, t, o) be an invertible synchronous automaton. Then, as the lan-

gauge suggests, any element q ∈ Q+ will induce an invertible transformation Σ∗ → Σ∗

(see Chapter 1 of [22] by Nekrashevych for details). This leads to the following defi-

nition.

Definition 2.1.4. LetA = (Q,Σ, t, o) be an invertible synchronous automaton. Then

the automaton group corresponding to A, denoted G(A), is the group generated by

the states of A. A group G is said to be an automaton group if there is an invertible

synchronous automaton A such that G = G(A).

As elements of automaton groups are invertible, they are automorphisms of the

corresponding tree. Let T be a regular rooted tree of degree d and let Sd denote the

symmetric group on d objects. Then the automorphism group of T , which we denote

AutT , decomposes as the following wreath product:

AutT = Sd n AutT .

Thus, as with synchronous automata, we can use this wreath decomposition to de-

scribe states of invertible synchronous automata and we use Equation 2.1 to compose

these automorphisms.

We close this section with a few more definitions and two more examples, given

below. An infinite state synchronous automaton is, appropriately enough, a syn-

chronous automaton with an infinite state set. Given an infinite state synchronous

automaton over an alphabet Σ, we can still view the states as functions Σ∗ → Σ∗.

Definition 2.1.5. A semigroup S is said to be a self-similar semigroup if there exists

a finite or infinite state synchronous automaton A such that S ∼= S(A). A group

G is said to be a self-similar group if there exists a finite or infinite state invertible

13

Figure 2.2: Automaton giving Grigorchuk’s Group

synchronous automaton B such that G ∼= G(B).

Example 2.1.6. (Grigorchuk’s Group). Define an automaton A by the wreath de-

composition a = [1, 0](e, e), b = (a, c), c = (a, d), d = (e, b), and e = (e, e) (see Figure

2.2). Then G(A) is the Grigorchuk group. This group is one of the most interesting

automaton groups, as it is an infinite torsion group and was the first known group

of intermediate growth. Grigorhuck showed that this group is infinite torsion in [11],

and showed that this group has intermediate growth in [12]. For more expository

treatments of these proofs, see Section 1.6 of [22] by Nekrashevych for a proof of the

torsion property and see [14] by Grigorchuk and Pak for a proof that the group has

intermediate growth.

Example 2.1.7. (Infinite Direct Sums as Self-Similar Groups). We define an infinite

state invertible automaton A = (Q = {q0, q1, ...},Σ = {0, 1}, t, o) as follows. Let

q0 = (q0, q0). Then q0 pointwise fixes {0, 1}∗, and so is the identity element of G(A).

Let q1 = [1, 0](q0, q0), and, for n ≥ 2, define qn inductively by qn = (qn−1, qn−1). Let

14

η ∈ {0, 1}ω, and let ηn denote the n-th letter of η for all n ∈ N. Then

qn(ηm) =

ηm m 6= n

(ηm − 1) mod 2 m = n

.

Thus q2
i = q0 for all i. Note that the above equation also implies that qiqj = qjqi for

all i, j ∈ N. Furthermore, the above equation implies that given i ∈ N, any word in

(Q− {qi})∗ cannot equal qi. Thus G(A) ∼=
∞⊕
1

Z2, where Z2 denotes the cyclic group

of order 2.

Let G be a finite group of order n. The above paragraph allows us analogously

to build
∞⊕
1
G as a self-similar group. Write G = {g1, ..., gn} where g1 is the identity

of G. Construct G as an automaton group with automaton A over the alphabet

{1, ..., n} as follows. Let {q1,2, ..., q1,n} be a state set in one-to-one correspondence

with G−{g1}, and let t(q1,i, j) = q1 for all i, where q1 = (q1, ..., q1). Let o(q1,i, j) = k,

where gigj = gk. Then G(A) ∼= G by Cayley’s Theorem (we have realized G as a

permutation group and have simply made that permutation group act on the first

level of the n-ary tree).

We construct an infinite state automaton B containing A as follows. The state set

of B is {qi,j}∪{q1} where i ∈ N and 2 ≤ j ≤ n. For all i ≥ 2, let qi,j = (qi−1,j, ..., qi−1,j)

(where there are n terms in the wreath decomposition). Let η ∈ {1, ..., n}ω and fix

an i ∈ N. Then, just as above,

qi,j(ηm) =

ηm m 6= i

q1,j(ηm) m = i

.

Thus G(B) ∼=
∞⊕
1
G.

15

2.1.2 Asynchronous Automata

Chapter 3 mainly focuses on asynchronous (not just synchronous) automata. An

asynchronous automaton is a quadruple A = (Q,Σ, t, o) where Q is a finite state set,

Σ is a finite alphabet, t : Q× Σ→ Q is a transition function, and o : Q× Σ→ Σ∗ is

an output function. The difference between asynchronous and synchronous automata

is that the output function of an asynchronous automaton is Σ∗, not Σ.

Just as with synchronous automata, we can view the states of an asynchronous au-

tomaton over an alphabet Σ∗ as functions Σ∗ → Σ∗. These functions can be extended

to partial transformations of Σω, so we can also view the states of an asynchronous

automaton as partial transformations of the boundary of the corresponding tree. This

leads to the following definition.

Definition 2.1.8. Let A = (Q,Σ, t, o) be an asynchronous automaton. Then the

asynchronous automaton semigroup corresponding to A, again denoted S(A), is the

semigroup generated by the states of A. More precisely, two elements q1, q2 ∈ Q+

represent the same element of S(A) if and only if q1 and q2 induce the same transfor-

mation Σ∗ → Σ∗. A semigroup S is said to be an asynchronous automaton semigroup

if there exists an asynchronous automaton A such that S ∼= S(A).

We emphasize that a state of an asynchronous automaton over an alphabet Σ need

not induce a function from Σω to Σω, but can induce a partial function. For example,

consider the automaton A = ({a}, {0, 1}, t, o) where t(a, 0) = t(a, 1) = a, o(a, 0) = ∅,

and o(a, 1) = 1. Let η ∈ {0, 1}ω, and suppose that η contains exactly n 1’s. Then

a(η) = 1n, which is not in {0, 1}ω. On the other hand, if η contains infinitely many

1’s then a(η) = 1ω. Thus, when considering a as a partial function from {0, 1}ω to

{0, 1}ω, δ ∈ {0, 1}ω is in the domain of a if and only if δ contains infinitely many 1’s.

Let A = (Q,Σ, t, o) be an asynchronous automaton, and suppose that q induces

16

a partial function from Σω to Σω. Then it is straightforward to show that there must

exist a circuit in A accessible from q such that for each edge on the circuit, the output

word is ∅. Thus one can tell from a quick look at the underlying graph whether or

not the corresponding boundary asynchronous automaton semigroup contains partial

functions.

Recall by Proposition 2.1.2 that, in the case of synchronous automata, it is irrel-

evant whether one considers the states of the automaton as transformations of the

tree or transformations of the boundary of the tree. In the case of asynchronous au-

tomata, this distinction does matter. As a trivial example, consider the asynchronous

automaton A = ({a}, {0}, t, o) where t(a, 0) = a and o(a, 0) = 00. Then am(0) = 02m

for all m ∈ N, and so S(A) is the free semigroup of rank 1 if one uses the definition of

asynchronous automaton semigroup above. However, the boundary of the tree {0}∗

has only one element, so the semigroup generated by a is trivial if one considers semi-

group as transformations on the boundary. This distinction leads to the following

definition.

Definition 2.1.9. Let A = (Q,Σ, t, o) be an asynchronous automaton. Then the

boundary asynchronous automaton semigroup corresponding to A, denoted ∂S(A),

is the semigroup generated by the states of A when considered as transformations

Σω → Σω. More precisely, two elements q1, q2 ∈ Q+ represent the same element

of ∂S(A) if and only if q1 and q2 induce the same transformation Σω → Σω. A

semigroup S is said to be a boundary asynchronous automaton semigroup if there

exists an asynchronous automaton A such that S ∼= ∂S(A).

Given an asynchronous automaton A = (Q,Σ, t, o), it is straightforward to show

that ∂S(A) is a quotient of S(A). To see this, note that if t1, t2 ∈ Q∗ induce the

same transformation Σ∗ → Σ∗, then t1 and t2 will induce the same transformation

17

Σω → Σω.

Just as with synchronous automata, an asynchronous automaton can be given by

a “wreath recursion” kind of formula. Let A = (Q, {1, ..., n}t, o) be an asynchronous

automaton, and let f ∈ Q. Then we can decompose f as follows:

f = τf (f1, ..., fn),

where τf is the transformation f induces Σ→ Σ∗ and each fi is characterized by the

equation f(iw) = τf (i)fi(w) for all w ∈ Σ∗. Thus we call fi the section of f at i.

If f and g are states of A, then their composition can be computed with a formula

analogous to Equation 2.1:

f ◦ g = [f(v1), ..., f(vn)](fv1g1, ..., fvngn). (2.2)

Also, as in the case of synchronous automata, if w ∈ Q+, then (using Equation 2.2)

we can construct an automaton B with w as a state of B.

Much of Chapter 3 focuses on a restricted class of asynchronous automata which

we call “expanding automata”. An expanding automaton is an asynchronous au-

tomaton (Q,Σ, t, o) such that the range of o is Σ+ (rather than Σ∗). Just as for

asynchronous automata, we can define “expanding automaton semigroups” and the

corresponding boundary semigroups.

Definition 2.1.10. Let A = (Q,Σ, t, o) be an expanding automaton. Then the

expanding automaton semigroup corresponding to A is the semigroup generated by the

states ofA, where two words q1, q2 ∈ Q+ are equal in S(A) if and only if q1(w) = q2(w)

for all w ∈ Σ∗.

Definition 2.1.11. Let A = (Q,Σ, t, o) be an expanding automaton. Then the

18

boundary expanding automaton semigroup corresponding to A is the semigroup gen-

erated by the states of A, where two words q1, q2 ∈ Q+ are equal in ∂S(A) if and

only if q1(η) = q2(η) for all η ∈ Σω.

Note that if s ∈ S where S is an expanding automaton semigroup acting on

T (Σ∗), then s need not induce a level-preserving function T (Σ∗) → T (Σ∗). Thus

elements of expanding automaton semigroups are not necessarily graph morphisms.

If A = (Q,Σ, t, o) is an expanding automaton, then the output function mapping

into Σ+ implies that |w| ≤ |s(w)| for all s ∈ S(A), w ∈ Σ∗. We say that a function

f : T (Σ∗) → T (Σ∗) is prefix-preserving if f(v) is a prefix of f(w) in Σ∗ whenever v

is a prefix of w in Σ∗. We call a function f : T (Σ∗) → T (Σ∗) length-expanding if

|w| ≤ |f(w)| for all w ∈ Σ∗ and f(∅) = ∅. If we topologize the tree T (Σ∗) by mak-

ing each edge isometric to [0, 1] and imposing the path metric, then an element of

an expanding automaton semigroup acting on T (Σ∗) will induce a prefix-preserving,

length-expanding endomorphism of the tree. We call f : T (Σ∗)→ T (Σ∗) an expand-

ing endomorphism if f is prefix-preserving and length-expanding. Any expanding

endomorphism f of the n-ary tree can be decomposed as f = τf (f1, ..., fn) where fi

is an expanding endomorphism for all i. The endomorphism f can be realized as a

state of an expanding automaton if and only if |{fw | w ∈ {1, ..., n}∗}| <∞.

As with self-similar groups and semigroups, we can define expanding self-similar

semigroups and asynchronous self-similar semigroups by allowing our automata to

have infinitely many states.

In closing this section, we mention that we use the word “action” when describing

the functions arising from these semigroups on regular rooted trees. In general, if one

says that a monoid M has an action on a set, one assumes that the identity of the

monoid fixes each element of the set. In this case, however, we can have expanding

19

Figure 2.3: Example 2.1.12

automaton monoids (and indeed automaton monoids) in which the identity element

of the monoid does not fix each vertex of the tree. Thus, unless otherwise indicated,

we are always discussing semigroup actions. Consider Example 2.1.12 below.

Example 2.1.12. Consider the expanding automaton A over the alphabet {0, 1}

given by a = (a, a)[11, 1], b = (a, a)[111, 11]. See Figure 2.3 for the graphical repre-

sentation of A. We claim that a is an identity element of S(A) even though a does

not fix every element of T ({0, 1}∗). To see this, first note that the range of a is {1}∗.

Since a fixes this set pointwise, a2 = a. Now the range of b is {1}∗ − {1} and a

fixes this set, so ab = b. Now let w ∈ {0, 1}∗, and let w0 ∈ N denote the number

of 0’s that occur in w; define w1 analogously. Then a(w) = 12w0+w1 , and therefore

ba(w) = 12w0+w1+1. Let w′ be the word obtained from w by deleting the first letter

of w. If 0 is the first letter of w, then

b(w) = 11112(w′)0+(w′)1 = 12w0+w1+1 = ba(w).

Similarly, if w starts with a 1 we have b(w) = ba(w). Hence ab = b = ba, and a

is an identity element. Thus the action of S(A) on {0, 1}∗ includes the action of a

semigroup identity that is not the identity function on {0, 1}∗.

20

2.2 Solving the Word Problem

In this section we give algorithms for solving the word problem for automaton groups

and asynchronous automaton semigroups. These algorithms are well known, and can

be traced back to Eilenberg’s book (see [7]).

Let S be a semigroup generated by a set X. Then the word problem for S asks

if there is an algorithm which takes two words w1, w2 ∈ X+ as input and decides

whether or not w1 and w2 are distinct elements of S. If there is such an algorithm,

we say that S has solvable word problem. If G is a group generated (as a group) by

a set Y , then we say that G has solvable word problem if there exists an algorithm

which takes a word w ∈ (Y ∪ Y −1)∗ as input and decides whether or not w is trivial

in G.

Let A = (Q,Σ, t, o) be an invertible synchronous automaton. Then the inverse

automaton for A, denoted by A−1, is the automaton with state set Q−1, alphabet Σ,

transition function t−1, and output function o−1 defined by t−1(q−1
1 , σ) = q−1

2 if and

only if t(q1, σ) = q2 and o−1(q−1, σ1) = σ2 if and only if o(q, σ2) = σ1. This automaton

is called the inverse automaton because qq−1 is the automorphism that pointwise fixes

Σ∗. Let A±1 denote A ∪A−1.

Given an invertible automatonA = (Q,Σ, t, o), the dual automaton for A, denoted

by A′, is the automaton with state set Σ, alphabet Q ∪ Q−1 (i.e. the alphabet is

the state set of A±), transition function t′ given by t′(σ1, q) = σ2 if and only if

o(q, σ1) = σ2, and output function o′ given by o′(σ, q1) = q2 if and only if t(q1, σ) = q2.

The dual automaton is a tool used for computing sections of elements of (Q∪Q−1)∗.

Let w ∈ (Q ∪ Q−1)∗, and write w = q1q2...qn where qi ∈ Q ∪ Q−1. Then wσi is

computed by feeding the word q1q2...qn into the automaton A′ starting at σi and

recording the sequence of outputs. Because we compose functions right-to-left, the

21

dual automaton will scan a word from right to left. The dual automaton outputs the

resulting sequence from right to left, and that sequence will be the desired section.

See chapter 1 of [22] by Nekrashevych for details.

The dual automaton has proven to be a useful tool. Steinberg, Vorobets, and

Vorobets use the dual automaton to show that free groups are automaton groups in

[32], [33], and [34]. In [26], Savchuk and Vorobets show that free products of groups

of order 2 are automaton groups.

Using the inverse and dual automata, we are now ready to give an algorithm for

solving the word problem for automaton groups.

Proposition 2.2.1. Let G be an automaton group. Then G has solvable word prob-

lem.

Proof. Let A = (Q,Σ, t, o) be an invertible synchronous automaton and let G =

G(A). Let w ∈ (Q∪Q−1)∗. Begin by calculating τw. If τw is not the trivial permuta-

tion of Σ, then w is non-trivial in G. So suppose that τw is the trivial permutation of

Σ. Then, using A′, calculate wσ for all σ ∈ Σ. Using the permutations of the states

of A, calculate τwσ for all σ ∈ Σ. If one of these permutations is non-trivial, then

w is non-trivial in G. If all of these permutations are trivial, then use the dual to

calculate the sections of w at words of length two in Σ and iterate the process. As

|{wv : v ∈ Σ∗}| ≤ |{v ∈ Σ∗ : v has length at most the length of w in (Q∪Q−1)∗}|,

this process terminates in at most exponential time.

Note that the above algorithm works for any automaton group G, and so we say

that the class of automaton groups has solvable uniform word problem. The class of

asynchronous automaton semigroups also has solvable uniform word problem. In the

case of asynchronous automata there is no nice analogue for a dual automaton. One

can construct a dual automaton, but the resulting graph will be infinite and does not

22

Figure 2.4: The dual automaton for Grigorchuk’s Group

make the computations any easier. Thus the algorithm that solves the word problem

for asynchronous automaton semigroups does not reference a dual automaton.

Proposition 2.2.2. Asynchronous automaton semigroups have solvable uniform word

problem.

Proof. Let A = (Q,Σ, t, o) be an asynchronous automaton, and let S = S(A). Let

s = q1...qm and t = q′1...q
′
n be elements of S. If τs 6= τt, then s 6= t. If τs = τt, then

use Equation (2.2) to calculate sσ and tσ for all σ ∈ Σ. If τsσ 6= τtσ for some σ ∈ Σ,

then s 6= t. If τsσ = τtσ for all σ ∈ Σ, then calculate τsw , τtw for each w ∈ Σ+ with

|w| = 2, and continue the process. Since |{sw : w ∈ Σ∗}| ≤ |{w′ ∈ Q∗ : |w′| ≤ m}|

and |{tw : w ∈ Σ∗}| ≤ |{w′ ∈ Q∗ : |w′| ≤ n}|, this process stops in finite time.

Example 2.2.3. (Grigorchuk’s group) Recall that Grigorchuk’s group, denoted by

G, is given by the automaton with wreath recursion a = [1, 0](e, e), b = (a, c), c =

(a, d), d = (e, b), and e = (e, e). Note that e pointwise fixes {0, 1}∗, and so e is the

identity of G. To discover other relations in G, we use the dual automaton (see Figure

2.4; we omit the identity element e from the figure). Using the dual, we see that

a2 = (e, e). Thus a2 = e. Similarly,

b2 = (a2, a2), c2 = (a2, d2), d2 = (1, b2)

23

and so all of the generators of G have order 2. On the other hand, note that aca−1c−1 =

acac = (da, ad). Since τad is non-trivial, acac is non-trivial in G.

Chapter 4 relies heavily on such computations. We mostly omit such calculations,

as they go exactly as in the previous example. Most of the computations were initially

done with the GAP package AutomGrp developed by Muntyan and Savchuk ([21]).

24

Chapter 3

Semigroups Arising from

Asynchronous Automata

3.1 Distinguishing Classes of Semigroups

By definition of the various kinds of automata (see Chapter 2), one can see that the

class of automaton groups is contained in the class of automaton semigroups which is

contained in the class of expanding automaton semigroups which is contained in the

class of asynchronous automaton semigroups. In this section, we show that all of these

containments are strict. In addition, we show that the class of expanding automaton

semigroups is strictly contained in the class of boundary expanding automaton semi-

groups which is strictly contained in the class of boundary asynchronous automaton

semigroups. We also show that the class of asynchronous automaton semigroups is

contained in the class of boundary asynchronous automaton semigroups.

Proposition 3.1.1. The class of automaton semigroups is strictly contained in the

class of expanding automaton semigroups.

25

Proof. Let m,n ∈ N − {1}, and let Sm,n denote the semigroup with semigroup pre-

sentation 〈a, b | bm = bn, ab = b〉. We show that Sm,n is not an automaton semigroup

for any distinct m,n, but Sm,n is an expanding automaton semigroup for any distinct

m,n.

Note that for any distinct m,n ∈ N with m < n, the rewriting system defined

by the rules ab → b and bn → bm is terminating and confluent. Thus {bjak | j =

1, ..., n− 1, k ∈ N} is a set of normal forms for Sm,n, and so ar 6= as in Sm,n for any

distinct r, s ∈ N (i.e. a is not periodic).

We begin by showing Sm,n is not an automaton semigroup. Fix 1 < m < n. Let

Am,n = (Q,Σ, t, o) be a synchronous automaton such that S(Am,n) is generated by

two elements a and b with bm = bn and ab = b. We show that a is periodic in S(Am,n).

Without loss of generality, we assume that a and b are both states of Am,n. Let σ1 ∈ Σ

be such that there exists a minimal number n > 0 with an(σ1) = σ1. Since the action

of a is length-preserving, there must exist such a σ1. Let {σ1, ..., σn−1} be the orbit

of σ1 under the action of a where a(σi) = σi+1 for 1 ≤ i ≤ n− 2 and a(σn−1) = σ1.

First suppose that aσj = amj for each 1 ≤ j ≤ n− 1. If mj > 1 for some j, then

(amj)σj = an1 where n1 > mj, (an1)σj = an2 where n2 > n1, and so on. In this case, a

will have infinitely many sections, which cannot happen since a is a state of a finite

automaton. Thus mj = 1 for all j. Note that if ak(σ) = σ1 for some k > 0 and σ ∈ Σ,

then the same logic implies that if aσ = ar for some r then r = 1. Thus we see that

if σ ∈ Σ and the section of a at ak(σ) is a power of a for all k, then the section of a

at ak(σ) is a for all k > 0. Suppose that aσ = a for all σ ∈ Σ. Since the action of a is

length-preserving, there exist distinct r, s ∈ N such that τ ra = τ sa . Then, as the only

section of a is a, we have ar = as.

Suppose now that there is a letter σ ∈ Σ such that there exists σ′ in the forward

orbit of σ under the action of a where aσ′ 6∈ 〈a〉. Since ab = b and b is periodic, there

26

exist distinct mσ, nσ ∈ N with nσ > mσ such that (amσ)σ = (amσ+k(nσ−mσ))σ for any

k ∈ N. To see that this is true, let t be the minimal number such that the orbit of

at(σ) under the action of a is a cycle. Since the action of a is length-preserving, there

must exist such a t. Suppose that there is a k ∈ N such that k ≥ t and the section of

a at ak(σ) is biaj for some i ∈ N and j ∈ N ∪ {0}. Then the relation ab = b implies

that for any k′ ≥ k we have (ak′)σ = bi
′
aj for some i′. Periodicity of b then implies

that there are mσ, nσ ≥ k as desired. Suppose, on the other hand, that the section of

a at ar(σ) is in 〈a〉 for all r ≥ t. Let c be the maximal number such that the section

of a at ac(σ) is not in 〈a〉 and let p ∈ N. Then (ac+p)σ = anp(ac)σ for some np ∈ N

and the relation ab = b implies that (ac+p)σ = (ac)σ. In this case we let mσ = c and

nσ = c+ 1.

Let Σ̂ = {σ ∈ Σ | (ar)σ 6∈ 〈a〉 for some r}. By the preceding paragraph, for

each σ ∈ Σ̂ choose mσ, nσ ∈ N such that (amσ)σ = (amσ+k(nσ−nσ))σ. Since a acts

in a length-preserving fashion, there exist distinct t1, t2 such that τ t1a = τ t1+k(t2−t1)
a

for all k ∈ N. Thus we can choose distinct s, t ∈ N such that τas = τas+k(t−s) and

(as)σ = (as+k(t−s))σ for all σ ∈ Σ̂ and k ∈ N. We claim that as = at. To see this, let

δ ∈ Σ. If η ∈ Σ̂, then the choice of s and t implies that (as)η = (at)η. Fix δ 6∈ Σ̂.

Then (as)δ = as and (at)δ = at, so the choice of s and t implies that τ(as)δ = τ(at)δ . If

η ∈ Σ̂, then

(as)δη = (as)η = (at)η = (at)δη.

If η 6∈ Σ̂ then (as)δη = as and (at)δη = at, and so τ(as)δη = τ(at)δη . Similarly, let

w ∈ Σ∗ and write w = σ1...σn. Suppose there is an i ∈ N such that σi ∈ Σ̂ and

σ1, ..., σi−1 ∈ Σ− Σ̂. Then

(as)w = (as)σi...σn = (at)σi...σn = (at)w.

27

On the other hand, if w ∈ (Σ − Σ̂)∗ then τ(as)w = τas = τat = τ(at)w . Thus as = at,

and so S(Am,n) is not Sm,n.

Fix 1 < m < n, and let Σ = {σ1, ..., σn} be an alphabet. Let Am,n be the

automaton over the alphabet Σ with states a and b (which depend on m,n) defined

by

a = [σ1σ1, σ2, ..., σn](a, ..., a), b = τb(b, ..., b)

where

τb(σi) =

σi+1 1 ≤ i < n

σm i = n

.

Then bm = bn in S(Am,n). Note also that the range of b is {σ2, ..., σn}∗, and a fixes this

set. So ab = b. Now fix i, j ∈ N such that i < n. Then biaj(σ1) = bi(σ2j
1) = σ2j

i . Thus

biaj = bkal in S(Am,n) if and only if i = k and j = l, and we have S(Am,n) ∼= Sm,n.

The constructions in the previous proof allows us to show the analogous proposi-

tion for boundary expanding automaton semigroups.

Recall that the bicyclic monoid is the monoid with monoid presentation B :=

〈a, b | ab = 1〉. This monoid is not residually finite (see chapter 5 of [18] by Lallement),

and so Proposition 3.3.1 (respectively 3.3.2) below implies that B is not a submonoid

of any expanding automaton semigroup (respectively boundary expanding automaton

semigroup). Let S be a semigroup with elements a, b, c such that c is an identity in

the subsemigroup generated by a, b, and c, and suppose that ab = c. Clifford and

Preston show in Corollary 1.32 of [5] that if ba 6= c then the submonoid generated by

a, b, and c is the bicyclic monoid. We summarize these observations in the following

remark.

Remark 3.1.2. Let S be an expanding automaton semigroup or boundary expanding

28

Figure 3.1: The automaton from Proposition 3.1.3

automaton semigroup. Then the bicyclic monoid is not a submonoid of S. In partic-

ular, if M is a submonoid of S then an element m ∈M is left invertible in M if and

only if m is right invertible in M .

We use this remark to distinguish the class of expanding automaton semigroups

from the class of asynchronous automaton semigroups.

Proposition 3.1.3. The class of expanding automaton semigroups is strictly con-

tained in the class of asynchronous automaton semigroups.

Proof. Let A be the asynchronous automaton over the alphabet {0} with four states

defined by

a = [0](b), b = [∅](e), c = [00](e), e = [0](e).

Figure 3.1 gives the graphical representation of A. Note that e(0n) = 0n for all n ∈ N,

so e is an identity element of S(A). Note also that by construction ac(0n) = 0n = e(0n)

for any n, but ca(0) = 00. Thus ac = e but ca 6= e in S(A). So Corollary 1.32 of [5]

implies that the submonoid generated by a and c is the bicyclic monoid, and Remark

3.1.2 implies that S(A) is not an expanding automaton semigroup.

Proposition 3.1.4. The class of expanding automaton semigroups is strictly con-

tained in the class of boundary expanding automaton semigroups.

29

Proof. First we show containment. Let A = (Q,Σ, t, o) be an expanding automaton.

Let x be a symbol not in Σ, and let Σ′ = Σ ∪ {x}. We construct a new automaton

B = (Q,Σ′, t′, o′) such that S(B) ∼= S(A) and ∂S(B) ∼= S(B). If (q, σ) ∈ Q×Σ, define

t′(q, σ) = t(q, σ). For each q ∈ Q, let t′(q, x) = q. Similarly, for each (q, σ) ∈ Q × Σ

let o′(q, σ) = o(q, σ) and o′(q, x) = x. Then S(B) ∼= S(A). Let q1, q2 ∈ Q∗ be

distinct elements of S(A). Then there is a w ∈ Σ∗ such that q1(w) 6= q2(w). Now

q1(wxω) = q1(w)xω 6= q2(w)xω = q2(wxω), and so q1 and q2 are distinct elements of

∂S(B). Since ∂S(B) is a quotient of S(B), we have shown that S(B) ∼= ∂S(B).

To see that the containment is strict, we show that the free semigroup of rank

1 with a zero adjoined is a boundary automaton semigroup. This will give us our

result, as we show in Proposition 3.4.2 below that this semigroup is not an expanding

automaton semigroup.

Consider the automaton given by the wreath decomposition a = [01, 11](b, a), b =

[01, 01](b, b). Then the range of b in {0, 1}ω is (01)ω. By construction, a fixes this

point, and so ab = b. Since the range of b is a single point, ba = b. Finally, note that

a is not periodic as an(1(01)ω) = 12n(01)ω, i.e. 1(01)ω has an infinite forward orbit

under the action of a. Thus the boundary expanding automaton semigroup generated

by a and b is the free semigroup of rank 1 with a zero adjoined.

Proposition 3.1.5. The class of boundary expanding automaton semigroups is strictly

contained in the class of boundary asynchronous automaton semigroups.

Proof. It is clear by definition that the class of boundary expanding automaton semi-

groups is contained in the class of boundary asynchronous automaton semigroups. By

Proposition 3.3.2 below, boundary expanding automaton semigroups are residually

finite. Grigorchuk et al. give in [13] an asynchronous automaton A such that the

boundary semigroup is Thompson’s group F (see Figure 23 of [13]). It is well known

30

that F is an infinite simple group, and hence not residually finite.

Proposition 3.1.6. The class of asynchronous automaton semigroups is contained

in the class of boundary asynchronous automaton semigroups.

Proof. The logic and constructions are the same as that of Proposition 3.1.4.

At this time, we do not have an example of a boundary asynchronous automaton

semigroup that is not an asynchronous automaton semigroup, so the question of

whether or not the containment of classes is strict is still open. Also, we are unsure of

the relationship between the class of boundary expanding automaton semigroups and

asynchronous automaton semigroups. Boundary expanding automaton semigroups

are residually finite (see Proposition 3.3.2) while asynchronous automaton semigroups

need not be (see the proof of Proposition 3.1.3 and recall that the bicyclic monoid is

not residually finite), so the classes are not equal.

3.2 Decision Properties and Dynamics

We begin this section by showing that expanding automaton semigroups have richer

boundary dynamics than automaton semigroups. Proposition 3.2.1 restricts the kind

of action that an automaton semigroup can have on the boundary of a tree, and

Example 3.2.2 gives an expanding automaton semigroup which shows that this re-

striction does not extend to the dynamics of these semigroups. Example 3.2.2 also

provides a realization of the free semigroup of rank 1 as an expanding automaton

semigroup. Proposition 4.3 of [4] shows that the free semigroup of rank 1 is not an

automaton semigroup, so Example 3.2.2 provides another example of an expanding

automaton semigroup that is not an automaton semigroup. Let S be a semigroup

acting on a set X, and s ∈ S. We say that x ∈ X is a fixed point of s if s(x) = x.

31

Proposition 3.2.1. Let S be an automaton semigroup with corresponding automaton

A = (Q,Σ, t, o). If every state of A has at least two fixed points in Σω, then every

state of A has infinitely many fixed points in Σω.

Proof. We begin with some terminology. We call a path p in A an inactive path if

each edge on p has the form σ|σ for some σ ∈ Σ.

Let q ∈ Q. Since A is a synchronous automaton, q acts in a length-preserving

fashion. Since q has a fixed point in Σω, in the finite automaton A there must exist

an inactive circuit c1 accessible from q via an inactive path p (q must fix a word

letter-by-letter). Let q1 be a state on c1. As q1 must also have two fixed points in Σω,

either there is another inactive circuit containing q1 or there is another inactive circuit

accessible from q1 via an inactive path. In either case, q has infinitely many fixed

points in Σω by using each of the inactive circuits an arbitrary number of times.

Example 3.2.2. (Thue-Morse Automaton): This example is constructed to model

the substitution rules which give the Thue-Morse sequence. This infinite binary

sequence, denoted (Ti), is the limit of 0 under iterations of the substitution rules

0 → 01, 1 → 10. The complement of the Thue-Morse sequence, denoted (Ti), is the

limit of 1 under iterations of these substitution rules. For more information on these

sequences, see Section 2.2 of [19] by Lothaire.

Consider the expanding automaton A given by a = (a, a)[01, 10] over the alphabet

Σ = {0, 1}. First note that S(A) is the free semigroup of rank 1. To see this, by

construction of A we have |an(0)| = 2n for all n, and thus am 6= an for any m 6= n.

Also by construction of A, the action of S(A) has exactly two fixed points in

{0, 1}ω: (Ti) and (Ti). To see this, first notice that (Ti) and (Ti) are the fixed points

of a (see section 2.1 of [19]). Thus (Ti) and (Ti) are fixed points of an for any n.

Furthermore, an = τan(an, an) where τan maps 0 to the prefix of length 2n of (Ti) and

32

maps 1 to the prefix of length 2n of (Ti). Thus section 2.1 of [19] implies that an has

exactly two fixed points for all n.

We now turn to showing that undecidability arises in the dynamics of these semi-

groups.

Theorem 3.2.3. 1. There is no algorithm which takes as input an expanding au-

tomaton A = (Q,Σ, t, o) and states q1, q2 ∈ Q and decides whether or not there

is a word w ∈ Σ+ with q1(w) = q2(w).

2. There is no algorithm which takes as input an expanding automaton A =

(Q,Σ, t, o) and states q1, q2 ∈ Q and decides whether or not there is an infi-

nite word η ∈ Σω such that q1(η) = q2(η).

Proof. We show undecidability by embedding the Post Correspondence Problem. Let

X = {x1, ..., xm} be an alphabet, and let V = (v1, ..., vn) and W = (w1, ..., wn) be

two lists of words over X. Let Y = {1, ..., n} ⊆ N and Z = {z1, z2} be alphabets such

that X ∩ Y ∩ Z = ∅. Undecidability of the Post Correspondence Problem implies

that, in general, we cannot decide if there is a sequence (y1, ..., yt) of elements of Y

such that vy1vy2 ...vyt = uy1uy2 ...uyt .

We build an expanding automaton AX,V,W over the alphabet Σ := X ∪ Y ∪ Z as

follows. Let the state set Q of AX,V,W be {a, b}, and let

t(q, σ) = q for all q ∈ Q, σ ∈ Σ

o(a, i) = vi for 1 ≤ i ≤ n, o(a, σ) = z1 for σ ∈ Σ− Y

o(b, i) = wi for 1 ≤ i ≤ n, o(b, σ) = z2 for σ ∈ Σ− Y

Figure 3.2 shows AX,U,W where X = {s, t}, V = (st, ts2, t2), and W = (s2, tsts, t2s).

33

Figure 3.2: The automaton AX,U,W where X = {s, t}, V = (st, ts2, t2), and W =
(s2, tsts, t2s)

Note that for any w ∈ Σ∗, a(w) does not contain the letter z2; similarly, b(w) does

not contain the letter z1. Now if w ∈ Σ∗ contains a letter of X ∪ Z, then we know

a(w) 6= b(w) since a(w) contains the letter z1 and b(w) contains the letter z2. Thus

if there is a word w ∈ Σ∗ such that a(w) = b(w), then w ∈ Y ∗. By construction of

AX,V,W , if y = y1y2...yn ∈ Y ∗ and a(y) = b(y), then vy1vy2 ...vyt = uy1uy2 ...uyt . Thus

the expanding automaton AX,V,W simulates Post’s problem, and since we cannot

decide the Post Correspondence Problem, we cannot decide if there is a word w ∈ Y ∗

with a(w) = b(w). This proves part (1).

It is shown by Rouhonen in [25] that the infinite Post Correspondence Problem

is undecidable. That is, there is no algorithm that takes as input two lists of words

v1, ..., vn and w1, ..., wn over an alphabet X and decides if there is an infinite sequence

(ik)∞k=1 such that vi1vi2 ... = wi1wi2 Thus, using the same expanding automata and

logic as above, (2) is proven.

We now show that undecidability arises when trying to understand the fixed point

sets of elements of asynchronous automaton semigroups. If w ∈ A∗ for a set A, let

Prefk(w) denote the prefix of w of length k.

Definition 3.2.4. Let A∗ be a free monoid. A subset C ⊆ A∗ is a prefix code if

34

1. C is the basis of a free submonoid of A∗

2. If c ∈ C, then Prefk(c) 6∈ C for all 1 ≤ k ≤ |C|

The prefix code Post correspondence problem is a stronger form of the Post Cor-

respondence Problem. The input of the prefix code Post Correspondence Problem is

two lists of words v1, ..., vn and w1, ..., wn over an alphabet X such that {v1, ..., vn}

and {w1, ..., wn} are prefix codes. A solution to the problem is a sequence of indices

(ik)1≤k≤m with 1 ≤ ik ≤ n such that vi1 ...vim = wi1 ...wim . Rouhonen also shows in

[25] that this form of Post’s problem is undecidable. We use the prefix code Post

problem to prove the following:

Theorem 3.2.5. 1. There is no algorithm that takes as input an asynchronous

automaton A over an alphabet Σ and a state q of A and decides whether or

not q has a fixed point in Σ+, i.e. decides if there is a word w ∈ Σ+ such that

q(w) = w.

2. There is no algorithm that takes as input an asynchronous automaton A over

an alphabet Σ and a state q of A and decides whether or not q has a fixed point

in Σω, i.e. decides if there is an infinite word η ∈ Σω such that q(η) = η.

Proof. Let Σ be an alphabet, and let C,D ⊆ Σ∗ be prefix codes where C = {c1, ..., cm}

andD = {d1, ..., dm}. Let AΣ,C,D be the expanding automaton with states c, d that we

constructed in the proof of Proposition 3.2.3. ThenAΣ,C,D is an expanding automaton

over the alphabet X := {1, ...,m}∪Σ∪{z1, z2} such that o(c, i) = ci and o(d, i) = di.

We build an asynchronous automaton B over the alphabet X with a state c′ such

that c′c is the identity function from {1, ...,m}∗ to {1, ...,m}∗. We know that there

is a function c′ : Σ∗ → {1, ...,m}∗ such that c′c is the identity because {c1, ..., cm}

generates a free monoid, so c induces an injection from {1, ...,m}∗ to Σ∗.

35

We begin construction of B by starting with a single state c′, and then attaching

a loop based at c′ such that the input letters of the loop read the word c1 when read

starting at c′. We define the corresponding output word, when read starting at c′, to

be (∅)|c1|−11. In other words, the first |c1| − 1 edges of the loop have the form x|∅,

and the last edge of the loop has the form x|1. Next, we attach a loop at c′ such

that the input letters of the loop when read starting at c′ read the word c2, and the

corresponding output word is (∅)|c2|−12. If c1 ad c2 have a non-trivial common prefix,

then the resulting automaton with two loops is not deterministic. In this case, we

“fold” the maximum length common prefixes together, resulting in a deterministic

automaton. We iteratively continue this process until we can read the words c1, ..., cm

as input words starting at c′, and c′(ci) = i for all i. Note that we can do this process

since ci is not a prefix of cj for any i 6= j. At this step in the construction of B, B is a

partial asynchronous automaton, i.e. given a state of q of B, the domain of q is not all

of X∗. However, we do have c′c is the identity function {1, ...,m}∗ → {1, ...,m}∗ by

construction of B. In order to make B an asynchronous automaton, for each state q in

B and each letter x ∈ X such that t(q, x) is undefined, let t(q, x) = q and o(q, x) = ∅.

Recall that in the proof of Theorem 3.2.3, in general we cannot find w ∈ {1, ...,m}∗

such that c(w) = d(w) because such a w is a solution to the Post Correspondence

Problem. By construction of B, any w ∈ {1, ...,m}∗ such that c′d(w) = w = c′c(w)

is a solution to the prefix code Post Correspondence Problem. Now c′d is an element

of the asynchronous automaton semigroup generated by the states of AΣ,C,D and B.

Thus, undecidability of the prefix code Post Correspondence Problem implies part

(1).

In [25], Ruohonen shows that the that there is no algorithm which takes as input

two lists of words v1, ..., vn and w1, ..., wn over an alphabet Σ such that {v1, ..., vn}

and {w1, ..., wn} are prefix codes and decides whether there is an infinite sequence of

36

indices (ik)∞k=1 such that vi1vi2 ... = wi1wi2 Thus the same logic and automata as

above implies part (2).

We now give an algorithm which determines whether or not an element of an

expanding automaton semigroup induces an injection T (Σ∗)→ T (Σ∗). Before we do

this, we must recall some basic automata theory which can be found in more detail

in Chapters 1 and 2 of [17] by Hopcroft and Ullman. In order to avoid ambiguity

of language, we will use the phrase “nondeterministic finite state automaton with ∅

moves” to denote a 5-tuple (Q,Σ, δ, q0, F) where Q is a state set, Σ is an alphabet, δ is

a partial relation from Q× (Σ∪{∅}) to Q, q0 is an initial state, and F is a set of final

states. Let “deterministic finite state automaton” denote a 5-tuple (Q,Σ, δ, q0, F)

where Q is a state set, Σ is an alphabet, δ is a partial function from Q× Σ to Q, q0

is an initial state, and F is a set of final states. We view a finite state automaton as

a finite directed graph with vertex set Q and an arrow from q1 to q2 labeled by σ if

and only if δ(q1, σ) = q2.

Let M = (Q,Σ, δ, q0, F) be a nondeterministic finite state automaton with ∅

moves. Given a state q ∈ Q, let the ∅-closure of q, denoted ∅CLOSE(q), be the set

of states that are accessible from q via a path whose edges are labeled by ∅.

Given a finite state automatonM = (Q,Σ, δ, q0, F), call a directed edge path p an

acceptable path inM if p begins at q0 and ends at a final state. IfM is a nondetermin-

istic finite state automaton with ∅ moves, let φM : {acceptable paths in M} → L(M)

(where L(M) denotes the language accepted by M) denote the map which sends a

path p to the word in L(M) that labels the path p. If M is deterministic then φM is

injective. We show in the following lemma that we can decide if φM is injective for a

nondeterministic finite state automaton M .

Lemma 3.2.6. Let M be a nondeterministic finite state automaton with ∅ moves.

37

Then there is algorithm that decides whether or not φM is injective.

Proof. Let M = (Q,Σ, δ, qo, F) be a nondeterministic finite state automaton with ∅

moves. We build a deterministic finite state automaton M ′ = (Q′,Σ, δ′, q′0, F ′) from

M using a construction of Hopcroft and Ullman from Section 2.5 of [17].

Let the state set Q′ be the power set of Q, q′0 = ∅CLOSE(q0), and F ′ = {S ∈

Q′ | there exists q ∈ S such that q ∈ F}. Lastly,

δ′({q1, ..., qk}, σ) = ∅CLOSE({δ(q1, σ), ..., δ(qk, σ)}).

Then, by construction of M ′, φM is not injective if and only if in M ′ there is an

edge {r1, ..., rt}
σ−→ {s1, ..., sv} accessible from {q0} such that one of the following

three conditions hold: i) there exist distinct ri1 , ri2 with δ(rij , σ) ∈ F , ii) there exist

distinct ri1 , ri2 such that δ(ri1) = δ(ri2) and there is a final state accessible from δ(ri1)

inM , or iii) there is an rj such that inM there are two edges coming out of rj labeled

by σ whose terminal vertices are final states.

Proposition 3.2.7. There is an algorithm which takes as input an asynchronous

automaton A = (Q,Σ, t, o) and an element w ∈ Q∗ and decides whether or not

w : Σ∗ → Σ∗ is injective.

Proof. Let A = (Q,Σ, t, o) be an asynchronous automaton and let w ∈ Q∗. Using

Equation 2.2, construct an asynchronous automaton B = (Q̂,Σ, t̂, ô) with w as a state

of B.

First we build a finite state automaton M = (Q′,Σ, δ, q0, F) from B. Begin with

state set Q′ in bijection with Q̂. Whenever q1
σ|w−−→ q2 in B with w = v1...vk where

vi ∈ Σ, add enough states in M so that there is a path labeled by v1...vk from q′1 to

q′2. Intuitively, M is the finite state automaton we get from B by dropping the inputs

38

off of the edges in B, then making each edge into a path so that every edge in M is

labeled by an element of Σ. Let F = Q′ and q0 = q′. Note that w is not injective if

and only if there exist distinct paths in B such that the outputs read along each path

give the same element of Σ∗. Now M is constructed so that for each w ∈ range(q)

there exists an acceptable path p inM such that φM(p) = w, and given an acceptable

path p′ in M we have φM(p′) ∈ range(q). Furthermore, each acceptable path in M

corresponds to an input path in A. Thus w is not injective if and only if there exist

two distinct paths p1 and p2 inM such that φM(p1) = φM(p2). By lemma 3.2.6, there

is an algorithm to decide this property of M .

In [13], Grigorchuk et al. give an infinite version of the above proposition. More

precisely, they show the following.

Proposition 3.2.8 (Lemma 2.19 of [13]). There is an algorithm which takes as

input an asynchronous automaton A = (Q,Σ, t, o) and an element w ∈ Q∗ and decides

if the transformation w induces from Σω to Σω is injective.

The set of expanding automaton semigroups such that the states induce injective

functions is very restricted. Let S be an expanding automaton semigroup with corre-

sponding automaton A = (Q,Σ, t, o) such that each state q ∈ Q induces an injection

T (Σ∗)→ T (Σ∗). Then any element of Q∗ also induces an injection T (Σ∗)→ T (Σ∗).

Let e ∈ S, and suppose that e is idempotent. Since e is idempotent, e fixes range(e).

If w ∈ Σ∗ is such that e(w) 6= w, then w and e(w) are both preimages of e(w) under e.

Since e induces an injection, we have that e is the identity function on T (Σ∗). Let eΣ

denote the identity function on T (Σ∗). Then S can contain at most one idempotent,

namely eΣ. If eΣ ∈ S, then Proposition 3.3.6 implies that the group of units of S is

self-similar. Suppose that eΣ 6∈ S. Then S contains no idempotents and hence any

s ∈ S is non-periodic.

39

Suppose that there is an s ∈ S such that there exists a word w ∈ Σ∗ with

|w| < |s(w)|. Then, because each element of S is injective and elements of S cannot

shorten word length when acting on Σ∗, there cannot be an element s′ ∈ S such that

ss′s = s. A semigroup T is said to be von Neumann regular if for each t ∈ T there is

a t′ ∈ T with tt′t = t. Then S is not von Neumann regular. Thus we have shown the

following.

Proposition 3.2.9. Let S be an expanding automaton semigroup over an expanding

automaton A = (Q,Σ, t, o) such that each q induces an injective function T (Σ∗) →

T (Σ∗). Then

1. The group of units of S is self-similar.

2. S is von Neumann regular if and only if A is an invertible automaton and S is

a group.

3. If e ∈ S is idempotent then e = eΣ.

4. If eΣ 6∈ S, then S does not contain any periodic elements.

3.3 Algebraic Properties

3.3.1 Residual Finiteness and Periodicity

In this section we show that expanding automaton semigroups are residually finite

and that the periodicity structure of these semigroups is restricted.

Proposition 3.3.1. Expanding automaton semigroups are residually finite.

Proof. Let S be an expanding automaton semigroup over the alphabet Σ and let

a, b ∈ S with a 6= b. For each m ∈ N, let L(m) = {w ∈ Σ∗ : |w| = m}, i.e. L(m) is

40

the mth level of the tree Σ∗. Since a and b are distinct, there is n ∈ N such that a

and b act differently on L(n). Let

n′ = max{|a(w)|, |b(w)| : w ∈ L(n)}

and let L =
(⋃n′

i=1 L(i)
)
∪{$}. Finally, let T (L) denote the semigroup of transforma-

tions L → L. Since L is finite, T (L) is a finite semigroup. Define a homomorphism

ρ : S → T (L) by ρ(s) = f where f($) = $ and

f(x) =

s(x) s(x) ∈ L

$ s(x) 6∈ L

Since a and b act differently on L(n), construction of ρ ensures that ρ(a) and ρ(b) are

distinct in T (L).

Proposition 3.3.2. Boundary expanding automaton semigroups are residually finite.

Proof. Let A = (Q,Σ, t, o) be an expanding automaton. Let q1, q2 ∈ Q∗ such that

q1, q2 are distinct elements of ∂S(A). Then there is an η ∈ Σω such that q1(η) 6= q2(η),

and so there is a w ∈ Σ∗ such that w is a prefix of η and q1(w) 6= q2(w). Using the

same logic and homomorphism as in the previous proposition, we can construct a

finite semigroup S and a homomorphism ∂S(A)→ S separating q1 and q2.

Let G be an automaton group over an alphabet Σ and let PΣ denote the set of

prime numbers that divide |Σ|!. If g ∈ G has finite order, then the order of g must

have only primes from PΣ in its prime factorization. One can see this by considering

g as a level-preserving automorphism on a tree of degree |Σ|, and thus the cardinality

of any orbit under the action of g must have only prime numbers dividing |Σ|! in its

prime factorization. We show an analogous proposition for the periodicity structure

41

of expanding automaton semigroups. First, we define a partial invertible automaton

to be a quadruple (Q,Σ, t, o) where t is a partial function from Q × Σ to Q and o

is a partial function from Q × Σ to Σ such that the restricted partial function oq

from {q} × Σ to Σ is a partial permutation of Σ. It is straightforward to show that

any partial invertible automaton can be “completed” to an invertible automaton,

i.e. given a partial invertible automaton B there is an invertible automaton A (not

necessarily unique) such that B embeds (via a labeled graph homomorphism) into A.

Proposition 3.3.3. Let S be an expanding automaton semigroup over an alphabet

Σ, and let PΣ be as above. If s ∈ S is periodic with sm = sn, m < n, and s, ..., sn−1

distinct, then n−m has only primes from PΣ in its prime factorization.

Proof. Let A = (Q,Σ, t, o) be an expanding automaton with S = S(A). Suppose

s ∈ S is periodic with sm = sn, m < n, and s, ..., sn−1 distinct. Fix w ∈ sm(Σ∗).

Then Rw := {sk(w) | k ≥ m} is a finite set, and the cardinality of Rw divides n−m.

Note that for any w′ ∈ Rw, s acts like a cycle on w′ as sm(w′) = sn(w′). Furthermore,

if v, v′ ∈ Rw then |v| = |v′| because s cannot shorten word length. Thus the paths

in A corresponding to the input words sm(w), ..., sn−1(w) form a partial invertible

subautomaton of A. Denote this partial invertible subautomaton by βw. Consider

the partial invertible subautomaton β of A given by β = ∪w∈Σ∗(βw). Complete β to

an invertible automaton β′. Then Rw is an orbit under the action of an element of

an automaton group for all w ∈ Σ∗, and the result follows.

3.3.2 Subgroups

Recall from Section 2.2 that if A is an invertible synchronous automaton, then A−1

denotes the inverse automaton of A.

42

Proposition 3.3.4. A group G is an automaton group (respectively self-similar group)

if and only if G is an expanding automaton semigroup (respectively expanding self-

similar semigroup).

Proof. LetG be an automaton group corresponding to the automatonA := (Q,Σ, t, o).

Since G is an automaton group, A is invertible and synchronous. Construct a new

automaton B = A ∪ A−1. Then S(B) = G and B is an expanding automaton. Thus

G is an expanding automaton semigroup.

Conversely, let the group G be an expanding automaton semigroup corresponding

to the expanding automaton A = (Q,Σ, t, o). Let e be the identity of G and g ∈ G.

Then

e(Σ∗) = g(g−1(Σ∗)) ⊆ g(Σ∗)

and

g(Σ∗) = e(g(Σ∗)) ⊆ e(Σ∗)

Hence e(Σ∗) = g(Σ∗). Now e is idempotent and thus fixes e(Σ∗), so (as in the proof

of 3.1.2) g is bijective and length-preserving on g(Σ∗) = e(Σ∗). Thus G is isomorphic

to the semigroup generated by {g|e(Σ∗) : g ∈ G}.

Construct an invertible automaton B = (Q∪ {1},Σ = {σ1, ..., σn}, t, o) as follows.

The state set is Q∪{i} where Q is a set in bijection with Q and i = (i, ..., i)[σ1, ..., σn],

i.e. i is a sink state that pointwise fixes Σ∗. The transition function is given by

t(q, σ) =

t(q, σ) if σ ∈ e(Σ)

i if σ 6∈ e(Σ)

43

and the output function is given by

o(q, σ) =

o(q, σ) if σ ∈ e(Σ)

σ if σ 6∈ e(Σ)

Let g ∈ G and let w ∈ Σ∗ − e(Σ∗) be of minimal length. Write w = vσ where

v ∈ e(Σ∗). Then the above conditions imply that, for any w′ ∈ Σ∗, q̂(ww′) = q(w)σw′.

In other words, each state q of B will mimic the action of q on words that are in the

image of e, but will enter the state i and act identically on the suffix of a word w

following the largest prefix of w lying in e(Σ∗). So the part of the action which does

not act bijectively and in a length-preserving fashion collapses to the identity, and we

have an invertible automaton giving G.

None of the above uses that the automata have finitely many states, so the same

logic shows that G is a self-similar group if and only if G is an expanding self-similar

semigroup.

The idea in the last proof allows us to prove the following:

Proposition 3.3.5. Let S be an expanding automaton semigroup and H a subgroup

of S. Then there is a self-similar group G with H ≤ G.

Proof. Let S be an expanding automaton semigroup and H a subgroup of S. Let e

denote the identity of H. Let A = (Q,Σ, t, o) be the expanding automaton associated

with S. As in the proof of Proposition 3.3.4, H is isomorphic to the semigroup

generated by {h|e(Σ∗) : h ∈ H} and each element of H acts injectively and in length-

preserving fashion on e(Σ∗). Then we can again collapse the “non-group” part of the

action to the state which fixes the tree to get a length-preserving and invertible action

of H. Thus we can construct an invertible (and possibly infinite state) synchronous

44

automaton containing the elements of H as states. The states generated by this

automaton is a self-similar group G with H ≤ G.

If S is an expanding automaton semigroup and H is a subgroup of S, then S is

a subgroup of a self-similar group, but H is not necessarily self-similar. If H is the

unique maximal subgroup of S, then we show below that H is self-similar.

Proposition 3.3.6. Let S be an expanding automaton semigroup with a unique max-

imal subgroup G. Then G is self-similar.

Proof. Let A = (Q,Σ, t, o) be the automaton associated with S. Let g ∈ G and write

g = (g1, ...gn)τg where n = |Σ|. Let e be the identity of G, and write e = (e1, ..., en)τe.

Since e is idempotent, e fixes range(e), and thus the set Σ̂ := {σ ∈ Σ | e(σ) = σ}

is non-empty. To see this, let σ ∈ Σ and suppose that e(σ) = σ′w for some σ′ ∈ Σ.

Then e fixes σ′w, and since e is length-expanding e(σ′) = σ′. Since e is idempotent,

eσ̂ is idempotent for all σ̂ ∈ Σ̂. This is true because (en)σ̂ = (eσ̂)n. Since G is the

unique maximal subgroup of S, there is only one idempotent element of S. Thus

eσ̂ = e for all σ̂ ∈ Σ̂.

Let σ ∈ Σ̂. Then τg(σ) ∈ Σ̂ and so eτg(σ) = e. Thus Equation (2.2) implies

gσ = (eg)σ = eτg(σ)gσ

and, as e stabilizes σ,

gσ = (ge)σ = gσeσ.

Hence egσ = gσe = gσ for any σ ∈ Σ̂.

Let h = g−1, σ ∈ Σ̂, and write h = (h1, ..., hn)τh. By the same logic as above,

45

ehσ = hσe = hσ. Since hg = e we have

(hg)σ = hτg(σ)gσ = eσ = e

Since gσ is left-invertible, Proposition 3.1.2 implies that gσ is invertible. Therefore

gσ ∈ G for all σ ∈ Σ̂.

Continuing inductively, we see that gw ∈ G for all w ∈ range(e). Similar to the

proof of Proposition 3.3.4, if w 6∈ range(e) then for all g ∈ G we can replace gw

with e and the resulting group will still be isomorphic to G. This is because, as in

Proposition 3.3.4, the action of G on range(e) captures all of the group information.

Thus G is an expanding self-similar semigroup, and Proposition 3.3.4 implies that G

is a self-similar group.

If A is an invertible synchronous automaton, then S(A) has at most one idem-

potent, namely the identity function on the tree. Thus Proposition 3.3.6 has the

following corollary.

Corollary 3.3.7. Let A be an invertible synchronous automaton. Then the group of

units of S(A) is self-similar.

3.4 Closure Properties and further examples

3.4.1 Closure Properties

We begin this section by showing that the class of expanding automaton semigroups

is not closed under taking normal ideal extensions.

Let S and T be semigroups. The normal ideal extension of S by T is the disjoint

union of S and T with multiplication of two elements of S or two elements of T as

46

before and for any s ∈ S and t ∈ T , define st = ts = t. If S is a semigroup, then S

with a zero adjoined is the normal ideal extension of S by {0}. Thus adjunction of a

zero element is an example of a normal ideal extension.

The free semigroup of rank 1 is an expanding automaton semigroup (see Example

3.2.2, for example). We show that the free semigroup of rank 1 is not an expanding

automaton semigroup, which shows that the class of expanding automaton semigroups

is not closed under taking normal ideal extensions.

Let S and T be semigroups. The normal ideal extension of S by T is the disjoint

union of S and T with multiplication of two elements of S or two elements of T as

before and for any s ∈ S and t ∈ T , define st = ts = t.

Lemma 3.4.1. The free semigroup of rank 1 with a zero adjoined is not an automaton

semigroup.

Proof. Let S be an automaton semigroup over an alphabet Σ = {σ1, ..., σn} such that

S is generated by two elements a and b with ab = ba = b and b2 = b. We use the

same idea of the proof of Proposition 3.1.1 to show that a is periodic.

Let σ ∈ Σ. Suppose that the section of a at an(σ) = b for some n. Then

(an)σ = (an+k)σ for all k ∈ N. If the section of a at an(σ) is a power of a for all n,

then (as in the proof of Proposition 3.1.1) the section of a at an(σ) is a for all n.

Let Σ̂ = {σ ∈ Σ | (ar)σ = b for some r}. As in the proof of Proposition 3.1.1, we

can choose s and t such that τas = τat and (as)σ = (at)σ for all σ ∈ Σ̂. Then the same

logic of the proof of Proposition 3.1.1 shows that as = at.

We now apply Lemma 3.4.1 to show the following.

Proposition 3.4.2. The class of expanding automaton semigroups is not closed under

taking normal ideal extensions. In particular, the free semigroup of rank 1 with a zero

adjoined is not an expanding automaton semigroup.

47

Proof. Let S = 〈a, b | b2 = b, ab = ba = b〉 be the free semigroup of rank 1 with a zero

adjoined, and suppose S were an expanding automaton semigroup corresponding to

the automaton A = (Q,Σ, t, o). Since b is idempotent, b fixes range(b). Hence the set

Σ̂ = {σ ∈ Σ | b(σ) = σ} is non-empty. Since b is the only idempotent of S, bσ̂ = b for

all σ̂ ∈ Σ̂.

Let σ ∈ Σ − Σ̂, and suppose that bσ = an for some n > 0. Let w ∈ Σ∗. Then

b(σw) = b(σ)an(w). Since b fixes range(b), we have that b(b(σw)) = b(σ)an(w). We

also have that b fixes b(σ) and the section of b at b(σ) is b. Thus b fixes an(w), and

(as w is arbitrary) ban = an in S. But ban = b, which implies that an is idempotent.

Since an is not idempotent in S, we have bσ = b for all σ ∈ Σ. Note that b must

be a state of A as powers of a cannot multiply to obtain b. Thus, in the graphical

representation of A, all edges going out of b are loops based at b. Note also that a

must be a state of A.

Let Γ = {σ ∈ Σ : |am(σ)| = 1 for all m}. The equation ab = b implies that a

fixes range(b), and so Γ is nonempty. In A, for each state q in 〈a〉 and γ ∈ Γ there is

an arrow labeled by γ|γ̂ coming out of q where γ̂ ∈ Γ. Let w ∈ Γ∗ with w = γ1...γk.

Suppose that |a(w)| > 1. Then w, as a path in A based at a, must enter the state b.

Choose i maximal so that γ1...γi−1 is a path such that the initial vertex of each edge

is not the state b. Then a(w) = γ′1...γ
′
k where γ′m ∈ Γ for 1 ≤ m ≤ i− 1 and γ′m ∈ Σ̂∗

for i ≤ m ≤ k. Since a fixes Σ̂∗, |an(w)| = |a2(w)| for all n ≥ 2. Thus for any w ∈ Γ∗,

|a|Σ|(w)| = |ak(w)| for any k ≥ |Σ|.

Suppose that |a(σ)| = 1 for all σ ∈ Σ. Then the same logic as in the proof of

Proposition 3.1.1 shows that either a is periodic or has infinitely many sections (note

that the proof does not use that the periodic element acts in a length-preserving

fashion). So the set Σ′ = {σ ∈ Σ : |a(σ)| > 1} is nonempty. Let σ′ ∈ Σ′, and write

a(σ′) = σ1...σm where σi ∈ Σ. Suppose that σi = σ′ for some i. Then b(a(σ′)) =

48

b(σ1...σn) = b(σ1)...b(σm) = b(σ′), and so |b(a(σ′))| > |b(σ′)|, a contradiction. Thus

σ′ is not a letter of a(σ′). The same calculation also shows that σ′ is not a letter of

an(σ′) for any n and that σ′ is not a letter of a(σi) for any i.

Let w ∈ Σ∗ and write w = σ1...σk. Suppose that σi 6∈ Γ for some i. Then every

edge in A with input label σi has an output label without σi as a letter. Thus an(w)

does not contain σi as a letter for any n. If a(w) ∈ Γ∗, then as mentioned above a will

act in a length-preserving fashion on a|Σ|(w). Suppose that a(w) 6∈ Γ∗ where σj 6∈ Γ

is a letter of a(w). Then a2(w) does not contain σi or σj as a letter. Continuing

inductively, we see that a|Σ|(w) ∈ Γ∗. Thus there is an m ∈ N such that a acts in a

length-preserving fashion on am(w) for any w ∈ Σ∗, i.e. |am(w)| = |ak(w)| for k ≥ m

and any w ∈ Σ∗. This induces a length-preserving action of S on Γ∗, contradicting

Lemma 3.4.1.

Proposition 3.4.3. Let S and T be asynchronous automaton semigroups. Then the

normal ideal extension of S by T is an asynchronous automaton semigroup.

Proof. Let A = (Q1,Σ, t1, o1) and B = (Q2,Γ, t2, o2) be asynchronous automata with

S(A) = S and S(B) = T . Construct a new automaton C = (Q1 ∪Q2,Σ∪Γ, t, o) with

transition and output functions as follows:

t(q1, σ) = t1(q1, σ) for all q1 ∈ Q1 and σ ∈ Σ

t(q1, γ) = q1 for all q1 ∈ Q1 and γ ∈ Γ

t(q2, σ) = q2 for all q2 ∈ Q2 and σ ∈ Σ

t(q2, γ) = t2(q2, γ) for all q2 ∈ Q2 and γ ∈ Γ

o(q1, σ) = o1(q1, σ) for all q1 ∈ Q1 and σ ∈ Σ

49

o(q1, γ) = γ for all q1 ∈ Q1 and γ ∈ Γ

o(q2, σ) = ∅ for all q2 ∈ Q2 and σ ∈ Σ

o(q2, γ) = o2(q2, γ) for all q2 ∈ Q2 and γ ∈ Γ

By construction of C, the subsemigroup of S(C) generated by Q1 is S and the sub-

semigroup of S(C) generated by Q2 is T .

Now let w ∈ (Σ ∪ Γ)∗. Write w = σ1γ1σ2γ2...σnγn with σi ∈ Σ∗ and γj ∈ Γ∗. Let

s ∈ Q∗1 and t ∈ Q∗2. Then

ts(w) = t(s(σ1)γ1s(σ2)γ2...s(σn)γn) = ∅t(γ1)∅t(γ2)...t(γn) = t(γ1)t(γ2)...t(γn)

and

st(w) = s(t(γ1)t(γ2)...t(γn)) = t(γ1)t(γ2)...t(γn)

Thus both st(w) and ts(w) equal t(w), so st = ts = t.

We close this section by showing that the class of expanding automaton semigroups

is closed under direct product, provided the direct product is finitely generated.

Proposition 3.4.4. Let S and T be expanding automaton semigroups. Then S × T

is an expanding automaton semigroup if and only if S × T is finitely generated.

Proof. An expanding automaton semigroup must be finitely generated, so the forward

direction is clear. Suppose that S×T is finitely generated. Then S×T is generated by

A×B for some finite A ⊆ S and B ⊆ T . Let AS and AT be expanding automata with

state sets P and Q respectively such that S = S(AS) and T = S(AT). Furthermore,

choose m,n so that A ⊆ Pm and B ⊆ Qn, and add enough states to each expanding

automaton so that we obtain new automata A′S and A′T with S = S(A′S), T = S(A′T),

50

and Pm is contained in the state set of A′S; likewise for Qn and A′T . Write A′S =

(X ′, C, t′, o′) and A′T = (Y ′, D, t̂, ô). with C and D disjoint.

Let Y = (X ′ ∪ Y ′, C ∪D, t, o) be the expanding automaton defined by

t(q, σ) =

t′(q, σ) q ∈ X ′ and σ ∈ C

q q ∈ X ′ and σ ∈ D

t̂(q, σ) q ∈ Y ′ and σ ∈ D

q q ∈ Y ′ and σ ∈ C

and o(q, σ) =

o′(q, σ) q ∈ X ′ and σ ∈ C

σ q ∈ X ′ and σ ∈ D

ô(q, σ) q ∈ Y ′ and σ ∈ D

σ q ∈ Y ′ and σ ∈ C

.

Then the subsemigroup of S(Y) generated by X ′ is S and the subsemigroup of S(Y)

generated by Y ′ is T , and construction of Y implies that x′y′ = y′x′ for all x′ ∈ X ′

and y′ ∈ Y ′. Thus S(Y) ∼= S × T .

Let S and T be finitely generated semigroups such that T is infinite. Robertson,

Ruškuc, and Wiegold show in [24] that if S is finite then S × T is finitely generated

if and only if S2 = S. If S is infinite, then S × T is finitely generated if and only if

S2 = S and T 2 = T . Let N denote the free semigroup of rank 1. Then N2 6= N, and

thus N×N is not an expanding automaton semigroup (even though N is an expanding

automaton semigroup).

3.4.2 Rees Congruences on Automaton Semigroups

Let S be a semigroup and I an ideal of S. Define an equivalence relation ρ on S by

xρy if and only if either x = y or both x and y are in I. We call ρ the Rees congruence

on S with respect to I. Then the Rees quotient of S with respect to I, denoted S/I,

is the semigroup S/ρ. In other words, the Rees quotient on S with respect to I is

the semigroup induced by the Rees congruence with respect to I. For more detail on

51

Rees quotients, see [5] by Clifford and Preston.

Let S be a residually finite semigroup and I and ideal of S. Then S/I need

not be residually finite (see [10], where Golubov exhibits an example of a residually

finite inverse semigroup which has a non-residually finite Rees quotient), so in general

there is little hope that the class of automaton semigroups is closed under passing to

Rees quotients. However, this leaves open the possibility that the class of automaton

semigroups is closed under passing to residually finite Rees quotients. In particular,

we wanted to answer the following question: Let S be an automaton semigroup

and I a principal ideal of S such that S/I is residually finite; is S/I an automaton

semigroup? We show below that the answer is no. In fact, for any m ∈ N there are an

n ≥ m, an automaton semigroup Sm, and an ideal In of Sn such that In is generated

by n elements, Sm/In is residually finite, and Sm/Im is not an automaton semigroup.

In order to demonstrate such semigroups, we show that the semigroups with semi-

group presentation Sn = 〈X | R〉 such that X = {x1, ..., xn, 0} and

R = {(xixj, 0) | i 6= j}

are not automaton semigroups. All of these semigroups are residually finite, and

Sn is a Rees quotient of the free commutative semigroup of rank n. It is known

that these semigroups are residually finite, since Maltcev has shown that any finitely

generated commutative semigroup is residually finite (see [20]). We give a proof below

for completeness.

Proposition 3.4.5. The semigroup Sn is residually finite for all n.

Proof. We show this for the semigroup S2, as the proof for the others is similar. Let

S2 = 〈a, b, 0 | ab = ba = 0〉. Then S = {am, bn, 0 |m,n ∈ N}. Let ar, bs ∈ S. Consider

52

the finite semigroup Tr,s = 〈c, d, 0 | cr = cr+1, ds = ds+1, cd = dc = 0〉. Then the map

φ : S2 → Tr,s determined by φ(a) = c, φ(b) = d, and φ(0) = 0 is a homomorphism

that separates ar and bs.

Proposition 3.4.6. The class of automaton semigroups is not closed under passing

to residually finite Rees quotients. In particular, for any m ∈ N there are an n ≥ m,

an automaton semigroup Sm, and an ideal In of Sn such that In is generated by n

elements, Sm/In is residually finite, and Sm/In is not an automaton semigroup.

Proof. This proposition is true as Sn is not an automaton semigroup for any n. We

show that S2 is not an automaton semigroup, as the argument for the other semigroups

is similar.

Let S be an automaton semigroup with automaton A = (Q,Σ, t, o) such that S

is generated by three elements a, b, and 0 where 0 is a zero element and ab = ba = 0,

and suppose that a and b are non-periodic elements of S. We show that both a and

b are periodic elements of S, obtaining a contradiction.

Let Σ̂a = {σ ∈ Σ | aam(σ) ∈ 〈a〉 or aam(σ) ∈ 〈b〉 for all m ∈ N}. In other words, Σ̂a

is the set of all σ ∈ Σ such that (am)σ is not 0 in S for all m ∈ N. Since ab = ba = 0

in S, this implies that if σ ∈ Σ̂a then for all m the section of a at am(σ) is always a

power of a or always a power of b. Define Σ̂b similarly. Note that, as ab = ba = 0

in S, if σ 6∈ Σ̂a then there is an n ∈ N such that (an)σ = 0. Furthermore, note that

since a and b are assumed to be non-periodic, both Σ̂a are Σ̂b are non-empty.

Let σ ∈ Σ̂a and suppose that aσ is a power of a. Note that if for all m ∈ N then

the section of a at amσ is a power of a then the section of a at amσ is a (otherwise

the a is not a state of a finite automaton). We now break into cases.

Case 1: Let σ ∈ Σ̂a. Suppose that aσ is a power of b for some σ ∈ Σ̂a. Then by

definition of Σ̂a the section of a at am(σ) is a power of b for all m ∈ N.

53

Subcase 1a: Suppose that there exists a β ∈ {am(σ) | m ∈ N} such that aβ = br

with r > 1. Since b is non-periodic, choose a δ ∈ Σ̂b. Suppose that bδ = as for some

s ∈ N. Then aβδ = as1 , where s1 > s. Now aβδβ = br1 , where r1 > r. Thus aβδβδ = as2

where s2 > s1. Continuing this process, we see that a cannot be a state of a finite

automaton. Thus, in this case where there exists β ∈ {am(σ) | m ∈ N} such that

aβ = br where r > 1, bδ cannot be a power of a if δ ∈ Σ̂b. Thus bδ = b for all δ ∈ Σ̂b.

Choose r1, r2 ∈ N with r1 < r2 such that (br1)σ = 0 for all σ 6∈ Σ̂b and τ r1
b = τ r2

b .

Then, for any word w which contains a letter of Σ− Σ̂b, then (br1)w = (br2)w = 0. If

w ∈ (Σ̂b)∗, then (bn)w = bn and so choice of r1 and r2 implies that τ(br1)w = τ(br2)w .

Thus br1 = br2 , and b is periodic.

Since b is periodic, choose t1, t2 ∈ N such that bt1 = bt2 , (at1)δ = 0 for all δ ∈ Σ−Σ̂a,

and τ t1a = τ t2a . Then, as in the proof of 3.1.1, at1 = at2 .

Subcase 1b: Suppose that there exists a β ∈ {am(σ) | m ∈ N} such that aβ = b,

and, for any r > 1, aδ 6= br for all δ ∈ Σ̂a. Suppose that there exists δ′ ∈ Σ̂b such

that bδ′ = ar where r > 1. Then, as above, a is not a state of a finite automaton.

Thus, for all σ′ ∈ Σ̂b, bσ′ is either a or b. Choose r1, r2 ∈ N with r1 < r2 such that

(ar1)η = 0 for all η ∈ Σ− Σ̂a, (br1)ρ = 0 for all ρ ∈ Σ− Σ̂b, τ r1
a = τ r2

a , and τ r1
b = τ r2

b .

Then ar1 = ar2 and br1 = br2 .

Case 2: Suppose that aσ = a for all σ ∈ Σ̂a. Choose r1 and r2 with r1 < r2 such

that (ar1)σ = 0 for all σ 6∈ Σ̂a and τ r1
a = τ r2

a . Then, as above, ar1 = ar2 . This is a

mirror case of Subcase 1b, which implies that b is also periodic.

Thus S2 is not an automaton semigroup. The proof that Sn is not an automaton

semigroup follows exactly the same logic, showing that all generators are periodic.

Let Nm denote the free commutative semigroup of rank m. Then Sm = Nm/In, where

In is the ideal generated by xixj for all i, j.

54

3.4.3 Free Partially Commutative Monoids and Semigroups

In this section we show that every free partially commutative monoid is an automa-

ton semigroup, and we show that every free partially commutative semigroup is an

expanding automaton semigroup. A free partially commutative monoid is a monoid

with monoid presentation 〈x1, ..., xn | R〉 where R ⊆ {(xixj, xj, xi) | 1 ≤ i, j ≤ n}. A

free partially commutative semigroup is defined analogously.

Let M be a free partially commutative monoid with monoid presentation 〈X|R〉.

We begin by defining the shortlex normal form on M . First, if v ∈ X∗, |v| will

always denote the length of v in X∗. Order the set X by xi < xj whenever i < j. If

v, w ∈ X∗, let v < w if and only if |v| < |w| or, if |v| = |w|, v comes before w in the

dictionary order induced by the order on X. This is called the shortlex ordering on

X∗. To obtain the set of shortlex normal forms of M , for each w ∈M choose a word

w′ ∈ X∗ such that w = w′ in M and w′ is minimal in X∗ with respect to the shortlex

ordering. We remark that it is immediate from this definition that a word w ∈ X∗

is in shortlex normal form in M if and only if for all factorizations x = ybuaz in M

where y, u, z ∈ X∗, a and b commute, and a < b, there is a letter of u which does not

commute with a.

For any w ∈ X∗, let w(xi, xj) denote the word obtained from w by erasing all

letters except xi and xj. We write w(xi) to denote the word obtained from w by

deleting all occurrences of the letter xi. We will need the following lemma regarding

free partially commutative monoids.

Lemma 3.4.7. Let M be a free partially commutative monoid generated by X =

{x1, ..., xn}, and let v, w ∈ X∗ such that v and w are in shortlex normal form in M .

Suppose that

1. |v(xi)| = |w(xi)| for 1 ≤ i ≤ n and

55

2. v(xi, xj) = w(xi, xj) in X∗ whenever 1 ≤ i, j ≤ n and xi and xj do not commute.

Then v = w in M .

Proof. Let v, w ∈ M be words satisfying |v(xi)| = |w(xi)| for all i. This implies that

the number of occurrences of xi as a letter of v equals the number of occurrences of xi

as a letter of w. In particular, |v| = |w|. Write v = xi1 ...xik and w = xj1 ...xjk with v, w

in shortlex normal form. Suppose that xi1 < xj1 . Then v(xi1 , xj1) 6= w(xi1 , xj1) in X∗,

and condition (2) in the hypotheses implies that xi1 and xj1 commute. Condition (1)

implies that xj1 is a letter of v and xi1 is a letter of w, and so we write v = xi1v1xj1v2

where v1 does not contain xj1 as a letter. Similarly, write w = xj1w1xi1w2. Condition

(2) implies that xi1 commutes with every letter of w1. Since xi1 < xj1 , we have that

w was not in lexicographic normal form. Thus xi1 6< xj1 , and symmetry implies

xj1 6< xi1 . So xi1 = xj1 . Inductively continuing the argument implies that xit = xjt

for all 1 ≤ t ≤ k.

Theorem 3.4.8. Every free partially commutative monoid is an automaton semi-

group.

Proof. Let M be a partially commutative monoid generated by X = {x1, ..., xn}. Let

N = {{i, j} | xi and xj do not commute}. Let A = {a1, ..., an}, B = {b1, ..., bn},

C = {cij | i < j and {i, j} ∈ N}, and D = {dij | i < j and {i, j} ∈ N} be

four alphabets where C,D are in bijective correspondence with N . We construct an

automaton AM with state set Q := {y1, ..., yn, 1} over the alphabet Σ = A∪B∪C∪D

such that S(AM) ∼= M as follows. Let 1 be the sink state that pointwise fixes Σ∗.

56

For each i, define

t(yi, aj) = 1 for all j, t(yi, bj) =

yi i = j

1 i 6= j

and

o(yi, aj) =

bj i = j

aj i 6= j

, o(yi, bj) =

aj i = j

bj i 6= j

.

By construction, the subautomaton consisting of the states yi and 1 over the

alphabet {ai, bi} is the adding machine automaton (see Figure 1.3 of [22]) for all i.

Note that for any k > j, yji (a
2j
i) 6= yki (a2j), and so the semigroup corresponding to this

subautomaton is the free monoid of rank 1 for all i. Thus each yi acts non-periodically

on {ai, bi}∗ for all i. Furthermore, if i 6= j then yj induces the identity function from

xΣ∗ to xΣ∗ where x ∈ {ai, bi}.

We now complete the construction of A. Fix i < j with {i, j} ∈ N , and let k ∈ N

such 1 ≤ k ≤ n and k 6= i, j. Define

t(yi, cij) = yj, t(yi, dij) = yi, t(yj, cij) = yi, t(yj, dij) = yj

o(yi, cij) = dij, o(yi, dij) = cij, o(yj, cij) = cij, o(yj, dij) = dij

t(yk, cij) = t(yk, dij) = 1

o(yk, cij) = cij, t(yk, dij) = dij.

For all other i′, j′ such that {i′, j′} ⊆ N and i′ < j′, define the output and transition

function analogously. Figure 3.3 gives the automatonAM whereM is the free partially

commutative monoid 〈y1, y2, y3 | y1y2 = y2y1, y1y3 = y3y1〉 (we omit the arrow on the

57

Figure 3.3: An automaton generating the monoid 〈y1, y2, y3 | y1y2 = y2y1, y1y3 = y3y1〉

sink state).

For each {i, j} ∈ N , the subautomaton of AM corresponding to the states yi and

yj over the alphabet {cij, dij} is the “lamplighter automaton” (see Figure 1.1 of [16]).

Grigorchuk and Zuk show in Theorem 2 of [16] that this automaton generates the

lamplighter group, and in particular in Lemma 6 of [16] they show that the states of

this automaton generate a free semigroup of rank 2. Thus yi and yj generate a free

semigroup of rank 2 when acting on {cij, dij}∗, and hence the semigroup generated

by yi and yj in S(AM) is free of rank 2.

Let 1 ≤ i, j ≤ n be such that {i, j} 6⊆ N . By construction of AM , yi and yj have

disjoint support, i.e. the sets {w ∈ Σ∗ | yi(w) 6= w} and {w ∈ Σ∗ | yj(w) 6= w} are

disjoint. Thus if xi and xj commute in M , then yi and yj commute in S(AM). So

S(AM) is a quotient of M .

Let v, w ∈ Q∗ such that v and w are written in shortlex normal form when

considered as elements of M . Suppose that w(yi) 6= v(yi) for some i. By construction

of AM , for any i 6= j we have yj acts as the identity function on {ai, bi}∗. Thus the

action of v and w on {ai, bi}∗ is the same as the action of v(yi) and w(yi), respectively,

on {ai, bi}∗. So w(yi) 6= v(yi) implies that v 6= w in S(AM). Hence v = w in S(AM)

58

implies that w(yi) = v(yi) for all i.

Suppose now that there exist {r, s} ∈ N such that v(yr, ys) 6= w(yr, ys). If t 6= r, s,

then yt acts like the identity function on {crs, drs}∗. Thus the action of v and w

on {crs, drs}∗ is the same as the action of v(yr, ys) and w(yr, ys), respectively, on

{crs, drs}∗. So v(yr, ys) 6= w(yr, ys) implies that v 6= w in S(AM). Thus if v = w in

S(AM) then v(yr, ys) = w(yr, ys) in Q∗ for all {r, s} ∈ N .

The last two paragraphs have shown that if v = w in S(AM), then v and w satisfy

the hypotheses of Lemma 3.4.7. Hence v = w in M , and the result follows.

We now turn to showing that each partially commutative semigroup is an ex-

panding automaton semigroup. Let A2 = (Q = {a, b},Σ = {0, 1, 2, 3, 4}, t, o) be an

expanding automaton with transition function defined by t(x, σ) = x for all x ∈ Q

and σ ∈ Σ, and output function defined by

o(a, 0) = 00, o(b, 0) = 10, o(a, 1) = 1, o(b, 1) = 1

o(a, 2) = 3, o(b, 2) = 4, o(a, 3) = 3, o(b, 3) = 3, o(a, 4) = 4, o(b, 4) = 4

We show below in lemma 3.4.10 that the semigroup generated by a and b is free.

Before we do this, we need the following technical lemma.

Lemma 3.4.9. Let m1, ...,mk, n1, ..., nk−1, p1, ..., pr, q1, ..., qr−1 ∈ N and nk, qr ∈ N ∪

{0}. Then, in {0, 1}∗,

(1n1(1n2(...(1nk−1(1nk0)2mk)2mk−1)...)2m1 = (1q1(1q2(...(1qk−1(1qk0)2pk)2pk−1)...)2p1

if and only if mi = pi and ni = qi for all i.

Proof. Suppose that we have m1, ...,mk, n1, ..., nk−1, p1, ..., pr, q1, ..., qr−1 ∈ N and

59

nk, qr ∈ N ∪ {0} such that

w := (1n1(1n2(...(1nk−1(1nk0)2mk)2mk−1)...)2m1 = (1q1(1q2(...(1qk−1(1qk0)2pk)2pk−1)...)2p1

in {0, 1}∗. Let t1 = (
k−1∑
i=1

ni) and t2 = (
r−1∑
i=1

qi). Then

w = 1t1(1nk0)2mk1nk−1(1nk0)2mk ... = 1t2(1qr0)2pr1qr−1(1qr0)2pr ...

Thus nk = qr and mk = pr. The above equation also shows that nk−1 = qr−1 as

nk + nk−1 = qr + qr−1. Looking at longer prefixes of w will show our result.

Lemma 3.4.10. S(A2) is the free semigroup of rank 2.

Proof. Let m1, ...,mk, n1...nk−1 ∈ N and nk ∈ N ∪ {0}. Then a straightforward

induction on
k∑
i=1

(mi + ni) shows that

bnkamk ...bn1am1(0) = (1n1(1n2(...(1nk−1(1nk0)2mk)2mk−1)...)2m1

Thus Lemma 3.4.9 implies that

am1bn1 ...amkbnk = ap1bq1 ...aprbqr

if and only if mi = pi and nj = qj for all i, j. So if v, w ∈ S(A2) with v = av′ and

w = aw′ where v′, w′ ∈ {a, b}∗, then v = w in S(A2) if and only if v′ = w′ in {a, b}∗.

Suppose now that v, w ∈ {a, b}∗ and v = av′, w = bw′ where v′, w′ ∈ {a, b}∗. Then

v(2) = 3 and w(2) = 4, so v 6= w in S(A2).

Lastly, Consider v = bm1an1 ...bmkank ∈ {a, b}∗ where m1, ...,mk, n1, ..., nk−1 ∈ N

60

and nk ∈ N ∪ {0}. Then a straightforward induction on
k∑
i=1

(mi + ni) shows that

v(0) = 1m1(1m2(...(1mk−1(1mk02nk)2nk−1)...)2n1

The same logic found in the proof of Lemma 3.4.9 can be used to show that, in {0, 1}∗,

1m1(1m2(...(1mk−1(1mk02nk)2nk−1)...)2n1 = 1p1(1p2(...(1pr−1(1pr02qr)2qr−1)...)2q1

if and only if mi = pi and nj = qj for all i, j. Thus, in S(A2),

bm1an1 ...bmkank = bp1aq1 ...bpraqr

if and only if mi = pi and nj = qj for all i, j.

So if w, v ∈ S(A2) are equal in S(A2) then they are equal in {a, b}∗, and we have

our result.

Lemma 3.4.10 allows us to prove the following:

Theorem 3.4.11. Every partially commutative semigroup is an expanding automaton

semigroup.

Proof. Let S(X) be a partially commutative semigroup with generating set X =

{x1, ..., xn}. Let A = {(i, j) | xi and xj do not commute}, B = {β1, ..., βn} be a set

in one-to-one correspondence with the elements of X, and let Q = {y1, ..., yn} be a

state set. For each (i, j) ∈ A introduce an alphabet Σij := {σ0
ij, ..., σ

4
ij}. Let

Σ =
⋃

(i,j)∈A
(Σij) ∪B

61

be an alphabet. We now construct an expanding automaton A = (Q,Σ, t, o) such

that S(A) ∼= S(X) under the mapping yi → xi for all i. The transition function of

A is defined by (yi, σ) = yi for all 1 ≤ i ≤ n and σ ∈ Σ. Fix (i, j) ∈ A. We begin

defining the output function as follows:

o(yi, σ0
ij) = σ0

ijσ
0
ij, o(yj, σ0

ij) = σ1
ijσ

0
ij

o(yi, σ1
ij) = σ1

ij, o(yj, σ1
ij) = σ1

ij

o(yi, σ2
ij) = σ3

ij, o(yj, σ2
ij) = σ4

ij

o(yi, σ3
ij) = σ3

ij, o(yj, σ3
ij) = σ3

ij

o(yi, σ4
ij) = σ4

ij, o(yj, σ4
ij) = σ4

ij

o(yk, σsij) = σsij for all k 6∈ {i, j} and s ∈ {0, ..., 4}

Extend the output function to
⋃

(i,j)∈A
(Σij) analogously. This ensures that yi and yj

will generate a free semigroup for all (i, j) ∈ A, as yi and yj generate a free semigroup

when acting on Σ∗ij. Furthermore, if k 6= i, j then yk fixes any element of Σ∗ij. To

complete the description of the output function, let

o(yi, βj) =

βjβj i = j

βj i 6= j

for all βj ∈ B.

By construction of A, xi commutes with xj in S(X) if and only if yi and yj

commute in S(A), and xi and xj generate a free semigroup in S(X) if and only if yi and

yj generate a free semigroup in S(A). Additionally, if w1, w2 ∈ Q∗ are equal in S(A),

62

then (as in the proof with partially commutative monoids) w1(xi, xj) = w2(xi, xj) for

each (i, j) ∈ A and, for each i, wi must have as many occurrences of xi as a subletter

as w2. Thus the logic of the proof of Theorem 3.4.8 gives the result.

3.5 Degree -1 Expanding Automata

In this section, we investigate the properties of monoids that can be realized as

expanding automaton semigroups with degree -1 automata. The idea to look at these

monoids came from the work of Said Sidki, who first applied the notion of the growth

of an automaton to automaton groups (see [27]). This idea of looking at the growth

of automata has been fruitful, as Sidki has shown (for example) that groups arising

from automata of polynomial growth do not generate a free group (see [28]) and he

has shown that groups arising from automata whose growth is at most linear have

solvable power problem (see [27]). Let S be a semigroup. We say that S has solvable

power problem if there is an algorithm which takes as input an element s ∈ S and

decides whether or not s is periodic.

Before we introduce definitions, we remark that for the rest of the section we will

be discussing monoid actions on trees. Thus the trivial element of a monoid given by

an expanding automaton will be assumed to be the function that pointwise fixes the

tree.

Given an expanding endomorphism f of a tree Σ∗, define θk(f) to be the number

of vertices on the k-th level of Σ∗ such that the sections of f are non-trivial. If there

exists an n such that θn(f) = 0, then we say that f has depth n. If A is an expanding

automaton such that every state of A has finite depth, then we say that A is an

expanding automaton of degree -1.

Let M be a monoid such that M = S(A) where A is an expanding automaton of

63

degree -1. Then we callM an expanding automaton monoid of degree -1. The class of

expanding automaton monoids of degree -1 contains many interesting monoids. We

show below that free partially commutative monoids arise from expanding automata

of degree -1, for example. The class of synchronous automaton monoids of degree

-1 is completely understood–it is a straightforward exercise to show that M is a

synchronous automaton monoid of degree -1 if and only if M is finite. For the rest of

this section, I will denote the function which pointwise fixes the tree.

Lemma 3.5.1. Let A be the expanding automaton of degree -1 given by

a = (b, b, I, I)[10, 010, 3, 3, 4], b = (I, I, I, I)[000, 0001, 4, 3, 4]. Then S(A) is the free

monoid of rank 2.

Proof. By construction of A, note that 0 has an infinite forward orbit under the action

of a.

Consider the word bnkamk ...bn1am1 in {a, b}∗ where mi, nj ∈ N for all i, j. By

construction of A,

bnkamk ...bn1am1(0) = bnkamk ...bn1(am1(0))

= bnkamk ...am2(02n1+1am1(0))

= bnkamk ...bm2(am2(00)02n1−1am1(0)

= ...

= 02nk+1amk(00)...02n2−1am2(00)02n1−1am1 .

Thus if bnkamk ...bn1am1 and brtast ...br1as1 are words in {a, b}∗ with nk, rt > 0, then

bnkamk ...bn1am1 = brtast ...br1as1 in S(A) if and only if mi = si and nj = sj for all

i, j. The same computation as above will show that any words w1a, w2a ∈ {a, b}∗

are equal in S(A) if and only if w1a and w2a are equal letter by letter. The same

64

computation will also show that w1b and w2b map 0 to the same place if and only

if w1b and w2b are equal letter by letter, and so w1b = w2b in S(A) if and only if

w1b = w2b in the free monoid {a, b}∗.

Lastly, note that for any w1, w2 ∈ {a, b}∗, w1a(2) ends in a 3 while w2b(2) ends in

a 4. Thus w1a 6= w2b in S(A) for any w1, w2 ∈ {a, b}∗. So S(A) is the free monoid of

rank 2.

Proposition 3.5.2. Every free partially commutative monoid is an expanding au-

tomaton monoid of degree -1.

Proof. The constructions follow the same logic as the proof of Theorem 3.4.8. Let

M = 〈x1, ..., xn | R〉 be a free partially commutative monoid. Begin constructing

an automaton A with an alphabet {a1, ..., an} and state set {y1, ..., yn} by defining

t(yi, aj) = I for all i, j and defining o(yi, aj) = ajaj if i = j, o(yi, aj) = aj if i 6= j.

This ensures that each generator of S(A) is not periodic. For each i, j with i < j

such that xi and xj do not commute, glue in the automaton from Lemma 3.5.1 onto

the states yi and yj over a new alphabet {bij1, bij2, ..., bij5}. For any other yk 6= yi, yj,

let t(yk, bijm) = I and let o(yk, bijm) = bijm for for 1 ≤ m ≤ 5.

Note that the construction of A implies that A is an expanding automaton of

degree -1. Furthermore, if xi and xj commute (respectively do not commute) in M

then yi and yj commute (respectively do not commute) in M . Thus the logic of the

proof of Theorem 3.4.8 shows that S(A) ∼= M .

We now show that if M = S(A) where A is an expanding automaton of degree

-1, then M has solvable power problem. First, note that if f is an expanding endo-

morphism of depth m and g is an endomorphism of depth n, it is straightforward to

show that the depth of fg is at most the maximum of m and n. Thus the algorithm

we give takes as input a state of an expanding automaton of degree -1. We can do

65

this because if A = (Q,Σ, t, o) is a degree -1 expanding automaton, then any element

q ∈ Q∗ is also a state of an expanding automaton of degree -1 (one can build this

automaton using Equation 2.2). We need the following lemma.

Lemma 3.5.3. Let A = (Q,Σ, t, o) be an expanding automaton of degree -1. Let

q ∈ Q be an element of depth n. Then q is non-periodic in S(A) if and only if there

exists a word w ∈ Σ∗ with |w| ≤ n such that w has infinite forward orbit under the

action of a.

Proof. Let A = (Q,Σ, t, o) be an expanding automaton of degree -1 with q ∈ Q an

element of depth n. Note that the backwards direction is clear. So assume that for

all w ∈ Σ∗ with |w| ≤ n, the forward orbit of w is finite. Let r, s ∈ N be such that

ar(w) = as(w) for all w ∈ Σ∗ with |w| ≤ n. Fix w ∈ Σ∗ with |w| ≤ n. Since a has

depth n, for any v ∈ Σ∗ we have ar(wv) = as(wv). Thus ar = as.

Proposition 3.5.4. Let M be an expanding automaton monoid of degree -1. Then

M has solvable power problem.

Proof. Let M be an expanding automaton monoid of degree -1 corresponding to an

automaton A = (Q,Σ, t, o). Let q ∈ Q be of depth n. By Lemma 3.5.3, we need to

show that one can decide whether or not there exists a w ∈ Σ∗ with |w| ≤ n such

that the forward orbit of w under the action q is infinite.

Fix w ∈ Σ∗ with |w| ≤ n. Let r ∈ N be the minimal number such that |qr(w)| ≥ n.

If r = 0, then the forward orbit of w is finite. Let w′ = qr(w) and let s be the number

of words in Σ∗ of length n. Suppose that qk1(w′) 6= qk2(w′) for all 1 ≤ k1, k2 ≤ s and

k1 6= k2. Then the forward orbit of w′ under the action of q is infinite, as the word

length of w′ under the action of q must become arbitrarily large.

66

Chapter 4

A Class of Metabelian Automaton

Groups

Let G be a group and for g1, g2 ∈ G let [g1, g2] denote the element g1g2g
−1
1 g−1

2 . Let

G(1) = [G,G], i.e. G(1) is the subgroup of G generated by elements of the form

{[g, h] | g, h ∈ G}. For n > 1 inductively define G(n) by G(n) = [G(n−1), G(n−1)]. The

group G is solvable of derived length d if G(d) is trivial and G(d−1) is non-trivial. The

group G is metabelian if G is solvable of derived length 2.

In this chapter we classify the metabelian groups that arise from a restricted class

of invertible synchronous automata. For the rest of this section, let σ denote the

permutation of {0, 1} that sends 0 to 1 and 1 to 0 and let I denote the automorphism

that pointwise fixes the tree T ({0, 1}∗).

We call an invertible synchronous automaton A a simply-sectioned automaton if

A arises from a wreath decomposition of the form a = σa(a0, a1), b = σb(b0, b1) where

σa, σb ∈ {(), σ} where () denotes the trivial permutation [0, 1] and a0, a1, b0, b1 ∈

{a±1, b±1, I}. In other words, A is a simply-sectioned automaton if G(A) is generated

by (at most) two elements whose wreath decompositions are described as above. If

67

G = G(A) where A is a simply-sectioned automaton, then call G a simply-sectioned

group. The goal of this chapter is to prove the following theorem (Z2 is the cyclic

group of order 2).

Theorem 4.0.5. Let G be a metabelian simply-sectioned group. Then G is one

of the following: the trivial group, Z2, Z2 × Z2, the dihedral group of order 8, Z,

the infinite dihedral group, Z × Z, the lamplighter group, the klein bottle group, the

group with presentation 〈c, d | c2 = 1, cd2 = d2c〉, or the group with presentation

〈c, d | c2 = d4 = (cd)4 = 1〉.

In [16], Grigorchuk and Zuk show that the group corresponding to the simply-

sectioned wreath decomposition a = σ(a, b) and b = (a, b) is the lamplighter group.

This group is metabelian, as it is the semidirect product of two abelian groups. Thus

this work seeks to find what other “lamplighter-like” groups we can find when looking

at other simply-sectioned automata.

We prove Theorem 4.0.5 as follows. First, we show that each group mentioned in

the statement of the theorem arises as a simply-sectioned group. Each group arises

from multiple simply-sectioned automata; however, the following three operations on

automata do not change the isomorphism class of the corresponding group:

1. passing to inverses of all generators,

2. permuting the states of the automaton,

3. permuting the alphabet letters.

We then note that the above operations give all other realizations of the group in

the class of simply-sectioned automata, i.e. given a simply-sectioned automaton one

can quickly transform that automaton into an automaton that is considered in this

68

chapter via those three operations. At the end of the chapter, we show that no other

metabelian groups arise in this class. We do this by choosing an automaton represent-

ing the isomorphism class of each group and demonstrate a non-trivial commutator.

The results are displayed in Table 4.1. The non-trivial commutators were found using

the AutomGrp package for GAP developed by Muntyan and Savchuk ([21]).

Recall that in Section 2.2 we give an algorithm for solving the word problem

in the class of automaton groups. This algorithm can be used to verify any of the

calculations performed below. Additionally, recall from Section 2.2 that if A is an

invertible synchronous automaton, the symbol A′ denotes the dual automaton for A.

Because we compose functions right-to-left, we feed words into the dual automaton

from right to left and the dual automaton outputs words from right to left.

We will assume that any wreath recursion that appears in the remainder of Chap-

ter 4 defines a simply-sectioned group.

Suppose first that a = (a0, a1) and b = (b0, b1), i.e. σa = σb = (). Then neither a

nor b moves an element of {0, 1}∗, and hence 〈a, b〉 is trivial.

Suppose next that a = σ(a0, a1) and b = σ(b0, b1) (i.e. σa = σb = σ) and

a0, a1, b0, b1 ∈ {a±1, b±1}. Then, in the automaton corresponding to the given wreath

recursion, every arrow is labeled by 0|1 or 1|0. For any word w ∈ {0, 1}∗, let wi

denote the i-th letter of w. Then, for any w ∈ {0, 1}+, a(w) = b(w) = w where

wi = (wi − 1) mod 2. Thus 〈a, b〉 ∼= Z2.

Suppose now that a = σ(b, b−1) and b = (a, I). Then a2 = (I, I) = I, b2 =

(a2, I) = (I, I), and (ab)4 = (I, I). Thus a2 = b2 = (ab)4 = 1 in 〈a, b〉. Furthermore,

one can check (using the algorithm given in Section 2.2) that each prefix of the word

(ab)4 is non-trivial in 〈a, b〉. Thus 〈a, b〉 is the dihedral group of order 8.

Suppose that a = σ(b, I) and b = (I, I). Then one can check that b2 = a4 =

baba = 1 in G := 〈a, b〉. Furthermore, one can check (using the algorithm given in

69

Section 2.2) that a2, a3, ba, ab, and a2b are all distinct elements of G. Thus 〈a, b〉 is a

group of order 8 that is a quotient of the dihedral group of order 8, and so 〈a, b〉 is

the dihedral group of order 8.

Suppose that a = σ(a, a) and b = σ(I, I). Then one can check that a2 = b2 =

abab = 1 in G := 〈a, b〉. Furthermore, one can check a, b, and ab are distinct elements

of G. Thus 〈a, b〉 ∼= Z× Z.

Suppose that a = σ(a, a) and b = σ(I, I). Then one can check that b2 = a4 = 1

and bab = a3 in G := 〈a, b〉. Furthermore, one can check that the order of G is 8.

Thus G is the dihedral group of order 8.

In [13], Grigorchuk, Nekrashevych, and Suschansky show that the group corre-

sponding to the wreath decomposition a = σ(a, b) and b = (a, b) is the lamplighter

group, the group corresponding to the wreath decomposition a = (a, a) and b =

σ(a, a) is Z2 × Z2, the group corresponding to the wreath decomposition a = σ(a, a)

and b = (b, a) is the infinite dihedral group, and the group corresponding to the

wreath decomposition a = σ(a, I), b = σ(a, I) is Z. In [3], Bondarenko et al. show

that the group corresponding to the wreath decomposition a = σ(b, I) and b = (a, a)

is Z2.

Proposition 4.0.6. The group corresponding to the wreath recursion a = σ(a, b−1)

and b = (b, a−1) is the lamplighter group.

Proof. Let G be the group corresponding to the group with wreath recursion a =

σ(a, b−1) and b = (b, a−1). Then G = 〈a, b−1〉 and b−1 = (b−1, a). Thus the automaton

corresponding to the wreath decomposition a = σ(a, b−1) and b−1 = (b−1, a) is the

same 2-state automaton that Grigorchuk and Zuk show gives the lamplighter group

(see [16]).

In order to show that the rest of the groups that appear in Theorem 4.0.5 arise as

70

automaton groups in the class of simply-sectioned groups, we need a technical lemma.

Lemma 4.0.7. Let G be an automaton group associated with the invertible automaton

A = (Q, {0, 1}, t, o) such that {gx | g ∈ Q and x ∈ {0, 1}} generates a solvable group

of derived length d. Then G is solvable of derived length d or d+ 1.

Proof. Let G := G(A) for an invertible automaton A = (Q, {0, 1}, t, o), and suppose

that {gx | g ∈ Q, x ∈ {0, 1}} generates a solvable group of derived length d. We

induct on d to show that if g ∈ G(d+1) then g0, g1 ∈ G(d).

First, let w ∈ (Q ∪Q−1)∗ be a word such that w ∈ [G,G] when considered as an

element of G. Then w has even word length in (Q ∪ Q−1)∗, and hence w labels a

circuit when considered as a path in A′ starting at 0 or at 1. So any element of [G,G]

fixes 0 and 1.

For the base case, assume that the group generated by {gx | g ∈ Q, x ∈ {0, 1}} is

abelian and let g ∈ G(2). Write g = [[w1, w2], [w3, w4]] for some w1, .., w4 ∈ G. Then

for any h1, h2 ∈ G the word [h1, h2] labels a circuit in A′ when read starting from

either 0 or 1. Thus

gx = [w1, w2]x[w3, w4]x[w1, w2]−1
x [w3, w4]−1

x for x ∈ {0, 1}.

So g0, g1 ∈ G(1). By assumption, g0 and g1 are trivial. Since g fixes the first level of

the tree, g is trivial in G(A). Hence if the group generated by {gx | g ∈ Q, x ∈ {0, 1}}

is abelian, then G is abelian or metabelian.

Now if g ∈ G(n), noting that g labels a circuit from any vertex in the dual and

performing the same calculation as above gives that g0, g1 ∈ G(n−1), and induction

gives the result.

71

Figure 4.1: The automaton from Proposition 4.0.8 (left) and its dual automaton
(right).

Proposition 4.0.8. Let G be the group corresponding to the automaton given by the

wreath recursion a = σ(a, I) and b = (a, a−1). Then G is metabelian, and moreover

is isomorphic to the Klein bottle group.

Proof. Since bx, ax ∈ 〈a〉 for any x ∈ {0, 1}, Lemma 4.0.7 implies thatG is metabelian.

The the Klein bottle group is the group K = 〈c, d | cdc−1 = d−1〉. A set of normal

forms for K is {cidj | i, j ∈ Z}. Using the algorithm from Section 2.2, one can check

that aba−1 = b−1 in G. Thus, to show that G ∼= K we show that aibj is non-trivial for

each (i, j) ∈ Z×Z− (0, 0). Note that a has infinite order because the subautomaton

containing a and I is the binary adding machine (see the proof of Theorem 3.4.8).

Thus a has infinite order. Note that b has infinite order because b stabilizes 0 and

b0 = a.

Suppose that i, j 6= 0 and i is even. Then, using the dual automaton (see Figure

4.1), we see that

(aibj)0 = a
i
2aj and (aibj)1 = a

i
2a−j,

72

(recall that one must feed the above words into the dual automaton from right to

left) and so one of (aibj)0 or (aibj)1 is non-trivial. If i is odd and positive, then

(aibj)0 = ad
i
2 eaj and (aibj)1 = ab

i
2 ca−j. So, if aibj = 1, then b i2c = −d i2e, which

happens if and only if i = 0. Thus in this case as well aibj is non-trivial. The other

cases follow similarly to show that all words of the form aibj with one of i and j

non-zero are non-trivial in G. Hence G is the Klein bottle group.

Much of the work in the remainder of this chapter uses rewriting systems to find

normal forms for elements of the groups. For basic information on the theory of

rewriting systems and, specifically, for information about the Knuth-Bendix Algo-

rithm (an algorithm which is used to ensure that a given set of rewriting rules gives

a complete rewriting system), see Chapter 2 of the book by Sims ([30]).

Proposition 4.0.9. Let G be the automaton group with wreath recursion a = σ(a, I)

and b = σ(a, a−1). Then G is metabelian and has presentation 〈a, b | b2 = 1, ba2 =

a2b〉. Moreover, G ∼= D∞ o Z.

Proof. Note that the group generated by {gx | g ∈ Q, x ∈ {0, 1}} is cyclic, and

hence Lemma 4.0.7 implies that G is metabelian. Also, one can verify directly that

b2 = 1 and ba2 = a2b in G using the word problem algorithm from Section 2.2. Let

H = 〈c, d | d2 = 1, dc2 = c2d. Then H is isomorphic to the semidirect product

D∞ o Z = 〈p, q | p2 = q2 = 1〉 o 〈t | 〉 with action tpt−1 = q, tqt−1 = p. This

isomorphism can be shown with the function that sends t to a, q to b, and q to aba−1.

By computing resolutions of critical pairs via the Knuth-Bendix algorithm, one

can check that the rewriting rules

cc−1 → 1, c−1c→ 1, d2 → 1, c2d→ dc2, c−1d→ cdc−2

73

give a complete rewriting system for H over the alphabet {c, c−1, d}. Thus a set of

normal forms for H is

NF := {(cd)m1cn1 , (dc)m2dcn2 | mi ∈ N ∪ {0}, ni ∈ Z}.

Let φ : {c, d}∗ → G be defined by φ(c) = a and φ(d) = b. We show that any word

in φ|NF is injective. To do this, we show that each element of φ(NF) is non-trivial

in G. This is enough to check, for suppose that φ(v) = φ(w) for some v, w ∈ NF .

Then φ(vw−1) = 1 in G. If the normal form of vw−1 is non-trivial in H, then we have

a non-trivial element of NF mapping to 1 under φ. If the normal form of vw−1 is

trivial in H, then v = w in H, and so vw−1 = 1 in H.

First, note that a has infinite order in G because the subautomaton containing a

and I is the adding machine automaton. Let n ∈ Z be odd. Then for any m ∈ N we

have that (ab)man is non-trivial in G because such an element permutes the first level

of the tree. Also, if s ∈ 2Z then for any m ∈ N we have that (ba)mbas is non-trivial

in G because such an element permutes the first level of the tree.

Let m ∈ N and n ∈ 2Z. Then the dual automaton implies that

((ab)man)0 = am+n
2 and ((ab)man)1 = a

n
2 .

Since one of the above sections must be non-trivial in G, any word of the form (ab)man

with m ∈ N and n ∈ Z is non-trivial in G.

Now let m ∈ N and n ∈ Z such that n is odd and negative. Then ((ba)mban)0 =

a−1adn/2e. Since n is negative, this section is non-trivial in G and hence (ba)mban is

non-trivial in G.

Let m ∈ N and n ∈ Z such that n is odd and positive. Then ((ba)mban)1 =

74

amaabn/2c. Since n is positive, this section is non-trivial in G and hence (ba)mban is

non-trivial in G.

We have now shown that each element of φ(NF) is non-trivial in G. Thus φ|NF

is injective, and G ∼= 〈a, b | b2 = 1, ba2 = a2b〉.

Proposition 4.0.10. The group G with wreath recursion a = σ(b, b), b = σ(b, 1)

has presentation 〈a, b | b2a = ab2, a2 = b4〉. This group is isomorphic to the group

presented by 〈r, s | r2 = 1, s2r = rs2〉.

Proof. Note that G is metabelian by Lemma 4.0.7. LetH = 〈c, d | d2c = cd2, c2 = d4〉.

One can check that, in G, b2a = ab2 and a2 = b4. Thus G is a quotient of H. One

can also check that the rewriting rules

cc−1 → 1, c−1c→ 1, dd−1 → 1, d−1d→ 1, d3 → c2d−1, d−3 → c−2d

d2c→ cd2, d2c−1 → c−1d2, d−2c−1 → c−1d−2, d−2c→ cd−2

dc−2 → c−2d, d−1c2 → c2d−1, d−1c−2 → c−2d, cd−2 → c−1d2

give a complete rewriting system for H. Let S ⊆ {c, c−1, d, d−1}∗ denote the set of

words that do not contain cd−2 as a subword. Then a set of normal forms NF for H

is

{cmdδ1cε1 ...dδrcεrdn | δi, εj ∈ {−1, 1}, m ∈ Z, n ∈ {−2,−1, 0, 1, 2}, r ≥ 0} ∩ S.

Let φ : {c, d}∗ → G be a monoid homomorphism defined by φ(c) = a and φ(d) = b.

We show that each element of φ(NF) is non-trivial in G.

Let ambδ1aε1 ...bδraεrbn ∈ φ(NF) for some m,n, r, δi, εj. Define δi = 1 if δi = 1 and

75

δi = 0 if δi = −1. Similarly, define δ′i = 0 if δi = 1 and δ′i = −1 if δi = −1. Then

(ambδ1aε1 ...bδraεrbn)0 =

bmbδ

′
1bε1 ...bδ

′
rbεrbn/2 n even

bmbδ1bε1 ...bδnbεnbdn/2e n odd

(ambδ1aε1 ...bδraεrbn)1 =

bmbδ1bε1 ...bδrbεrbn/2 n even

bmbδ
′
1bε1 ...bδ

′
nbεnbbn/2c n odd

Thus either (ambδ1aε1 ...bδraεrbn)0 or (ambδ1aε1 ...bδraεrbn)1 is non-trivial in G, and so

any element of φ(NF) is non-trivial in G. Therefore G has the desired presentation.

Let K = 〈r, s | r2 = 1, s2r = rs2〉, and let g = a−1b2. Then G = 〈b, g〉, and one

can check that G ∼= H via r → b, s→ a−1b.

Proposition 4.0.11. The group G with wreath recursion a = σ(a, I) and b = σ(I, I)

has presentation 〈a, b | b2 = 1, a2b = ba2〉.

Proof. The proof goes exactly as the two previous proofs, so we omit the computa-

tions.

We now turn to showing that the group G = 〈c, d | c2 = d4 = (cd)4 = 1〉 is simply-

sectioned. This group is called the (2, 4, 4) von Dyck group, and it is well known that

[G,G] ∼= Z2 (see the last chapter of [6]), so G is metabelian. We need the following

lemma to obtain a set of normal forms for G.

Proposition 4.0.12. Let G be the automaton group with wreath recursion a =

σ(b, b−1), b = σ(a, I). Then G has presentation 〈a, b | a2 = b4 = (ab)4 = 1〉, i.e.

G is the (2, 4, 4) von Dyck group.

Proof. To prove this proposition, we proceed as in the previous proofs in this chapter:

we choose a set of normal forms NF for H := 〈c, d | c2 = d4 = (cd)4 = 1〉 and show

76

Figure 4.2: A finite portion of the Cayley graph of 〈c, d | c2 = d4 = (cd)4 = 1〉. The
oriented edges are “d”-edges, and the unoriented edges are “c”-edges.

that the corresponding map from NF to G is injective. One can check using the

algorithm from Section 2.2 that a2 = b4 = (ab)4 = 1 in G, and so G is a quotient of

H.

Let H = 〈c, d | c2 = d4 = (cd)4 = 1〉. Then one can check that the following rules

give a complete rewriting system for H over {c, d}∗:

c2 → 1, d4 → 1, dcdcd→ cd3c

d3(cd2)ncd3 → cd(cd2)ncdc for all n ≥ 0.

Consider the graph Γ in Figure 4.2. Since the above rewriting rules give a com-

plete rewriting system for H, this graph is the Cayley graph for H over the given

presentation. For computational purposes, we do not use the normal forms for H

given by the above rewriting system. For each vertex v in the graph, we choose a

unique path from 1 to v as follows. Call words of the form (cd2)m and (d2c)n for

77

Figure 4.3: The dual automaton of the automaton from Proposition 4.0.12

some m,n ∈ N and prefixes of such words the main horizontal of Γ. Choose a path

p from 1 to v such that p travels along the main horizontal until p is directly “above”

or “below” v, and then p travels vertically until p reaches v. Also, choose p such that

p never traverses a d edge in reverse. Such paths represent our set of normal forms

for H over {c, d}∗. Call this set of normal forms NF ′, and let w ∈ NF ′. The word d3

occurs as a subword of w either at the beginning or the end of w, or d3 is a “turning”

word that allows w to turn “down” off the main horizontal. The word cd serves a

similar function, allowing a word to turn “up” off the main horizontal.

Let φ : {c, d}∗ → {a, b}∗ be a monoid homomorphism defined by φ(c) = a and

φ(d) = b. We will consider all words in φ(NF ′), and show that they are non-trivial

in G. We will break into cases, the cases being determined by the form of the word

in φ(NF ′). Before we break into cases, we need to do some basic computations with

the dual automaton.

Let A be the underlying automaton for G. Then A′ = ({0, 1}, {a, b}, t′, o′) is

defined as follows (see Figure 4.3):

t′(0, a) = t′(0, b) = 1, t′(1, a) = t′(1, b) = 0,

o′(0, a) = b, o′(0, b) = a, o′(1, a) = b−1 = b3, o′(1, b) = I.

Since (ab2)2 stabilizes 11 and ((ab2)2)11 = ab2, ab2 has infinite order in G. Simi-

78

larly, (bab)2 stabilizes 00 and ((bab)2)00 = bab, and so bab has infinite order in G.

Let m ∈ N. Then

((ab2)m)0 =

(b3aba)m/2 m even

ba(b3aba)bm/2c m odd

((ab2)m)1 =

(bab3a)m/2 m even

b3a(bab3a)bm/2c m odd

((bab3a)m)0 = (bab)n, ((bab3a)m)1 = (ab2)n

((b3aba)m)0 = (ab2)m, ((b3aba)m)1 = (b3ab3)m.

With these equations we are now prepared to show that each element of φ(NF ′)

is non-trivial in G. Note that any word in {a, b}∗ of odd word length (as measured in

{a, b}∗) must be non-trivial in G because such a word will transpose 0 and 1, and so

we omit such words from our cases. In the following computations, we use the fact

that words of odd length move the first level of the tree to show that elements of G

are non-trivial. Also, it is straightforward to show that any word in φ(NF ′) of length

four or less (as measured in {a, b}∗) is non-trivial in G.

Case 1: Words beginning with aba. Let w ∈ φ(NF ′) be of the form ab(ab2)m

for some m ∈ 2N. Then w1 = b(bab3a)m/2, which is non-trivial in G. So w is non-

trivial in G.

Let w ∈ φ(NF ′) be of the form ab(ab2)ma wherem is odd. Then w0 = b3ab3a(bab3a)bm/2cb,

which is non-trivial in G. So w is non-trivial in G.

Let w ∈ φ(NF ′) be of the form ab(ab2)mab with m ∈ 2N. Then w1 = b(bab3a)m/2,

and so w11 = (bab)m/2. Since bab has infinite order in G, w11 is non-trivial in G and

hence w is non-trivial in G.

79

Finally, let w ∈ φ(NF ′) be of the form ab(ab2)mb where m is odd. Then w1 =

b2a(b3aba)bm/2c, which is non-trivial in G. So w is non-trivial in G.

Case 2: Words beginning with ab2. Let w ∈ φ(NF ′) be of the form (ab2)ma

where m is odd. Then w1 = ba(b3aba)bm/2cb3, which is non-trivial in G. So w is

non-trivial in G.

Let w ∈ φ(NF ′) be of the form (ab2)mb wherem is odd. Then w0 = ba(b3aba)bm/2ca,

which is non-trivial in G. So w is non-trivial in G.

Let w ∈ φ(NF ′) be of the form (ab2)mab where m is even. Then w1 = (bab3a)m/2b,

which is non-trivial in G. So w is non-trivial in G.

Let w ∈ φ(NF ′) be of the form (ab2)maba wherem is odd. Then w1 = ba(b3aba)bm/2cb3ab3,

which is non-trivial in G. So w is non-trivial in G.

Let w ∈ φ(NF ′) be of the form (ab2)mabab where m is even. Then w11 = (ab2)ma,

and so by the first paragraph of Case 2 w11 is non-trivial in G. So w is non-trivial in

G.

Let w ∈ φ(NF ′) be a word of the form (ab2)mb(ab2)n. If m is odd and n is

even, then w0 = (bab3a)m/2a(b3aba)n/2. If m is even and n is odd, then w1 =

(b3aba)m/2a(bab3a)n/2. In both cases, w has a non-trivial section and so w is non-

trivial in G.

Subcase 2a: Words of the form (ab2)mb(ab2)nb. Let w ∈ φ(NF ′) be a word

of the form (ab2)mb(ab2)nb. If m and n are even, then w1 = (bab3a)m/2a(b3aba)n/2,

which is non-trivial in G. So w is non-trivial in this case.

Suppose now that m and n are both odd. Then

w1 = ba(b3aba)bm/2cba(b3aba)bn/2c

80

and so

w10 = b(ab2)bm/2cb(ab2)bn/2c.

If bm/2c and bn/2c are both even, then w10 is non-trivial because (b(ab2)2sb(ab2)2t)1 =

a(b3aba)s(bab3b)t for any s, t ∈ N. If one of bm/2c and bn/2c is even and the other

is odd, then w10 has odd word length in {a, b}∗ and hence is non-trivial in G. So

suppose that both bm/2c and bn/2c are odd. Then

w100 = ba(b3aba)bbm/2c/2cba(b3aba)bbn/2c/2c,

and we can continue taking sections at 0 until we obtain a word of the form b(ab2)xb(ab2)y

where one of x or y is even. Thus w is non-trivial in G, and Subcase 2a is finished.

Let w ∈ φ(NF ′) be a word of the form (ab2)mb(ab2)na. If m and n are both even,

then w0 = (b3aba)m/2(bab3a)n/2a, which is non-trivial in G. If m and n are both

odd, then w1 = ba(b3aba)bm/2cba(b3aba)bn/2cb3, which is non-trivial in G. Thus w is

non-trivial in G.

Subcase 2b: Words of the form (ab2)mb(ab2)nab. Let w ∈ φ(NF ′) be of the

form (ab2)mb(ab2)nab. If m is odd and n is even, then w1 = ba(b3aba)bm/2c(bab3a)n/2b,

which is non-trivial in G. So w is non-trivial in G in this case. Thus, if m is odd, any

word of the form (ab2)mb(ab2)nab is on-trivial in G (if n is odd then such an element

will transpose 0 and 1).

Suppose now that m is even and n is odd. Then w0 = (b3aba)m/2ba(b3aba)bn/2cb3a,

and so w00 = (ab2)m/2b(ab2)bn/2cab. Thus there is an r ∈ N such that w0r =

(ab2)sb(ab2)tab where s ∈ N is odd and t ∈ N, or w0r = (ab2)xbab for some x ∈ N.

In the former case, we are done by the previous paragraph. The latter case was cov-

ered at the beginning of Case 2. Thus in this case we are done as well, and we have

completed Subcase 2b.

81

Let w ∈ φ(NF ′) be of the form (ab2)mab(ab2)n. If m and n are both even, then

w1 = (bab3a)m/2b(bab3a)n/2, which is non-trivial in G. If m and n are both odd, then

w0 = b3a(bab3a)bm/2cbba(b3aba)bn/2c, which is non-trivial in G. Hence w is non-trivial

in G.

Subcase 2c: Words of the form (ab2)mab(ab2)nb. Let w ∈ φ(NF ′) be of the

form (ab2)mab(ab2)nb. If m is even and n is odd, then w1 = (bab3a)m/2bba(b3aba)bn/2c,

which is non-trivial in G. So w is non-trivial in this case.

Suppose that m is odd and n is even. Then w1 = ba(b3aba)bm/2b3a(b3aba)n/2, and

so w10 = b(ab2)bm/2cab(ab2)n/2. If we conjugate w10 by b3 (i.e. multiply on the left by

b3 and on the right by b), then all such words were shown to be non-trivial in Subcase

2b. Thus w10 is non-trivial, and so w is non-trivial in G. So we have finished Subcase

2c.

Let w ∈ φ(NF ′) be of the form (ab2)mab(ab2)na. If m is odd and n is even, then

w1 = ba(b3aba)bm/2cb3a(b3aba)n/2b3, which is non-trivial in G. If m is even and n is

odd, then w0 = (b3aba)m/2b3ab3a(bab3a)bn/2cb, which is non-trivial in G. Thus w is

non-trivial in G.

Subcase 2d: Words of the form (ab2)mab(ab2)nab. Let w ∈ φ(NF ′) be a

word of the form (ab2)mab(ab2)nab. If m and n are odd, then

w1 = ba(b3aba)bm/wcb3ab3a(bab3a)bn/2cb, which is non-trivial in G. So w is non-trivial

in this case.

If m and n are both even, then w0 = (b3aba)m/2b3a(b3aba)n/2b3a, and so w00 =

(ab2)m/2ab(ab2)n/2ab. Thus there is an r ∈ N such that w0r = (ab2)sab(ab2)tab where

s, t ∈ N and one of s and t is odd. By the previous paragraph, w0r is non-trivial.

Thus w is non-trivial in G, and we have completed Subcase 2d.

We have now shown that all words beginning with a in φ(NF ′) are non-trivial in

G. If w ∈ φ(NF ′) is a word beginning with a b, then conjugate w by a power of b

82

so that w begins with an a. Either the resulting word has been covered by the above

work, or the resulting word is one or two letters off from a case we have previously

covered. In the latter case, the computations go exactly as above, so we omit them.

Thus any element of φ(NF ′) is non-trivial in G, and so φ is injective.

Proposition 4.0.13. The group with wreath recursion a = σ(a, b−1), b = (a, b−1) is

the (2, 4, 4) von Dyck group.

Proof. Let G be the group with wreath recursion a = σ(a, b−1), b = (a, b−1), and let

g = ab−1. Then G = 〈g, a〉, and one can check that g2 = a4 = (ga)4 = 1 in G. Thus

G is a quotient of H = 〈c, d | c2 = d4 = (cd)4 = 1〉. Note that g = σ(I, I), and so we

can write the wreath recursion for G as a = σ(a, a3g), g = σ(I, I).

Let A denote the underlying automaton for G, and let A′ denote the dual au-

tomaton for G with respect to the generating set {a, g}. Then A′ = (0, 1, a, g, t′, o′)

is defined as follows:

t′(0, g) = t′(0, a) = 1, t′(1, g) = t′(1, a) = 0

o′(0, g) = o′(1, g) = I, o′(0, a) = a, o′(1, a) = a3g.

We begin with some computations with the dual automaton. Let n ∈ N, and note

that

((ga2)n)0 =

(ga3ga)n/2 n even

a3ga(ga3ga)bn/2c n odd

((ga2)n)1 =

(a3gag)n/2 n even

g(a3gag)bn/2c n odd

((ga3ga)n)0 = (ga2)n, ((ga3ga)n)1 = (a2g)n

83

((a3gag)n)0 = (a2g)n, ((a3gag)n)1 = (ga2)n.

Let NF ′ denote the same set of normal forms for H that we used in the proof

of Proposition 4.0.12. Let φ : {c, d}∗ → {a, g}∗ be a monoid homomorphism defined

by φ(c) = g and φ(d) = a. The same kind of computations that we performed in

the proof of Proposition 4.0.12 will show that each element of φ(NF ′) represents a

non-trivial element of G . Since the computations are similar to those in the proof of

Proposition 4.0.12, we omit them here.

Below is a table summarizing the information given in this chapter, including

examples of non-trivial commutators for all of the simply-sectioned groups that are

not metabelian. These non-trivial commutators were found using the GAP package

AutomGrp developed by Muntyan and Savchuk (see [21]).

Table 4.1: Simply-Sectioned Groups

Wreath Recursion Non-Trivial Commutator Metabelian Group

a = σ(a, I), b = (a, a−1) Klein bottle group

a = σ(a, I), b = (a, b−1) [[a, b], [ab, ba]]

a = σ(a, I), b = (b, a) [[a, b], [ab, ba]]

a = σ(a, I), b = (b, a−1) [[a, b], [ab, ba]]

a = σ(a, I), b = σ(I, I) D∞ o Z

a = σ(a, I), b = σ(a, a−1) D∞ o Z

a = σ(a, I), b = σ(a, b) [[a, b], [ab, ba]]

a = σ(a, I), b = σ(a, b−1) [[a, b], [ab, ba]]

a = σ(a, I), b = σ(a−1, b−1) [[a, b], [ab, b]]

Continued on next page

84

Table 4.1 – continued from previous page

Wreath Recursion Non-Trivial Commutator Metabelian Group

a = σ(a, I), b = σ(b, a) [[a, b], [ab, ba]]

a = σ(a, I), b = σ(b, a−1) [[a, b], [ab, b]]

a = σ(a, I), b = σ(b−1, I) [[a, b], [ab, b]]

a = σ(a, a), b = (b, a) D∞

a = σ(a, a), b = σ(a, a) Z2 × Z2

a = σ(a, a), b = σ(I, I) Z2 × Z2

a = σ(a, b), b = (a, I) [[a, b], [ab, ba]]

a = σ(a, b), b = (a, b) lamplighter group

a = σ(a, b), b = (a, b−1) [[a, b], [ab, ba]]

a = σ(a, b), b = (a, a−1) [[a, b], [ab, ba]]

a = σ(a, b), b = σ(a, I) [[a, b], [ab, ba]]

a = σ(a, b), b = σ(a−1, I) [[a, b], [ab, ba]]

a = σ(a, b), b = σ(b, I) [[a, b], [ab, ba]]

a = σ(a, b), b = (b, a−1) [[a, b], [ab, ba]]

a = σ(a, b), b = σ(b−1, I) [[a, b], [ab, b]]

a = σ(a, b−1), b = (a, b−1 〈a, b | a2 = b4 = (ab)4 = 1〉

a = σ(a, b−1), b = (a, I) [[a, b], [ab, ba]]

a = σ(a, b−1), b = (a, a−1) [[a, b], [ab, ba]]

a = σ(a, b−1), b = (a, b) [[a, b], [ab, ba]]

a = σ(a−1, I), b = (b, a−1) [[a, b], [ab, b]]

a = σ(a−1, I), b = (a, b) [[a, b], [ab, b]]

a = σ(a−1, I), b = (a, b−1) [[a, b], [ab, b]]

Continued on next page

85

Table 4.1 – continued from previous page

Wreath Recursion Non-Trivial Commutator Metabelian Group

a = σ(a−1, I), b = σ(I, I) D∞ o Z

a = σ(a−1, I), b = σ(a, b) [[a, b], [ab, ba]]

a = σ(a−1, I), b = σ(b, I) [[a, b], [ab, b]]

a = σ(a−1, b), b = (a, I) [[a, b], [a, ba]]

a = σ(a−1, b), b = (a, a−1) [[a, b], [a, ba]]

a = σ(a−1, b), b = (a, b) [[a, b], [a, ba]]

a = σ(a−1, b), b = σ(a, I) [[a, b], [a, ba]]

a = σ(a−1, b), b = σ(b, I) [[a, b], [a, ba]]

a = σ(b, I), b = (a, I) [[a, b], [b, a−1]]

a = σ(b, I), b = (a, b) [[a, b], [ab, ba]]

a = σ(b, I), b = (a, b−1) [[a, b], [ab, ba]]

a = σ(b, I), b = (a−1, b) [[a, b], [ab, ba]]

a = σ(b, I), b = σ(I, I) dihedral group of order 8

a = σ(b, I), b = σ(a, a) [[a, b], [a, ba]]

a = σ(b, I), b = σ(a, b) [[a, b], [a, ba]]

a = σ(b, I), b = σ(a, b−1) [[a, b], [a, ba]]

a = σ(b, I), b = σ(a−1, I) [[a, b], [a, ba]]

a = σ(b, I), b = σ(a−1, b) [[a, b], [a, ba]]

a = σ(b, I), b = σ(a−1, b−1) [[a, b], [a, ba]]

a = σ(b, b), b = (a, b−1) D∞

a = σ(b, b), b = σ(a, I) [[a, b], [ab, b]]

a = σ(b, b), b = σ(b, I) D∞ o Z

Continued on next page

86

Table 4.1 – continued from previous page

Wreath Recursion Non-Trivial Commutator Metabelian Group

a = σ(b, a), b = (a, b) [[a, b], [ab, ba]]

a = σ(b, a), b = (a, b−1) [[a, b], [ab, ba]]

a = σ(b, a), b = σ(a, a) [[a, b], [a, ba]]

a = σ(b, a), b = σ(a, b) [[a, b], [a, ba]]

a = σ(b, a), b = σ(a, b−1) [[a, b], [a, ba]]

a = σ(b, b), b = σ(a−1, I) [[a, b], [a, ba]]

a = σ(b, b−1), b = (a, I) dihedral group of order 8

a = σ(b, b−1), b = σ(a, I) 〈a, b | a2 = b4 = (ab)4 = 1〉

a = σ(b−1, I), b = (a, I) [[a, b], [a, ba]]

a = σ(b−1, I), b = (a, a−1) [[a, b], [a, ba]]

a = σ(b−1, I), b = (a, a−1) [[a, b], [a, ba]]

a = σ(b−1, I), b = (a, b−1) [[a, b], [a, ba]]

a = σ(b−1, I), b = σ(a, a) [[a, b], [a, ba]]

87

Chapter 5

Faithful, Self-Similar Actions of

Heisenberg Groups and Upper

Triangular Matrix Groups

In this chapter we construct faithful, self-similar actions of various matrix groups. We

do this by constructing virtual endomorphisms with trivial core, which in principle

will work to show that any self-similar group actually is self-similar.

Definition 5.0.14. [Definition 2.5.1 of [22]] Let H ≤ G be a subgroup of finite

index. A virtual endomorphism φ : H → G is a homomorphism from H to G. The

core of a virtual endomorphism φ : H → G is the largest normal subgroup N of G

contained in H that is φ-invariant, i.e. the core of φ is the largest normal subgroup

N of G such that φ(N) = N .

A virtual endomorphism φ : H → G induces a self-similar action of G on a p-ary

tree where p = [G : H]. To define this action, choose a transversal T = {t1, ..., tp} for

H in G, with t1 = 1. For g ∈ G, let g denote its coset representative in T . Now fix

88

g ∈ G. The permutation of {t1, ...tp}, denoted σg, induced by g is given by

σg(x) = y if and only if gtx = ty

for all x, y ∈ {1, ..., p} and the section of g at r is defined by

gs = φ(gts−1
gts)

for all s ∈ T .

This self-similar action may not be faithful, but a theorem by Nekrashevych says

precisely when the action is faithful.

Theorem 5.0.15. [Proposition 2.7.5 of [22]] The action of G on a p-ary tree

induced by a virtual endomorphism H → G is faithful if and only if the core of φ is

trivial.

Definition 5.0.16. The Heisenberg group of dimension 2n + 1, denoted H2n+1, is

the group of square matrices of size n+ 2 of the form

1 a b

0 In c

0 0 1

where a is a row vector of length n, c is a column vector of length n and the entries

of the matrix come from R.

Proposition 5.0.17. H2n+1 is self-similar for any n.

Proof. Fix an n, and let H = H2n+1. Consider the subgroup of H, denoted by K, of

89

matrices of the form
1 2a 2b

0 In c

0 0 1

 .

Then K has finite index in H. To see this, let Aij denote the matrix with aij = 1

and zeroes elsewhere, except let the main diagonal consist of 1’s. Then {Aij ∈ H} is

a transversal for K.

Consider the function φ : K → H given by

φ

1 2a 2b

0 In c

0 0 1

 =

1 a b

0 In c

0 0 1

 .

It is straightforward to check that φ is a homomorphism. Note that ifA =

1 2k 2m

0 In p

0 0 1

 ∈
K and either k or m is non-zero, then repeated application of φ to A will eventually

map A outside of K. Hence any φ-invariant subset of K must consist of matrices

whose top row is all zeroes (except for the initial 1).

Now let B =

1 0 0

0 In r

0 0 1

 with r ∈ Z − {0}, and let C =

1 2s 2t

0 In v

0 0 1

 ∈ K
for some s, t, v ∈ Z. Then

CBC−1 =

1 0 2sr

0 In r

0 0 1

90

Thus, choosing s ∈ Z − {0} ensures that repeated application of φ to CBC−1

yields a matrix not in K. By Theorem 5.0.15, the result follows.

Definition 5.0.18. The nth upper triangular group, which we denote by UT (n), is

the group of n× n upper triangular matrices with 1’s along the diagonal and entries

from R.

Proposition 5.0.19. UTZ(n) is self-similar for any n.

Proof. Fix an n, and let G = UT (n). Consider the finite index subgroup K of G

given by

K := {A = (aij) ∈ G | aij is even for 1 ≤ i ≤ n− 2 and i+ 1 ≤ j ≤ n}

In other words, K consists of all matrices whose entries above the main diagonal are

even except for possibly the (n− 1)n-th entry. Then K has finite index in G. To see

this, let T = {A ∈ G | aij ∈ {0, 1}}. Then T is a transversal for K in G.

Define a virtual endomorphism φ : K → G as follows. For any A = (aij) in K, let

φ(A) = (bij) where

bij =

aij
2 if 1 ≤ i ≤ n− 2 and (j = n− 1 or j = n)

aij otherwise

It is straightforward to check that φ is a homomorphism.

Let A ∈ K − {In}. In order to show that the core of φ is trivial, we demonstrate

a B ∈ K (depending on A) such that there exists an n ∈ N with φn(BAB−1) 6∈ K.

We break the analysis into cases.

Case 1: Suppose that for some i, j with 1 ≤ i ≤ n−2 and j > n−2 we have that

aij 6= 0. Then repeated applications of φ to A will eventually yield a matrix that is

91

not in K, and so A is not in the core of φ.

Case 2: Suppose that for all i, j with 1 ≤ i ≤ n− 2 and j > n− 2, aij = 0. For

each r, s with 1 ≤ r, s ≤ n and r 6= s, let Ers denote the elementary matrix such that

Ekk = 1 for all k, ers = 2, and all other entries are zero.

If a(n−1)n 6= 0, then let B = E1(n−1)AE
−1
1(n−1). Left multiplication of A by E1(n−1)

multiplies the (n− 1)-st row A by 2 and adds the resulting row to the first row of A.

Right multiplication by E−1
1(n−1) multiplies the first column of E1(n−1)A by −2 and adds

the resulting column to the (n− 1)-st column of E1(n−1)A. Thus b1n = 2a(n−1)n 6= 0,

and so repeated applications of φ to B will yield a matrix that is not in K.

Suppose a(n−1)n = 0. Since A 6= In, there exist u, v such that u 6= v and auv 6= 0.

Let B = Ev(n−1)AE
−1
v(n−1). Left multiplication of A by Ev(n−1) multiplies the (n−1)-st

row of A by 2 and adds the resulting row to the v-th row of A. Right multiplication

of Ev(n−1)A by E−1
v(n−1) multiplies the v-th column of Ev(n−1)A by −2 and adds the

resulting column to the (n−1)-st column of Ev(n−1)A. Note that bv(n−1) = −2auv 6= 0,

and so repeated applications of φ to B will eventually yield a matrix that is not in

K.

92

Bibliography

[1] S. Ales̆in. Finite automata and the burnside problem for periodic groups. Acta.

Math., 11:319–328, 1972.

[2] L. Bartholdi and V. Nekrashevych. Thurston equivalence of topological polyno-

mials. Acta. Math., 197:1–51, 2006.

[3] I. Bondarenko, R. Grigorchuk, R. Krevchenko, Y. Muntyan, V. Nekrashevych,

D. Savchuk, and Z. Šunić. Classification of groups generated by 3-state automata

over a 2-letter alphabet. Algebra and Discrete Mathematics, pages 1–163, 2008.

[4] A. Cain. Automaton semigroups. Theoretical Computer Science, 410:5022–5038,

2009.

[5] A. Clifford and G. Preston. The Algebraic Theory of Semigroups, Vol. I. Math-

ematical Surveys, Providence, RI, 1961.

[6] H. Coxeter and W.O.J. Moser. Generators and Relations for Discrete Groups.

Springer-Verlag, New York, New York, 1980.

[7] S. Eilenberg. Automata, Languages, and Machines. Academic Press, New York,

New York, 1974.

[8] V. Glushkov. Abstract theory of automata. Uspekhi mat. nauk., 16:3–62, 1961.

93

[9] E. Golod. On nil-algebras and finitely approximable p-groups. Izv. Akad. Nauk

SSSR Ser. Mat., 28:273–276, 1964.

[10] E. Golubov. Finitely approximable regular semigroups (russian). Mat. Zametki,

17:423–432, 1975.

[11] R. Grigorchuk. On burnside’s problem on periodic groups. Functional Anal.

Appl., 14:41–43, 1980.

[12] R. Grigorchuk. On the milnor problem of group growths. Dokl. Akad. Nauk

SSSR, 271:30–33, 1983.

[13] R. Grigorchuk, V. Nekrashevych, and V. Suschansky. Automata, dynamical

systems, and groups. Tr. Mat. Inst. Sketlova, 231:134–214, 2000.

[14] R. Grigorchuk and I. Pak. Groups of intermediate growth: An introduction.

Enseign. Math., 54:251–272, 2008.

[15] R. Grigorchuk and Z. Šunić. Self-similarity and branching in group theory. Lon-

don Mathematical Society Lecture Note Series, 339:36–95, 2007.

[16] R. Grigorchuk and A. Zuk. The lamplighter group as a group generated by

2-state automaton and its spectrum. Geom. Dedicata, 87:209–244, 2001.

[17] J. Hopcroft and J. Ullman. Introduction to Automata, Languages, and Compu-

tation. Addison-Wesley Publishing, Reading, MA, 1979.

[18] G. Lallemont. Semigroups and Combinatorial Applications. John Wiley & Sons,

New York, New York, 1979.

[19] M. Lothaire. Combinatorics on Words. Addison-Wesley Publishings, Reading,

MA, 1983.

94

[20] A. Maltcev. On homomorphisms onto finite groups. Ivanov. Gos. Ped. Inst. Uc̆.

Zap., 18:49–60, 1958.

[21] Y. Muntyan and D. Savchuk. GAP package AutomGrp. Doc-

umentation and download can be found at http://www.gap-

system.org/Packages/automgrp.html.

[22] V. Nekrashevych. Self-Similar Groups, volume 117. American Mathematical

Society, Providence, RI.

[23] I. Reznikov and V. Sushchansky. Growth functions of two-state automata over

a two-element alphabet. Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn Tekh.

Nauki, 2:76–81, 2002.

[24] E. Robertson, N Ruškuc, and J. Wiegold. Generators and relations of direct

products of semigroups. Trans. Amer. Math. Soc., 350:2665–2685, 1998.

[25] K. Ruohonen. Reversible machines and post’s correspondence problem for

biprefix morphisms. Elektron. Inform. Kybernet., 21:579–595, 1985.

[26] D. Savchuk and Y. Vorobets. Automata generating free products of groups of

order 2. preprint.

[27] S. Sidki. Automorphisms of one-rooted trees: growth, circuit structure and

acyclicity. J. of Mathematical Sciences (New York), 100:1925–1943, 2000.

[28] S. Sidki. Finite automata of polynomial growth do not generate a free group.

Geom. Dedicata, 108:193–204, 2004.

[29] P. Silva and B. Steinberg. On a class of automata groups generalizing lamp-

lighther groups. Internat. J. Algebra Comput., 15:1213–1234, 2005.

95

[30] C. Sims. Computations with finitely presented groups. Cambridge University

Press, Cambridge, 1994.

[31] J. Slupik and V. Sushchansky. Inverse semigroups generated by two-state par-

tially defined automata. Contributions to general algebra, 16:261–273, 2005.

[32] B. Steinberg, M. Vorobets, and Y. Vorobets. Automata over a binary alphabet

generating free groups of even rank. To appear in IJAC.

[33] M. Vorobets and Y. Vorobets. On a free group of transformations defined by an

automaton. Geom. Dedicata, 124:237–249, 2000.

[34] M. Vorobets and Y. Vorobets. On a series of finite automata defining free trans-

formation groups. Groups Geom. Dyn., 4:377–405, 2010.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	5-2011

	Groups and Semigroups Generated by Automata
	David McCune

	tmp.1303416954.pdf.nhAxk

