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In my dissertation I will discuss the use of optimal control theory to determine

management strategies for an invasive species. I focus on a Diaprepes Root Weevil,

which is an invasive species having a substantial negative impact on citrus tree growth

in regions such as Florida and California. At the larva stage of the life cycle Diaprepes

Root Weevils cause destruction of citrus trees at the root level resulting in loss of citrus

crops. This detrimental effect for farmers motivates research into how to minimize the

economic loss due to the Diaprepes Root Weevil. For my work, I use optimal control

theory to determine levels of pesticide or biological control to apply to the Diaprepes

Root Weevil to reduce the economic loss.
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Chapter 1

Background

1.1 Mathematical Background

A useful source for the history of control theory is a paper entitled Control Theory:

History, Mathematical Achievements and Perspectives [FCZI03]. The article covers

highlights from the development of Control Theory, additionally exploring specific

topics and examples. Furthermore, the article considers feedback, optimization, con-

trollability, and optimal control. There is also a look at specific examples utilizing

control theory, and possible avenues for future study. As mentioned in the article

one of the key development of Optimal Control Theory can be traced to Pontrya-

gin. Specifically, there was a book published in 1962, The Mathematical Theory

of Optimal Process, by L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelize, and

E.F. Mishchenko[Pon87]. An important development was the Pontryagin Maximum

principle which established necessary conditions to an optimal control problem and

relates this to the Hamiltonian, a useful tool for solving optimal control problems. For

a more in-depth look we refer the reader to the original book or the book Optimal

Control Applied to Biological Models by Lenhart, S. and Workman, J.T. [LW07], a
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very useful source. The book by Lenhart and Workman covers an introduction to

Optimal Control Theory, focusing on a full treatment of continuous time systems, and

includes discrete time as well. Additionally, it includes many examples of optimal

control applied to biological systems, with both the mathematics and code included.

For specifically Discrete-Time Optimal Control Theory, a good resource is Optimal

Control in Discrete Pest Control Models by Kathryn Dabbs[Dab10]. The paper gives

an overview of how to solve discrete-time optimal control problems and looks at specific

models. Another paper on discrete-time optimal control with existence, necessary

condition, and uniquness proofs is Optimal control of gypsy moth populations by

Whittle, Lenhart, and White [WLW08]. In this thesis, we focus on a model which

does not fit into this framework, allowing for variations to the mathematical set-up

and a full treatment of existence, necessary condition, and uniqueness proofs for the

optimal control.

Additionally, there have been many papers linking Optimal Control Theory to

biology, a few that we have found useful in our studies: [MS12], [Fil62], [Gra10],

[Dab10], [WLW08], [MLW15], [JLPB05], [Ris77], and [Leu93]. Some of these papers

also address invasive species as their biological inspiration for implementing Optimal

Control. For instance, the Gypsy Moth is a specific invasive species studied in both

[WLW08] and [MLW15], which utilize a different model but use Optimal Control

Theory to study management, and in [MLW15] include an integrodifference model. In

the next section I will explain more about invasive species.
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1.2 Biological Background

Our research involves applying control theory techniques to natural resources manage-

ment, in particular management of invasive species.

Since the beginning of agriculture, people have always had to deal with pests

affecting their crops, and developing methods to control the effects. Originally people

had to eliminate pests by hand, through picking or mechanical methods, until 2500-

1500 B.C. when the Sumerians and Chinese introduced pesticide. Today there is still

a great loss of crops to pests. Specifically we consider crops which we use in our daily

lives. For instance, there is a loss of approximately 50% of wheat to pests, while

cotton loss can exceed 80% [Oer06]. There are various methods applied to combat

pests including implementing predators, weeding techniques, biological control agents,

and pesticides[Oer06].

Across the world annually there is approximately $40 billion spent on pesticides,

while the United States made up a quarter of that cost [PU03, PG97]. Despite

attempts to apply pesticide, in the United States there was still a loss 37% of crops, to

the ecological pests. Specifically there was 13% lost to insects[Pim05]. Furthermore,

even though we have increased pesticide application in the past 50 years by more than

a factor or ten, there is still approximately twice as much damage now from insects

than then [PMZ+91]. [Pim05]

Another important factor to consider is the human element which affects invasive

species. When humans disrupt a territory, the result is a possible response growth

in invasive species, with the destruction of the terrain linked to the original species

increased chance of eradication [Hob00, Fah02, DL09]. So, humans not only inadver-

tently encourage the growth of these dangerous invasive species, we also cause the

extermination of the preexisting healthy organisms. The resulting inhospitable area
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becomes an impediment for both the invasive and native species[Fah02, DL09], shaping

the landscape. There has already been research looking into humans affects on the

landscape linked to increase in invasions [Hob00, Wit02]. However with the evolution

of human society changes are constantly occurring that could influence dangerous

invasive species. Additionally, with the increase in the human population of around

5000 million people in the last 65 years, there will be more cases of invasive species

and more control required to produce enough crops for the population [CAP16].
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1.3 Overview

Our plan is to explore management of invasive species using optimal control theory.

In part one we will consider a single patch model with no dispersal.

In Chapter 2 we will introduce a basic model which takes into consideration an

invasive pest lifecycle and applying a control, for instance a pesticide, a non-persistent

short-lived biocontrol agent known as control agent. Furthermore we will prove

existence, necessary conditions, and uniqueness for the optimal control. In Chapter

3, we consider what happens when the control persists longer than one time step.

Again we will prove existence, necessary conditions, and uniqueness for the optimal

control. In Chapter 4, we explore a case study investigating a specific invasive species,

Diaprepes abbreviatus, DRW.
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1.4 Reference Chart

Notation Description

Pe Number of eggs

Pest Pl Number of larva

Vector Pp Number of pupa

Pa Number of adult

γ1 Egg survival

γ2 Transition rate egg to larva

θ1 Fecundity rate of female adults

Pest θ2 Adult survival

Matrix ζ1 Larva survival

ζ2 Transition rate larva to pupa

ν1 Pupa survival

ν2 Transition rate pupa to adult

Initial φe Initial Proportion eggs

Pest φl Initial Proportion larva

Vector φp Initial Proportionpupa

φa Initial Proportionadults

Control N Number of control agents

α search efficiency/encounter rate of control

Cost β1 loss of harvest per square meter per time steo

Function β2 cost of control per square meter per time step

Nematodes Persist µ mortality/degradation of control agent
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Chapter 2

Basic Model

2.1 Parameters

We denote pests by the vector P and control by the vector N . We consider a system

where it is possible to apply control every time step, hence we establish a discrete-time

model with constant time steps. The pest life cycles and dynamics, we used a 4× 4

matrix, A, taking into account the pest eggs (Pe), larva (Pl), pupa (Pp), and adults

(Pa). Note this can be generalized and applied to pests with a larger or smaller number

of stages; additionally the matrix can characterize different pest stages. Let:

A =



γ1 0 0 θ1

γ2 ζ1 0 0

0 ζ2 ν1 0

0 0 ν2 θ2


.

The control is applied only to the larva stage Pl, or the second stage of the pest

stages. The control search/application efficiency is denoted by α, and accounts for

how likely a control agent is to encounter a pest larva. Below is the formulation of

the pest dynamics with the control included in the larva stage, where t is a time step.
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P(t+ 1) = AlP(t) (2.1)



Pe(t+ 1)

Pl(t+ 1)

Pp(t+ 1)

Pa(t+ 1)


=



γ1 0 · e−αN(t) 0 θ1

γ2 ζ1 · e−αN(t) 0 0

0 ζ2 · e−αN(t) ν1 0

0 0 · e−αN(t) ν2 θ2





Pe(t)

Pl(t)

Pp(t)

Pa(t)


We denote initial values by 

Pe(0)

Pl(0)

Pp(0)

Pa(0)


=



φe

φl

φp

φa


.

2.2 Cost Function

We constructed the cost function by breaking it down into the control and pest

components. Specifically, if we look at the cost incurred to an environment by an

invasive pest there will be the loss of profit from the pest existing in the environment

and the cost to purchase control to apply to the environment to deal with the pest.

Since destruction of the environment is catastrophic we expect a nonlinear term

for the cost of pest damage. Specifically, when there is a low density of the pests, we

expect the affected specie will not suffer large losses, but at a high density of pests

the mortality rate becomes exponentially large. Furthermore, since we don’t have

a functional term we use the square which ensures mathematical uniqueness. For

mathematical convenience we choose to model the cost of pest damage as β1Pl(t)
2.
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The exponential increase of damage ensures that control will be applied at some point,

which is a desirable feature in the cost function because it prevents plant death as a

result of too high pest density.

In addition to the cost related to pest damage, we need to consider the cost of

purchasing the control agent which is β2N(t). So β2 is the price of a single control

unit. So the total cost is cost due to pest damage, β1Pl(t)
2, plus the cost of using

control, β2N(t),

Cost = β1Pl(t)
2 + β2N(t)

where β1 and β2 will be determined by the specific invasive species.

2.3 Optimal Control Problem

Realistically, there is going to be a maximum amount of control we can purchase and

apply. We denote Nmax as the maximum amount of control at any time step we can

apply to the environment.

The set-up over our Optimal Control Problem is to minimize the objective func-

tional for T time steps

J(N) =
T−1∑
t=0

β1Pl(t)
2 + β2N(t)

subject to
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Pe(t+ 1) = γ1Pe(t) + θ1Pa(t) Pe(0) = φe

Pl(t+ 1) = γ2Pe(t) + ζ1e
−αN(t)Pl(t) Pl(0) = φl

Pp(t+ 1) = ζ2e
−αN(t)Pl(t) + ν1Pp(t) Pp(0) = φp

Pa(t+ 1) = ν2Pp(t) + θ2Pa(t) Pa(0) = φa

(2.2)

where N(t) ≥ 0 for all t and N ∈ N = {N : {1, ..., T} → {x ∈ R|0 ≤ x(t) ≤ Nmax, t =

1, 2, ..., T}}.

We will prove the existence and uniqueness of the optimal control, which we denote

by N . We will also prove necessary conditions for the optimal control N . The proofs

roughly follow the proofs in Optimal Control of Gypsy Moth Populations by Whittle,

Lenhart, and White [WLW08]. The existence proof roughly follows from Optimal

Control in Discrete Pest Control Models by Kathryn Dabbs[Dab10]. A useful source

for proofs in Optimal Control theory is Optimal Control Applied to Biological Models

by Lenhart, S. and Workman, J.T. [LW07].

Note in the following proofs each Pe,Pl,Pp,Pa is a function of N . Similarly each

Pεe ,Pεl ,Pεp ,Pεa is a function of N + ηε.
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2.3.1 Existence

Theorem 2.3.1. There exists N ∈ N which minimizes J(N).

Proof. Each Pe, Pl, Pp, Pa is continuous as a function of N at every time step by

Equation 2.2. Define B+ = {(N(1), ...N(T ))|N ∈ N}. We note that there is a natural

isomorphism between N and B+. Considering J : N → B+ → R, we see that J is

continuous as a function of N . We have that B+ is a compact subset of RT in the

standard Euclidean topology. Thus, inf
N∈N

J(N) exists. Hence, we have a sequence Nk ∈

N such that lim
k→∞

J(Nk) = inf
N∈N

J(N), with corresponding Pek , Plk , Ppk , Pak sequences.

Thus we can find subsequences Nkj , Pekj , Plkj , Ppkj , Pakj , such that lim
j→∞

J(Nkj) =

inf
N∈N

J(N), Nkj → N , Pekj → Pe, Plkj → Pl, Ppkj → Pp, Pakj → Pa. Therefore, there

exists N ∈ N which minimizes J(N).

2.3.2 Necessary Conditions

Adjoint System: Define the following terminal value system, called an adjoint

system:

λe(t) = λe(t+ 1)γ1 + λl(t+ 1)γ2

λl(t) = 2β1Pl(t) + λl(t+ 1)ζ1e
−αN (t) + λp(t+ 1)ζ2e

−αN (t)

λp(t) = λp(t+ 1)ν1 + λa(t+ 1)ν2

λa(t) = λe(t+ 1)θ1 + λa(t+ 1)θ2

λe(T ) = 0, λl(T ) = 0, λp(T ) = 0, λa(T ) = 0.
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These adjoints, λ, are useful in establishing the formulas and necessary conditions

for the optimal control. Additionally adjoints are effective for computational pur-

poses, specifically the forward backward sweep discussed later. Note the adjoints are

constructed by

λe(t) = [β1Pl(t)2 + β2N (t)]Pe + Pe(t)Peλe(t+ 1) + Pl(t)Peλl(t+ 1) + Pp(t)Peλp(t+ 1)

+Pa(t)Peλa(t+ 1),

similar construction follows for the other adjoints. The adjoints were formulated by

Pontryagin and colleagues, the adjoints variables preform a function similar to that of

Lagrange multipliers.[LW07]

Theorem 2.3.2. If there exists an optimal control N , then there exists an adjoint

system 2.3.2 and

N (t) =


0 if β2

α
> ξ(t)

1
α

ln[ α
β2
ξ(t)] if β2

α
≤ ξ(t)

where ξ(t) = ζ1λl(t+ 1)Pl(t) + ζ2λp(t+ 1)Pl(t).

Proof. Since we have that N minimizes J(N); for all sufficiently small ε > 0 and for

all η ∈ {η = (η(1), ..., η(T ))|η(t) ≤ 1, t = 1, ...., T} we have that J(N + ηε) ≥ J(N ).

To determine the structure of the control consider directional derivatives of the cost

J , we will take a directional derivative of functional J ; for the directional derivative

in the direction of η with ε > 0 sufficiently small and 0 ≤ N + ηε = N ε ∈ N we have

that:

0 ≤ lim
ε→0+

1

ε
[J(N + ηε)− J(N )]
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= lim
ε→0+

1

ε

[
T−1∑
t=0

β1Pεl (t)2 + β2N ε(t)−
T−1∑
t=0

β1Pl(t)2 + β2N (t)

]

=
T−1∑
t=0

[
β1 lim

ε→0+

Pεl (t)2 − Pl(t)2

ε
+ β2 lim

ε→0+

N ε(t)−N (t)

ε

]
.

We have that lim
ε→0+

N ε(t)−N (t)

ε
= η(t), and we will define the sensitivities,

ψe(t), ψl(t), ψp(t), ψa(t) as:

ψe(t) = lim
ε→0

Pεe (t)− Pe(t)
ε

, ψl(t) = lim
ε→0

Pεl (t)− Pl(t)
ε

,

ψp(t) = lim
ε→0

Pεp(t)− Pp(t)
ε

, ψa(t) = lim
ε→0

Pεa(t)− Pa(t)
ε

where ψe(0) = 0, ψl(0) = 0, ψp(0) = 0, ψa(0) = 0. We have the limits exists from

Chapter 23 in Optimal Control Applied to Biological Models [LW07].

Hence, we can write:

ψe(t+ 1) = γ1ψe(t) + θ1ψa(t)

ψl(t+ 1) = γ2ψe(t) + ζ1e
−αN (t)ψl(t)− ζ1αe

−αN (t)Pl(t)η(t)

ψp(t+ 1) = ν1ψp(t) + ζ2e
−αN (t)ψl(t)− ζ2αe

−αN (t)Pl(t)η(t)

ψa(t+ 1) = ν2ψp(t) + θ2ψa(t).
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Now, returning to

0 ≤ lim
ε→0+

1

ε
[J(N + ηε)− J(N )] =

T−1∑
t=0

β12Pl(t)ψl(t) + β2η(t).

To remove the sensitivity ψl(t) we will manipulate the sensitivities and adjoints

equations.

We have that:



ψe(t+ 1)

ψl(t+ 1)

ψp(t+ 1)

ψa(t+ 1)


−B



ψe(t)

ψl(t)

ψp(t)

ψa(t)


=



0

−ζ1αe
−αN (t)Pl(t)η(t)

−ζ2αe
−αN (t)Pl(t)η(t)

0



where B =



γ1 0 0 θ1

γ2 ζ1e
−αN (k) 0 0

0 ζ2e
−αN (k) ν1 0

0 0 ν2 θ2


.

Now we have that:

T−1∑
t=0

β12Pl(t)ψl(t) =
T−1∑
t=0

[
ψe(t) ψl(t) ψp(t) ψa(t)

]


0

β12Pl(t)

0

0
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=
T−1∑
t=0

[
ψe(t) ψl(t) ψp(t) ψa(t)

]




λe(t)

λl(t)

λp(t)

λa(t)


−BT



λe(t+ 1)

λl(t+ 1)

λp(t+ 1)

λa(t+ 1)





=
T−1∑
t=0

[
ψe(t) ψl(t) ψp(t) ψa(t)

]


λe(t)

λl(t)

λp(t)

λa(t)



−
T−1∑
t=0

[
ψe(t) ψl(t) ψp(t) ψa(t)

]
BT



λe(t+ 1)

λl(t+ 1)

λp(t+ 1)

λa(t+ 1)


.

Recall that ψe(0) = 0, ψl(0) = 0, ψp(0) = 0, ψa(0) = 0 and λe(T ) = 0, λl(T ) =

0, λp(T ) = 0, λa(T ) = 0. Therefore we can change the indices, so that:
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T
−

1 ∑ t=
0

[ ψ
e
(t

)
ψ
l(
t)

ψ
p
(t

)
ψ
a
(t

)

]        λ
e
(t

)

λ
l(
t)

λ
p
(t

)

λ
a
(t

)

        

=

[ ψ
e
(0

)
ψ
l(

0)
ψ
p
(0

)
ψ
a
(0

)

]        λ
e
(0

)

λ
l(

0)

λ
p
(0

)

λ
a
(0

)

        +
..
.+

[ ψ
e
(T
−

1)
ψ
l(
T
−

1)
ψ
p
(T
−

1)
ψ
a
(T
−

1)

]        λ
e
(T
−

1)

λ
l(
T
−

1)

λ
p
(T
−

1)

λ
a
(T
−

1)

        

=

[ ψ
e
(1

)
ψ
l(

1)
ψ
p
(1

)
ψ
a
(1

)

]        λ
e
(1

)

λ
l(

1)

λ
p
(1

)

λ
a
(1

)

        +
..
.+

[ ψ
e
(T
−

1)
ψ
l(
T
−

1)
ψ
p
(T
−

1)
ψ
a
(T
−

1)

]        λ
e
(T
−

1)

λ
l(
T
−

1)

λ
p
(T
−

1)

λ
a
(T
−

1)

        

=

[ ψ
e
(1

)
ψ
l(

1)
ψ
p
(1

)
ψ
a
(1

)

]        λ
e
(1

)

λ
l(

1)

λ
p
(1

)

λ
a
(1

)

        +
..
.+

[ ψ
e
(T

)
ψ
l(
T

)
ψ
p
(T

)
ψ
a
(T

)

]        λ
e
(T

)

λ
l(
T

)

λ
p
(T

)

λ
a
(T

)
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=
T
−

1 ∑ t=
0

[ ψ
e
(t

+
1)

ψ
l(
t

+
1)

ψ
p
(t

+
1)

ψ
a
(t

+
1)

]        λ
e
(t

+
1)

λ
l(
t

+
1)

λ
p
(t

+
1)

λ
a
(t

+
1)

        .

U
si

n
g

th
is

re
in

d
ex

in
g

w
e

h
av

e
th

at
:

T
−

1 ∑ t=
0

β
1
2P

l(
t)
ψ
l(
t)

=

=
T
−

1 ∑ t=
0

[ ψ
e
(t

+
1)

ψ
l(
t

+
1)

ψ
p
(t

+
1)

ψ
a
(t

+
1)

]        λ
e
(t

+
1)

λ
l(
t

+
1)

λ
p
(t

+
1)

λ
a
(t

+
1)

        

−
T
−

1 ∑ t=
0

[ λ
e
(t

+
1)

λ
l(
t

+
1)

λ
p
(t

+
1)

λ
a
(t

+
1)

] B

        ψ
e
(t

)

ψ
l(
t)

ψ
p
(t

)

ψ
a
(t

)

        

=
T
−

1 ∑ t=
0

[ λ
e
(t

+
1)

λ
l(
t

+
1)

λ
p
(t

+
1)

λ
a
(t

+
1)

]                ψ
e
(t

+
1)

ψ
l(
t

+
1)

ψ
p
(t

+
1)

ψ
a
(t

+
1)

        −
B

        ψ
e
(t

)

ψ
l(
t)

ψ
p
(t

)

ψ
a
(t

)
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=
T
−

1 ∑ t=
0

[ λ
e
(t

+
1)

λ
l(
t

+
1)

λ
p
(t

+
1)

λ
a
(t

+
1)

]        

0

−
ζ 1
α
e−

α
N

(t
) P

l(
t)
η
(t

)

−
ζ 2
α
e−

α
N

(t
) P

l(
t)
η
(t

)

0

        
=

T
−

1 ∑ t=
0

λ
l(
t

+
1)

(−
ζ 1
α
e−

α
N

(t
) P

l(
t)
η
(t

))
+
λ
p
(t

+
1)

(−
ζ 2
α
e−

α
N

(t
) P

l(
t)
η
(t

))

=
T
−

1 ∑ t=
0

[λ
l(
t

+
1)
ζ 1

+
λ
p
(t

+
1)
ζ 2

][
−
α
e−

α
N

(t
) P

l(
t)
η
(t

))
].
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Now combining everything we have that:

0 ≤ lim
ε→0+

1

ε
[J(N + ηε)− J(N )] =

T−1∑
t=0

β12Pl(t)ψl(t) + β2η(t)

=
T−1∑
t=0

[λl(t+ 1)ζ1 + λp(t+ 1)ζ2][−αe−αN (t)Pl(t)η(t))] + β2η(t)

=
T−1∑
t=0

η(t)
[
−αe−αN (t)Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2] + β2

]
.

Considering the previous equation with equality

0 =
T−1∑
t=0

η(t)
[
−αe−αN (t)Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2] + β2

]
for all η ∈ {η = (η(1), ..., η(T ))|η(t) ≤ 1, t = 1, ...., T}. Then we have that for all t,

0 = −αe−αN (t)Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2] + β2.

Consider:

0 = −αe−αN (t)Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2] + β2 ⇐⇒

e−αN (t)Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2] =
β2

α
⇐⇒

e−αN (t) =
β2

αPl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]
⇐⇒

−αN (t) = ln

[
β2

αPl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]

]
⇐⇒

αN (t) = ln

[
αPl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]

β2

]
.
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Note that α > 0. We need that N (t) ≥ 0, so

ln

[
αPl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]

β2

]
≥ 0,

meaning

αPl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]

β2

≥ 1.

Hence when

β2

α
≤ Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2],

then we have

N (t) =
1

α
ln[

α

β2

(Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2])].

Now we will consider if

β2

α
> Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2].

Then returning to

0 =
T−1∑
t=0

η(t)
[
−αe−αN (t)Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2] + β2

]
for all η ∈ {η = (η(1), ..., η(T ))|η(t) ≤ 1, t = 1, ...., T}.

0 =
T−1∑
t=0

η(t)
[
−αe−αN (t)Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2] + β2

]

<

T−1∑
t=0

η(t)

[
−αe−αN (t)

(
β2

α

)
+ β2

]
=

T−1∑
t=0

η(t)
[
−β2e

−αN (t) + β2

]
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Hence we have if

β2

α
> Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]

then

0 <
T−1∑
t=0

η(t)
[
−β2e

−αN (t) + β2

]
=

T−1∑
t=0

η(t)β2

[
−e−αN (t) + 1

]
.

Recall we have that N (t) ≥ 0.

If N (t) > 0 we have that β2(−e−αN (t) + 1) < 0 contradiction.

Thus, if

β2

α
> Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]

we must have that N (t) = 0. Set

ξ(t) = Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]

N (t) =


0 if β2

α
> ξ(t)

1
α

ln[ α
β2
ξ(t)] if β2

α
≤ ξ(t)

.

Meaning that

N (t) = max(0,
1

α
ln[

α

β2

(Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2])]).

2.3.3 Uniqueness

Theorem 2.3.3. Uniqueness: If the optimal control N exists, then it is unique.
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Proof. In order to show N is unique we will show that J(N) =
∑T−1

t=0 β1Pl(t)
2 +β2N(t)

is strictly convex. Recall that if a function is strictly convex then there exists a

unique minimum such that J(N ) < J(N) for all N ∈ N \ N . To show that J

is strictly convex we will look at J along a line segment from N to η by defining

z(ε) = J((1 − ε)N + εη) = J(N + ε(η − N)) for N, η ∈ N, and 0 < ε < 1. Note

that if z, a one dimensional function, is convex in every possible direction then J

will be convex. To establish convexity we will show that z′′(ε) > 0. First take the

derivative of z, note that P ε
l is a function of N + ε(η −N) and P τ+ε

l is a function of

N + (τ + ε)(η −N).

z′(ε) = lim
τ→0

(
J(N + (τ + ε)(η −N))− J(N + ε(η −N))

τ

)
=

= lim
τ→0

T−1∑
t=0

β1

τ

[
P τ+ε
l (t)2−P ε

l (t)2
]
+
β2

τ

(
[N(t)+(τ+ε)(η(t)−N(t))]−[N(t)+ε(η(t)−N(t))]

)

=
T−1∑
t=0

β1

[
lim
τ→0

P τ+ε
l (t)2 − P ε

l (t)2

τ

]
+ β2

[
lim
τ→0

τ(η(t)−N(t))

τ

]

=
T−1∑
t=0

β1

[
lim
τ→0

P τ+ε
l (t)2 − P ε

l (t)2

τ

]
+ β2(η(t)−N(t)).

By The Chain Rule:

z′(ε) =
T−1∑
t=0

β12P ε
l (t)ψεl (t) + β2(η(t)−N(t)).

Note we define sensitivities similar to in Theorem 2.3.2:

ψεe(t+ 1) = γ1ψ
ε
e(t) + θ1ψ

ε
a(t)
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ψεl (t+ 1) = γ2ψ
ε
e(t) + ζ1e

−αNε(t)ψεl (t)− ζ1αe
−αNε(t)P ε

l (t)(η(t)−N(t))

ψεp(t+ 1) = ν1ψ
ε
p(t) + ζ2e

−αNε(t)ψεl (t)− ζ2αe
−αNε(t)P ε

l (t)(η(t)−N(t))

ψεa(t+ 1) = ν2ψ
ε
p(t) + θ2ψ

ε
a(t)

where ψe(0) = 0, ψl(0) = 0, ψp(0) = 0, ψa(0) = 0.

In order to continue we must define derivatives of the sensitives, σεe(t), σ
ε
l (t), σ

ε
p(t), σ

ε
a(t)

as:

σεe(t+ 1) = lim
τ→0

ψτ+ε
e (t+ 1)− ψεe(t+ 1)

τ
, σεl (t+ 1) = lim

τ→0

ψτ+ε
l (t+ 1)− ψεl (t+ 1)

τ
,

σεp(t+ 1) = lim
τ→0

ψτ+ε
p (t+ 1)− ψεp(t+ 1)

τ
, σεa(t+ 1) = lim

τ→0

ψτ+ε
a (t+ 1)− ψεa(t+ 1)

τ
.

Hence, we can write:

σεe(t+1) = lim
τ→0

ψτ+ε
e (t+ 1)− ψεe(t+ 1)

τ
= γ1 lim

τ→0

ψτ+ε
e (t)− ψεe(t)

τ
+θ1 lim

τ→0

ψτ+ε
a (t)− ψεa(t)

τ

= γ1σ
ε
e(t) + θ1σ

ε
a(t)

σεa(t+1) = lim
τ→0

ψτ+ε
a (t+ 1)− ψεa(t+ 1)

τ
= ν2 lim

τ→0

ψτ+ε
p (t)− ψεp(t)

τ
+θ2 lim

τ→0

ψτ+ε
a (t)− ψεa(t)

τ

= ν2σ
ε
p(t) + θ2σ

ε
a(t).
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N
ow

,
w

e
w

il
l

co
m

p
u
te
σ
ε l
(t

+
1)

.

σ
l(
t

+
1)

=
li
m

τ
→

0

ψ
τ
+
ε

l
(t

+
1)
−
ψ
ε l
(t

+
1)

τ
=

=
li
m

τ
→

0

γ
2
ψ
τ
+
ε

e
(t

)
+
ζ 1
e−

α
N
τ
+
ε
(t

) ψ
τ
+
ε

l
(t

)
−
ζ 1
α
e−

α
N
τ
+
ε
(t

) P
τ
+
ε

l
(t

)(
η
(t

)
−
N

(t
))
−
γ

2
ψ
ε e
(t

)
−
ζ 1
e−

α
N
ε
(t

) ψ
ε l
(t

)
+
ζ 1
α
e−

α
N
ε
(t

) P
ε l
(t

)(
η
(t

)
−
N

(t
))

τ

=
γ

2
li
m

τ
→

0

ψ
τ
+
ε

e
(t

)
−
ψ
ε e
(t

)

τ
+
ζ 1

li
m

τ
→

0

e−
α
N
τ
+
ε
(t

) ψ
τ
+
ε

l
(t

)
−
e−

α
N
ε
(t

) ψ
ε l
(t

)

τ
−
ζ 1
α

(η
(t

)−
N

(t
))

li
m

τ
→

0

e−
α
N
τ
+
ε
(t

) P
τ
+
ε

l
(t

)
−
e−

α
N
ε
(t

) P
ε l
(t

)

τ

=
γ

2
σ
ε e
(t

)
+
ζ 1

[e
−
α
N
ε
(t

) σ
ε l
(t

)
−
α
e−

α
N
ε
(t

) ψ
ε l
(t

)(
v
(t

)
−
N

(t
))

]−
ζ 1
α

(η
(t

)
−
N

(t
))

[e
−
α
N
ε
(t

) ψ
ε l
(t

)
−
α
e−

α
N
ε
(t

) P
ε l
(t

)(
η
(t

)
−
N

(t
))

]

=
γ

2
σ
ε e
(t

)+
ζ 1
e−

α
N
ε
(t

) σ
ε l
(t

)−
ζ 1
α
e−

α
N
ε
(t

) ψ
ε l
(t

)(
η
(t

)−
N

(t
))
−
ζ 1
α

(v
(t

)−
N

(t
))
e−

α
N
ε
(t

) ψ
ε l
(t

)+
ζ 1

(η
(t

)−
N

(t
))

2
α

2
e−

α
N
ε
(t

) P
ε l
(t

)
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=
γ

2
σ
ε e
(t

)
+
ζ 1
e−

α
N
ε
(t

) σ
ε l
(t

)
−

2ζ
1
α
e−

α
N
ε
(t

) ψ
ε l
(t

)(
η
(t

)
−
N

(t
))

+
ζ 1
α

2
e−

α
N
ε
(t

) P
ε l
(t

)(
η
(t

)
−
N

(t
))

2
.

N
ow

,
w

e
w

il
l

co
m

p
u
te
σ
ε p
(t

+
1)

.

σ
p
(t

+
1)

=
li
m

τ
→

0

ψ
τ
+
ε

p
(t

+
1)
−
ψ
ε p
(t

+
1)

τ
=

=
ν 1
σ
ε p
(t

)
+
ζ 2

[e
−
α
N
ε
(t

) σ
ε l
(t

)
−
α
e−

α
N
ε
(t

) ψ
ε l
(t

)(
η
(t

)
−
N

(t
))

]−
ζ 2
α

(v
(t

)
−
N

(t
))

[e
−
α
N
ε
(t

) ψ
ε l
(t

)
−
α
e−

α
N
ε
(t

) P
ε l
(t

)(
η
(t

)
−
N

(t
))

]

=
ν 1
σ
ε p
(t

)
+
ζ 2
e−

α
N
ε
(t

) σ
ε l
(t

)
−

2ζ
2
α
e−

α
N
ε
(t

) ψ
ε l
(t

)(
η
(t

)
−
N

(t
))

+
ζ 2
α

2
e−

α
N
ε
(t

) P
ε l
(t

)(
η
(t

)
−
N

(t
))

2
.
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z′(ε) =
T−1∑
t=0

β12P ε
l (t)ψεl (t) + β2(η(t)−N(t))

z′′(ε) = lim
τ→0

(
z′(τ + ε)− z′(ε)

τ

)
=

= lim
τ→0

T−1∑
t=0

β12P τ+ε
l (t)ψτ+ε

l (t) + β2(η(t)−N(t))− [β12P ε
l (t)ψεl (t) + β2(η(t)−N(t))]

=
T−1∑
t=0

β12 lim
τ→0

P τ+ε
l (t)ψτ+ε

l (t)− P ε
l (t)ψεl (t)

τ
=

T−1∑
t=0

β12[σεl (t)P
ε
l (t) + ψεl (t)

2]

We now need to show that z′′(ε) =
T−1∑
t=0

β12[σεl (t)P
ε
l (t) + ψεl (t)

2] > 0. To bound

z′′(ε) > 0 we will show that [σεl (t)P
ε
l (t) + ψεl (t)

2] > 0. To do this we will show that

σεl (t) > 0 for all t. Note we have that P ε
l (t) ≥ 0 and ψεl (t)

2 > 0.

Sensitivities We need the equations for the sensitivities for various t values. We

have that ψεe(0) = 0, ψεl (0) = 0, ψεp(0) = 0, ψεa(0) = 0, so for t = 1:

ψεe(1) = γ1ψ
ε
e(0) + θ1ψ

ε
a(0) = 0

ψεl (1) = γ2ψ
ε
e(0) + ζ1e

−αNε(0)ψεl (0)− ζ1αe
−αNε(0)P ε

l (0)(η(0)−N(0))

= −ζ1αe
−αNε(0)P ε

l (0)(η(0)−N(0))

ψεp(1) = ν1ψ
ε
p(0) + ζ2e

−αNε(0)ψεl (0)− ζ2αe
−αNε(0)P ε

l (0)(η(0)−N(0))
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= −ζ2αe
−αNε(0)P ε

l (0)(η(0)−N(0))

ψεa(1) = ν2ψ
ε
p(0) + θ2ψ

ε
a(0) = 0.

Next, for t = 2

ψεe(2) = γ1ψ
ε
e(1) + θ1ψ

ε
a(1) = 0

ψεl (2) = γ2ψ
ε
e(1) + ζ1e

−αNε(1)ψεl (1)− ζ1αe
−αNε(1)P ε

l (1)(η(1)−N(1))

= ζ1e
−αNε(1)(−ζ1αe

−αNε(0)P ε
l (0)(η(0)−N(0)))− ζ1αe

−αNε(1)P ε
l (1)(η(1)−N(1))

= −ζ2
1αe

−αNε(0)−αNε(1)P ε
l (0)(η(0)−N(0)))− ζ1αe

−αNε(1)P ε
l (1)(η(1)−N(1))

ψεp(2) = ν1ψ
ε
p(1) + ζ2e

−αNε(1)ψεl (1)− ζ2αe
−αNε(1)P ε

l (1)(η(1)−N(1))

= ν1(−ζ2αe
−αNε(0)P ε

l (0)(η(0)−N(0)))

+ζ2e
−αNε(1)(−ζ1αe

−αNε(0)P ε
l (0)(η(0)−N(0)))− ζ2αe

−αNε(1)P ε
l (1)(η(1)−N(1))

= −ν1ζ2αe
−αNε(0)P ε

l (0)(η(0)−N(0))

−ζ2ζ1αe
−αNε(0)−αNε(1)P ε

l (0)(η(0)−N(0)))− ζ2αe
−αNε(1)P ε

l (1)(η(1)−N(1))

ψεa(2) = ν2ψ
ε
p(1) + θ2ψ

ε
a(1) = ν2(−ζ2αe

−αNε(0)P ε
l (0)(η(0)−N(0))).

Then, for t = 3
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ψεe(3) = γ1ψ
ε
e(2) + θ1ψ

ε
a(2) = θ1[ν2ψ

ε
p(1) + θ2ψ

ε
a(1)]

= θ1ν2(−ζ2αe
−αNε(0)P ε

l (0)(η(0)−N(0)))

ψεl (3) = γ2ψ
ε
e(2) + ζ1e

−αNε(2)ψεl (2)− ζ1αe
−αNε(2)P ε

l (2)(η(2)−N(2))

= ζ1e
−αNε(2)[−ζ2

1αe
−αNε(0)−αNε(1)P ε

l (0)(η(0)−N(0)))−ζ1αe
−αNε(1)P ε

l (1)(η(1)−N(1))]

−ζ1αe
−αNε(2)P ε

l (2)(η(2)−N(2))

= −ζ3
1αe

−αNε(0)−αNε(1)−αNε(2)P ε
l (0)(η(0)−N(0)))

−ζ2
1αe

−αNε(1)−αNε(2)P ε
l (1)(η(1)−N(1))

−ζ1αe
−αNε(2)P ε

l (2)(η(2)−N(2))

ψεp(3) = ν1ψ
ε
p(2) + ζ2e

−αNε(2)ψεl (2)− ζ2αe
−αNε(2)P ε

l (2)(η(2)−N(2))

= ν1[−ν1ζ2αe
−αNε(0)P ε

l (0)(η(0)−N(0))− ζ2ζ1αe
−αNε(0)−αNε(1)P ε

l (0)(η(0)−N(0)))

−ζ2αe
−αNε(1)P ε

l (1)(η(1)−N(1))]+ζ2e
−αNε(2)[−ζ2

1αe
−αNε(0)−αNε(1)P ε

l (0)(η(0)−N(0)))

−ζ1αe
−αNε(1)P ε

l (1)(η(1)−N(1)]− ζ2αe
−αNε(2)P ε

l (2)(η(2)−N(2))

= −ν2
1ζ2αe

−αNε(0)P ε
l (0)(η(0)−N(0))− ν1ζ2ζ1αe

−αNε(0)−αNε(1)P ε
l (0)(η(0)−N(0)))

−ν1ζ2αe
−αNε(1)P ε

l (1)(η(1)−N(1))− ζ2ζ
2
1αe

−αNε(0)−αNε(1)−αNε(2)P ε
l (0)(η(0)−N(0)))

−ζ2ζ1αe
−αNε(1)−αNε(2)P ε

l (1)(η(1)−N(1)− ζ2αe
−αNε(2)P ε

l (2)(η(2)−N(2))
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ψεa(3) = ν2ψ
ε
p(2) + θ2ψ

ε
a(2) =

= ν2[−ν1ζ2αe
−αNε(0)P ε

l (0)(η(0)−N(0))− ζ2ζ1αe
−αNε(0)−αNε(1)P ε

l (0)(η(0)−N(0)))

−ζ2αe
−αNε(1)P ε

l (1)(η(1)−N(1))] + θ2[ν2(−ζ2αe
−αNε(0)P ε

l (0)(η(0)−N(0)))]

= −ν2ν1ζ2αe
−αNε(0)P ε

l (0)(η(0)−N(0))− ν2ζ2ζ1αe
−αNε(0)−αNε(1)P ε

l (0)(η(0)−N(0)))

−ν2ζ2αe
−αNε(1)P ε

l (1)(η(1)−N(1)) + θ2ν2(−ζ2αe
−αNε(0)P ε

l (0)(η(0)−N(0))).

Lastly, when t = 4

ψεe(4) = γ1ψ
ε
e(3) + θ1ψ

ε
a(3) = γ1[θ1ν2(−ζ2αe

−αNε(0)P ε
l (0)(η(0)−N(0)))]

+θ1[−ν2ν1ζ2αe
−αNε(0)P ε

l (0)(η(0)−N(0))

−ν2ζ2ζ1αe
−αNε(0)−αNε(1)P ε

l (0)(η(0)−N(0)))− ν2ζ2αe
−αNε(1)P ε

l (1)(η(1)−N(1))

+θ2ν2(−ζ2αe
−αNε(0)P ε

l (0)(η(0)−N(0)))]

ψεl (4) = γ2ψ
ε
e(3) + ζ1e

−αNε(3)ψεl (3)− ζ1αe
−αNε(3)P ε

l (3)(η(3)−N(3))

= γ2[θ1ν2(−ζ2αe
−αNε(0)P ε

l (0)(η(0)−N(0)))]

+ζ1e
−αNε(3)[−ζ3

1αe
−αNε(0)−αNε(1)−αNε(2)P ε

l (0)(η(0)−N(0)))

−ζ2
1αe

−αNε(1)−αNε(2)P ε
l (1)(η(1)−N(1)− ζ1αe

−αNε(2)P ε
l (2)(η(2)−N(2))]

−ζ1αe
−αNε(3)P ε

l (3)(η(3)−N(3))



31

ψεp(4) = ν1ψ
ε
p(3) + ζ2e

−αNε(3)ψεl (3)− ζ2αe
−αNε(3)P ε

l (3)(η(3)−N(3))

= ν1[−ν2ν1ζ2αe
−αNε(0)P ε

l (0)(η(0)−N(0))

−ν2ζ2ζ1αe
−αNε(0)−αNε(1)P ε

l (0)(η(0)−N(0)))− ν2ζ2αe
−αNε(1)P ε

l (1)(η(1)−N(1))

+θ2ν2(−ζ2αe
−αNε(0)P ε

l (0)(η(0)−N(0)))]

+ζ2e
−αNε(3)[−ζ3

1αe
−αNε(0)−αNε(1)−αNε(2)P ε

l (0)(η(0)−N(0)))

−ζ2
1αe

−αNε(1)−αNε(2)P ε
l (1)(η(1)−N(1))− ζ1αe

−αNε(2)P ε
l (2)(η(2)−N(2))]

−ζ2αe
−αNε(3)P ε

l (3)(η(3)−N(3))

ψεa(4) = ν2[−ν2
1ζ2αe

−αNε(0)P ε
l (0)(η(0)−N(0))

−ν1ζ2ζ1αe
−αNε(0)−αNε(1)P ε

l (0)(η(0)−N(0)))− ν1ζ2αe
−αNε(1)P ε

l (1)(η(1)−N(1))

−ζ2ζ
2
1αe

−αNε(0)−αNε(1)−αNε(2)P ε
l (0)(η(0)−N(0)))

−ζ2ζ1αe
−αNε(1)−αNε(2)P ε

l (1)(η(1)−N(1)− ζ2αe
−αNε(2)P ε

l (2)(η(2)−N(2))]

+θ2[−ν2ν1ζ2αe
−αNε(0)P ε

l (0)(η(0)−N(0))

−ν2ζ2ζ1αe
−αNε(0)−αNε(1)P ε

l (0)(η(0)−N(0)))− ν2ζ2αe
−αNε(1)P ε

l (1)(η(1)−N(1))

+θ2ν2(−ζ2αe
−αNε(0)P ε

l (0)(η(0)−N(0)))].

We have established values for ψεe(t), ψ
ε
l (t), ψ

ε
p(t), ψ

ε
a(t) for t = 0, 1, 2, 3, 4.

Values for σε We need σεl > 0, so we will focus on the values of σεl . However, we

must recall that the formulas for σε, ψε, and P ε are all interconnected. Specifically,
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we have that:

σεe(t+ 1) = γ1σ
ε
e(t) + θ1σ

ε
a(t)

σl(t+1) = γ2σ
ε
e(t)+ζ1e

−αNε(t)σεl (t)−2ζ1αe
−αNε(t)ψεl (t)(η(t)−N(t))+ζ1α

2e−αN
ε(t)P εl (t)(η(t)−N(t))2

σp(t+1) = ν1σ
ε
p(t)+ζ2e

−αNε(t)σεl (t)−2ζ2αe
−αNε(t)ψεl (t)(v(t)−N(t))+ζ2α

2e−αN
ε(t)P εl (t)(η(t)−N(t))2

σεa(t+ 1) = ν2σ
ε
p(t) + θ2σ

ε
a(t).

Recall that σεe(0), σεl (0), σεp(0), σεa(0) = 0. Consider t = 1:

σεe(1) = γ1σ
ε
e(0) + θ1σ

ε
a(0) = 0

σεl (1) = γ2σ
ε
e(0) + ζ1e

−αNε(0)σεl (0)− 2ζ1αe
−αNε(0)ψεl (0)(η(0)−N(0))

+ζ1α
2e−αN

ε(0)P ε
l (0)(η(0)−N(0))2 = ζ1α

2e−αN
ε(0)P ε

l (0)(η(0)−N(0))2

σεp(1) = ν1σ
ε
p(0) + ζ2e

−αNε(0)σεl (0)− 2ζ2αe
−αNε(0)ψεl (0)(η(0)−N(0))

+ζ2α
2e−αN

ε(0)P ε
l (0)(η(0)−N(0))2 = ζ2α

2e−αN
ε(0)P ε

l (0)(η(0)−N(0))2

σεa(1) = ν2σ
ε
p(0) + θ2σ

ε
a(0) = 0.

Next, t = 2

σεe(2) = γ1σ
ε
e(1) + θ1σ

ε
a(1) = 0

σεl (2) = γ2σ
ε
e(1) + ζ1e

−αNε(1)σεl (1)− 2ζ1αe
−αNε(1)ψεl (1)(η(1)−N(1))
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+ζ1α
2e−αN

ε(1)P ε
l (1)(η(1)−N(1))2 =

= ζ2
1α

2e−α(Nε(0)+Nε(1))P ε
l (0)(η(0)−N(0))2

+2ζ2
1α

2e−α(Nε(0)+Nε(1))P ε
l (0)(η(0)−N(0))(η(1)−N(1))+

+ζ1α
2e−αN

ε(1)P ε
l (1)(η(1)−N(1))2

= ζ2
1α

2e−α(Nε(0)+Nε(1))P ε
l (0)(η(0)−N(0))2

+2ζ2
1α

2e−α(Nε(0)+Nε(1))P ε
l (0)(η(0)−N(0))(η(1)−N(1))+

+ζ1α
2e−αN

ε(1)(γ2P
ε
e (0) + ζ1e

−αN(0)P ε
l (0))(η(1)−N(1))2

= ζ1α
2e−αN

ε(1)γ2P
ε
e (0)(η(1)−N(1))2

+ζ2
1α

2e−α(Nε(0)+Nε(1))P ε
l (0)[(η(0)−N(0))2

+2(η(0)−N(0))(η(1)−N(1)) + (η(1)−N(1))2]

= ζ1α
2e−αN

ε(1)γ2P
ε
e (0)(η(1)−N(1))2

+ζ2
1α

2e−α(Nε(0)+Nε(1))P ε
l (0)[(η(0)−N(0)) + (η(1)−N(1))]2

σεp(2) = ν1σ
ε
p(1) + ζ2e

−αNε(1)σεl (1)− 2ζ2αe
−αNε(1)ψεl (1)(η(1)−N(1))

+ζ2α
2e−αN

ε(1)P ε
l (1)(η(1)−N(1))2 =

= ν1ζ2α
2e−αN

ε(0)P ε
l (0)(η(0)−N(0))2 + ζ1ζ2α

2e−α(Nε(0)+Nε(1))P ε
l (0)(η(0)−N(0))2

+2ζ1ζ2α
2e−α(Nε(0)+Nε(1))P ε

l (0)(η(0)−N(0))(η(1)−N(1))

+ζ2α
2e−αN

ε(1)P ε
l (1)(η(1)−N(1))2
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= ν1ζ2α
2e−αN

ε(0)P ε
l (0)(η(0)−N(0))2 + ζ1ζ2α

2e−α(Nε(0)+Nε(1))P ε
l (0)(η(0)−N(0))2

+2ζ1ζ2α
2e−α(Nε(0)+Nε(1))P ε

l (0)(η(0)−N(0))(η(1)−N(1))

+ζ2α
2e−αN

ε(1)(γ2P
ε
e (0) + ζ1e

−αN(0)P ε
l (0))(η(1)−N(1))2

= ν1ζ2α
2e−αN

ε(0)P ε
l (0)(η(0)−N(0))2 + ζ2α

2e−αN
ε(1)γ2P

ε
e (0)(η(1)−N(1))2

+ζ1ζ2α
2e−α(Nε(0)+Nε(1))P ε

l (0)[(η(0)−N(0))2

+2(η(0)−N(0))(η(1)−N(1)) + (η(1)−N(1))2]

= ν1ζ2α
2e−αN

ε(0)P ε
l (0)(η(0)−N(0))2 + ζ2α

2e−αN
ε(1)γ2P

ε
e (0)(η(1)−N(1))2

+ζ1ζ2α
2e−α(Nε(0)+Nε(1))P ε

l (0)[(η(0)−N(0)) + (η(1)−N(1))]2

σεa(2) = ν2σ
ε
p(1) + θ2σ

ε
a(1) = ν2

[
ζ2α

2e−αN
ε(0)P ε

l (0)(η(0)−N(0))2
]
.

Then, t = 3

σεe(3) = γ1σ
ε
e(2) + θ1σ

ε
a(2) = θ1

[
ν2ζ2α

2e−αN
ε(0)P ε

l (0)(η(0)−N(0))2
]

σεl (3) = γ2σ
ε
e(2) + ζ1e

−αNε(2)σεl (2)

−2ζ1αe
−αNε(2)ψεl (2)(η(2)−N(2)) + ζ1α

2e−αN
ε(2)P ε

l (2)(η(2)−N(2))2 =

= ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)(η(0)−N(0))2

+2ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)(η(0)−N(0))(η(1)−N(1))

+ζ2
1α

2e−α(Nε(1)+Nε(2))P ε
l (1)(η(1)−N(1))2
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+2ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)(η(0)−N(0))(η(2)−N(2))

+2ζ2
1α

2e−α(Nε(1)+Nε(2))P ε
l (1)(η(1)−N(1))(η(2)−N(2))

+ζ1α
2e−αN

ε(2)P ε
l (2)(η(2)−N(2))2

= ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)(η(0)−N(0))2+

+2ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)(η(0)−N(0))(η(1)−N(1))

+ζ2
1α

2e−α(Nε(1)+Nε(2))[γ2P
ε
e (0) + ζ1e

−αN(0)P ε
l (0)](η(1)−N(1))2

+2ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)(η(0)−N(0))(η(2)−N(2))

+2ζ2
1α

2e−α(Nε(1)+Nε(2))[γ2P
ε
e (0) + ζ1e

−αN(0)P ε
l (0)](η(1)−N(1))(η(2)−N(2))

+ζ1α
2e−αN

ε(2)[γ2P
ε
e (1) + ζ1e

−αN(1)P ε
l (1)](η(2)−N(2))2

= ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)(η(0)−N(0))2

+2ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)(η(0)−N(0))(η(1)−N(1))

+ζ2
1α

2e−α(Nε(1)+Nε(2))γ2P
ε
e (0)(η(1)−N(1))2

+ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)(η(1)−N(1))2

+2ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)(η(0)−N(0))(η(2)−N(2))

+2ζ2
1α

2e−α(Nε(1)+Nε(2))γ2P
ε
e (0)(η(1)−N(1))(η(2)−N(2))

+2ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)(η(1)−N(1))(η(2)−N(2))

+ζ1α
2e−αN

ε(2)[γ2P
ε
e (1) + ζ1e

−αN(1)[γ2P
ε
e (0) + ζ1e

−αN(0)P ε
l (0)]](η(2)−N(2))2

= ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)(η(0)−N(0))2
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+2ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)(η(0)−N(0))(η(1)−N(1))

+ζ2
1α

2e−α(Nε(1)+Nε(2))γ2P
ε
e (0)(η(1)−N(1))2

+ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)(η(1)−N(1))2+

+2ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)(η(0)−N(0))(η(2)−N(2))

+2ζ2
1α

2e−α(Nε(1)+Nε(2))γ2P
ε
e (0)(η(1)−N(1))(η(2)−N(2))

+2ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)(η(1)−N(1))(η(2)−N(2))

+ζ1α
2e−αN

ε(2)γ2P
ε
e (1)(η(2)−N(2))2

+ζ2
1α

2e−α(Nε(1)+Nε(2))γ2P
ε
e (0)(η(2)−N(2))2

+ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)(η(2)−N(2))2

= ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)[(η(0)−N(0))2

+2(η(0)−N(0))(η(1)−N(1)) + (η(1)−N(1))2]

+ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)[2(η(0)−N(0))(η(2)−N(2)) + 2(η(1)−N(1))

(η(2)−N(2))]

+ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)(η(2)−N(2))2

+ζ2
1α

2e−α(Nε(1)+Nε(2))γ2P
ε
e (0)[(η(1)−N(1))2+(η(1)−N(1))(η(2)−N(2))+(η(2)−N(2))]2

+ζ1α
2e−αN

ε(2)γ2P
ε
e (1)(η(2)−N(2))2

= ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)[(η(0)−N(0)) + (η(1)−N(1)) + (η(2)−N(2))]2

+ζ2
1α

2e−α(Nε(1)+Nε(2))γ2P
ε
e (0)[(η(1)−N(1)) + (η(2)−N(2))]2
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+ζ1α
2e−αN

ε(2)γ2P
ε
e (1)(η(2)−N(2))2

σεp(3) = ν1σ
ε
p(2) + ζ2e

−αNε(2)σεl (2)− 2ζ2αe
−αNε(2)ψεl (2)(η(2)−N(2))+

ζ2α
2e−αN

ε(2)P ε
l (2)(η(2)−N(2))2 =

= ν1[ν1ζ2α
2e−αN

ε(0)P ε
l (0)(η(0)−N(0))2 + ζ2α

2e−αN
ε(1)γ2P

ε
e (0)(η(1)−N(1))2]

+ν1[ζ1ζ2α
2e−α(Nε(0)+Nε(1))P ε

l (0)[(η(0)−N(0)) + (η(1)−N(1))]2]

+ζ2[e−αN
ε(2)σεl (2)− 2αe−αN

ε(2)ψεl (2)(η(2)−N(2)) + α2e−αN
ε(2)P ε

l (2)(η(2)−N(2))2]

using σεl (3) = ζ1[e−αN
ε(2)σεl (2)− 2αe−αN

ε(2)ψεl (2)(η(2)−N(2)) + α2e−αN
ε(2)P εl (2)(η(2)−N(2))2]

= ν1[ν1ζ2α
2e−αN

ε(0)P ε
l (0)(η(0)−N(0))2 + ζ2α

2e−αN
ε(1)γ2P

ε
e (0)(η(1)−N(1))2]

+ν1[ζ1ζ2α
2e−α(Nε(0)+Nε(1))P ε

l (0)[(η(0)−N(0)) + (η(1)−N(1))]2]

+
ζ2

ζ1

[ζ3
1α

2e−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)[(η(0)−N(0)) + (η(1)−N(1)) + (η(2)−N(2))]2]

+
ζ2

ζ1

[ζ2
1α

2e−α(Nε(1)+Nε(2))γ2P
ε
e (0)[(η(1)−N(1)) + (η(2)−N(2))]2]

+
ζ2

ζ1

[ζ1α
2e−αN

ε(2)γ2P
ε
e (1)(η(2)−N(2))2]

σεa(3) = ν2σ
ε
p(2) + θ2σ

ε
a(2) =

= ν2[ν1ζ2α
2e−αN

ε(0)P ε
l (0)(η(0)−N(0))2 + ζ2α

2e−αN
ε(1)γ2P

ε
e (0)(η(1)−N(1))2]

+ν2[ζ1ζ2α
2e−α(Nε(0)+Nε(1))P ε

l (0)[(η(0)−N(0)) + (η(1)−N(1))]2]
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+θ2[ν2

[
ζ2α

2e−αN
ε(0)P ε

l (0)(η(0)−N(0))2
]
]

= ν2ν1ζ2α
2e−αN

ε(0)P ε
l (0)(η(0)−N(0))2 + ν2ζ2α

2e−αN
ε(1)γ2P

ε
e (0)(η(1)−N(1))2

+ν2ζ1ζ2α
2e−α(Nε(0)+Nε(1))P ε

l (0)[(η(0)−N(0)) + (η(1)−N(1))]2

+θ2ν2ζ2α
2e−αN

ε(0)P ε
l (0)(η(0)−N(0))2

Next, t = 4

σεe(4) = γ1σ
ε
e(3) + θ1σ

ε
a(3) =

γ1[θ1

[
ν2ζ2α

2e−αN
ε(0)P ε

l (0)(η(0)−N(0))2
]
]

+θ1ν2ν1ζ2α
2e−αN

ε(0)P ε
l (0)(η(0)−N(0))2 + ν2ζ2α

2e−αN
ε(1)γ2P

ε
e (0)(η(1)−N(1))2

+θ1ν2ζ1ζ2α
2e−α(Nε(0)+Nε(1))P ε

l (0)[(η(0)−N(0)) + (η(1)−N(1))]2

+θ1θ2ν2ζ2α
2e−αN

ε(0)P ε
l (0)(η(0)−N(0))2

σεl (4) = γ2σ
ε
e(3) + ζ1e

−αNε(3)σεl (3)

−2ζ1αe
−αNε(3)ψεl (3)(η(3)−N(3)) + ζ1α

2e−αN
ε(3)P εl (3)(η(3)−N(3))2 =

= γ2σ
ε
e(3)

+ζ1e
−αNε(3)[ζ31α

2e−α(N
ε(0)+Nε(1)+Nε(2))P εl (0)[(η(0)−N(0)) + (η(1)−N(1)) + (η(2)−N(2))]2]

+ζ1e
−αNε(3)[ζ21α

2e−α(N
ε(1)+Nε(2))γ2P

ε
e (0)[(η(1)−N(1)) + (η(2)−N(2))]2]

+ζ1e
−αNε(3)[ζ1α

2e−αN
ε(2)γ2P

ε
e (1)(η(2)−N(2))2]

−2ζ1αe
−αNε(3)(η(3)−N(3))[−ζ31αe−αN

ε(0)−αNε(1)−αNε(2)P εl (0)(η(0)−N(0)))

−2ζ1αe
−αNε(3)(η(3)−N(3))[−ζ21αe−αN

ε(1)−αNε(2)P εl (1)(η(1)−N(1))]



39

−2ζ1αe
−αNε(3)(η(3)−N(3))[−ζ1αe−αN

ε(2)P εl (2)(η(2)−N(2))]

+ζ1α
2e−αN

ε(3)P εl (3)(η(3)−N(3))2

= γ2σ
ε
e(3)

+ζ41α
2e−α(N

ε(0)+Nε(1)+Nε(2)+Nε(3))P εl (0)[(η(0)−N(0)) + (η(1)−N(1)) + (η(2)−N(2))]2

+ζ1e
−αNε(3)[ζ21α

2e−α(N
ε(1)+Nε(2))γ2P

ε
e (0)[(η(1)−N(1)) + (η(2)−N(2))]2]

+ζ1e
−αNε(3)[ζ1α

2e−αN
ε(2)γ2P

ε
e (1)(η(2)−N(2))2]

−2ζ1αe
−αNε(3)(η(3)−N(3))[−ζ31αe−αN

ε(0)−αNε(1)−αNε(2)P εl (0)(η(0)−N(0)))

−2ζ1αe
−αNε(3)(η(3)−N(3))[−ζ21αe−αN

ε(1)−αNε(2)[γ2P
ε
e (0) + ζ1e

−αN(0)P εl (0)](η(1)−N(1))]

−2ζ1αe
−αNε(3)(η(3)−N(3))[−ζ1αe−αN

ε(2)[γ2P
ε
e (1)+ζ1e

−αN(1){γ2P εe (0)+ζ1e
−αN(0)P εl (0)}](η(2)−N(2))]

+ζ1α
2e−αN

ε(3)[γ2P
ε
e (2)+ζ1e

−αN(2)(γ2P
ε
e (1)+ζ1e

−αN(1){γ2P εe (0)+ζ1e
−αN(0)P εl (0)})](η(3)−N(3))2

= γ2σ
ε
e(3)

+ζ41α
2e−α(N

ε(0)+Nε(1)+Nε(2)+Nε(3))P εl (0)[(η(0)−N(0)) + (η(1)−N(1)) + (η(2)−N(2))]2

+ζ31α
2e−α(N

ε(1)+Nε(2)+Nε(3))γ2P
ε
e (0)[(η(1)−N(1)) + (η(2)−N(2))]2

+ζ21α
2e−α(N

ε(2)+Nε(3))γ2P
ε
e (1)(η(2)−N(2))2

+2ζ41α
2e−α(N

ε(0)+Nε(1)+Nε(2)+Nε(3))P εl (0)(η(3)−N(3))(η(0)−N(0))

+2ζ31α
2e−α(N

ε(1)+Nε(2)+Nε(3))γ2P
ε
e (0)(η(3)−N(3))(η(1)−N(1))

+2ζ41α
2e−α(N

ε(0)+Nε(1)+Nε(2)+Nε(3))P εl (0)(η(3)−N(3))(η(1)−N(1))

+2ζ41α
2e−α(N

ε(0)+Nε(1)+Nε(2)+Nε(3))P εl (0)(η(3)−N(3))(η(2)−N(2))

+2ζ31α
2e−α(N

ε(1)+Nε(2)+Nε(3))γ2P
ε
e (0)(η(3)−N(3))(η(2)−N(2))

+2ζ21α
2e−α(N

ε(2)+Nε(3))γ2P
ε
e (1)(η(3)−N(3))(η(2)−N(2))

+ζ1α
2e−αN

ε(3)γ2P
ε
e (2)(η(3)−N(3))2
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+ζ21α
2e−α(N

ε(2)+Nε(3))γ2P
ε
e (1)(η(3)−N(3))2

+ζ31α
2e−α(N

ε(1)+Nε(2)+Nε(3))γ2P
ε
e (0)(η(3)−N(3))2

+ζ41α
2e−α(N

ε(0)+Nε(1)+Nε(2)+Nε(3))P εl (0)(η(3)−N(3))2

= γ2σ
ε
e(3)

+ζ41α
2e−α(N

ε(0)+Nε(1)+Nε(2)+Nε(3))P εl (0)[(η(0)−N(0))+(η(1)−N(1))+(η(2)−N(2))+(η(3)−N(3))]2

+ζ31α
2e−α(N

ε(1)+Nε(2)+Nε(3))γ2P
ε
e (0)[(η(1)−N(1)) + (η(2)−N(2)) + (η(3)−N(3))]2

+ζ21α
2e−α(N

ε(2)+Nε(3))γ2P
ε
e (1)[(η(2)−N(2)) + (η(3)−N(3))]2

+ζ1α
2e−αN

ε(3)γ2P
ε
e (2)(η(3)−N(3))2

For t = 5,

σεl (5) = γ2σ
ε
e(4) + ζ1e

−αNε(4)σεl (4)

−2ζ1αe
−αNε(4)ψεl (4)(η(4)−N(4)) + ζ1α

2e−αN
ε(4)P εl (4)(η(4)−N(4))2 =

= γ2σ
ε
e(4) + ζ1e

−αNε(4)[γ2σ
ε
e(3)]

+ζ51α
2e−α(N

ε(0)+Nε(1)+Nε(2)+Nε(3)+Nε(4))P εl (0)[(η(0)−N(0))+(η(1)−N(1))+(η(2)−N(2))+(η(3)−N(3))]2

+ζ41α
2e−α(N

ε(1)+Nε(2)+Nε(3)+Nε(4))γ2P
ε
e (0)[(η(1)−N(1)) + (η(2)−N(2)) + (η(3)−N(3))]2

+ζ31α
2e−α(N

ε(2)+Nε(3)+Nε(4))γ2P
ε
e (1)[(η(2)−N(2)) + (η(3)−N(3))]2

+ζ21α
2e−α(N

ε(3)+Nε(4))γ2P
ε
e (2)(η(3)−N(3))2

−2ζ1αe
−αNε(4)(η(4)−N(4))[γ2ψ

ε
e(3) + ζ1e

−αNε(3)ψεl (3)− ζ1αe−αN
ε(3)P εl (3)(η(3)−N(3))]

+ζ1α
2e−αN

ε(4)P εl (4)(η(4)−N(4))2

= γ2σ
ε
e(4) + ζ1e

−αNε(4)[γ2σ
ε
e(3)]
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+ζ51α
2e−α(N

ε(0)+Nε(1)+Nε(2)+Nε(3)+Nε(4))P εl (0)[(η(0)−N(0))+(η(1)−N(1))+(η(2)−N(2))+(η(3)−N(3))]2

+ζ41α
2e−α(N

ε(1)+Nε(2)+Nε(3)+Nε(4))γ2P
ε
e (0)[(η(1)−N(1)) + (η(2)−N(2)) + (η(3)−N(3))]2

+ζ31α
2e−α(N

ε(2)+Nε(3)+Nε(4))γ2P
ε
e (1)[(η(2)−N(2)) + (η(3)−N(3))]2

+ζ21α
2e−α(N

ε(3)+Nε(4))γ2P
ε
e (2)(η(3)−N(3))2

−2ζ1αe
−αNε(4)(η(4)−N(4))[γ2ψ

ε
e(3)]

−2ζ1αe
−αNε(4)(η(4)−N(4))[ζ1e

−αNε(3)ψεl (3)− ζ1αe−αN
ε(3)P εl (3)(η(3)−N(3))]

+ζ1α
2e−αN

ε(4)P εl (4)(η(4)−N(4))2

= γ2σ
ε
e(4) + ζ1e

−αNε(4)[γ2σ
ε
e(3)]− 2ζ1αe

−αNε(4)(η(4)−N(4))[γ2ψ
ε
e(3)]

+ζ51α
2e−α(N

ε(0)+Nε(1)+Nε(2)+Nε(3)+Nε(4))P εl (0)[(η(0)−N(0))+(η(1)−N(1))+(η(2)−N(2))+(η(3)−N(3))]2

+ζ41α
2e−α(N

ε(1)+Nε(2)+Nε(3)+Nε(4))γ2P
ε
e (0)[(η(1)−N(1)) + (η(2)−N(2)) + (η(3)−N(3))]2

+ζ31α
2e−α(N

ε(2)+Nε(3)+Nε(4))γ2P
ε
e (1)[(η(2)−N(2)) + (η(3)−N(3))]2

+ζ21α
2e−α(N

ε(3)+Nε(4))γ2P
ε
e (2)(η(3)−N(3))2

−2ζ1αe
−αNε(4)(η(4)−N(4))[ζ1e

−αNε(3)ψεl (3)− ζ1αe−αN
ε(3)P εl (3)(η(3)−N(3))]

+ζ1α
2e−αN

ε(4)P εl (4)(η(4)−N(4))2

= γ2σ
ε
e(4) + ζ1e

−αNε(4)[γ2σ
ε
e(3)]− 2ζ1αe

−αNε(4)(η(4)−N(4))[γ2ψ
ε
e(3)]

+ζ51α
2e−α(N

ε(0)+Nε(1)+Nε(2)+Nε(3)Nε(4))P εl (0)[(η(0)−N(0)) + (η(1)−N(1)) + (η(2)−N(2))

+(η(3)−N(3)) + (η(4)−N(4))]2

+ζ41α
2e−α(N

ε(1)+Nε(2)+Nε(3)+Nε(4))γ2P
ε
e (0)[(η(1)−N(1))+(η(2)−N(2))+(η(3)−N(3))+(η(4)−N(4))]2

+ζ31α
2e−α(N

ε(2)+Nε(3)+Nε(4))γ2P
ε
e (1)[(η(2)−N(2)) + (η(3)−N(3)) + (η(4)−N(4))]2

+ζ21α
2e−α(N

ε(3)+Nε(4))γ2P
ε
e (2)[(η(3)−N(3)) + (η(4)−N(4))]2

+ζ1α
2e−αN

ε(4)γ2P
ε
e (3)(η(4)−N(4))2
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= γ2σ
ε
e(4)+

+ζ1e
−αNε(4)γ2θ1

[
ν2ζ2α

2e−αN
ε(0)P εl (0)(η(0)−N(0))2

]
+2ζ1ζ2α

2ν2θ1e
−α(Nε(0)+Nε(4))γ2P

ε
l (0)(η(4)−N(4))(η(0)−N(0)))

+ζ51α
2e−α(N

ε(0)+Nε(1)+Nε(2)+Nε(3)Nε(4))P εl (0)[(η(0)−N(0)) + (η(1)−N(1)) + (η(2)−N(2))

+(η(3)−N(3)) + (η(4)−N(4))]2

+ζ41α
2e−α(N

ε(1)+Nε(2)+Nε(3)+Nε(4))γ2P
ε
e (0)[(η(1)−N(1))+(η(2)−N(2))+(η(3)−N(3))+(η(4)−N(4))]2

+ζ31α
2e−α(N

ε(2)+Nε(3)+Nε(4))γ2P
ε
e (1)[(η(2)−N(2)) + (η(3)−N(3)) + (η(4)−N(4))]2

+ζ21α
2e−α(N

ε(3)+Nε(4))γ2P
ε
e (2)[(η(3)−N(3)) + (η(4)−N(4))]2

+ζ1α
2e−αN

ε(4)γ2γ1P
ε
e (2)(η(4)−N(4))2+

ζ1α
2e−αN

ε(4)γ2θ1ν2ζ2e
−αNε(0)Pl(0)(η(4)−N(4))2+

ζ1α
2e−αN

ε(4)γ2θ1ν2ν1Pp(0)))(η(4)−N(4))2+

ζ1α
2e−αN

ε(4)γ2θ1θ2P
ε
a (1)(η(4)−N(4))2

= γ2σ
ε
e(4)+

+ζ51α
2e−α(N

ε(0)+Nε(1)+Nε(2)+Nε(3)Nε(4))P εl (0)[(η(0)−N(0)) + (η(1)−N(1)) + (η(2)−N(2))

+(η(3)−N(3)) + (η(4)−N(4))]2

+ζ41α
2e−α(N

ε(1)+Nε(2)+Nε(3)+Nε(4))γ2P
ε
e (0)[(η(1)−N(1))+(η(2)−N(2))+(η(3)−N(3))+(η(4)−N(4))]2

+ζ31α
2e−α(N

ε(2)+Nε(3)+Nε(4))γ2P
ε
e (1)[(η(2)−N(2)) + (η(3)−N(3)) + (η(4)−N(4))]2

+ζ21α
2e−α(N

ε(3)+Nε(4))γ2P
ε
e (2)[(η(3)−N(3)) + (η(4)−N(4))]2

+ζ1α
2e−αN

ε(4)γ2γ1P
ε
e (2)(η(4)−N(4))2

+ζ1α
2e−αN

ε(4)γ2θ1ν2ν1Pp(0)))(η(4)−N(4))2

+ζ1α
2e−αN

ε(4)γ2θ1θ2P
ε
a (1)(η(4)−N(4))2
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+ζ1ζ2α
2ν2θ1e

−α(Nε(0)+Nε(4))γ2P
ε
l (0)(η(0)−N(0))2

+2ζ1ζ2α
2ν2θ1e

−α(Nε(0)+Nε(4))γ2P
ε
l (0)(η(4)−N(4))(η(0)−N(0)))

ζ1ζ2α
2ν2θ1e

−α(Nε(0)+Nε(4))γ2Pl(0)(η(4)−N(4))2

= γ2σ
ε
e(4)+

+ζ51α
2e−α(N

ε(0)+Nε(1)+Nε(2)+Nε(3)Nε(4))P εl (0)[(η(0)−N(0)) + (η(1)−N(1)) + (η(2)−N(2))

+(η(3)−N(3)) + (η(4)−N(4))]2

+ζ41α
2e−α(N

ε(1)+Nε(2)+Nε(3)+Nε(4))γ2P
ε
e (0)[(η(1)−N(1))+(η(2)−N(2))+(η(3)−N(3))+(η(4)−N(4))]2

+ζ31α
2e−α(N

ε(2)+Nε(3)+Nε(4))γ2P
ε
e (1)[(η(2)−N(2)) + (η(3)−N(3)) + (η(4)−N(4))]2

+ζ21α
2e−α(N

ε(3)+Nε(4))γ2P
ε
e (2)[(η(3)−N(3)) + (η(4)−N(4))]2

+ζ1α
2e−αN

ε(4)γ2γ1P
ε
e (2)(η(4)−N(4))2

+ζ1α
2e−αN

ε(4)γ2θ1ν2ν1Pp(0)))(η(4)−N(4))2

+ζ1α
2e−αN

ε(4)γ2θ1θ2P
ε
a (1)(η(4)−N(4))2

+ζ1ζ2α
2ν2θ1e

−α(Nε(0)+Nε(4))γ2P
ε
l (0)[(η(0)−N(0)) + (η(4)−N(4))]2

Analysis Note the formula for σεe(t) is a combination of positive parameters, ex-

ponential functions, and squares of the various (η(i) − N(i)). Therefore, we have

in cases t = 1, 2, 3 that σεe(t) = 0 and when t = 3, 4 we have that σεe(t) > 0. In

cases t = 1, 2, 3, 4, 5 we have that σεl (t) > 0 since the formula for σεl (t) is a combina-

tion of σεe(t), positive parameters, exponential functions, and squares of the various

(η(i) − N(i)). We achieved the formulation of σεl (t) by grouping terms so that we

had summations of (η(i)−N(i)) squared, ensuring a positive answer. In the above

iterations we can see a pattern for the formulation of σεl . Consider the formulations of
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σεl :

σl(t+ 1) = γ2σ
ε
e(t) + ζ1e

−αNε(t)σεl (t)− 2ζ1αe
−αNε(t)ψεl (t)(η(t)−N(t))

+ζ1α
2e−αN

ε(t)P ε
l (t)(η(t)−N(t))2

= γ2σ
ε
e(t)+ζ1[e−αN

ε(t)σεl (t)−2αe−αN
ε(t)ψεl (t)(η(t)−N(t))+α2e−αN

ε(t)P ε
l (t)(η(t)−N(t))2]

= γ2σ
ε
e(t) + ζ1Ω(t)

where

Ω(t) = e−αN
ε(t)σεl (t)− 2αe−αN

ε(t)ψεl (t)(η(t)−N(t)) + α2e−αN
ε(t)P ε

l (t)(η(t)−N(t))2.

Now we can restate the formulas for the various σε as follows:

σεe(t+ 1) = γ1σ
ε
e(t) + θ1σ

ε
a(t)

σl(t+ 1) = γ2σ
ε
e(t) + ζ1Ω(t)

σp(t+ 1) = ν1σ
ε
p(t) + ζ2Ω(t)

σεa(t+ 1) = ν2σ
ε
p(t) + θ2σ

ε
a(t).

Using this formulation we can see how all the functions rely on Ω(t). For instance:

σεe(1) = γ1σ
ε
e(0) + θ1σ

ε
a(0) = 0

σl(t+ 1) = γ2σ
ε
e(0) + ζ1Ω(0) = ζ1Ω(0)

σp(t+ 1) = ν1σ
ε
p(0) + ζ2Ω(0) = ζ2Ω(0)

σεa(t+ 1) = ν2σ
ε
p(0) + θ2σ

ε
a(0) = 0
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σεe(2) = γ1σ
ε
e(1) + θ1σ

ε
a(1) = 0

σl(2) = γ2σ
ε
e(1) + ζ1Ω(1) = ζ1Ω(1)

σp(2) = ν1σ
ε
p(1) + ζ2Ω(1) = ν1ζ2Ω(0) + ζ2Ω(1) = ζ2

1∑
h=0

νh1 Ω(1− h)

σεa(2) = ν2σ
ε
p(1) + θ2σ

ε
a(1) = ν2ζ2Ω(0)

σεe(3) = γ1σ
ε
e(2) + θ1σ

ε
a(2) = θ1ν2ζ2Ω(0)

σl(3) = γ2σ
ε
e(2) + ζ1Ω(2) = ζ1Ω(2)

σp(3) = ν1σ
ε
p(2) + ζ2Ω(2) = ν2

1ζ2Ω(0) + ν1ζ2Ω(1) + ζ2Ω(2) = ζ2

2∑
h=0

νh1 Ω(2− h)

σεa(3) = ν2σ
ε
p(2) + θ2σ

ε
a(2) = ν2ν1ζ2Ω(0) + ν2ζ2Ω(1) + θ2ν2ζ2Ω(0)

= ν2ζ2

1∑
h=0

νh1 Ω(1− h) + θ2ν2ζ2

0∑
h=0

νh1 Ω(0− h)

σεe(4) = γ1σ
ε
e(3)+θ1σ

ε
a(3) = γ1θ1ν2ζ2Ω(0)+θ1[ν2ζ2

1∑
h=0

νh1 Ω(1−h)+θ2ν2ζ2

0∑
h=0

νh1 Ω(0−h)]

σl(4) = γ2σ
ε
e(3) + ζ1Ω(3) = γ2θ1ν2ζ2Ω(0) + ζ1Ω(3)

σp(4) = ν1σ
ε
p(3) + ζ2Ω(3) = ζ2

3∑
h=0

νh1 Ω(3− h)

σεa(4) = ν2σ
ε
p(3) + θ2σ

ε
a(3) =

=

(
ν2ζ2

2∑
h=0

νh1 Ω(2− h)

)
+ θ2

(
ν2ζ2

1∑
h=0

νh1 Ω(1− h)

)
+ θ2

2

(
ν2ζ2

0∑
h=0

νh1 Ω(0− h)

)
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= ν2ζ2

2∑
g=0

θ2−g
2 [

g∑
h=0

νh1 Ω(g − h)]

σεe(5) = γ1σ
ε
e(4) + θ1σ

ε
a(4) = γ1[γ1θ1ν2ζ2Ω(0) + θ1[ν2ζ2

1∑
g=0

θ1−g2 [

g∑
h=0

νh1 Ω(g − h)]]

+θ1[ν2ζ2

2∑
g=0

θ2−g2 [

g∑
h=0

νh1 Ω(g − h)]]

= θ1ν2ζ2

(
γ21Ω(0) + γ1

1∑
g=0

θ1−g2

[
g∑

h=0

νh1 Ω(g − h)

]
+

2∑
g=0

θ2−g2 [

g∑
h=0

νh1 Ω(g − h)]

)

= θ1ν2ζ2

(
γ21

0∑
g=0

θ0−g2

[
g∑

h=0

νh1 Ω(g − h)

]
+ γ1

1∑
g=0

θ1−g2

[
g∑

h=0

νh1 Ω(g − h)

]
+

2∑
g=0

θ2−g2 [

g∑
h=0

νh1 Ω(g − h)]

)

= θ1ν2ζ2

(
2∑
d=0

γ2−d1

d∑
g=0

θd−g2

[
g∑

h=0

νh1 Ω(g − h)

])

σl(5) = γ2σ
ε
e(4) + ζ1Ω(4) = γ2θ1ν2ζ2

(
1∑
d=0

γ1−d1

d∑
g=0

θd−g2

[
g∑

h=0

νh1 Ω(g − h)

])
+ ζ1Ω(4)

σp(5) = ν1σ
ε
p(4) + ζ2Ω(4) = ζ2

4∑
h=0

νh1 Ω(4− h)

σεa(5) = ν2σ
ε
p(4) + θ2σ

ε
a(4) = ν2ζ2

3∑
g=0

θ3−g2 [

g∑
h=0

νh1 Ω(g − h)]

Thus, we can write for t ≥ 5:

σεe(t+ 1) = γ1σ
ε
e(t) + θ1σ

ε
a(t) = θ1ν2ζ2

(
t−2∑
d=0

γt−2−d
1

d∑
g=0

θd−g2

[
g∑

h=0

νh1 Ω(g − h)

])

σl(t+1) = γ2σ
ε
e(t)+ζ1Ω(t) = γ2θ1ν2ζ2

(
t−3∑
d=0

γt−3−d
1

d∑
g=0

θd−g2

[
g∑

h=0

νh1 Ω(g − h)

])
+ζ1Ω(t)

σp(t+ 1) = ν1σ
ε
p(t) + ζ2Ω(t) = ζ2

t∑
h=0

νh1 Ω(t− h)
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σεa(t+ 1) = ν2σ
ε
p(t) + θ2σ

ε
a(t) = ν2ζ2

t−1∑
g=0

θt−1−g
2

[
g∑

h=0

νh1 Ω(g − h)

]
.

Hence, we have σεe(t+ 1), σεl (t+ 1), σεp(t+ 1), σεa(t+ 1) defined as functions of model

parameters and Ω(t). Recall,

Ω(t) = e−αN
ε(t)σεl (t)− 2αe−αN

ε(t)ψεl (t)(η(t)−N(t)) + α2e−αN
ε(t)P ε

l (t)(η(t)−N(t))2.

Our next step is to examine ψεl . We define

ω(t) = e−αN
ε(t)ψεl (t)− αe−αN

ε(t)P ε
l (t)(η(t)−N(t))

then we have:

ψεe(t+ 1) = γ1ψ
ε
e(t) + θ1ψ

ε
a(t)

ψεl (t+ 1) = γ2ψ
ε
e(t) + ζ1ω(t)

ψεp(t+ 1) = ν1ψ
ε
p(t) + ζ2ω(t)

ψεa(t+ 1) = ν2ψ
ε
p(t) + θ2ψ

ε
a(t).

Using this formulation we can see how all ψε function rely on ω(t). Note how the

formulation of ψε with ω looks similar to the formulation of σε with Ω. Consider:

ψεe(1) = γ1ψ
ε
e(0) + θ1ψ

ε
a(0) = 0

ψεl (1) = γ2ψ
ε
e(0) + ζ1ω(0) = ζ1ω(0)

ψεp(1) = ν1ψ
ε
p(0) + ζ2ω(0) = ζ2ω(0)
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ψεa(1) = ν2ψ
ε
p(0) + θ2ψ

ε
a(0) = 0

ψεe(2) = γ1ψ
ε
e(1) + θ1ψ

ε
a(1) = 0

ψεl (2) = γ2ψ
ε
e(1) + ζ1ω(1) = ζ1ω(1)

ψεp(2) = ν1ψ
ε
p(1) + ζ2ω(1) = ν1ζ2ω(0) + ζ2ω(1) = ζ2

1∑
h=0

νh1ω(1− h)

ψεa(2) = ν2ψ
ε
p(1) + θ2ψ

ε
a(1) = ν2ζ2ω(0)

Using a similar method as we did with the σε functions with Ω, we have for t ≥ 5:

ψεe(t+ 1) = γ1ψ
ε
e(t) + θ1ψ

ε
a(t) = θ1ν2ζ2

(
t−2∑
d=0

γt−2−d
1

d∑
g=0

θd−g2

[
g∑

h=0

νh1ω(g − h)

])

ψl(t+1) = γ2ψ
ε
e(t)+ζ1ω(t) = γ2θ1ν2ζ2

(
t−3∑
d=0

γt−3−d
1

d∑
g=0

θd−g2

[
g∑

h=0

νh1ω(g − h)

])
+ζ1ω(t)

ψp(t+ 1) = ν1ψ
ε
p(t) + ζ2ω(t) = ζ2

t∑
h=0

νh1ω(t− h)

ψεa(t+ 1) = ν2ψ
ε
p(t) + θ2ψ

ε
a(t) = ν2ζ2

t−1∑
g=0

θt−1−g
2

[
g∑

h=0

νh1ω(g − h)

]
.

We now consider values of ω(t), note we will only need to input ψεl .

ω(0) = e−αN
ε(0)ψεl (0)−αe−αNε(0)P ε

l (0)(η(0)−N(0)) = −αe−αNε(0)P ε
l (0)(η(0)−N(0))

ω(1) = e−αN
ε(1)ψεl (1)− αe−αNε(1)P ε

l (1)(η(1)−N(1))
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= e−αN
ε(1)[ζ1ω(0)]− αe−αNε(1)P ε

l (1)(η(1)−N(1))

= −ζ1αe
−α(Nε(0)+Nε(1))P ε

l (0)(η(0)−N(0))− αe−αNε(1)P ε
l (1)(η(1)−N(1))

ω(2) = e−αN
ε(2)ψεl (2)− αe−αNε(2)P ε

l (2)(η(2)−N(2))

= e−αN
ε(2)[ζ1ω(1)]− αe−αNε(2)P ε

l (2)(η(2)−N(2))

= −ζ2
1αe

−α(Nε(0)+Nε(1)+Nε(2))P ε
l (0)(η(0)−N(0))−ζ1αe

−α(Nε(1)+Nε(2))P ε
l (1)(η(1)−N(1))

−αe−αNε(2)P ε
l (2)(η(2)−N(2))

= −α
2∑
c=0

ζ2−c
1 e−α(

∑2−c
a=0 N

ε(a))P ε
l (c)(η(c)−N(c))

ω(3) = e−αN
ε(t)ψεl (3)− αe−αNε(3)P ε

l (t)(η(3)−N(3))

= e−αN
ε(t)[ζ1ω(2)]− αe−αNε(3)P ε

l (t)(η(3)−N(3))

= −α
3∑
c=0

ζ3−c
1 e−α(

∑3−c
a=0 N

ε(a))P ε
l (c)(η(c)−N(c))

ω(4) = e−αN
ε(4)ψεl (4)− αe−αNε(4)P ε

l (4)(η(4)−N(4))

= e−αN
ε(4)[γ2θ1ν2ζ2ω(0) + ζ1ω(3)]− αe−αNε(4)P ε

l (4)(η(4)−N(4))

= e−αN
ε(4)γ2θ1ν2ζ2ω(0)− α

4∑
c=0

ζ4−c
1 e−α(

∑4−c
a=0N

ε(a))P ε
l (c)(η(c)−N(c))

= −αγ2θ1ν2ζ2αe
−α(Nε(0)+Nε(4))P ε

l (0)(η(0)−N(0))]

−α
4∑
c=0

ζ4−c
1 e−α(

∑4−c
a=0N

ε(a))P ε
l (c)(η(c)−N(c))
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ω(5) = e−αN
ε(5)ψεl (5)− αe−αNε(5)P ε

l (5)(η(5)−N(5))

= e−αN
ε(5)[γ2θ1ν2ζ2

(
4−3∑
d=0

γ4−3−d
1

d∑
g=0

θd−g2

[
g∑

h=0

νh1ω(g − h)

])
+ζ1ω(4)]−αe−αNε(5)P ε

l (5)(η(5)−N(5))

= e−αN
ε(5)γ2θ1ν2ζ2

(
1∑
d=0

γ1−d
1

d∑
g=0

θd−g2

[
g∑

h=0

νh1ω(g − h)

])

−α
5∑
c=0

ζ5−c
1 e−α(

∑5−c
a=0 N

ε(a))P ε
l (c)(η(c)−N(c)

ω(t) = e−αN
ε(t)ψεl (t)− αe−αN

ε(t)P ε
l (t)(η(t)−N(t))

= e−αN
ε(t)γ2θ1ν2ζ2

(
t−1−3∑
d=0

γt−1−3−d
1

d∑
g=0

θd−g2

[
g∑

h=0

νh1ω(g − h)

])

−α
t∑

c=0

ζt−c1 e−α(
∑t−c
a=0N

ε(a))P ε
l (c)(η(c)−N(c)

= e−αN
ε(t)γ2θ1ν2ζ2

(
t−1−3∑
d=0

γt−1−3−d
1

d∑
g=0

θd−g2

[
g∑

h=0

νh1ω(g − h)

])

−α
t∑

c=0

ζt−c1 e−α(
∑t−c
a=0N

ε(a))P ε
l (c)(η(c)−N(c)

We can similarly study Ω(t):

Ω(0) = e−αN
ε(0)σεl (0)−2αe−αN

ε(0)ψεl (0)(η(0)−N(0))+α2e−αN
ε(0)P ε

l (0)(η(0)−N(0))2

= α2e−αN
ε(0)P ε

l (0)(η(0)−N(0))2.

We have already calculated the values of Ω(t) for t = 1, 2, 3, 4, 5 since we have
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calculated σεl (t) for t = 1, 2, 3, 4, 5, and recall σεl (t) = γ2σ
ε
e(t) + ζ1Ω(t). In these

equations we found we could group terms by common parameters and then simplify

the associated (η(i) − N(i)) terms into a sum which is squared. Below we have a

formula for Ω(t) in terms of parameters, ω(t), and Ω(t).

Ω(t) = e−αN
ε(t)σεl (t)− 2αe−αN

ε(t)ψεl (t)(η(t)−N(t)) + α2e−αN
ε(t)P εl (t)(η(t)−N(t))2

= e−αN
ε(t)σεl (t)

−2αe−αN
ε(t)

[
γ2θ1ν2ζ2

(
t−4∑
d=0

γt−4−d1

d∑
g=0

θd−g2

[
g∑

h=0

νh1ω(g − h)

])
+ ζ1ω(t− 1)

]
(η(t)−N(t))

+α2e−αN
ε(t)P εl (t)(η(t)−N(t))2

= e−αN
ε(t)

[
γ2θ1ν2ζ2

(
t−4∑
d=0

γt−4−d1

d∑
g=0

θd−g2

[
g∑

h=0

νh1 Ω(g − h)

])
+ ζ1Ω(t− 1)

]

−2αe−αN
ε(t)

[
γ2θ1ν2ζ2

(
t−4∑
d=0

γt−4−d1

d∑
g=0

θd−g2

[
g∑

h=0

νh1ω(g − h)

])
+ ζ1ω(t− 1)

]
(η(t)−N(t))

+α2e−αN
ε(t)P εl (t)(η(t)−N(t))2

= e−αN
ε(t)γ2θ1ν2ζ2

(
t−4∑
d=0

γt−4−d1

d∑
g=0

θd−g2

[
g∑

h=0

νh1 Ω(g − h)

])
+ e−αN

ε(t)ζ1Ω(t− 1)

−2αe−αN
ε(t)γ2θ1ν2ζ2

(
t−4∑
d=0

γt−4−d1

d∑
g=0

θd−g2

[
g∑

h=0

νh1ω(g − h)

])
(η(t)−N(t))

−2αe−αN
ε(t)ζ1ω(t− 1)(η(t)−N(t)) + α2e−αN

ε(t)P εl (t)(η(t)−N(t))2

= e−αN
ε(t)γ2θ1ν2ζ2

(
t−4∑
d=0

γt−4−d1

d∑
g=0

θd−g2

[
g∑

h=0

νh1 Ω(g − h)

])

−2αe−αN
ε(t)γ2θ1ν2ζ2

(
t−4∑
d=0

γt−4−d1

d∑
g=0

θd−g2

[
g∑

h=0

νh1ω(g − h)

])
(η(t)−N(t))

+e−αN
ε(t)ζ1[Ω(t− 1)− 2αω(t− 1)(η(t)−N(t))]

+α2e−αN
ε(t)P εl (t)(η(t)−N(t))2
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We simplify this as we did in the t = 5 case. Note how both the summations

will result in the same parameters associated with the values of Ω and ω. The last

term, α2e−αN
ε(t)P ε

l (t)(η(t)−N(t))2, will be expanded by using the formula for P ε
l (t).

By expanding P ε
l (t) we will have various terms multiplied by (η(t) − N(t))2 which

will aid in forming summations of (η(i)−N(i)) which are squared. Meanwhile, the

other terms will result in the other various (η(i)−N(i)), and since the summations

parameters match we will be able to group appropriate terms. Note from above we do

know that every ω(t) has a negative throughout the term, and this will allow us to

switch the sign on the second summation and term −2αe−αN
ε(t)ζ1ω(t−1)(η(t)−N(t)).

The result will be the summations of (η(i)−N(i)) squared multiplied by associated

parameters, making Ω(t) > 0.

If we have that Ω(t) > 0, then

σεe(t+ 1) = γ1σ
ε
e(t) + θ1σ

ε
a(t) = θ1ν2ζ2

(
t−2∑
d=0

γt−2−d
1

d∑
g=0

θd−g2

[
g∑

h=0

νh1 Ω(g − h)

])
> 0.

Hence, we have that σεl (t) = γ2σ
ε
e(t) + ζ1Ω(t) > 0

Thus, we have that z′′(ε) =
T−1∑
t=0

β12[σεl (t)P
ε
l (t) + ψεl (t)

2] > 0. This establishes the

convexity of J , which guarantees uniqueness of the minimum.
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Chapter 3

Biological Control Persists

To make the model closer to reality, we decided to include in our model that control

agents can persist for some time in the environment, and will not necessarily die off

after one time step. Our goal is to minimize the objective functional which incorporates

the cost functional that allows for the control agent to decay over several time steps.

To account for this decay we let Nn be the new control agents being added to the field

by the farmer and No be the decayed control from previous time steps.

3.1 Updated Model

We have the objective functional using the same cost function as previously but now

purchasing new control agents, Nn.

J(Nn) =
T−1∑
t=0

β1Pl(t)
2 + β2Nn(t)

Pest Dynamics with the control agents applied to the second, larva, stage and

the possible survival of the control agents serves as a constraint to the optimization

problem, including now the old control agents, No.
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Pe(t+ 1) = γ1Pe(t) + θ1Pa(t) Pe(0) = φe

Pl(t+ 1) = γ2Pe(t) + ζ1e
−α(No(t)e−µ+Nn(t))Pl(t) Pl(0) = φl

Pp(t+ 1) = ζ2e
−α(No(t)e−µ+Nn(t))Pl(t) + ν1Pp(t) Pp(0) = φp

Pa(t+ 1) = ν2Pp(t) + θ2Pa(t) Pa(0) = φa

No(t+ 1) = No(t)e
−µ +Nn(t) No(0) = 0

Furthermore the control Nn(t) ≥ 0, since we cannot add a negative quantity of

nematodes, which also bounds No(t).

We assume exponential decay models control agents survival, based on control

agents life expectancy. Specifically, µ determines the rate of decay. When we use large

values for µ the No(t)e
−µ term approaches zero and we have results that resemble

the basic model, reflecting the control agents surviving for less time. For instance, if

µ = ln(2) we have,

No(t+ 1) = No(t)e
− ln(2) +Nn(t) =

1

2
No(t) +Nn(t)

meaning half the old control agent are active from one time step to the next.

3.2 Optimal Control Problem

The goal for our Optimal Control Problem is to minimize the objective functional

J(Nn) =
T−1∑
t=0

β1Pl(t)
2 + β2Nn(t)

subject to
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Pe(t+ 1) = γ1Pe(t) + θ1Pa(t) Pe(0) = φe

Pl(t+ 1) = γ2Pe(t) + ζ1e
−α(No(t)e−µ+Nn(t))Pl(t) Pl(0) = φl

Pp(t+ 1) = ζ2e
−α(No(t)e−µ+Nn(t))Pl(t) + ν1Pp(t) Pp(0) = φp

Pa(t+ 1) = ν2Pp(t) + θ2Pa(t) Pa(0) = φa

No(t+ 1) = No(t)e
−µ +Nn(t) No(0) = 0

(3.1)

where Nn(t) ≥ 0 for all t and Nn ∈ N = {N : {1, ..., T} → {x ∈ R|0 ≤ x(t) ≤

Nmax, t = 1, 2, ..., T}}.

Again we will prove the existence and uniqueness of the optimal control, which we

denote Nn. Additionally, we will prove necessary conditions for the optimal control

Nn. The proofs roughly follow the proofs in Theorems 2.3.1, 2.3.2, 2.3.3.

Note in the following proofs each Pe,Pl,Pp,Pa,No is a function of Nn. Similarly

each Pεe ,Pεl ,Pεp ,Pεa,N ε
o is a function of Nn + ηε.

3.2.1 Existence

Theorem 3.2.1. There exists Nn ∈ N which minimizes J(Nn).

Proof. Each Pe, Pl, Pp, Pa, No is continuous as a function of Nn for every time step by

Equation 3.1. Define B+ = {N(1), ...N(T )|N ∈ N}. We note that there is a natural

isomorphism between N and B+. Consideing J : N⇔ B+ → R, we see that J is con-

tinuous as a function of Nn. We have that B+ is a compact subset of RT in the standard
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Euclidean topology. Therefore inf
Nn∈N

J(Nn) exists. Hence, we have a sequence Nnk ∈ N

such that lim
k→∞

J(Nnk) = inf
Nn∈N

J(Nn), with corresponding Pek , Plk , Ppk , Pak , Nok se-

quences. Thus we can find subsequences Nnkj
, Pekj , Plkj , Ppkj , Pakj , Nokj

, such that

lim
j→∞

J(Nnkj
) = inf

Nn∈N
J(Nn), Nnkj

→ Nn, Pekj → Pe, Plkj → Pl, Ppkj → Pp, Pakj →

Pa, Nokj
→ No. Therefore, there exists Nn ∈ N which minimizes J(Nn).

3.2.2 Necessary Conditions

Adjoint System: Define the following terminal value system:

λe(t) = λe(t+ 1)γ1 + λl(t+ 1)γ2

λl(t) = 2β1Pl(t) + λl(t+ 1)ζ1e
−α(No(t)e−µ+Nn(t)) + λp(t+ 1)ζ2e

−α(No(t)e−µ+Nn(t))

λp(t) = λp(t+ 1)ν1 + λa(t+ 1)ν2

λa(t) = λe(t+ 1)θ1 + λa(t+ 1)θ2

λo(t) = −αζ1e−µλl(k + 1)e−α(No(k)e
−µ+Nn(k))Pl(k)− αζ2e−µλp(k + 1)e−α(No(k)e

−µ+Nn(k))Pl(k)

+λo(k + 1)e−µ

λe(T ) = 0, λl(T ) = 0, λp(T ) = 0, λa(T ) = 0.

Theorem 3.2.2. If there exists an optimal control Nn, then there exists and adjoint

system 3.2.2, and
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Nn(t) =


0 if eαNo(t)e

−µ
> ξn(t)

1
α

ln(ξn)−No(t)e−µ if eαNo(t)e
−µ ≤ ξn(t)

.

with ξn(t) = αPl(t)[λl(t+1)ζ1+λp(t+1)ζ2]

β2+λo(t+1)

Proof. Since we have that Nn minimizes J(Nn); for all sufficiently small ε > 0 and for

all η ∈ {η = (η(1), ..., η(T ))|η(t) ≤ 1, t = 1, ...., T} we have that J(Nn + ηε) ≥ J(Nn).

Now we will take a directional derivative of functional J ; so for the directional derivative

in the direction of η with sufficiently small ε > 0 and 0 ≤ Nn + ηε = N ε
n ∈ N we have

that:

0 ≤ lim
ε→0+

1

ε
[J(Nn + ηε)− J(Nn)] =

= lim
ε→0+

1

ε

[
T−1∑
t=0

β1Pεl (t)2 + β2N ε
n(t)−

T−1∑
t=0

β1Pl(t)2 + β2Nn(t)

]

=
T−1∑
t=0

[
β1 lim

ε→0+

Pεl (t)2 − Pl(t)2

ε
+ β2 lim

ε→0+

N ε
n(t)−Nn(t)

ε

]
=

T−1∑
t=0

β12Pl(t)ψl(t)+β2η(t).

Where we will define the sensitivities ψe(t), ψl(t), ψp(t), ψa(t), ψo(t) as:

ψe(t) = lim
ε→0

Pεe (t)− Pe(t)
ε

, ψl(t) = lim
ε→0

Pεl (t)− Pl(t)
ε

, ψp(t) = lim
ε→0

Pεp(t)− Pp(t)
ε

,

ψa(t) = lim
ε→0

Pεa(t)− Pa(t)
ε

, ψo(t) = lim
ε→0

N ε
o (t)−No(t)

ε

where ψe(0) = 0, ψl(0) = 0, ψp(0) = 0, ψa(0) = 0, ψo(0) = 0. We have the limits

exists from Chapter 23 in Optimal Control Applied to Biological Models [LW07]
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Hence, we can write:

ψe(t+ 1) = γ1ψe(t) + θ1ψa(t)

ψl(t+ 1) = γ2ψe(t) + ζ1e
−α(No(t)e−µ+Nn(t))ψl(t)− ζ1αe

−µe−α(No(t)e−µ+Nn(t))ψo(t)Pl(t)

−ζ1αe
−α(No(t)e−µ+Nn(t))Pl(t)η(t)

ψp(t+ 1) = ν1ψp(t) + ζ2e
−α(No(t)e−µ+Nn(t))ψl(t)− ζ2αe

−µe−α(No(t)e−µ+Nn(t))ψo(t)Pl(t)

−ζ2αe
−α(No(t)e−µ+Nn(t))Pl(t)η(t)

ψa(t+ 1) = ν2ψp(t) + θ2ψa(t)

ψo(t+ 1) = ψo(t)e
−µ + η(t).

Now, returning to 0 ≤ lim
ε→0+

1

ε
[J(Nn + ηε)− J(Nn)] =

T−1∑
t=0

β12Pl(t)ψl(t) + β2η(t).

To remove the sensitivities ψl(t) we will manipulate the sensitivities and adjoints

equations.

We have that:



ψe(t+ 1)

ψl(t+ 1)

ψp(t+ 1)

ψa(t+ 1)

ψo(t+ 1)


−B



ψe(t)

ψl(t)

ψp(t)

ψa(t)

ψo(t)


=



0

−ζ1αe
−α(No(t)e−µ+Nn(t))Pl(t)η(t)

−ζ2αe
−α(No(t)e−µ+Nn(t))Pl(t)η(t)

0

η(t)
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where B =



γ1 0 0 θ1 0

γ2 ζ1e
−α(No(t)e−µ+Nn(t)) 0 0 −ζ1αe

−µe−α(No(t)e−µ+Nn(t))Pl(t)

0 ζ2e
−α(No(t)e−µ+Nn(t)) ν1 0 −ζ2αe

−µe−α(No(t)e−µ+Nn(t))Pl(t)

0 0 ν2 θ2 0

0 0 0 0 e−µ


.

Now we have that:

T−1∑
t=0

β12Pl(t)ψl(t) =
T−1∑
t=0

[
ψe(t) ψl(t) ψp(t) ψa(t) ψo(t)

]


0

β12Pl(t)

0

0

0



=
T−1∑
t=0

[
ψe(t) ψl(t) ψp(t) ψa(t) ψo(t)

]




λe(t)

λl(t)

λp(t)

λa(t)

λo(t)


−BT



λe(t+ 1)

λl(t+ 1)

λp(t+ 1)

λa(t+ 1)

λo(t+ 1)





=
T−1∑
t=0

[
ψe(t) ψl(t) ψp(t) ψa(t) ψo(t)

]


λe(t)

λl(t)

λp(t)

λa(t)

λo(t)
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−
T−1∑
t=0

[
ψe(t) ψl(t) ψp(t) ψa(t) ψo(t)

]
BT



λe(t+ 1)

λl(t+ 1)

λp(t+ 1)

λa(t+ 1)

λo(t+ 1)


.

Recall that ψe(0) = 0, ψl(0) = 0, ψp(0) = 0, ψa(0) = 0, ψo(0) = 0 and λe(T ) =

0, λl(T ) = 0, λp(T ) = 0, λa(T ) = 0, λo(T ) = 0. Therefore we can change the indices,

so that:

T−1∑
t=0

β12Pl(t)ψl(t) =

T−1∑
t=0

[
ψe(t+ 1) ψl(t+ 1) ψp(t+ 1) ψa(t+ 1) ψo(t+ 1)

]


λe(t+ 1)

λl(t+ 1)

λp(t+ 1)

λa(t+ 1)

λo(t+ 1)



−
T−1∑
t=0

[
λe(t+ 1) λl(t+ 1) λp(t+ 1) λa(t+ 1) λo(t+ 1)

]
B



ψe(t)

ψl(t)

ψp(t)

ψa(t)

ψo(t)



=

T−1∑
t=0

[
λe(t+ 1) λl(t+ 1) λp(t+ 1) λa(t+ 1) λo(t+ 1)

]




ψe(t+ 1)

ψl(t+ 1)

ψp(t+ 1)

ψa(t+ 1)

ψo(t+ 1)


−B



ψe(t)

ψl(t)

ψp(t)

ψa(t)

ψo(t)




=

T−1∑
t=0

[
λe(t+ 1) λl(t+ 1) λp(t+ 1) λa(t+ 1) λo(t+ 1)

]


0

−ζ1αe−α(No(t)e
−µ+Nn(t))Pl(t)η(t)

−ζ2αe−α(No(t)e
−µ+Nn(t))Pl(t)η(t)

0

η(t)
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=

T−1∑
t=0

λl(t+ 1)
(
−ζ1αe−α(No(t)e

−µ+Nn(t))Pl(t)η(t)
)

+λp(t+ 1)
(
−ζ2αe−α(No(t)e

−µ+Nn(t))Pl(t)η(t)
)

+ λo(t+ 1)η(t)

=

T−1∑
t=0

[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]
[
−αe−α(No(t)e

−µ+Nn(t))Pl(t)η(t)
]

+ λo(t+ 1)η(t)

=

T−1∑
t=0

[
−αe−α(No(t)e

−µ+Nn(t))Pl(t)(λl(t+ 1)ζ1 + λp(t+ 1)ζ2) + λo(t+ 1)
]
η(t).

Now combining everything we have that:

0 ≤ lim
ε→0+

1

ε
[J(Nn + ηε)− J(Nn)] =

T−1∑
t=0

β12Pl(t)ψl(t) + β2η(t)

=
T−1∑
t=0

[
−αe−α(No(t)e−µ+Nn(t))Pl(t)(λl(t+ 1)ζ1 + λp(t+ 1)ζ2) + λo(t+ 1)

]
η(t) + β2η(t)

=
T−1∑
t=0

η(t)
[
−αe−α(No(t)e−µ+Nn(t))Pl(t)(λl(t+ 1)ζ1 + λp(t+ 1)ζ2) + λo(t+ 1) + β2

]
.

Considering the previous equation with equality

0 =
T−1∑
t=0

η(t)
[
−αe−α(No(t)e−µ+Nn(t))Pl(t)(λl(t+ 1)ζ1 + λp(t+ 1)ζ2) + λo(t+ 1) + β2

]

for all η(t) ∈ {η = (η(1), ..., η(T ))|η(t) ≤ 1, t = 1, ...., T}. The we have that for all t,

0 = −αe−α(No(t)e−µ+Nn(t))Pl(t)(λl(t+ 1)ζ1 + λp(t+ 1)ζ2) + λo(t+ 1) + β2

Consider:

0 = −αe−α(No(t)e−µ+Nn(t))Pl(t)(λl(t+ 1)ζ1 + λp(t+ 1)ζ2) + λo(t+ 1) + β2 ⇐⇒

λo(t+ 1) + β2

αPl(t)(λl(t+ 1)ζ1 + λp(t+ 1)ζ2)
= e−α(No(t)e−µ+Nn(t)) ⇐⇒
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ln

[
λo(t+ 1) + β2

αPl(t)(λl(t+ 1)ζ1 + λp(t+ 1)ζ2)

]
= −α(No(t)e−µ +Nn(t))⇐⇒

No(t)e−µ +Nn(t) =
1

α
ln

[
αPl(t)(λl(t+ 1)ζ1 + λp(t+ 1)ζ2)

λo(t+ 1) + β2

]
⇐⇒

Nn(t) =
1

α
ln

[
αPl(t)(λl(t+ 1)ζ1 + λp(t+ 1)ζ2)

λo(t+ 1) + β2

]
−No(t)e−µ.

Note that α > 0. We need that Nn(t) ≥ 0, so

1

α
ln

[
αPl(t)(λl(t+ 1)ζ1 + λp(t+ 1)ζ2)

λo(t+ 1) + β2

]
−No(t)e−µ ≥ 0⇐⇒

ln

[
αPl(t)(λl(t+ 1)ζ1 + λp(t+ 1)ζ2)

λo(t+ 1) + β2

]
≥ αNo(t)e−µ ⇐⇒

αPl(t)(λl(t+ 1)ζ1 + λp(t+ 1)ζ2)

λo(t+ 1) + β2

≥ eαNo(t)e
−µ
.

Hence if

αPl(t)(λl(t+ 1)ζ1 + λp(t+ 1)ζ2)

λo(t+ 1) + β2

≥ eαNo(t)e
−µ
,

then we have

Nn(t) =
1

α
ln[
αPl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]

β2 + λo(t+ 1)
]−No(t)e−µ.

Now we will consider if

αPl(t)(λl(t+ 1)ζ1 + λp(t+ 1)ζ2)

λo(t+ 1) + β2

< eαNo(t)e
−µ
,

then we have

Pl(t)(λl(t+ 1)ζ1 + λp(t+ 1)ζ2) <
1

α
eαNo(t)e

−µ
[λo(t+ 1) + β2].
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Returning to:

0 =
T−1∑
t=0

η(t)
[
−αe−α(No(t)e−µ+Nn(t))Pl(t)(λl(t+ 1)ζ1 + λp(t+ 1)ζ2) + λo(t+ 1) + β2

]

<
T−1∑
t=0

η(t)

[
−αe−α(No(t)e−µ+Nn(t))[

1

α
eαNo(t)e

−µ
(λo(t+ 1) + β2)] + λo(t+ 1) + β2

]

=
T−1∑
t=0

η(t)
[
−e−αNn(t)[(λo(t+ 1) + β2)] + λo(t+ 1) + β2

]

=
T−1∑
t=0

η(t)
[
λo(t+ 1)− e−αNn(t)λo(t+ 1) + β2 − e−αNn(t)β2

]
.

Hence we have if

αPl(t)(λl(t+ 1)ζ1 + λp(t+ 1)ζ2)

λo(t+ 1) + β2

< eαNo(t)e
−µ

then

0 <
T−1∑
t=0

η(t)[λo(t+ 1)− e−αNn(t)λo(t+ 1) + β2 − e−αNn(t)β2]

= η(t)[λo(t+ 1)(1− e−αNn(t)) + β2(1− e−αNn(t))].

Recall we have that Nn(t) ≥ 0.

If Nn(t) > 0 we have that

λo(t+ 1)(1− e−αNn(t)) + β2(1− e−αNn(t)) < 0,

which is a contradiction. Thus, if

αPl(t)(λl(t+ 1)ζ1 + λp(t+ 1)ζ2)

λo(t+ 1) + β2

< eαNo(t)e
−µ
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we must have that Nn(t) = 0. Set ξn(t) = αPl(t)[λl(t+1)ζ1+λp(t+1)ζ2]

β2+λo(t+1)

Nn(t) =


0 if eαNo(t)e

−µ
> ξn(t)

1
α

ln(ξn)−No(t)e−µ if eαNo(t)e
−µ ≤ ξn(t)

.

3.2.2.1 Comparing Basic and Persist Model Equations

Back in Theorem 2.3.2 we established:

N (t) =


0 if β2

α > Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]

1
α ln[ αβ2

Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]] if β2
α ≤ Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]

.

From Theorem 3.2.2 we established:

Nn(t) =


0 if eαNo(t)e

−µ
>

αPl(t)[λl(t+1)ζ1+λp(t+1)ζ2]
β2+λo(t+1)

1
α ln[

αPl(t)[λl(t+1)ζ1+λp(t+1)ζ2]
β2+λo(t+1) ]−No(t)e−µ if eαNo(t)e

−µ ≤ αPl(t)[λl(t+1)ζ1+λp(t+1)ζ2]
β2+λo(t+1)

.

We want to see if the Persist model will reduce to the Basic model if we re-

duce the time that control persists, meaning µ → ∞. Note if we take µ → ∞

in Pe, Pl, Pp, Pa, λe, λl, λp, λa from Theorem 3.2.2 we have the same equations from

Theorem 2.3.2. First consider No and λo.

lim
µ→∞

No(t+ 1) = lim
µ→∞

[No(t)e
−µ +Nn(t)] = Nn(t)

lim
µ→∞

λo(t) = lim
µ→∞

[−αζ1e−µλl(k + 1)e−α(No(k)e
−µ+Nn(k))Pl(k)]
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+ lim
µ→∞

[−αζ2e−µλp(k + 1)e−α(No(k)e
−µ+Nn(k))Pl(k) + λo(k + 1)e−µ] = 0

Therefore, we have that No(t + 1) = Nn(t) and λo(t) = 0, which relates to the

Basic model. Firstly, No(t + 1) = Nn(t) states that the only old control is the new

control from the previous step, no old control survives. While λo(t) = 0 eliminates

the old control from the process, since it doesn’t exist as a factor in the basic model.

Now we will look at the equation for Nn(t) and take the limit of µ → ∞. First

consider when eαNo(t)e
−µ
> αPl(t)[λl(t+1)ζ1+λp(t+1)ζ2]

β2+λo(t+1)
then Nn(t) = 0. So taking µ→∞:

e0 >
αPl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]

β2 + 0
⇐⇒

1 >
α

β2

Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]⇐⇒

β2

α
> Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2].

So as µ→∞, if

β2

α
> Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]

then Nn(t) = 0. This is the same as with N (t).

Next consider when

eαNo(t)e
−µ ≤ αPl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]

β2 + λo(t+ 1)

then

Nn(t) =
1

α
ln[
αPl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]

β2 + λo(t+ 1)
]−No(t)e−µ.

So taking µ→∞ for the first part we have:
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e0 ≤ αPl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]

β2 + 0
⇐⇒

β2

α
≤ Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]

then we have that:

Nn(t) =
1

α
ln[
αPl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]

β2 + 0
]−No(t) · 0

=
1

α
ln[

α

β2

Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2].

So as µ→∞:

Nn(t) =


0 if β2

α > Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]

1
α ln[ αβ2

Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]] if β2

α ≤ Pl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]

which is the same as the Basic model.

3.2.3 Uniqueness

The following proof is similar to the proof of Theorem 2.3.3. Differences occur in the

additional variables associated with considering old Nematodes, No, which affects

Theorem 3.2.3. Uniqueness: If the optimal control Nn exists, then it is unique.

Proof. In order to show Nn is unique we will show that J(Nn) =
∑T−1

t=0 β1Pl(t)
2 +

β2Nn(t) is strictly convex. Recall that if a function is strictly convex then there exists

a unique minimum such that J(Nn) < J(Nn) for all Nn ∈ Nn \ Nn. To show tha J

is strictly convex we will look at J along a line segment from Nn to η by defining
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z(ε) = J((1− ε)Nn + εη) = J(Nn + ε(η −Nn)) for Nn, η ∈ Nn, and 0 < ε < 1. Note

that if z, a one dimensional function, is convex in every possible direction then J

will be convex. To establish convexity we will show that z′′(ε) > 0. First take the

derivative of z:

z′(ε) = lim
τ→0

(
J(Nn + (τ + ε)(η −Nn))− J(Nn + ε(η −Nn))

τ

)
=

= lim
τ→0

T−1∑
t=0

β1

τ

[
P τ+ε
l (t)2 − P ε

l (t)2
]

+
β2

τ

(
[Nn(t) + (τ + ε)(η(t)−Nn(t))]− [Nn(t) + ε(η(t)−Nn(t))]

)

=
T−1∑
t=0

β1

[
lim
τ→0

P τ+ε
l (t)2 − P ε

l (t)2

τ

]
+ β2

[
lim
τ→0

τ(η(t)−Nn(t))

τ

]

=
T−1∑
t=0

β1

[
lim
τ→0

P τ+ε
l (t)2 − P ε

l (t)2

τ

]
+ β2(η(t)−Nn(t)).

By The Chain Rule:

z′(ε) =
T−1∑
t=0

β12P ε
l (t)ψεl (t) + β2(η(t)−Nn(t)).

Note we define sensitivities similar to in Theorem 3.2.2:

ψεe(t+ 1) = γ1ψ
ε
e(t) + θ1ψ

ε
a(t)

ψεl (t+ 1) = γ2ψ
ε
e(t) + ζ1e

−α(Nε
o (t)e−µ+Nε

n(t))ψεl (t)− ζ1αe
−µe−α(Nε

o (t)e−µ+Nε
n(t))ψεo(t)P

ε
l (t)
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−ζ1αe
−α(Nε

o (t)e−µ+Nε
n(t))P ε

l (t)(η(t)−Nn(t))

ψεp(t+ 1) = ν1ψ
ε
p(t) + ζ2e

−α(Nε
o (t)e−µ+Nε

n(t))ψεl (t)− ζ2αe
−µe−α(Nε

o (t)e−µ+Nε
n(t))ψεo(t)P
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In order to continue we must define derivatives of sensitives, σe(t), σl(t), σp(t), σa(t), σo(t)
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.
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Next we compute

z′(ε) =
T−1∑
t=0

β12P ε
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=
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We now need to show that z′′(ε) =
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ε
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2] > 0. To bound

z′′(ε) > 0 we will show that σεl (t) > 0.

We start by calculating some of the terms for both ψε and σε functions.

We have that ψεe(0) = 0, ψεl (0) = 0, ψεp(0) = 0, ψεa(0) = 0, ψεo(0) = 0, so for t = 1:

ψεe(1) = γ1ψ
ε
e(0) + θ1ψ

ε
a(0) = 0

ψεl (1) = γ2ψ
ε
e(0) + ζ1e

−α(Nε
o (0)e−µ+Nε

n(0))ψεl (0)− ζ1αe
−µe−α(Nε

o (0)e−µ+Nε
n(0))ψεo(0)P ε

l (0)

−ζ1αe
−α(Nε

o (0)e−µ+Nε
n(0))P ε

l (0)(η(0)−Nn(0))

= −ζ1αe
−α(Nε

o (0)e−µ+Nε
n(0))P ε

l (0)(η(0)−Nn(0))
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ψεp(1) = ν1ψ
ε
p(0) + ζ2e

−α(Nε
o (0)e−µ+Nε

n(0))ψεl (0)− ζ2αe
−µe−α(Nε

o (0)e−µ+Nε
n(0))ψεo(0)P ε

l (0)

−ζ2αe
−α(Nε

o (0)e−µ+Nε
n(0))P ε

l (0)(η(0)−Nn(0))

= −ζ2αe
−α(Nε

o (0)e−µ+Nε
n(0))P ε

l (0)(η(0)−Nn(0))

ψεa(1) = ν2ψ
ε
p(0) + θ2ψ

ε
a(0) = 0

ψεo(1) = ψεo(0)e−µ + (η(0)−Nn(0)) = (η(0)−Nn(0)).

Next, for t = 2

ψεe(2) = γ1ψ
ε
e(1) + θ1ψ

ε
a(1) = 0

ψεl (2) = γ2ψ
ε
e(1) + ζ1e

−α(Nε
o (1)e−µ+Nε

n(1))ψεl (1)− ζ1αe
−µe−α(Nε

o (1)e−µ+Nε
n(1))ψεo(1)P ε

l (1)

−ζ1αe
−α(Nε

o (1)e−µ+Nε
n(1))P ε

l (1)(η(1)−Nn(1)) =

= ζ1e
−α(Nε

o (1)e−µ+Nε
n(1))ψεl (1)− ζ1αe

−µe−α(Nε
o (1)e−µ+Nε

n(1))(η(0)−Nn(0))P ε
l (1)

−ζ1αe
−α(Nε

o (1)e−µ+Nε
n(1))P ε

l (1)(η(1)−Nn(1))

ψεp(2) = ν1ψ
ε
p(1) + ζ2e

−α(Nε
o (1)e−µ+Nε

n(1))ψεl (1)− ζ2αe
−µe−α(Nε

o (1)e−µ+Nε
n(1))ψεo(1)P ε

l (1)
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−ζ2αe
−α(Nε

o (1)e−µ+Nε
n(1))P ε

l (1)(η(1)−Nn(1))

= ν1ψ
ε
p(1) + ζ2e

−α(Nε
o (1)e−µ+Nε

n(1))ψεl (1)− ζ2αe
−µe−α(Nε

o (1)e−µ+Nε
n(1))(η(0)−Nn(0))P ε

l (1)

−ζ2αe
−α(Nε

o (1)e−µ+Nε
n(1))P ε

l (1)(η(1)−Nn(1))

ψεa(2) = ν2ψ
ε
p(1) + θ2ψ

ε
a(1) = ν2ψ

ε
p(1)

ψεo(2) = ψεo(1)e−µ + (η(1)−Nn(1)) = (η(0)−Nn(0))e−µ + (η(1)−Nn(1)).

Lastly, for t = 3

ψεe(3) = γ1ψ
ε
e(2) + θ1ψ

ε
a(2) = θ1ψ

ε
a(2)

ψεl (3) = γ2ψ
ε
e(2) + ζ1e

−α(Nε
o (2)e−µ+Nε

n(2))ψεl (2)− ζ1αe
−µe−α(Nε

o (2)e−µ+Nε
n(2))ψεo(2)P ε

l (2)

−ζ1αe
−α(Nε

o (2)e−µ+Nε
n(2))P ε

l (2)(η(2)−Nn(2))

= ζ1e
−α(Nε

o (2)e−µ+Nε
n(2))ψεl (2)− ζ1αe

−µe−α(Nε
o (2)e−µ+Nε

n(2))ψεo(2)P ε
l (2)

−ζ1αe
−α(Nε

o (2)e−µ+Nε
n(2))P ε

l (2)(η(2)−Nn(2))

ψεp(3) = ν1ψ
ε
p(2) + ζ2e

−α(Nε
o (2)e−µ+Nε

n(2))ψεl (2)− ζ2αe
−µe−α(Nε

o (2)e−µ+Nε
n(2))ψεo(2)P ε

l (2)
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−ζ2αe
−α(Nε

o (2)e−µ+Nε
n(2))P ε

l (2)(η(2)−Nn(2))

ψεa(3) = ν2ψ
ε
p(2) + θ2ψ

ε
a(2)

ψεo(3) = ψεo(2)e−µ + (η(2)−Nn(2)).

Recall that σεe(0), σεl (0), σεp(0), σεa(0) = 0, σεo(0) = 0. Consider t = 1:

σεe(1) = γ1σ
ε
e(0) + θ1σ

ε
a(0) = 0

σεl (1) = γ2σ
ε
e(0) + ζ1e

−α(Nε
o (0)e−µ+Nε

n(0))σεl (0)− 2ζ1αe
−µe−α(Nε

o (0)e−µ+Nε
n(0))ψεl (0)ψεo(0)

−2ζ1αe
−α(Nε

o (0)e−µ+Nε
n(0))ψεl (0)(η(0)−Nn(0))− ζ1αe

−µe−α(Nε
o (0)e−µ+Nε

n(0))P ε
l (0)σεo(0)

+ζ1α
2e−2µe−α(Nε

o (0)e−µ+Nε
n(0))P ε

l ψ
ε
o(0)2

+2ζ1α
2e−µe−α(Nε

o (0)e−µ+Nε
n(0))P ε

l (0)ψεo(0)(η(0)−Nn(0))

+ζ1α
2e−α(Nε

o (0)e−µ+Nε
n(0))P ε

l (0)(η(0)−Nn(0))2

= ζ1α
2e−α(Nε

o (0)e−µ+Nε
n(0))P ε

l (0)(η(0)−Nn(0))2

σεp(1) = ν1σ
ε
p(0) + ζ2e

−α(Nε
o (0)e−µ+Nε

n(0))σεl (0)− 2ζ2αe
−µe−α(Nε

o (0)e−µ+Nε
n(0))ψεl (0))ψεo(0)

−2ζ2αe
−α(Nε

o (0)e−µ+Nε
n(0))ψεl (0))((η(0)−Nn(0))+ζ2α

2e−2µe−α(Nε
o (0)e−µ+Nε

n(0))P ε
l (0)ψεo(0)2
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+2ζ2α
2e−µe−α(Nε

o (0)e−µ+Nε
n(0))P ε

l (0)ψεo(0)(η(0)−Nn(0))

−ζ2αe
−µe−α(Nε

o (0)e−µ+Nε
n(0))P ε

l (0)σεo(0)

+ζ2α
2e−α(Nε

o (0)e−µ+Nε
n(0))P ε

l (0)(η(0)−Nn(0))2

= ζ2α
2e−α(Nε

o (0)e−µ+Nε
n(0))P ε

l (0)(η(0)−Nn(0))2

σεa(1) = ν2σ
ε
p(0) + θ2σ

ε
a(0) = 0

σεo(1) = e−µσεo(0) = 0.

Next, t = 2

σεe(2) = γ1σ
ε
e(1) + θ1σ

ε
a(1) = 0

σεl (2) = γ2σ
ε
e(1) + ζ1e

−α(Nε
o (1)e−µ+Nε

n(1))σεl (1)− 2ζ1αe
−µe−α(Nε

o (1)e−µ+Nε
n(1))ψεl (1)ψεo(1)

−2ζ1αe
−α(Nε

o (1)e−µ+Nε
n(1))ψεl (1)(η(1)−Nn(1))− ζ1αe

−µe−α(Nε
o (1)e−µ+Nε

n(1))P ε
l (1)σεo(1)

+ζ1α
2e−2µe−α(Nε

o (1)e−µ+Nε
n(1))P ε

l ψ
ε
o(1)2

+2ζ1α
2e−µe−α(Nε

o (1)e−µ+Nε
n(1))P ε

l (1)ψεo(1)(η(1)−Nn(1))

+ζ1α
2e−α(Nε

o (1)e−µ+Nε
n(1))P ε

l (1)(η(1)−Nn(1))2

= γ2σ
ε
e(1) + ζ1e

−α(Nε
o (1)e−µ+Nε

n(1))σεl (1)− 2ζ1αe
−µe−α(Nε

o (1)e−µ+Nε
n(1))ψεl (1)ψεo(1)

−2ζ1αe
−α(Nε

o (1)e−µ+Nε
n(1))ψεl (1)(η(1)−Nn(1)) + ζ1α

2e−2µe−α(Nε
o (1)e−µ+Nε

n(1))P ε
l ψ

ε
o(1)2
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+2ζ1α
2e−µe−α(Nε

o (1)e−µ+Nε
n(1))P ε

l (1)ψεo(1)(η(1)−Nn(1))

+ζ1α
2e−α(Nε

o (1)e−µ+Nε
n(1))P ε

l (1)(η(1)−Nn(1))2

σεp(2) = ν1σ
ε
p(1) + ζ2e

−α(Nε
o (1)e−µ+Nε

n(1))σεl (1)− 2ζ2αe
−µe−α(Nε

o (1)e−µ+Nε
n(1))ψεl (1))ψεo(1)

−2ζ2αe
−α(Nε

o (1)e−µ+Nε
n(1))ψεl (1))((η(1)−Nn(1))+ζ2α

2e−2µe−α(Nε
o (1)e−µ+Nε

n(1))P ε
l (1)ψεo(1)2

+2ζ2α
2e−µe−α(Nε

o (1)e−µ+Nε
n(1))P ε

l (1)ψεo(1)(η(1)−Nn(1))

−ζ2αe
−µe−α(Nε

o (1)e−µ+Nε
n(1))P ε

l (1)σεo(1)

+ζ2α
2e−α(Nε

o (1)e−µ+Nε
n(1))P ε

l (1)(η(1)−Nn(1))2

= ν1σ
ε
p(1) + ζ2e

−α(Nε
o (1)e−µ+Nε

n(1))σεl (1)− 2ζ2αe
−µe−α(Nε

o (1)e−µ+Nε
n(1))ψεl (1))ψεo(1)

−2ζ2αe
−α(Nε

o (1)e−µ+Nε
n(1))ψεl (1))((η(1)−Nn(1))+ζ2α

2e−2µe−α(Nε
o (1)e−µ+Nε

n(1))P ε
l (1)ψεo(1)2

+2ζ2α
2e−µe−α(Nε

o (1)e−µ+Nε
n(1))P ε

l (1)ψεo(1)(η(1)−Nn(1))

+ζ2α
2e−α(Nε

o (1)e−µ+Nε
n(1))P ε

l (1)(η(1)−Nn(1))2

σεa(2) = ν2σ
ε
p(1) + θ2σ

ε
a(1) = ν2σ

ε
p(1)

σεo(2) = e−µσεo(1) = 0.

Next, t = 3

σεe(3) = γ1σ
ε
e(2) + θ1σ

ε
a(2) = θ1σ

ε
a(2)
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σεl (3) = γ2σ
ε
e(2) + ζ1e

−α(Nε
o (2)e−µ+Nε

n(2))σεl (2)− 2ζ1αe
−µe−α(Nε

o (2)e−µ+Nε
n(2))ψεl (2)ψεo(2)

−2ζ1αe
−α(Nε

o (2)e−µ+Nε
n(2))ψεl (2)(η(2)−Nn(2))− ζ1αe

−µe−α(Nε
o (2)e−µ+Nε

n(2))P ε
l (2)σεo(2)

+ζ1α
2e−2µe−α(Nε

o (2)e−µ+Nε
n(2))P ε

l ψ
ε
o(2)2

+2ζ1α
2e−µe−α(Nε

o (2)e−µ+Nε
n(2))P ε

l (2)ψεo(2)(η(2)−Nn(2))

+ζ1α
2e−α(Nε

o (2)e−µ+Nε
n(2))P ε

l (2)(η(2)−Nn(2))2

= γ2σ
ε
e(2) + ζ1e

−α(Nε
o (2)e−µ+Nε

n(2))σεl (2)− 2ζ1αe
−µe−α(Nε

o (2)e−µ+Nε
n(2))ψεl (2)ψεo(2)

−2ζ1αe
−α(Nε

o (2)e−µ+Nε
n(2))ψεl (2)(η(2)−Nn(2)) + ζ1α

2e−2µe−α(Nε
o (2)e−µ+Nε

n(2))P ε
l ψ

ε
o(2)2

+2ζ1α
2e−µe−α(Nε

o (2)e−µ+Nε
n(2))P ε

l (2)ψεo(2)(η(2)−Nn(2))

+ζ1α
2e−α(Nε

o (2)e−µ+Nε
n(2))P ε

l (2)(η(2)−Nn(2))2

σεp(3) = ν1σ
ε
p(2) + ζ2e

−α(Nε
o (2)e−µ+Nε

n(2))σεl (2)− 2ζ2αe
−µe−α(Nε

o (2)e−µ+Nε
n(2))ψεl (2))ψεo(2)

−2ζ2αe
−α(Nε

o (2)e−µ+Nε
n(2))ψεl (2))((η(2)−Nn(2))+ζ2α

2e−2µe−α(Nε
o (2)e−µ+Nε

n(2))P ε
l (2)ψεo(2)2

+2ζ2α
2e−µe−α(Nε

o (2)e−µ+Nε
n(2))P ε

l (2)ψεo(2)(η(2)−Nn(2))

−ζ2αe
−µe−α(Nε

o (2)e−µ+Nε
n(2))P ε

l (2)σεo(2)

+ζ2α
2e−α(Nε

o (2)e−µ+Nε
n(2))P ε

l (2)(η(2)−Nn(2))2

= ν1σ
ε
p(2) + ζ2e

−α(Nε
o (2)e−µ+Nε

n(2))σεl (2)− 2ζ2αe
−µe−α(Nε

o (2)e−µ+Nε
n(2))ψεl (2))ψεo(2)
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−2ζ2αe
−α(Nε

o (2)e−µ+Nε
n(2))ψεl (2))((η(2)−Nn(2))+ζ2α

2e−2µe−α(Nε
o (2)e−µ+Nε

n(2))P ε
l (2)ψεo(2)2

+2ζ2α
2e−µe−α(Nε

o (2)e−µ+Nε
n(2))P ε

l (2)ψεo(2)(η(2)−Nn(2))

+ζ2α
2e−α(Nε

o (2)e−µ+Nε
n(2))P ε

l (2)(η(2)−Nn(2))2

σεa(3) = ν2σ
ε
p(2) + θ2σ

ε
a(2)

σεo(3) = e−µσεo(2) = 0.

For these terms we can note some similarities and differences to the Basic Model

proof for Theorem 2.3.3. We will use Ψε and Σε to denote the Basic model sensitivities

and derivatives of sensitivities. For this comparison note that the difference of N ε and

N ε
o +N ε

n in the exponents will not affect the pattern of our formulation we found in

the Basic model for proving σεl > 0, hence we will use ≈ to associated similar terms

in the model. We have then that Ψε
e ≈ ψεe, Ψε

a ≈ ψεa, Σε
e ≈ σεe, and Σε

a ≈ σεa. Note we

have σεo(t+ 1) = 0. Consider:

ψεl (t+ 1) ≈ Ψε
l (t+ 1)− ζ1αe

−µe−α(Nε
o (t)e−µ+Nε

n(t))ψεo(t)P
ε
l (t)

ψεp(t+ 1) ≈ Ψε
p(t+ 1)− ζ2αe

−µe−α(Nε
o (t)e−µ+Nε

n(t))ψεo(t)P
ε
l (t)

ψεo(t+ 1) = ψεo(t)e
−µ + (η(t)−Nn(t)) =

t∑
c=0

e−µ·c(η(t− c)−Nn(t− c))
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σεl (t+ 1) ≈ Σε
l (t+ 1)− 2ζ1αe

−µe−α(Nε
o (t)e−µ+Nε

n(t))ψεl (t)ψ
ε
o(t)

−ζ1αe
−µe−α(Nε

o (t)e−µ+Nε
n(t))P ε

l (t)σεo(t)

+ζ1α
2e−2µe−α(Nε

o (t)e−µ+Nε
n(t))P ε

l ψ
ε
o(t)

2+2ζ1α
2e−µe−α(Nε

o (t)e−µ+Nε
n(t))P ε

l (t)ψεo(t)(η(t)−Nn(t))

≈ Σε
l (t+ 1)− 2ζ1αe

−µe−α(Nε
o (t)e−µ+Nε

n(t))ψεl (t)ψ
ε
o(t)

+ζ1α
2e−2µe−α(Nε

o (t)e−µ+Nε
n(t))P ε

l ψ
ε
o(t)

2+2ζ1α
2e−µe−α(Nε

o (t)e−µ+Nε
n(t))P ε

l (t)ψεo(t)(η(t)−Nn(t))

σεp(t+ 1) ≈ Σε
p(t+ 1)− 2ζ2αe

−µe−α(Nε
o (t)e−µ+Nε

n(t))ψεl (t))ψ
ε
o(t)

+ζ2α
2e−2µe−α(Nε

o (t)e−µ+Nε
n(t))P ε

l (t)ψεo(t)
2

+2ζ2α
2e−µe−α(Nε

o (t)e−µ+Nε
n(t))P ε

l (t)ψεo(t)(η(t)−Nn(t))−ζ2αe
−µe−α(Nε

o (t)e−µ+Nε
n(t))P ε

l (t)σεo(t)

≈ Σε
p(t+1)−2ζ2αe

−µe−α(Nε
o (t)e−µ+Nε

n(t))ψεl (t))ψ
ε
o(t)+ζ2α

2e−2µe−α(Nε
o (t)e−µ+Nε

n(t))P ε
l (t)ψεo(t)

2

+2ζ2α
2e−µe−α(Nε

o (t)e−µ+Nε
n(t))P ε

l (t)ψεo(t)(η(t)−Nn(t)).

Since most of this follows the Basic model proof in Theorem 2.3.3, the only

difference is in:

ψεl (t+ 1) ≈ Ψε
l (t+ 1)− ζ1αe−µe−α(N

ε
o (t)e

−µ+Nεn(t))

[
t−1∑
c=0

e−µ·c(η(t− 1− c)−Nn(t− 1− c))

]
P εl (t)

ψεp(t+ 1) ≈ Ψε
p(t+ 1)− ζ2αe−µe−α(N

ε
o (t)e

−µ+Nεn(t))

[
t−1∑
c=0

e−µ·c(η(t− 1− c)−Nn(t− 1− c))

]
P εl (t)

σεl (t+ 1) ≈ Σεl (t+ 1)− 2ζ1αe
−µe−α(N

ε
o (t)e

−µ+Nεn(t))ψεl (t)

[
t−1∑
c=0

e−µ·c(η(t− 1− c)−Nn(t− 1− c))

]
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+ζ1α
2e−2µe−α(N

ε
o (t)e

−µ+Nεn(t))P εl

[
t−1∑
c=0

e−µ·c(η(t− 1− c)−Nn(t− 1− c))

]2

+2ζ1α
2e−µe−α(N

ε
o (t)e

−µ+Nεn(t))P εl (t)

[
t−1∑
c=0

e−µ·c(η(t− 1− c)−Nn(t− 1− c))

]
(η(t)−N(t))

σεp(t+ 1) ≈ Σεp(t+ 1)− 2ζ2αe
−µe−α(N

ε
o (t)e

−µ+Nεn(t))ψεl (t))

[
t−1∑
c=0

e−µ·c(η(t− 1− c)−Nn(t− 1− c))

]

+ζ2α
2e−2µe−α(N

ε
o (t)e

−µ+Nεn(t))P εl (t)

[
t−1∑
c=0

e−µ·c(η(t− 1− c)−Nn(t− 1− c))

]2
+

+2ζ2α
2e−µe−α(N

ε
o (t)e

−µ+Nεn(t))P εl (t)

[
t−1∑
c=0

e−µ·c(η(t− 1− c)−Nn(t− 1− c))

]
(η(t)−Nn(t))

Considering the terms in ψεl , ψ
ε
p, σ

ε
l , σ

ε
p other than the basic model terms, which we

know will combine, we can note a construction similar to the Basic model. The terms

assocaietd with summations are similar across multiple terms and we expect these

to combine, resulting in the summations of (η(i) − N(i)) squared. These patterns

and similar factors will result in a formulation for σεl (t) which is the summations of

(η(i)−N(i)) squared with associated parameters, and thus resulting in σεl (t) > 0 for

all t.

Therefore, we have that z′′(ε) =
T−1∑
t=0

β12[σεl (t)P
ε
l (t) + ψεl (t)

2] > 0, and we have

uniqueness by convexity of z.
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Chapter 4

Case Study: Diaprepes abbreviatus

4.1 Introduction

We will investigate the invasive species Diaprepes abbreviatus(DRW). DRW originated

in the Caribbean and was transported to the central and southern regions of Florida

around 1964 [EGC04]. The introduction of DRW was not intentional, and in the past

50 years DRW have proven to be a troublesome invasive species, spreading throughout

Florida and eventually to California in 2005 [EGC04, JG09b]. DRW infests citrus

groves along with other plants, causing the most damage during the larva stage to

the roots [MSDN00]. For the DRW dynamics we have a matrix model from the

paper Contributions of demography and dispersal parameters to the spatial spread of a

stage-structured insect invasion by Miller and Tenhumberg [MT10]. In past studies

of DRW it has been found that the larva stage feeds upon the roots causing severe

problem for the citrus plants. Furthermore, most monitoring is done with traps at the

adult stage, since there is no effective method to monitor larva[LDG16]. It has also
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been found that pesticides are not useful in management of DRW larva [CHEBD15].

DRW can be controlled using entomopathohenic nematodes [BPK99, Gau02]. We use

the previous models to determine a management plan specifying timing and amount of

entomopathohenic nematodes, while also considering the cost of applying nematodes

and cost of DRW damage to the farmer.

4.2 Parameter Values

4.2.1 Values for Martrix - DRW Life Cycle

For the DRW life cycles and dynamics, I reduced the 6× 6 matrix from a paper by

Tom E. Miller and Brigitte Tenhumberg [MT10], to a 4 × 4 matrix using Hooley’s

algorithm [SP10]. We reduced to a 4 stage matrix to account for the 4 major stages

in most insect life cycles: egg, larva, pupa, and adults.

Hooley’s Algorithm To reduce a stage structure matrix A we find the correspond-

ing eigenvalues and eigenvectors. Next, we identify the largest eigenvalues and the corre-

sponding eigenvector. In our case the largest eigenvalue is 1.42271091 and the eigenvec-

tor is Υ = [0.812321361, 0.433821424, 0.388876952, 0.025331093, 0.006721562, 0.004566305].

In order to do any reduction we need to alter Υ,

uΥ =
Υ

sum(Υ)

= [0.485943142, 0.2595186540.232632179, 0.015153450, 0.004020942, 0.002731634]

.
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A =



0.305 0 0 0 25.692 161.045

0.530 0.43 0 0 0 0

0 0.43 0.943 0 0 0

0 0 0.0420 0.778 0 0

0 0 0 0.202 0.662 0

0 0 0 0 0.313 0.962


We want to go from a 6× 6 matrix to a 4× 4, specifically we combine the two larva

stages into one larva stage and the two adults stages into one adult stage. Meaning

we need to combine the second and third rows into one and the fifth and sixth rows

into one, to do this we use a matrix P , and for reducing the same columns we use Q

which is constructed using uΥ. The formulations of P and Q come from [SP10].

P =



1 0 0 0 0 0

0 1 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 1



Q =



1 0 0 0

0 uΥ[2]
uΥ[2]+uΥ[3]

0 0

0 uΥ[3]
uΥ[2]+uΥ[3]

0 0

0 0 1 0

0 0 0 uΥ[5]
uΥ[5]+uΥ[6

]

0 0 0 uΥ[6]
uΥ[5]+uΥ[6]


=



1 0 0 0

0 0.5273153 0 0

0 0.4726847 0 0

0 0 1 0

0 0 0 0.5954679

0 0 0 0.4045321


Now, using P and Q we will reduce A to A, by P · A ·Q = A.
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A =



γ1 0 0 θ1

γ2 ζ1 0 0

0 ζ2 ν1 0

0 0 ν2 θ2


=



0.3048413 0 0 80.446501

0.5301587 0.89923928 0 0

0 0.01984631 0.7781462 0

0 0 0.2018538 0.969731


By using this method we have that the eigenvalue of A is 1.422711, the same as A.

The reduced 4 × 4 matrix takes into account the DRW eggs (Pe), larva (Pl), pupa

(Pp), and adults (Pa). The values are scaled to consider a one week time step.

4.2.2 Values for Initial Conditions

There are infinitely many possible distributions; we choose the stable stage distribution

(SSD) as a starting point. This way we minimize the effect of transients on our control.

Note, the methods would work with any other initial distribution which could be used

if the farmer has information. Since the DRW is at SSD, the initial conditions for the

DRW are derived from the eigenvector associated with the largest eigenvector of A.

Note that we can scale the initial values by any constant to reflect number of DRW in

a hectare. 

Pe(0)

Pl(0)

Pp(0)

Pa(0)


=



φe

φl

φp

φa


=



0.485943142

0.492150833

0.015153450

0.006752576


4.2.3 Values for the search efficiency, α

We could not find an estimate of α in the literature. Therefore, we made the assumption

that the recommended number of nematodes per hectare would result in a negative
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population growth rate, and iteratively searched for α values that produced a decreasing

population size if the recommended nematode density was applied.

First we calculated the suggested number of nematodes per hectare, NS [Gau02].

Then we fixed N(t) = NS in the A(t) matrix, resulting in a linear system. We choose

an α such that the DRW population decays at a slow rate, to be conservative. Hence,

we varied α until we found a value of α which produces the eigenvalue of A more than

1. Recall this is the asymptotic population growth rate for linear PPMs. We choose α

so that the eigenvalue was close to 1, meaning that an increase in nematode density

would speed up population decline. Note the model never predicts extinction, and

farmers rarely succeed in driving a pest extinct

The recommended nematode density is 22 nematodes per cm2, and 1 cm2=1×10−8

hecatre.

22nematodes

cm2
× 1cm2

10−8 hectare
=

22nematodes

10−8 hectare
= 22× 108 per hectare

We iteratively found a value of α which with N(t)=22× 108 per hectare produces

a largest eigenvalue of Al close to 1.
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α Largest eigenvalue

0.00000001 1.0622

0.000000015 1.009835

0.000000016 1.003221

0.0000000165 1.000286

0.00000001655 1.000005

0.000000016551 0.9999996

0.0000000166 0.9997267

0.000000017 0.9975792

0.00000002 0.9853918

0.0000001 0.97

0.0000005 0.97

When α = 0.00000001655, Al has an eigenvalue slightly larger than 1, meaning

the DRW would just persist.

Note invasive behavior refers to population growth in the absence of control.

Our choice of α means that the recommended dose according to the manufacture

specifications is not sufficient to produce population decline. Hence, we would expect

that our model predicts higher than recommended nematode applications. We expect

a nematode manufacture to suggest applying too many nematodes as a safety net in

case nematodes don’t work as well as expected; or, nematodes may die because of

unfavorable environmental conditions.
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4.2.4 Values for the Cost Function

Now that we have the values for the parameters in the dynamic system we need to

assign values to the cost function variables. To find the values of the cost function,

Cost at time t == β1Pl(t)
2 +β2N(t), from the objective functional we will investigate

the two parameters separately.

Cost of DRW - β1 For DRW cost, a literature review did not provide any estimate

on how much damage a single DRW larvae causes in terms of loss in harvest. We

did find in the literature an estimation for the number of weevils present at halfway

to full infestation in a hectare [MSN03]. Additionally, we found how much farmers

expect to make per hectare for citrus, and then divided this by the 52 weeks in a year,

finding the cost of harvest [Gau02]. Therefore, we estimated a value for the DRW cost

as the loss of harvest due to the feeding activity of the larvae.

Combining the above information we have that estimation that β1 = 7.9515×10−12.

Cost of Nematodes - β2 Nematodes can be purchased at 22 nematodes per

cm2 for $62 per hectare [Gau02]. Hence we have that the cost of Nematodes, N -

$62/22/(1/108) per hectare per nematode = β2.

Note, while we have configured the cost to be per one Nematodes, typically

Nematodes are purchases in bulk. For instance you can purchase for your personal

use 50 million nematodes for about ninety dollars [PR12].

So the total cost for any time is cost of diaprepes weevil damage, β1Pl(t)
2, plus

cost of purchasing nematodes, β2N(t).

Cost at time t = β1Pl(t)
2 + β2N(t)

where β1 = 7.9515× 10−12 and β2 = 2.8182× 10−8.
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4.3 Basic Model with Parameter Values

Recall, our goal is to minimize the objective functional:

J(N) =
T−1∑
k=0

β1Pl(t)
2 + β2N(t)

subject to:

Pe(t+ 1) = γ1Pe(t) + θ1Pa(t) Pe(0) = φe

Pl(t+ 1) = γ2Pe(t) + ζ1e
−αN(t)Pl(t) Pl(0) = φl

Pp(t+ 1) = ζ2e
−αN(t)Pl(t) + ν1Pp(t) Pp(0) = φp

Pa(t+ 1) = ν2Pp(t) + θ2Pa(t) Pa(0) = φa.

We additionally need N(k) ≥ 0, because nematode densities cannot be negative.

From the previous sections we have that

N(t) =


0 if β2

α > Pl(k)(ζ1λl(t+ 1) + ζ2λp(t+ 1))

1
α ln[αPl(k)β2

(ζ1λl(t+ 1) + ζ2λp(t+ 1)))] if β2
α ≤ Pl(t)(ζ1λl(t+ 1) + ζ2λp(t+ 1))

.

For the following simulations we will consider 52 weeks of application, so T = 52

with time steps of one week.

4.3.1 Forward-Backward Sweep (FBS)

An algorithm typically used to find an estimation for the solution to an Optimal

Control problem is the forward-backward sweep[LW07]. The algorithm utilizes the
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pest dynamics and the adjoints to find a solution for how many nematodes to apply.

The process is described in general by:

1. Let N = 0 and use this to calculate Pe, Pl, Pp, Pa using the initial conditions

φe, φl, φp, φa.

2. Now calculate λe, λl, λp, λa using the terminal condition λe(T ) = 0, λl(T ) =

0, λp(T ) = 0, λa(T ) = 0.

3. Using the calculations in 1 and 2 find N .

4. Check if the differences between the newly calculated Pe, Pl, Pp, Pa, λe, λl, λp, λa,

and N are within an acceptable error, δ. If so, stop, since you have your value

for the optimal control. If not use the N in 3 and repeat the process.

In the above description of the FBS we mention the acceptable error δ. Figures

4.1 and 4.2 varying δ, we decided to use δ = 0.1 due to the speed of computation and

the accuracy of answer.
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Figure 4.1: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply for initial populations 1100000 for various values of δ. Note how once we
start using 0.5 we get a close estimate to 0.1.
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Figure 4.2: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply for initial populations 1100000 for various values of δ. Note how all the
curves practically overlap.

4.3.1.1 Varying Initial Population

Using the FBS we varied the initial population to see the change in number of

nematodes to apply and the corresponding DRW larvae population.
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Figure 4.3: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply for various initial populations: 2000, 20000, 200000, 1100000, 1500000,
1700000, 2000000
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Figure 4.4: The corresponding DRW larva populations for the nematode application
in Figure 4.3 for various initial populations: 2000, 20000, 200000, 1100000, 1500000,
1700000, 2000000

4.3.1.2 Varying Search Efficiency, α

In section 4.2.3 we calculated the value for α. Now we will vary the search efficiency by

various percent changes for the initial population 1100000. The results for the initial

population 1100000 in Figures 4.3 and 4.4 are similar to the other initial populations

we considered.
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Figure 4.5: For initial population 1100000 we vary the value of α by the percents -15,
-10, -8, -5, -3, 0, 3, 5, 8, 10, 15. In the figure we focus on 10 to 40 weeks of the 52
week simulation to see the variance with the percentage change.
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Figure 4.6: For initial population 1100000 we vary the value of α by the percents -15,
-10, -8, -5, -3, 0, 3, 5, 8, 10, 15. In the figure we display the Total Cost.
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4.3.1.3 Varying Cost Associated with Loss of Harvest, β1

In section 4.2.4 we calculated the value for β1. Now we will vary the cost associated

with loss of harvest by various percent changes for the initial population 1100000. The

results for the initial population 1100000 in Figures 4.3 and 4.4 are similar to the

other initial populations we considered.
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Figure 4.7: For initial population 1100000 we vary the value of β1 by the percents -15,
-10, -8, -5, -3, 0, 3, 5, 8, 10, 15. In the figure we focus on 10 to 40 weeks of the 52
week simulation to see the variance with the percentage change.
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Figure 4.8: For initial population 1100000 we vary the value of β1 by the percents -15,
-10, -8, -5, -3, 0, 3, 5, 8, 10, 15. In the figure we display the Total Cost.

4.3.1.4 Varying Cost Associated with the Purchase of Nematodes, β2

In section 4.2.4 we calculated the value for β2. Now we will vary the cost associated

with the purchase of nematodes by various percent changes for the initial population

1100000. The results for the initial population 1100000 in Figures 4.3 and 4.4 are

similar to the other initial populations we considered.
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Figure 4.9: For initial population 1100000 we vary the value of β2 by the percents -15,
-10, -8, -5, -3, 0, 3, 5, 8, 10, 15. In the figure we focus on 10 to 40 weeks of the 52
week simulation to see the variance with the percentage change.
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Figure 4.10: For initial population 1100000 we vary the value of β2 by the percents
-15, -10, -8, -5, -3, 0, 3, 5, 8, 10, 15. In the figure we display the Total Cost.
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4.3.1.5 Varying Search Efficiency, Control Cost, and Pest Cost

Parameter, α, β1, and β2

In order to compare the difference in percent changes for α, β1, and β2 we combine

the results of Figures 4.6, 4.8, and 4.10.
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Figure 4.11: For initial population 1100000 we vary the value of α, β1, and β2 by the
percents -15, -10, -8, -5, -3, 0, 3, 5, 8, 10, 15. In the figure we display the Total Cost,
combining Figures 4.6, 4.8, and 4.9.

4.3.2 MultiStart

Another method to find the number of Nematodes to apply is implementing the

MultiStart Algorithm in MATLAB. The algorithm implements the fmincon function,

which given a starting point will search for nearby local minimum. The issue is that

fmincon cannot definitively say whether the point is a global minimum. To search for

the global minimum we use MultiStart which allows you to input how many randomly

generated points you would like MATLAB to run through fmincon. For instance, if
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you choose 100 then fmincon will be run on 100 different randomly selected points,

and MultiStart will output the best possible option for the global minimum. As with

fmincon, the output of MultiStart might not be the global minimum but it allows us

to approximate and with more inputs for randomly generated points we can get a

better approximation.

In this case, we can use MultiStart to compare with the results of Forward-Backward

Sweep to approximate the global minimum by comparing the two algorithms outcomes.

For MultiStart, we used the Holland Computing Center to run more inputs for

MultiStart; specifically the results we display had 500,000 randomly chosen points.

4.3.2.1 Varying Initial Density

Using MultiStart we varied the initial population to see the change in number of

nematodes to apply. We found that the results in MultiStart were seemingly converging

to the same constant value of Nematodes to apply for approximately weeks from 6 to

46, see Figure 4.12. So we we graphed the average number of nematodes Multistart

instructs to apply from weeks 6 to 46.
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Figure 4.12: Using MultiStart we calculate the number of nematodes to apply for
various initial populations: 2000, 20000, 200000, 1100000, 1500000, 1700000, 2000000
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Figure 4.13: In Figure 4.12 we can note that the applications seem to stabilize
somewhat after 6 weeks until 46 weeks. We took the average value for each initial
population of nematodes application between 6 and 46 weeks and plotted them above.

4.3.2.2 Varying Cost Associated with the Purchase of Nematodes, β2

Similar to Section 4.3.1.4 we will vary the cost associated with the purchase of

nematodes. We plot the number of nematodes to apply for initial population 200000

for various percent changes of β2. Also, we look again at the average value of nematodes

to apply for weeks 6 through 46 and the total cost associated with the nematode

application. Varying α and β1 the results are similar to that in the FBS.
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Figure 4.14: For initial population 200000 we vary the value of β2 by the percents -15,
-10, -8, -5, -3, 0, 3, 5, 8, 10, 15. Note that for certain percentage differences we do not
have very linear curves from time 6 to 46 weeks.
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Figure 4.15: For initial population 200000 we vary the value of β2 by the percents -15,
-10, -8, -5, -3, 0, 3, 5, 8, 10, 15. As in Figure 4.13 took the average value for each
initial population of nematodes application between 6 and 46 weeks. Note issues arise
due to the curves erratic behavior for certain percents in Figure 4.14
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Figure 4.16: For initial population 200000 we vary the value of β2 by the percents
-15, -10, -8, -5, -3, 0, 3, 5, 8, 10, 15. The figure shows the different total costs for the
nematodes applied in 4.14

4.3.3 Discussion/Summary

First we will consider the results from the FBS algorithm. Looking at Figure 4.3 we

can see the FBS algorithm is outputting the expected biological response, the larger

the initial population the more nematodes must be applied. The shape of the FBS

curves of nematode application are all similar with bumps for the first few weeks

at the start and end, which is natural with Optimal Control. Recall in our optimal

control problem we are only worrying about the cost of the 52 weeks of application,

and not afterwards, which explains the bumps at beginning and end. Now considering

4.4 we can see at low initial populations, there are not many nematodes applied and

hence the DRW larvae are persisting and starting to grow. This is because the cost of

DRW larvae damage does not yet outweigh the cost of purchasing nematodes. When

we start with an initial population of 1100000 and more of DRW larvae, we can see in

Figure 4.3 and 4.4 that there more nematodes applied to combat the DRW larvae.
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Specifically, we can see the nematodes are starting to eliminate the DRW larvae at

1700000, with the curve reaching a peak in 4.4 and then decreasing before the last few

weeks, which is again the nature of an Optimal Control problem.

When we vary the parameters α, β1, and β2 the results align with what we expect

biologically. If we reduce the search efficiency, α, then we increase the number of

nematodes we must apply and total cost, see Figures 4.5 and 4.6. Biologically this

makes sense, since the worse nematodes are at finding the DRW larvae the more

nematodes we must apply to the system and the larger the total cost. Meanwhile

for cost associated with loss of harvest, β1, and cost associated with the purchase of

nematodes, β2, if either increases the total cost increases as well, see Figures 4.7, 4.8,

4.9, and 4.10. Again, this makes biological sense, if we increase the cost of nematodes

we still need to apply nematodes so the total cost increase. Similarly, if we increases

the cost associated with loss of harvest, then we need to control the DRW larvae

more and will result in a higher total cost. Looking at Figure 4.11, we can see the

resulting total costs associated with changing α, β1, and β2. Note the greater change

in the curve associated with α and the difference in the curves associated with β1 and

β2. Recalling where these parameters are applied in the Optimal Control problem

in Section 4.3 we see the curves in Figure 4.11 makes biological sense. Since search

efficiency, α, is applied to the start variables through an exponential term, it makes

sense changing α will more drastically effect the total cost. Comparing β1 and β2,

since β2 is associated with a linear term we see a more dramatic change of the total

cost. Additionally, we can note that the fluctuation of total cost is at most 120 dollars,

which is not too great considering we are varying parameters by possible 15% and our

total cost without varying parameters is around 650 dollars per hectare.

We notice similar behavior in the MultiStart method with Figure 4.12 and 4.13,

with a more approximate nature. We used MultiStart in this case to compare with
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Forward-Backward Sweep. In Figure 4.17 we compare the Total Cost, J , of the

two methods. We can note that the Forward-Backward Sweep always has a lower

cost than the MultiStart, and the MultiStart seems to be converging, possibly to

the Forward-Backward Sweep. Note there is a difference in the outputs of the FBS

and MultiStart. Recall, the main part is Multistart is searching for the best choice

by picking 500,000 random possibilities for the nematode vector and then running

fmincon for these. Therefore, the comparison in Figure 4.18 of FBS and MultiStart

makes more sense. For the smaller initial population, the curves seem closer for the

two algorithms. For both initial populations we are still allowing MultiStart the

same number of start points, so it makes sense that at smaller population would

produce a closer approximation to the optimal FBS solution. Therefore, if we could

run MultiStart for more start points we could find a less approximate solution in

MultiStart.
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Figure 4.17: The Total Cost, or value of J , which corresponds to all the initial
populations and nematodes applications from Figure 4.3 for Forward-Backward Sweep
(FBS) and Figure 4.12 for MultiStart.
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Figure 4.18: Displaying the number of nematodes to apply for initial populations
200000 and 1700000 for both FBS and MultiStart.

Additionally, we have simulations looking at varying the parameter β2. Comparing

Figures 4.19 and 4.14 we can see how issues can arise with MultiStart. In the FBS

case of Figure 4.19 we can see the smooth transitions with varying the percentages

of β2. Meanwhile, in Figure 4.14, we have issues and there does not seem to be the

similar smooth transition, which is further highlighted in Figure 4.15. However, note

in Figure 4.16 the total cost is increasing in MultiStart as we would expect with the

varying percentages of β2. Hence, while MultiStart might be giving an approximate

number of Nematodes to apply, the total cost of the system still make biological sense.

To increase our understanding we need more starting points for MultiStart to see

more exact solutions.
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Figure 4.19: For initial population 200000 we vary the value of β2 by the percents -15,
-10, -8, -5, -3, 0, 3, 5, 8, 10, 15. In the figure we focus on 10 to 40 weeks of the 52
week simulation to see the variance with the percentage change.

For the next model we cannot use FBS, so by comparing the two methods for this

Basic model we get insight into how the algorithms compare. While MultiStart might

not find the optimal solution it does come close to the FBS for application purposes to

eradicate DRW without incurring too much additional cost, Figure 4.17. Addtionally,

MultiStart does find solutions whose total cost increase with initial populations, even

with associated nematode applications that seem erratic.

4.4 Persist Model with Parameter Values

Our goal is to minimize the objective functional:

J(Nn) =
T−1∑
t=0

β1Pl(t)
2 + β2Nn(t)

subject to:
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Pe(t+ 1) = γ1Pe(t) + θ1Pa(t) Pe(0) = φe

Pl(t+ 1) = γ2Pe(t) + ζ1e
−α(No(t)e−µ+Nn(t))Pl(t) Pl(0) = φl

Pp(t+ 1) = ζ2e
−α(No(t)e−µ+Nn(t))Pl(t) + ν1Pp(t) Pp(0) = φp

Pa(t+ 1) = ν2Pp(t) + θ2Pa(t) Pa(0) = φa

No(t+ 1) = No(t)e
−µ +Nn(t) No(0) = 0.

We additionally need Nn(t) ≥ 0 because nematode densities cannot be negative. Note

that this also bounds No(t) ≥ 0.

From the previous proofs we have that

Nn(t) =


0 if eαNo(t)e

−µ
>

αPl(t)[λl(t+1)ζ1+λp(t+1)ζ2]
β2+λo(t+1)

1
α ln[

αPl(t)[λl(t+1)ζ1+λp(t+1)ζ2]
β2+λo(t+1) ]−No(t)e−µ if eαNo(t)e

−µ ≤ αPl(t)[λl(t+1)ζ1+λp(t+1)ζ2]
β2+λo(t+1)

.

4.4.1 Forward-Backward Sweep

Unlike in the Basic Model we cannot use the Forward-Backward Sweep to find the

number of Nematodes to apply for many options of µ. After running simulations

we noted that the FBS was always outputting that the number of Nematodes to

apply was zero. This can be explained as follows. Looking back at the equation for

nematodes, N :
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Nn(t) =


0 if eαNo(t)e

−µ
>

αPl(t)[λl(t+1)ζ1+λp(t+1)ζ2]
β2+λo(t+1)

1
α ln[

αPl(t)[λl(t+1)ζ1+λp(t+1)ζ2]
β2+λo(t+1) ]−No(t)e−µ if eαNo(t)e

−µ ≤ αPl(t)[λl(t+1)ζ1+λp(t+1)ζ2]
β2+λo(t+1)

.

Note that for N(t) > 0 we need that

eαNo(t)e
−µ ≤ αPl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2]

β2 + λo(t+ 1)
.

Now we know that 1 ≤ eαNo(t)e
−µ

since No(t)e
−µ ≥ 0, so αPl(t)[λl(t+1)ζ1+λp(t+1)ζ2]

β2+λo(t+1)
will

need to be positive. We have that αPl(t)[λl(t+ 1)ζ1 + λp(t+ 1)ζ2] > 0. We also need

to consider β2 + λo(t+ 1). Recall that

λo(t) = −αζ1e
−µλl(k + 1)e−α(No(k)e−µ+Nn(k))Pl(k)

−αζ2e
−µλp(k + 1)e−α(No(k)e−µ+Nn(k))Pl(k) + λo(k + 1)e−µ.

Since λo(T ) = 0, we have that λo(t) < 0 for all t, which means for β2 + λo(t+ 1) to

be positive we need that β2 > λo(t+ 1), as β2 is a positive constant. In our case study

of DRW, β2 = 2.8182× 10−8. After running simulations we found that for DRW, the

only cases when the FBS is converging is if µ→∞, meaning we choose large values

for µ to mimic the Basic model. Meanwhile, for cases with µ as a fraction it is not

possible to have β2 > λo(t+ 1), so the Forward-Backward Sweep was always assigning

N(t) = 0 or having issues with convergence for the entire time frame.

Thus, for the Nematodes Persist Model, we must use the MultiStart algorithm

to find approximations of the amount of nematodes to apply for various choices of µ

considering nematodes survive for longer lengths of time. Figure 4.20 shows varying µ

for initial population 1100000 and how issues occur for smaller values of µ but larger
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values converge to the Basic model results.
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Figure 4.20: We have initial population of 1100000 and compare the Basic Model with
the Persist Model with µ = 1, 10, 100.

4.4.2 Multistep

4.4.2.1 Varying Initial Population and Survival per Time Step

Parameter, µ

Using MultiStart we first varied the initial population with value µ = ln(2) to see

the change in number of nematodes to apply. Again, we found that the results in

MultiStart were seemingly converging to the same constant value of Nematodes to

apply for approximately weeks from 6 to 46, see Figure 4.12. So we we graphed the

average number of nematodes Multistart instructs to apply from weeks 6 to 46 for

varying both initial population and values of µ. Additionally we graphed the total

cost associated with varying both initial population and values of µ.
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Figure 4.21: Vary initial populations 200000, 1100000, 1500000, 1700000, 2000000
with µ = ln(2).
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Figure 4.22: Similar to in Figure 4.13 we took the average value for each initial
population of nematodes application between 6 and 46 weeks and plotted them above
for the Persist case various µ (mu) values.
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Figure 4.23: The Total Cost, or value of J , which corresponds to all the initial
populations, µ values and nematodes applications from Figure 4.22.

4.4.2.2 Varying Nematode Cost Parameter, β2

We varied the cost associated with the purchase of nematodes. We plot the number of

nematodes to apply for initial population 1100000 for various percent changes of β2.

Also, we look again at the average value of nematodes to apply for weeks 6 through

46 and the total cost associated with the nematode application.
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Figure 4.24: For initial population 1100000 we vary the value of β2 by the percents
-15, -10, -8, -5, -3, 0, 3, 5, 8, 10, 15 and µ by ln(2), 1/2, 1/3, 1/10. We plot the Total
Cost.
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Figure 4.25: For initial population 200000 and ln(2) we vary the value of β2 by the
percents -15, -10, -8, -5, -3, 0, 3, 5, 8, 10, 15.
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Figure 4.26: For initial population 200000 and ln(2) we vary the value of β2 by the
percents -15, -10, -8, -5, -3, 0, 3, 5, 8, 10, 15. As in Figure 4.13 took the average value
for each initial population of nematodes application between 6 and 46 weeks. Note
issues arise due to the curves erratic behavior for certain percents in Figure 4.25
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Figure 4.27: For initial population 200000 and ln(2) we vary the value of β2 by the
percents -15, -10, -8, -5, -3, 0, 3, 5, 8, 10, 15. The figure shows the different total costs
for the nematodes applied in 4.25
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4.4.2.3 Basic Model Comparison

We compare the total costs for various initial populations from the Basic Model FBS

and MultiStart methods with the Persist model varying the value of µ.
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Figure 4.28: Vary initial populations 2000, 20000, 200000, 1100000, 1500000, 1700000,
2000000 for Basic FBS, Basic MultiStart, and the DRW Persistence Model for µ =
ln(2), 1/2, 1/3, 1/10, 1/26. We map the Total Cost.

4.4.3 Nematodes Persist Discussion/Summary

We consider fractional values for µ since it is the survival per time step parameter,

and for fractional values we have higher percents of nematodes survive per week.

Specifically recall if µ = ln(2), then half the nematodes survive one week. In Figure

4.21 we start as we did in the Basic model by varying the initial population for

µ = ln(2). As with the basic model lower initial density requires less nematodes, and
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we can note in general less nematodes are required since 50% survive.

Since it is likely that some nematodes survive from one week to the next, we vary

µ to see how different survival percentages affect the number of nematodes we apply

and the total cost. In Figures 4.22 and 4.23 we plot the average number of nematodes

to apply each week for varying values of µ and initial populations. As expected if µ

is decreased, so the percent of nematodes that survive the week increases, then we

decrease the nematode application and total cost. The total cost curves in Figure 4.23

seem to be linear and have an even spread, while Figure 4.22 are less linear due to the

nature of MultiStart, which is reflected in 4.21.

As with the Basic model we varied other parameters in the model, specifically

shown in Figure 4.24 we vary β2, the nematode cost parameter, for initial population

1100000 and various values of µ. As we would expect when we decrease β2 the total

cost decreases, and the various µ values also correspond as we saw in previous analysis

without varying β2. In Figure 4.25 we plot the number of nematodes to apply every

week with initial population 2000 for various percent changes of β2. Note again we are

using MultiStart, so the erratic behavior is not surprising and reflected in Figure 4.26

for the average nematode application. If we look at Figure 4.27 we can see that even

though the nematode application seems erratic, we still have a close to linear growth

in the total cost with varying β2 which does correspond to smaller β2 means smaller

cost. We have similar results when varying β1 and α as we did in the Basic model,

with expected decreases in nematode application and total cost when we incorporate

nematode survival, µ.

In Figure 4.28 we compare the total cost for the Basic and Persist models at

various initial total populations. Specifically we have the total cost of the FBS

and MultiStart of the Basic model as in Figure 4.17, and the Persist model for

µ = ln(2), 1/2, 1/3, 1/10, 1/26. We can note that the Basic model incurs a higher
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total cost, since no nematodes survive one week. Meanwhile, we can see the drop in

the total cost when we utilize µ = ln(2), 50% of nematodes survive, for some initial

populations a reduction of over $100 dollars as initial populations increase. As the

value of µ drops so does the total cost.

From the Persist model we have learned that if nematodes can survive for more

than a week we can reduce the total cost, and ensure we do not over apply nematodes

to the system. We do have similar behavior results when varying α, β1, and β2 as in

the Basic model, with natural changes when we vary µ.
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Part II

Optimal Control of Invasive

Species with Spatial Dispersal
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Chapter 5

Introduction

5.1 Spatial Spread

Since invasive species often spread spatially, it is often incorporated into models. In

1937 the first mathematical spatial spread ecology models were developed by Fisher.

These early models used partial differential equations, with an aim to derive conclusions

relating to asymptotic rate of spread [Fis37, HCD+05].

An important area of studying spatial spread is Metapopulation Ecology, see the

book and articles by Ilkka Hanski [Han94, Han98, Han99].

5.2 Overview

Our plan is to explore management of a spreading invasive species using optimal

control theory. In Part II we will consider a multiple patch model.

In Chapter 6, we will introduce a two patch model which uses the basic model

from Part 1 but allow movement between two patches. We will explore adult pests

movement between the two patches. Furthermore we will prove existence, necessary
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conditions, and uniqueness for the optimal control.

In Chapter 7, we will introduce a four patch model which uses the basic model

from Part 1 but allows movement between four patches. We will consider two ways

that adult pests can dispersal between the four patches. As in part 1, we will consider

the models for the case study investigating Diaprepes abbreviatus, DRW, and run

simulations.
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5.3 Reference Chart

Notation Description

Pi,e Number of eggs in patch i

Pest Pi,l Number of larvae in patch i

Vector Pi,p Number of pupae in patch i

Pi,a Number of adults in patch i

Pest θ1 Fecundity rate of female Pest adults

Matrix θi,i Pest adult survival in specific patches

Changes θi,j Pest adult survival in different patches
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Chapter 6

Two Patches - Adults Spread

6.1 Model Formulation

In this section we consider a population that has as its habitat two patches. We be

using the Basic model on two patches, so no control agent persistence. Additionally,

we will consider that the adult pest can fly and travel between patches, so our new

matrix for the pest dynamics will be as follows:

A2 =



γ1 0 0 θ1 0 0 0 0

γ2 ζ1 0 0 0 0 0 0

0 ζ2 ν1 0 0 0 0 0

0 0 ν2 θ1,1 0 0 0 θ2,1

0 0 0 0 γ1 0 0 θ1

0 0 0 0 γ2 ζ1 0 0

0 0 0 0 0 ζ2 ν1 0

0 0 0 θ1,2 0 0 ν2 θ2,2



.

This model uses two copies of A for the two patches, but rather than θ2 for adult

survival we have θ1,1 and θ2,2 specifying how many adults survive and remain in their
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original patch. Meanwhile, θ1,2 and θ2,1 are how many adults survive and transition

to the other patch, for instance θ1,2 are adults from patch 1 which travel to patch 2.

Below is the formulation of the pest dynamics for the two patch model. Note this

does not include the biological control in the larva stage.



P1,e(k + 1)

P1,l(k + 1)

P1,p(k + 1)

P1,a(k + 1)

P2,e(k + 1)

P2,l(k + 1)

P2,p(k + 1)

P2,a(k + 1)



=



γ1 0 0 θ1 0 0 0 0

γ2 ζ1 0 0 0 0 0 0

0 ζ2 ν1 0 0 0 0 0

0 0 ν2 θ1,1 0 0 0 θ2,1

0 0 0 0 γ1 0 0 θ1

0 0 0 0 γ2 ζ1 0 0

0 0 0 0 0 ζ2 ν1 0

0 0 0 θ1,2 0 0 ν2 θ2,2





P1,e(k)

P1,l(k)

P1,p(k)

P1,a(k)

P2,e(k)

P2,l(k)

P2,p(k)

P2,a(k)


Cost in Two Patches Since we are considering two independent patches, the cost

in each patch would be the same formula as the cost in our Basic model. So, if we

consider the total cost in two patches we combine the cost in each these two isolated

patches,

Cost Two Patches = β1P1,l(t)
2β2N1(t) + β1P2,l(t)

2 + β2N2(t).

6.2 Optimal Control Problem

The set-up for our Optimal Control Problem is to minimize the objective functional

J(N1, N2) =
T−1∑
t=0

β1[P1,l(t)
2 + P2,l(t)

2] + β2[N1(t) +N2(t)]
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subject to

P1,e(t+ 1) = γ1P1,e(t) + θ1P1,a(t) P1,e(0) = φ1,e

P1,l(t+ 1) = γ2P1,e(t) + ζ1e
−αN1(t)P1,l(t) P1,l(0) = φ1,l

P1,p(t+ 1) = ζ2e
−αN1(t)P1,l(t) + ν1P1,p(t) P1,p(0) = φ1,p

P1,a(t+ 1) = ν2P1,p(t) + θ1,1P1,a(t) + θ2,1P2,a(t) P1,a(0) = φ1,a

P2,e(t+ 1) = γ1P2,e(t) + θ1P2,a(t) P2,e(0) = φ2,e

P2,l(t+ 1) = γ2P2,e(t) + ζ1e
−αN2(t)P2,l(t) P2,l(0) = φ2,l

P2,p(t+ 1) = ζ2e
−αN2(t)P2,l(t) + ν1P2,p(t) P2,p(0) = φ2,p

P2,a(t+ 1) = ν2P2,p(t) + θ2,2P2,a(t) + θ1,2P1,a(t) P2,a(0) = φ2,a

(6.1)

where N1, N2 ∈ N = {N : {1, ..., T} → {x ∈ R|0 ≤ x(t) ≤ Nmax, t = 1, 2, ..., T}}.

Now we will prove the existence and uniqueness of the optimal control, which we

denote N1 and N2. Additionally, we will prove necessary conditions for the optimal

control N1 and N2. The proofs roughly follow the proofs in Theorems 2.3.1, 2.3.2,

2.3.3.

Note in the following proofs each P1,e,P1,l,P1,p,P1,a,P2,e,P2,l,P2,p,P2,a is a func-

tion of N1 and N2. Similarly each Pε1,e,Pε1,l,Pε1,p,Pε1,a,Pε2,e,Pε2,l,Pε2,p,Pε2,a is a function

of N1 + η1ε and N2 + η2ε.
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6.2.1 Existence

Theorem 6.2.1. There exists N1,N2 ∈ N which minimizes J(N1, N2).

Proof. We have that each P1,e, P1,l, P1,p, P1,a, P2,e, P2,l, P2,p, P2,a is continuous as a func-

tion of N1, N2 at every time step by Equation 6.1. Define B+ = {(N(1), ...N(T ))|N ∈

N}. We note that there is a natural isomorphism between N × N and B+ ×

B+. Considering J : N × N ↔ B+ × B+ → R, we see that J is continuous as

a function of N1 and N2. We have that B+ is a compact subset of RT in the

standard Euclidean topology. Thus, inf
N1,N2∈N

J(N1, N2) exists. Hence, we have se-

quences N1k , N2k ∈ N such that lim
k→∞

J(N1k , N2k) = inf
N1,N2∈N

J(N1, N2), with corre-

sponding P1,ek , P1,lk , P1,pk , P1,ak , P2,ek , P2,lk , P2,pk , P2,ak sequences. Thus we can find

subsequences N1kj
, N2kj

, P1,ekj
, P1,lkj

, P1,pkj
, P1,akj

, P2,ekj
, P2,lkj

, P2,pkj
, P2,akj

, such that

lim
j→∞

J(N1kj
, N2kj

) = inf
N1,N2∈N

J(N1, N2) and converge toN1kj
→ N1, N2kj

→ N2, P1,ekj
→

P1,e, P1,lkj
→ P1,l, P1,pkj

→ P1,p, P1,akj
→ P1,a, P2,ekj

→ P2,e, P2,lkj
→ P2,l, P2,pkj

→

P2,p, P2,akj
→ P2,a. Therefore, there exists N1,N2 ∈ N which minimizes J(N1, N2).

6.2.2 Necessary Conditions

Adjoint System: Define the following terminal value system:

λ1,e(t) = λ1,e(t+ 1)γ1 + λ1,l(t+ 1)γ2

λ1,l(t) = 2β1P1,l(t) + λ1,l(t+ 1)ζ1e
−αN1(t) + λ1,p(t+ 1)ζ2e

−αN1(t)

λ1,p(t) = λ1,p(t+ 1)ν1 + λ1,a(t+ 1)ν2

λ1,a(t) = λ1,e(t+ 1)θ1 + λ1,a(t+ 1)θ1,1 + λ2,a(t+ 1)θ1,2

λ2,e(t) = λ2,e(t+ 1)γ1 + λ2,l(t+ 1)γ2

λ2,l(t) = 2β1P2,l(t) + λ2,l(t+ 1)ζ1e
−αN2(t) + λ2,p(t+ 1)ζ2e

−αN2(t)
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λ2,p(t) = λ2,p(t+ 1)ν1 + λ2,a(t+ 1)ν2

λ2,a(t) = λ2,e(t+ 1)θ1 + λ2,a(t+ 1)θ2,2 + λ1,a(t+ 1)θ2,1

λ1e(T ) = 0, λ1,l(T ) = 0, λ1,p(T ) = 0, λ1,a(T ) = 0, λ2,e(T ) = 0, λ2,l(T ) = 0, λ2,p(T ) =

0, λ2,a(T ) = 0.

Theorem 6.2.2. If there exist optimal controls N1 and N2, then there exists adjoint

system 6.2.2, and

N1(t) =


0 if β2

α
> ξ1(t)

1
α

ln[ α
β2
ξ1(t)] if β2

α
≤ ξ1(t)

N2(t) =


0 if β2

α
> ξ2(t)

1
α

ln[ α
β2
ξ2(t)] if β2

α
≤ ξ2(t)

.

with

ξ1(t) = ζ1λ1,l(t+ 1)P1,l(t) + ζ2λ1,p(t+ 1)P1,l(t)

and

ξ2(t) = ζ1λ2,l(t+ 1)P2,l(t) + ζ2λ2,p(t+ 1)P2,l(t)

Proof. Since we have that N1 and N2 minimize J(N1, N2); for all η1, η2 ∈ {η =

(η(1), ..., η(T ))|η(t) ≤ 1, t = 1, ...., T} we have that J(N1 + η1ε,N2 + η2ε) ≥ J(N1,N2)

for all sufficiently small ε > 0. Now we will take a directional derivative of functional

J ; so for the directional derivative in direction of η = [η1, η2]T with sufficiently small

ε > 0 and 0 ≤ N1 + η1ε = N ε
1 ,N2 + η2ε = N ε

2 ∈ Nn we have that:

0 ≤ lim
ε→0+

1

ε
[J(N1 + η1ε,N2 + η2ε)− J(N1,N2)]



133

= lim
ε→0+

1

ε

T−1∑
t=0

β1(Pε1,l(t)2 + Pε2,l(t)2) + β2(N ε
1 (t) +N ε

2 (t))

− lim
ε→0+

1

ε

T−1∑
t=0

β1(P1,l(t)
2 + P2,l(t)

2) + β2(N1(t) +N2(t))

=
T−1∑
t=0

β1 lim
ε→0+

(Pε1,l(t)2 − P1,l(t)
2

ε
+
Pε2,l(t)2 − P2,l(t)

2

ε

)

+
T−1∑
t=0

β2 lim
ε→0+

(
N ε

1 (t)−N1(t)

ε
+
N ε

2 (t)−N2(t)

ε

)

=
T−1∑
t=0

β12P1,l(t)ψ1,l(t) + β12P2,l(t)ψ2,l(t) + β2η1(t) + β2η2(t).

We define the sensitivities, ψ1,e(t), ψ1,l(t), ψ1,p(t), ψ1,a(t), ψ2,e(t), ψ2,l(t), ψ2,p(t), ψ2,a(t)

as:

ψ1,e(t) = lim
ε→0

Pε1,e(t)− P1,e(t)

ε
, ψ1,l(t) = lim

ε→0

Pε1,l(t)− P1,l(t)

ε
,

ψ1,p(t) = lim
ε→0

Pε1,p(t)− P1,p(t)

ε
, ψ1,a(t) = lim

ε→0

Pε1,a(t)− P1,a(t)

ε
,

ψ2,e(t) = lim
ε→0

Pε2,e(t)− P2,e(t)

ε
, ψ2,l(t) = lim

ε→0

Pε2,l(t)− P2,l(t)

ε
,

ψ2,p(t) = lim
ε→0

Pε2,p(t)− P2,p(t)

ε
, ψ2,a(t) = lim

ε→0

Pε2,a(t)− P2,a(t)

ε

where

ψ1,e(0) = 0, ψ1,l(0) = 0, ψ1,p(0) = 0, ψ1,a(0) = 0, ψ2,e(0) = 0, ψ2,l(0) = 0,

ψ2,p(0) = 0, ψ2,a(0) = 0.

We have that the limits exists from Miller and Lenhart [LW07].
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Hence, we can write:

ψ1,e(t+ 1) = γ1ψ1,e(t) + θ1ψ1,a(t)

ψ1,l(t+ 1) = γ2ψ1,e(t) + ζ1e
−αN1(t)ψ1,l(t)− ζ1αe

−αN1(t)P1,l(t)η1(t)

ψ1,p(t+ 1) = ν1ψ1,p(t) + ζ2e
−αN1(t)ψ1,l(t)− ζ2αe

−αN1(t)P1,l(t)η1(t)

ψ1,a(t+ 1) = ν2ψ1,p(t) + θ1,1ψ1,a(t) + θ2,1ψ2,a(t)

ψ2,e(t+ 1) = γ1ψ2,e(t) + θ1ψ2,a(t)

ψ2,l(t+ 1) = γ2ψ2,e(t) + ζ1e
−αN2(t)ψ2,l(t)− ζ1αe

−αN2(t)P2,l(t)η2(t)

ψ2,p(t+ 1) = ν1ψ2,p(t) + ζ2e
−αN2(t)ψ2,l(t)− ζ2αe

−αN2(t)P2,l(t)η2(t)

ψ2,a(t+ 1) = ν2ψ2,p(t) + θ2,2ψ2,a(t) + θ1,2ψ1,a(t).

Now, returning to

0 ≤ lim
ε→0+

1

ε
[J(N1 + ηε,N2 + ηε)− J(N1,N2)]

=
T−1∑
t=0

β12P1,l(t)ψ1,l(t) + β12P2,l(t)ψ2,l(t) + β2η1(t) + β2η2(t),

to remove the sensitivities ψ1,l(t), ψ2,l(t) we will manipulate the sensitivities and

adjoints equations.

We have that:
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ψ1,e(t+ 1)

ψ1,l(t+ 1)

ψ1,p(t+ 1)

ψ1,a(t+ 1)

ψ2,e(t+ 1)

ψ2,l(t+ 1)

ψ2,p(t+ 1)

ψ2,a(t+ 1)



−B



ψ1,e(t)

ψ1,l(t)

ψ1,p(t)

ψ1,a(t)

ψ2,e(t)

ψ2,l(t)

ψ2,p(t)

ψ2,a(t)



=



0

−ζ1αe
−αN1(t)P1,l(t)η1(t)

−ζ2αe
−αN1(t)P1,l(t)η1(t)

0

0

−ζ1αe
−αN2(t)P2,l(t)η2(t)

−ζ2αe
−αN2(t)P2,l(t)η2(t)

0



where B =



γ1 0 0 θ1 0 0 0 0

γ2 ζ1e
−αN1(k) 0 0 0 0 0 0

0 ζ2e
−αN1(k) ν1 0 0 0 0 0

0 0 ν2 θ1,1 0 0 0 θ2,1

0 0 0 0 γ1 0 0 θ1

0 0 0 0 γ2 ζ1e
−αN2(k) 0 0

0 0 0 0 0 ζ2e
−αN2(k) ν1 0

0 0 0 θ1,2 0 0 ν2 θ2,2



.

Now we have that:
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T
−
1 ∑ t=
0

β
1
2
P
1
,l
(t

)ψ
1
,l
(t

)
+
β
1
2P

2
,l
(t

)ψ
2
,l
(t

)
=

=

T
−
1 ∑ t=
0

[ ψ
1
,e

(t
)

ψ
1
,l
(t

)
ψ
1
,p

(t
)

ψ
1
,a

(t
)

ψ
2
,e

(t
)

ψ
2
,l
(t

)
ψ
2
,p

(t
)

ψ
2
,a

(t
)

]                     

0

β
1
2P

1
,l
(t

)

0 0 0

β
1
2P

2
,l
(t

)

0 0

                     

=

T
−
1 ∑ t=
0

[ ψ
1
,e

(t
)

ψ
1
,l
(t

)
ψ
1
,p

(t
)

ψ
1
,a

(t
)

ψ
2
,e

(t
)

ψ
2
,l
(t

)
ψ
2
,p

(t
)

ψ
2
,a

(t
)

]                                          λ
1
,e

(t
)

λ
1
,l
(t

)

λ
1
,p

(t
)

λ
1
,a

(t
)

λ
2
,e

(t
)

λ
2
,l
(t

)

λ
2
,p

(t
)

λ
2
,a

(t
)

                     −
B
T

                     λ
1
,e

(t
+

1
)

λ
1
,l
(t

+
1
)

λ
1
,p

(t
+

1
)

λ
1
,a

(t
+

1
)

λ
2
,e

(t
+

1
)

λ
2
,l
(t

+
1
)

λ
2
,p

(t
+

1
)

λ
2
,a

(t
+

1
)
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=

T
−
1 ∑ t=
0

[ ψ
1
,e

(t
)

ψ
1
,l
(t

)
ψ
1
,p

(t
)

ψ
1
,a

(t
)

ψ
2
,e

(t
)

ψ
2
,l
(t

)
ψ
2
,p

(t
)

ψ
2
,a

(t
)

]                     λ
1
,e

(t
)

λ
1
,l
(t

)

λ
1
,p

(t
)

λ
1
,a

(t
)

λ
2
,e

(t
)

λ
2
,l
(t

)

λ
2
,p

(t
)

λ
2
,a

(t
)

                     

−
T
−
1 ∑ t=
0

[ ψ
1
,e

(t
)

ψ
1
,l
(t

)
ψ
1
,p

(t
)

ψ
1
,a

(t
)

ψ
2
,e

(t
)

ψ
2
,l
(t

)
ψ
2
,p

(t
)

ψ
2
,a

(t
)

] B
T

                     λ
1
,e

(t
+

1
)

λ
1
,l
(t

+
1
)

λ
1
,p

(t
+

1
)

λ
1
,a

(t
+

1
)

λ
2
,e

(t
+

1
)

λ
2
,l
(t

+
1
)

λ
2
,p

(t
+

1
)

λ
2
,a

(t
+

1
)

                     .

R
ec

al
l

th
at

ψ
1
,e

(0
)

=
0,
ψ
1
,l
(0

)
=

0,
ψ
1
,p

(0
)

=
0,
ψ
1
,a

(0
)

=
0
,ψ

2
,e

(0
)

=
0,
ψ
2
,l
(0

)
=

0,
ψ
2
,p

(0
)

=
0,
ψ
2
,a

(0
)

=
0

an
d

λ
1
,e

(T
)

=
0,
λ
1
,l
(T

)
=

0,
λ
1
,p

(T
)

=
0,
λ
1
,a

(T
)

=
0
,λ

2
,e

(T
)

=
0
,
λ
2
,l
(T

)
=

0,
λ
2
,p

(T
)

=
0,
λ
2
,a

(T
)

=
0.

T
h

er
ef

or
e

w
e

ca
n

ch
an

ge
th

e
in

d
ic

es
,

so
th

at
:



138

T
−
1 ∑ t=
0

β
1
2P

l(
t)
ψ
l(
t)

=

=

T
−
1 ∑ t=
0

[ ψ
1
,e

(t
+

1)
ψ
1
,l
(t

+
1)

ψ
1
,p

(t
+

1
)

ψ
1
,a

(t
+

1
)

ψ
2
,e

(t
+

1
)

ψ
2
,l
(t

+
1
)

ψ
2
,p

(t
+

1
)

ψ
2
,a

(t
+

1
)

]                     λ
1
,e

(t
+

1
)

λ
1
,l
(t

+
1
)

λ
1
,p

(t
+

1
)

λ
1
,a

(t
+

1
)

λ
2
,e

(t
+

1
)

λ
2
,l
(t

+
1
)

λ
2
,p

(t
+

1
)

λ
2
,a

(t
+

1
)

                     

−
T
−
1 ∑ t=
0

[ λ
1
,e

(t
+

1)
λ
1
,l
(t

+
1)

λ
1
,p

(t
+

1
)

λ
1
,a

(t
+

1
)

λ
2
,e

(t
+

1
)

λ
2
,l
(t

+
1
)

λ
2
,p

(t
+

1
)

λ
2
,a

(t
+

1
)

] B

                     ψ
1
,e

(t
)

ψ
1
,l
(t

)

ψ
1
,p

(t
)

ψ
1
,a

(t
)

ψ
2
,e

(t
)

ψ
2
,l
(t

)

ψ
2
,p

(t
)

ψ
2
,a

(t
)

                     
=
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T
−
1 ∑ t=
0

[ λ
1
,e

(t
+

1)
λ
1
,l
(t

+
1)

λ
1
,p

(t
+

1)
λ
1
,a

(t
+

1
)

λ
2
,e

(t
+

1
)

λ
2
,l
(t

+
1
)

λ
2
,p

(t
+

1
)

λ
2
,a

(t
+

1
)

]                                          ψ
1
,e

(t
+

1
)

ψ
1
,l
(t

+
1
)

ψ
1
,p

(t
+

1
)

ψ
1
,a

(t
+

1
)

ψ
2
,e

(t
+

1
)

ψ
2
,l
(t

+
1
)

ψ
2
,p

(t
+

1
)

ψ
2
,a

(t
+

1
)

                     −
B

                     ψ
1
,e

(t
)

ψ
1
,l
(t

)

ψ
1
,p

(t
)

ψ
1
,a

(t
)

ψ
2
,e

(t
)

ψ
2
,l
(t

)

ψ
2
,p

(t
)

ψ
2
,a

(t
)

                                          

=

T
−
1 ∑ t=
0

[ λ
1
,e

(t
+

1)
λ
1
,l
(t

+
1)

λ
1
,p

(t
+

1)
λ
1
,a

(t
+

1
)

λ
2
,e

(t
+

1
)

λ
2
,l
(t

+
1
)

λ
2
,p

(t
+

1
)

λ
2
,a

(t
+

1
)

]                     

0

−
ζ 1
α
e−

α
N

1
(t
)
P
1
,l
(t

)η
1
(t

)

−
ζ 2
α
e−

α
N

1
(t
)
P
1
,l
(t

)η
1
(t

)

0 0

−
ζ 1
α
e−

α
N

2
(t
)
P
2
,l
(t

)η
2
(t

)

−
ζ 2
α
e−

α
N

2
(t
)
P
2
,l
(t

)η
2
(t

)

0

                     
=
∑ T−

1
t=

0
λ
1
,l
(t

+
1)

(−
ζ 1
α
e−

α
N

1
(t
)
P
1
,l
(t

)η
1
(t

))
+
λ
1
,p

(t
+

1
)(
−
ζ 2
α
e−

α
N

1
(t
)
P
1
,l
(t

)η
1
(t

))

+
λ
2
,l
(t

+
1)

(−
ζ 1
α
e−

α
N

2
(t
)
P
2
,l
(t

)η
2
(t

))
+
λ
2
,p

(t
+

1
)(
−
ζ 2
α
e−

α
N

2
(t
)
P
2
,l
(t

)η
2
(t

))

=
∑ T−

1
t=

0
[λ

1
,l
(t

+
1)
ζ 1

+
λ
1
,p

(t
+

1)
ζ 2

][
−
α
e−

α
N

1
(t
)
P
1
,l
(t

)η
1
(t

))
]

+
[λ

2
,l
(t

+
1
)ζ

1
+
λ
2
,p

(t
+

1
)ζ

2
][
−
α
e−

α
N

2
(t
)
P
2
,l
(t

)η
2
(t

))
].
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Now combining everything we have that:

0 ≤ lim
ε→0+

1

ε
[J(N1 + ηε,N2 + ηε)− J(N1,N2)]

=
T−1∑
t=0

β12P1,l(t)ψ1,l(t) + β12P2,l(t)ψ2,l(t) + β2η1(t) + β2η2(t)

=
T−1∑
t=0

[λ1,l(t+ 1)ζ1 + λ1,p(t+ 1)ζ2][−αe−αN1(t)P1,l(t)η1(t))]

+[λ2,l(t+ 1)ζ1 + λ2,p(t+ 1)ζ2][−αe−αN2(t)P2,l(t)η2(t))]

=
T−1∑
t=0

η1(t)
[
−αe−αN1(t)P1,l(t)[λ1,l(t+ 1)ζ1 + λ1,p(t+ 1)ζ2] + β2

]
+η2(t)

[
−αe−αN2(t)P2,l(t)[λ2,l(t+ 1)ζ1 + λ2,p(t+ 1)ζ2] + β2

]
.

Considering the previous equation with equality

0 =
T−1∑
t=0

η1(t)
[
−αe−αN1(t)P1,l(t)[λ1,l(t+ 1)ζ1 + λ1,p(t+ 1)ζ2] + β2

]

+η2(t)
[
−αe−αN2(t)P2,l(t)[λ2,l(t+ 1)ζ1 + λ2,p(t+ 1)ζ2] + β2

]
.

Since this must hold for all η1 and η2, we have that for all t,

0 = −αe−αN1(t)P1,l(t)[λ1,l(t+ 1)ζ1 + λ1,p(t+ 1)ζ2] + β2

and

0 = −αe−αN2(t)P2,l(t)[λ2,l(t+ 1)ζ1 + λ2,p(t+ 1)ζ2] + β2.
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Solution for N1 : We will consider

0 = −αe−αN1(t)P1,l(t)[λ1,l(t+ 1)ζ1 + λ1,p(t+ 1)ζ2] + β2,

then:

e−αN1(t)P1,l(t)[λ1,l(t+ 1)ζ1 + λ1,p(t+ 1)ζ2] =
β2

α
⇐⇒

e−αN1(t) =
β2

αP1,l(t)[λ1,l(t+ 1)ζ1 + λ1,p(t+ 1)ζ2]
⇐⇒

−αN1(t) = ln

[
β2

αP1,l(t)[λ1,l(t+ 1)ζ1 + λ1,p(t+ 1)ζ2]

]
⇐⇒

αN1(t) = ln

[
αP1,l(t)[λ1,l(t+ 1)ζ1 + λ1,p(t+ 1)ζ2]

β2

]
.

Note α > 0. We need that N1(t) ≥ 0, so

ln

[
αP1,l(t)[λ1,l(t+ 1)ζ1 + λ1,p(t+ 1)ζ2]

β2

]
≥ 0

meaning

αP1,l(t)[λ1,l(t+ 1)ζ1 + λ1,p(t+ 1)ζ2]

β2

≥ 1.

Hence when

β2

α
≤ P1,l(t)[λ1,l(t+ 1)ζ1 + λ1,p(t+ 1)ζ2]

and we have

N1(t) =
1

α
ln(

α

β2

P1,l(t)[λ1,l(t+ 1)ζ1 + λ1,p(t+ 1)ζ2]).
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Now we will consider if

β2

α
> P1,l(t)[λ1,l(t+ 1)ζ1 + λ1,p(t+ 1)ζ2],

then we have:

0 =
T−1∑
t=0

η1(t)
[
−αe−αN1(t)P1,l(t)[λ1,l(t+ 1)ζ1 + λ1,p(t+ 1)ζ2] + β2

]

+η2(t)
[
−αe−αN2(t)P2,l(t)[λ2,l(t+ 1)ζ1 + λ2,p(t+ 1)ζ2] + β2

]
=

T−1∑
t=0

η1(t)
[
−αe−αN1(t)P1,l(t)[λ1,l(t+ 1)ζ1 + λ1,p(t+ 1)ζ2] + β2

]
+ η2(t) · 0

<
T−1∑
t=0

η1(t)

[
−αe−αN1(t)

(
β2

α

)
+ β2

]

=
T−1∑
t=0

η1(t)
[
−β2e

−αN1(t) + β2

]
=

T−1∑
t=0

η1(t)β2

[
−e−αN1(t) + 1

]
.

If N1(t) > 0 we have that β2(−e−αN1(t) + 1) < 0, which is a contradiction. Thus, if

β2

α
> P1,l(t)[λ1,l(t+ 1)ζ1 + λ1,p(t+ 1)ζ2]

we must have that N1(t) = 0. Set

ξ1(t) = P1,l(t)[λ1,l(t+ 1)ζ1 + λ1,p(t+ 1)ζ2],

so

N1(t) =


0 if β2

α
> ξ1(t)

1
α

ln[ α
β2
ξ1(t)] if β2

α
≤ ξ1(t)
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Solution for N2 : We consider

0 = −αe−αN2(t)P2,l(t)[λ2,l(t+ 1)ζ1 + λ2,p(t+ 1)ζ2] + β2,

then:

e−αN2(t)P2,l(t)[λ2,l(t+ 1)ζ1 + λ2,p(t+ 1)ζ2] =
β2

α
⇐⇒

e−αN2(t) =
β2

αP2,l(t)[λ2,l(t+ 1)ζ1 + λ2,p(t+ 1)ζ2]
⇐⇒

−αN2(t) = ln

[
β2

αP2,l(t)[λ2,l(t+ 1)ζ1 + λ2,p(t+ 1)ζ2]

]
⇐⇒

αN2(t) = ln

[
αP2,l(t)[λ2,l(t+ 1)ζ1 + λ2,p(t+ 1)ζ2]

β2

]
.

Note α > 0. We need that N2(t) ≥ 0, so

ln

[
αP2,l(t)[λ2,l(t+ 1)ζ1 + λ2,p(t+ 1)ζ2]

β2

]
≥ 0

meaning

αP2,l(t)[λ2,l(t+ 1)ζ1 + λ2,p(t+ 1)ζ2]

β2

≥ 1.

Hence when

β2

α
≤ P2,l(t)[λ2,l(t+ 1)ζ1 + λ2,p(t+ 1)ζ2]

and we have

N2(t) =
1

α
ln(

α

β2

P2,l(t)[λ2,l(t+ 1)ζ1 + λ2,p(t+ 1)ζ2]).

If

β2

α
> P2,l(t)[λ2,l(t+ 1)ζ1 + λ2,p(t+ 1)ζ2],
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then we have:

0 =
T−1∑
t=0

η1(t)
[
−αe−αN1(t)P1,l(t)[λ1,l(t+ 1)ζ1 + λ1,p(t+ 1)ζ2] + β2

]

+η2(t)
[
−αe−αN2(t)P2,l(t)[λ2,l(t+ 1)ζ1 + λ2,p(t+ 1)ζ2] + β2

]
=

T−1∑
t=0

η1(t) · 0 + η2(t)
[
−αe−αN2(t)P2,l(t)[λ2,l(t+ 1)ζ1 + λ2,p(t+ 1)ζ2] + β2

]

<

T−1∑
t=0

η2(t)

[
−αe−αN2(t)

(
β2

α

)
+ β2

]

=
T−1∑
t=0

η2(t)
[
−β2e

−αN2(t) + β2

]
=

T−1∑
t=0

η2(t)β2

[
−e−αN2(t) + 1

]
.

If N2(t) > 0 we have that β2(−e−αN2(t) + 1) < 0 contradiction. Thus, if

β2

α
> P2,l(t)[λ2,l(t+ 1)ζ1 + λ2,p(t+ 1)ζ2]

we must have that N2(t) = 0. Set

ξ2(t) = P2,l(t)[λ2,l(t+ 1)ζ1 + λ2,p(t+ 1)ζ2].

N2(t) =


0 if β2

α
> ξ2(t)

1
α

ln[ α
β2
ξ2(t)] if β2

α
≤ ξ2(t)

6.2.3 Uniqueness

Theorem 6.2.3. If the optimal controls N1 and N2 exist, then they are unique.
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Proof. In order to show N1 and N2 are unique we will show that J(N1, N2) =∑T−1
t=0 β1[P1,l(t)

2 +P2,l(t)
2] +β2[N1(t) +N2(t)] is strictly convex. Recall if a function is

strictly convex then there exists a unique minimum such that J(N1,N2) < J(N1, N2)

for all N1, N2 ∈ N \ {N1,N2}. To show J is strictly convex we will look at J along a

line from N = [N1, N2]
T to η = [η1, η2]

T by defining z(ε) = J((1 − ε)N1 + εη1, (1 −

ε)N2 +εη2) = J(N1 +ε(η1−N1), N2 +ε(η2−N2)) for N1, N2, η1, η2 ∈ N, and 0 < ε < 1.

Note that if z, a one dimensional function, is convex in every possible direction then

J will be convex. To establish convexity we will show that z′′(ε) > 0. First take the

derivative of z:

z′(ε) =

= lim
τ→0

(
J [N1 + (τ + ε)(η1 −N1), N2 + (τ + ε)(η2 −N2)]− J [N1 + ε(η1 −N1), N2 + ε(η2 −N2)]

τ

)

= lim
τ→0

T−1∑
t=0

β1
τ

[
P τ+ε1,l (t)2−P ε1,l(t)2

]
+
β2
τ

(
[N1(t)+(τ +ε)(η1(t)−N1(t))]− [N1(t)+ε(η1(t)−N1(t))]

)

+ lim
τ→0

T−1∑
t=0

β1
τ

[
P τ+ε2,l (t)2−P ε2,l(t)2

]
+
β2
τ

(
[N2(t) + (τ + ε)(η2(t)−N2(t))]− [N2(t) + ε(η2(t)−N2(t))]

)

=

T−1∑
t=0

β1

[
lim
τ→0

P τ+ε1,l (t)2 − P ε1,l(t)2

τ
+ lim
τ→0

P τ+ε2,l (t)2 − P ε2,l(t)2

τ

]

+β2

[
lim
τ→0

τ(η1(t)−N1(t))

τ
+ lim
τ→0

τ(η2(t)−N2(t))

τ

]

=

T−1∑
t=0

β1

[
lim
τ→0

P τ+ε1,l (t)2 − P ε1,l(t)2

τ
+ lim
τ→0

P τ+ε2,l (t)2 − P ε2,l(t)2

τ

]
+β2(η1(t)−N1(t))+β2(η2(t)−N2(t)).

By The Chain Rule:

z′(ε) =
T−1∑
t=0

β12P ε
1,l(t)ψ

ε
1,l(t) + β12P ε

2,l(t)ψ
ε
2,l(t) + β2(η1(t)−N1(t)) + β2(η2(t)−N2(t)).
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Note we define sensitivities similar to in Theorem 6.2.2:

ψε1,e(t+ 1) = γ1ψ
ε
1,e(t) + θ1ψ

ε
1,a(t)

ψε1,l(t+ 1) = γ2ψ
ε
1,e(t) + ζ1e

−αNε
1 (t)ψε1,l(t)− ζ1αe

−αNε
1 (t)P ε

1,l(t)(η1(t)−N1(t))

ψε1,p(t+ 1) = ν1ψ
ε
1,p(t) + ζ2e

−αNε
1 (t)ψε1,l(t)− ζ2αe

−αNε
1 (t)P ε

1,l(t)(η1(t)−N1(t))

ψε1,a(t+ 1) = ν2ψ
ε
1,p(t) + θ1,1ψ

ε
1,a(t) + θ2,1ψ

ε
2,a(t)

ψε2,e(t+ 1) = γ1ψ
ε
2,e(t) + θ1ψ

ε
2,a(t)

ψε2,l(t+ 1) = γ2ψ
ε
2,e(t) + ζ1e

−αNε
2 (t)ψε2,l(t)− ζ1αe

−αNε
2 (t)P ε

2,l(t)(η2(t)−N2(t))

ψε2,p(t+ 1) = ν1ψ
ε
2,p(t) + ζ2e

−αNε
2 (t)ψε2,l(t)− ζ2αe

−αNε
2 (t)P ε

2,l(t)(η2(t)−N2(t))

ψε2,a(t+ 1) = ν2ψ
ε
2,p(t) + θ2,2ψ

ε
2,a(t) + θ1,2ψ

ε
1,a(t)
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where ψ1,e(0) = 0, ψ1,l(0) = 0, ψ1,p(0) = 0, ψ1,a(0) = 0, ψ2,e(0) = 0, ψ2,l(0) =

0, ψ2,p(0) = 0, ψ2,a(0) = 0.

In order to continue we must define derivatives for the sensitivities, σ1,e(t), σ1,l(t),

σ1,p(t), σ1,a(t), σ2,e(t), σ2,l(t), σ2,p(t), σ2,a(t) as:

σε1,e(t+1) = lim
τ→0

ψτ+ε
1,e (t+ 1)− ψε1,e(t+ 1)

τ
, σε1,l(t+1) = lim

τ→0

ψτ+ε
1,l (t+ 1)− ψε1,l(t+ 1)

τ
,

σε1,p(t+1) = lim
τ→0

ψτ+ε
1,p (t+ 1)− ψε1,p(t+ 1)

τ
, σε1,a(t+1) = lim

τ→0

ψτ+ε
1,a (t+ 1)− ψε1,a(t+ 1)

τ

σε2,e(t+1) = lim
τ→0

ψτ+ε
2,e (t+ 1)− ψε2,e(t+ 1)

τ
, σε2,l(t+1) = lim

τ→0

ψτ+ε
2,l (t+ 1)− ψε2,l(t+ 1)

τ
,

σε2,p(t+1) = lim
τ→0

ψτ+ε
2,p (t+ 1)− ψε2,p(t+ 1)

τ
, σε2,a(t+1) = lim

τ→0

ψτ+ε
2,a (t+ 1)− ψε2,a(t+ 1)

τ
.

Hence, we can write:

σε1,e(t+ 1) = lim
τ→0

ψτ+ε
1,e (t+ 1)− ψε1,e(t+ 1)

τ
= γ1 lim

τ→0

ψτ+ε
1,e (t)− ψε1,e(t)

τ

+θ1 lim
τ→0

ψτ+ε
1,a (t)− ψε1,a(t)

τ

= γ1σ
ε
1,e(t) + θ1σ

ε
1,a(t)

σε1,a(t+ 1) = lim
τ→0

ψτ+ε
1,a (t+ 1)− ψε1,a(t+ 1)

τ

= ν2 lim
τ→0

ψτ+ε
1,p (t)− ψε1,p(t)

τ
+ θ1,1 lim

τ→0

ψτ+ε
1,a (t)− ψε1,a(t)

τ
+ θ2,1 lim

τ→0

ψτ+ε
2,a (t)− ψε2,a(t)

τ

= ν2σ
ε
1,p(t) + θ1,1σ

ε
1,a(t) + θ2,1σ

ε
2,a(t)



148

σε2,e(t+ 1) = lim
τ→0

ψτ+ε
2,e (t+ 1)− ψε2,e(t+ 1)

τ
= γ1 lim

τ→0

ψτ+ε
2,e (t)− ψε2,e(t)

τ

+θ1 lim
τ→0

ψτ+ε
2,a (t)− ψε2,a(t)

τ

= γ1σ
ε
2,e(t) + θ1σ

ε
2,a(t)

σε2,a(t+ 1) = lim
τ→0

ψτ+ε
2,a (t+ 1)− ψε2,a(t+ 1)

τ

= ν2 lim
τ→0

ψτ+ε
2,p (t)− ψε2,p(t)

τ
+ θ2,2 lim

τ→0

ψτ+ε
2,a (t)− ψε2,a(t)

τ
+ θ1,2 lim

τ→0

ψτ+ε
1,a (t)− ψε1,a(t)

τ

= ν2σ
ε
2,p(t) + θ2,2σ

ε
2,a(t) + θ1,2σ

ε
1,a(t).
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ε 1
(t
)
ψ
ε 1
,l
(t

)
+
ζ 1
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2
α
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α
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ε 1
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ε 1
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σ
ε e
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ζ 1
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α
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ε 1
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σ
ε 1
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−
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ε 1
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We now need to show that

z′′(ε) =
T−1∑
t=0

β12[σε1,l(t)P
ε
1,l(t) + ψε1,l(t)

2] + β12[σε2,l(t)P
ε
2,l(t) + ψε2,l(t)

2] > 0.

Specifically we will show that σε1,l(t) > 0 and σε2,l(t) > 0

We start by calculating the terms for t = 1, 2, 3.

We have that ψε1,e(0) = 0, ψε1,l(0) = 0, ψε1,p(0) = 0, ψε1,a(0) = 0, ψε2,e(0) =

0, ψε2,l(0) = 0, ψε2,p(0) = 0, ψε2,a(0) = 0, so for t = 1:

ψε1,e(1) = γ1ψ
ε
1,e(0) + θ1ψ

ε
1,a(0) = 0

ψε1,l(1) = γ2ψ
ε
1,e(0) + ζ1e

−αNε
1 (0)ψε1,l(0)− ζ1αe

−αNε
1 (0)P ε

1,l(0)(η1(0)−N1(0))

= −ζ1αe
−αNε

1 (0)P ε
1,l(0)(η1(0)−N1(0))

ψε1,p(1) = ν1ψ
ε
1,p(0) + ζ2e

−αNε
1 (0)ψε1,l(0)− ζ2αe

−αNε
1 (0)P ε

1,l(0)(η1(0)−N1(0))

= −ζ2αe
−αNε

1 (0)P ε
1,l(0)(η1(0)−N1(0))

ψε1,a(1) = ν2ψ
ε
1,p(0) + θ1,1ψ

ε
1,a(0) + θ2,1ψ

ε
2,a(0) = 0

ψε2,e(1) = γ1ψ
ε
2,e(0) + θ1ψ

ε
2,a(0) = 0



153

ψε2,l(1) = γ2ψ
ε
2,e(0) + ζ1e

−αNε
2 (0)ψε2,l(0)− ζ1αe

−αNε
2 (0)P ε

2,l(0)(η2(0)−N2(0))

= −ζ1αe
−αNε

2 (0)P ε
2,l(0)(η2(0)−N2(0))

ψε2,p(1) = ν1ψ
ε
2,p(0) + ζ2e

−αNε
2 (0)ψε2,l(0)− ζ2αe

−αNε
2 (0)P ε

2,l(0)(η2(0)−N2(0))

= −ζ2αe
−αNε

2 (0)P ε
2,l(0)(η2(0)−N2(0))

ψε2,a(1) = ν2ψ
ε
2,p(0) + θ2,2ψ

ε
2,a(0) + θ1,2ψ

ε
1,a(0) = 0.

Next, for t = 2

ψε1,e(2) = γ1ψ
ε
1,e(1) + θ1ψ

ε
1,a(1) = 0

ψε1,l(2) = γ2ψ
ε
1,e(1) + ζ1e

−αNε
1 (1)ψε1,l(1)− ζ1αe

−αNε
1 (1)P ε

1,l(1)(η1(1)−N1(1))

= ζ1e
−αNε

1 (1)ψε1,l(1)− ζ1αe
−αNε

1 (1)P ε
1,l(1)(η1(1)−N1(1))

ψε1,p(2) = ν1ψ
ε
1,p(1) + ζ2e

−αNε
1 (1)ψε1,l(1)− ζ2αe

−αNε
1 (1)P ε

1,l(1)(η1(1)−N1(1))
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ψε1,a(2) = ν2ψ
ε
1,p(1) + θ1,1ψ

ε
1,a(1) + θ2,1ψ

ε
2,a(1) = ν2ψ

ε
1,p(1)

ψε2,e(2) = γ1ψ
ε
2,e(1) + θ1ψ

ε
2,a(1) = 0

ψε2,l(2) = γ2ψ
ε
2,e(1) + ζ1e

−αNε
2 (1)ψε2,l(1)− ζ1αe

−αNε
2 (1)P ε

2,l(1)(η2(1)−N2(1))

= ζ1e
−αNε

2 (1)ψε2,l(1)− ζ1αe
−αNε

2 (1)P ε
2,l(1)(η2(1)−N2(1))

ψε2,p(2) = ν1ψ
ε
2,p(1) + ζ2e

−αNε
2 (1)ψε2,l(1)− ζ2αe

−αNε
2 (1)P ε

2,l(1)(η2(1)−N2(1))

ψε2,a(2) = ν2ψ
ε
2,p(1) + θ2,2ψ

ε
2,a(1) + θ1,2ψ

ε
1,a(1) = ν2ψ

ε
2,p(1).

Lastly, for t = 3

ψε1,e(3) = γ1ψ
ε
1,e(2) + θ1ψ

ε
1,a(2) = θ1ν2ψ

ε
1,p(1) < 0

ψε1,l(3) = γ2ψ
ε
1,e(2) + ζ1e

−αNε
1 (2)ψε1,l(2)− ζ1αe

−αNε
1 (2)P ε

1,l(2)(η1(2)−N1(2))

= ζ1e
−αNε

1 (2)ψε1,l(2)− ζ1αe
−αNε

1 (2)P ε
1,l(2)(η1(2)−N1(2))
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ψε1,p(3) = ν1ψ
ε
1,p(2) + ζ2e

−αNε
1 (2)ψε1,l(2)− ζ2αe

−αNε
1 (2)P ε

1,l(2)(η1(2)−N1(2))

ψε1,a(3) = ν2ψ
ε
1,p(2) + θ1,1ψ

ε
1,a(2) + θ2,1ψ

ε
2,a(2)

ψε2,e(3) = γ1ψ
ε
2,e(2) + θ1ψ

ε
2,a(2) = θ1ν2ψ

ε
2,p(1)

ψε2,l(3) = γ2ψ
ε
2,e(2) + ζ1e

−αNε
2 (2)ψε2,l(2)− ζ1αe

−αNε
2 (2)P ε

2,l(2)(η2(2)−N2(2))

= ζ1e
−αNε

2 (2)ψε2,l(2)− ζ1αe
−αNε

2 (2)P ε
2,l(2)(η2(2)−N2(2))

ψε2,p(3) = ν1ψ
ε
2,p(2) + ζ2e

−αNε
2 (2)ψε2,l(2)− ζ2αe

−αNε
2 (2)P ε

2,l(2)(η2(2)−N2(2))

ψε2,a(3) = ν2ψ
ε
2,p(2) + θ2,2ψ

ε
2,a(2) + θ1,2ψ

ε
1,a(2).

We have that:

σε1,e(t+ 1) = γ1σ
ε
1,e(t) + θ1σ

ε
1,a(t)

σε1,l(t+ 1) = γ2σ
ε
e(t) + ζ1e

−αNε1 (t)σε1,l(t)− 2ζ1αe
−αNε1 (t)ψε1,l(t)(η1(t)−N1(t))

+ζ1α
2e−αN

ε
1 (t)P ε1,l(t)(η1(t)−N1(t))2
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σε1,p(t+ 1) = ν1σ
ε
1,p(t) + ζ2e

−αNε1 (t)σε1,l(t)− 2ζ2αe
−αNε1 (t)ψε1,l(t)(η1(t)−N1(t))

+ζ2α
2e−αN

ε
1 (t)P ε1,l(t)(η1(t)−N1(t))2

σε1,a(t+ 1) = ν2σ
ε
1,p(t) + θ1,1σ

ε
1,a(t) + θ2,1σ

ε
2,a(t)

σε2,e(t+ 1) = γ1σ
ε
2,e(t) + θ1σ

ε
2,a(t)

σε2,l(t+ 1) = γ2σ
ε
e(t) + ζ1e

−αNε2 (t)σε2,l(t)− 2ζ1αe
−αNε2 (t)ψε2,l(t)(η2(t)−N2(t))

+ζ1α
2e−αN

ε
2 (t)P ε2,l(t)(η2(t)−N2(t))2

σε2,p(t+ 1) = ν1σ
ε
2,p(t) + ζ2e

−αNε2 (t)σε2,l(t)− 2ζ2αe
−αNε2 (t)ψε2,l(t)(η2(t)−N2(t))

+ζ2α
2e−αN

ε
2 (t)P ε2,l(t)(η2(t)−N2(t))2

σε2,a(t+ 1) = ν2σ
ε
2,p(t) + θ2,2σ

ε
2,a(t) + θ1,2σ

ε
1,a(t).

Recall that σε1,e(0), σε1,l(0), σε1,p(0), σε1,a(0), σε2,e(0), σε2,l(0), σε2,p(0), σε2,a(0) = 0. Con-

sider t = 1:

σε1,e(1) = γ1σ
ε
1,e(0) + θ1σ

ε
1,a(0) = 0

σε1,l(1) = γ2σ
ε
e(0) + ζ1e

−αNε1 (0)σε1,l(0)− 2ζ1αe
−αNε1 (0)ψε1,l(0)(η1(0)−N1(0))

+ζ1α
2e−αN

ε
1 (0)P ε1,l(0)(η1(0)−N1(0))2

= ζ1α
2e−αN

ε
1 (0)P ε1,l(0)(η1(0)−N1(0))2
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σε1,p(1) = ν1σ
ε
1,p(0) + ζ2e

−αNε1 (0)σε1,l(0)− 2ζ2αe
−αNε1 (0)ψε1,l(0)(η1(0)−N1(0))

+ζ2α
2e−αN

ε
1 (0)P ε1,l(0)(η1(0)−N1(0))2

= ζ2α
2e−αN

ε
1 (0)P ε1,l(0)(η1(0)−N1(0))2

σε1,a(1) = ν2σ
ε
1,p(0) + θ1,1σ

ε
1,a(0) + θ2,1σ

ε
2,a(0) = 0

σε2,e(1) = γ1σ
ε
2,e(0) + θ1σ

ε
2,a(0) = 0

σε2,l(1) = γ2σ
ε
e(0) + ζ1e

−αNε2 (0)σε2,l(0)− 2ζ1αe
−αNε2 (0)ψε2,l(0)(η2(0)−N2(0))

+ζ1α
2e−αN

ε
2 (0)P ε2,l(0)(η2(0)−N2(0))2

= ζ1α
2e−αN

ε
2 (0)P ε2,l(0)(η2(0)−N2(0))2

σε2,p(1) = ν1σ
ε
2,p(0) + ζ2e

−αNε2 (0)σε2,l(0)− 2ζ2αe
−αNε2 (0)ψε2,l(0)(η2(0)−N2(0))

+ζ2α
2e−αN

ε
2 (0)P ε2,l(0)(η2(0)−N2(0))2

= ζ2α
2e−αN

ε
2 (0)P ε2,l(0)(η2(0)−N2(0))2

σε2,a(1) = ν2σ
ε
2,p(0) + θ2,2σ

ε
2,a(0) + θ1,2σ

ε
1,a(0) = 0.

Next, t = 2

σε1,e(2) = γ1σ
ε
1,e(1) + θ1σ

ε
1,a(1) = 0

σε1,l(2) = γ2σ
ε
e(1) + ζ1e

−αNε1 (1)σε1,l(1)− 2ζ1αe
−αNε1 (1)ψε1,l(1)(η1(1)−N1(1))
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+ζ1α
2e−αN

ε
1 (1)P ε1,l(1)(η1(1)−N1(1))2

σε1,p(2) = ν1σ
ε
1,p(1) + ζ2e

−αNε1 (1)σε1,l(1)− 2ζ2αe
−αNε1 (1)ψε1,l(1)(η1(1)−N1(1))

+ζ2α
2e−αN

ε
1 (1)P ε1,l(1)(η1(1)−N1(1))2

σε1,a(2) = ν2σ
ε
1,p(1) + θ1,1σ

ε
1,a(1) + θ2,1σ

ε
2,a(1)

σε2,e(2) = γ1σ
ε
2,e(1) + θ1σ

ε
2,a(1) = 0

σε2,l(2) = γ2σ
ε
e(1) + ζ1e

−αNε2 (1)σε2,l(1)− 2ζ1αe
−αNε2 (1)ψε2,l(1)(η2(1)−N2(1))

+ζ1α
2e−αN

ε
2 (1)P ε2,l(1)(η2(1)−N2(1))2

σε2,p(2) = ν1σ
ε
2,p(1) + ζ2e

−αNε2 (1)σε2,l(1)− 2ζ2αe
−αNε2 (1)ψε2,l(1)(η2(1)−N2(1))

+ζ2α
2e−αN

ε
2 (1)P ε2,l(1)(η2(1)−N2(1))2

σε2,a(2) = ν2σ
ε
2,p(1) + θ2,2σ

ε
2,a(1) + θ1,2σ

ε
1,a(1).

Next, t = 3

σε1,e(3) = γ1σ
ε
1,e(2) + θ1σ

ε
1,a(2)

σε1,l(3) = γ2σ
ε
e(2) + ζ1e

−αNε1 (2)σε1,l(2)− 2ζ1αe
−αNε1 (2)ψε1,l(2)(η1(2)−N1(2))

+ζ1α
2e−αN

ε
1 (2)P ε1,l(2)(η1(2)−N1(2))2
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σε1,p(3) = ν1σ
ε
1,p(2) + ζ2e

−αNε1 (2)σε1,l(2)− 2ζ2αe
−αNε1 (2)ψε1,l(2)(η1(2)−N1(2))

+ζ2α
2e−αN

ε
1 (2)P ε1,l(2)(η1(2)−N1(2))2

σε1,a(3) = ν2σ
ε
1,p(2) + θ1,1σ

ε
1,a(2) + θ2,1σ

ε
2,a(2)

σε2,e(3) = γ1σ
ε
2,e(2) + θ1σ

ε
2,a(2)

σε2,l(3) = γ2σ
ε
e(2) + ζ1e

−αNε2 (2)σε2,l(2)− 2ζ1αe
−αNε2 (2)ψε2,l(2)(η2(2)−N2(2))

+ζ1α
2e−αN

ε
2 (2)P ε2,l(2)(η2(2)−N2(2))2

σε2,p(3) = ν1σ
ε
2,p(2) + ζ2e

−αNε2 (2)σε2,l(2)− 2ζ2αe
−αNε2 (2)ψε2,l(2)(η2(2)−N2(2))

+ζ2α
2e−αN

ε
2 (2)P ε2,l(2)(η2(2)−N2(2))2

σε2,a(3) = ν2σ
ε
2,p(1) + θ2,2σ

ε
2,a(1) + θ1,2σ

ε
1,a(1).

The proof is similar to that in the Basic Model proof of Theorem 2.3.3. We

can see similarities and differences between the previously calculated terms and the

terms in Theorem 2.3.3. If we consider the patches individually we have the Basic

Model. Therefore, we will consider the differences that arise when the adults can

travel between patches. The terms which will differ from Theorem 2.3.3 are:

ψε1,a(t+ 1) = ν2ψ
ε
1,p(t) + θ1,1ψ

ε
1,a(t) + θ2,1ψ

ε
2,a(t)
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σε1,a(t+ 1) = ν2σ
ε
1,p(t) + θ1,1σ

ε
1,a(t) + θ2,1σ

ε
2,a(t)

ψε2,a(t+ 1) = ν2ψ
ε
2,p(t) + θ2,2ψ

ε
2,a(t) + θ1,2ψ

ε
1,a(t)

σε2,a(t+ 1) = ν2σ
ε
2,p(t) + θ2,2σ

ε
2,a(t) + θ1,2σ

ε
1,a(t).

These equations are similar to the Basic case, but each patch now has some adults

from the other patch traveling inward and adults leaving. This won’t cause an issue

since in each patch we have the same parameter on the term and have both the ψεi,a(t)

and σεi,a(t). As we have seen in the basic case we can manipulate these two terms to

create a summation of (η(i)−Nn(i)) which are squared and multiplied by parameters.

Due to the model design, and relation to the Basic model, we can expand our previous

finding and will have that both σε1,l(t) > 0 and σε2,l(t) > 0 for all t.

Thus, we have that z′′(ε) =
T−1∑
t=0

β12[σε1,l(t)P
ε
1,l(t) + ψε1,l(t)

2] + β12[σε2,l(t)P
ε
2,l(t) +

ψε2,l(t)
2] > 0, and we have uniqueness by convexity of z.
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Chapter 7

Four Patches

7.1 Four Connected Patches

Now, we will consider using four neighboring connected patches, aka connected patches.

As before adults can travel between patches, and we will assume patches are arranged

as in Figure 7.1.

Figure 7.1: Four Connected Patches: Note any patch is connected to the patches
next to it. Specifically consider patch F1 which is connected to patch F2. Note the
black arrows from F1 demonstrate how the adult pest can disperse from the patch,
specifically the pest adult can only spread to F2 and to none of the other patches.
Meanwhile, F3 is attached to F2 and F4 and the pest adults in F3 can spread to F2

and F4 along the white arrows but not to F1. Note that F2 spreads to F1 and F3,
while F4 only spreads to F3, these patches arrows are not show in the figure.
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Then the resulting matrix for our pest dynamics will be as follows:

A4c =



γ1 0 0 θ1 0 0 0 0 0 0 0 0 0 0 0 0

γ2 ζ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ζ2 ν1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 ν2 θ1,1 0 0 0 θ2,1 0 0 0 0 0 0 0 0

0 0 0 0 γ1 0 0 θ1 0 0 0 0 0 0 0 0

0 0 0 0 γ2 ζ1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 ζ2 ν1 0 0 0 0 0 0 0 0 0

0 0 0 θ1,2 0 0 ν2 θ2,2 0 0 0 θ3,2 0 0 0 0

0 0 0 0 0 0 0 0 γ1 0 0 θ1 0 0 0 0

0 0 0 0 0 0 0 0 γ2 ζ1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 ζ2 ν1 0 0 0 0 0

0 0 0 0 0 0 0 θ2,3 0 0 ν2 θ3,3 0 0 0 θ4,3

0 0 0 0 0 0 0 0 0 0 0 0 γ1 0 0 θ1

0 0 0 0 0 0 0 0 0 0 0 0 γ2 ζ1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 ζ2 ν1 0

0 0 0 0 0 0 0 0 0 0 0 θ3,4 0 0 ν2 θ4,4


Note this matrix, A4c, is very similar to A2 for the two patch model since we

have 4 copies of the basic matrix A and pest adults travelling between neighboring

patches. The parameters θ1,1, θ2,2, θ3,3, θ4,4 relate to pest adults which survive and

remain in their original patch. Meanwhile, θ1,2, θ2,1, θ2,3, θ3,2, θ3,4, θ4,3 relate to pest

adults which survive and move to a neighboring patch. Below is the formulation of

the pest dynamics for the four patch model. Note this does not include the biological

control in the larva stage.
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Cost in Four Patches Since we are considering four independent patches, the cost

in each patch would be the same formula as the cost in our Basic model. So, if we

consider the total cost of four patches we combine the cost in each these four isolated

patches, Cost at time t is

β1P1,l(t)
2 +β2N1(t) +β1P2,l(t)

2 +β2N2(t) +β1P3,l(t)
2 +β2N3(t) +β1P4,l(t)

2 +β2N4(t).

7.1.1 Optimal Control Problem Formulation

The goal for our Optimal Control Problem is to minimize the objective functional

J(N1, N2, N3, N4) =
T−1∑
t=0

β1[P1,l(t)
2 + P2,l(t)

2 + P3,l(t)
2 + P4,l(t)

2]

+β2[N1(t) +N2(t) +N3(t) +N4(t)]

subject to
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P1,e(t+ 1) = γ1P1,e(t) + θ1P1,a(t) P1,e(0) = φ1,a

P1,l(t+ 1) = γ2P1,e(t) + ζ1e
−αN1(t)P1,l(t) P1,l(0) = φ1,l

P1,p(t+ 1) = ζ2e
−αN1(t)P1,l(t) + ν1P1,p(t) P1,p(0) = φ1,p

P1,a(t+ 1) = ν2P1,p(t) + θ1,1P1,a(t) + θ2,1P2,a(t) P1,a(0) = φ1,a

P2,e(t+ 1) = γ1P2,e(t) + θ1P2,a(t) P2,e(0) = φ2,e

P2,l(t+ 1) = γ2P2,e(t) + ζ1e
−αN2(t)P2,l(t) P2,l(0) = φ2,l

P2,p(t+ 1) = ζ2e
−αN2(t)P2,l(t) + ν1P2,p(t) P2,p(0) = φ2,p

P2,a(t+ 1) = ν2P2,p(t) + θ2,2P2,a(t) + θ1,2P1,a(t) + θ3,2P3,a(t) P2,a(0) = φ2,a

P3,e(t+ 1) = γ1P3,e(t) + θ1P3,a(t) P3,e(0) = φ3,e

P3,l(t+ 1) = γ2P3,e(t) + ζ1e
−αN3(t)P3,l(t) P1,l(0) = φ3,l

P3,p(t+ 1) = ζ2e
−αN3(t)P3,l(t) + ν1P3,p(t) P3,p(0) = φ3,p

P3,a(t+ 1) = ν2P3,p(t) + θ3,3P3,a(t) + θ2,3P2,a(t) + θ4,3P4,a(t) P3,a(0) = φ3,a

P4,e(t+ 1) = γ1P4,e(t) + θ1P4,a(t) P4,e(0) = φ4,e

P4,l(t+ 1) = γ2P4,e(t) + ζ1e
−αN4(t)P4,l(t) P4,l(0) = φ4,l

P4,p(t+ 1) = ζ2e
−αN4(t)P4,l(t) + ν1P4,p(t) P4,p(0) = φ4,p

P4,a(t+ 1) = ν2P4,p(t) + θ4,4P4,a(t) + θ3,4P3,a(t) P4,a(0) = φ4,a

(7.1)
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where N1, N2, N3, N4 ∈ N = {N : {1, ..., T} → {x ∈ R|0 ≤ x(t) ≤ Nmax, t =

1, 2, ..., T}}.

7.1.2 Optimal Control Problem

Now we will prove the existence and uniqueness of the optimal control, which we

denote N1, N2, N3 and N4. Additionally, we will prove necessary conditions for the

optimal control N1, N2, N3, and N4. The proofs roughly follow the proofs of Theorems

6.2.1, 6.2.2, 6.2.3.

7.1.2.1 Existence

Theorem 7.1.1. There exists N1,N2,N3,N4 ∈ N which minimizes J(N1, N2, N3, N4).

Proof. We have that each P1,e, P1,l, P1,p, P1,a, P2,e, P2,l, P2,p, P2,a, P3,e, P3,l, P3,p, P3,a,

P4,e, P4,l, P4,p, P4,a is continuous as a function of N1, N2, N3, N4 at every time step

by Equation 7.1. Define B+ = {(N(1), ...N(T ))|N ∈ N}. We note that there is a

natural isomorphism between N×N×N×N and B+×B+×B+×B+. Considering

J : N×N×N×N↔ B+ ×B+ ×B+ ×B+ → R, we see that J is continuous as a

function of N1, N2, N3 and N4. We have that B+ is a compact subset of RT in the

standard Euclidean topology. Therefore, inf
N1,N2,N3,N4∈N

J(N1, N2, N3, N4) exists. Hence,

we have sequences N1k , N2k , N3k , N4k ∈ N such that lim
k→∞

J(N1k , N2k , N3k , N4k) =

inf
N1,N2,N3,N4∈N

J(N1, N2, N3, N4), with corresponding P1,ek , P1,lk , P1,pk , P1,ak , P2,ek , P2,lk ,

P2,pk , P2,ak , P3,ek , P3,lk , P3,pk , P3,ak , P4,ek , P4,lk , P4,pk , P4,ak sequences. Thus we can find

subsequencesN1kj
, N2kj

, N3kj
, N4kj

, P1,ekj
, P1,lkj

, P1,pkj
, P1,akj

, P2,ekj
, P2,lkj

, P2,pkj
, P2,akj

,

P3,ekj
, P3,lkj

, P3,pkj
, P3,akj

, P4,ekj
, P4,lkj

, P4,pkj
, P4,akj

, such that lim
j→∞

J(N1kj
, N2kj

, N3kj
, N4kj

)

= infN1,N2,N3,N4∈N J(N1, N2, N3, N4) and converge to N1kj
→ N1, N2kj

→ N2, N3kj
→
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N3, N4kj
→ N4, P1,ekj

→ P1,e, P1,lkj
→ P1,l, P1,pkj

→ P1,p, P1,akj
→ P1,a, P2,ekj

→

P2,e, P2,lkj
→ P2,l, P2,pkj

→ P2,p, P2,akj
→ P2,a, P3,ekj

→ P3,e, P3,lkj
→ P3,l, P3,pkj

→

P3,p, P3,akj
→ P3,a, P4,ekj

→ P4,e, P4,lkj
→ P4,l, P4,pkj

→ P4,p, P4,akj
→ P4,a. Therefore,

there exists N1,N2,N3,N4 ∈ N which minimizes J(N1, N2, N3, N4).

7.1.2.2 Necessary Conditions

Adjoint System: Define the following terminal value system:

λ1,e(t) = λ1,e(t+ 1)γ1 + λ1,l(t+ 1)γ2

λ1,l(t) = 2β1P1,l(t) + λ1,l(t+ 1)ζ1e
−αN1(t) + λ1,p(t+ 1)ζ2e

−αN1(t)

λ1,p(t) = λ1,p(t+ 1)ν1 + λ1,a(t+ 1)ν2

λ1,a(t) = λ1,e(t+ 1)θ1 + λ1,a(t+ 1)θ1,1 + λ2,a(t+ 1)θ1,2

λ2,e(t) = λ2,e(t+ 1)γ1 + λ2,l(t+ 1)γ2

λ2,l(t) = 2β1P2,l(t) + λ2,l(t+ 1)ζ1e
−αN2(t) + λ2,p(t+ 1)ζ2e

−αN2(t)

λ2,p(t) = λ2,p(t+ 1)ν1 + λ2,a(t+ 1)ν2

λ2,a(t) = λ2,e(t+ 1)θ1 + λ2,a(t+ 1)θ2,2 + λ1,a(t+ 1)θ2,1 + λ3,a(t+ 1)θ2,3

λ3,e(t) = λ3,e(t+ 1)γ1 + λ3,l(t+ 1)γ2

λ3,l(t) = 2β1P3,l(t) + λ3,l(t+ 1)ζ1e
−αN3(t) + λ3,p(t+ 1)ζ2e

−αN3(t)

λ3,p(t) = λ3,p(t+ 1)ν1 + λ3,a(t+ 1)ν2

λ3,a(t) = λ3,e(t+ 1)θ1 + λ3,a(t+ 1)θ3,3 + λ2,a(t+ 1)θ3,2 + λ4,a(t+ 1)θ3,4

λ4,e(t) = λ4,e(t+ 1)γ1 + λ4,l(t+ 1)γ2

λ4,l(t) = 2β1P4,l(t) + λ4,l(t+ 1)ζ1e
−αN4(t) + λ4,p(t+ 1)ζ2e

−αN4(t)

λ4,p(t) = λ4,p(t+ 1)ν1 + λ4,a(t+ 1)ν2

λ4,a(t) = λ4,e(t+ 1)θ1 + λ4,a(t+ 1)θ4,4 + λ3,a(t+ 1)θ4,3
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λ1e(T ) = 0, λ1,l(T ) = 0, λ1,p(T ) = 0, λ1,a(T ) = 0, λ2,e(T ) = 0, λ2,l(T ) = 0, λ2,p(T ) =

0, λ2,a(T ) = 0, λ3,e(T ) = 0, λ3,l(T ) = 0, λ3,p(T ) = 0, λ3,a(T ) = 0, λ4,e(T ) =

0, λ4,l(T ) = 0, λ4,p(T ) = 0, λ4,a(T ) = 0.

Theorem 7.1.2. If there exists optimal controls N1, N2, N3 and N4, then there exists

adjoint system 7.1.2.2, and

Nj(t) =


0 if β2

α
> ξj(t)

1
α

ln[ α
β2
ξj(t)] if β2

α
≤ ξj(t)

.

for j = 1, 2, 3, 4 we have that ξj(t) = ζ1λj,l(t+ 1)Pj,l(t) + ζ2λj,p(t+ 1)Pj,l(t)

Proof. The proof is similar to that of Theorem 6.2.2.

Since we have that N1, N2, N3 and N4 minimize J(N1, N2, N3, N4); for all suffi-

ciently small ε > 0 and for all

η1, η2, η3, η4 ∈ {η = (η(1), ..., η(T ))|η(t) ≤ 1, t = 1, ...., T}

we have that

J(N1 + η1ε,N2 + η2ε,N3 + η3ε,N4 + η4ε) ≥ J(N1,N2,N3,N4).

Similar to Theorem 6.2.2, we will take the directional derivative with Nj +ηjε = N ε
j ∈

N. Then we have that:

0 ≤ lim
ε→0+

1

ε
[(N1 + η1ε,N2 + η2ε,N3 + η3ε,N4 + η4ε)− J(N1,N2,N3,N4)]

=
T−1∑
t=0

β12[P1,l(t)ψ1,l(t) + P2,l(t)ψ2,l(t) + P3,l(t)ψ3,l(t) + P4,l(t)ψ4,l(t)]
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+β2[η1(t) + η2(t) + η3(t) + η4(t)].

Additionally we define the sensitivities, ψj,e(t), ψj,l(t), ψj,p(t), ψj,a(t) for j = 1, 2, 3, 4

similar to as in Theorem 6.2.2.

Now, returning to

0 ≤ lim
ε→0+

1

ε
[(N1 + η1ε,N2 + η2ε,N3 + η3ε,N4 + η4ε)− J(N1,N2,N3,N4)]

=
T−1∑
t=0

β12[P1,l(t)ψ1,l(t) + P2,l(t)ψ2,l(t) + P3,l(t)ψ3,l(t) + P4,l(t)ψ4,l(t)]

+β2[η1(t) + η2(t) + η3(t) + η4(t)].

To remove the sensitivities ψ1,l(t), ψ2,l(t), ψ3,l(t), ψ4,l(t) we will manipulate the sensi-

tivities and adjoints equations as in Theorem 6.2.2. The process of switching limits of

summation and using properties of matrices and vectors results in:

0 ≤ lim
ε→0+

1

ε
[(N1 + η1ε,N2 + η2ε,N3 + η3ε,N4 + η4ε)− J(N1,N2,N3,N4)]

=
T−1∑
t=0

η1(t)
[
−αe−αN1(t)P1,l(t)[λ1,l(t+ 1)ζ1 + λ1,p(t+ 1)ζ2] + β2

]
+η2(t)

[
−αe−αN2(t)P2,l(t)[λ2,l(t+ 1)ζ1 + λ2,p(t+ 1)ζ2] + β2

]
+η3(t)

[
−αe−αN3(t)P3,l(t)[λ3,l(t+ 1)ζ1 + λ3,p(t+ 1)ζ2] + β2

]
+η4(t)

[
−αe−αN4(t)P4,l(t)[λ4,l(t+ 1)ζ1 + λ4,p(t+ 1)ζ2] + β2

]
= χ4.

Consider the previous equation with equality, 0 = χ4. Since this must hold for all η1,

η2, η3 and η4, we can find the solutions to N1, N2, N3, N4 similar to the process in

6.2.2
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7.1.2.3 Uniqueness

Theorem 7.1.3. If the optimal controls N1, N2, N3 and N4 exist, then they are

unique.

Proof. In order to show N1, N2, N3 and N4 are unique we will show that

J(N1, N2, N3, N4) =
T−1∑
t=0

β1[P1,l(t)
2 + P2,l(t)

2 + P3,l(t)
2 + P4,l(t)

2]

+β2[N1(t) +N2(t) +N3(t) +N4(t)]

is strictly convex. To show that J is strictly convex we use a method similar to Theorem

6.2.3 by defining z(ε) = J((1−ε)N1+εη1, (1−ε)N2+εη2, (1−ε)N3+εη3, (1−ε)N4+εη4)

for N1, N2, N3, N4, η1, η2, η3, η4 ∈ N, and 0 < ε < 1. Note that if z, a one dimensional

function, is convex for every choice of η then J will be convex. To establish convexity

of z we will show that z′′(ε) > 0. First take the derivative of z, as in Theorem 6.2.3:

z′(ε) =
T−1∑
t=0

β12[P ε
1,l(t)ψ

ε
1,l(t) + P ε

2,l(t)ψ
ε
2,l(t) + P ε

3,l(t)ψ
ε
3,l(t) + P ε

4,l(t)ψ
ε
4,l(t)]

+β2[(η1(t)−N1(t)) + (η2(t)−N2(t)) + (η3(t)−N3(t)) + (η4(t)−N4(t))].

We define derivatives of sensitivities, σj,e(t), σj,l(t), σj,p(t), σj,a(t), for j = 1, 2, 3, 4

as in Theorem 6.2.3 with ψεj,e(t+ 1), ψεj,l(t+ 1), ψεj,p(t+ 1), ψε4,a(t+ 1).

Thus,

z′′(ε) =
T−1∑
t=0

β12[σε1,l(t)P
ε
1,l(t) +ψε1,l(t)

2 +σε2,l(t)P
ε
2,l(t) +ψε2,l(t)

2 +σε3,l(t)P
ε
3,l(t) +ψε3,l(t)

2
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+σε4,l(t)P
ε
4,l(t) + ψε4,l(t)

2].

We need z′′(ε) =
T−1∑
t=0

β12[σε1,l(t)P
ε
1,l(t)+ψ

ε
1,l(t)

2+σε2,l(t)P
ε
2,l(t)+ψ

ε
2,l(t)

2+σε3,l(t)P
ε
3,l(t)+

ψε3,l(t)
2 + σε4,l(t)P

ε
4,l(t) + ψε4,l(t)

2] > 0, meaning we need to bound σεj,l(t) > 0. The

argument σεl (t) > 0 for all t is similar to that in Theorem 6.2.3.

Therefore, we have that z′′(ε) =
T−1∑
t=0

β12[σε1,l(t)P
ε
1,l(t) + ψε1,l(t)

2 + σε2,l(t)P
ε
2,l(t) +

ψε2,l(t)
2 + σε3,l(t)P

ε
3,l(t) + ψε3,l(t)

2 + σε4,l(t)P
ε
4,l(t) + ψε4,l(t)

2] > 0, and we have uniqueness

by convexity of z.

7.1.3 Parameters

While most of the parameters are the same as in Part 1, we do need to consider the

new θ parameters which characterize adult dispersal. To start define θi,i = p ·θ2, where

p is the percent of pest adults which do not travel.

Suppose there is equal probability that the pests will travel east, west, north, and

south as seem in Figure 7.1. So we have θi,j = 1−p
4
· θ2, where i 6= j. Then we have:

θ1,1 = θ2,2 = θ3,3 = θ4,4 = p · θ2

θ1,2 = θ2,1 = θ2,3 = θ3,2 = θ3,4 = θ4,3 =
1− p

4
· θ2.

Later we will vary the value p for a specific case study.
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Figure 7.2: Four Isolated Patches: We have any patch is connected to any other patch.
Specifically consider patch F1 which is connected to patch F2, F3, and F4 by the black
arrows. Note the black arrows from F1 demonstrate how the adult pest can disperse
from the patch, specifically the pest adult can spread to any of the other patches.
Similarly, F3 the white arrows from F3 demonstrate how the adult pest can spread
from the patch, specifically the pest adult can spread to any of the other patches.
Note that F2 and F4 also spread to all other patches, these patches arrows are not
show in the figure.

7.2 Four Isolated Patches

Now, we will consider using four isolated patches. Again adults can travel between

patches, and we will assume patches are arranged as the Figure 7.2 suggests.

The resulting matrix for out pest dynamics will be as follows:
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A4s =



γ1 0 0 θ1 0 0 0 0 0 0 0 0 0 0 0 0

γ2 ζ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ζ2 ν1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 ν2 θ1,1 0 0 0 θ2,1 0 0 0 θ3,1 0 0 0 θ4,1

0 0 0 0 γ1 0 0 θ1 0 0 0 0 0 0 0 0

0 0 0 0 γ2 ζ1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 ζ2 ν1 0 0 0 0 0 0 0 0 0

0 0 0 θ1,2 0 0 ν2 θ2,2 0 0 0 θ3,2 0 0 0 θ4,2

0 0 0 0 0 0 0 0 γ1 0 0 θ1 0 0 0 0

0 0 0 0 0 0 0 0 γ2 ζ1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 ζ2 ν1 0 0 0 0 0

0 0 0 θ1,3 0 0 0 θ2,3 0 0 ν2 θ3,3 0 0 0 θ4,3

0 0 0 0 0 0 0 0 0 0 0 0 γ1 0 0 θ1

0 0 0 0 0 0 0 0 0 0 0 0 γ2 ζ1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 ζ2 ν1 0

0 0 0 θ1,4 0 0 0 θ2,4 0 0 0 θ3,4 0 0 ν2 θ4,4



.

Note that the matrix, A4s, is very similar to A4c. Again we have the parameters

θ1,1, θ2,2, θ3,3, θ4,4 relate to pest adults which survive and remain in their original patch.

Meanwhile, θ1,2, θ2,1, θ2,3, θ3,2, θ3,4, θ4,3 relate to pest adults which survive and move

to a neighboring patch. However in A4s we also have θ3,1, θ1,3, θ4,1, θ1,4, θ4,2, θ2,4 for

pest adult movement between the other patches. Below is the formulation of the pest

dynamics for the four patch model, note this does not include the biological control in

the larva stage.
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Cost in Four Patches As in the Four Connected Patches we are considering four

independent patches, so Cost at time t is

β1P1,l(t)
2 +β2N1(t) +β1P2,l(t)

2 +β2N2(t) +β1P3,l(t)
2 +β2N3(t) +β1P4,l(t)

2 +β2N4(t).

7.2.1 Optimal Control Problem Formulation

The set-up for our Optimal Control Problem is to minimize the objective functional

J(N1, N2, N3, N4) =
T−1∑
t=0

β1[P1,l(t)
2 + P2,l(t)

2 + P3,l(t)
2 + P4,l(t)

2]

+β2[N1(t) +N2(t) +N3(t) +N4(t)]

subject to
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P1,e(t+ 1) = γ1P1,e(t) + θ1P1,a(t) P1,e(0) = φ1,e

P1,l(t+ 1) = γ2P1,e(t) + ζ1e
−αN1(t)P1,l(t) P1,l(0) = φ1,l

P1,p(t+ 1) = ζ2e
−αN1(t)P1,l(t) + ν1P1,p(t) P1,p(0) = φ1,p

P1,a(t+ 1) = ν2P1,p(t) + θ1,1P1,a(t) + θ2,1P2,a(t) + θ3,1P3,a(t) + θ4,1P4,a(t) P1,a(0) = φ1,a

P2,e(t+ 1) = γ1P2,e(t) + θ1P2,a(t) P2,e(0) = φ2,e

P2,l(t+ 1) = γ2P2,e(t) + ζ1e
−αN2(t)P2,l(t) P2,l(0) = φ2,l

P2,p(t+ 1) = ζ2e
−αN2(t)P2,l(t) + ν1P2,p(t) P2,p(0) = φ2,p

P2,a(t+ 1) = ν2P2,p(t) + θ2,2P2,a(t) + θ1,2P1,a(t) + θ3,2P3,a(t) + θ4,2P4,a(t) P2,a(0) = φ2,a

P3,e(t+ 1) = γ1P3,e(t) + θ1P3,a(t) P3,e(0) = φ3,e

P3,l(t+ 1) = γ2P3,e(t) + ζ1e
−αN3(t)P3,l(t) P1,l(0) = φ3,l

P3,p(t+ 1) = ζ2e
−αN3(t)P3,l(t) + ν1P3,p(t) P3,p(0) = φ3,p

P3,a(t+ 1) = ν2P3,p(t) + θ3,3P3,a(t) + θ2,3P2,a(t) + θ4,3P4,a(t) + θ1,3P1,a(t) P3,a(0) = φ3,a

P4,e(t+ 1) = γ1P4,e(t) + θ1P4,a(t) P4,e(0) = φ4,e

P4,l(t+ 1) = γ2P4,e(t) + ζ1e
−αN4(t)P4,l(t) P4,l(0) = φ4,l

P4,p(t+ 1) = ζ2e
−αN4(t)P4,l(t) + ν1P4,p(t) P4,p(0) = φ4,p

P4,a(t+ 1) = ν2P4,p(t) + θ4,4P4,a(t) + θ3,4P3,a(t) + θ1,4P1,a(t) + θ2,4P2,a(t) P4,a(0) = φ4,a

(7.2)
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whereN1(t), N2(t), N3(t), N4(t) ≥ 0 for all t andN1, N2, N3, N4 ∈ N = {N : {1, ..., T} →

{x ∈ R|0 ≤ x(t) ≤ Nmax, t = 1, 2, ..., T}}.

7.2.2 Optimal Control Problem

Now we will prove the existence and uniqueness of the optimal control N1, N2, N3

and N4. Additionally, we will prove necessary conditions for the optimal control N1,

N2, N3, and N4. The proofs roughly follow the proofs in Theorems 7.1.1, 7.1.2, and

7.1.3.

7.2.2.1 Existence

Theorem 7.2.1. There exists N1,N2,N3,N4 ∈ N which minimizes J(N1, N2, N3, N4).

Proof. This theorem is analogous to Theorem 7.1.1, since P1,e, P1,l, P1,p,P1,a, P2,e, P2,l,

P2,p, P2,a, P3,e, P3,l, P3,p, P3,a, P4,e, P4,l, P4,p, P4,a are all continuous with respect to N1,

N2, N3, N4 by Equations 7.2. Additionally, we have J is continuous as a function of

N1, N2, N3, N4 and B+ is a compact subset of RT , so inf
N1,N2,N3,N4∈N

J(N1, N2, N3, N4)

exists.

7.2.2.2 Necessary Conditions

Adjoint System: Consider the following terminal value system:

λ1,e(t) = λ1,e(t+ 1)γ1 + λ1,l(t+ 1)γ2

λ1,l(t) = 2β1P1,l(t) + λ1,l(t+ 1)ζ1e
−αN1(t) + λ1,p(t+ 1)ζ2e

−αN1(t)

λ1,p(t) = λ1,p(t+ 1)ν1 + λ1,a(t+ 1)ν2

λ1,a(t) = λ1,e(t+ 1)θ1 + λ1,a(t+ 1)θ1,1 + λ2,a(t+ 1)θ1,2 + λ3,a(t+ 1)θ1,3 + λ4,a(t+ 1)θ1,4
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λ2,e(t) = λ2,e(t+ 1)γ1 + λ2,l(t+ 1)γ2

λ2,l(t) = 2β1P2,l(t) + λ2,l(t+ 1)ζ1e
−αN2(t) + λ2,p(t+ 1)ζ2e

−αN2(t)

λ2,p(t) = λ2,p(t+ 1)ν1 + λ2,a(t+ 1)ν2

λ2,a(t) = λ2,e(t+ 1)θ1 + λ2,a(t+ 1)θ2,2 + λ1,a(t+ 1)θ2,1 + λ3,a(t+ 1)θ2,3 + λ4,a(t+ 1)θ2,4

λ3,e(t) = λ3,e(t+ 1)γ1 + λ3,l(t+ 1)γ2

λ3,l(t) = 2β1P3,l(t) + λ3,l(t+ 1)ζ1e
−αN3(t) + λ3,p(t+ 1)ζ2e

−αN3(t)

λ3,p(t) = λ3,p(t+ 1)ν1 + λ3,a(t+ 1)ν2

λ3,a(t) = λ3,e(t+ 1)θ1 + λ3,a(t+ 1)θ3,3 + λ2,a(t+ 1)θ3,2 + λ4,a(t+ 1)θ3,4 + λ1,a(t+ 1)θ3,1

λ4,e(t) = λ4,e(t+ 1)γ1 + λ4,l(t+ 1)γ2

λ4,l(t) = 2β1P4,l(t) + λ4,l(t+ 1)ζ1e
−αN4(t) + λ4,p(t+ 1)ζ2e

−αN4(t)

λ4,p(t) = λ4,p(t+ 1)ν1 + λ4,a(t+ 1)ν2

λ4,a(t) = λ4,e(t+ 1)θ1 + λ4,a(t+ 1)θ4,4 + λ3,a(t+ 1)θ4,3 + λ1,a(t+ 1)θ4,1 + λ2,a(t+ 1)θ4,2

λ1e(T ) = 0, λ1,l(T ) = 0, λ1,p(T ) = 0, λ1,a(T ) = 0, λ2,e(T ) = 0, λ2,l(T ) =

0, λ2,p(T ) = 0, λ2,a(T ) = 0, λ3,e(T ) = 0, λ3,l(T ) = 0, λ3,p(T ) = 0, λ3,a(T ) = 0,

λ4,e(T ) = 0, λ4,l(T ) = 0, λ4,p(T ) = 0, λ4,a(T ) = 0.

Theorem 7.2.2. If there exists optimal controls N1, N2, N3 and N4, then there exists

adjoint system 7.2.2.2, and

Nj(t) =


0 if β2

α
> ξj(t)

1
α

ln[ α
β2
ξj(t)] if β2

α
≤ ξj(t)

.

for j = 1, 2, 3, 4 we have that ξj(t) = ζ1λj,l(t+ 1)Pj,l(t) + ζ2λj,p(t+ 1)Pj,l(t)

Proof. The proof is similar to that of Theorem 7.1.2. The difference comes in the

additional terms in the adjoint and sensitivity equations for the adults. The change

does not alter the proof process, since the directional derivative will be the same, and
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the difference arises in the manipulation of sensitivities to adjoints. Hence we find the

same equation for the directional derivative and thus the formulas of N1, N2, N3, N4

are as in Theorem 7.1.2.

7.2.2.3 Uniqueness

Theorem 7.2.3. If the optimal controls N1, N2, N3 and N4 exist, then they are

unique.

Proof. The proof is similar to that of Theorem 7.1.3. Again the difference comes in

the additional terms in the adjoint, sensitivity, and σ equations for the adults. The

change does not alter the proof process, the terms are incorporated with the same

method as in the proof of Theorem 6.2.3 and 7.1.3. Then we have that

z′′(ε) =
T−1∑
t=0

β12[σε1,l(t)P
ε
1,l(t) + ψε1,l(t)

2 + σε2,l(t)P
ε
2,l(t) + ψε2,l(t)

2 + σε3,l(t)P
ε
3,l(t) +

ψε3,l(t)
2 + σε4,l(t)P

ε
4,l(t) + ψε4,l(t)

2]

and σεj,l(t) > 0.

Therefore, we have that z′′(ε) =
T−1∑
t=0

β12[σε1,l(t)P
ε
1,l(t) + ψε1,l(t)

2 + σε2,l(t)P
ε
2,l(t) +

ψε2,l(t)
2 + σε3,l(t)P

ε
3,l(t) + ψε3,l(t)

2 + σε4,l(t)P
ε
4,l(t) + ψε4,l(t)

2] > 0, and we have uniqueness

by convexity of z.

7.2.3 Parameters

Most of the parameters are the same as in Part 1, and we do need to consider the

new θ parameters which characterize adult spread. As in the four connected patches

case define θi,i = p · θ2, where p is the percent of pest adults which do not travel.
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Unlike the four connected patches case there is equal probability that the weevils will

travel between the three other patches as seen in Figure 7.2. So we have θi,j = 1−p
3
· θ2

when i 6= j. Then we have:

θ1,1 = θ2,2 = θ3,3 = θ4,4 = p · θ2

θ1,2 = θ1,3 = θ1,4 = θ2,1 = θ2,3 = θ2,4 = θ3,1 = θ3,2 = θ3,4 = θ4,1 = θ4,2 = θ4,3 =
1− p

3
·θ2.

Later we will vary the value p for a specific case study.

Since these patches are not adjacent in space it is possible that some of the pest

adults will die along the trip, so later we will incorporate a mortality factor.

7.3 Case Study: DRW

Once again we will use the Diaprepes abbreviatus as a case study, making most of the

parameters the same as in Part 1. The only new parameter is p, the percent of DRW

adults which do not travel. We have that DRW adult can fly an average dispersal

distance is less than 0.03 hectares[TJWJK16]. For an estimation of p we must also

include the possibility that wind and human interaction allow the DRW adults to

spread further [JG+09a].

7.3.1 Four Connected Patches Simulations

We will use the Forward-Backward Sweep to estimate for the four patches how many

nematodes to use and when and where to use them. Since we have spreading to
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neighboring patches, if the infestation starts everywhere, when the DRW spread patch

1 and 4 look alike and patch 2 and 3 look alike.

We will explore the behavior of this model more by varying p and where the

infestation starts.
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Figure 7.3: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply for various initial populations: 200000, 1100000, 1500000, 1700000, 2000000.
Here we have all DRW stay in their original patch.

In Figure 7.3 we show the FBS for various initial populations without any spread.

Each individual patch looks the same as that in the Basic model, Figure 4.3. When

we start to run simulations varying p and where the infestation starts we run into

issues with the number of runs the simulation needs to perform due to the choice of δ.

Due to computational restraints we reexamine Figures 4.1 and 4.2. We will now shift

our choice of δ to be from 0.2 up to 1, allowing for computational ease and answer

accuracy.
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7.3.1.1 Varying Initial Population and Percent of DRW Adults which

Remain, p

We will vary the initial population and consider various percentages for how many

adult DRW will remain in their patches.
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Figure 7.4: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when p = .5, so 50% leave, for various initial populations: 200000, 1100000,
1500000, 1700000, 2000000. Notice the that all but 200000 makes sense for the
spreading of 50% since patches 1 and 4 would be the same and patches 3 and 4 would
be the same. Note δ = 0.3.
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Figure 7.5: sing the Forward-Backward Sweep we calculate the number of nematodes
to apply when p = .75, so 75% leave, for various initial populations: 200000, 1100000,
1700000. Notice the that all but 200000 makes sense for the spreading of 75% since
patches 1 and 4 would be the same and patches 3 and 4 would be the same. Note
δ = 0.75.

7.3.1.2 Starts in Patch 1

We start the infestation in patch one with 50% of adults remaining in their patches,

and we vary the initial population for the infestation.
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Figure 7.6: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when δ = .99 and initial populations 200000 for p = .5.
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Figure 7.7: Number of DRW larvae to apply when δ = .99 and initial populations
200000 for p = .5, associated with figure 7.6
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Figure 7.8: Logarithm of number of DRW larvae to apply when δ = .99 and initial
populations 200000 for p = .5, associated with figure 7.6
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Figure 7.9: Using the Forward-Backward Sweep we calculate the Total Cost when
δ = 1 and initial populations 200000 for p = .0.1, 0.25, 0.5, 0.75, 0.9.
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Figure 7.10: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when δ = .9999 and initial populations 1100000 for p = .5.
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Figure 7.11: Logarithm of number of DRW larvae to apply when δ = .9999 and initial
populations 1100000 for p = .5, associated with figure 7.10
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Figure 7.12: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when δ = .9999999999999 and initial populations 1700000 for p = .5.
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Figure 7.13: Logarithm of number of DRW larvae to apply when δ = .9999999999999
and initial populations 1700000 for p = .5, associated with figure 7.12
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7.3.1.3 Starts in Patch 2

We start the infestation in patch two with 50% of adults remaining in their patches,

and we have initial population of 200000.
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Figure 7.14: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when δ = .99 and initial populations 200000 for p = .5.
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Figure 7.15: Logarithm of number of DRW larvae to apply when δ = .99 and initial
populations 200000 for p = .5, associated with figure 7.14

7.3.1.4 Starts in Patch 1 and 3

We start the infestation in patches one and three with 50% of adults remaining in

their patches, and we have initial population of 200000.
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Figure 7.16: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when δ = .85 and initial populations 200000 for p = .5.
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Figure 7.17: Logarithm of number of DRW larvae to apply when δ = .85 and initial
populations 200000 for p = .5, associated with figure 7.16
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7.3.1.5 Starts in Patch 1 and 4

We start the infestation in patches one and four with 50% of adults remaining in their

patches, and we have initial population of 200000.
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Figure 7.18: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when δ = .99 and initial populations 200000 for p = .5.
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Figure 7.19: Logarithm of number of DRW larvae to apply when δ = .99 and initial
populations 200000 for p = .5, associated with figure 7.18

7.3.1.6 Starts in Patch 2 and 3

We start the infestation in patches two and three with 50% of adults remaining in

their patches, and we have initial population of 200000.
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Figure 7.20: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when δ = .9 and initial populations 200000 for p = .5.
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Figure 7.21: Logarithm of number of DRW larvae to apply when δ = .9 and initial
populations 200000 for p = .5, associated with figure 7.20
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7.3.1.7 Starts in Patch 1, 2, and 3

We start the infestation in patches one, two, and three with 50% of adults remaining

in their patches, and we have initial population of 200000.
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Figure 7.22: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when δ = .8 and initial populations 200000 for p = .5.
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Figure 7.23: Logarithm of number of DRW larvae to apply when δ = .8 and initial
populations 200000 for p = .5, associated with figure 7.22

7.3.1.8 Starts in Patch 1, 2, and 4

We start the infestation in patches one, two, and four with 50% of adults remaining

in their patches, and we have initial population of 200000.
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Figure 7.24: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when δ = .9 and initial populations 200000 for p = .5.

Weeks
0 10 20 30 40 50 60

D
R

W
 L

a
rv

a
e
 p

e
r 

h
e
c
ta

re

9

10

11

12

13

14

15

Logarithm DRW Larvae, Percent Stay50

Patch 1
Patch 2
Patch 3
Patch 4

Figure 7.25: Logarithm of number of DRW larvae to apply when δ = .9 and initial
populations 200000 for p = .5, associated with figure 7.24
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7.3.2 Discussion and Results

To start with we vary the values of DRW adults that remain in the original patch with

infestation starting in all patches. In Figures 7.4 and 7.5 we vary initial populations

for 50% remain and 75% remain respectively. In both cases the first and fourth patch

have the same nematode application and the second and third patch have the same

nematode application. This makes sense since the DRW dynamics are the same in

the first and fourth patches, and similarly the same for second and third. So if we

start the infestation equally in every patch the first and fourth will be the same and

require less nematodes than the second and fourth, since the first patch only receives

DRW adults from patch 2 but still loses DRW adults in all four directions. We can

also note that the amount of nematodes required is less with a smaller percent that

remain, p, since if more DRW adults remain we don’t lose as many to the surrounding

area through at least north and south travel.

Next we varied where the infestation would start in the four patches. If we start

in patch one, it is the same as starting in patch 4 by the DRW dynamics, similarly for

starting in patch 2 or 3. By using this knowledge we were able to run simulations for

all possibilities without redundancy.

To start with we look at the infestation starting in patch one with 50% of the

adults remaining so 50% leave their original patches. If we have initial population

200000, the Figure 7.6 demonstrates how many nematodes to apply in each patch. We

note how the DRW spread between the patches in Figure 7.7. Meanwhile, in Figure

7.8 we took the logarithm of Figure 7.7, and can see that changes in the DRW in

the patches. Specifically, how the DRW start in patch one and spread to the other

three patches in order. Then since patch 2 and 3 are similar, both in receiving more

adults and losing less to the enviroment, the DRW grow quickly and the two patches
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seem to over take patch 1 at the end. Meanwhile, patch 4 mimics patch one will a

slower rise since it is furthest from the initial infestation and only receives from patch

3. In Figure 7.9 we consider varying the values of adults that remain during a patch 1

infestation and note that the larger the percent of adults that remain the larger the

cost since less adults are lost to the surrounding system. For Figures 7.10 and 7.12

we plot how many nematodes to apply for initial populations 1100000 and 1700000

for 50% remain. We can note how there is a similar pattern for the application of

nematodes, and in Figures 7.11 and 7.13 we have the logarithm of how many DRW

larvae correspond with the nematode application. As in the Basic model with higher

initial populations we apply more nematodes, and at 1700000 there is a larger initial

population and we apply enough nematodes to reduce the DRW larvae.

Next, we start the infestation in patch two, again in 50% of adults remaining and

initial population 200000. Figure 7.14 plots nematode application and we can note

the differences to the patch one infestation case in Figure 7.6, for instance in patch 1

where the number of nematodes required is a different shape and less in the second

patch infestation. Meanwhile in Figure 7.15 is the logarithm of how many DRW larvae

are associated with the nematodes applied. Note how again patch four is below the

other and seems similar to patch one, but patch one, two, and three are all increasing

rapidly. The reverse would be true for patch one and four if the infestation started in

patch 3. Now that we have explored the possibilities of starting the infestation in one

patch we will consider the possibilities for the infestation starting in two patches.

We considered the possible combinations for the infestation starting in two patches.

In each case we plot nematode application for the four patches and the logarithm of

how many DRW larvae are associated with the nematodes applied. First in patches

one and three, with Figures 7.16 and 7.17. Then in patches one and four, with Figures

7.18 and 7.19. Lastly, in patches two and three, with Figures 7.20 and 7.21. The case
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of patch one and three is different than the other two, as expected from the DRW

dynamics. As we see in Figure 7.17, the three patches seem to move almost in unison,

but are all separate in the amount of DRW larvae. Meanwhile in the cases of patches

one and four and patches two and three, the DRW larvae results are very close, with

slight deviation in case on patches two and three.

Lastly we explore the possible combinations for the infestation starting in three

patches. In each case we plot nematode application for the four patches and the

logarithm of how many DRW larvae are associated with the nematodes applied. First

in patches one, two, and three, with Figures 7.22 and 7.23. Then in patches one, two,

and four, with Figures 7.24 and 7.25. The difference in the DRW graphs is interesting,

with a steeper increase when the infestation doesn’t start with two and three utilized.

From these simulations we can see how drastically the origins of the infestation

can affect the amount of nematodes required. We also have application methods for

the various infestation starting points. Overall, the fact that we lose adult DRW to

the surrounding environment affects the simulations, especially when more adults

travel. Therefore, how our patches are situated in space has an affect on our nematode

application and total cost. We will explore this more by looking at the Isolated model,

which has a different organization of the patches.

7.3.3 Four Isolated Patches Simulations

Note when none of the DRW spread we have the same Figure 7.3.

7.3.4 Vary Percent of DRW Adults which Remain, p

We explore the behavior of the model by varying p. Note, if all patches are infested

then no matter the value of p we will have the same cost; since all that leave also
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return, see Figure 7.26. Specifically, if p = 40%, then 60% of adults leave a patch one

but 20% of adults from the other three patches travel to patch one, resulting in 60%

traveling to patch one. Therefore, we maintain the same amount of DRW adults in

every patch. Hence, we need to look at varying where the infestation start and then

vary p.
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Figure 7.26: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when p = .5, so 50% leave, for various initial populations:200000, 1100000,
1500000, 1700000, 2000000. Notice how all the patches are still the same since we
have equal spread between patches. Note δ = 0.1

7.3.4.1 Starts in Patch 1

We start the infestation in patch one with 50% of adults remaining in their patches,

and we have initial population of 200000.
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Figure 7.27: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when δ = .9999 and initial populations 200000 for p = .5.
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Figure 7.28: Number of DRW larvae to apply when δ = .9999 and initial populations
200000 for p = .5, associated with figure 7.27
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Figure 7.29: Logarithm of number of DRW larvae to apply when δ = .9999 and initial
populations 200000 for p = .5, associated with figure 7.27
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Figure 7.30: Using the Forward-Backward Sweep we calculate the Total Cost when
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As more stay less other patches to treat so lower cost.

7.3.4.2 Starts in Patch 1 and 2

We start the infestation in patches one and two with 50% of adults remaining in their

patches, and we have initial population of 200000.
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Figure 7.31: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when δ = .999 and initial populations 200000 for p = .5.



205

Weeks
0 10 20 30 40 50 60

D
R

W
 L

a
rv

a
e
 p

e
r 

h
e
c
ta

re

9

10

11

12

13

14

15

16

Logarithm DRW Larvae, Percent Stay 50%

Patch 1
Patch 2
Patch 3
Patch 4

Figure 7.32: Logarithm of number of DRW larvae to apply when δ = .999 and initial
populations 200000 for p = .5, associated with figure 7.31

7.3.4.3 Starts in Patch 1, 2, and 3

We start the infestation in patches one, two, and three with 50% of adults remaining

in their patches, and we have initial population of 200000.
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Figure 7.33: Using the Forward-Backward Sweep we calculate the number of nematodes
to apply when δ = .999 and initial populations 200000 for p = .5.
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Figure 7.34: Logarithm of number of DRW larvae to apply when δ = .999 and initial
populations 200000 for p = .5, associated with figure 7.33
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7.3.5 Discussion and Summary

As we stated earlier with Figure 7.26, if the infestation starts in all patches, then no

matter the value of the DRW adults that remain, p, we will have the same results.

This is because all adults only travel equally between the three patches, so no matter

the percent that leave that same percent will return from the other three patches.

Next, we consider if the infestation starts in a single patch, and due to the DRW

dynamics we can consider starting in any patch, so we chose patch one. We will use

initial population 200000. Unlike the Connected model, there is equal spread and

the other three patches look identical in Figures 7.27, 7.28, and 7.29. For instance in

Figure 7.28, the number of DRW larvae looks almost identical, which is also visible in

the logarithm of DRW graph, with all four the same after about time step 20 weeks. In

Figure 7.30 we plot various percentages for how many adult DRW remain. At higher

percentages the DRW do not distribute between the patches, so there is a higher cost

to treat a larger infestation in one patch rather than a smaller cost to treat smaller

infestations in four patches.

Now, we consider the infestation starting in two patches, we picked patches one

and two. We plot nematode application for the four patches, 7.31, and the logarithm

of how many DRW larvae are associated with the nematodes applied, 7.32. As with

the single patch the DRW spread evenly and the result happens in a similar amount

of time.

Next, we consider the infestation starting in three patches, we picked patches one,

two, and three. We plot nematode application for the four patches, 7.33, and the

logarithm of how many DRW larvae are associated with the nematodes applied, 7.34.

As with the two patch the DRW spread evenly and the result happens in a similar

amount of time.
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We note the general similarities between the infestation starting one, two, and

three patch, which is a result of the four patches having the same DRW dynamics and

spread. This means all patches are likely equidistant and so far we have assumed all

adults that leave a patch reach another patch. The next step is to consider a mortality

rate.

7.3.5.1 Mortality Rate

Our next step with the Four Patch Isolated Model is to include a mortality rate, taking

into consideration the possibility some adult DRW will not reach another patch. If we

apply the mortality rate, m, to the adults that leave patches we would have:

θi,j =
1− p

3
· θ2 ·m

While this would reduce the amount of DRW in the system, results with this

model would be similar to those above. Suppose the infestation starts in all patches.

If we have 60% of DRW adults travel, then each patch loses 60% of DRW adults and

received 60% ·m adults from the other patches combined. Hence, we will have less

DRW and require less nematodes, but the distribution of the four patches will be the

same. To allow for varying patch distances and possible mortality rates during travel,

we could need to introduce different mortality rates for the patches.
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Part III

Future Work
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Chapter 8

Discrete Time Step 4 weeks

Parts 1 and 2 explored discrete models that implemented a one week time step. In

some cases it is not practical for farmers to apply control every week. Therefore we

will consider a discrete model which has a 4 week time step.

8.1 Basic Model

Recall that in the Basic model we had a matrix A which characterized the pest

dynamics for a one week time step. The resulting matrix for our pest dynamics with

a four week time step will be as follows:

A4 =



γ1 ζ4 ν3 θ1

γ2 ζ1 ν4 θ3

γ3 ζ2 ν1 θ4

γ4 ζ3 ν2 θ2


.

Below is the formulation of the pest dynamics for the basic model with a four week

time step, note this does not include the biological control in the larva stage.
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Pe(k + 1)

Pl(k + 1)

Pp(k + 1)

Pa(k + 1)


=



γ1 ζ4 ν3 θ1

γ2 ζ1 ν4 θ3

γ3 ζ2 ν1 θ4

γ4 ζ3 ν2 θ2





Pe(k)

Pl(k)

Pp(k)

Pa(k)


Cost of Basic Model We will need to update the cost of pests, so

Cost = β3Pl(t)
2 + β2N1(t).

8.1.1 Optimal Control Problem

The set-up for our Optimal Control Problem is to minimize the objective functional

J(N) =
T−1∑
t=0

β3Pl(t)
2 + β2N1(t)

subject to

Pe(t+ 1) = γ1Pe(t) + ζ4e
−αN(t)Pl(t) + ν3Pp(t) + θ1Pa(t) Pe(0) = Φe

Pl(t+ 1) = γ2Pe(t) + ζ1e
−αN(t)Pl(t) + ν4Pp(t) + θ3Pa(t) Pl(0) = Φl

Pp(t+ 1) = γ3Pe(t) + ζ2e
−αN(t)Pl(t) + ν1Pp(t) + θ4Pa(t) Pp(0) = Φp

Pa(t+ 1) = γ4Pe(t) + ζ3e
−αN(t)Pl(t) + ν2Pp(t) + θ2Pa(t) Pa(0) = Φa

(8.1)

where N ∈ N = {N : {1, ..., T} → {x ∈ R|0 ≤ x(t) ≤ Nmax, t = 1, 2, ..., T}}.
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Again we will prove the existence of the optimal control N . In the future, we will

prove necessary conditions and uniqueness for the optimal control N .

8.1.2 Existence

Theorem 8.1.1. There exists N ∈ N which minimizes J(N).

Proof. This theorem is analogous to Theorem 2.3.1, since Pe, Pl, Pp, Pa are all contin-

uous with respect to N by Equation 8.1. Additionally, we have J is continuous as a

function of N and B+ is a compact subset of RT , so inf
N∈N

J(N) exists.

8.2 Four Connected Patch Model

Recall in the Basic model we had a matrix A4c which characterized the pest dynamics

for a one week time step. The resulting matrix for our pest dynamics with a four week

time step will be as follows:
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A4
4c =



γ1 ζ4 ν3 θ1 0 0 0 0 0 0 0 0 0 0 0 0

γ2 ζ1 ν4 θ3 0 0 0 0 0 0 0 0 0 0 0 0

γ3 ζ2 ν1 θ4 0 0 0 0 0 0 0 0 0 0 0 0

γ4 ζ3 ν2 θ1,1 0 0 0 θ2,1 0 0 0 0 0 0 0 0

0 0 0 0 γ1 ζ4 ν3 θ1 0 0 0 0 0 0 0 0

0 0 0 0 γ2 ζ1 ν4 θ3 0 0 0 0 0 0 0 0

0 0 0 0 γ3 ζ2 ν1 θ4 0 0 0 0 0 0 0 0

0 0 0 θ1,2 γ4 ζ3 ν2 θ2,2 0 0 0 θ3,2 0 0 0 0

0 0 0 0 0 0 0 0 γ1 ζ4 ν3 θ1 0 0 0 0

0 0 0 0 0 0 0 0 γ2 ζ1 ν4 θ3 0 0 0 0

0 0 0 0 0 0 0 0 γ3 ζ2 ν1 θ4 0 0 0 0

0 0 0 0 0 0 0 θ2,3 γ4 ζ3 ν2 θ3,3 0 0 0 θ4,3

0 0 0 0 0 0 0 0 0 0 0 0 γ1 ζ4 ν3 θ1

0 0 0 0 0 0 0 0 0 0 0 0 γ2 ζ1 ν4 θ3

0 0 0 0 0 0 0 0 0 0 0 0 γ3 ζ2 ν1 θ4

0 0 0 0 0 0 0 0 0 0 0 θ3,4 γ4 ζ3 ν2 θ4,4


Below is the formulation of the pest dynamics for the four patch model with four

week time step, note this does not include the biological control in the larva stage.
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Note, as in Part 2, we have θ1,1 = θ2,2 = θ3,3 = θ4,4 = p ∗ θ2 and θ1,2 = θ2,1 = θ2,3 =

θ3,2 = θ3,4 = θ4,3 = 1−p
4
∗ θ2, where p is the percent of adult pests which remain in the

original patch.

In the future we will vary the value p for a specific case study.

Cost of Four Patches Same as in the Four Connected Patches case we are consid-

ering four independent patches, and using the basic model with a four week time step

we have

Cost = β3P1,l(t)
2+β2N1(t)+β3P2,l(t)

2+β2N2(t)+β3P3,l(t)
2+β2N3(t)+β3P4,l(t)

2+β2N4(t).

8.2.1 Optimal Control Problem Formulation

The set-up for our Optimal Control Problem is to minimize the objective functional

J(N1, N2, N3, N4) =
T−1∑
t=0

β3[P1,l(t)
2 + P2,l(t)

2 + P3,l(t)
2 + P4,l(t)

2]

+β2[N1(t) +N2(t) +N3(t) +N4(t)]

subject to
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where N1, N2, N3, N4 ∈ N = {N : {1, ..., T} → {x ∈ R|0 ≤ x(t) ≤ Nmax, t =

1, 2, ..., T}}.

8.2.2 Proofs

Again we will prove the existence of the optimal control N1,N2,N3,N4. In the future,

we will prove necessary conditions and uniqueness for the optimal control.

8.2.2.1 Existence

Theorem 8.2.1. There exists N ∈ N which minimizes J(N).

Proof. This theorem is analogous to Theorem 7.1.1, since Pe, Pl, Pp, Pa are all contin-

uous with respect to N1, N2, N3, N4 by the equations in Section 8.2.1. Additionally,

we have J is continuous as a function of N1, N2, N3, N4 and B+ is a compact subset

of RT , so inf
N1,N2,N3,N4∈N

J(N1, N2, N3, N4) exists.

8.3 Case Study: DRW

We will establish parameter values using the basic model for a four week time step and

then expand these to the four connected patch model. Note most of the parameters

will be the same in both models, the notable difference will be in the four connected

patch model having the additional p parameter.

8.3.1 Values for DRW Dynamics

Using the original matrix A from above, we transition to time steps of 4 weeks rather

than a week.
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A4 =



γ1 ζ4 ν3 θ1

γ2 ζ1 ν4 θ3

γ3 ζ2 ν1 θ4

γ4 ζ3 ν2 θ2


=



0.1795 0.9513 47.5175 105.9500

0.5755 0.8247 25.4132 140.0478

0.0286 0.0471 0.5375 2.4986

0.0063 0.0188 0.5454 1.0552


8.3.2 Initial Conditions

Similar to Part 1, we assume for any field the DRW are at SSD. Meaning we have the

same initial conditions as in Part 1.

Pe(0)

Pl(0)

Pp(0)

Pa(0)


=



Φe

Φl

Φp

Φa


=



0.485943142

0.492150833

0.015153450

0.006752576


8.3.3 Cost Function

Cost of Nematodes The cost of nematodes does not depend on the length of

time step so we still have that, Cost of Nematodes N - $62/22/(1/108) per hectare

per nematode = β2.

Cost of DRW Recall that β1 was dependent on one week as a time step, so we

know have Cost of DRW Pl - β3 = β1 ∗ 4 = 3.1806× 10−11 per hectare per 4 weeks.

So we have the cost for any time is cost of diaprepes weevil damage, β3Pl(t)
2, plus

cost of using nematodes, β2N(t).

Cost = β3Pl(t)
2 + β2N(t)

where β3 = 3.1806× 10−11 and β2 = 2.8182× 10−8.
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Chapter 9

Future Work

9.1 Different Biological Approaches

There are various ways we can explore how changing more biological components

changes the model and the dynamics. For instance, we could consider applying the

control to a different stage in the matrix. Alternatively, we could change the model to

consider a predator prey component.

Additionally with our current or these new models we can consider an integrodiffer-

ence model for continuous time, using a dispersal kennel and model longer spreading

for the population.

9.2 Robustness

I intend to study the robustness of my Optimal Control management solutions.

Optimal Control is not designed to be robust to uncertainties, parameter drift, or

unmodeled dynamics, since it doesn’t respond to new information. Specifically, I will

be testing how well the optimal control management solutions fare when uncertainties
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and parameter drift are incorporated. It is not only important to find a solution that

minimizes the cost to the farmers but also accounts for the possibility that changes

might occur and a slight perturbation should not result in great loss to the farmer.

9.3 Stochasticity

Currently we are using a deterministic matrix model for the pest dynamics and in

the future I would like formulate a stochastic model. This will allow for the natural

changes in the environment to be reflected in the model.

9.4 Collaboration

My work on using Optimal Control theory to aid population management for DRW

is part of a collaboration that started in May 2014 with Richard Rebarber, Brigitte

Tenhumberg, Yu Jin (University of Nebraska-Lincoln),Chris Guiver, Stuart Townley

(University of Exeter - Cornwall), and Jim Powell (Utah State University), and has

since grown to include and Stephanie Lloyd (Exeter). We consider different control

theory approaches resulting in management methods which we will compare. Since the

initial meeting I have been working on an Optimal Control theory approach, while other

members have been working on feedback control methods such as adaptive control.

A paper by Chris Guiver is published in the SIAM Journal on Applied Mathematics

(SIAP), “Simple adaptive control for positive linear systems with applications to pest

management.” [GEJ+16].

Our plan is to compare the various control theory methods by cost, reduction of

DRW, and robustness. Feedback controls are known to be more robust, but require

monitoring of the system. Meanwhile Optimal Control is known to minimize the
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cost, but requires initial data. Hence, we will be looking closely at the robustness

of Optimal Control and the cost efficiency of feedback control. Once we have done

the initial comparison, we can extend the research to other systems deducing which

method of control theory outputs the best result for different purposes.
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