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Chapter 1

Introduction

Knot theory is the study of knotted curves in space. Informally, one should imagine a

rope which is tangled up and then has the ends connected to form one continuous loop.

A major question in the field is, given a knot, can we untangle it? This is, in general,

a very hard question to answer for a specific knot. So, to make some progress, we use

a type of tool to help us, called knot invariants. An invariant is a function that gives a

value that does not change even if you change how you are looking at the knot. Often

these invariants have properties that we can exploit to answer important questions.

One such question has to do with connecting two knots to make a single knot. If

we take two knots which are not tangled together, break each apart and connect them

together to form a single knot, can we get the knots to untie to a simple circle instead

of being knotted? In 1954, Horst Schubert defined an invariant called the bridge

number. This is defined as the smallest number of local maxima in any way you look

at a knot. He proved a very important property of this invariant: that it must go up

when connecting two non-trivial knots. Using the fact that only the unknot, or the

knot without any “knotting” in it, has a bridge number of one, this implies that he

answered the question we posed at the beginning of this paragraph in the negative.
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The bridge spectrum of a knot is a generalization of Schubert’s bridge number and

we explore some of its properties here. In this dissertation, we compute the bridge

spectra of a variety of classes of knots. Until now, the classes of knots for which the

bridge spectrum was known was relatively short: iterated torus knots (which include

torus knots), 2-bridge knots, high distance knots, and partial results for twisted torus

knots. In this dissertation, we add to this list all cables of 2-bridge knots and a class

of generalized Montesinos knots, including all pretzel knots, satisfying a condition on

their tangled regions.

The bridge spectrum of a knot K is a strictly decreasing list of nonnegative integers

first defined by Doll [4] and Morimoto and Sakuma [14]. This list is obtained from

(g, b) -splittings of a knot in S3. A (g, b)-splitting of a knot K is a Heegaard splitting

of S3 = V1 ∪Σ V2 such that the genus of Vi is g, Σ intersects K transverselly, and

Vi ∩K is a collection of b trivial arcs for i = 1, 2. The genus g bridge number bg(K) is

the minimum number b for which a (g, b)-splitting exists. The bridge spectrum for K,

which we denote b(K), is the list

(b0(K), b1(K), b2(K), . . .).

Note that b0(K) is the classical bridge number, b(K), first defined by Schubert [19].

The fact that bridge spectrum is strictly decreasing comes from the process called

meridional stabilization where, given a (g, b)-splitting, one can create a (g + 1, b− 1)-

splitting. Thus, every bridge spectrum is bounded above componentwise by the

following sequence, which is called a stair-step spectrum,

(b0 (K) , b0 (K)− 1, b0 (K)− 2, . . . , 2, 1, 0) .

An invariant of a bridge surface of a knot is the distance, where we are considering
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distance in terms of the curve complex of the bridge surface (see page 10 and Definition

2.8.1 for relevant terms). Tomova showed in [21], with results of Bachman and Schleimer

from [1], the following theorem, as stated by Zupan in [24]:

Theorem 1.0.1. [21] Suppose K is a knot in S3 with a (0, b)-bridge sphere Σ of

sufficiently high distance (with respect to b). Then any (g′, b′)-bridge surface Σ′

satisfying b′ = bg′(K) is the result of meridional stabilizations performed on Σ. Thus

b(K) = (b0 (K) , b0 (K)− 1, b0 (K)− 2, . . . , 2, 1, 0) .

A natural question to ask is the following:

Question 1.0.2. Given a knot, K, if the bridge spectrum of K is stair-step, does K

necessarily have a (0, b)-bridge sphere that is of high distance?

We answer this question in the negative in Section 4.2 by showing the following

two results:

Corollary 4.2.2. Given a pretzel knot Kn = Kn(p1, . . . , pn) with gcd(p1, . . . , pn) 6= 1,

then the primitive bridge spectrum is stair-step, i.e. b̂(Kn) = (n, n− 1, . . . , 2, 1, 0) and

b(Kn) = (n, n− 1, . . . , 3, 2, 0).

Proposition 4.2.4. If Kn(p1, . . . , pn) is a pretzel knot with n ≥ 4, and P a genus zero

bridge surface for Kn, then d(P,Kn) = 1.

By these two results, we see that stair-step bridge spectrum does not imply high

distance.

Theorem 1.0.1 tells us that a generic knot has stair-step bridge spectrum. There is

a gap at index g in the bridge spectrum if bg(K) < bg−1(K)− 1. Most work regarding

bridge spectra focuses on finding bridge spectra with gaps, see [24], [3]. This includes
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Theorem 5.2.1 and is the topic of most of the conjectures in Chapter 6. The rest of

this section is devoted to the statement Theorem 5.2.1.

Lustig and Moriah [11] define generalized Montesinos knots, which include Mon-

tesinsos knots and pretzel knots. Generalized Montesinos knots, see Defintion 2.9.2,

are defined with a set of pairs of integers, {(βi,j, αi,j)}i,j ; when gcd{αi,j} 6= 1, we show

that these generalized Montesinos knots have the property t(K) + 1 = b(K) = b0(K),

where t(K) is the tunnel number, see section 2.7. For a (g, b)-splitting, with b > 0, we

have t(K) ≤ g + b− 1, which comes to us from Morimoto, Sakuma, and Yokota [15].

From these two facts, we can quickly conclude that generalized Montesinos knots with

gcd{αi,j} 6= 1 have stair-step bridge spectra. We also show that pretzel knots, which

are generalized Montesinos knots, have distance one, and so they do not satisfy the

hypothesis of Tomova’s theorem.

We are interested in the behavior of the bridge spectrum under cabling, a special

case of taking a satellite of a knot. In the same paper that Schubert [19] defined

bridge number, he proved the following, which we will make use of here. Schultens

gives a modern proof of this result in [20]. See Section 2.5.

Theorem 1.0.3. [19],[20] Let K be a satellite knot with companion J and pattern of

index n. Then b0(K) ≥ n · b0(J).

In Chapter 5 we show:

Theorem 5.2.1. Let Kp/q be a non-torus 2-bridge knot and Tm,n an (m,n)-torus knot.

If K := cable(Tm,n, Kp/q) is a cable of Kp/q by Tm,n, then the bridge spectrum of K is

b(K) = (2m,m, 0).

In Chapter 2 we give the relevant background and notation needed for the the

proofs of Chapter 4 and Theorem 5.2.1. In Chapter 3 we give some necessary results

and lemmas for the proof of the Theorem 5.2.1. Chapter 4 has proofs of Corollary 4.2.2
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and Proposition 4.2.4 and details about a class of knots which are stair-step but not

of high distance. In Chapter 5 we prove Theorem 5.2.1. Finally, in Chapter 6 we give

some conjectures based on these results.
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Chapter 2

Notation and Background

2.1 Preliminaries

We assume a general knowledge of the basics of knot theory and 3-manifolds. See [6]

and [18] for more detail on any topics in this section. A knot K is an embedded copy

of S1 in S3. More precisely, a knot K is the isotopy class of images of embeddings of

S1 ↪→ S3. A link is multiple copies of S1 simultaneously embedded in S3. Two knots

are equivalent if there is an ambient isotopy taking one knot to the other. Let N(·) and

η(·) denote closed and open regular neighborhoods. The space E(K) := S3 − η(K) is

called the exterior of the knot K and ∂E(K) is a torus. We will use |A| to denote the

number of connected components of A.

Let M be a 3-manifold, S ⊂ M an embedded surface and J ⊂ M an embedded

1-manifold. We will use M(J) and SJ to denote M − η(J) and S − η(J), respectively.

We use the notation (M,J) to denote the pair of M and J . An embedded 1-manifold

γ ⊂ S is essential if S \ η(γ) does not have a disk component in S. A submanifold

M ′ ⊂M is proper if ∂M ′ ⊂ ∂M . A compressing disk D for S is a embedded disk in

M with D ∩ S = ∂D but ∂D does not bound a disk in S. A boundary compressing
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disk, or ∂-compressing disk, ∆ for S is an embedded disk in M such that ∆∩ S = γ is

an arc with γ ⊂ ∂∆, γ is essential in S and ∂∆− γ, another arc, is a subset of ∂M .

The surface S is incompressible if there does not exist a compressing disk D for S; S

is ∂-incompressible if there does not exist a ∂-compressing disk ∆ for S. The surface

S is said to be essential if S is incompressible, ∂-incompressible and not isotopic into

∂M .

2.2 2-bridge knots and rational tangles

One way to create a 2-bridge knot is to start with a rational tangle.

Definition 2.2.1. Given a rational number p/q ∈ Q, write

p

q
= r +

1

b1 −
1

b2 −
1

. . . −
1

bk

such that r ∈ Z, bi ∈ Z \ {0}, then r + [b1, b2, . . . , bk] denotes a partial fraction

decomposition of p/q.

It should be noted that partial fraction decompositions are not unique in general.

But if we assume the bi all have the same sign and k is odd, then the partial

fraction decomposition is unique, see [10]. Given a partial fraction decomposition

p
q

= r + [b1, b2, . . . , bk], one can produce a diagram that is formed from a vertical 3

braid with a1 half-twists between the left two strands, below that, add a2 half-twists

between the right two strands. Then alternate between the left and right two strands
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in this way for each consecutive ai. Finally, add a fourth strand on the left, cap and

connect the new left two strands at the top and connect the right two strands at the

bottom. The diagram we have created is called a 4-plat rational tangle. See Figure 2.1.

α, β

am

a2

a1

Figure 2.1: A rational tangle in the 4-plat form.

The “pillowcase” is a term used by Hatcher and Thurston in [7]. Technically, one

should define it as I2 t∂I2 I2, where one copy of I2 is the “front” of the pillowcase and

the other is the “back.” A 2-bridge tangle is given by a fraction p/q ∈ Q by placing

lines of slope p/q on the front of the pillowcase and connecting them with lines of slope

−p/q on the back of the pillowcase. See Figure 2.2. For a more detailed treatment of

this section, see [7].

These two different diagrams yield isotopic tangles if and only if they represent

the same rational number. We can create a 2-bridge knot by taking a 4-plat rational

tangle or the 2-bridge tangle and connecting the top two strands together and the

bottom two strands together.
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3, 5

Figure 2.2: A 2-bridge rational tangle of 3
5
.

Figure 2.3: The 2-bridge knot corresponding to 3
5
.

2.3 Bridge Spectrum

Given a 3-manifold M with boundary, a trivial arc is a properly embedded arc α,

see page 6, that cobounds a disk with an arc β ⊂ ∂M ; i.e., α ∩ β = ∂α = ∂β and

there is an embedded disk D ⊂ M such that ∂D = α ∪ β. We call the disk D a

bridge disk. A bridge splitting of a knot K in M is a decomposition of (M,K) into

(V1, A1) ∪Σ (V2, A2), where each Vi is a handlebody with boundary Σ and Ai ⊂ Vi is a

collection of trivial arcs for i = 1, 2. One should note that when we exclude the knot

K, a bridge splitting is a Heegaard splitting of M . For all g and b, a (g, b)-splitting of

(M,K) is a bridge splitting with g(Vi) = g and |Ai| = b for i = 1, 2. The surface Σ is
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called a bridge surface. Throughout this dissertation, we will be focusing on bridge

splittings of (S3, K).

Definition 2.3.1. The genus g bridge number of a knot K in S3, bg(K), is the

minimum b such that a (g, b)-splitting of K exists. We also require that for bg(K) to

be zero, the knot must be able to be isotoped into a genus g Heegaard surface.

Definition 2.3.2. The bridge spectrum of a knot K in S3, b(K), is the list of genus

g bridge numbers:

(b0(K), b1(K), b2(K), . . .).

As mentioned earlier, the genus zero bridge number is the classical bridge number,

except in the case of the unknot. A simple closed curve in the boundary of a handlebody

is called primitive if it transversely intersects the boundary of a properly embedded

essential disk of the handlebody in a single point. Some define bg(K) = 0 when K

can be isotoped into a genus g Heegaard surface and is primitive. Here is another

invariant, b̂g(K) with the following added requirement.

Definition 2.3.3. The (primitive) genus g bridge number of a knot K in S3, b̂g(K),

is the minimum b such that a (g, b)-splitting of K exists. We also require that for

bg(K) to be zero, the knot must be able to be isotoped into a genus g Heegaard surface

and is primitive.

Definition 2.3.4. The (primitive) bridge spectrum of a knot K in S3, b̂(K) is the

list of genus g bridge numbers:

(b̂0(K), b̂1(K), b̂2(K), . . .).
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In the next section we will see that the process of meridional stabilization forces

the bridge spectrum and primitive bridge spectrum to be strictly decreasing, see

Proposition 2.4.1. Thus, when bg(K) = 0, we can discard the bridge number for higher

genus than g. The only potential difference between these two spectra is the last

non-zero term in the sequence. We make the relation between bridge spectrum and

primitive bridge spectrjm rigorous for future use.

Proposition 2.3.5. For a knot K, if bg(K) 6= 0, then bg(K) = b̂g(K). If bg(K) = 0,

then b̂g(K) ∈ {0, 1}.

Proof. If bg(K) ≥ 1, then by definition, b̂g(K) = bg(K). If bg(K) = 0, then K embeds

in a genus g Heegaard surface, Σ. If K is primitive on one side of Σ, then b̂g(K) = 0.

If K is not primitive on either side of Σ, then through the process of elementary

stabilization, we can create a (g, 1)-splitting. Hence, b̂g(K) ≤ 1, completing the

proof.

For example, consider the following well known proposition:

Proposition 2.3.6. Given a non-trivial torus knot K = Tp,q in S3, we have b(K) =

(min{p, q}, 0), while b̂(K) = (min{p, q}, 1, 0).

Proof. Schubert proved that b0(K) = b̂0(K) = min{p, q}, which is greater than one for

nontrivial knots. For b1(K), by definition, a torus knot embeds on a genus one surface.

Hence, b1(K) = 0. For b̂1(K), we see that a nontrivial torus knot cannot embed on a

torus and intersect an essential disk of a genus one torus only once. By definition of a

torus knot, it must intersect the meridian disk p times and the longitudinal disk q

times. Hence, b̂1(K) ≥ 1, but we can easily see that we can make a (1, 1)-splitting,

thus b̂1(K) = 1. And for b̂2(K), we can easily embed a torus knot on a genus two

surface with one handle having only a single arc of the knot.
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So they are distinct invariants. But there are knots for which they coincide. The

proof above also gives us part of the proof of the following proposition. The other

direction follows directly from the definition of genus one bridge number.

Proposition 2.3.7. A knot K, in S3, is a torus knot if and only if b1(K) = 0.

Thus, any non-torus knot has b1(K) ≥ 1, which gives us the following, along with

the fact that bridge spectrum are strictly decreasing sequences.

Proposition 2.3.8. Let K be a 2-bridge knot that is not a torus knot in S3; then

b̂(K) = b(K) = (2, 1, 0).

2.4 Operations on bridge splittings and multiple

bridge splittings

This section is a summary of tools that we will need in the proof of our theorem.

Many come from work of numerous people but directly these can also be found in [24].

There are three main ways to operate on a bridge surface on a knot in S3 to obtain a

new bridge splitting: stabilization, perturbation, and meridional stabilization.

The genus of a surface can be increased by adding a handle which does not interact

with the knot through a process called elementary stabilization. A properly embedded

arc α, see page 6, is said to be boundary parallel in a 3-manifold M if it isotopic

rel boundary into ∂M . Let (S3, K) = (V1, A1) ∪Σ (V2, A2) and let α be a boundary

parallel arc in V1 such that α ∩ A1 = ∅. Then let W1 = V1 − η(α), W2 = V2 ∪N(α),

and Σ′ = ∂W1 = ∂W2. Then (S3, K) = (W1, A1)∪Σ′ (W2, A2) is a new bridge splitting

with the genus of Σ′ one higher than Σ. We can also run this process in reverse. If Di

are compressing disks in (Vi, Ai) for Σ− η(K), and |D1 ∩D2| = 1, then ∂N(D1 ∪D2)
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is a 2-sphere which intersects Σ in a single curve. Then compression along this curve

yields a new bridge surface Σ′′ of lower genus, and Σ is said to be stabilized.

The number of trivial arcs in A1 and A2 can be increased by one each, through

the process of elementary perturbation. Add in a canceling pair of trivial arcs in a

sideways “S” shape, cutting through the surface; i.e. a strand which passed down

through the surface transversally can be perturbed and a section of the arc can be

brought up through the surface again, creating two new arcs. Again, for the reverse

direction, if there are two bridge disks on either side of Σ, which intersect in a single

point contained in J , one may construct an isotopy which cancels two arcs of A1 and

A2, creating a new surface Σ′′, and Σ is perturbed.

Bridge spectra are always strictly decreasing sequences. To see this, take any

(g, b)-splitting of a knot. Then, by definition, we have a decomposition of (S3, k) as

(V1, A1) ∪Σ (V2, A2). Intuitively, take any trivial arc α in, say, A1; then N(α) ⊂ V1 is

a closed neighborhood of α in V1. Take this neighborhood from V1 and move it to V2,

which produces one higher genus handlebodies, and one less trivial arc. More carefully,

let W1 = (V1 − η(α)) and W2 = (V2 ∪N(α)). Let B1 = A1 − {α}, and B2 = A2 ∪ α.

Then B2 is A2 with two arcs combined into a single arc by connecting them with α.

Also, notice that g(Wi) = g(Vi) + 1. Thus, we have (S3, k) = (W1, B1) ∪Σ′ (W2, B2),

which is a (g + 1, b− 1)-splitting. This process is called meridional stabilization. This

process proves the following proposition.

Proposition 2.4.1. If K is a knot in S3, with b̂g(K) ≥ 1, then b̂g+1(K) ≤ b̂g(K)− 1.

Similarly, if bg(K) ≥ 1, then bg+1(K) ≤ bg(K)− 1.

The next corollary is immediate from Proposition 2.4.1.

Corollary 2.4.2. If K is a knot in S3, then its bridge spectrum and primitive bridge

spectrum are bounded above, component-wise, by (b0(K), b0(K) − 1, b0(K) − 2, . . .).
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Equivalently, for every knot K, and every g ≤ b0(K), there is a (g, b0(K)− g)-splitting

for K.

For a bridge surface Σ in (S3, K), one can sometimes find two bridge disks on

opposite sides of Σ which have two points of intersection in K. In this case, the

component of J is isotopic into Σ and Σ is called cancelable.

A (g, b)-surface for a knot K is said to be irreducible if it is not stabilized, perturbed,

meridionally stabilized, or cancelable. Thus, if bg(K) < bg−1(K) − 1, then a (g, b)-

surface Σ satisfying b = bg(K) must be irreducible.

In this paragraph, we will use definitions on page 6. Let Σ be a bridge surface

for (S3, K) which yields the splitting (S3, K) = (V1, A1) ∪Σ (V1, A1). Then Σ is

called weakly reducible if there exist disjoint disks D1 and D2, that are either both

compressing, both bridge, or one of each, such that Di ⊂ (Vi, Ai) for i = 1, 2, for ΣJ . If

Σ is not weakly reducible, perturbed, or cancelable, then Σ is called strongly irreducible.

By considering bridge disks as embedded in M(J), one can see that perturbed and

cancelable surfaces will be weakly reducible; hence, in M(J), Σ is strongly irreducible

if and only if it is not weakly reducible.

For a more details about the following comcepts, see [8]. Let F be a disjoint union

of closed oriented surfaces. A compression body C is a handlebody or the 3-manifold

obtained by attaching 1-handles to F ×{1} ⊂ F × I. Then let ∂−C = F ×{0} and let

∂+C = ∂C − ∂−C. An arc in a compression body is said to be vertical if it is isotopic

to {x} × I for x ∈ F . Next, a multiple bridge splitting is the following: let (M,J)

contain a collection S = {Σ0, S1,Σ1, . . . , Sd,Σd} of disjoint surfaces transverse to J ,

such that (M,J) cut along S is a collection of compression bodies containing trivial

arcs {(C0, τ0), (C ′0, τ
′
0), . . . , (Cd, τd), (C

′
d, τ
′
d)}, where

• (Ci, τi) ∪Σi
(C ′i, τ

′
i) is a bridge splitting of a submanifold (Mi, Ji), where Mi =
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Ci ∪ C ′i and Ji = τi ∪ τ ′i , for each i,

• ∂−Ci = ∂−C
′
i−1 = Si for 1 ≤ i ≤ d,

• ∂M = ∂−C0 ∪ ∂−C ′d, and

• J =
⋃d
i=1(τi ∪ τ ′i).

The surfaces Σi are called thick and the surfaces Sj are called thin. The thick surface

Σi is strongly irreducible if it is strongly irreducible in the manifold (Ci, τi)∪Σi
(C ′i, τ

′
i),

and a multiple bridge splitting is called strongly irreducible if each thick surface is

strongly irreducible and no compression body is trivial. A compression body is trivial

if it is homeomorphic to Σi×I with τi only vertical arcs. This leads us to the following

theorem of Hayashi and Shimokawa [8], which we present in the same way that Zupan

does in [24]. Theorem 2.4.3 is the basis for one of the two major cases in the proof of

Theorem 5.2.1.

Theorem 2.4.3. [8],[24, Theorem 2.8] Let M be a 3-manifold containing a 1-manifold

J. If (M,J) has a strongly irreducible multiple bridge splitting, then ∂(M − η(J))

and every thin surface are incompressible. On the other hand, if ∂(M − η(J)) is

incompressible in M − η(J) and Σ is a weakly reducible bridge splitting for (M,J),

then (M,J) has a strongly irreducible multiple bridge splitting {Σ0, S1,Σ1, . . . , Sd,Σd}

satisfying

g(Σ) =
d∑
i=0

g(Σi)−
d∑
i=1

g(Si).

2.5 Cable spaces and Cables

A cable space, loosely, is the solid torus with a torus knot taken out of its interior.

For more information on cable spaces, see [5] and [24]. More precisely, let Tm,n be
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the torus knot on the standardly embedded torus in S3 intersecting the meridian

transversely in m points and intersecting the longitude transversely in n points. Let

V be the solid torus S1 ×D2 with the torus knot pushed into the interior of V off

the boundary. The cable space Cm,n is V − η(Tm,n). Cable spaces are Seifert fibered.

For more information on Seifert fibered spaces, see Waldhausen [22]. There one will

find that essential surfaces, see page 6 in Seifert fibered spaces are either vertical or

horizontal. A vertical surface in a Seifert fibered space made up of a union of fibers.

A horizontal surface in a Seifert fibered space is transverse to any fiber it intersects.

In a cable space Cp,q, the notation ∂+Cp,q is used to denote the boundary of the solid

torus V and ∂−Cp,q denotes the boundary of the (p, q)-torus knot.

The following is Zupan’s Lemma 3.2 and 3.3.

Lemma 2.5.1. [24, Lemma 3.2] Suppose S ⊂ Cp,q is incompressible. If each com-

ponent of S ∩ ∂+Cp,q has integral slope, then each component of S ∩ ∂−Cp,q also has

integral slope.

Lemma 2.5.2. [24, Lemma 3.3] Suppose S ⊂ Cp,q is incompressible. Then S∩∂+Cp,q

is meridional if and only if S ∩ ∂−Cp,q is meridional.

A cable of a knot is defined in the following way. Given a knot K0 in S3, and

a torus knot Tm,n, the cable K := cable(Tm,n, K0) is the knot obtained by taking

S3 \ η(K0) and gluing in the solid torus V with Tm,n pushed slightly into the interior

of V . The space V is glued in so that the cable has the preferred framing, that is, the

usual longitude of V is mapped to the the trivial element in H1(E(K0)). Then the

knot K is called the (m,n)-cable of K0.
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2.6 Incompressible surfaces in 2-bridge knot

complements

This section will mostly be devoted to Hatcher’s and Thurston’s result about essential

surfaces, in the complement of 2-bridge knots. See [7] for more information.

We will devote this paragraph to describing how these surfaces Sn(n1, n2, . . . , nk−1)

are defined. Given a continued fraction decomposition r + [b1, b2, . . . , bk] of p
q
, form

the corresponding 4-plat rational tangle in S3, see Definition 2.2, and create a link by

connecting the top two strands together and bottom two strands together. Since we are

only investigating knots in this dissertation, we will assume that q is odd in the reduced

fraction p
q
. Isotope the knot into a vertical square tower, see Figure 2.4. This knot has

k − 1 inner horizontal plumbing squares, one between each twisted region. For each

inner plumbing square, there is a complementary outer plumbing square which exists

in the same horizontal plane in S3, thinking of S3 as (S2× [0, 1])/(S2×{0}, S2×{1}),

see Figure 2.5. The surface Sn(n1, n2, . . . , nk−1), where n ≥ 1 and 0 ≤ ni ≤ n, consists

of n parallel sheets running close to the vertical bands of this tower form of the knot.

At the i-th plumbing square, ni of the n sheets run into the inner plumbing square

and the other n− ni sheets run into the outer plumbing square. See Figure 2.6 for a

small example.

The branched surface Σ[b1, . . . , bk] is obtained by a single sheet running vertically

and branching at each plumbing square into the inner and the outer plumbing square,

see Figure 2.5. So for each continued fraction decomposition r + [b1, b2, . . . , bk],

the branched surface Σ[b1, . . . , bk] carries many not necessarily connected surfaces

Sn(n1, n2, . . . , nk−1).

Hatcher and Thurston, [7], give the following classification of incompressible

surfaces.
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Figure 2.4: A 2-bridge knot in square tower form.

Figure 2.5: A plumbing square, with n vertical sheets, ni sheets in the inner plumbing
square, and n− ni sheets in the outer square.
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Figure 2.6: On the left, the figure 8 knot, and on the right the same knot with the
surface S1(1).

Theorem 2.6.1. [7, Theorem 1] Let p
q

be a rational number with continued fraction

decomposition r + [b1, b2, . . . , bk].

1. A closed incompressible surface in S3 −Kp/q is a torus isotopic to the boundary

of a tubular neighborhood of Kp/q.

2. A non-closed incompressible, ∂-incompressible surface in S3−Kp/q is isotopic to

one of the surfaces Sn(n1, . . . , nk−1) carried by Σ[b1, . . . , bk], for some continued

fraction expansion p/q = r + [b1, . . . , bk] with |bi| ≥ 2 for each i.

3. The surface Sn(n1, . . . , nk−1) carried by Σ[b1, . . . , bk] is incompressible and ∂-

incompressible if and only if |bi| ≥ 2 for each i.

4. Surfaces Sn(n1, . . . , nk−1) carried by distinct Σ[b1, . . . , bk]’s with |bi| ≥ 2 for each

i are not isotopic.

5. The relation of isotopy among the surfaces Sn(n1, . . . , nk−1) carried by a given

Σ[b1, . . . , bk] with |bi| ≥ 2 for each i is generated by:
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Sn(n1, . . . , ni−1, ni, . . . , nk−1) is isotopic to Sn(n1, . . . , ni−1 + 1, ni + 1, . . . , nk−1)

if bi = ±2. (When i = 1 this means Sn(n1, n2, . . . , nk−1) is isotopic to Sn(n1 +

1, n2 . . . , nk−1), and similarly when i = k.)

Remark 2.6.2. The main points of this theorem that we will use are (1) and (2),

which gives us that the only closed incompressible surfaces in the complement of a 2-

bridge knot Kp/q are isotopic to the boundary of E(Kp/q) and that every incompressible

surface with boundary is isotopic to some Sn(n1, . . . , nk).

2.7 Tunnel Number

Recall E(K) is the exterior of a knot. A family of mutually disjoint properly embedded

arcs Γ in the exterior E(K) of a knot K is said to be an unknotting tunnel system if

E(K)− η(Γ) is homeomorphic to a handlebody.

Definition 2.7.1. The tunnel number of a knot K, t(K), is the minimum number of

arcs in an unknotting tunnel system, over all unknotting tunnel systems for K.

Morimoto gives an equivalent definition in [13], which we will use here. For a knot

K in S3, there is a Heegaard splitting (V1, V2) of S3 such that a handle of V1 contains

K as a core of V1.

Definition 2.7.2. The minimum genus of V1 minus one, over all Heegaard splittings

satisfying the above fact, is the tunnel number, t(K).

2.8 Distance

For a more thorough discussion on distance, see [21]. Given a compact, orientable,

properly embedded surface S in a 3-manifold M , the 1-skeleton of the curve complex,
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C(S), is the graph whose vertices correspond to isotopy classes of essential simple

closed curves in S such that two vertices are connected if the corresponding isotopy

classes have disjoint representatives. For two subsets A and B of C(S), the distance

between them, d(A,B) is defined to be the length of the shortest path from an element

of A to an element of B.

For any subset X ⊂ S3, let XK be E(K) ∩X .

Definition 2.8.1. [21]

Suppose M is a closed, orientable irreducible 3-manifold containing a knot K and

suppose PK is a bridge surface for K splitting M into handlebodies V and W . Let V

(resp W) be the set of all essential simple closed curves on PK that bound disks in VK

(resp. WK). Then the distance d(P,K) := d(V ,W) measured in C(PK).

2.9 Generalized Montesinos Knots

J. Montesinos defined the class of knots and links that now bear his name in 1973 in

[12]. As stated earlier on page 7, given a rational number β
α
∈ Q, there is a unique

continued fraction decomposition β
α

= [a1, a2, . . . , am] where ai 6= 0 for all i = 1, . . . ,m

and m is odd. We also recall that for each rational number, there is an associated

rational tangle, see page 8 and Figure 2.2.

Definition 2.9.1. A Montesinos knot or link M( β1
α1
, β2
α2
, . . . , βn

αn
|e) is the knot in Figure

2.7 where each βi, αi for i = 1, . . . , n represents a rational tangle given by βi
αi

, and

e represents the number of positive half-twists. If e is negative, we have negative

half-twists instead.

Lustig and Moriah in [11] defined the class of knots which we describe in the rest

of this section. They based their definition off of Boileau and Zieschang [2], who prove
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e

β1, α1

β2, α2

βn, αn

Figure 2.7: The Montesinos link M( β1
α1
, β2
α2
, . . . , βn

αn
|e)

that any Montesinos knot M( β1
α1
, β2
α2
, . . . , βn

αn
|e), which does not have integer tangles,

i.e., αi 6= 1 for all i, has bridge number n. Consider Figure 2.8. Each αi,j, βi,j is the

4-plat diagram from the rational tangle defined by αi,j/βi,j. An n-braid is n disjoint

arcs in I3 with initial points in I × {1
2
} × {1}, end points on I × {1

2
} × {0}, and the

arcs strictly decreasing in the third component of I3. A double of a braid is obtained

by duplicating each arc in an ε-neighborhood of the original, possibly with twisting

of an arc and its duplicate, so it becomes a 2n-braid. In a generalized Montesinos

knot, each Bj is a double of an n-braid. For a more in depth description, see [2]

and [11]. They exhibit a number diagrams which show that every Montesinos Knot

and in particular, every pretzel knot, is a Generalized Montesinos Knot. One should
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note that for a pretzel knot Kn = (p1, . . . , pn), the corresponding rational tangles are

pk = αi,j/βi,j.

Definition 2.9.2. A generalized Montesinos knot or link,

K = M
(
{(βi,j, αi,j)}i=`,j=mi=1,j=1 , {Bi}j=`−1

j=1

)
is the knot in Figure 2.8 where each βi,j, αi,j

for i = 1, . . . ,m and j = 1, . . . , ` represents a rational tangle given by
βi,j
αi,j

, and Bi

represents a 2n-braid, which is obtained by doubling an n-braid.

The main result from Lustig and Moriah’s paper that we use below is the following.

Recall that rk(G), the rank of the group G, is the minimum number of generators;

the notation t(K) is the tunnel number, see Definition 2.7.1; and b(K) is the bridge

number, which we are usually denoted as b0(K), the genus zero bridge number, see

Definition 2.3.1.

Theorem 2.9.3. [11, Theorem 0.1] Let K be a generalized Montesinos knot/link as

in Figure 2.8 below, with 2n-plats. Let α = gcd(αi,j : i = 1, . . . , `; j = 1, . . . ,m). If

α 6= 1 then rk(π1(S3 −K)) = t(K) + 1 = b(K) = n.

2.10 Results on bridge surfaces

In [24], Zupan introduced the bridge spectrum and in the same paper produced the

results which appear in this section.

Let M be a 3-manifold with boundary, let P be a subsurface of ∂M , and let

A be a properly embedded surface in M . Then a P -∂-compressing disk for A is a

∂-compressing disk ∆ for A with the added condition that ∆ ∩ ∂M ⊂ P . Also, A is

P -essential if A is incompressible and there does not exist a P -∂-compressing disk for

A in M . Similarly, A is P -strongly irreducible if A is separating and admits either

compressing or P -∂-compressing disks on either side but admits no pair of disjoint
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α`,1, β`,1 α`,2, β`,2 α`,3, β`,3 α`,m, β`,m

B`−1

B2

B1

α1,m, β1,mα1,1, β1,1 α1,2, β1,2 α1,3, β1,3

α2,m, β2,mα2,1, β2,1 α2,2, β2,2 α2,3, β2,3

Figure 2.8: A generalized Monetesinos knot
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disks on opposite sides. Two surfaces A and B are almost transverse if A is transverse

to B except for a single saddle tangency. The following lemmas of Zupan will be used

in Chapters 3 to 5 below. For the following lemma, recall for a 3-manifold M and

an embedded 1-manifold J ⊂ M , M(J) is M − η(J) and for an embedded surface

Σ ⊂M , ΣJ is Σ− η(J).

Lemma 2.10.1. [24, Lemma 5.2] Let M be a compact 3-manifold and J a properly

embedded 1-manifold, with Q := ∂N(J) in M(J). Suppose Σ is a strongly irreducible

bridge splitting surface for (M,J), and let S ⊂ M(J) be a collection of properly

embedded essential surfaces such that for each component c of the boundary of each

element of S, either c ⊂ Q or c ⊂ ∂M . Then one of the following must hold:

1. After isotopy, ΣJ is transverse to each element of S and each component of

ΣJ \ η(S) is Q-essential in M(J) \ η(S).

2. After isotopy, ΣJ is transverse to S, one component of ΣJ \ η(S) is Q-strongly

irreducible and all other components are Q-essential in M(J) \ η(S).

3. After isotopy, ΣJ is almost transverse to S and each component of ΣJ \ η(S) is

Q-essential in M(J) \ η(S).

Lemma 2.10.2. [24, Lemma 6.1] Let J be a knot in a 3-manifold M and let K =

cable(Tm,n, J) be a (m,n)-cable of J . If Σ ⊂M is a Heegaard surface such that J ⊂ Σ

and if there is a compressing disk D for Σ such that |D ∩ J | = 1, then there exists an

embedding of K in M such that K ⊂ Σ.

This lemma tells us that for Kp/q a 2-bridge knot, K = cable(Tm,n, Kp/q) satisfies

b2(K) = 0, since every Kp/q can be isotoped into a genus 2 Heegaard surface with

each handle having a single arc of the knot traversing it.
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Chapter 3

Results about surfaces

In this Chapter we introduce and prove some technical results needed for the proof of

Theorem 5.2.1.

Lemma 3.1. The surface Sn(n1, . . . , nk) has Euler characteristic −n(k − 1).

Proof. Consider the single sheeted surface S1(n1, . . . , nk−1), see 2.6. The vertical bands

deformation retract to an edge and the plumbing squares deform to a vertex. As our

knot lives in S3, the outer squares can be deformed to a point at infinity. See Figure 3.1.

Thus, we get a graph with k−1 vertices and 2(k−1) edges. The Euler characteristic of

this graph and surface is −(k−1). Given an n-sheeted surface, Sn(n1, . . . , nk−1), there

are n copies of this graph, not taking into account how these graphs are connected.

But, this is only a change in adjacency, not in the number of vertices and edges, so it

has no effect on the Euler characteristic. Thus, χ (Sn(n1, . . . , nk−1)) = −n(k− 1).

From this lemma, together with Theorem 2.6.1 part (2), we see that all non-closed

incompressible surfaces in the exterior of any non-torus 2-bridge knot have negative

Euler characteristic. This is because k represents the number of steps in the partial

fraction decomposition, which in turn corresponds to the number of twist regions in
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v1

v2

vk−1

Figure 3.1: The deformation retract of S1(n1, . . . , nk−1).

the vertical diagram of the 2-bridge knot, see Figure 2.6. So, for a 2-bridge knot Kp/q,

k is zero if and only if Kp/q is the unknot and k is one if and only if Kp/q is a torus

knot. This proves the follow lemma.

Lemma 3.2. The surfaces Sn(n1, . . . , nk) of a non-torus 2-bridge knot have negative

Euler characteristic.

Another important property of 2-bridge knots is that they are meridionally small.

Definition 3.3. A knot K ⊂ S3 is meridionally small if E(K) contains no essential

surface S with ∂S consisting of meridian curves of N(K).

Lemma 3.4. Every 2 bridge knot is meridionally small.

Proof. We notice from Remark 2.6.2 that all essential surfaces in E(K) either are

disjoint from ∂E(K) or intersect ∂E(K) with integer slope. In either case, they do

not intersect the boundary in meridian curves.

Zupan, in [23], proves the following theorem.

Theorem 3.0.3. [Theorem 6.6], [23] For a knot J in S3, the following are equivalent:
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1. J is meridionally small.

2. Every cable of J is meridionally small.

3. There exists a cable of J that is meridionally small.

The following is a modification of Lemma 3.5 from [24].

Lemma 3.5. Let K = cable(Tm,n, Kp/q) be a cable of a 2-bridge knot. Suppose

S ⊂ E(K) is an essential surface. If S is not isotopic to the boundary torus of Kp/q,

then S ∩ ∂E(K) is nonempty and has integral slope.

Proof. Let T denote the boundary torus of E(Kp/q). Recall that Cm,n is a cable space,

see page 16. After isotopy, we may assume |S ∩ T | is minimal.

Claim: Each component of S ∩ Cm,n is incompressible in Cm,n and each component of

S ∩ E(Kp,q) is incompressible in E(Kp,q).

To prove this claim, let D be a compressing disk for S ∩ Cm,n in Cm,n. Then

∂D bounds a disk D′ ⊂ S by the incompressibility of S, where D′ ∩ T 6= ∅. By the

irreducibility of E(K), there is an isotopy of S pushing D′ onto D which reduces

|S ∩ T |, yielding a contradiction. The argument is similar for S ∩ E(Kp,q) being

incompressible in E(Kp,q), proving the claim.

If S ∩ T = ∅, then S ⊂ Cm,n or S ⊂ E(Kp,q). If S ⊂ Cm,n, then by our claim, each

component of S ∩Cm,n is incompressible in Cm,n, and thus S is closed and vertical and

the only such surfaces are boundary parallel by [22]. Similarly, if S ⊂ E(Kp,q), then

by our claim, each component of S ∩ E(Kp,q) is incompressible in E(Kp,q) and then

by Remark 2.6.2, S is closed and thus boundary parallel. Thus, S is isotopic to T .

If S ∩ T 6= ∅, then S ∩ E(Kp,q) is one of the surfaces classified by Theorem 2.6.1

and so S ∩ E(Kp,q) has integer slope. The surface T is also ∂+Cm,n. Then we apply
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Lemma 2.5.1 which tells us that S has integer slope in ∂−Cm,n, thus S ∩ ∂E(K) has

integer slope.
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Chapter 4

Bridge spectra of Montesinos and

pretzel knots

Before determining the bridge spectra in Section 4.2, we begin Section 4.1 with further

results on the relationship between tunnel number and bridge spectrum.

4.1 Tunnel number and bridge spectrum

The next proposition appears in [15] without proof; we provide one here for complete-

ness. Also, recall a knot is primitive in a (g, b)-splitting if it transversely intersects the

boundary of a properly embedded essential disk of the handlebody in a single point.

See Section 2.3.

Proposition 4.1.1. If K is a knot with a (g, b)-splitting satisfying either b > 0, or

b = 0 and K is primitive, then t(K) ≤ g + b− 1.

Proof. Recall Definition 2.7.2, the tunnel number of a knot K is the minimum genus

minus one over all Heegaard surfaces with that contain K as its core. Suppose first

b > 0; we can meridionally stabilize each of the b arcs, see Section 13. This takes the
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genus g surface and adds in b more handles, which gives us a g+ b genus surface. This

is precisely the situation in Definition 2.7.2. Hence, the new Heegaard surface is of

genus g + b with K as the core. Thus the tunnel number is at most g + b− 1.

If b = 0 and the knot is primitive, then by definition, there is an essential disk for

the Heegaard surface which intersects the knot exactly once. This essential disk must

be a meridian disk and thus, the knot must have a tunnel number that is at most

g − 1.

This is the driving force behind the following proposition:

Proposition 4.1.2. If K is a knot K with t(K) + 1 = b(K) = b0(K), then K has the

stair-step primitive bridge spectrum, b̂(K) = (b̂0(K), b̂0(K)− 1, . . . , 2, 1, 0).

Proof. By Proposition 4.1.1, for any (g, b)-splitting, t(K) ≤ g+b−1, and so b0(K)−1 =

t(K) ≤ g + bg(K) − 1 for all g, and so bg(K) ≥ b0(K) − g. Corollary 2.4.2 states

that for every knot K, and every g, there is a (g, b0(K) − g)-splitting for K. Since

bg(K) ≤ b0(K)− g, we get that bg(K) = b0(K)− g for all g.

4.2 Bridge spectra of Montesinos knots and

pretzel knots

Theorem 4.2.1. A generalized Montesinos knot or link,

K = M
(
{(βi,j, αi,j)}i=`,j=mi=1,j=1 , {Bi}j=`−1

j=1

)
with α = gcd{αi,j} 6= 1 has the stair-step

primitive bridge spectrum, b̂(K) = (b̂0(K), b̂0(K)− 1, . . . , 2, 1, 0).

Proof. This is immediate from Proposition 4.1.2 and Theorem 2.9.3.

Notice that Theorem 4.2.1 implies that any pretzel knot Kn = Kn(p1, . . . , pn) also

has the stair-step primitive bridge spectrum if α = gcd(p1, . . . , pn) 6= 1. It should be
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Figure 4.1: A pretzel knot K4(2,−3,−3, 3) embedding on a genus three surface.

noted that pretzel knots Kn with α 6= 1, via proposition 2.3.5, while having stair-step

primitive bridge spectra, have the bridge spectrum b(Kn) = (n, n − 1, . . . , 3, 2, 0).

This is because any pretzel knot embeds into a genus n− 1 surface. See, for example,

Figure 4.2. These facts prove the following corollary.

Corollary 4.2.2. Given a Kn = Kn(p1, . . . , pn) pretzel knot with gcd(p1, . . . , pn) 6= 1,

the primitive bridge spectrum is stair-step, i.e. b̂(Kn) = (n, n − 1, . . . , 2, 1, 0), and

b(Kn) = (n, n− 1, . . . , 3, 2, 0).

One should ask what happens when α = 1, to which we do not have a complete

answer here. Morimoto, Sakuma, and Yokota in [15] show that there are Montesinos

knots K which have α = 1 and t(K) + 2 = b(K). Here is their theorem as stated by

Hirasawa and Murasugi in [9]:

Theorem 4.2.3. [9]
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The Montesinos knot K = M( β1
α1
, β2
α2
, . . . , βr

αr
|e) has tunnel number one if and only

if one of the following conditions is satisfied.

1. r = 2.

2. r = 3, β2/α2 ≡ β3/α3 ≡ ±1
3

in Q/Z, and e+
∑3

i=1 βi/αi = ±1/(3α1).

3. r = 3, α2 and α3 are odd, and α1 = 2.

Any pretzel link K3(p1, p2, 2) is a knot if and only if p1 and p2 are odd. Therefore,

by Theorem 4.2.3, every pretzel knot of this form has tunnel number one but bridge

number three. Thus, we cannot use Proposition 4.1.2 to compute the bridge spectrum.

It is unknown if there is a pretzel knot or Montesinos knot which has bridge spectrum

(3, 1, 0).

Another point of interest is that any n-pretzel knot Kn with n ≥ 4 is a distance

one knot.

Proposition 4.2.4. If Kn(p1, . . . , pn) is a pretzel knot with n ≥ 4, and P is a genus

zero bridge surface for Kn, then d(P,Kn) = 1.

Proof. Let Kn be a pretzel knot with n ≥ 4. Arrange Kn in S3 so that the rational

tangles are all intersecting the plane in S3 where z = 0. Let P be the plane where

z = 0. Choose one disk between the first two tangles on one side of P and another on

the other side between the third and fourth tangle, as in Figure 4.2. These two disks

are bridge disks for the knot. If we thicken these disks by taking an ε neighborhood of

each, and then consider the boundary of these neighborhoods, we obtain disks which

bound essential simple closed curves in P . Since they are disjoint curves, the vertices

they correspond to in the curve complex are adjacent. Hence, d(P,Kn) ≤ 1. If the

distance is zero, we would have disks on opposite sides of P which bound essential
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Figure 4.2: A four branched pretzel knot with disjoint bridge disks on opposite sides
of the bridge surface.

simple closed curves that are isotopic to each other, so we can isotope our disks to

have the same boundary, and form a sphere. This implies that our knot has at least

two components, one on each side of the sphere, contradicting our assumption that

Kn is a knot. Hence, d(P,Kn) = 1.

This gives us that any pretzel knot Kn = Kn(p1, . . . , pn) with gcd{p1, . . . , pn} 6= 1

and n ≥ 4 has a stair-step bridge spectrum and is not high distance. Thus, one

could not find the bridge spectrum of Kn with Theorem 1.0.1. This proves the next

corollary.

Corollary 4.2.5. There exists knots with distance 1 and stair-step bridge spectrum.

Thus, stair-step does not imply high distance. As an example, Kn(3p1, 3p2, . . . , 3pn)

for n ≥ 4 for any pretzel knot Kn(p1, . . . , pn) has b(Kn) = (n, n − 1, . . . , 1, 0) and

distance one.
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Chapter 5

Bridge spectra of cables of 2-bridge

knots

In this Chapter we prove Theorem 5.2.1. To do this, we compute the genus zero, one

and two bridge numbers of cables of 2-bridge knots. The majority of the work here is

establishing a lower bound for the genus one bridge number, which is done is Section

5.2.

5.1 Genus zero and genus two bridge numbers

From Schubert’s and Schulten’s result on bridge number of satellite knots, Theorem

1.0.3, we have the following.

Lemma 5.1.1. Let Kp/q be a 2-bridge knot, Tm,n a torus knot, and K = cable(Tm,n, Kp/q),

then b(K) = b0(K) = 2m.

Proof. From Theorem 1.0.3, we have b0(K) ≥ 2m. To prove the upper bound, consider

Figure 2.6. If we were to cable Kp/q, we would produce a knot with 2m maxima,

which proves the upper bound.
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A similar lemma is required for the genus two bridge number. We hope to relay

some intuition by noticing that any cable of a two bridge knot embeds on a genus two

surface.

Figure 5.1: A cable of a 2-bridge knot embedded on a genus two surface

Lemma 5.1.2. Let K be a cable of a non-torus 2-bridge knot by Tm,n. Then b2(K) = 0.

Proof. Recall Proposition 2.3.8, which tells us that 2-bridge knots embed on a genus

two surface. From the Figure 2.3 we see that this embedding can have a single arc

of the knot on a handle, i.e. there is a meridian disk which intersects the knot once.

Thus, the remark following Lemma 2.10.2 tells us that the cable can embed in a genus

two surface. See Figure 5.1.

5.2 Genus one bridge number

Theorem 5.2.1. Let Kp/q be a non-torus 2-bridge knot and Tm,n an (m,n)-torus knot.

If K := cable(Tm,n, Kp/q) is a cable of Kp/q by Tm,n, then the bridge spectrum of K is

b(K) = (2m,m, 0).
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Proof. The previous two lemmas give us all but b1(K). We observe from Figure 5.1

that eliminating either handle will produce an embedding with m trivial arcs on either

side of the torus. Hence, b1(K) ≤ m. For the rest of the proof, we need to show

that b1(K) ≥ m. In Section 2.4, we note that every bridge surface is either strongly

irreducible or weakly reducible. This dichotomy gives us two main cases for the proof

of the theorem.

Case 1:. Suppose that Σ is a strongly irreducible genus 1 bridge surface for K. Let J ,

also denote the knot K, let Σ be the bridge surface, and let S denote T := ∂E(Kp/q).

With these choices, apply Lemma 2.10.1 and get one of three situations, giving us the

following subcases.

Subcase A: After isotopy, ΣK is transverse to T and each component of ΣK \ η(T ) is

∂N(K)-essential in E(K) \ η(T ).

The exterior E(K) is split along T into E(Kp/q) and Cm,n and ΣK is ∂N(K)-essential

in both. The cable space Cm,n can be decomposed into (T 2×I)∪V , where V = D2×S1,

a solid torus. By assumption, the bridge surface Σ is transverse to K.

Claim: The surface Σ ∩ V is a collection of meridian disks.

To prove the claim, notice that Σ∩ V is also essential in V and cannot be a ∂-parallel

annulus or ∂-parallel disk, as these surfaces are disjoint from K or are ∂N(K)-∂-

compressible. Thus, each component of Σ ∩ V is a meridian disk.

By Lemma 2.5.2 we know that Σ∩T has meridian slope also. This is also the boundary

slope of Σ ∩ E(Kp/q). But by Theorem 2.6.1, no essential surface has a boundary

slope of 1/0, giving us a contradiction and completing this subcase.

Subcase B: After isotopy, ΣK is transverse to T , one component of ΣK\η(T ) is ∂N(K)-
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strongly irreducible and all other components are ∂N(K)-essential in E(K) \ η(T ).

Note that ΣK \ η(T ) = [ΣK ∩ E(Kp/q)] ∪ [ΣK ∩ Cm,n].

First assume that ΣK ∩ Cm,n is ∂N(K)-strongly irreducible. This means that ΣK ∩

E(Kp/q) is ∂N(K)-essential. Again by Theorem 2.6.1, we know that ΣK ∩ E(Kp/q)

is isotopic to an essential surface Sn = Sn(n1, n2, . . . , nk−1) and has negative Euler

characteristic by Lemma 3.2. The bridge surface Σ is a torus by assumption, and thus

must have Euler characteristic zero. We can only increase the Euler characteristic of

Sn by gluing on disks. Assume that the number of components of Σ∩T is minimal. It

must be that Σ∩T is a collection of essential, simple closed curves in T . These curves

must be the boundaries of disks in order for us to increase the Euler characteristic,

but the only disks that have essential curves in T as their boundary are meridian

disks, which have boundary slope 1/0. This gives a contradiction of Theorem 2.6.1.

Now, assume that ΣK ∩ E(Kp/q) is ∂N(K)-strongly irreducible and ΣK ∩ Cm,n is

∂N(K)-essential. This implies that ΣK ∩Cm,n is a collection of meridian disks, which

means that |Σ ∩K| = m · |Σ ∩ ∂E(Kp/q)| = m · b′, where b′ := |Σ ∩ ∂E(Kp/q)| and

Σ ∩ ∂E(Kp/q) is a (1, b′)-bridge surface for Kp/q. Since b1(Kp/q) = 1, then b′ ≥ 1

therefore b1(K) ≥ m, completing this subcase.

Subcase C: After isotopy, ΣK is almost transverse to T , and each component of

ΣK \ η(T ) is ∂N(K)-essential in M(J) \ η(T ). Any saddlepoint tangency in a genus

one torus will produce a figure 8 shaped intersection, c. When cut along an open

neighborhood of c, the torus splits into two disjoint components, one an annulus and

the other a disk or a single disk. In either case, the disk will be inessential, which

gives a contradiction to ΣK \ η(T ) being ∂N(K)-essential.

Case 2:. Suppose that Σ is weakly reducible. We apply Theorem 2.4.3, which gives us
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that there exists a multiple bridge splitting {Σ0, S1,Σ1, . . . , Sd,Σd} of (S3, K), that is

strongly irreducible and

g(Σ) =
d∑
i=0

g(Σi)−
d∑
i=1

g(Si). (?)

Since Σ is a genus one bridge surface, this sum must equal one. By Theorem 3.0.3, K

is meridionally small since K is the cable of a meridionally small knot, see Definition

3.3. Hence E(K) contains no essential meridional surfaces, and so Si ∩ K = ∅ for

all i = 1, . . . , d. Thus, by Lemma 3.5, we have that each Si is isotopic to T . If we

have a multiple bridge splitting {Σ′0, S ′1,Σ′1, S ′2,Σ′2} with S ′1 and S ′2 isotopic to T , then

Σ′0 tS′
1

Σ′1 or Σ′1 tS′
2

Σ′2 would be isotopic to Σ′0 or Σ′2. Thus, we can assume without

loss of generality that d = 1 and our multiple bridge splitting is {Σ0, S1,Σ1}. This

is a strongly irreducible multiple bridge splitting and one of Σ0 or Σ1 is contained

in the cable space Cm,n and the other is contained in the exterior of the 2-bridge

knot, E(Kp/q). Let Σ0 ⊂ Cm.n and Σ1 ⊂ E(Kp/q). As K is not contained in E(Kp/q),

Σ1 must be a Heegaard surface. Since the tunnel number of a 2-bridge knot is 1,

by Proposition 4.1.1, then g(Σ1) = g(E(Kp/q)) = 2. This is because the genus of a

3-manifold is the minimum genus of a Heegaard splitting. We also have g(S1) = 1,

and thus by the equation (?) above,

1 = 2 + g(Σ0)− 1.

This tells us that g(Σ0) = 0, but Σ0 needs to be a bridge surface for Cm,n and thus,

a Heegaard surface, which gives a contradiction as the Heegaard genus of Cm,n is

greater than zero, since Cm,n is not S3, the only 3-manifold with a genus zero Heegaard

splitting. This completes the final case of the proof.
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Chapter 6

Generalizations and Conjectures

Montesinos knots are n rational tangles connected as in Figure 2.7. The 2-bridge

knots are the special case in which n = 1. A nontorus 2-bridge knot has primitive

bridge spectrum (2, 1, 0). This generalizes to some Montesinos knots, as we see from

Theorem 4.2.1. A special class of Montesinos knots are n-pretzel knots, having βi = 1

for all i; these also then have stair-step primitive bridge spectra if gcd{αi} 6= 1. But

these knots embed on a genus n − 1 torus, see Figure 4.1. Hence, Corollary 4.2.2

states that their bridge spectrum is (n, n− 1, . . . , 3, 2, 0).

Question 6.1. Are pretzel knots exactly the class of Montesinos knots which have the

property that b̂(K) 6= b(K)?

So, as with the Theorem 5.2.1, we would like to know what happens to bridge

spectra under the operation of cabling. In general, we do not know. But examples of

cabling that fails to produce an m-stair-step bridge spectrum, coming from cables of

pretzel knots.

Conjecture 6.2. Let P (p1, p2, . . . , pj) be a pretzel knot and Tm,n an (m,n)-torus knot.

If K = cable(Tm,n, P (p1, p2, . . . , pj) is a Tm,n cable of the P (p1, p2, . . . , pj), then the
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bridge spectrum of K is b(K) = (mj,m(j−1), . . . , 3m, 2m,min{m, |2·
∑j

i=1 pi−n|}, 0).

We conjecture that the degeneration we see in the last nonzero bridge number in

Conjecture 6.2 is analogous to the degeneration we see in iterated torus knots, see

[24]. Where as when we move to 2-bridge knots, we have no degeneration, which in

this analogy, perhaps corresponds to Montesinos knots which are not pretzel. Thus,

this leads us to Conjecture 6.3, which stems from question 3.5 in [17].

A note on the direction of the possible proof for Conjecture 6.2: It seems that

methods similar to the ones used in this dissertation in the proof of the Theorem 5.2.1

might work for n = 3, but not for n ≥ 4. This is a consequence of Oertel’s work in

[16] where he shows that Montesinos knots with four or more branches have closed

incompressible surfaces in their exterior. This stands in sharp contrast to the situation

for 2-bridge knots, which played a key role in our proof of Theorem 5.2.1.

Conjecture 6.3. The bridge spectrum of an (m,n)-cable of a Montesinos knot M0 is

m-stair-step if and only if M0 is not a pretzel knot.

There is less direct evidence in support of this conjecture at this time. In a similar

vein, though, is the following conjecture. We noticed that cabling is mostly well

behaved in the cases we have studied. There exists some degeneration at the end of

the bridge spectrum, but we do not believe there can be degeneration elsewhere.

Conjecture 6.4. Let J be a knot with bridge spectrum b(J) = (b0(J), . . . , bg(J), 0)

and a cable K = cable(Tm,n, J). Then

b(K) = (m · b0(J),m · b1(J), . . . ,m · bg−1(J),m · bg(J), bg+1(K), 0) .
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