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Problems in two areas of graph theory will be considered.

First, I will consider extremal problems for trees. In these questions we examine

the trees that maximize or minimize various invariants. For instance the number

of independent sets, the number of matchings, the number of subtrees, the sum of

pairwise distances, the spectral radius, and the number of homomorphisms to a fixed

graph. I have two general approaches to these problems. To find the extremal trees

in the collection of trees on n vertices with a fixed degree bound I use the certificate

method. The certificate is a branch invariant, related to, but not the same as, the

original invariant. We exploit the recursive structure of the problem. The second

approach is geared towards finding the trees with given degree sequence that are

extremal. I have a common approach involving labelings of the vertices corresponding

to each invariant; the canonical example of which is labeling the vertices by the

components of the leading eigenvector. This approach yields strictly stronger results

when combined with a majorization result.

Second, I will consider two problems in graphs reconstruction. For these problems

we are given limited information about a graph and decide whether the graph is

uniquely determined by this data. The first problem is reconstruction of trees from

their k-subtree matrix; a generalization of the Wiener matrix. This includes the

problem of reconstruction from the Wiener matrix which was an open problem. Two

vertices are adjacent if the corresponding entry is the largest in either its row or



its column. The second problem is reconstructing graphs from metric balls of their

vertices. I give a solution to the conjecture that every graph with no pendant vertices

and girth at least 2r + 3 can be reconstructed from its metric balls of radius r. We

do so by examining the intersections of metric balls and their sizes.
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Chapter 1

Introduction

1.1 Maximizing and Minimizing Graph Invariants

Graph invariants distill the structure of a graph down to a number independent of the

graph’s representation. Thus understanding an invariant gives us information about

the structure of a graph. Many graph invariants have been developed, each telling us

something different about the structure of the graph.

One graph invariant that we will consider, in various contexts, in this thesis is the

Wiener index. The Wiener index of a graph is defined to be the sum of the distances

between each pair of vertices in the graph. Thus the Wiener index of Kn is
(
n
2

)
, and

that of the Pn is (counting the number of pairs at distance k)
∑n−1

k=1(n− k)k =
(
n+2
3

)
.

A particularly interesting class of graphs to examine, for this and many invariants, is

the class of trees on n vertices. In Figure 1.1 we list every tree (up to isomorphism)

on 7 vertices together with its Wiener index and number of independent sets.

It is a well known fact that for trees the Wiener index is maximized by the path

and minimized by the star. Roughly speaking, the less branched the tree is, the higher

the Wiener index. A first observation is that trees with the same maximum degree
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(a) deg: 2,2,2,2,2,1,1
W: 56 ind: 33

(b) deg: 3,2,2,2,1,1,1
W: 52 ind: 36

(c) deg: 3,2,2,2,1,1,1
W: 50 ind: 35

(d) deg: 3,2,2,2,1,1,1
W: 48 ind: 34

(e) deg: 3,3,2,1,1,1,1
W: 48 ind: 40

(f) deg: 3,3,2,1,1,1,1
W: 46 ind: 37

(g) deg: 4,2,2,1,1,1,1
W: 46 ind: 42

(h) deg: 4,2,2,1,1,1,1
W: 44 ind: 39

(i) deg: 4,3,1,1,1,1,1
W: 42 ind: 43

(j) deg: 5,2,1,1,1,1,1
W: 40 ind: 49

(k) deg: 6,1,1,1,1,1,1
W: 36 ind: 64

Figure 1.1: All trees on 7 vertices with their degree sequence (deg), Wiener index
(W), and number of independent sets (ind).

appear to be clustered together in this order. One may wonder which trees have

the largest or smallest Wiener index under the restriction of maximum degree. Since

the path has the maximum Wiener index and it has maximum degree less than any

other tree, the only meaningful question is which tree or trees with a given maximum

degree minimize the Wiener index. Fischermann, Hoffmann, Rautenbach, Székely,

and Volkmann characterized such trees [4]. They proved that the tree with maximum

degree at most d+1 is the ball Bn,d. This is the tree where every vertex (except for at

most one) has degree d+ 1 or 1 and vertices are packed as close together as possible.
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A second similar observation would be that trees with the same degree sequence are

clustered together. In his thesis, Jelen [10] addressed this question showing that

the tree with a given degree sequence that minimizes the Wiener index is the again

the ball (suitably reinterpreted) and that the trees maximizing the Wiener index are

caterpillars.

It is an interesting fact that many pairs of graph invariants are strongly correlated

for trees (for an explicit result of these correlations see [20]). One such correlation is

the Wiener index and the number of independent sets. In Figure 1.1 we list the values

of both for all trees on 7 vertices. The ordering of trees by the number of independent

sets is similar to the reverse of the ordering by Wiener index; it is maximized by the

star and minimized by the path. But even taking this reversal into account, it is not

the case that the ordering by the Wiener index and the ordering by the number of

independent sets is the same; they are simply similar. Thus, it should be no surprise

that the same questions (which tree minimizes or maximizes this number in some

family of trees?) when asked about the number of independent sets give slightly

different answers. Heuberger and Wagner showed that the festoon maximized the

number of independent sets in the class of trees with a given maximum degree [6].

This tree, the festoon, was completely new at the time and its structure was not

completely understood, preventing them from providing an elegant definition. We

will rectify this in Chapter 3 as well as solve the problem of maximizing the number

of independent sets for trees with a given degree sequence. We in fact prove quite a

bit more. We give a result for a larger class of invariants.

A natural class of graph invariants comes from considering the number of homo-

morphisms to a fixed graph H. The number of independent sets is actually one of

these invariants. It counts the number of homomorphisms to the graph Hind given in

Figure 1.2. The only restriction of a homomorphism to Hind is that we cannot send



4

a b

Figure 1.2: Hind

adjacent vertices to vertex a. Hence if we have an independent set in a graph G we

can send every vertex of the independent set to a and every other vertex to b and

have a homomorphism of G to Hind. Conversely if we have a homomorphism from

G to Hind the inverse image of a is an independent set in G. Counting homomor-

phisms of trees to graphs is fairly easy. Start with an arbitrary choice of root r for

a given tree T , and for each vertex v in the target graph H, consider the number of

homomorphisms that send r to v. For each branch of r we can send its root to any

neighbor of v. All of these choices can be made independently and recursively for

each branch. For concreteness, let’s consider the problem of counting the number of

independent sets in T . We keep track, for each branch of T of how many independent

sets in that branch contain the root (i.e., send the root to a ∈ V (Hind)) and how

many do not. We work our way up from the leafs. The number of independent sets

of a branch containing the root is the product of the number of independent sets of

each of its branches not containing the root. The number of independent sets of a

branch not containing the root is the product of the number of independent sets of

each of its branches. This is illustrated in Figure 1.3 where each vertex is labeled

with the number of independent sets of the branch at that vertex containing the root

and not containing the root. In the end the total number of independent sets is just

the sum of the number containing and not containing the root. In Figure 1.3 this is

96 + 210 = 306.

The number of colorings of a graph with k colors is another example of counting

homomorphisms. The number of homomorphisms to the complete graph on k vertices
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96,210

1,4

1,1 1,1

2,12

1,2

1,1

1,1 1,1

1,2

1,1

Figure 1.3: Example of counting independent sets.

is the number of k-colorings; for a given homomorphism the inverse images of vertices

correspond to the color classes in a coloring. Using the above method we can count

the number of homomorphisms of a tree on n vertices to the complete graph on k

vertices. There are k choices for the root and since the degree of each vertex in the

complete graph is k−1, there are k−1 choices for the root of each branch. The same

is true for every branch and so the total number of homomorphisms or k-colorings is

simply k(k−1)n−1. The number of k colorings of T is the evaluation of the chromatic

polynomial of T at k. But every tree on n vertices has the same number of k-colorings

for all k so every tree on n vertices has the same chromatic polynomial t(t − 1)n−1.

(This is of course a well known result.)

For non-regular target graphs in general the number of homomorphisms from trees

on n vertices is not constant. As we will see, many different target graphs have the

same trees that maximize the number of homomorphisms. In particular, for strongly

biregular graphs the extremal tree is the ball or the festoon. This is one of many

applications in Chapter 3.
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1.2 Graph Reconstruction Problems

Reconstruction is another interesting topic in graph theory. In general it asks: is

a graph determined by some collection of partial information about it? The most

famous of such problems is the Kelly-Ulam-Reconstruction Conjecture that claims

that each graph (on 3 or more vertices) is determined up to isomorphism by the

isomorphism classes of its induced proper subgraphs, or equivalently, that a graph

is determined up to isomorphism by the multiset of isomorphism classes of single

vertex deleted subgraphs. A more precise statement of this problem is that G is

Kelly-Ulam-reconstructable if G ' G′ whenever G′ is a graph on the same vertex set

V with G − v ' G′ − v for all v ∈ V . Kelly proved the conjecture for all trees [11]

and since then much work has been done on the subject. Unfortunately this thesis

will not solve this conjecture.

There are many other reconstruction questions. One such question is whether one

can reconstruct a tree from its Wiener matrix. Randić, Guo, Oxley, Krishnapriyan,

and Naylor conjectured that for trees an entry in the Wiener Matrix is the largest

in its row or column if and only if the corresponding vertices are adjacent [16]. The

Wiener matrix for a tree is the matrix with entries equaling the number of paths

containing the corresponding pair of vertices. A generalization of this problem is the

k-subtree matrix which has entries equaling the number of subtrees with maximum

degree at most k containing the corresponding pair of vertices. The Wiener matrix is

a special case of this when k = 2. We will show in Chapter 4 that we can reconstruct

a tree from any of these matrices.

Another such question is whether a graph can be reconstructed from the collection

of metric balls of radius r about each vertex. A metric ball of radius r about a vertex

is simply the set of vertices within distance r. It is easy to construct examples
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where reconstruction from these metric balls fails. With no pendant vertices and

large enough girth we can always reconstruct form metric balls. However, there is

an open question of how large the girth must be to reconstruct from metric balls of

radius r. Levenshtein [14] proved that graphs with no pendant vertices and girth at

least 2r + 2d(r − 1)/4e + 1 can be reconstructed from metric balls of radius r. He

conjectured that that any graph with no pendant vertices and girth at least 2r + 3

can be reconstructed from metric balls of radius r. In Chapter 4, we will prove this

conjecture. This is the best possible result.
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Chapter 2

Notation and Definitions

A graph is an ordered pair G = (V (G), E(G)) of vertices V (G) which is some finite

set and edges E(G) representing a connection between two vertices. When possible

we will write V = V (G) and E = E(G). For graphs the edges will be subsets of

size two of the vertex set corresponding to the two endpoints of the edge. A vertex

and an edge are said to be incident if the vertex is one of the endpoints of the edge.

Two vertices are adjacent if there is an edge containing them. The neighborhood of

a vertex v, written NG(v) (or N(v) when clear), is the set of vertices adjacent to

v. For looped graphs the edges can also have both endpoints be the same vertex.

For convenience, instead of writing u, v ∈ E for an edge of a graph G we may write

u ∼G v (or u ∼ v when clear) or simply uv. For a non-edge we will write u 6∼ v. The

order of a graph G, written |G|, is the size of the vertex set. Often we will simply

write n when |G| = n and the graph is clear by context.

A directed graph D is a graph with an orientation on each edge; one endpoint is

the start and the other is the end of the edge. In figures this is denoted with an arrow

from the start to the end. When speaking about a directed edge starting at u and

ending at v we will write u→ v or simply
⇀
uw.
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A path between two vertices u and v is a list of distinct vertices (except possibly

the first and last vertex) starting with u and ending with v such that each adjacent

pair is an edge. A directed path from u to v is a path where the edge for each adjacent

pair is directed towards the second vertex. A cycle is a path that starts and ends at

the same vertex. A forest is a graph with no cycles. A graph is connected if there is

a path between any two vertices. A tree is a connected graph with no cycles. The

length of a path is one less than the number of vertices in the list, i.e., the number of

edges. The distance between two vertices is the length of the shortest path between

them.

The degree of a vertex is the number of edges it is incident to. The degree sequence

of a graph is a list of the degrees of each vertex, usually sorted in non-increasing or

non-decreasing order. A leaf of a tree is a vertex of degree one.

A homomorphism between graphs G and H is a function f : V (G)→ V (H) such

that f(u)f(v) ∈ E(H) for every uv ∈ E(G). Two graphs G and H are isomorphic if

there is an invertible homomorphism whose inverse is also a homomorphism, which

we denote by G ' H. We also write Hom(G,H) for the set of homomorphisms from

G to H and hom(G,H) = |Hom(G,H)|. When we speak about uniqueness of graphs

or unlabeled graphs we mean unique up to isomorphism.

A (real) graph invariant is a function with domain the set of all graphs and range

R such that isomorphic graphs have the same value. Put another way, an invariant

is some property of the graph that does not depend on the current representation of

the graph.

Let Tn,d be the collection of trees on n vertices and maximum degree at most d+1.

Let Tπ be the collection of trees with degree sequence π. Note that a degree sequence

π of length n is that of a tree if and only if π(i) ≥ 1 for all i and
∑
π(i) = 2n− 2.

A subgraph of G = (V,E) is a graph G′ = (V ′, E ′) that consists of V ′ ⊆ V and
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E ′ ⊆ E, we will write G′ ⊆ G. A subgraph G′ ⊆ G is proper if G′ 6= G. A subgraph

G′ ⊂ G is induced by the set A ⊂ V , written G′ = G[A], if its vertex set is A and it

contains every edge in G between two vertices in A. A subtree is a subgraph that is

a tree.

A rooted tree is simply a tree with a vertex or edge designated to be the root. If

T is a tree and v ∈ V (T ) we write T v for T rooted at v. If T is a tree and vw ∈ E(T )

we write T vw for T rooted at the edge vw. If T is a rooted tree we write root(T )

for its root. A birooted forest is a forest with two distinguished vertices: the left and

right root. We write T v,w for the birooted forest T with left root v and right root w.

A branch of a tree is a rooted subtree induced by the vertices on one side of an

edge. More formally, if T is a rooted tree with root(T ) = v and u ∈ V (T ) \ {v} then

the branch of T at u, denoted T vu (or Tu when clear by context), is the subgraph of

T consisting of all vertices that are separated from v by u. In other words w ∈ Tu if

and only if u is in the unique path from w to v. Similarly, if T is a rooted tree with

root(T ) = vw and u ∈ V (T ) then the branch of T at u, denoted T vwu (or Tu when

clear by context), is the subgraph of T consisting of all vertices that are separated

from both v and w by u. In both cases, we will consider the branch Tu to be rooted

at u. The branches of T v will be the collection of branches of T at the neighbors of

v, that is {T vu : u ∈ N(v)}.

Example 1. The branches of T f , where T is the tree in Figure 2.1, are T [e, a, d, h],

T [b, c, g], and T [i]. If T is rooted at the edge ef then the branch at f , i.e. T eff , is

T [f, b, c, g, i], and the branch at b, i.e. T efb , is T [b, c, g].

Let T be a rooted tree. The depth of a vertex in T v is the distance to v, and, in

the case of T vw, the minimum of the distances to v and w. The height of a rooted

tree is the greatest depth of a leaf.
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a b c

d
e f g

h i

Figure 2.1: Example

The children of u with respect to v in tree T , denoted N v
T (u) (or N v(u) when

clear), are N(u) ∩ T vu . If T is a rooted tree and u ∈ V (T ) is not the root then the

predecessor of u is the unique neighbor of u that is closer to the root. The predecessor

of u is denoted u′. In the case T vw of a tree rooted at an edge, neither v′ nor w′ are

defined.

One of the simplest rooted trees that we will encounter is the complete d-ary tree.

We denote the complete d-ary tree on with n levels by Cn. It is defined inductively as

follows. C1 is the rooted tree with one vertex. For n > 1, Cn is the rooted tree having

d branches all equal to Cn−1. For convenience we write C0 for the empty rooted tree.

We can consider C0 to be a branch of any vertex of a tree when needed, specifically

when we need d branches of a vertex we will make up any deficit with copies of C0.

The path on n vertices is the graph Pn consisting of a single path of length n− 1.

The star on n vertices is the graph K1,n−1 with one vertex adjacent to all others.

Let [n] = {1, 2, . . . , n}.
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Chapter 3

Extremal Trees

3.1 Discussion

Extremal graph theory is one of the cornerstones of graph theory. In general it asks:

given a class of graphs, what are the extremal values of some invariant? Further we

would like to know what graphs achieve these extremal values, that is, what are the

extremal graphs? For the set of all trees on n vertices and many interesting invariants

(e.g. diameter, number of leafs, number of independent sets, number of matchings,

largest eigenvalue, Wiener index, and more), the extremal trees are the star and path.

These questions, however, become substantially more interesting if we restrict to trees

with bounded degrees or a fixed degree sequence.

A motivating example is the class of chemical trees, that is, the class of trees with

maximum degree at most four. As the name suggests this class has applications in

chemistry. Alkanes are chemical compounds that consist of only carbon and hydrogen

atoms linked by single bonds in an acyclic manor. Each carbon atom must have

four bonds to other atoms and each hydrogen must be joined to a carbon atom,

the resulting structure of the carbon atoms is a tree of maximum degree four. The
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relevance to chemistry is that various graph theoretical invariants on chemical trees

correlate well to physical properties of the corresponding alkane, such as their boiling

points [21].

The problem of maximizing or minimizing an invariant on trees of bounded max-

imum degree has been addressed for independent sets, matchings, energy, Wiener

index, spectral radius, Laplacian spectral radius, and number of subtrees [6, 7, 12,

19, 4, 9, 18, 22]. For all of these invariants it is the case that the optimal trees without

degree restrictions are the path and the star. In Tn,d the path is still an extremal tree,

the trivial extremal tree; we will concern ourselves with the other extremal trees from

here on. For all of these invariants the other extremal tree is either the ball or the

festoon (for detailed descriptions of these trees see Section 3.2.3). Unfortunately the

previous methods used to determine the extremal trees for these various invariants

are, for the most part, all different, and somewhat cumbersome. The goal of Section

3.2 is to present one proof that can be applied to all of these invariants and to make

it clear why we get two different trees, the ball and the festoon, depending on the

invariant.

For trees with a fixed degree sequence very little is known. Jelen addressed maxi-

mizing and minimizing the Wiener index in his 2002 dissertation using the superdom-

inance order [10]. More recently in 2008 Bıyıkoğlu and Leydold addressed maximizing

the spectral radius [3]. Their approach also applies to the Laplacian spectral radius.

The tree which minimizes the Wiener index and maximizes the spectral radius is the

ball. The goal of Section 3.3 is to give a general result in the spirit of Bıyıkoğlu and

Leydold that can be used to show that other invariants are maximized or minimized

in Tπ by the ball or festoon. Additionally, if a majorization result can be shown for

the invariant this will imply the corresponding result for bounded degree.

Our techniques allow us to extend the known results in a variety of directions.
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For instance consider the problem of maximizing the (weighted) number of homo-

morphisms from a tree to a given target graph. This gives us an invariant for each

weighted target graph. We will show that if the target graph satisfies a simple con-

dition then we can use these new methods to find the tree with bounded degree or

a fixed degree sequence that maximizes this quantity. In addition, we prove the in-

teresting fact that the optimal tree we get for this invariant is the ball or festoon

depending on the target graph, independent of the weighting.

The method for bounded degree uses a certificate that will be specific to each

invariant. The certificate is a branch invariant that satisfies specific properties that

will be key to the proof. There are two types of certificates, increasing and decreasing,

and the type determines which tree is optimal, the ball or the festoon. We will prove

the result using a generic certificate and show that to apply it to any invariant we

simply need to present a certificate for that invariant. The main result of Section 3.2

is as follows.

Main Theorem 1. Let σ be an invariant of trees with a certificate ρ. If ρ is increasing

then σ is optimized in Tn,d by the ball Bn,d. If ρ is decreasing then σ is optimized in

Tn,d by the festoon Fn,d.

The method for a fixed degree sequence is more complex. An invariant has an

associated labeling. If the labeling refines the degree and is direct for a maximal

(or minimal) tree then the tree is a ball. If the labeling refines the degree and is

alternating for a maximal (or minimal) tree then the tree is a festoon. The main

result of 3.3 is as follows.

Main Theorem 2. Let T ∈ Tπ and f a labeling of T that is a refinement of the

degree. If f is a direct labeling of T then T ' Bπ. If f is an alternating labeling of T

then T ' Fπ.
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In Section 3.2.6 we look at applications of the results of Section 3.2 for bounded

degree trees to the following invariants: number of independent sets, value of matching

generating polynomial (at x > 0), number of weighted homomorphisms to a strongly

biregular graph, number of subtrees, Wiener index, spectral radius, and Laplacian

spectral radius. In Section 3.3.5 we look at applications of the results of Section 3.3

for trees with a fixed degree sequence to the number of homomorphisms to a strongly

biregular graph, the number of matchings, and the number of subtrees.

We close the chapter in Section 3.4 with some open problems.

3.2 Bounded Degree

Let d be some fixed integer. We would like to find the tree that maximizes or mini-

mizes an invariant in Tn,d.

3.2.1 Certificates

To better understand the invariant we are trying to optimize it is useful to think of

computing a related invariant for the tree’s branches.

Definition 1. A branch invariant is an invariant of possibly empty rooted trees.

A certificate is a special branch invariant, one that satisfies a certain branch ex-

change property. This property is the key to the proof of the main theorem. Roughly

it says that in an extremal tree, branches with small values appear together, and

those with large values appear together. To be more precise, looking at the certifi-

cates values for the branches of two vertices, we have the smaller values adjacent to

one vertex and the larger adjacent to the other vertex.
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Branch Exchange Property. Let S ⊆ Tn,d be a set of trees, and ρ a branch

invariant. Then ρ satisfies the branch exchange property on S if for each T ∈ S and

l 6= r vertices of T we have the following. Let {Li}di=1 be the d branches of T rl and

{Ri}di=1 the d branches of T lr, (see Figure 3.1). Then either maxi(ρ(Li)) ≤ mini(ρ(Ri))

or mini(ρ(Li)) ≥ maxi(ρ(Ri)).

R1

R2

Rd

r

L1

L2

Ld

l

Figure 3.1: The Branch Exchange Property

In our applications the branch invariant ρ mentioned in the branch exchange

property is not the tree invariant σ we are optimizing. The two are related only by

the seemingly weak connection that ρ should satisfy the branch exchange property

on the class of σ-extremal trees.

Definition 2. Let σ be an invariant to be optimized. A certificate for σ is a branch

invariant ρ satisfying.

1. The values of ρ are in I = (0, 1] and ρ(C0) = 1, ρ(C1) < 1.

2. There exists a continuous symmetric function f : Id → I that is either strictly

increasing or strictly decreasing, such that if T is a rooted tree with (possibly

empty) branches T1, . . . , Td then

ρ(T ) = f(ρ(T1), . . . , ρ(Td)).
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The function f will be referred to as the certificate’s recursive definition.

3. ρ satisfies the Branch Exchange Property (BEP) on the set of σ-extremal trees.

The certificate is said to be increasing if f is increasing and decreasing if f is decreas-

ing.

Sometimes it is more natural to work with a branch invariant that takes its values

on [0,∞), which just requires a slight modification of the above.

Definition 3. A wide certificate for σ is a branch invariant µ satisfying properties 2

& 3 of Definition 2 but instead of values in (0, 1], it takes values in I = [0,∞) with

µ(C0) = 0, µ(C1) > 0.

Proposition 1. If σ has a wide certificate µ then it has a certificate ρ. Moreover ρ

is increasing if and only if µ is.

Proof. Let µ be a wide certificate and let g be its associated function. Define

ρ(T ) =
1

1 + µ(T )

and

f(x1, . . . , xd) =
1

1 + g( 1
x1
− 1, . . . , 1

xd
− 1)

.

Observe that since µ(T ) ∈ [0,∞) we have ρ(T ) ∈ (0, 1]. Also ρ(C0) = (1 + 0)−1 = 1

and ρ(C1) = (1 + µ(C1))
−1 < 1 since µ(C1) > 0. It is clear that if g is a continuous

symmetric monotonic function then so is f . Clearly, if µ(T1) < µ(T2) then ρ(T1) >

ρ(T2). It is straightforward to check that if µ satisfies the branch exchange property

for σ-extremal trees then so does ρ. Finally, since f is the composition of g with two

other strictly decreasing functions, it is clear that f is strictly increasing when g is,

and f is strictly decreasing when g is.
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3.2.2 Outline

Given a extremal tree T rooted at v and a certificate ρ it will be useful to think of

labeling each vertex u with the value ρ(Tu). When we have an increasing certificate

we would like to find a choice of root so that there is a plane tree drawing such that

at every level the values are increasing from left to right, and the largest value at any

level is at most the smallest value at the next level. This will show that the leafs of

the extremal tree must all be on the last two levels. By results in this section we see

that all but at most one of the branches of the root is complete, and the possibly

incomplete branch satisfies this condition inductively. This is the defining property

of the ball, so the extremal tree for an invariant with an increasing certificate is the

ball.

When we have a decreasing certificate we would like to find a choice of root so

that there is a plane tree drawing such that at every level the values are alternately

increasing and decreasing from left to right, and the values on any level are more

‘central’ than on the next level. This will show that the leafs of the extremal tree

must all be on the last three levels. Using basic facts from this section we show that

all but possibly one of the branches of the root are complete, i.e. Ch, Ch−1, Ch−2 where

h is the height of the tree. The possibly remaining incomplete branch also satisfies

this property, but we will see that if its height is h we can only have branches of

Ch or Ch−2 and possibly one incomplete branch that also satisfies the same property.

This is the defining property of the festoon. Thus, if an invariant has a decreasing

certificate, its extremal tree is the festoon.

Observe that a plane tree drawing is equivalent to giving an ordering of the vertices

at each level, the extra structure that we described above makes an order on all of the

vertices except the root. This is what we will call a strong ordering of the vertices.
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In general strong orderings are hard to find; for most extremal trees there is only one

choice of root such that the remaining vertices have a strong order. To assist us in

finding the strong order we will start with what we call a weak ordering, which we

can find for any choice of root in an extremal tree.

Definition 4. Let T be a tree rooted at vertex v or an edge v1v2. A certificate ordering

of T with respect to certificate ρ is a partial order, �, of the vertices, excluding v in

the vertex rooted case, such that if u and w are vertices at the same depth then the

following conditions are satisfied.

1. u and w are comparable. Moreover, if ρ(Tu) < ρ(Tw) then u ≺ w.

2. If u and w are not adjacent to v or equal to v1 or v2, and u ≺ w then,

a) if f is increasing then u′ � w′,

b) if f is decreasing then w′ � u′.

Remark. There is a difference between edge rooted and vertex rooted trees. If T is

rooted at vertex v the value of ρ(T v) will be irrelevant. Instead we will care about

the value of ρ(T uv ) for u ∈ N(v). If T is rooted at edge vw then we will care about

the values of ρ(T vwv ) and ρ(T vww ). This is why we exclude the vertex root from the

certificate order and have the specific exclusions in condition 2 above.

We will use the following terminology to refer to some special elements of a tree

with a certificate order.

Definition 5. We say c is the center of a decreasing certificate with recursive defi-

nition f if

f(c, c, . . . , c) = c.

We will show in Section 3.2.5 that every decreasing certificate has a unique center.
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Definition 6. Fix a certificate order � on T . The first vertex at depth k is the

minimal element at depth k. The last vertex at depth k is the maximal element at

depth k. In the case of a decreasing certificate we also have the following. A vertex

u is before the center if ρ(Tu) < c and is after the center if ρ(Tu) > c. We will refer

to, for instance, the last vertex at depth k before the center, etc.

The formal definitions of a weak and strong order follow.

Definition 7. Let T be a tree rooted at vertex v or an edge v1v2. A weak ordering

of T with respect to the certificate ρ is a certificate ordering such that vertices at

different depths are not comparable.

Definition 8. Let T be a tree rooted at vertex v or an edge v1v2. A strong ordering

of T with respect to the certificate ρ is a certificate ordering satisfying the following

additional conditions.

1. It is a total order.

2. If ρ(Tu) < ρ(Tw) then u ≺ w (no depth restriction).

3. If f is increasing and u,w are two vertices (besides the root in the vertex rooted

case) such that u ≺ w, then the depth of u is less than or equal to that of w.

4. If f is decreasing and u,w are two vertices (besides the root in the vertex rooted

case) such that u ≺ w, then the following holds. If w is before the center then

the depth of w is less than or equal to that of u. If u is after the center then

the depth of u is less than or equal to that of w.

Now we prove some basic lemmas that will be used later.
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Lemma 2. Assume f is a increasing recursive definition for ρ. Let T be any

nonempty rooted tree having d branches (possibly empty), with all degrees at most

d+ 1, then ρ(T ) ≤ ρ(C1). Furthermore for T 6= C1 this is strict, i.e. ρ(T ) < ρ(C1).

Proof. Notice that ρ(C1) = f(1, . . . , 1) is the maximum value of f , and thus since

we can compute ρ(T ) for any nonempty T using f we must have ρ(T ) ≤ ρ(C1) and

furthermore any tree T with a nonempty branch T0 will give less then this maximum

since ρ(T0) < 1 and f is increasing.

Remark. In this situation it is easy to establish that 1 = ρ(C0) > ρ(C1) > ρ(C2) >

· · · > 0 by induction with the same argument as above. However, we do not use this

fact.

Lemma 3. Assume f is a decreasing recursive definition for ρ. Let T be any

nonempty rooted tree having d branches (possibly empty), with all degrees at most

d+ 1, then ρ(C1) ≤ ρ(T ) ≤ ρ(C2). Furthermore if T 6= C1 then ρ(T ) > ρ(C1), and if

T 6= C2 then ρ(T ) < ρ(C2).

Proof. Notice that ρ(C1) = f(1, . . . , 1) is the minimum value of f , and thus since

we can compute ρ(T ) for any nonempty T using f we must have ρ(T ) ≥ ρ(C1).

Furthermore, any tree T with a nonempty branch T0 will give more than this minimum

since ρ(T0) < 1 and f is decreasing. Now since we have ρ(T ) ≥ ρ(C1) for all rooted

trees (even the empty one), then in particular, if T is a nonempty tree with branches

T1, . . . , Td we have ρ(Ti) ≥ ρ(C1) for all i. Thus, since f is decreasing, ρ(T ) =

f(ρ(T1), . . . , ρ(Td) ≤ f(ρ(C1), . . . , ρ(C1)) = ρ(C2), and if any one of the branches is

not C1 by the above we have that this is strict.

Remark. In this situation it is easy to establish that 0 < ρ(C1) < ρ(C3) < ρ(C5) <

· · · < ρ(C4) < ρ(C2) < ρ(C0) = 1 by induction with the same argument as above.
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However we do not use this fact.

Lemma 4. If T is a σ-extremal tree and ρ is a certificate with recursive definition f ,

then using the notation of the branch exchange property from Section 3.2.1:

• If f is increasing then, ρ(T rl ) ≤ ρ(T lr) if and only if max{ρ(Li)} ≤ min{ρ(Ri)},

and ρ(T rl ) ≥ ρ(T lr) if and only if min{ρ(Li)} ≥ max{ρ(Ri)}.

• If f is decreasing then, ρ(T rl ) ≥ ρ(T lr) if and only if max{ρ(Li)} ≤ min{ρ(Ri)},

and ρ(T rl ) ≤ ρ(T lr) if and only if min{ρ(Li)} ≥ max{ρ(Ri)}.

Proof. Recall, ρ(T rl ) = f (ρ(L1), . . . , ρ(Ld)) and ρ(T lr) = f (ρ(R1), . . . , ρ(Rd)).

Corollary 5. Let T be an extremal tree with respect to an invariant with a certificate

ρ. Then every vertex except possibly one has degree 1 or d+ 1.

Proof. For a contradiction suppose there is more than one vertex of degree not 1 or

d + 1, say u and w are two of them. Applying the branch exchange property to u

and w yields a contradiction since they will each have C0 as a branch and also some

other nonempty branch.

Corollary 6. Let T be an extremal tree with respect to an invariant with a certificate

ρ. If l 6= r and ρ(T rl ) = ρ(T lr) then T rl = T lr = Ch for some h.

Proof. By the previous lemma all of the branches of these two trees will have equal

ρ-values. For the same reason the branches of these branches will all have equal ρ-

values, and so on. At some depth we have a leaf, and since all the ρ-values at that

depth are equal by Lemma 2 or 3, everything at that depth is a leaf. Hence they are

both Ch for some h.
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Lemma 7 (Standard Weak Ordering). If T is extremal then with respect to any choice

of vertex or edge as a root, there is a weak ordering of T , unique up to interchange

of isomorphic branches.

Proof. It is trivial to order the vertices at depth one – simply order the neighbors of

the root in increasing order of their ρ values. If T is rooted at an edge then it is also

trivial to order the two vertices incident to the edge. Assume that we have a weak

ordering up to some depth k. Applying the branch exchange lemma to every pair of

vertices at depth k, we see that their neighbors at depth k + 1 have ρ values that

are not interlaced. Further notice that by Lemma 4, the fact that f is monotonic

forces the neighbors at depth k + 1 to have ρ values in the same or opposite order as

their predecessors respectively, so there is an ordering of the neighbors at depth k+ 1

satisfying all the required properties. Hence we have a weak ordering. It is clear by

Corollary 6 that this is unique up to interchange of isomorphic branches.

Remark. A weak ordering is unique up to interchange of isomorphic branches of a

vertex, i.e. root preserving automorphisms. Hence we refer to the one given above as

the weak ordering.

Our goal is to show that when T is extremal then there is always a choice of root

where there is a strong ordering of the vertices, and prove that this forces the tree to

be one of the two optimal trees, the ball or the festoon, depending only on whether

f is increasing or decreasing.

3.2.3 The Optimal Trees

The two nontrivial optimal trees that we encounter are the ball and the festoon. The

ball can be thought of as a rooted tree with d + 1 branches all equal to Ch (the

complete d-ary tree with h levels) plus one extra partial level of leafs added in order
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to the last level. Thus the ball contains all vertices within distance h of the root,

and all vertices are within distance h + 1 of the root. The vertices at distance h + 1

are clustered as closely together as can be. In chemistry the ball is also known as a

dendrimer. A technical definition follows.

Definition 9 (Ball). Let Bh,δ for δ ∈ {d, d+ 1} be the collection of rooted trees with

δ branches, δ − 1 of which are each equal to Ch or Ch−1 and the last branch is an

element of Bh−1,d, where B0,δ = {C1}. The ball on n vertices and bounded degree

d+ 1, denoted Bn,d, is the unique tree of B =
⋃∞
h=0 Bh,d+1 with n vertices.

A festoon can be thought of in a similar manner as a rooted tree with d + 1

branches all from Ch or Ch+1 plus one extra level of C2’s added in order to the second

to last level. Thus the festoon contains all vertices within distance h of the root, and

all vertices are within distance h + 2 of the root. The vertices at distance h + 2 are

clustered as closely together as can be. A technical definition follows.

Definition 10 (Festoon). Let Fh be the collection of rooted trees with d branches,

d−1 of which are each equal to Ch or Ch−2 and the last branch is an element of Fh−1,

where F0 = {C1} . Let F∗h be the collection of rooted trees with d+ 1 branches, d of

which are equal to Ch, Ch−1, or Ch−2 and the last an element of Fh−1. The festoon on

n vertices and bounded degree d+ 1, denoted Fn,d, is the unique tree of F =
⋃∞
h=0F∗h

with n vertices. In this definition we exclude choice of Ch when h < 0 since they are

undefined.

The festoon tree was first defined by Heuberger and Wagner in [6] as the solution

for two optimization problems. The first problem was to maximize the number of

independent sets a tree of fixed size and bounded degree could have. The second was

the similar problem to minimize the number of matchings that a tree of fixed size
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and bounded degree could have. The number of independent sets and the number of

matchings are both examples of invariants that are a measure of branching, that is to

say that for a fixed tree size the maximum and minimum examples of these invariants

are the star and the path and ‘small’ changes to the graph produce small changes in

the invariants.

Later in [7] it was also shown that the festoon tree also minimizes the energy of a

tree of fixed size and bounded degree. The energy of a graph is the sum of the absolute

value of its eigenvalues but it can also be computed by the Coulson integral in terms of

the matching generating polynomial. It turns out that the festoon tree minimizes the

matching generating polynomial for all positive values of x and therefore it minimizes

the energy.

The original definition given by Heuberger and Wagner in [6] can be paraphrased

as the following:

Definition 11 (Old Festoon). There is a unique treeHn,d with n vertices and bounded

degree d+ 1 that can be decomposed as

v0 vℓ−1 vℓ

M0,1 M0,d−1 Mℓ−1,1 Mℓ−1,d−1 Mℓ,1 Mℓ,d−1 Mℓ,d

with Mk,1, . . . ,Mk,d−1 ∈ {Ck, Ck+2} for 0 ≤ k < ` and either M`,1 = · · · = M`,d = C`−1

or M`,1 = · · · = M`,d = C` or M`,1, . . . ,M`,d ∈ {C`, C`+1, C`+2}, where at least two of

M`,1, . . . ,M`,d equal C`+1.

This definition can lead to some trees that at first glance look rather strange. For

example in [8] we are given the following example of F69,2 shown in Figure 3.2. For
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Figure 5. T ∗
69,2, explicit version

Example 4.4. Our last example in this section shows an instance where three different types of
complete d-ary trees are attached to the terminal vertex of the base path, namely the F-tree T ∗

44,4.
The corresponding F-expansion is found to be 2, (2, 1) in this case, and so we have � = 1, meaning
that we have to start with a path v0v1 and attach two copies of C2 to v0 (and one copy of C0,
which does not actually change anything) and one copy of C1, two copies of C2 and one copy of
C3 to v1, see Figures 6 and 7.

C0 C2 C2 C1 C2 C2 C3

Figure 6. T ∗
44,4 in decomposed form. An explicit version is shown in Figure 7

Figure 7. T ∗
44,4, explicit version

5. Further examples

In addition to the examples discussed in the previous section, we show complete lists of the
F-trees T ∗

n,d for small values of n and d, specifically for 1 ≤ n ≤ 20 and 2 ≤ d ≤ 4. These are shown
in Figures 8 to 10. All of these figures, including the ones in Section 4, were created automatically
by means of an Asymptote [1] package that can be downloaded from [11]. On this webpage, all
necessary files for creating pictures of F-trees of arbitrary size and degree are provided together
with samples containing all F-trees up to 100 vertices for d ≤ 5.

6. Further properties and numerical data

Various structural parameters of F-trees can be determined directly from the F-coefficients. For
instance, it is not difficult to see that all vertices, with at most one exception, in an F-tree T ∗

n,d

have degree 1 or d + 1. The degree of the exceptional vertex is given by 1 + r0, provided that

Figure 3.2: F69,2 in the form of the old definition

more examples see Figure 9 in [8]. Furthermore, the algorithm given for creating

these trees is equally hard to understand (see Algorithm 1 and 2 in [8]). We would

like to show that Definitions 10 and 11 are equivalent. The essential change in the

definition is just the requirement on the last set of branches M`,1, . . . ,M`,d.

To see that our definitions are equivalent consider the following. If M`,1 = · · · =

M`,d = C`−1 then combining these branches together we have one branch of C` at

v` and so if we root at v`−1 we will have one branch of C`, d − 1 branches of C`−1

and C`+1 and the last branch follows the same recursive definition. This is consistent

with the new definition when h = ` + 1. If M`,1 = · · · = M`,d = C` then combining

these branches together we have one branch of C`+1 at v` and so if we root at v`−1

we will have one branch of C`+1, d− 1 branches of C`−1 and C`+1 and the last branch

follows the same recursive definition. This is consistent with the new definition when

h = ` + 1. If M`,1, . . . ,M`,d ∈ {C`, C`+1, C`+2}, where at least two of M`,1, . . . ,M`,d

equal C`+1 then rooting at v` we are consistent with the new definition when h = `+2.

In a similar fashion we can go in the other direction so the definitions are equivalent.

Below are easy algorithms to build the ball and festoon. When implementing

them it is fastest to keep track of the lowest numbered vertex that is not full degree.
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Algorithm Festoon(n, d): returns a labeled tree that is the festoon on n vertices

with bounded degree d+ 1.

1. Input n and d.

2. If n ≤ d+ 1 then return the star K1,n−1 and label the vertices 1, . . . , n with the

center vertex labeled as 1.

3. If n ≥ d + 2 then let T = Festoon(n − d − 1, d) and let k be the smallest

numbered vertex in T having degree d or less. To T we will add a star K1,d

with the center labeled n− d and leafs n− d+ 1, . . . , n, we will return this tree

with an edge added between vertex k and n− d.

One should compare this to the algorithm for creating a ball on n vertices with

bounded degree d+ 1.

Algorithm Ball(n, d): returns a labeled tree that is the ball on n vertices with

bounded degree d+ 1.

1. Input n and d.

2. If n = 1 then return the single vertex graph with its vertex labeled as 1.

3. If n ≥ 2 then let T = Ball(n− 1, d) and let k be the smallest numbered vertex

in T having degree d or less. To T we will add a leaf with label n adjacent to

the vertex labeled k and return this tree.

3.2.4 Increasing Certificate Solution

We will first consider the case where we have an increasing certificate ρ for the invari-

ant σ. Then in the next section we will consider the case where we have a decreasing
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certificate. Given an increasing certificate ρ for the invariant σ we will do the follow-

ing. First we give a technical lemma saying that for an extremal tree predecessor of

the last vertex at any given depth at least 2 is not the double predecessor of the first

vertex at the next depth. Then we show that an extremal tree has a strong order and

prove that we must have a ball.

Lemma 8. Let k ≥ 3. If T is extremal and has a non-leaf root and no leafs at depth

k−2 or less, then with respect to a weak ordering, if u is the first at depth k and w is

the last at depth k − 1, then u′′ 6= w′. That is, the branches Tu′ and Tw′ are disjoint.

Proof. First we will show that if T has no leafs at depth k − 1 (k ≥ 2) or less then

u′ 6= w. If it is the case that w = u′, then there is no other vertex at depth k− 1, for

if x 6= w is at this depth, by assumption x ≺ w and so since we have a weak ordering

x0 ≺ u for any x0 such that x′0 = x, a contradiction to the choice of u. But this is a

contradiction since now x must be a leaf, but by assumption there is no leaf at depth

k− 1. Now since there is no other vertex at depth k− 1 and no leafs at lesser depths

we must have that the root is a leaf, a contradiction. Therefore w 6= u′. If there is a

leaf at depth k − 1 then by definition if w is the maximum with respect to the weak

ordering at depth k − 1 then it must be a leaf and thus w neighbors no vertex at

depth k. Therefore if T has a non-leaf root and there are no leafs at depth k − 2 or

less then u′ 6= w. Observe that u′ is the first at depth k − 1 and if there are no leafs

at depth k − 2 then w′ is the last at depth k − 2 so applying the above argument

again we have that u′′ 6= w′ as long as k ≥ 3.

Lemma 9. If T is extremal on n ≥ 3 vertices, then there is a choice of root, v, that

is not a leaf, such that the following hold.

• If u ∈ N(v) then ρ(T uv ) ≤ ρ(T vu ).
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• If 1 ≤ depth(w) < depth(u) then ρ(Tw) ≤ ρ(Tu).

Proof. Start by orienting all edges uw such that
⇀
uw if ρ(Twu ) > ρ(T uw). (In case of

equality pick an arbitrary orientation.) Let v be any non-leaf sink in this orientation

of T . Such a choice exists since every leaf is just C1 which has the largest ρ-value

of any nonempty rooted tree by assumption. This choice clearly satisfies the first

condition of the lemma. Now we will show that branches at lesser depths have lower

ρ-values. For the case of branches at depth 1, let w be maximum in the weak ordering

at depth 1 (so w′ = v) and u be minimum in the weak ordering at depth 2 (if there

is no vertex at depth 2 then the result is trivial). By the previous lemma’s proof,

u′ 6= w and thus since ρ(T u
′

v ) ≤ ρ(T vu′) (by first claim) we have by the branch exchange

property that ρ(Tw) ≤ ρ(Tu) as desired. Now for the inductive step (k ≥ 3), let u

be at depth k and minimum with respect to the weak ordering (if none exists we are

done), and let w be at depth k− 1 and maximum with respect to the weak ordering.

We would like to show that ρ(Tw) ≤ ρ(Tu). If w′ 6= u′′ then this is a consequence of the

branch exchange property since we have ρ(Tw′) ≤ ρ(Tu′) by the inductive hypothesis.

If it is the case that w′ = u′′, then by the previous lemma there is a leaf at depth

k − 2 or less. But then by the inductive hypothesis every vertex at depth k − 1 is a

leaf, contradicting the existence of u.

Lemma 10. If T is extremal then there exists a vertex v such that T v has a strong

order.

Proof. Start with choice of root provided by Lemma 9 and the standard weak ordering.

If u is the minimum with respect to the weak ordering at depth k, and w is the

maximum with respect to the weak ordering at depth k − 1, we can take w ≺ u for

each k ≥ 2 to give us a total ordering of the vertices. By Lemma 9 this is clearly a

strong ordering.
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Theorem 11. Let σ be a invariant of trees with an increasing certificate ρ. Then σ

is optimized by the ball Bn,d.

Proof. We begin with the choice of root v provided by the previous lemma. Let h be

the height of the tree, that is the maximum distance from the root to a leaf. We need

to show that the minimum distance to a leaf is at least h−1 and that all but at most

one branch is complete and that the one possibly incomplete branch satisfies this

condition recursively, that is all but one of its branches are complete, etc. To show

this we need only consider where all the leafs of the tree are in the strong ordering

provided by the previous lemma. Since ρ(C1) > ρ(T ) for nonempty T 6= C1 we have

u ≺ w for any non-leaf u and leaf w. Thus, by the conditions of strong ordering, any

non-leaf vertex has depth at most that of any leaf, so the minimum distance to a leaf

must be at least h − 1. To see that at most one branch is not complete, let {Ti} be

the branches of v and suppose that Ti0 is incomplete. We claim that if ρ(Ti) > ρ(Ti0)

then Ti = Ch−1, if ρ(Ti) < ρ(Ti0) then Ti = Ch, and if ρ(Ti) = ρ(Ti0) then i = i0. By

Corollary 6 we cannot have any branch with the same ρ-value as Ti0 . If ρ(Ti) > ρ(Ti0)

then by inductively applying the branch exchange property to each branch we have

that at every depth the vertices at depth k in Ti0 precede those at depth k in Ti and

thus since Ti0 has a leaf at depth h (from v), we must have Ti = Ch. The other case

is similar. Then we can consider the incomplete branch inductively with its induced

strong order. Therefore σ is optimized by the ball Bn,d.

This is the tree of bounded degree that has previously been shown to maximize the

leading eigenvalue (both standard and Laplacian), minimize the number of subtrees,

and minimize the Wiener index, that is the sum of distances between every pair of

vertices [4, 9, 12, 18, 22].
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3.2.5 Decreasing Certificate Solution

Given a decreasing certificate ρ for the invariant σ we have the following.

Lemma 12. There is a unique solution c to the equation x = f(x, . . . , x) such that

0 < c < 1. This root has the property that if T1, T2, . . . , Td are the branches of a tree

T and ρ(Tj) < c for all j then ρ(T ) > c. Conversely, if ρ(Tj) > c for all j then

ρ(T ) < c.

Proof. Let f̂(x) = f(x, x, . . . , x). Note that f̂ : [0, 1] → [0, 1] is a strictly decreasing

function hence there is a unique solution c to the equation x = f̂(x) such that

0 < c < 1. Hence c is the unique solution to the equation x = f(x, . . . , x). Now

suppose we have some tree T with d branches T1, . . . , Td all with ρ(Ti) < c. Since

f is decreasing we have ρ(T ) = f(ρ(T1), . . . , ρ(Td)) > f(c, . . . , c) = c. The other

inequality is similar.

Remark. For a vertex u we will say u < c to mean ρ(Tu) < c and u > c to mean

ρ(Tu) > c.

Definition 12. A vertex rooted tree T is alternating if it has d possibly empty

branches T1, T2, . . . , Td such that,

1. ρ(T ) 6= c

2. If ρ(T ) < c then ρ(Ti) > c for all i,

3. If ρ(T ) > c then ρ(Ti) < c for all i,

4. Each branch Ti is itself alternating.

Definition 13. We say that branches T1, . . . , Tr (or their corresponding root vertices)

are on the same side of c to mean that either ρ(Ti) > c for all i or ρ(Ti) < c for all
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i. If a collection of branches is not on the same side of c then they are said to be on

both sides of c. A branch T ′ is on the c-side of T if T ′ is on the same side of T as c,

that is (ρ(T ) − ρ(T ′))(ρ(T ) − c) ≥ 0. A split edge is an oriented edge
⇀
uw such that

T uw has branches on both sides of c.

Lemma 13. If
⇀
uw is a split edge then Twu is alternating and T uw is on the c-side of

Twu .

Proof. Take any vertex in Twu and compare it to w using the branch exchange property.

Since w has branches on both sides of c the other vertex can only have branches on

one side of c. Since this is true for all choices in Twu , it is alternating. Furthermore,

applying the branch exchange property to u and w we see that T uw is on the c-side of

Twu .

Lemma 14. If T is extremal on n ≥ 3 vertices, then there is a choice of root that is

not a leaf, such that all of its branches are alternating.

Proof. Start with an arbitrary choice of internal vertex as a root. If all of the tree’s

branches are alternating with respect to this root, we are done. Otherwise, let v be

the vertex at greatest depth such that Tv is not alternating, note that this cannot be a

leaf. The tree Tv must have branches with ρ-values on both sides of c. This is because

none of its branches can have ρ-values of c, otherwise v was not chosen at maximum

depth, and if all of the branches of Tv are on one side of c then Tv is on the other

side, hence Tv is alternating, a contradiction. Let u be the predecessor of v relative

to this root, then we have shown
⇀
uv is a split edge. By the preceding lemma we have

that T vu is alternating, and by choice of v all the other branches of v are alternating.

Therefore if we root at v all of our tree’s branches will be alternating.
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For many cases this is the proper choice of root, however, there are some special

cases where we need to modify our choice.

Lemma 15. If T is extremal on n ≥ 3 vertices and v is a non-leaf root for which all

branches are alternating and has d(v) ≤ d, then either every nonempty branch of v

is C1 or C2, or there is a choice of non-leaf root that has degree d + 1 and all of its

branches are alternating.

Proof. Suppose d(v) ≤ d. If every nonempty branch of v is C1 or C2 then we are

done. Suppose not, then since v is the only vertex of degree not equal to 1 or d+1 we

have that there must be a C2 at depth at least 2 from v. Let u 6= v be the predecessor

of this C2, and apply the branch exchange property to v and u. Since d(v) ≤ d at

least one of the d branches of T uv is C0. Thus since one of the branches of T vu is C2, we

must have that all of the branches of T uv are C0 or C2. Thus if v′ is the predecessor

of v with respect to u, we have that v′ has degree d + 1 and all of its branches are

alternating.

Lemma 16. If T is extremal on n ≥ 3 vertices, then one of the following is true.

• There is a choice of vertex root v that is not a leaf, such that for u ∈ N(v), T uv

is on the c-side of T vu , T vu is alternating, and T vu is not on the same side of c

for all choices of u.

• There is a choice of edge root vw, such that its branches Twv and T vw are not on

the same side of c, are both alternating, and for any u ∈ N(v)∪N(w)−{v, w},

Twv and T vw are on the c-side of T vwu .

Proof. We start with the choice of root v provided by the previous lemma, and note

that if we are in the special case where all of its branches are C1 or C2 then the result

is trivial.
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Case 1. Suppose that all the branches have ρ-values on one side of c. Let

u, v1, v2, . . . , vd be the neighbors of v. Without loss of generality suppose that max{ρ(T vvi)} ≤

ρ(T vu ) < c. Let u1, u2, . . . , ud be the neighbors of u not equal to v. By the assumption

that Tu is alternating we have that c < ρ(Tui), and since max{ρ(T vvi)} < c by the

recursive definition c < ρ(T uv ). If c < ρ(T uv ) ≤ min{ρ(T uui)} then we can root at vu

and we are done. If not then there is some i such that c < ρ(T uui) < ρ(T uv ). Change

the root to v := ui and start this case again from the beginning, noting that all the

branches are alternating and on one side of c. Note that we will never go back to a

previous choice of root since we are getting ρ-values closer to c, thus this will termi-

nate. Note that this argument will also work if the degree of v is not d + 1, taking

the remaining branches to be empty.

Case 2. Suppose that all but one branch is on one side of c. Let u, v1, v2, . . . , vd be

the neighbors of v. Without loss of generality suppose that ρ(Tu) < c < min{ρ(Tvi)}.

If ρ(T vu ) ≤ ρ(T uv ) < c then the choice of v satisfies the lemma and we are done. If

ρ(T uv ) < ρ(T vu ) < c then the choice of u satisfies the lemma and note that all of its

branches are alternating.

Case 3. Suppose there is at least two branches of v on each side of c. Let u ∈ N(v),

notice
⇀
uv is a split edge so T uv is on the c-side of T vu .

Lemma 17. If T is extremal on n ≥ 3 vertices, then there is a choice of root that is

not a leaf, such that all of its branches are alternating and we have a strong ordering

with respect to this choice.

Proof. Let T be rooted at the choice of edge or vertex given by the previous lemma.

First consider the case where we are rooted at an edge v1v2, and without loss of

generality v1 < c < v2 in which case v1 ≺ w2 in the weak ordering. By the previous

lemma for any vertex u at depth 1, if u < c then ρ(Tu) ≤ ρ(Tv1) and so we can take
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u ≺ v1, and if u > c then ρ(Tv1) ≤ ρ(Tu) and so we can take v1 ≺ u. This gives a

strong ordering up to depth 1 in the edge rooted case and in the vertex rooted case

we already have a strong order up to depth 1. In either case we have vertices on both

sides of c in this order. Suppose we have a strong ordering of all vertices up to depth

m ≥ 1. Let w be maximum with respect to the weak ordering at depth m + 1 such

that w < c and let u be minimum with respect to the strong order up to depth m, by

construction u is at depth m and u < c, consequently u and w are not in the same

branch of T . By the inductive hypothesis (or in the vertex rooted case when m = 1,

the previous lemma) we have that c < ρ(Tu′) ≤ ρ(Tw′) and so by the branch exchange

property we have that ρ(Tw) ≤ ρ(Tu) < c, so we can take w ≺ u. If w is minimum

with respect to the weak order at depth m + 1 such that w > c and u is maximum

with respect to the strong order up to depth m, a similar argument shows we can

take u ≺ w.

Theorem 18. Let σ be a invariant of trees with a decreasing certificate ρ. Then σ is

optimized by the festoon Fn,d.

Proof. We begin with the choice of root provided by the previous lemma. Let h be the

height of the tree, that is the maximum distance from the root to a leaf (the distance

from an edge being the minimum of the distances from its adjacent vertices). We need

to show that the minimum distance to a leaf is at least h − 2, that all but at most

one branch is complete, and that the one possibly incomplete branch satisfies this

condition recursively, that is all but one of its branches are complete, etc. To show

this we need only consider where all the leafs of the tree are in the strong ordering

provided by the previous lemma. Since ρ(C1) < ρ(T ) for nonempty T 6= C1 we have

w ≺ v for any non-leaf v and leaf w. Thus by the conditions of strong ordering, any

non-leaf vertex has depth at most one more then that of any leaf, so the minimum
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distance to a leaf must be at least h − 2. To see that at most one branch is not

complete, let {Ti} be the branches of the root and suppose that Ti0 is incomplete.

Observe that since it is alternating, Ti0 has leafs only at depth h and h−2. We claim

that if Ti(i 6= i0) is on the c-side of Ti0 and they are on the same side of c, then Ti = Ch,

and if Ti is not on the c-side of Ti0 (they still are on the same side of c though) then

Ti = Ch−2, and if Ti is not on the same side of c as Ti0 then Ti = Ch−1. By Corollary 6

we cannot have any branch with the same ρ-value as Ti0 . If Ti(i 6= i0) is on the c-side

of Ti0 and they are on the same side of c, then by inductively applying the branch

exchange property to each branch we have c < ρ(Tu) < ρ(Tw) or ρ(Tw) < ρ(Tu) < c

for all u in ρ(Ti) and w in Ti0 both at depth k and thus since Ti0 has a leaf at depth

h from the root, we must have Ti = Ch. The other cases are similar. Then we can

consider the incomplete branch inductively with its induced strong order. Notice that

in the edge rooted case one of the two branches of the root is Ch−1 so a vertex root

choice of the vertex adjacent to the edge root which is not part of this Ch−1 will be

consistent with the definition of the festoon. Also note that since all the branches of

the root are alternating for the recursive part we do not get any Ch−1’s. Therefore σ

is optimized by the festoon Fn,d.

In the collection Tn,d, this tree has previously been shown to maximize the number

of independent sets, minimize the number of matchings and minimize energy [6, 7].

3.2.6 Applications

Number of Independent Sets

For the first application of this method we will maximize the number of independent

sets of a tree in the collection Tn,d. We will take ρ(T ) to be the ratio σ0(T )/σ(T )

where σ(T ) is the total number of independent sets and σ0(T ) is the total number
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of independent sets not containing the root. We will also use the quantity σ1(T ) =

σ(T )− σ0(T ).

Definition 14. Let f : (0, 1]d → (0, 1] be defined as,

f(x1, . . . , xd) =
1

1 +
∏d

i=1 xi
.

Notice that f is a continuous symmetric decreasing function. We have the follow-

ing.

Lemma 19.

σ0(T ) =
r∏
i=1

σ(Ti)

σ1(T ) =
r∏
i=1

σ0(Ti)

ρ(T ) = f (ρ(T1), . . . , ρ(Td))

Proof. The first two are clear and the last is a simple manipulation of the first two,

ρ(T ) =
σ0(T )

σ0(T ) + σ1(T )
=

1

1 + σ1(T )
σ0(T )

=
1

1 +
∏d

i=1 ρ(Ti)

Lemma 20 (Branch Exchange). Let T be a tree in Tn,d with σ(T ) maximum and let

l 6= r be vertices of T . Let {Li} be the d branches of T rl and {Ri} the d branches of

T lr. We have max{ρ(Li)} ≤ min{ρ(Ri)} or min{ρ(Li)} ≥ max{ρ(Ri)}.

Proof. Let T ′ be the maximal subtree of T having l and r as leafs. Let I be the
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collection of independent sets of T ′ and define the following quantities,

σ00(T
′) = #{A ∈ I : l /∈ A, r /∈ A}

σ01(T
′) = #{A ∈ I : l /∈ A, r ∈ A}

σ10(T
′) = #{A ∈ I : l ∈ A, r /∈ A}

σ11(T
′) = #{A ∈ I : l ∈ A, r ∈ A}.

We have that the total number of independent sets of T is,

σ(T ) =σ00(T
′)σ0(L)σ0(R) + σ01(T

′)σ0(L)σ1(R)

+ σ10(T
′)σ1(L)σ0(R) + σ11(T

′)σ1(L)σ1(R)

=σ0(L)σ0(R)

(
σ00(T

′) + σ01(T
′)
σ1(R)

σ0(R)

+σ10(T
′)
σ1(L)

σ0(L)
+ σ11(T

′)
σ1(L)

σ0(L)

σ1(R)

σ0(R)

)
=σ0(L)σ0(R)

(
σ00(T

′) + σ01(T
′)

d∏
i=1

ρ(Ri)

+σ10(T
′)

d∏
i=1

ρ(Li) + σ11(T
′)

d∏
i=1

ρ(Li)
d∏
i=1

ρ(Ri)

)

Consider permuting the branches {L1, L2, . . . , Ld, R1, R2, . . . , Rd} by a permutation

π. Notice that this preserves the required structure of T ; it still has n vertices and de-

gree at most d+ 1. We would like to consider how one of these permutations changes

the total number of independent sets. By assumption T maximizes σ(T ), so a per-

mutation of the branches can only reduce this quantity. Observe that σ0(L)σ0(R) =∏r
i=1 σ(Li)

∏r
i=1 σ(Ri) is invariant under π. Also,

∏d
i=1 ρ(Li)

∏d
i=1 ρ(Ri) is invariant
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under π, thus we need only maximize,

σ01(T
′)

d∏
i=1

ρ(Ri) + σ10(T
′)

d∏
i=1

ρ(Li).

Thus if σ01(T
′) ≥ σ10(T

′) this is maximized when max{ρ(Li)} ≤ min{ρ(Ri)} and if

σ01(T
′) ≤ σ10(T

′) this is maximized when min{ρ(Li)} ≥ max{ρ(Ri)}.

Theorem 21. The number of independent sets of a tree in Tn,d is maximized by the

festoon Fn,d.

Proof. We have a decreasing certificate ρ, thus we are done.

This result was previously shown in [6] using a different method that also relied

on the branch exchange property.

Matching Generating Polynomial

A similar example is minimizing the number of matchings of a tree in the collection

Tn,d. A generalization of this problem is minimizing the weighted number of matchings

where the weight of a matching I is defined to be λ|I| for some λ ∈ R and the

weighted number of matchings is just the sum of these weights over all matchings.

This quantity is the definition of the matching generating polynomial evaluated at

λ. Explicitly, the matching generating polynomial for a graph G is the polynomial

M(G, λ) =
∑

k≥0m(G, k)λk where m(G, k) is the number of matchings in G of exactly

k edges.

We will show that the matching generating polynomial is minimized for all λ > 0

by the festoon. As before we will need some auxiliary quantities for our computations.

For a rooted tree T , let m1(T, k) to be the number of matchings of k edges covering

the root and let m0(T, k) be the number not covering the root. Let Mj(T, λ) =
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∑
k≥0mj(G, k)λk for j ∈ {0, 1}. We will fix an arbitrary choice of λ > 0 and for a

rooted tree T define

µ(T ) =
M0(T, λ)

M(T, λ)
.

In Lemma 3.1 of [7] it is shown that µ satisfies the branch exchange property for ex-

tremal (minimum matching polynomial at λ) trees. Furthermore, µ(T ) has a recursive

definition, µ(T ) = g(µ(T1), . . . , µ(Td)), where

g(x1, . . . , xd) =
1

1 + λ
∑d

i=1 xi
.

It is clear that g is decreasing and so we have a decreasing certificate ρ (where ρ(T ) =

(1 + µ(T ))−1) and so the matching generating polynomial at λ is minimized by the

festoon Fn,d.

Weighted Homomorphisms

Given the previous application it is natural to think about doing the same thing for

independent sets. In fact we can do even better.

Definition 15. A homomorphism from a graph G to another graph H is a map

f : V (G) → V (H) such that if u ∼ v then f(u) ∼ f(v). Let Hom(G,H) be the

collection of homomorphisms from G to H, and let hom(G,H) be the number of such

homomorphisms.

Remark. An independent set can be identified with a homomorphism to a graph on

two vertices connected by an edge, one of the vertices having a loop.

We can also assign weights w : V (H) → (0,∞) to an image graph to make the

following generalization of the number of homomorphisms from G to H, for details

see [5].
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Definition 16. Let w : V (H) → (0,∞) be an assignment of weights. Then the

weight of a homomorphism f from G to H is

wt(f) =
∏
u∈G

w(f(u)) =
∏
v∈H

w(v)|f
−1(v)|

and the weighted number of the homomorphisms from G to H is

homw(G,H) =
∑

f∈Hom(G,H)

wt(f).

Notice that when all the weights are one then this agrees with hom(G,H).

Remark. The weighted number of independent sets of any graph G is the weighted

number of homomorphisms to a graph in Figure 3.3.

1 λ

Figure 3.3: Image graph for counting the weighted number of independent sets.

Definition 17. A graph G is strongly biregular if there exists a partition of the

vertices A ∪ B = V (G) and constants w, x, y, z such that for every a ∈ A and b ∈ B

we have w = dA(a), x = dB(a), y = dA(b), z = dB(b).

For the rest of the section let us consider H to be a fixed strongly biregular

graph. We will assume that H is connected, since we could consider each connected

component separately. We will assume that H is not regular, for if H is regular

of degree r then the number of homomorphisms from a tree on n vertices to H is

exactly |H|(r − 1)n−1, a constant. Let A ∩ B be the strongly biregular partition of

the vertices of H, and let a ∈ A and b ∈ B be representatives of the two partitions.
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We will assume that the vertices in each partition have equal non-zero weights, say

µ 6= 0 is the weight of a and ν 6= 0 the weight of b. We will make the following

abbreviations: α = µdA(a), β = νdB(a), γ = µdA(b), δ = νdB(b). Without loss of

generality we will assume that α + β < γ + δ, else we can switch A and B.

Definition 18. Let f : (0, 1]d → (0, 1] be defined as

f(x1, . . . , xd) =
α
∏r

i=1 xi + β

γ
∏r

i=1 xi + δ
.

Definition 19. For a rooted tree T , let µ ha(T ) be the weighted number of homomor-

phisms from T to H sending the root to a, and ν hb(T ) the weighted number sending

the root to b. Let ρ(T ) be the ratio

ρ(T ) =
α ha(T ) + β hb(T )

γ ha(T ) + δ hb(T )
.

Lemma 22. Let T be rooted with branches T1, . . . , Tr. Then

ha(T ) =
r∏
i=1

(
α ha(Ti) + β hb(Ti)

)
hb(T ) =

r∏
i=1

(
γ ha(Ti) + δ hb(Ti)

)
ρ(T ) = f (ρ(T1), . . . , ρ(Td))

Proof. The first two equations are clear. The last equation is a simple manipulation

of the first two,

ρ(T ) =
α ha(T ) + β hb(T )

γ ha(T ) + δ hb(T )
=
αha(T )

hb(T )
+ β

γ ha(T )
hb(T )

+ δ
=
α
∏r

i=1 ρ(Ti) + β

γ
∏r

i=1 ρ(Ti) + δ
= f (ρ(T1), . . . , ρ(Td)) .
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Remark. We have that the weighted number of homomorphisms from T to H is,

homw(T,H) = |A|µ ha(T ) + |B|ν hb(T ).

Remark. Its easy to verify that f is increasing when dB(a)dA(b) < dA(a)dB(b), de-

creasing when dB(a)dA(b) > dA(a)dB(b), and constant when they are equal. Also

f(x) is continuous symmetric.

The following shows that ρ satisfies the branch exchange property for hom( · , H).

Lemma 23 (Branch Exchange). Let T be a tree in Tn,d with homw(T,H) maximum

and let l 6= r be vertices of T . Let {Li} be the d branches of T rl and {Ri} the d

branches of T lr. We have max{ρ(Li)} ≤ min{ρ(Ri)} or min{ρ(Li)} ≥ max{ρ(Ri)}.

Proof. Let T ′ be the maximal subtree of T having l and r as leafs. For x, y ∈ {a, b},

define

hxy(T
′) =

∑
f∈Hom(T ′,H)

f(l)=x,f(r)=y

wt(f).
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We have that the weighted number of homomorphisms from T to H is,

homw(T,H) = hAA(T ′) ha(L) ha(R) + hAB(T ′) ha(L) hb(R)

+ hBA(T ′) hb(L) ha(R) + hBB(T ′) hb(L) hb(R)

= hb(L) hb(R)

(
hAA(T ′)

ha(L) ha(R)

hb(L) hb(R)
+ hAB(T ′)

ha(L)

hb(L)

+ hBA(T ′)
ha(R)

hb(R)
+ hBB(T ′)

)
= hb(L) hb(R)

(
hAA(T ′)

d∏
i=1

ρ(Li)ρ(Ri) + hAB(T ′)
d∏
i=1

ρ(Li)

+ hBA(T ′)
d∏
i=1

ρ(Ri) + hBB(T ′)

)
.

Consider permuting the branches {L1, L2, . . . , Ld, R1, R2, . . . , Rd} by a permutation π,

notice that this preserves the required structure of T , it still has n vertices and degree

at most d+ 1. We would like to consider how one of these permutations changes the

weighted number of homomorphisms. By assumption T maximizes homw(T,H), so a

permutation of the branches can only reduce the weighted number of homomorphisms.

Observe that hb(L) hb(R) =
∏r

i=1

(
γ ha(Li)+δ hb(Li)

)(
γ ha(Ri)+δ hb(Ri)

)
is invariant

under π. Also,
∏d

i=1 ρ(Li)ρ(Ri) is invariant under π, thus we need only maximize,

hAB(T ′)
d∏
i=1

ρ(Li) + hBA(T ′)
d∏
i=1

ρ(Ri).

Thus, if hAB(T ′) ≥ hBA(T ′) then this is maximized when min{Li} ≥ max{Ri}, and

if hAB(T ′) ≤ hBA(T ′) then this is maximized when max{ρ(Li)} ≤ min{ρ(Ri)}.

Remark. If f is constant then, by argument of the previous lemma, homw(T,H) is

invariant under permutations of any of its branches and thus is constant for all trees

on n vertices. Note that it is fair to consider ρ(C0) to be this constant value since it
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is still compatible with the recursive definition.

Theorem 24. The weighted number of homomorphisms of a tree T in Tn,d to a

strongly biregular graph H with partition A and B and representatives a and b respec-

tively, homw(T,H), is maximized by the festoon Fn,d when dA(a)dB(b)−dB(a)dA(b) <

0 and by the ball Bn,d when dA(a)dB(b)− dB(a)dA(b) > 0.

Proof. In the first case we have a decreasing certificate ρ and in the second case we

have an increasing certificate ρ, thus we are done.

Remark. Notice that the weights do not matter. If T maximizes hom(T,H) then it

maximizes homw(T,H) for any assignment of non-zero weights to the vertices of H.

Example 2. An interesting application of this result is the Widom-Rowlinson model

in statistical physics. Simply stated it is hom(T, P ◦2 ), where P ◦2 is the path of length 2

with loops at every vertex (see Figure 3.4). It is easy to see that P ◦2 is strongly bireg-

ular with partition A = {a, c} and B = {b}. We have that dA(a)dB(b)−dB(a)dA(b) =

1 · 1 − 1 · 2 = −1 < 0. So in Tn,d, hom(T, P ◦2 ) is uniquely maximized by the festoon

Fn,d.

a b c

Figure 3.4: The graph P ◦2 .

Number of Subtrees

We will show that the ball maximizes the number of subtrees of a tree with bounded

degree. A subtree is just a connected subgraph of a tree. Let σ(T ) be the number of

subtrees of T , µ(T ) the number containing the root of T . Note that
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µ(T ) =
d∏
i=1

(1 + µ(Ti))

So if g(x1, . . . , xd) =
∏d

i=1(1 + xi), then µ(T ) = g(µ(T1), . . . , µ(Td)) and g is

increasing. With the standard certificate of T for the branch exchange property, let

σ00(T
′) be the number of subtrees of T ′ not containing l or r, let σ10(T

′) be the

number containing l but not r and so on. Then we have the following

σ(T ) = σ11(T
′)µ(L)µ(R) + σ10(T

′)µ(L) + σ01(T
′)µ(R) + σ00(T

′) + σ0(L) + σ0(R)

= σ11(T
′)

d∏
i=1

(1 + µ(Li)) (1 + µ(Ri)) + σ10(T
′)

d∏
i=1

(1 + µ(Li))

+ σ01(T
′)

d∏
i=1

(1 + µ(Ri)) + σ00(T
′) +

d∑
i=1

σ(Li) +
d∑
i=1

σ(Ri).

This is maximized when max{µ(Li)} ≤ min{µ(Ri)} or min{µ(Li)} ≥ max{µ(Ri)}.

Therefore we have a increasing certificate ρ, and so the number of subtrees is maxi-

mized when T is the ball Bn,d. This result was previously shown in [12, 19] using a

different method.

Wiener Index

We will show that the ball minimizes the Wiener index of a tree with bounded degree.

The Wiener index is the sum of the distances between every pair of vertices. The

Wiener index W (T ) of a tree can also be computed using the following formula:

W (T ) =
∑
uv∈E
|T vu ||T uv |
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This simplifies the computation of whether switching two branches will increase or

decrease the Wiener index, as the only terms in the above sum that change are the

ones for edges on the path between the roots of these branches. Let T be decomposed

as seen below.

R1

r1

R2

r2

Rdrd

vk

L1

l1

L2

l2

Ld
ld

v0

T1

v1

T2

v2

Tk−1

vk−1

Let ai = |Li|, bi = |Ri|, ni = |Ti|, and for ease of notation n0 = 1 +
∑
ai,

nk = 1 +
∑
bi, and n = |T |. Then we have

W (T ) =
∑
|T vu ||T uv |
uv∈E

uv 6=liv0, uv 6=vkri
uv 6=vivi+1

+
k∑
i=1

(
i−1∑
j=0

nj

)(
k∑
j=i

nj

)
+

d∑
i=1

ai (n− ai) +
d∑
i=1

bi (n− bi)

(3.1)
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Note that the first term is invariant under permutation of the branches {Li, Bi | i =

1, . . . , d}. The second term simplifies as follows.

k∑
i=1

(
i−1∑
j=0

nj

)(
k∑
j=i

nj

)
=

k∑
i=1

(
n0 +

i−1∑
j=1

nj

)(
nk +

k−1∑
j=i

nj

)

=
k∑
i=1

(
n0nk + n0

k−1∑
j=i

nj + nk

i−1∑
j=1

nj +

(
i−1∑
j=1

nj

)(
k−1∑
j=i

nj

))

= kn0nk + n0

k∑
i=1

k−1∑
j=i

nj + nk

k∑
i=1

i−1∑
j=1

nj

+
k∑
i=1

(
i−1∑
j=1

nj

)(
k−1∑
j=i

nj

)

= k

(
1 +

d∑
i=i

ai

)(
1 +

d∑
i=i

bi

)
+

(
1 +

d∑
i=i

ai

)
k∑
i=1

k−1∑
j=i

nj

+

(
1 +

d∑
i=i

bi

)
k∑
i=1

i−1∑
j=1

nj +
k∑
i=1

(
i−1∑
j=1

nj

)(
k−1∑
j=i

nj

)
(3.2)

So (3.2) is minimized when the ai are all greater than or equal to the bi or vice versa.

d∑
i=1

ai (n− ai) +
d∑
i=1

bi (n− bi) =

(
d∑
i=1

ai +
d∑
i=1

bi

)
n−

d∑
i=1

a2i −
d∑
i=1

b2i

This shows that the last two terms of (3.1) are invariant. Therefore, µ(T ) = |T |

satisfies the branch exchange property for the Wiener index and has ρ(C0) = 0 and

ρ(C1) = 1. Let g(x1, . . . , xd) = 1 +
∑d

i=1 xi, then g is a recursive definition of µ(T )

and is increasing. So we have an increasing certificate ρ and hence W (T ) is minimized

by the ball. This result was previously shown in [4] and later in [9] using different

methods.
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Average path length is also minimized by the ball since the Wiener index is the

sum of the lengths of every path and there is a fixed number of paths in a tree of size

n.

Largest Eigenvalue

Definition 20. The characteristic polynomial of a graph G is the polynomial φG(x) =

det(xI −A) where A is the adjacency matrix of G. The roots of this polynomial are

the eigenvalues which are all real since A is symmetric. The largest eigenvalue will

be λG. Note λG > 0 for any connected graph with at least one edge.

It is well known that if H is a subgraph of G then λH ≤ λG and for x > λG we

have φG(x) > 0. A well known recursive formula for a graph G with a bridge edge

uv, that is an edge not in any cycle, is φG = φG−uv − φG−u−v. We would like to

show that the ball has the largest eigenvalue for trees with bounded degree. To do

this we will start with an extremal tree T0, and for x > λT0 we will show that T0

minimizes the value of the characteristic polynomial at x. Further we will show for

a tree T (a subgraph of T0) rooted at r that µ(T ) = φT−r(x)/φT (x) corresponds to

an increasing certificate ρ of σ(T0) = φT0(x), and therefore T0 is the ball. Note that

φC0 = 1, by convention we will have φC0−r = 0 where r is the fake root of C0. A

recursive definition for the characteristic polynomial of a tree is [15],

φT (x) = φT−r(x)

(
x−

r∑
i=1

φTi−ri(x)

φTi(x)

)
,

where T has root r and branches Ti with roots ri. Note that the convention of

φC0−r = 0 is consistent with this recursive definition. It is important to note that

since we will only be considering values of x > λT0 , we will have that φT (x) > 0 for

all trees T of bounded degree d+ 1 and n or fewer vertices. The above formula yields
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a recursive definition of µ,

µ(T ) =
1

x−∑d
i=1 µ(Ti)

.

The corresponding symmetric function is g(x1, . . . , xd) = (x −∑xi)
−1 which is in-

creasing.

To establish the branch exchange property decompose a tree T as shown in the

diagram below where l 6= r are two arbitrary vertices and l′ is the predecessor of l

relative to r and r′ is the predecessor of r relative to l. The graph T − ll′ − r′r has

at most 3 components. Denote the one containing l by L, containing r by R, and the

one containing l′ and r′ (if such a component exists) by T ′.

R1

r1

R2

r2

Rdrd

r

L1

l1

L2

l2

Ld
ld

l l′ r′

Using the preceding formulas we can write the characteristic polynomial of T at

x (assuming l′ 6= r and l′ 6= r′, although it is an easy exercise to see that these cases
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are the same) as:

φT (x) = φT−ll′−r′r(x)− φT−ll′−r′−r(x)− φT−l−l′−r′r(x) + φT−l−l′−r′−r(x)

= φL(x)φT ′(x)φR(x)− φL(x)φT ′−r′(x)φR−r(x)

− φL−l(x)φT ′−l′(x)φR(x) + φL−l(x)φT ′−l′−r′(x)φR−r(x)

= φL−l(x)φR−r(x)

[
φT ′(x)

1

µ(L)

1

µ(R)
− φT ′−r′(x)

1

µ(L)

−φT ′−l′(x)
1

µ(R)
+ φT ′−l′−r′(x)

]
=

d∏
i=1

φLi
(x)φRi

(x)

[
φT ′(x)

(
x−

d∑
i=1

µ(Li)

)(
x−

d∑
i=1

µ(Ri)

)

−φT ′−r′(x)

(
x−

d∑
i=1

µ(Li)

)
− φT ′−l′(x)

(
x−

d∑
i=1

µ(Ri)

)
+ φT ′−l′−r′(x)

]

Up to a positive constant factor the part of the above expression that is not

constant under permutation of the branches is:

φT ′(x)

(
d∑
i=1

µ(Li)

)(
d∑
i=1

µ(Ri)

)
− φT ′−r′(x)

(
d∑
i=1

µ(Li)

)
− φT ′−l′(x)

(
d∑
i=1

µ(Ri)

)

This quantity is minimized when max{µ(Li)} ≤ min{µ(Ri)} or min{µ(Li)} ≥

max{µ(Ri)}. Therefore, we have an increasing certificate ρ and so the characteristic

polynomial is minimized at x > λT0 by the ball Bn,d, hence the ball has the largest

eigenvector in Tn,d. This result was previously shown in [18] using a method that

depended on the entries of the principal eigenvector.
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Largest Laplacian Eigenvalue

Using a similar method as in the previous section we can show that the ball maximizes

the largest Laplacian eigenvalue. This is the largest eigenvalue of the Laplacian matrix

L = D − A where A is the adjacency matrix and D is the diagonal matrix of vertex

degrees.

Definition 21. The Laplacian polynomial of a graph G is the polynomial ψG(x) =

det(xI −L). The roots of this polynomial are the eigenvalues which are all real since

L is symmetric. The largest eigenvalue will be λG, note λG > 0 for any connected

graph with at least one edge.

Definition 22. Let H be a subgraph of G. The modified Laplacian polynomial of

H is the polynomial ψ′H(x) = det(xI − LH), where L is the Laplacian matrix of G

and LH is the restriction of the matrix to the vertices of H. The largest root of this

polynomial will be denoted as λH .

As before it is easy to check that for x > λG we have ψG(x) > 0 and ψ′H(x) > 0

for all subgraphs H. A recursive formula for a graph G with a bridge edge uv, that

is an edge not in any cycle, is

ψG = ψ′G−uv − ψ′G−u−v.

We would like to show that the ball has the largest eigenvalue for trees with bounded

degree. To do this we will start with an extremal tree T0, and for x > λT0 we will

show that T0 minimizes the value of the Laplacian polynomial at x. Further we will

show for a tree T (a subgraph of T0) rooted at r that µ(T ) = ψ′T−r(x)/ψ′T (x)+1 (and

µ(C0) = 0) corresponds to an increasing certificate ρ of σ(T0) = ψ′T0(x), and therefore

T0 is the ball. Note that ψ′C0
= 1 as it is the determinant of the 0 × 0 matrix. A
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recursive definition for the modified Laplacian polynomial of a tree is,

ψ′T (x) = ψ′T−r(x)

(
x− 1−

r∑
i=1

(
ψ′Ti−ri(x)

ψ′Ti(x)
+ 1

))
,

where T has root r and branches Ti with roots ri. Note that the convention of

ψC0−r = 0 is consistent with this recursive definition. It is important to note that

since we will only be considering values of x > λT0 , we will have that ψ′T (x) > 0 for

all trees T of bounded degree d+ 1 and n or fewer vertices. The above formula yields

a recursive definition of µ,

µ(T ) =
1

x− 1−∑d
i=1 µ(Ti)

+ 1.

The corresponding symmetric function is g(x1, . . . , xd) = (x −∑xi)
−1 which is in-

creasing.

To establish the branch exchange property decompose a tree T as shown in the

diagram below where l 6= r are two arbitrary vertices and l′ is the predecessor of

l relative to r and r′ is the predecessor of r relative to l. The graph T − ll′ − r′r

has at most 3 components denote the one containing l by L, containing r by R, and

containing l′ and r′ (if such a component exists) by T ′.

R1

r1

R2

r2

Rdrd

r

L1

l1

L2

l2

Ld
ld

l l′ r′

Using the preceding formulas we can write the characteristic polynomial of T at
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x (assuming l′ 6= r and l′ 6= r′, although it is an easy exercise to see that these cases

are the same) as:

ψT (x) = ψ′T−ll′−r′r(x)− ψ′T−ll′−r′−r(x)− ψ′T−l−l′−r′r(x) + ψ′T−l−l′−r′−r(x)

= ψ′L(x)ψ′T ′(x)ψ′R(x)− ψ′L(x)ψ′T ′−r′(x)ψ′R−r(x)

− ψ′L−l(x)ψ′T ′−l′(x)ψ′R(x) + ψ′L−l(x)ψ′T ′−l′−r′(x)ψ′R−r(x)

= ψ′L−l(x)ψ′R−r(x)

[
ψ′T ′(x)

1

µ(L)− 1

1

µ(R)− 1
− ψ′T ′−r′(x)

1

µ(L)− 1

−ψ′T ′−l′(x)
1

µ(R)− 1
+ ψ′T ′−l′−r′(x)

]
=

d∏
i=1

ψ′Li
(x)ψ′Ri

(x)

[
ψ′T ′(x)

(
x− 1−

d∑
i=1

µ(Li)

)(
x− 1−

d∑
i=1

µ(Ri)

)

−ψ′T ′−r′(x)

(
x− 1−

d∑
i=1

µ(Li)

)
− ψ′T ′−l′(x)

(
x− 1−

d∑
i=1

µ(Ri)

)

+ψ′T ′−l′−r′(x)
]

Up to a positive constant factor the part of the above expression that is not

constant under permutation of the branches is:

ψ′T ′(x)

(
d∑
i=1

µ(Li)

)(
d∑
i=1

µ(Ri)

)
− ψ′T ′−r′(x)

(
d∑
i=1

µ(Li)

)
− ψ′T ′−l′(x)

(
d∑
i=1

µ(Ri)

)

This quantity is minimized when max{µ(Li)} ≤ min{µ(Ri)} or min{µ(Li)} ≥

max{µ(Ri)}. Therefore, we have an increasing certificate ρ and so the Laplacian

polynomial is minimized at x > λT0 by the ball Bn,d, hence the ball has the largest

Laplacian eigenvector in Tn,d. This result was previously shown in [22] using a method

that depended on the entries of the principal eigenvector.
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3.3 Fixed Degree Sequence

3.3.1 Direct and Alternating Labelings

Definition 23. A labeling of a graph G is a function f : V (G)→ R.

Definition 24. Let f and g be labelings of a graph G. We say f is a refinement of

g if f(u) ≤ f(v) implies g(u) ≤ g(v) for all u, v ∈ V (G).

Definition 25. A labeling f of graph G is complete if f(u) 6= f(v) for all u, v ∈ V (G)

such that u 6= v.

It is clear that if we have a labeling that is complete we can make a labeling on

[n] by numbering the vertices smallest through largest with 1, 2, . . . , n.

Definition 26. Let f be a labeling of T . We say f is direct if

f(l) ≤ f(r) =⇒ f(l0) ≤ f(r0) ∀l 6= r, l0 ∈ N r(l), r0 ∈ N l(r).

We say f is alternating if

f(l) ≤ f(r) =⇒ f(l0) ≥ f(r0) ∀l 6= r, l0 ∈ N r(l), r0 ∈ N l(r).

Proposition 25. If g is a refinement of f and g is direct (respectively, alternating)

then f is direct (respectively, alternating).

Proof. Clear by definition of refinement.

Lemma 26. If g is a direct (respectively, alternating) labeling of a tree T that is a

refinement of the degree then there exists a complete refinement f of g that is also a

direct (respectively, alternating) labeling of the vertices.



56

Proof. The cases of n = 1, 2 are trivial. We will suppose g is not a complete labeling

otherwise the result is also trivial. Note that since g is a direct or alternating order,

g(l) = g(r) =⇒ g(l0) = g(r0) ∀l 6= r, l0 ∈ N r(l), r0 ∈ N l(r). (3.3)

First note that we cannot have a path on 3 vertices in T with each vertex having

the same label; else by (3.3) the labeling is constant and thus not a refinement of

degree since n ≥ 3. Let Vx = {v ∈ V (T ) : g(v) = x}. We cannot have distinct

u, v, w ∈ Vx such that w is in the path from u to v. If we did then since d(w) ≥ 2,

every vertex in Vx also has the same degree of at least two. Applying (3.3) to each

pair of u, v, w yields that every neighbor of w has a common g value, say y, and so

does every u0 ∈ N v(u) and v0 ∈ Nu(v). Picking one such u0 ∈ N v(u) and v0 ∈ Nu(v)

as well as a neighbor w0 of w on the path between u and v, yields a triple of the

same kind but with distance 2 greater between u0 and v0. But this can be repeated

without limit, a contradiction. Therefore, the minimal subtree Tx of T containing Vx

is such that every vertex of Vx is a leaf and in this subtree the predecessor of each

element of Vx is uniquely defined.

Now we will show that if there is v ∈ V (Tx) with g(v) = y then Ty ⊂ Tx. Suppose

not then there is some w /∈ V (Tx) with G(v) = y. Since v is not a leaf of Tx there is

a path v = v0, v1, . . . , vk = u to a leaf u of Tx (i.e. g(u) = x) that does not intersect

the path from v to w. Now let w0 = w and wi+1 ∈ N vi(wi) for i = 0, 1, . . . , k − 1

(such vertices exist since the labeling is a refinement of the degree and the degrees of

v0, v1, . . . , vk−1 are at least 2). For i = 0, 1, . . . , k − 1 since g(vi) = g(wi) by property

(3.3) we have g(vi+1) = g(wi+1). But then g(wk) = g(vk) = x and Tx contains the

whole path including w, a contradiction.

By the previous claim we can pick an x such that Tx is minimal with respect to
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inclusion for x with |Vx| ≥ 2. The values for the predecessors of Vx in Tx are distinct,

with the exception that multiple elements of Vx can have the same predecessor. Let

v ∈ Vx be such that g(v′) is maximum among all predecessors of Vx in Tx. Let

h : V (T )→ R be such that h(w) = g(w) for all w 6= v and h(v) = g(v)+ 1
2

min{g(a)−

g(b) : a 6= b} if g was direct or h(v) = g(v) − 1
2

min{g(a) − g(b) : a 6= b} if g was

alternating. The labeling h by construction is clearly direct (respectively, alternating)

by construction and we have reduced the number of pairs of vertices with equal

labels. Thus, there is a complete labeling f refining g that is also direct (respectively,

alternating).

3.3.2 The Ball and Festoon

Definition 27. Let π be indexed in non decreasing order and
∑n

i=1 π(i) = 2n − 2.

The directed ball with degree sequence π, denoted
⇀

Bπ, is the directed graph with

vertex set [n] and edges l→ k if l ∈ SBk , where SBk is defined below.

SBk =


Z ∩

(∑k−1
i=1 (π(i)− 1),

∑k
i=1(π(i)− 1)

]
, k 6= n

Z ∩
(∑n−1

i=1 (π(i)− 1), n− 1
]

, k = n

The ball, Bπ, is the undirected version of this graph.
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Example 3. Let π = (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4), then

SB1 = · · · = SB8 = {}

SB9 = {1}

SB10 = {2}

SB11 = {3, 4}

SB12 = {5, 6}

SB13 = {7, 8, 9}

SB14 = {10, 11, 12, 13}

and Bπ is the tree in Figure 3.5.

14

10

2

11

3 4

12

5 6

13

7 8 9

1

Figure 3.5: Bπ for π = (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4).

Theorem 27. Bπ is a tree.

Proof. Notice that {SBk }nk=1 partitions [n−1], l < k for all l ∈ Sk (i.e., l→ k ⇒ l < k),

|SBk | = π(k) − 1 for all k 6= n, and |SBn | = π(n). In
⇀

Bπ every vertex except n has

exactly one outgoing edge, the vertex at the end of this edge is a strictly larger integer,
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and thus every vertex has a directed path to n. Therefore, Bπ is connected and has

n− 1 edges and thus is a tree. Furthermore, its degree sequence is π.

Remark. Bπ has Prüfer Code

1, 1, . . . , 1︸ ︷︷ ︸
π(1)−1

, 2, 2, . . . , 2︸ ︷︷ ︸
π(2)−1

, . . . , n, n, . . . , n︸ ︷︷ ︸
π(n)−1

.

For example, if

π = (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4)

then Bπ has Prüfer Code

9, 10, 11, 11, 12, 12, 13, 13, 13, 14, 14, 14.

Definition 28. Let π be indexed in non decreasing order and
∑
π(i) = 2n − 2.

The directed festoon with degree sequence π, denoted
⇀

Fπ, is the directed graph with

vertex set [n] and edges l → k if l ∈ SFk , where SFk is defined below. Let c =

min
{
k : k >

∑n
i=k+1(π(i)− 1)

}
.

SFk =


Z ∩

(
2 +

∑n
i=k+1(π(i)− 1), 2 +

∑n
i=k(π(i)− 1)

]
, 1 ≤ k < c

Z ∩
(∑n

i=k+1(π(i)− 1), 2 +
∑n

i=k(π(i)− 1)
]
\ {c} , k = c

Z ∩
(∑n

i=k+1(π(i)− 1),
∑n

i=k(π(i)− 1)
]

, c < k ≤ n.

The festoon, Fπ, is the undirected version of this graph.
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Example 4. Let π = (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4), then c = 11 and

SF1 = · · · = SF8 = {}

SF9 = {14}

SF10 = {13}

SF11 = {9, 10, 12}

SF12 = {7, 8}

SF13 = {4, 5, 6}

SF14 = {1, 2, 3}

and Fπ is the tree in Figure 3.6.

11

9

14

1 2 3

10

13

4 5 6

12

7 8

Figure 3.6: Fπ for π = (1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4).

Theorem 28. Fπ is a tree.

Proof. Notice that {SFk }nk=1 partition [n] − c and so in
⇀

Fπ every vertex but c has

exactly one outgoing edge (and c has none). We have no loops because k /∈ SFk for

all k. Fπ has degree sequence π since |SFk | = π(k)− 1 for all k 6= c and |SFc | = π(c).
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Define g(x) : [n] → [n] by g(x) = y if x → y and g(c) = c. This is well defined

since each vertex can have only one outgoing edge except c which has none. By the

definitions of the SFk ’s we have that this function is decreasing. The composition

of decreasing functions is increasing so g ◦ g is increasing. This shows that along

any directed path the subsequence consisting of every other vertex in the path is

monotonic (strictly since the values are distinct). In particular, since c is the only

fixed point of g every directed path leads to c. Thus, Fπ is connected and on n − 1

edges so it is a tree.

3.3.3 Uniqueness

Theorem 29. The ball Bπ is the unique tree in Tπ where the degree is a direct labeling

of the vertices.

Proof. Let T be the ball as defined in Definition 27. It has the canonical labeling

f(k) = k which we will now show is a direct labeling. Consider two vertices k and l

with k < l and i ∈ N l(k), j ∈ Nk(l). We would like to show that i < j. The following

argument refers to the root orientation. In the case where k → i then the path from

l to k must be directed and hence l < k, a contradiction. In the case where i → k

and l → j then i < k < l < j. In the case where i → k and j → l then since x < y

for all x ∈ Sk and y ∈ Sl we have i < j. Since the labeling f is a refinement of the

degree, the degree is a direct labeling of the vertices.

For the remainder we will let T be the undirected version of the above tree. This

is the only tree where the degree is a direct labeling of the vertices. Let T ′ be a

tree in Tπ where the degree is a direct labeling of the vertices. By Lemma 26 there

exists f ′ a complete refinement of the degree sequence that is a direct labeling of the

vertices of T ′. Without loss of generality we may assume f ′ has range [n] and we may
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further assume the vertex set for T ′ is [n] and this is a canonical labeling. We would

like to show the identity map φ : V (T ′) → V (T ) is an isomorphism. Since f and

f ′ are both refinements of π, φ preserves degrees. We will show Nn
T (k) = Nn

T ′(k) for

every vertex k ∈ [n]. Once we have shown this for a vertex we will say the vertex is

verified (and if not we say it is unverified). Let A ⊆ [n] be the set of verified vertices;

we start with A = ∅. At each stage we will try to verify the smallest unverified

vertex, say k. It will always be the case that N c
T (k) ⊆ A (the children of k in T are

always smaller). Suppose Nn
T (k) 6= Nn

T ′(k) then there exists i ∈ Nn
T ′(k) \ Nn

T (k) and

j ∈ Nn
T (k) \ Nn

T ′(k). Consider the path between i and j in T ′. Then k is the vertex

adjacent to i in this path. We let l be the vertex adjacent to j in this path. At this

point l cannot be verified because its child in T ′, j, has a different predecessor in T .

Since k is the smallest unverified vertex we have k < l. Also i > j since per the

construction of T the children of k in T are the smallest vertices without full degree

in T [A]. This prevents f ′ from being a direct labeling of T ′. Thus, the children of k

must be the same in T and T ′. We need not verify n since its neighborhood is implicit

once everything else is verified. Therefore, T ' T ′.

Theorem 30. The festoon Fπ is the unique tree in Tπ where the degree is an alter-

nating labeling of the vertices.

Proof. Let T be the festoon as defined in Definition 28. This tree has the canonical

labeling f(k) = k which we will now show is an alternating labeling. Consider two

vertices k and l with k < l and i ∈ N l(k), j ∈ Nk(l). We would like to show that

i > j. The following argument refers to the root orientation. In the case where i→ k

and j → l, since g is decreasing we must have i > j. The case where k → i and l→ j

can not happen. Consider the path P from k to l (which does not contain i and j),
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both ends of this path must be oriented out. But then some vertex in the path has

two outgoing edges, a contradiction. In the case where i → k and l → j, the path

from i to j is directed. The vertices along this path alternate between two sequences;

one is decreasing to c and the other is increasing to c. Thus, if the distance between

k and l is even then they are both larger/smaller than c then i and j are on the other

side and in the opposite order to that of k and l, i.e. i > j. If the distance is odd

then k and l are on different sides of c and so are i and j but opposite of k and l, i.e.

i > j. The case where k → i and j → l is identical.

This is the only tree where the degree is an alternating labeling of the vertices.

Let T ′ be a tree in Tπ where the degree is an alternating labeling of the vertices. By

Lemma 26 there exists f ′ a complete refinement of the degree sequence that is an

alternating labeling of the vertices of T ′. Without loss of generality we may assume

f ′ has range [n] and we may further assume the vertex set for T ′ is [n] and this is a

canonical labeling. We would like to show that the identity map φ : V (T ′)→ V (T ) is

an isomorphism. Since f and f ′ are both refinements of π, φ preserves degrees. We

will show N c
T (k) = N c

T ′(k) for every vertex k ∈ [n]. Once we have shown this for a

vertex we will say it is verified (and if not we say it is unverified). Let A ⊆ [n] be the

set of verified vertices; we start with A = ∅. At each stage we will try to verify either

the largest unverified vertex greater than c or smallest unverified vertex less than c,

say k. There will always be a choice such that N c
T (k) ⊆ A (if not all of the children

of both the smallest and largest unverified vertex are verified then they could not be

the largest and smallest by the construction of T ). Suppose N c
T (k) 6= N c

T ′(k) then

there exists i ∈ N c
T ′(k) \N c

T (k) and j ∈ N c
T (k) \N c

T ′(k). Consider the path between

i and j in T ′. Then k is the vertex adjacent to i in this path. We let l be the vertex

adjacent to j in this path. At this point l cannot be verified because its child in

T ′, j, has a different predecessor in T . In the case where k is the largest unverified
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vertex greater than c, we have k > l; also i > j since per the construction of T the

children of k in T are the smallest vertices without full degree in T [A]. In the case

where k is the smallest unverified vertex less than c, we have k < l; also i < j since

per the construction of T the children of k in T are the largest vertices without full

degree in T [A]. In both cases this prevents f ′ from being an alternating labeling of

T ′. Thus, the children of k must be the same in T and T ′. We need not verify c since

its neighborhood is implicit once everything else is verified. Therefore, T ' T ′.

3.3.4 Conclusion

This result will be used as follows. For an invariant σ we will show that the extremal

tree that maximizes σ in Tπ will have a direct or an alternating labeling that is

a refinement of the degree. Then by the following two immediate corollaries the

extremal tree must be the ball or the festoon.

Corollary 31. If a tree T with degree sequence π has a direct labeling f that is a

refinement of the degree then T ' Bπ.

Corollary 32. If a tree T with degree sequence π has an alternating labeling f that

is a refinement of the degree then T ' Fπ.

To get an even stronger result consider the following definition.

Definition 29. Let π and π′ be degree sequences written in non increasing order.

We say π majorizes π′ written πB π′ if
∑k

i=1 π(i) ≥∑k
i=1 π

′(i) for k = 1, 2, . . . , n− 1

and
∑n

i=1 π(i) =
∑n

i=1 π
′(i).
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This defines a partial order on degree sequences. We say σ has a majorization

result if whenever π B π′, the extremal tree for π gives a larger value for σ than the

extremal tree for π′ (or suitably modified when we want to minimize σ).

In Tn, all trees on n vertices, every degree sequence is majorized by

π1 = (n− 1, 1, 1, . . . , 1).

Both the ball and festoon with this degree sequence are the star K1,n−1.

In T ∗n,k, trees on n vertices and exactly k leafs, every degree sequence is majorized

by

π2 = (k, 2, 2, . . . , 2︸ ︷︷ ︸
n−k−1

, 1, 1, . . . , 1︸ ︷︷ ︸
k

).

The ball with this degree sequence is the almost equally subdivided star with k leafs.

The festoon with this degree sequence is the broom.

In Tn,d, trees on n vertices and degree at most d + 1, every degree sequence is

majorized by

π3 = (d+ 1, d+ 1, . . . , d+ 1︸ ︷︷ ︸
bn−2

d c
, r, 1, 1, . . . , 1)

Here we have Bπ3 = Bn,d and Fπ3 = Fn,d.

Therefore, given an extremal tree result for an invariant σ in Tπ and a majorization

result (this is the case for every invariant we consider) we can determine which tree

any any of the above families of trees maximize σ. Hence, these results are strictly

stronger than all previous results for these families. The same is true for any family

of trees that is determined by its degree sequence and has a unique maximal element

in the majorization order.
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l l′ rr′
CL R

L′ R′

C ′

Figure 3.7: Decomposition of a tree T

3.3.5 Applications

In all of the following examples let T be a tree and define the following subtrees. Let

l′ and r′ be distinct vertices of T and let l ∈ N r′
T (l′) and r ∈ N l′

T (r′). There are three

components of T − ll′ − rr′; let L be the one containing l, R be the one containing

r, and C the remaining component which will contain l′ and r′ (see Figure 3.7). Let

L′ = L+ll′, R′ = R+rr′, and C ′ = C+ll′+rr′. The tree TL↔R = T−ll′−rr′+lr′+rl′

is the tree T with the branches L and R switched. The tree TL→r′ = T − ll′ + lr′ is

the tree T with the branch L shifted to r′. Shifting can be thought of as switching

with an empty branch. It is important to note that switching preserves all degrees

and shifting preserves all degrees but that of l′ and r′ for which dTL→r′
(l′) = dT (l′)−1

and dTL→r′
(r′) = dT (r′) + 1.

For each example below we wish to maximize some invariant σ of trees. For each

invariant we will give a labeling fT of each tree T . This labeling will be related to σ

in such a way that when T ∈ Tπ has σ(T ) maximum the labeling fT of T is direct

or alternating. We will show this by comparing σ(T ) and σ(TL↔R); by assumption

σ(T )− σ(TL↔R) ≥ 0.

Next, at the same time we will show that the labeling is a refinement of the degree

and also give a majorization result. We do this by comparing σ(T ) and σ(TL→r′) for an

arbitrary tree T . In general we will show that if fT (l′) ≤ fT (r′) then σ(TL→r′) > σ(T )
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and moreover fTL→r′
(l′) < fTL→r′

(r′). Hence, if d(l′) > d(r′) then we could shift

d(l′)− d(r′) branches of l′ (relative to r′) to r′ and have a tree with the same degree

sequence and a larger value of σ; so fT is a refinement of degree for extremal trees

T . Furthermore, this shows that if π B π′ then the extremal tree for σ with degree

sequence π has larger σ value than the extremal tree for π′.

Therefore, by the previous section if T ∈ Tπ maximizes σ then T ' Bπ or T ' Fπ

and if T ∈ Tn,d maximizes σ then T ' Bn,d or T ' Fn,d. The argument is similar for

minimizing σ, however, in general only one argument will apply per invariant.

Homomorphisms

Let H be a strongly biregular graph with partition A,B; representatives a ∈ A, b ∈ B;

and degrees α = dA(a), β = dB(a), γ = dA(b), δ = dB(b). Without loss of generality

we will assume that α+β < γ+ δ, else we can switch A and B. Define the quantities

hTXY (u, v) = |{f ∈ Hom(T,H) : f(u) ∈ X, f(v) ∈ Y }|

hTxy(u, v) = |{f ∈ Hom(L,H) : f(u) = x, f(v) = y}|

hTX(v) = |{f ∈ Hom(T,H) : f(v) ∈ X}|

hTx (v) = |{f ∈ Hom(L,H) : f(v) = x}|

Lemma 33. For any tree T and vertex v we have hTa (v) ≤ hTb (v).

Proof. We will prove this by induction on the height of T . In the base case of height

zero then hTa (v) = hTb (v) = 1. Now suppose T has height k and the claim is true for

all trees of height less than k. Let v1, v2, . . . , vd be the neighbors of v and let Ti = T vvi .
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Then,

hTa (v)

hTb (v)
=

∏d
i=1(αh

Ti
a (vi) + βhTib (vi))∏d

i=1(γh
Ti
a (vi) + δhTib (vi))

=
d∏
i=1

αh
Ti
a (vi)

h
Ti
b (vi)

+ β

γ h
Ti
a (vi)

h
Ti
b (vi)

+ δ
.

Let g(x) = αx+β
γx+δ

. It is easy to verify that g((0, 1]) ⊂ (0, 1); clearly g(x) > 0 for x ∈

(0, 1] and g(x) < 1 for x ∈ (−δ
γ
, δ−β
α−γ ) a superset of (0, 1]. By the induction hypothesis

h
Ti
a (vi)

h
Ti
b (vi)

∈ (0, 1] thus hTa (v)

hTb (v)
=
∏d

i=1 g

(
h
Ti
a (vi)

h
Ti
b (vi)

)
∈ (0, 1). Therefore, hTa (v) ≤ hTb (v) and

strict inequality if T is not a single vertex.

Theorem 34. Suppose that T maximizes hom(·, H) in Tπ. If αδ − βγ > 0 then hTB

is a direct labeling of T refining the degree. If αδ − βγ < 0 then hTB is an alternating

labeling of T refining the degree. Furthermore, we have a majorization result for

hom(·, H).

Proof. We will use the notation of Section 3.3.5. With the additional convention that

D′ = L ∪ R and D = L′ ∪ R′. Suppose T ∈ Tπ maximizes hom(·, H). Consider the

following differences and easily verifiable factored forms.

hom(T,H)− hom(TL↔R, H) =
(
hCBA (l′, r′)− hCAB (l′, r′)

)
·
(
hDba (l′, r′)− hDab (l′, r′)

) (3.4)

hTB(l′)− hTB(r′) = hCBA (l′, r′)hDba (l′, r′)− hCAB (l′, r′)hDab (l′, r′) (3.5)

hC
′

BA (l, r)− hC′AB (l, r) =
(
hCBA (l′, r′)− hCAB (l′, r′)

)
(αδ − βγ) (3.6)

hDba (l′, r′)− hDab (l′, r′) =
(
hD
′

ba (l, r)− hD′ab (l, r)
)

(αδ − βγ) (3.7)

hTB(l)− hTB(r) = hC
′

BA (l, r)hD
′

ba (l, r)− hC′AB (l, r)hD
′

ab (l, r) (3.8)
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For instance, in (3.6) we condition on what set l′ and r′ are sent to in each

homomorphism to get:

hC
′

BA (l, r)− hC′AB (l, r) = βαhCAA (l′, r′) + βγhCAB (l′, r′)

+ δαhCBA (l′, r′) + δγhCBB (l′, r′)

− αβhCAA (l′, r′)− αδhCAB (l′, r′)

− γβhCBA (l′, r′)− γδhCBB (l′, r′)

=
(
hCBA (l′, r′)− hCAB (l′, r′)

)
(αδ − βγ) .

Since TL↔R ∈ Tπ and T maximizes hom(·, H) in Tπ we have that (3.4) is non

negative. Suppose (3.5) is non negative, then we must have (3.6) and (3.7) non

negative. Therefore, (3.8) is non negative if αδ−βγ > 0 and non positive if αδ−βγ <

0. In the former case hTB is a direct labeling of T , in the latter it is an alternating

labeling of T .

We would now like to show that if hTB(l′) ≤ hTB(r′) then d(l′) ≤ d(r′). We will do

so by showing that we can shift L to r′ to increase hom(·, H).

hom(T,H)− hom(TL→r′ , H) = (hL
′

a (l′)− hL′b (l′))

· (hT−LAB (l′, r′)− hT−LBA (l′, r′))
(3.9)

hTB(l′)− hTB(r′) = hL
′

b (l′)hT−LBA (l′, r′)− hL′a (l′)(hT−LAB (l′, r′) (3.10)

If hom(T,H) ≥ hom(TL→r′ , H) then (3.9) is non negative. By Lemma 33, hL
′

a (l′) <

hL
′

b (l′) and hence hT−LAB (l′, r′) ≤ hT−LBA (l′, r′). But then (3.10) is strictly positive, a
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contradiction. Therefore hom(T,H) < hom(TL→r′ , H). Note that

h
TL→r′
B (l′)− hTL→r′

B (r′) = hL
′

a (l′)hT−LBA (l′, r′)

− hL′b (l′)(hT−LAB (l′, r′)

is strictly negative since hL
′

a (l′) < hL
′

b (l′) and hT−LAB (l′, r′) > hT−LBA (l′, r′) by (3.9).

Therefore hom(·, H) is a refinement of the degree and we get a majorization result

for free.

Number of Independent Sets

The number of independent sets of T is hom(T,H) where H is given in Figure 3.8

a b

Figure 3.8: The graph H

Note that αδ − βγ = 0 · 1− 1 · 1 < 0 and so by Theorem 34 i0(v), the number of

independent sets of T not containing v, is an alternating labeling refining the degree

of the tree that maximizes the number of independent sets in Tπ. Therefore, the

number of independent sets for trees in Tπ is maximized by the festoon Fπ.

Matching Generating Polynomial

The matching generating polynomial for a graph G is the polynomial

M(G, λ) =
∑
k≥0

m(G, k)λk

where m(G, k) is the number of matchings in G of exactly k edges. We will show that

in Tπ the matching generating polynomial is minimized for all λ > 0 by the festoon
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Fπ. Note that m(G, 0) = 1 for all graphs so M(G, λ) > 0 for all λ > 0.

Theorem 35. Suppose that T minimizes M(·, λ) in Tπ for some λ > 0. Then fT (v) =

M(T, λ)−M(T − v, λ) (counting matchings that contain v) is an alternating labeling

of T refining the degree. Furthermore, we have a majorization result for M(·, λ).

Proof. We will use the notation of Section 3.3.5. With the additional convention that

D′ = L∪R. Fix λ > 0 and suppose T ∈ Tπ minimizes M(·, λ). Consider the following

differences and easily verifiable factored forms.

M(T, λ)−M(TL↔R, λ) = λ
(
M(D′ − l, λ)−M(D′ − r, λ)

)
·
(
M(C − l′, λ)−M(C − r′, λ)

) (3.11)

M(T − l′, λ)−M(T − r′, λ) = λM(C − l′ − r′, λ)
(
M(D′ − r, λ)−M(D′ − l, λ)

)
+M(D′, λ)

(
M(C − l′, λ)−M(C − r′, λ)

)
(3.12)

M(T − l, λ)−M(T − r, λ) = λM(D′ − l − r, λ)
(
M(C − r′, λ)−M(C − l′, λ)

)
+M(C, λ)

(
M(D′ − l, λ)−M(D′ − r, λ)

)
(3.13)

Since TL↔R ∈ Tπ and T minimizes M(·, λ) in Tπ we have that (3.11) is less than

or equal to zero (so one of its factors is non negative and the other is non positive).

Suppose fT (l′) ≤ fT (r′), then (3.12) is non negative. Therefore, (3.13) is non positive

and we have fT (l) ≥ fT (r).

We would now like to show that if fT (l′) ≤ fT (r′) then d(l′) ≤ d(r′). We will do
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so by showing that we can shift L to r′ to increase M(·, λ).

M(T, λ)−M(TL→r′ , λ) = λM(L− l, λ)
(
M(T − L− l′, λ)−M(T − L− r′, λ)

)
(3.14)

M(T − l′, λ)−M(T − r′, λ) = M(L, λ)
(
M(T − L− l′, λ)−M(T − L− r′, λ)

)
− λM(L− l, λ)M(T − L− l′ − r′, λ)

(3.15)

Suppose fT (l′) ≤ fT (r′), then (3.15) is non negative. Therefore, M(T − L − l′, λ) −

M(T − L− r′, λ) > 0 and hence M(T, λ) > M(TL→r′ , λ). Note that

M(TL→r′ − l′, λ)−M(TL→r′ − r′, λ) = M(L, λ)
(
M(T − L− l′, λ)−M(T − L− r′, λ)

)
+ λM(L− l, λ)M(T − L− l′ − r′, λ)

is strictly positive since (3.15) is non negative. Hence, fTL→r′
(l′) < fTL→r′

(r′). There-

fore, fT is a refinement of the degree and we get a majorization result for free.

Energy

The energy of a graph is the sum of the magnitudes of its eigenvalues. Formally, if

the spectrum of G (the spectrum of its adjacency matrix) is {λ1, . . . , λn} then the

energy of G is

E(G) =
n∑
i=1

|λi|.

For trees we can compute the energy with the Coulson integral

E(T ) =
2

π

∫ ∞
0

x−2 log
(
M
(
T, x2

))
dx.
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Therefore, since in Tπ the festoon Fπ minimizes M(·, λ) for all λ > 0 it must also

minimize energy. It is also clear that we have a majorization result.

Number of Subtrees

Let s(T ) be the number of subtrees of T . Define the auxiliary quantity s(T, v) to be

the number of subtrees of T that contain the vertex v.

Theorem 36. If T maximizes s in Tπ then s(T, ·) is a direct labeling of T .

Proof. We will use the notation of Section 3.3.5. Suppose T ∈ Tπ maximizes s.

Consider the following differences and easily verifiable alternate forms.

s(T )− s(TL↔R) = (s(L, l)− s(R, r))(s(C, l′)− s(C, r′)) (3.16)

s(T, l′)− s(T, r′) = s(L′, l′)s(C − r′, l′)− s(R′, r′)s(C − l′, r′) (3.17)

s(C − r′, l′)− s(C − l′, r′) = s(C, l′)− s(C, r′) = s(C ′ − r, l)− s(C ′ − l, r) (3.18)

s(L′, l′)− s(R′, r′) = s(L, l)− s(R, r) (3.19)

s(T, l)− s(T, r) = s(L, l)s(C ′ − r, l)− s(R, r)s(C ′ − l, r) (3.20)

Since TL↔R ∈ Tπ and T maximizes s in Tπ we have that (3.16) is non negative.

Suppose (3.17) is non negative, then we must have (3.18) and (3.19) non negative.

Therefore, equation (3.20) is non negative and s(T, ·) is a direct labeling of T .

We would now like to show that if s(T, l′) ≤ s(T, r′) then d(l′) ≤ d(r′). We will

do so by showing that we can shift L to r′ to increase s.

s(T )− s(TL→r′) = s(L, l)(s(T − L, l′)− s(T − L, r′)) (3.21)

s(T, l′)− s(t, r′) = s(L′, l′)s(T − L, l′)− s(L, l)s(T − L, {r′, l′})− s(T − L, r′)

(3.22)
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If s(T ) ≥ s(TL→r′) then (3.21) is non negative and hence s(T − L, l′) ≥ s(T − L, r′).

Notice that (3.22) is greater than s(L′, l′)(s(T −L, l′)− s(T −L, r′)). But then (3.22)

is strictly positive, a contradiction. Therefore s(T ) < s(TL→r′). Note that

s(TL→r′ , l
′)− s(TL→r′ , r′) = s(T − L, l′) + s(T − L, {l′, r′})s(L, l)− s(T − L, r′)s(L′, l′)

< s(L′, l′)(s(T − L, l′)− s(T − L, r′))

Since (3.21) is negative so is s(TL→r′ , l′)− s(TL→r′ , r′) i.e., s(TL→r′ , l′) < s(TL→r′ , r′).

Therefore, s is a refinement of the degree and we get a majorization result for free.

Wiener Index

The Wiener index is

W (T ) =
∑
u∼v

d(u, v).

Define the auxiliary quantities

d(T, v) =
∑

u∈V (T )

d(u, v)

and note that

W (T ) =
1

2

∑
v∈V (T )

d(T, v).

We will show that fT (v) = W (T ) − d(T, v) is a direct labeling of the vertices of

the tree T ∈ Tπ which minimizes W (T ). Furthermore, fT refines the degree and we

have a majorization result for W . We will do so with the analogous arguments for

d(T, ·).

Theorem 37. Suppose that T has minimum Wiener index in Tπ. Let l′ and r′ be

distinct vertices in T and l ∈ N r′(l′) and r ∈ N l′(r′). If d(T, l′) ≥ d(T, r′) then
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d(T, l) ≥ d(T, r) and d(l′) ≤ d(r′). Furthermore, we have a majorization result for

W .

Proof. We will use the notation of Section 3.3.5. Consider the quantity W (T ) −

W (TL↔R). The distances between pairs of vertices in L ∪ R are the same in both

trees so they cancel. Similarly, the distances between pairs of vertices in C cancel.

Therefore, counting the number of edges in paths between other pairs we have

W (T )−W (TL↔R) = |C|d(L′, l′) + |L|d(C, l′) + |C|d(R′, r′) + |R|d(C, r′)

− |C|d(L′, l′)− |L|d(C, r′)− |C|d(R′, r′)− |R|d(C, r′)

= (d(C, l′)− d(C, r′))(|L| − |R|).

(3.23)

Note that W (T )−W (TL↔R) ≤ 0 since W (T ) is minimum. Therefore, either d(C, l′) ≥

d(C, r′) and |R| ≥ |L| or d(C, l′) ≤ d(C, r′) and |R| ≤ |L|. Additionally, consider the

quantities

d(T, l′)− d(T, r′) = d(L′, l′) + d(C, l′) + d(l′, r′)|R|+ d(R′, r′)

− d(R′, r′)− d(C, r′)− d(l′, r′)|L| − d(L′, l′)

= d(C, l′)− d(C, r′) + d(l′, r′)(|R| − |L|)

(3.24)

d(T, l)− d(T, l′) = |C|+ |R| − |L| (3.25)

d(T, r)− d(T, r′) = |C|+ |L| − |R| (3.26)

d(T, l)− d(T, r) = d(T, l′)− d(T, r′) + 2(|R| − |L|). (3.27)

By assumption (3.24) is non negative and thus by the above we have d(C, l′) ≥ d(C, r′)

and |R| ≥ |L|. Therefore, (3.27) is non negative and d(T, ·) is a direct labeling of the

vertices of T . By a simple transformation so is W (T )− d(T, ·).
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We would now like to show that if d(T, l′) ≥ d(T, r′) then d(l′) ≤ d(r′). We will

do so by showing that we can shift L to r′ to decrease the Wiener index.

W (T )−W (TL→r′) = |T − L|d(L′, l′) + |L|d(T − L, l′)

− |T − L|d(L′, l′)− |L|d(T − L, r′)

= (d(T − L, l′)− d(T − L, r′))|L|

(3.28)

d(T, l′)− d(T, r′) = d(L′, l′) + d(T − L, l′)

− d(T − L, r′)− d(l′, r′)|L| − d(L′, l′)

= d(T − L, l′)− d(T − L, r′)− d(l′, r′)|L|

(3.29)

If W (TL→r′) ≥ W (T ) then (3.28) and hence (3.29) are non positive; but this con-

tradicts the assumption that d(T, l′) ≥ d(T, r′), therefore W (TL→r′) < W (T ). Note

that

d(TL→r′ , l
′)− d(TL→r′ , r

′) = d(L′, l′) + d(l′, r′)|L|+ d(T − L, l′)

− d(T − L, r′)− d(L′, l′)

= d(T − L, l′)− d(T − L, r′) + d(l′, r′)|L|

(3.30)

is strictly positive. Therefore W (T )− d(T, ·) is a refinement of the degree and we get

a majorization result for free.

3.4 Open Problems

Knowing what trees in Tn,d and Tπ maximize the number of homomorphisms to any

strongly biregular graph, a natural question is what happens with more complex

graphs. For instance consider the graphs H1 and H2 (see Figure 3.9). The number of

homomorphisms to the graph H1 appears to be maximized by the festoon (checked by
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computer for all trees of 75 vertices or less). However, the number of homomorphisms

to the similar graph H2 is not always maximized by the ball or festoon. Can we

characterize the graphs that have the number of homomorphisms to them maximized

by the festoon or the ball?

(a) H1 (b) H2

Figure 3.9: Two graphs



78

Chapter 4

Reconstruction

4.1 Discussion

A reconstruction problem asks us to recover a combinatorial object from partial in-

formation about it. We will explore two such problems in this chapter. First we will

consider reconstructing trees from their Wiener matrix and other generalizations.

Second we will consider reconstructing a graph of girth at least 2r + 3 from metric

balls of radius r.

4.2 Trees from Matrices

4.2.1 Introduction

The Wiener index of a graph, introduced by Wiener in 1947, is the total of the

distances between every pair of vertices. Wiener showed that for certain types of

molecules his index correlated well with their physical properties [21]. An easy method

of computing the Wiener index for a tree is to take a sum
∑

ewe over all edges e,

where we is the product of the sizes of the components of T − e. It is easy to check
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that we equals the number of paths in T containing e.

Definition 30. Let T be a tree on n vertices. The Wiener matrix of T is the n× n

matrix W = (wij) such that

wij =

 number of paths in T containing i and j i 6= j

0 i = j.

There is a strong connection between the Wiener index and the Wiener matrix, the

Wiener index is half the sum of the entries of W corresponding to adjacent vertices.

The hyper-Wiener index (WW) is half the sum of all entries of W .

Conjecture 38 (Randić, Guo, Oxley, Krishnapriyan, and Naylor [16]). An entry in

W is the largest in its row or column if and only if the corresponding vertices are

adjacent.

In other words a tree can be reconstructed from its Wiener matrix. We will prove

this conjecture.

A natural generalization of this is to subtrees of bounded degree. Fix k ≥ 2. Let

Sk(T ) be the collection of subtrees of T with maximum degree at most k.

Definition 31. Let T be a tree on n vertices. The k-subtree matrix of T is the n×n

matrix Sk = (sij) such that

sij =

 |{T
′ ∈ Sk(T ) : i, j ∈ V (T ′)}| i 6= j

0 i = j.

Remark. When k = 2 this is the Wiener matrix.

We will show that we can use the same method to reconstruct from the the k-

subtree matrix.
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Theorem 39. An entry in Sk is the largest in its row or column if and only if the

corresponding vertices are adjacent.

4.2.2 Result

We begin by defining the following quantity.

Definition 32. For a tree T with root r, let

µk(T ) = |{T ′ ∈ Sk(T ) : r ∈ V (T ′), dT ′(r) ≤ k − 1}|.

Remark. When k = 2 this is the number of paths in T starting at r so µ2(T ) = |T |.

It may be helpful to the reader to first consider this case when reading.

Lemma 40. If uv ∈ E(T ) consider the components of T − uv. Let U = T vu be the

component containing u and V = T uv the component containing v. Then,

suv = µk(U)µk(V ).

Proof. Any subtree in Sk(T ) can be broken up into a subtree in Sk(U) and a subtree

in Sk(V ) each with the degree at the root strictly less than k. In reverse any such

pair of subtrees can be extended (with the edge uv) to be a subtree in Sk(T ).

Theorem 41. An entry in Sk is the largest in its row or column if and only if the

corresponding vertices are adjacent.

Proof. For ease of notation we will write µ(A) = µk(A).

(⇒) Suppose suv is the largest entry in its row or column and uv /∈ E(T ). Let

w be any vertex on the path between u and v. Everything in Sk that contains both

u and v also must contain w. Furthermore, the path between u and w is in Sk but
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Figure 4.1: Case 1.

does not contain v. Therefore suw > suv and similarly swv > suv, a contradiction, so

uv ∈ E(T ).

(⇐) Suppose uv ∈ E(T ). We would like to show that suv is the largest in its row

or column. Direct the edges of T as follows. For an edge ab consider the components

of T − ab. Let A = T ba be the component containing a and B = T ab the component

containing b. Direct,

a→ b if µ(A) ≤ µ(B),

a← b if µ(A) ≥ µ(B).

Without loss of generality, suppose u → v. We will show suv is the largest entry

in its row. (If v → u then suv is the largest entry in its column.)

Suppose there was some vertex w 6= v such that u→ w. Then we have w ← u→ v

as in Figure 4.1. Using the labeling of the figure we have the following inequalities.

µ(V ) ≥ µ(A) > µ(W )

µ(W ) ≥ µ(B) > µ(V )

But this is a contradiction.

Now we would like to show suv is the largest entry in its row. We need only
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Figure 4.2: Case 2.

consider the neighbors of u by (⇒). Let w ∈ N(u) − v. By the claim we have

w → u → v as in Figure 4.2. Conditioning on whether a subtree contains w we get

the following counts.

suv = swv + µ(U)µ(V )

suw = swv + µ(U)µ(W )

But µ(W ) < µ(A) ≤ µ(V ), so suv > suw.

The sinks of this orientation are a generalization of the centroid.

Definition 33. A vertex is in the k-subtree centroid of a tree T if it is a sink of the

orientation in Theorem 41. Alternatively, a vertex is in the k-subtree centroid of a

tree T if it minimizes the maximum µ-value of its branches.

Remark. The 2-subtree centroid is the centroid. We will discuss this topic and the

interpretation of the k-subtree centroid for k ≥ ∆(T ) in Section 4.2.3.

It is easy to construct trees where the k-subtree centroid and the centroid are

different for k ≥ 3. The k-subtree centroid takes into consideration branching whereas

the centroid does not. See Figure 4.3 for an example.
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c s

Figure 4.3: In this graph c is the centroid and s is the k-subtree centroid for k ≥ 3.

Theorem 42. The k-subtree centroid of a tree is either one vertex or two adjacent

vertices.

Proof. Suppose that there are two non adjacent members of the k-subtree centroid.

Then on the path between these two vertices is another vertex u with two arrows

directed out. But this case is specifically excluded in the proof of Theorem 41. There-

fore, the k-subtree centroid is either one vertex or two adjacent vertices. Furthermore,

this proves that all edges are oriented towards the k-subtree centroid.

4.2.3 Special Cases

Wiener Matrix

When k = 2 the k-subtree matrix is the Wiener matrix and the sink(s) of the orien-

tation in Theorem 41 are the vertices in the centroid.

Definition 34. The centroid of a tree T is the set of vertices v such that the compo-

nents of T − v all have size at most n/2, where n = |T |. Alternatively, the centroid

is the set of vertices v that minimize the maximum size of a component of T − v.

A well known fact about centroids is they have only one or two adjacent vertices

[17]. We include an independent proof of this fact for completeness.

Theorem 43. The centroid of a tree is either one vertex or two adjacent vertices.
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Proof. Start with an arbitrary choice of vertex v. If v is not in the centroid then one

of the components of T −v has size strictly larger than n/2. Let v′ be the neighbor of

v in this component. One of the components of T−v′ is all but the largest component

of T − v along with the vertex v, and must have size at most n/2 since the remaining

component of T − v has size strictly larger than n/2. The remaining components of

T − v′ are subsets of the largest component of T − v and so are strictly smaller. If v′

is not in the centroid we continue in this fashion, at each stage the size of the largest

component is strictly less so eventually we have a vertex in the centroid.

Suppose the centroid of T contains two vertices v, w. Then by definition, the

component C of T − v containing w has size at most n/2 and the component D of

T −w containing v has size at most n/2. But C ∪D = T so |T | = n− |C ∩D|. Thus

C ∩D must be empty and therefore v ∼ w.

Recall that µ2(A) = |A| and so the the orientation of vw in Theorem 41 is towards

the larger branch component of T − vw.

Corollary 44. The centroid is the 2-subtree centroid.

Proof. The size of the components of T − vw for any edge vw add up to n = |T |.

Thus, one component has size at least n/2 and the other has size at most n/2. First

let us consider the case where these sizes are not the same and thus the inequalities

are strict. Without loss of generality suppose the component W = T vw of T − vw

containing w has size greater than n/2. We would like to show that the size of the

largest component of T −w is at less than the size of the largest component of T − v.

One of the components of T − v is W and thus the sum of the sizes of the remaining

components of T −v is n−|W |−1 which is less than n/2−1. One of the components

of T −w is T −W which has size n− |W | which is less than n/2, and the remaining

components are strict subsets of W and so have size less than |W |. In the case where
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the sizes of the components of T − vw are equal (to n/2) the size of the largest

component of both T − v and T − w is n/2.

Therefore the orientation provided in Theorem 41 (v → w if |Twv | ≤ |T vw), of which

the 2-centroid is the sink, is the same as the orientation: “v → w if the size of the

largest component of T − v is at most the size of the largest component of T − w,”

the sinks of which are clearly the centroid. Therefore, they have the same sink(s) and

the 2-subtree centroid is the centroid.

Subtree Matrix

When k > ∆(T ) we are simply counting subtrees with no bound on maximum degree.

Therefore, call the corresponding matrix the subtree matrix. In the orientation from

Theorem 41 the sink(s) are the vertices that are in the maximum number of subtrees.

To see this first consider the following lemma. In this section write µ in place of µk

for k > ∆(T ).

Lemma 45. Let T be a tree and a ∼ b adjacent vertices. Let T a denote T rooted at

a, T b denote T rooted at b, and set A = T ba , and B = T ab . Then

µ(T a) > µ(T b) ⇐⇒ µ(A) > µ(B)

µ(T a) < µ(T b) ⇐⇒ µ(A) < µ(B)

µ(T a) = µ(T b) ⇐⇒ µ(A) = µ(B)

Proof. Observe that we can compute µ(T a) and µ(T b) as follows. The quantity µ(T a)

can be broken down to two quantities: subtrees which contain a but not b, of which

there are µ(A), and subtrees containing both a and b, of which there are µ(A)µ(B).
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We can do a symmetrical decomposition for µ(T b) and so we have:

µ(T a) = µ(A) + µ(A)µ(B)

µ(T b) = µ(B) + µ(A)µ(B)

So the result is clear.

Remark. There is no analog of this theorem for paths or trees with bounded maximum

degree. For example, the number of paths containing a is not |A|+ |A||B| since this

does not count paths in A through a neither of whose endpoints is a.

Definition 35. A vertex is in the subtree centroid of a tree T if it is in at least as

many subtrees as any other vertex.

Corollary 46. The subtree centroid of T is the k-subtree centroid when k > ∆(T ).

Proof. Direct the edges of the tree as follows: v → w if w is in at least as many

subtrees as v. By Lemma 45 this is the same orientation as in Theorem 41.

Remark. Moreover the number of subtrees that contain a vertex is strictly increasing

as we move closer to the subtree centroid along a directed path.

4.2.4 Open Problems

What other generalizations of this problems can we solve? Can we say anything about

the Wiener Matrix of a graph?
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4.3 Graphs from Balls

4.3.1 Introduction

Recently Levenshtein, Konstantinova, Konstantinov, and Molodtsov [13] raised the

question of whether a graph can be reconstructed from the function Br : V (G) →

P(V (G)) mapping v 7→ {w ∈ V (G) : dG(v, w) ≤ r} which we will call the metric ball

of radius r about v or simply an r-ball. Clearly this will not be possible for all graphs

when r is at least 2. A trivial case where reconstruction is impossible would be a

graph of small diameter; any graph of diameter at most r will have Br(v) = V (G) for

all vertices v (see Figure 4.4).

However, large diameter is insufficient if we are allowed small girth. Consider a

cycle of length at most 2r+ 1 attached to the end of a long path. The vertices on the

cycle at the same distance from the path will have the same r-balls so their labels

can be swapped to create another graph with the same r-balls (see Figure 4.5 for an

example when r = 2).

Leafs are another problematic area. When r ≥ 4 we can not always reconstruct

(see Figure 4.6). However, leafs are trivial to recognize from balls in graphs of girth

at least 2r + 2 since they are strict subsets of some other ball. Recursively removing

leafs we can get to the 2-core of the graph and its associated r-balls for which we can

then ask the question of reconstruction.

1 2

3 4
(a) G1

1 2

3 4
(b) G2

Figure 4.4: Both G1 and G2 have diameter 2 and hence the same 2-balls
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1
2

3
4

5 6 7

(a) H1

4
2

3
1

5 6 7

(b) H2

Figure 4.5: Both H1 and H2 have the same 2-balls; note the labels of 1 and 4 are
switched.

1 2

3 4 5 6 7 8
(a) T1

1

2

3 4 5 6 7 8
(b) T2

Figure 4.6: Both T1 and T2 have the same 4-balls

Definition 36. A graph G ∈ F is reconstructable (in F) from its r-balls if for any

G′ ∈ F with the same family of r-balls as G we have G = G′. Similarly, G ∈ F is

reconstructable up to isomorphism (in F) if for any G′ ∈ F with the same family of

r-balls as G we have G ' G′.

Example 5. C2r+2, the cycle on 2r + 2 vertices, is not reconstructible from its r-

balls—the same graph with the labels of two antipodal vertices switched has the

same r-balls. However, it is reconstructable up to isomorphism from its r-balls. (See

Figure 4.7.)

Of particular interest is the value of t(r) defined to be the minimum number t

such that every graph G ∈ F is reconstructible (in F) from its r-balls where F is the

collection of simple connected graphs with no pendant vertices and girth at least t.

The first result was from Levenshtein et al. [13] where they proved that if a graph
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12

3

4 5

6

(a) C6

42

3

1 5

6

(b) C ′
6

Figure 4.7: Two different cycles on 6 vertices. C ′6 has the labels of 1 and 4 switched.

G has girth at least 7 and a path of length 4 passing through any vertex then G can

be reconstructed from its metric balls of radius 2, so as a corollary t(2) = 7. Shortly

after, Levenshtein [14] gave a more general result, that t(r) ≤ 2r + 2d(r − 1)/4e+ 1.

Furthermore, he conjectured that t(r) = 2r + 3. He proved the following theorem

that gives us a path to proving his conjecture.

Theorem 47. Suppose that for any simple connected graph G without pendant ver-

tices with girth at least 2r + 3 one can determine at least one edge of G using its

r-balls. Then t(r) = 2r + 3.

He did so by considering what he called dense covers of metric balls, showing that

if a dense cover for the metric ball about a vertex v contains at least one neighbor

of v then it must be exactly N(v). This result is also implied by work of Adamaszek

and Adamaszek [2]. For this class of graphs they gave a simple formula for finding

the neighborhood of vertex v from the r-balls when one neighbor is already known.

In the next section we will prove Levenshtein’s conjecture by finding one edge of any

graph in this class.

4.3.2 Result

An important fact about metric balls in graphs with large girth is the following.
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Lemma 48. If G is a graph with girth at least 2r + 3 and there is a path between

vertices x and y of length r + 1 or r + 2 then x /∈ Br(y).

Proof. If x ∈ Br(y) then there is a path of length at most r between x and y.

Combining this path with a path of length r + 1 or r + 2 between x and y creates a

cycle of length at most 2r + 2, a contradiction.

To prove Levenshtein’s conjecture we will consider the following quantity.

Definition 37. Given x, y ∈ V (G) we define Ir(x, y) = Br(x) ∩Br(y) and ir(x, y) =

|Ir(x, y)|.

We will show that if we fix a vertex x and consider all other vertices in Br(x) this

quantity is maximized only by vertices adjacent to x. Thus we can find at least one

edge incident to x.

Theorem 49. Let G be a graph with girth at least 2r+3 and no pendant vertices. Con-

sider some x ∈ V (G). If y ∈ Br(x)\{x} is such that ir(x, y) = maxz∈Br(x)\{x} ir(x, z)

then xy ∈ E(G).

Proof. Suppose y ∈ Br(x) \ {x} but xy /∈ E(G). Consider the tree T = G[Br(x)].

There is a one-to-one correspondence between N(x) and components of T − x since

each component contains exactly one neighbor of x. We call the components of T −x

branches. Let x0 be the unique neighbor of x that is in the same branch as y. We claim

that ir(x, x0) > ir(x, y). To this end, define N to be the set of vertices at distance r

from x and not in the same branch as y. By Lemma 48, it is clear that Ir(x, x0) =

Br(x)\N . To prove the claim we will show that |Br(y)∩N | < |Br(y)c∩Ir(x, x0)|, that

is to say, what we gain from switching from y to x0 is more than we lose. Explicitly,
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Ir(x, y)− Ir(x, x0) = (Br(x) ∩Br(y)) ∩ (Br(x) ∩Br(x0))
c

= Br(y) ∩Br(x) ∩Br(x0)
c

= Br(y) ∩N,

Ir(x, x0)− Ir(x, y) = (Br(x) ∩Br(x0)) ∩ (Br(x) ∩Br(y))c

= Br(x) ∩Br(x0) ∩Br(y)c

= Br(y)c ∩ Ir(x, x0).

If Br(y)∩N = ∅ then any vertex at distance r− 1 from x not in the same branch

as y is in Br(y)c∩Ir(x, x0). Such a vertex exists because there are no pendant vertices

and y 6= x0.

For n ∈ Br(y) ∩ N with dG(y, n) = k ≤ r, let n′ be the unique vertex r + 1 − k

steps above n in the tree. Note that there is a path of length r + 1 from y to n′

through n so n′ /∈ Br(y) by Lemma 48. Now for each distinct n1, n2 ∈ Br(y) ∩N we

have that n′1 and n′2 are distinct else the symmetric difference of the path of length

r + 1 from y to n′1 and the path of length r + 1 from y to n′2 is a cycle of length at

most 2r+2, a contradiction. So if Ny = {n′ : n ∈ Br(y)∩N} then |Ny| = |Br(y)∩N |

and Ny ⊆ Ir(x, x0) \ Br(y). To find one more thing that we gain, let n′0 ∈ Ny be of

minimum distance to x. If n′′0 is the neighbor of n′0 one step closer to x (n′0 6= x by

Lemma 48), we see that n′′0 /∈ Ny and there is a path of length r + 2 between y and

n′′0 so n′′0 /∈ Br(y) by Lemma 48. This proves the claim.

Corollary 50. Every graph with no pendant vertices and girth at least 2r+ 3 can be

reconstructed from its r-balls. Moreover t(r) = 2r + 3.

Proof. Immediate from Theorem 47 and Theorem 49.
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Figure 4.8: The tree T

Moreover, per the discussion in the introduction we can reconstruct the 2-core of

any graph with girth at least 2r + 3 from its r-balls. For the vertices that are not in

the 2-core, however, at least when r ≥ 4, we can only in general ascertain what the

closest vertex in the 2-core is and the distance form this vertex. When r = 3 it turns

out we can reconstruct up to isomorphism if the diameter is at least 4.

4.3.3 Open Problems

This result settles the problem of reconstruction of graphs with large girth and no

pendant vertices from metric balls. It is natural to consider the generalization of

reconstruction up to isomorphism. Just as the cycle on 2r+2 vertices is reconstructible

up to isomorphism from balls of radius r, We conjecture that this is indeed the case

for all graphs with girth 2r + 2 and no pendant vertices.

Conjecture 51. Every graph with no pendant vertices and girth at least 2r + 2 can

be reconstructed up to isomorphism from its r-balls.
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This conjecture has been proven for r = 2 by Adamaszek and Adamaszek [1] using

a novel trick to build an isomorphism between two reconstructions. Unfortunately it

is not clear how to extend this to larger values of r.

Another question is how much of a graph can be obtained from the matrix cor-

responding to sizes of intersections of balls. We conjecture that we can recover the

whole graph from such a matrix.

Conjecture 52. Every graph with no pendant vertices and girth at least 2r + 3 can

be reconstructed from the matrix M = (mxy) where

mxy =

 ir(x, y) d(x, y) ≤ r

0 d(x, y) > r.
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