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Let G be a finitely presented group with Cayley graph Γ. Roughly, G is a stackable

group if there is a maximal tree T in Γ and a function φ, defined on the edges in

Γ, for which there is a natural ‘flow’ on the edges in Γ \ T towards the identity.

Additionally, if graph(φ), which consists of pairs (e, φ(e)) for e an edge in Γ, forms

a regular language, then G is autostackable. In 2011, Brittenham and Hermiller

introduced stackable groups in [4], in part, as a means to gain traction on the word

problem for 3-manifold groups. They showed that if graph(φ) is (at least) decidable,

as a language, then there is an effective algorithm which solves the word problem;

furthermore, they show that stackable groups have an inductive procedure for building

van Kampen diagrams, which helps provide insight into the complexity of the word

problem.

As one part of my thesis research, I consider group constructions under which the

(auto)stackable property is preserved. In this thesis, I show positive results in the

case of graph products (a generalization of direct and free products), group extensions

and finite index supergroups, and in the case of free products with amalgamation of

free abelian groups over an infinite cyclic group. Using closure under group exten-

sions, I also show that polycyclic groups are autostackable, and that there exists an

autostackable group with unsolvable conjugacy problem.

Autostackable groups generalize the structures of automatic groups and groups



with finite complete rewriting systems, both of which are known to be of type FP∞.

However, in this paper, I show that there exists an autostackable group that is not of

type FP3.
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Chapter 1

Introduction

1.1 Background

In [4], Brittenham and Hermiller define stackable groups as a generalization of the al-

gorithmic structures of almost convex groups and groups with finite complete rewrit-

ing systems. They show in [4] that almost convex groups and groups with finite

complete rewriting systems are (algorithmically) stackable. They refine stackability

into autostackability in [5]. The theory of autostackable groups is partly motivated by

a desire to gain traction on the word problem, specifically in the class of fundamental

groups of closed 3-manifolds. Automatic groups were defined by Epstein, Cannon,

Holt, Levy, Paterson and Thurston in [12] with the same motivation in mind, but the

class of automatic groups fails to include fundamental groups of closed 3-manifolds

with Nil or Sol geometries. Later on, we discuss some differences between automatic

groups and autostackable groups, but first we require some definitions and notation.

Let G be a group with finite inverse-closed generating set A and let Γ be the

associated Cayley graph of G. A set of normal forms for G over A is a collection

of canonical representations of the group elements in G as words in A∗. Throughout
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this paper, we label the normal form for an element g ∈ G as the word yg. If two

words u and v represent the same group element, then we write u =G v. If they are

identically the same word, then we write u = v. Given a word w, we will use w to

represent the group element g such that g =G w. That is, if G = 〈A〉, then : A∗→G

is the quotient map that takes words to group elements. By slight abuse of notation,

we will likewise use yw to represent the normal form for the group element w.

Let ~E(Γ) = ~E be the set of directed edges in the Cayley graph Γ. Let eg,a represent

the directed edge with initial vertex g and terminal vertex ga labeled by a. Again by

slight abuse of notation, we will write ew,a to represent the directed edge labeled by

a with the group element w as the initial vertex. We call an edge eg,a degenerate if

either yga = yga or ygaa
−1 = yg. The collection of degenerate edges is labeled the set

~Ed. If an edge is not degenerate, then it is recursive and we define ~Er = ~E \ ~Ed to be

the collection of all recursive edges.

An intuitive description of stackablility is as follows. Let G = 〈A〉 be a group with

A a finite, inverse-closed generating set, and let Γ be its corresponding Cayley graph

with directed edge set ~E. Define a function φ : ~E → {paths in Γ of length ≤ k} for

some k ∈ N. A stackable structure for G is the function φ together with a choice of

maximal tree T in Γ such that the function φ acts as a ‘flow’ of the edges in ~E \ T

towards the identity. If, in addition, the graph of φ is a regular language, then G has

an autostackable structure.

For example, consider the group G = Z2 generated by two elements a and b with

a single commuting relation ab = ba. The Cayley graph for this presentation is the

2-dimensional lattice, and N = {aibj|i, j ∈ Z} is a set of normal forms for G. Since

the set N dictates that the normal form for aibj · a is ai+1bj, the edge labeled by a

between aibj and ai+1bj is recursive. In fact, all recursive edges in this example are of

that form. Suppose e is an edge labeled by a in the upper half plane. Then e = eaibj ,a
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with j > 0. The flow from the edge e is downward, toward the horizontal axis, and

the function indicating the flow is φ(e) = b−1ab. In the Cayley graph, this amounts to

taking a “step” down from one recursive edge to the next below until you eventually

end up on the horizontal axis which consists of all edges in the tree which are traced

out by words in N . Additionally, graph(φ) is a regular language, as φ(e) depends

only on the edge label and whether the edge is above the a-axis (j > 0) or below the

a-axis (j < 0).

Brittenham and Hermiller introduced stackable groups in [4], with a flow function

labeled c defined only on the set ~Er of recursive edges. It was then extended to a

function c′ on all edges in the Cayley graph. There is a natural one to one correspon-

dence between edges in the Cayley graph and the set N ×A, which associates a pair

(y, a) with the edge ey,a, labeled by a, with initial vertex labeled by y. We now have

the following definition, which is introduced in [5].

Definition 1.1. Let G be a group with finite inverse-closed generating set A. Then

G is autostackable if there is a set of normal forms N for G over A with 1 ∈ N , a

constant k and a function φ : N × A→ {words in A∗of length ≤ k} such that:

1. The set graph(φ) := {(yg, a, φ(yg, a))|g ∈ G, a ∈ A}, is a regular language when

viewed as a set of words over a padded set (A ∪ $)3 \ {($, $, $)}.

2. For each eg,a ∈ ~E(Γ), we have φ(yg, a) =G a and

(2d) We have φ(yg, a) = a if and only if eg,a ∈ ~Ed

(2r) The transitive closure <φ of the relation < on recursive edges ~Er, defined

by e′ < eg,a whenever eg,a, e
′ ∈ ~Er and e′ is on the path φ(yg, a) from the

initial vertex of eg,a, is a strict well-founded partial ordering.
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If (2) holds, but (1) does not, then we say that G is stackable. If (2) holds, and

the language described in (1) is decidable but not regular, then we say that G is

algorithmically stackable.

We refer to the function φ as either the “flow” function or the “stacking” function.

Because the edges eg,a are in a one-to-one correspondence with the pairs (yg, a), we

will sometimes use φ(eg,a) to mean φ(yg, a). When a directed edge e′ lies along the

path φ(e), we call e′ a child of e.

Recall that a van Kampen diagram ∆ for a word w =G 1 is a connected, simply

connected, planar 2-complex such that the edges of the boundary of ∆, ∂∆, are

labeled by w and for every 2-cell, σ of ∆, the edges of ∂σ are labeled by a relator in

R. For more information about van Kampen diagrams, see [23]. In [4], Brittenham

and Hermiller show that having a stacking structure gives an inductive procedure to

build van Kampen diagrams. In short, stackability gives a way to fill “icicles”, the

van Kampen diagrams for words of the form ygay
−1
ga , and using the seashell method

general van Kampen diagrams are filled using these icicles. For more detail, see [4].

In the same paper, Brittenham and Hermiller present a stacking reduction proce-

dure which acts as a methodical way to put a word into its normal form. The stacking

reduction procedure can be interpreted visually: trace out a word w in the Cayley

graph. For each edge e along the path traced by w that is recursive, replace it with

the path φ(e) in the Cayley graph described above. This procedure does not change

the group element that the word represents, as the path begins and ends at the same

vertices as e. Continue this process until all recursive edges have been rewritten; the

result is a path consisting only of degenerate edges. The final step is to freely cancel,

thus removing any edge traversed multiple times. The final path labels the normal

form word yw. Since any algorithm which can find normal forms can find the normal
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form for a word representing 1 ∈ G, this stacking reduction procedure provides a

solution to the word problem. With the added restriction that the language graph(φ)

be (at least) decidable, this algorithm is effective. Since decidable languages contain

the class of regular languages, autostackable groups also have this effective solution

to the word problem.

Throughout this paper, we require a set of normal forms of a stackable group

to be prefix-closed. That is, if w ∈ N decomposes as w = uv for words u, v ∈ A∗,

then u ∈ N . While the definition does not strictly require prefix-closed normal forms,

Brittenham and Hermiller show that stackable groups have prefix-closed normal forms

as a consequence of the stacking reduction procedure [4, Lemma 1.5].

We now have the language to compare autostackable groups with automatic

groups. In [5], Brittenham and Hermiller show that all automatic groups with prefix-

closed automatic structures are autostackable. However, the class of autostackable

groups is strictly larger than the class of automatic groups with prefix-closed auto-

matic structures. For example, all fundamental groups of closed 3-manifolds with

uniform geometries are autostackable [5]. In [12], Epstein et. al. show that all au-

tomatic groups satisfy a quadratic Dehn function; the only known restriction on the

Dehn function of autostackable groups is that it be computable. In fact, the iterated

Baumslag Solitar groups presented by

〈a0, a1, ..., ak|a−1
i+1aiai+1 = a2

i 0 ≤ i ≤ k − 1〉

were shown by Gersten in [14] to have Dehn function given by a k-fold iterated expo-

nential and by Brittenham and Hermiller in [5] to be autostackable. Therefore iterated

exponential functions provide a lower bound on the upper bound for the Dehn func-

tion of an arbitrary autostackable group. For more information about Dehn functions,
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see [23]. The question of whether or not all automatic groups are autostackable re-

duces to the question of whether or not every automatic group possesses an automatic

structure that includes a set of prefix-closed normal forms.

As stated before, one goal of autostackable groups is to gain traction on algorithmic

problems in the class of fundamental groups of closed 3-manifolds. As the fundamental

group of a closed 3-manifold can be realized as the fundamental group of a graph of

groups with edge groups 1, Z or Z2 and vertex groups G where G is the fundamental

group of a closed 3-manifold group with uniform geometry, closure properties are of

particular interest here.

In Chapter 2, we investigate closure properties of stackable, algorithmically stack-

able and autostackable groups. We have the following results.

Theorems 2.6 and 2.7. Let groups G1, G2, ..., Gn be stackable (respectively au-

tostackable, algorithmically stackable) with finite inverse-closed generating sets A1,

A2, ..., An, and stacking structures (N1, φ1), (N2, φ2), ..., (Nn, φn) respectively. Then

any graph product, G, of the groups G1, ..., Gn is also stackable (respectively au-

tostackable, algorithmically stackable).

Theorems 2.10 and 2.11. Let 1 → K
ι→ G

q→ Q → 1 be an exact sequence

for groups K, G and Q. If K = 〈A|R〉 and Q = 〈B|S〉 are stackable (respectively

autostackable, algorithmically stackable) with A and B finite inverse-closed generating

sets and stacking structures (NK , φK) and (NQ, φQ) respectively, then G = 〈A ∪ B̂〉

is stackable (respectively autostackable, algorithmically stackable).

Theorems 2.16 and 2.17. Let G be a stackable (respectively autostackable, algo-

rithmically stackable) group with finite inverse-closed generating set A and stacking

structure (NG, φG). If G is a finite index subgroup of a group H, then H is also

stackable (respectively autostackable, algorithmically stackable).
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From Theorem 2.11, we have the following two corollaries.

Corollary 2.12. Let G be a polycyclic group. Then G is autostackable.

Corollary 2.13. There exists an autostackable group which does not have solvable

conjugacy problem

Closure properties in related classes of groups have been well-studied. In [12],

Epstein et.al. show that automatic groups are closed under free and direct products,

finite index subgroups, finite index supergroups and HNN extensions and free prod-

ucts with amalgamation over finite subgroups. In [5], Brittenham and Hermiller show

that groups with finite complete rewriting systems are autostackable. In [18], Her-

miller and Meier show that groups with finite complete rewriting systems are closed

under graph products. in [17], Groves and Smith show closure under finite index sub-

groups and certain amalgamated products and HNN extensions. In [19], Hermiller

and Meier provide a different proof of closure under finite index subgroups.

Since autostackable groups are closely related to automatic groups and groups

with finite complete rewriting systems, it is natural to investigate which properties

autostackability shares with these two families of groups. In Chapter 3, we examine

the following.

Definition 1.2. A group G is of type FPn(n ≥ 1) if the ZG-module Z admits a

projective resolution which is finitely generated in all dimensions ≤ n.

In the finitely presented case, this is equivalent to:

Definition 1.3. A group G is of type Fn(n ≥ 1) if there exists a K(G, 1) with finite

n-skeleton, where a K(G, 1) is path connected space with contractible universal cover

whose fundamental group is G.
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For more information about type FPn and group cohomology, see Brown’s text

Cohomology of groups [6]. Both automatic groups and groups with finite complete

rewriting systems are of type FP∞. These results were shown for automatic groups

by Alonso in [1] and for groups with finite complete rewriting systems in Anick [2],

Brown [7], Groves [16], Kobayashi [21], Farkas [13], and Lafont [22]. It should be

noted that Squier in [26] shows that groups with finite complete rewriting systems

are of type FP3; this is one of the first results on homological properties of groups with

finite complete rewriting systems. For more information, see the survey by Daniel E.

Cohen [9]. However, we have the following result for autostackable groups.

Theorem 3.4. There exists an autostackable group that does not have type FP3.

In 1963, John Stallings provided the first example of a finitely presented group

which was of type FP2 but not of type FP3 [27]. It is shown here that Stallings’ group

S is autostackable. While this is a somewhat surprising result, Stallings’ group is

the first group to show that the class of autostackable groups contains more than the

union of the class of automatic groups with prefix-closed automatic structures and

the class of groups with finite complete rewriting systems.

Some years after Stallings’ original paper, Robert Bieri realized Stallings’ group

as the kernel of a particular map from F2 × F2 × F2 → Z, and expanded this idea to

create a family of groups, called the Bieri-Stallings groups, which are of type FPn but

not of type FPn+1 [3]. Stallings’ original not FP3 group, S, has been well-studied. In

[10], Dison, Elder, Riley and Young show that S has quadratic Dehn function. In [11],

Elder and Hermiller show that S is not minimally almost convex on the generating

set used in [27].

The group Z is an autostackable group. Let Z = 〈a〉 with normal form set {ai|i ∈

Z}. Then there are no recursive edges to stack, and the function φ(eg,a) = a is a
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stacking function on Z. Using Theorem 2.7, we have closure of the autostackable

property under direct products, and so the group Zn is autostackable for any n ∈ N.

In Chapter 4, we show the following class of groups is autostackable.

Theorem 4.1. Let G = G1 ∗H G2 with α : H ↪→ G1 and β : H ↪→ G2 any injective

homomorphisms. Then if G1 = Zn, G2 = Zm and H = Z, then G is autostackable.

1.2 Formal Language Theory

This section contains a review of necessary facts from formal language theory. In-

formally, the theory of formal languages looks at recognition of subsets of words in

an alphabet under different models of computation. For example, a regular language

is one for which a machine with bounded memory, called a finite state automaton,

can be used to determine whether a given word is in the language. A language is

decidable if there is a machine with unbounded memory, called a Turing machine,

which can determine membership in the language. The book Word Processing in

Groups by Epstein et. al. [12] provides a nice introduction to the theory of regular

languages, and the book Introduction to the Theory of Computation by Sipser [25]

provides a nice introduction to both regular languages and decidable languages. We

include many of their definitions here.

A string or word over a set (alphabet) A is a concatenation of elements (letters)

from A. For example, if A = {a, b} then aaaa and ababaab are both words, over A.

The word aaaa is usually denoted by a4. Let ε denote the word with no letters. The

collection of all strings over an alphabet A is denoted A∗. Note that the empty word

ε is in the set A∗. A language over A is any subset (including the empty subset)

of A∗. Given two languages K and L, over the same alphabet A, the concatenation

K · L, or KL, is the set of words w for which w = w1w2 in A∗ with w1 ∈ K and
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w2 ∈ L. Define the union, ∪, and the intersection, ∩, of two languages L and K

exactly as expected, as languages are sets. The Kleene star, sometimes called the

Kleene closure, is defined by

K∗ =
⋃
n≥0

Kn

where Kn is the concatenation of K with itself n times. When n = 0, then K0 = {ε}

contains only the empty word. Finally, the complement of a language L is the set

Lc := A∗ \ L.

When working with languages with many variables, we can think of the language

as padded strings. To each alphabet, Ai, add an additional padding symbol $i. We use

these extra symbols to take an n-tuple whose entries have multiple bits and write it

as a product of n-tuples whose entries consist of a single letter. For example, suppose

we have the 3-tuple (abab, a, b−1ab). Here all entries are over the same alphabet, so

we use a single padded letter $. We have the following equivalence.

(abab, a, b−1ab) = (a, a, b−1) · (b, $a) · (a, $, b) · (b, $, $).

For more information about padded languages, see Section 1.4 in [12].

Definition 1.4. A language L over an alphabet A is regular if it can be built from

finite subsets of A∗ using the operations ∪, ∩, ·, c and ∗.

An expression using the above operations is called a regular expression. For ex-

ample, let A = {a, b}. Then the language {aibj|i, j ∈ N0} is regular, as it can be

written as the following regular expression:

{aibj|i, j ∈ N0} = {a}∗ · {b}∗
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We often think of regular languages as those languages which can be accepted by a

machine with a limited amount of memory. With this idea in mind, it is not too

hard to see that the language {aibi|i ∈ N} is an example of a language which is not

regular, as a machine would have to keep track of the (arbitrarily large) number i.

From the definition of a regular language, we can see that regular languages will be

closed under the finite union, finite intersection, concatenation, complementation and

Kleene star. Regular languages are closed under homomorphic images and inverse

images. For a more complete discussion, see Chapter 1 of [12].

A larger class of languages are those which are decidable. A language L is decidable

if it is the language accepted by a Turing Machine. For the purposes of this paper, we

will not provide the full definition of a Turing Machine. We will instead say that a a

language L is decidable if there is an algorithm to decide membership in L. For a full

introduction to Turing Machines, and more information on regular languages, consult

Michael Sipser’s Introduction to the Theory of Computation [25]. Decidable languages

are also closed under finite union, finite intersection, concatenation, complementation,

and Kleene star [25]. Decidable languages are also closed under inverse images of

homomorphisms. Suppose f : L→ L′ be a homomorphism, and suppose that N ⊂ L′

is a decidable language. As N is decidable, given a w ∈ L, we can decide whether or

not f(w) is in N . If it is, then w ∈ f−1(N) and if it isn’t, then w /∈ f−1(N). Hence

f−1(N) is decidable. In general, decidable languages are not necessarily closed under

homomorphic images. Define the map ρ1 : ((A ∪ $)3)∗ → A∗ to be projection onto

the first coordinate, with the symbol $ mapping to 1. If the language graph(φ) =

{(y, a, φ(y, a))|y ∈ N , a ∈ A} is decidable, the image ρ1(graph(φ)) is also decidable.

Let w ∈ A∗. Since there are finitely many pairs (a, x) for x a word in the image of φ,

test each pair (w, a, x) for membership in graph(φ) for all possible pairs (a, x). If the

3-tuple is in graph(φ), then w ∈ N . If not, then w /∈ N . A similar argument works
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in the case of the image under ρ1 of sublanguages of graph(φ).

Lemma 1.5. Let G = 〈A|R〉 be a stackable group with stacking structure (N , φ). The

set graph(φ) = {(yg, a, φ(yg, a))|g ∈ G, a ∈ A} is regular (respectively decidable) if

and only if the sets Sa,x = {y|(y, a, x) ∈ graph(φ)} are regular (respectively decidable)

for each fixed pair of a ∈ A, x ∈ im(φ).

Proof. Let ρi : ((A ∪ {$})3)∗ → A∗ be the natural extension of the monoid homo-

morphism that projects onto the ith coordinate which maps the symbol $ to 1. For

a fixed a ∈ A and x ∈ im(φ), define

Ta,x = graph(φ) ∩ ρ−1
2 ({a}) ∩ ρ−1

3 ({x}).

Then Ta,x is the collection of all padded 3-tuples in graph(φ) with a and x fixed

as the second and third coordinates, respectively. Observe that Sa,x = ρ1(Ta,x),

where Ta,x is a sublanguage of graph(φ). Then using the closure properties of regular

and decidable languages, for a fixed a ∈ A, x ∈ im(φ), Sa,x is regular (respectively

decidable) provided that graph(φ) is regular (respectively decidable).

Conversely, for a fixed a ∈ A and x ∈ im(φ), define

Pa,x := ρ−1
1 (Sa,x) ∩ ρ−1

2 ({a}) ∩ ρ−1
3 ({x}).

Observe that the languages {a$∗} = {a} · {$}∗, and {x$∗} = {x} · {$}∗ are both

regular, and thus also decidable. Note also that Pa,x consists of exactly those tuples

in graph(φ) which have the second and third coordinates fixed as a, x respectively.

Letting a, x range over all of A and im(φ) we get

graph(φ) = ∪a∈A ∪x∈im(φ) Pa,x.
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Finally, assuming that Sa,x is regular (respectively decidable), the closure properties

of regular and decidable languages show that graph(φ) is also regular (respectively

decidable).
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Chapter 2

Closure Properties

This chapter discusses the question of closure of stackability, algorithmic stackability

and autostackability under various group constructions. We show closure of all three

properties under the graph product, group extension and finite index supergroup

constructions.

2.1 Graph Products

We begin with a description of the graph product construction. Recall that a simple

graph is an undirected graph with no loops or multiple edges.

Definition 2.1. Let Λ be a finite simple graph with vertex set V (Λ) = {v1, ..., vn}

and edge set E(Λ) = {e1, ..., ek}. To each vertex vi, associate a group Gi = 〈Ai|Ri〉.

The graph product of the groups {Gi}ni=1 with respect to Λ is the group generated by

the vertex groups with the added relations that Gi commutes with Gj if vertices vi and

vj are connected by an edge in Λ.

Graph products were introduced by Elisabeth Green in [15] in 1990 as a gener-

alization of direct products and free products. A graph Λ with no edges defines a
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free product of the vertex groups and a graph Λ′ which is complete (includes edges

between every pair of vertices) defines a direct product of the vertex groups. Right

angled Artin groups are graph products in which the defining graph has all vertex

groups labeled Z and right angled Coxeter groups are graph products in which the

defining graph has all vertex groups labeled Z/2Z.

Before we discuss normal forms for a graph product, we need to set up some

notation. We follow the terminology of [18]. Given a word w in the graph product, a

subword w′ of w is a local word if it is a longest possible non-empty subword written

with generators from a single vertex group. The type of a local word is the index

of its associated vertex group. Define a monoid homomorphism τ from all words A∗

into the quotient monoid 〈1, ..., n|i2 = i for i = 1, ..., n〉 where n is the number of

vertices in the graph Λ defining the graph product. Given a generator a ∈ Ai, we

define τ(a) = i. Extend the definition to all words in A∗ in the natural way. The

image τ(w) is exactly the string of word types which make up the word w.

Example 2.2. Let G be the graph product defined by Figure 2.1

Figure 2.1: The graph Λ defining G

for G1 = 〈a| 〉, G2 = 〈b| 〉, and G3 = 〈c| 〉. Then G = 〈a, b, c|ab = ba, ac = ca〉.

Consider the word w = a3b−2a2c5. Then w′ = b−2 is a local word, as are a3, a2 and

c5. The types of these local words are 2, 1, 1 and 3, respectively. The value of τ(w)

then, is 2113.
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To get normal forms for a graph product, we need an ordering on the vertex

groups. Given groups G1, ..., Gn, let <G be a total ordering on this finite set of

groups. Let A =
n
∪
i=1
Ai. The following set N of words in A∗ is shown to be a set of

normal forms for G by Hermiller and Meier in [18, Prop 3.2]; a topological proof of

these normal forms is provided by Hsu and Wise in [20]

Definition 2.3. Given a set of normal forms, Ni, for each vertex group, and a total

ordering <G on the vertex groups, a word w in A∗ is in the set N if

1. each local word of w is a normal form in its respective vertex group

2. if w = ...wi...wj... with wi, wj local words of type i, j respectively, with Gj <G Gi

or i = j, then there is a local word wk of type k such that w = ...wi...wk...wj...

with vertices vj and vk nonadjacent.

We can refer to the word wk described in (2) as a barrier. In Example 2.2, the

word w is not in normal form because a3 and a2 are separated by a local word b−2,

with which a2 commutes. Using the ordering G1 <G G2 <G G3, the normal form for

the word w is yw = a5b−2c5.

We now develop the concept of a banned string. The set of banned strings is

the collection of all subword types which do not result in a normal form. Define

the set Ij := {k|vk and vj are connected by an edge in Λ} and the set Pj := {k|k ∈

Ij and Gj <G Gk}. Finally, define the set of banned strings, B to be the set

B =

|V (Λ)|⋃
j=1

(
∪
k∈Pj

k · {i|i ∈ Ij}∗ · j
)

A complementary idea, termed admissible strings, were developed by Hermiller

and Meier in [18]. The collection of admissible strings are those strings of word types

which do not contain a banned string.
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As an example, let G be the graph product of groups G1, G2 and G3 defined in

Figure 2.1 with the ordering G1 <G G2 <G G3 We have that I1 = P1 = {2, 3} and

both P2 and P3 are empty. From these sets we can build B as

B = 2{2, 3}∗1 ∪ 3{2, 3}∗1

Any word whose word type contains a string in B is not in normal form. Note that

excluding banned strings is not enough to check that a word is in normal form. It

also must be checked that each local word is also in its normal form.

Notation 2.4. For a given word w ∈ A∗, we represent the maximal suffix of w in

the letters Ai as sufi(w). That is, if v = sufi(w), then either v = 1 or v is the local

word of type i at the end of w.

Now that we have established a set of normal forms, we determine the set of

recursive edges.

Lemma 2.5. Let groups G1, G2, ..., Gn be generated by finite inverse-closed sets A1,

A2, ..., An with normal form sets N1, N2 ,..., Nn respectively. Let G be any graph

product of the groups G1, ..., Gn with normal form set described in Definition 2.3.

Define the following sets:

A = {eg,a | yg = wv, where τ(v) = i, a ∈ Ai and va, yvaa
−1 /∈ Ni}

B = {eg,a | yg = wv with τ(v) = j, a ∈ Ai, and i 6= j,where τ(yg)i

does not contain a banned string and a /∈ Ni} (†)

C = {eg,a | a ∈ Ai and τ(yg)i contains a banned string}
Then the set of recursive edges is exactly ~Er = A ∪ B ∪ C.

Proof. (Of Lemma 2.5) Let A, B and C be as defined in (†). First, we show A∪B∪C

is contained in ~Er. Let eg,a ∈ A for a ∈ Ai. Then we can write yg as yg = wv for
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v a local word of type i. The circumstances of set A tell us that va and yvaa
−1 are

not in Ni and and so by definition of N , we know that neither yga nor ygaa
−1 are

in N . Thus eg,a ∈ ~Er. Let eg,a ∈ B for a ∈ Ai with yg = wv for v a local word of

type j with i 6= j. The assumptions on this set have that τ(yg)i does not contain a

banned string. However, because the word a is not a normal form, we have yga 6= yga.

Moreover, since i 6= j, the word yg does not end with a−1. Thus eg,a ∈ ~Er. Lastly, let

eg,a ∈ C for a ∈ Ai. Then by the definition of set C, the string of word types of τ(yg)i

contains a banned string, and therefore yga 6= yga. Lastly, as yg ∈ N , we know that

τ(yg) does not contain a banned string. However, since τ(yg)i does contain a banned

string, the word yg cannot end with the letter a−1. This shows that eg,a ∈ ~Er.

Let eg,a be a recursive edge with a ∈ Ai. Then by definition, yga is not in normal

form, nor does yg end with the letter a−1. However, we can see from the normal form

set that either the τ(yg)i contains a banned string, or it does not and the letter a

either joins or creates a local word at the end of yg. The former case is the situation

of set C, while the latter cases are the situations of sets A and B, respectively. Thus

~Er = A ∪ B ∪ C.

Now that we have a set of normal forms and a set of recursive edges, we show the

following.

Theorem 2.6. Let groups G1, G2,..., Gn be stackable with finite inverse-closed gen-

erating sets A1, A2, ..., An and stacking structures (N1, φ1), (N2, φ2), ..., (Nn, φn)

respectively. Then any graph product of the groups G1, ..., Gn is also stackable.

Proof. Let Gi = 〈Ai〉 and <G be any total ordering on the finite set of groups {Gi}.

Let G be a graph product of the groups {Gi} with generating set A := ∪
i
Ai. The set

of normal forms, N , for the graph product is introduced in Proposition 2.3 and the

recursive edges are detailed in Proposition 2.5. For each i ∈ {1, ..., n}, let <i be the
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induced ordering on the recursive edges in the Cayley graph of Gi, as described in

Definition 1.1.

Define a function φ : N × A→ A∗ to be

φ(yg, a) =


b−1ab if a ∈ Ai and τ(yg)i contains a banned string,

where b is the final letter of yg

φGi(yv, a) otherwise, where a ∈ Ai, and sufi(yg) = v

From the definition of the function φ, we can see that φ satisfies im(φ) is a finite

set. Also, if an edge eg,a with a ∈ Ai is degenerate then the string of word types τ(yg)i

does not contain a banned string, and either sufi(yg)a ∈ Ni or sufi(yg) ends with a−1.

In this case, the edge esufi(yg),a is degenerate, and so φ(eg,a) = a. Conversely, suppose

eyg ,a is is an edge such that φ(yg, a) = a for a ∈ Ai. Then a = φGi(yv, a) where

v = sufi(yg). Since φGi is a stacking function, the edge ev,a is a degenerate edge in

the Cayley graph of Gi and thus either yva = yva or yvaa
−1 = yv. But this implies

that either yga = yga or ygaa
−1 = yg and so eyg ,a is a degenerate edge in the Cayley

graph of G. Therefore φ(yg, a) = a if and only if eg,a ∈ ~Ed.

Let ~Ei be the set of all edges in the Cayley graph of Gi with respect to Ai. As <i

is a strict well-founded partial ordering on the recursive edges in ~Ei, we can define a

map ψi : ~Ei → N as

ψi(eg,a) = maximum length of a decending chain eg,a >i e
′ >i e

′′...

for g ∈ Gi and a ∈ Ai. Using the maps ψi for each Gi we can define a map

ψ : ~Er → N2 by

ψ(eg,a) =

 (`(yg), 0) if a ∈ Gi and τ(yg)i contains a banned string

(0, ψi(ev,a)) else, where sufi(yg) = v
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Let <N2 be the ordering on N2 defined by (a, b) <N2 (c, d) whenever a < c or a = c

and b < d. We define an ordering <ψ on ~Er by e′ <ψ e if and only if ψ(e′) <N2 ψ(e).

As <N2 is a well-founded strict partial order, so is<ψ.

To see that <φ is a well-founded strict partial order, it suffices to show that for e′

a recursive child of e, we have that e′ <ψ e. We consider the edges of ~Er in two cases.

Case 1: Suppose the edge eg,a has associated stacking function value φ(yg, a) =

φGi(v, a) for a ∈ Ai and v = sufi(yg).

Decompose yg as yg = wv for w ∈ N and let φGi(v, a) = α1 · · ·αk for αj ∈ Ai;

define ej to be the child labeled by the letter αj. By the definition of the normal forms

of G, we can decompose the normal form of the group element labeling the initial

vertex of ej as wvj for vj ∈ Ni and w the same word appearing in the decomposition

of yg. Since evj ,αj is a child of ev,a, we have that ψi(evj ,αj) <N ψi(ev,a) and thus

ψ(ewvj ,αj) <N2 ψ(ewv,a). Therefore, ej <ψ eg,a.

Case 2: Suppose the edge eg,a has associated stacking function value φ(yg, a) = b−1ab

for yg ∈ N , a ∈ Ai and b ∈ Aj the final letter of yg.

In this case, the ψ−function value of the edge eg,a is ψ(eg,a) = (`(yg), 0) with

`(yg) > 0, by assumption. The edge eg,a has three children: eg,b−1 , egb−1,a and egb−1a,b.

Since yg has decomposition yg = wb and our normal forms are prefix-closed, we know

that ywb = ywb and thus the first child is a degenerate edge. If the second child is

not degenerate, then either τ(ygb−1)i still contains a banned string, or it does not.

In the former case, we have that the ψ-function value of this child is ψ(eygb−1,a) =

(`(ygb
−1), 0). As `(ygb−1) = `(yg)−1, we have that ψ(egb−1,a) <N2 ψ(eg,a) and therefore

egb−1,a <ψ eg,a. In the latter case, the string of word types τ(ygb−1)i does not contain a

banned string. As this edge is recursive, we have that for v = sufi(ygb−1), the edge ev,a

is a recursive edge in Gi. Then ψi(ev,a) = m for m the maximal length of a decending

chain of edges from ev,a and so ψ(eygb−1,a) = (0,m). Thus ψ(egb−1,a) <N2 ψ(eg,a) and
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so egb−1,a <ψ eg,a.

Finally, let wj = sufj(yg) and decompose yg as yg = uwj for u ∈ N . Recall that

a ∈ Ai and b ∈ Aj. We show that the normal form of the word ygb
−1a is yuaywjb−1

and if wjb
−1 = 1, then we the string of word types τ(yua)j does not contain a banned

string. Suppose first that in the word ygb−1 there is no local word wi of type i which

commutes with every local word to the right of it. That is, the word ygb−1a contains

the local word ya. In this case, the word ygb−1a is the word ygb−1 with the local word

ya inserted into the appropriate place in the word. In particular, the local words of

the word ygb−1 remain in the same relative order in ygb−1a. Therefore the word wjb
−1

is still the final local word. If wjb
−1 = 1, then the string of word types τ(ygb−1a)j does

not contain a banned string, as τ(ygb−1)j does not, and by assumption i < j.

Suppose instead that there exists a local word wi of type i in the word ygb−1 such

that ygb−1 decomposes as ygb−1 = · · ·wiwk1 · · ·wkmwjb−1 where there is an edge be-

tween Gi and Gz in the graph defining the graph product for each z = k1, ..., km. If

ywia 6= 1, then the normal form of the word ygb−1a is the normal form for ygb−1 with wi

replaced by ywia. If ywia = 1, then the normal form for ygb−1a is the normal form for

ygb−1 with the word wi removed. Indeed, suppose there exist two local words vk and vl

of types k and l, respectively, such that ygb−1 = · · · vk · · · vl · · · but Gl ≤G Gk. If the

decomposition of ygb−1 has either · · ·wi · · · vk · · · vl · · · or · · · vk · · · vl · · ·wi · · · , then the

cancellation of the word wi in the word ygb−1a has no effect on the words vk · · · vl. As-

sume then that the decomposition of the word ygb−1 is of the form · · · vk · · ·wi · · · vl · · · .

For the letter a to combine with the local word wi, we must have that wi commutes

with the local word vl, as well as every local word between them. However this implies

that there must be some other barrier between the words vk and vl (as described in

Definition 2.3) as the barrier wi can be commuted past vl and thus would no longer

be a barrier. Therefore removal of the local word wi does not change the remaining
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word ygb−1 . Thus the edge egb−1a,b is a degenerate edge.

Therefore (N , φ) satisfies stacking property 2r of Definition 1.1 and thus is a

stacking structure for G.

Theorem 2.7. Let groups G1, G2, ..., Gn be autostackable (respectively algorithmi-

cally stackable) with finite inverse-closed generating sets A1, A2, ..., An, and stacking

structures (N1, φ1), (N2, φ2), ..., (Nn, φn) respectively. Then any graph product, G,

of the groups G1, ..., Gn is also autostackable (respectively algorithmically stackable).

Proof. First, we show that the set of normal forms N is regular (decidable) and then

proceed using Lemma 1.5. We can view the normal form set for the graph product

as the intersection of normal forms for a free product intersected with all words

whose string of word types does not contain a banned string. Recall that provided

graph(φi) is regular (respectively decidable), the set of normal formsNi is also regular

(respectively decidable). To show that the normal forms for a free product are regular

(respectively decidable), we follow the method of [8]. For each i = 1, ..., |V (Γ)|, define

a monoid homomorphism pi : A∗ → (Ai∪$)∗ for $ a letter not already in the alphabet

A, by

pi(a) :=

 a if a ∈ Ai

$ if a ∈ A \ Ai

Then the set Nf.p. =
n
∩
i=1
p−1
i (Ni($Ni)∗) is a set of normal forms for the free product

of the groups G1, ..., Gn. Indeed, each inverse image p−1
i (Ni($Ni)∗) is the collection

of all words where local words of type i are in normal form. The intersection over all

i ∈ {1, ..., n} yields all words in normal form in the free product. Therefore the set

Nf.p. is regular (respectively decidable), when each Ni is.
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Recall the set Ij is defined as Ij = {k|vk and vj are connected by an edge} and

the set Pj is defined as Pj = {k|k ∈ IJ and Gj <G Gk}. To see that the set of normal

forms N for the graph product are regular (respectively decidable), define Lj,k to be

the set Lj,k := Ak
( ∪
i∈Ij

Ai
)∗
Aj. The set Lj,k is similar to the set of banned strings for

fixed j and k, except where banned strings use indices, the set Lj,k uses words whose

types correspond to those indices. Consider the following expression:

N = Nf.p. ∩
(
A∗ \ A∗(

n

∪
j=1
∪
k∈Pj

Lj,k)A
∗)

This expression is regular (respectively decidable), as it is written using only ∩, ∪, ∗,

\ and · with regular (respectively decidable) sets. Now we split into two cases.

Case 1: Fix a ∈ Ai and x ∈ im(φGi).

The set of words y for which (y, a, x) ∈ graph(φ) are those y ∈ N such that

(sufi(y), a, x) ∈ graph(φGi) and such that τ(y)i does not contain a banned string.

Alter the definition of the set Lj,k to define Mj,k := Ak
( ∪
i∈Ij

Ai
)∗

. That is, Mj,k is the

collection of prefixes of banned strings ending in a word of type j and beginning with

a word of type k. Unioning over each k ∈ Pj we define the set Mj := ∪
k∈Pj

Mj,k of all

prefixes of banned strings ending with a word of type j. Finally, we can write the set

Sa,x as

[
N \ (A∗Mi)

]
∩
[(
A∗ \ (A∗ai|ai ∈ Ai)

)
·
(
ρ1

(
graph(φGi) ∩ ρ−1

2 ({a}) ∩ ρ−1
3 ({x})

))]

for ρi as defined in the proof of Lemma 1.5.

Case 2: Fix a ∈ Aj and x = b−1ab in the image of φ.

The set of words y ∈ N such that (y, a, b−1ab) ∈ graph(φ) are those in normal

form which end with the letter b and have τ(y)j containing a banned string. We can



24

express the set Sa,b−1ab as

Sa,b−1ab = N ∩ A∗b ∩ A∗Mj

We have written the sets Sa,x and the normal form set N in terms of the maps ρi,

inverse images, finite intersections and unions and concatenations of the languages

graph(φGi) and a handful of regular languages. Therefore we have that graph(φ)

is regular (respectively decidable) whenever each of the sets graph(φGi) are regular

(respectively decidable).

In [18], Hermiller and Meier present another proof that N is a regular set of

normal forms for a graph product using finite state automata.

2.2 Group Extensions

We continue the investigation into closure properties with the extension of a group

K by a group Q. Let

1→ K
ι→ G

q→ Q→ 1

be a short exact sequence with injection map ι : K ↪→ G and projection map q :

G� Q. Then G is the extension of the group K by the group Q. As the sequence is

exact, we have that K is a normal subgroup of G and the group Q is isomorphic to

the quotient group G/K.

Let K = 〈A|R〉 and Q = 〈B|S〉 be presentations for the groups K and Q, re-

spectively, with A and B finite inverse-closed generating sets. For each b ∈ B, let b̂

be an element of G such that q(b̂) = b; let B̂ = {b̂|b ∈ B}. We can choose B̂ to be

inverse closed. Let C be the set A ∪ B̂. Then C is an inverse-closed generating set
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for G. For each word w = b1 · · · bn ∈ B∗, we define ŵ := b̂1 · · · b̂n. For a set S, define

Ŝ := {ŵ|w ∈ S}.

Lemma 2.8. Let K = 〈A|R〉 and Q = 〈B|S〉 be groups with A and B finite inverse-

closed generating sets, and normal form sets NK and NQ, respectively. Then N =

{ugtg|ug ∈ NK and tg ∈ N̂Q} is a set of normal forms for G

Proof. First, since Q is isomorphic to G/K, N̂Q is a set of coset representatives for

G/K. That is N̂Q is a transversal for G/K. By definition of a transversal, every

element g ∈ G has a unique representation as ugtg with ug ∈ NK and tg ∈ N̂Q.

We can present the extension G as

G = 〈C|R ∪ {ŝ = uŝ|ŝ ∈ Ŝ} ∪ {b̂a = ub̂,ab̂|a ∈ A, b̂ ∈ B̂}〉 (2.1)

The words uŝ and ub̂,a are in NK . Relations of the form b̂a = ub̂,ab̂ are found as

follows: the word b̂a is an element of G, and so applying Lemma 2.8 we can write

it in normal form as ub̂,atb̂,a for ub̂,a a word in NK depending on b̂ and a, and tb̂,a a

word in N̂Q. But K is a normal subgroup of G, and so the right cosets equal the left

cosets. Therefore tb̂,a = b̂. In the case of a split extension, we also have that uŝ = 1.

Recall that both A, B, R and S are all finite sets, and thus the presentation in (2.1)

is a finite presentation of G.

Using these normal forms we can determine the set ~Er of recursive edges.

Lemma 2.9. Let G be an extension of the group K = 〈A|R〉 by the group Q = 〈B|S〉

with A and B finite inverse-closed generating sets with presentation described on line

(2.1). Let NK and NQ be normal forms for the groups K and Q, respectively, and let

N as described in Lemma 2.8 be a set of normal forms for G. Define the sets A, B
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and C as

A = {eg,a|yg = ug ∈ NK , with a ∈ A, and neither uga,∈ NK nor yugaa
−1 ∈ NK}

B = {eg,a|yg = ugtg with ug ∈ NK , tg ∈ N̂Q \ {1}, and a ∈ A}

C = {eg,b̂|yg = ugtg with ug ∈ NK , tg ∈ N̂Q, and b̂ ∈ B̂, and neither tg b̂ ∈ NK

nor ytg b̂b̂
−1 ∈ NK}

Then the set of recursive edges ~Er is ~Er = A ∪ B ∪ C.

Proof. First, we show that each of A,B and C is contained in ~Er. Let eg,a ∈ A. Then

yg = ug with ug ∈ NK , but neither uga ∈ NK nor yugaa
−1 ∈ NK . As yg has no

component from B̂∗, yga ∈ N only when uga ∈ NK . But by assumption uga /∈ NK

and so yga /∈ N . Similarly, as yugaa
−1 /∈ NK we know that yugaa

−1 is not in normal

form. Therefore eg,a ∈ ~Er.

Let eg,a ∈ B with a ∈ A. We can write yg as yg = ugtg with ug ∈ NK and

tg ∈ N̂Q \{1}. As concatenating yg with a letter a ∈ A leaves the word tg unchanged,

we know that yga 6= yga. However, we also have that yg ends with a letter b̂ ∈ B̂ and

so ygaa
−1 cannot equal yg. Therefore eg,a ∈ ~Er.

Let eg,b̂ ∈ C. Then yg = ugtg with ug ∈ NK and tg ∈ N̂Q and neither tg b̂, nor ytg b̂b̂
−1

in N̂Q. As multiplying yg by a generator b̂ ∈ B̂ leaves the word ug unchanged, we can

repeat the argument in the case of set A to get eg,b̂ ∈ ~Er. Therefore A∪B ∪ C ⊆ ~Er.

To see that ~Er ⊆ A∪ B ∪ C, let eg,x ∈ ~Er for x ∈ C and g ∈ G. By the definition

of a recursive edge, we have that neither ygx = ygx nor ygxx
−1 = yg. Let yg = ugtg

for ug ∈ NK and tG ∈ N̂Q. We will consider these edges in three cases.

Suppose tg = 1 and, x ∈ A. Then neither ugx = yugx nor ygxx
−1 = ug by

assumption. As normal forms are unique, this tells us that neither ugx nor yugxx
−1 is

in normal form, and and so eg,x ∈ A. Next, suppose tg 6= 1 and x ∈ A. Then this edge
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is in the situation of set B. Finally, if x ∈ B̂, then ugtgx /∈ N and yugtgxx
−1 /∈ N . By

Lemma 2.8, the normal form of the word ugtgx is ugytgx, and so the word ugtgx ∈ N

if and only if the word tgx ∈ N̂Q. Similarly, we have that yugtgxx
−1 ∈ N if and only

if ytgxx
−1 ∈ N̂Q. Therefore eg,x ∈ C and so ~Er = A ∪ B ∪ C.

With the two previous lemmas, we have everything we need to show closure under

group extensions.

Theorem 2.10. Let 1 → K
ι
↪→ G

q→ Q � 1 be an exact sequence for groups K, G

and Q. If K = 〈A|R〉 and Q = 〈B|S〉 are stackable groups with finite inverse-closed

generating sets A and B and stacking structures (NK , φK) and (NQ, φQ) respectively,

then G is a stackable group.

Proof. Let C = A ∪ B̂ where B̂ = {b̂|q(b̂) = b for b ∈ B} be a generating set for G

and let G have the set of normal forms defined in Lemma 2.8. Define the stacking

function, φ : N × A→ A∗, to be

φ(yg, x) =



φK(ug, x) where yg = ug ∈ NK , and x ∈ A

vx,g ̂φQ(q(tg), q(x)) where yg = ugtg, for ug ∈ NK , tg ∈ N̂Q, with

x ∈ B̂

b̂−1ub̂,xb̂ where yg = ugtg, x ∈ A, ug ∈ NK , tg ∈ N̂Q \ {1},

b̂ ∈ B̂ the last letter of tg

where vx,g is defined to be the unique word vx,g := x̂( ̂φQ(q(tg), q(x̂)))−1 in NK . Note

that the three cases in the definition of φ are disjoint, and thus φ is a well-defined

function. As the images of the words x̂ and ̂φQ(q(tg), q(x̂))) are equal in the quotient

group Q, we know such a word is in fact in the subgroup K. Since the image of φQ is

finite, the collection of the words vx,g is finite and so the image of φ is finite. Figures
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2.2 and 2.3 show an example of a stacking in the Cayley graph of the group Q and

an example of a stacking in the Cayley graph of the group G.

Figure 2.2: The stacking of an edge eq,b in the Cayley graph of Q

Figure 2.3: The stacking of an edge ekq̂,b̂ in the Cayley graph of G

Suppose φ(yg, a) = a for a ∈ A. By the definition of the stacking function we can

decompose yg as yg = ug for ug ∈ NK . We can rewrite the equation φ(yg, a) = a as

φK(ug, a) = a. This shows that eg,a is a degenerate edge, when thought of as an edge

in the Cayley graph of K, and so either yuga = yuga or yugaa
−1 = yug . In either case,

this also shows that eg,a is a degenerate edge when thought of as an edge in G. If

φ(yg, b̂) = b̂, then we can decompose yg as yg = ugtg where ug ∈ NK and tg ∈ N̂Q.

As the stacking function value of an edge labeled by b̂ is φ(yg, b̂) = vx,g ̂φQ(tg, x), we

have that vx,g = 1 and ̂φQ(q(tg), q(b̂)) = b̂. Mapping into the quotient Q, we see that
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φQ(q(tg), b) = b and thus the edge eq(tg),b is a degenerate edge in the Cayley graph

of Q. As eq(tg),b is a degenerate edge in the Cayley graph of Q, we know that either

yq(tg)b = yq(tg)b or yq(tg)bb
−1 = yq(tg). However, the normal form for ugtgb is ugytgb, so

either yugtg b̂ = yugtg b̂ or yugtg b̂b̂
−1 = yugtg . Thus the edge eg,b̂ is a degenerate edge.

On the other hand, let eg,x be a degenerate edge. Then we can either decompose

yg as yg = ug with ug ∈ NK and x ∈ A, or yg = ugtg with ug ∈ NK , tg ∈ N̂Q and

x ∈ B̂. In the first case, we have that φ(yg, x) = φK(yg, x) = x as eg,x is a degenerate

edge in the Cayley graph of K. In the second case, the stacking function value for

the edge eg,a is φ(yg, x) = vx,g
̂φQ(q(tg), q(b̂)) with vx,g in NK . As eugtg ,x is degenerate,

we know that either yugtgx = yugtgx or yugtgxx
−1 = yugtg . Since concatenating the

word ugtg ∈ N by a letter x ∈ B̂ leaves ug unchanged, we get that eq(tg),q(x) is

a degenerate edge in the Cayley graph of Q. Thus φQ(q(tg), q(x)) = q(x), and so

φ(ugtg, x) = vx,gx. Finally, recall that vx,g := x ̂φQ(q(tg), q(x))
−1

. Thus in this case,

vx,g = 1 and so φ(ygx) = x. Therefore φ(yg, x) = x if and only if the edge eg,x is

degenerate.

As K is a stackable group, we can define a function ψK on the recursive edges of

the Cayley graph of K by

ψK(ek,a) = maximal length of a decending chain ek,a >φK e′ >φK e′′ · · ·

for an edge ek,a with initial vertex labeled by k ∈ K and edge labled a ∈ A. We

can define the function ψQ on the recurisve edges in the Cayley graph of Q in an

analogous fashion.
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Define a function ψ : ~Er → N2 on recursive edges in the Cayley graph of G by

ψ(eg,x) =



(1, ψK(eg,x)) when g ∈ K and x ∈ A

(2, `(tg)) where yg = ugtg for ug ∈ NK , tg ∈ N̂Q \ {1}

and x ∈ A

(3, ψQ(eq(tg),q(x))) where yg = ugtg for ug ∈ NK , tg ∈ N̂Q

and x ∈ B̂

where `(tg) is the number of letters in the normal form word tg. Define an order <N2

on N2 by (a, b, c) < (a′, b′, c′) if a < a′ or a = a′ and b < b′ or a = a′, b = b′ and c < c′.

Define an order <ψ on recursive edges by e′ <ψ e if and only if ψ(e′) <N2 ψ(e). As

<N2 is a strict well-founded partial order on N2, the ordering <ψ is a well-founded

strict partial order on the set of recursive edges of G. We show that for e an edge in

the Cayley graph of G if e′ is a recursive child of e, then e′ <ψ e.

Case 1: Let eg,x be a recursive edge with yg = ug for ug ∈ NK and x ∈ A.

The stacking function value for this edge is φK(ug, x) = a1 · · · aj for ai ∈ A. Each

child of eg,x is of the form ei := ega1···ai−1,ai . However, yga1···ai−1
is a word in A∗,

and so the ψ function value for each child ei is ψ(ei) = (1, ψK(ega1···ai−1,, ai)). But

each child ei is a child of the edge eg,x as an edge in the Cayley graph of K and so

ψK(e′) < ψK(e). Therefore ψ(e′) <N2 ψ(e) and so e′ <ψ e.

Case 2: Let eg,x be a recursive edge with x ∈ A and yg = ugtg where ug ∈ NK and

1 6= tg ∈ N̂Q.

The stacking function value for the pair (yg, x) is the word b̂−1ub̂,xb̂, where the

word tg ends with the letter b̂, and the relation b̂x = ub̂,xb̂ is in the relation set of the

presentation of G. Let ub̂,x = a1 · · · aj for ai ∈ A. The first child eg,b̂−1 is degenerate,

as the word yg ends in b̂. Let ei := ega1···ai−1,ai be a child of eg,x labeled by ai ∈ A.
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By the definition of the normal forms for G, the normal form of the group element

labeling the initial vertex of the child ei has a decomposition into the form u′gt
′
g where

t′g has length `(tg)− 1. Recall that in this case, ψ(eg,x) = (2, `(tg)). If `(tg) = 1, then

the group elements labeling the initial vertices of e1, ..., ej lie in the group K and

thus ψ(ei) = (1, ψK(ei)) and therefore ψ(ei) <N2 ψ(eg,x) = (2, `(tg)). Otherwise, the

ψ function value for ei is ψ(ei) and thus we also have ψ(ei) <N2 ψ(eg,x) for each child

e1, ..., ej of eg,x. Therefore ei <ψ eg,x for each i = 1, ..., j. Finally, as ytg b̂−1 b̂ = tg, we

know that the child of eg,x labeled by b̂ is degenerate.

Case 3: Let eg,x be a recursive edge with x ∈ B̂ and yg = ugtg where ug ∈ NK and

tg ∈ N̂Q.

The stacking function value of the pair (yg, x) is φ(yg, x) = vx,g ̂φQ(q(tg), q(x)) and

the ψ−function value for the edge eg,x is ψ(eg,x) = (3, ψQ(eq(tg),q(x))). The children

of the edge eg,x fall into two categories: those with labels of ai ∈ A and those with

labels of b̂i ∈ B̂. Let m be the length of the word φ(yg, x). Then let e1, ..., ej be

the children with labels in A, and let ej+1, ..., em be the children with edge labels

in B̂. For children e1 up to ej, the ψ-function value for these edges are of the form

(1,m) where m ∈ N. Thus ψ(ei) <N2 ψ(eg,x) for i = 1, ..., j. For k > j, let the edge

ek have edge label b̂k ∈ B̂ for k = j + 1, ..,m. By the definition of the normal forms

for G, the normal form of the group element labeling the initial vertex of the edge

ej+1 is u′gtg for u′g ∈ NK . However, the edge eq(tg),q(b̂j+1) is a child of eq(tg),q(x) as an

edge in the Cayley graph of Q by definition of the stacking function. But this means

that ψQ(eq(tg),bj+1)) < ψQ(eq(tg),q(x)) and so ψ(ej+1) <N2 ψ(eg,x). Similarly, we have

ψ(ek) <N2 ψ(eg,x). Therefore if e′ is a child of an edge eg,x we have that e′ <ψ eg,x.

Notice that the language of normal forms for the group G can be written as

N = ρ1(graph(φK)) · ̂ρ1(graph(φQ))
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where ρ1 is the map which projects onto the first coordinate and maps the symbol

$ to 1, and ˆ : B∗ → C∗ is the homomorphism defined by ŵ = b̂1 · · · b̂n where

w = b1 · · · bn is a word in B∗. Then by previous arguments, N is a regular (respec-

tively decidable) language, provided that the languages graph(φK) and graph(φQ)

are regular (respectively decidable) languages.

Theorem 2.11. Let 1 → K
ι→ G

q→ Q → 1 be an exact sequence for groups K, G

and Q. If K = 〈A|R〉 and Q = 〈B|S〉 are autostackable (respectively algorithmically

stackable) with A and B finite inverse-closed generating sets and stacking structures

(NK , φK) and (NQ, φQ) respectively, then G = 〈A ∪ B̂〉 is autostackable (respectively

algorithmically stackable).

Proof. Since G was shown already to be stackable, we need only to prove that

graph(φ) is a regular (respectively decidable) language. To show this, we will use

Lemma 1.5 and break into the following cases:

1. Sa,x where a ∈ A and x ∈ im(φK)

2. Sb̂,z where b̂ ∈ B̂ and z = vx,g
̂φQ(q(tg), q(b̂)),

3. Sa,w where a ∈ A and w = b̂−1kb̂,ab̂.

Case 1: Let Sa,x = {y|(y, a, x) ∈ graph(φ)} with a ∈ A and x ∈ im(φK).

According to the stacking function φ the only y ∈ N which belong in the set Sa,x

are those y ∈ NK for which φK(y, a) = x. We can express this set as

Sa,x = ρ1

(
graph(φK) ∩ ρ−1

2 ({a}) ∩ ρ−1
3 ({x})

)
.

for ρi as defined in the proof of Lemma 1.5. That is, Sa,x is the collection of all

y ∈ NK which have (y, a, x) ∈ graph(φK).
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Case 2: Let Sb̂,z = {y|(y, b̂, z) ∈ graph(φ)} with b̂ ∈ B̂ and z = vb̂,g
̂φQ(q(tg), b)

Let Pb,φQ(q(tg),b) = {y|(y, b, φQ(q(tg), b)) ∈ graph(φQ)}. As in case 1, we can write

this set as

Pb,φQ(q(tg),b) = ρ1

(
graph(φQ) ∩ ρ−1

2 ({b}) ∩ ρ−1
3 ({φQ(q(tg), b)})

)

The collection of words in Sb̂,z is a concatenation of normal forms in NK with the

image of the words in Pb,φQ(q(tg),b) under the map ˆ : B∗ → B̂∗. That is,

Sb̂,z = NK · ̂Pb,φQ(q(tg),b).

Case 3: Let Sa,w = {y|(y, a, w) ∈ graph(φ)} with a ∈ A and w = b̂−1ub̂,ab̂, for b̂ ∈ B̂.

The collection of words in the language Sa,w are those words in normal form in N

which end with the letter b̂. We can express this language as

Sa,w = N ∩ (C∗b̂).

Finally, in each of the previous three cases, we have a set S written in terms of

graph(φK) and graph(φQ) using the maps ρi, inverse images, concatenations, finite

unions and finite intersections, in addition to the use of a handful of sets which are

written as regular expressions themselves. Therefore we have that G is autostackable

(respectively algorithmically stackable) provided that K and Q are.

Recall that a polycyclic group is a group which has a series of subgroups

1 = G0 / G1 / · · · / Gn = G

such that each quotient Gi+1/Gi is cyclic. It is straightforward to show that all cyclic
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groups are autostackable, and combining this with the previous result, we get the

following corollary.

Corollary 2.12. Let G be a polycyclic group. Then G is autostackable.

In 1971, C.F. Miller III showed that there exists a split short exact sequence

1→ F
ι→ G

q→ T → 1 where F and T are finitely generated free groups such that G

does not have solvable conjugacy problem ([24, Chapter III, Theorem 9]). Combining

this result with Theorem 2.11, we get the following corollary.

Corollary 2.13. There exists an autostackable group which does not have solvable

conjugacy problem.

2.3 Finite Index Supergroups

This section addresses closure of the stackable, algorithmically stackable and au-

tostackable properties under finite index supergroups. That is, if a group G is stack-

able (respectively autostackable, algorithmically stackable) and G is a finite index

subgroup of a group H, is H stackable (respectively autostackable, algorithmically

stackable? In contrast to the general group extension defined by a short exact se-

quence in Section 2.2, the construction here requires only a group G be a finite index

subgroup of a group H, but not necessarily a normal subgroup. In the notation of

Section 2.2, we are requiring the quotient G/K to be finite, but not requiring the

group K to be normal in G.

The following lemma defines a set of normal forms for a finite index supergroup

H given normal forms for the subgroup G.

Lemma 2.14. Let G = 〈A|R〉 for A a finite inverse-closed generating set. Then if H

is a finite index supergroup of G with finite transversal T representing a set of right
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coset representatives, the following is a set of normal forms for H:

N = {wt|w ∈ NG, t ∈ T}

Proof. The proof of this fact follows from T being a set of right coset representatives

for H/G.

Let G = 〈A|R〉 be a group with finite inverse-closed generating set A and let H

be a finite index supergroup of G with finite right transversal T , with 1 ∈ T . Let

V = T \ {1} and let U = V ∪ V −1. Then

H = 〈A,U |R ∪ {x = wxt̃x for all x ∈ A ∪ U} ∪ {xy = wx,y t̃x,y for all x, y ∈ A ∪ U}〉

(2.2)

is a presentation of H. The relations of the form xy = wx,y t̃x,y and x = wxt̃x for

x, y ∈ A∪U represent the unique way to write the elements xy and x in normal form

in H, respectively. Some relations in this presentation are redundant. For example,

if t is an element of the transversal T , then the relation t = wtt̃t reads t = 1 · t,

as the word t is already in its normal form. Regardless of redundant relators, this

presentation is finite whenver G is finitely presented.

From this presentation, and the normal forms described in Lemma 2.14, we can

describe the set of recursive edges in H.

Lemma 2.15. Let H be a finite index supergroup of a group G = 〈A|R〉 with finite

right transversal T and with generating set as described in Equation 2.2. Let N be

the set of normal forms for H defined in Lemma 2.14. Define the sets A, B and C as
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A = {eg,a|g ∈ G and a ∈ A,where yga, ygaa
−1 /∈ NG}

B = {eg,s|g ∈ G and s ∈ U \ T}

C = {egt,x|g ∈ G, t ∈ V and x ∈ A ∪ U where x 6= t−1}
Then the set of recursive edges in the Cayley graph of H is ~Er = A ∪ B ∪ C.

Proof. We first show A ∪ B ∪ C ⊂ ~Er. Let eg,a ∈ A for g ∈ G and a ∈ A. Then by

assumption neither yga ∈ NG nor is ygaa
−1 ∈ NG. However, by the definition of N ,

for y ∈ A∗, we have the word y ∈ NG if and only if y ∈ N . Thus eg,a ∈ ~Er. Let

eg,s ∈ B for g ∈ G and s ∈ U \ T . Since any word containing a letter s ∈ U \ T is

never in normal form, we have that ygs /∈ N and as yg ∈ A∗, the word yg does not

end with the letter s−1. Therefore eg,s ∈ ~Er. Finally, let egt,x ∈ C for g ∈ G, t ∈ V

and x ∈ A∪U . By the definition of the normal forms for H, an edge of the form egt,x

with t 6= 1 is recursive, so long as x 6= t−1. But this is exactly the assumption for an

edge in the set C and so egt,x is in ~Er. Thus A ∪ B ∪ C ∈ ~Er.

For the other containment, let egt,x ∈ ~Er for g ∈ G, t ∈ T and x ∈ A ∪ U . By

the definition of ~Er, we know that neither ygtx nor ygtxx
−1 are in the normal form

set N . If t = 1, then ygx /∈ N implies that x ∈ A ∪ U \ T , as ygt is in normal form

for any t ∈ T . If x ∈ A, then ygx /∈ N is equivalent to ygx /∈ NG, which is (half)

of the situation of the set A. The other half follows by the same argument from the

assumption that ygxx
−1 /∈ N . If x ∈ U \ T , then the edge eg,x is the situation of the

set B. Finally, if t 6= 1, then ygtx, ygtxx
−1 /∈ N implies that x 6= t−1, which is the

situation of set C. Thus ~Er = A ∪ B ∪ C.

Theorem 2.16. Let G be a stackable group with finite inverse-closed generating set

A and stacking structure (NG, φG). If G is a finite index subgroup of a group H, then

H is also stackable.

Proof. Let G = 〈A|R〉 be a stackable group, and let G be a finite index subgroup in
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H with finite right transversal T . Assume that 1 ∈ T . We can define the stacking

function φ : N × (A ∪ U)→ (A ∪ U)∗ by

φ(yh, x) =


φG(yh, x) if h ∈ G and x ∈ A

wxt̃x if h ∈ G and x ∈ U

t−1wt,xt̃t,x if h = gt for g ∈ G, t ∈ T \ {1} and x ∈ A ∪ U

From the presentation given for H, we can see that φ(yh, x) =H x for every pair

(yh, x). Next we show that φ(yh, x) = x only when eh,x ∈ ~Ed. Let φ(yh, x) = x.

According to the stacking function, there are three situations in which this could

arise: h ∈ G, and x ∈ A, h ∈ G, and x ∈ U or h = gt for g ∈ G, t ∈ V and x ∈ A∪U .

In the first case, φ(yh, x) = φG(yh, x) and as φG is a stacking function, we know that

φG(yh, x) = x if and only if eh,x is a degenerate edge in G. However, this would also

give eh,x is a degenerate edge in H. In the second case, if h ∈ G and x ∈ U , then

φ(yh, x) = x implies that wxt̃x = x. However, for x ∈ U , this is only the case when

x ∈ T , in which case the edge eyh,x is degenerate. Finally, let yh = gt for g ∈ G, t ∈ V

and x ∈ A ∪ U . Then φ(yh, x) = t−1wt,xt̃t,x = x. For this equality to hold, we must

have x = t−1 and wt,xt̃t,x = 1. Since h = gt, this implies the edge eh,t−1 is degenerate.

Therefore if φ(yh, x) = x, the edge eh,x is degenerate.

Conversely, let eh,x be a degenerate edge. By definition, either yhx = yhx or

yhxx
−1 = yh. By the makeup of the normal forms, for one of these to hold true, we

have one of the following situations also holds true: h ∈ G, x ∈ A and φG(yh, x) = x;

h ∈ G and x ∈ T ; or h = gt, with g ∈ G and t ∈ V with x = t−1. It is straightforward

to check that φ(yh, x) = x in all of these cases.

Finally, we can also observe, since A and U are both finite sets and G is stackable,

that im(φ) is a finite set. It remains to prove, then, that the function φ(yg, a) gives

rise to a strict well-founded partial ordering on recursive edges. Define a function ψG
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on the edges in the Cayley graph of G by

ψG(eg,a) = maximal length of a descending chain eg,a >φG e
′ >φG e

′′...

for g ∈ G and a ∈ A. As G is stackable, this function is finite valued. Define a

function ψ : ~Er → N2 on the edges in the Cayley graph of H by

ψ(eh,x) =


(0, ψG(eg,x)) when h ∈ G, and x ∈ A

(1, 0) when h ∈ G, and x ∈ U

(1, 1) when h = gt, for g ∈ G, t ∈ V and x ∈ A ∪ U

Define an order on N2 by (a, b) < (c, d) if a < c or a = c and b < d. Define an

order <ψ on recursive edges by e′ <ψ e if and only if ψ(e′) <N2 ψ(e). As <N2 is a

strict well-founded order on N2, the order <ψ is a strict well-founded order on ~Er.

We show that for an edge e ∈ ~Er, if e′ is a recursive child of e, then e′ <ψ e.

Case 1: Let eg,x be a recursive edge with g ∈ G and x ∈ A.

The stacking function value for the edge eg,x is φ(yg, x) = φG(yh, x). By design,

the children of eg,x are also children of eg,x when thought of as an edge in the Cayley

graph of G. That is, for a child e′ of the edge eg,x, we have that ψG(e′) <N2 ψG(eg,x).

Thus e′ <ψ eg,x.

Case 2: Let eg,x be a recursive edge with g ∈ G and x ∈ U .

As this edge is recursive, x ∈ U \ V . The stacking function value for eg.x is

φ(yg, x) = wxt̃x and the ψ-function value is ψ(eg,x) = (1, 0). Let wx = a1 · · · aj

for ai ∈ A. Then eg,x has j + 1 children: ei := ega1···ai−1,ai for i = 1, ..., j and

ej+1 := ega1···aj ,t̃x . Since the element ga1a2 · · · ai−1 remains in the group G, the ψ

function value for ei where 1 ≤ i ≤ j is ψ(ei) = (0, ψG(ei)). Finally, as the element

ga1 · · · aj is in G, the edge ej+1, labeled by t̃x, is degenerate. Therefore for every
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recursive child ei of eg,x, we have ψ(ei) <N2 ψ(eg,x) and so ei <ψ eg,x.

Case 3: Let eh,x be a recursive edge with h = gt for g ∈ G and t ∈ V and x ∈ A∪U .

The stacking function value for the edge eh,x in this case is φ(yh, x) = t−1wt,xt̃t,x,

where the word yh ends with the letter t ∈ V . This edge has three types of children:

the first child eh,t−1 , the last child egwt,x,t̃t,x and the middle children, each labeled by

a generator ai ∈ A. The first and last children are both degenerate. The remaining

children have edge labels in the set A, and so these edges have ψ function values of

the form (0, k) for k ∈ N0. However, as the ψ function value for the edge eh,x is

ψ(eh,x) = (1, 1), we have eh,x, e
′ <ψ eh,x for every recursive child of eh,x.

Therefore the ordering <φ on recursive edges in the Cayley graph of H is a strict

well-founded partial order, and by Definition 1.1, H is stackable.

Theorem 2.17. Let G be an autostackable (respectively algorithmically stackable)

group with finite inverse-closed generating set A and stacking structure (NG, φG). If

G is a finite index subgroup of a group H, then H is also autostackable (respectively

algorithmically stackable).

Proof. Since H was already shown to be stackable, we need only show that the set

graph(φ) is regular (respectively decidable) language. To show this, we use Lemma

1.5 and break into the following cases:

1. Sa,x where a ∈ A and x ∈ im(φG).

2. Ss,w where s ∈ U \ T and w = wst̃s

3. Sx,z where x ∈ A ∪ U and z = t−1wt,xt̃t,x

Case 1: Let a ∈ A and x ∈ im(φG) be fixed.
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The collection of the words y ∈ N which have (y, a, x) ∈ graph(φ) are those which

also have (y, a, x) ∈ graph(φG). Therefore we can write Sa,x as

Sa,x = ρ1

(
graph(φG) ∩ ρ−1

2 ({a}) ∩ ρ−1
3 ({x})

)
.

for ρi as defined in the proof of Lemma 1.5.

Case 2: Let s ∈ U \ T and w = wst̃s.

The set of words y ∈ N which have (y, s, w) ∈ graph(φ) are all words in normal

form in NG. That is,

Ss,w = ρ1

(
graph(φG)

)
Case 3: Let x ∈ A ∪ U and z = t−1wt,xt̃t,x.

The set of words y ∈ N which have (y, x, z) ∈ graph(φ) are those words in normal

form which end in the letter t. We can write this set as

Sx,z = ρ1

(
graph(φG)

)
· {t}

In each case above, the desired set S is expressed as images of the maps ρi, inverse

images, concatenations, finite unions and finite intersections of the set graph(φG)

and a few regular languages. Therefore graph(φ) is a regular (respectively decidable)

language whenever graph(φG) is.
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Chapter 3

Homological Properties

The purpose of this chapter is to investigate the homological properties of autostack-

able groups. Throughout this chapter, we will use the term x-tail to mean the string

y at the end of a given word w, in the letters x±1. For example, the cd-tail of a word

w refers to the word using letters from {c, c−1, d, d−1} that is the largest such suffix

of w. The word a3c−2bc2dc−1 has a cd-tail of c2dc−1.

Let S be the group in [27] that was shown to not be of type FP3. The group S

has presentation

S = 〈a, b, c, d, s|[a, c] = [a, d] = [b, c] = [b, d] = 1, [s, ab−1] = [s, ac−1] = [s, ad−1] = 1〉.

Define A = {a±1, b±1, c±1, d±1, s±1}. Then S = 〈A〉. Let N be the finitely gen-

erated subgroup of S given by N = 〈ab−1, ac−1, ad−1〉. In [11], it is shown that the

group N consists of all elements g ∈ S that can be represented by a word of zero

exponent sum. It follows that N is normal in S as conjugation preserves exponent

sum. They also show that S can be written as the HNN extension S ∼= (F2 × F2)∗N ,

where the associated HNN maps are both the inclusion maps ϕ1, ϕ2 : N ↪→ F2 × F2.
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Let

G = F2 × F2 = 〈a, b, c, d|[a, c] = [a, d] = [b, c] = [b, d] = 1〉

and let NG be the set of normal forms for G introduced in Section 2.1. That is, uv ∈

NG when u is a reduced word in {a±1, b±1}∗ and v is a reduced word in {c±1, d±1}∗.

All relations among generators in G preserve exponent sums, and so in fact if g ∈ G

has any representation as a word of zero exponent sum, all its representations are

words with zero exponent sum. Because of this, we will use a slight abuse of language

and refer occasionally to the exponent sum of a group element.

Lemma 3.1. The following is a set of normal forms for S:

N = {wsε1ai1sε2ai2 · · · sεnain|w ∈ NG, n ≥ 0, εj = ±1, ij ∈ Z and if there

exists a j with ij = 0, then εj = εj+1}

Proof. By the normal form theorem for HNN Extensions [23, Chapter IV, Theorem

2.1], the above set is a set of normal forms if the set {ai|i ∈ Z} is a set of coset

representatives for N\(F2×F2). As the maps defining the HNN extension S are both

inclusion maps, we have that ϕ1(N) = ϕ2(N) and thus we need not worry about the

power ε of the letter s.

Observe that Nai consists of all elements of F2 × F2 with total exponent sum i.

Indeed, if g ∈ F2×F2 has exponent sum i, then the word yg =G yga
−iai has exponent

sum i, but yga
−i has exponent sum zero, and thus (yga−i)a

i ∈ Nai. Conversely, if

we have an element gai in Nai, then this element has exponent sum i, as g ∈ N has

exponent sum 0.

As every element has exponent sum i for some i ∈ Z, each element of G is in at

least one coset in N\G. However, by an observation earlier, all words representing

the same group element will have the same exponent sum and so the sets Nai are
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disjoint. Thus we have that {ai|i ∈ Z} is a set of coset representatives for N\(F2×F2)

and so N is a set of normal forms for S.

Using these normal forms, we can determine which are the recursive edges in

the Cayley graph of S. Any edge eh,x with initial vertex labeled by h ∈ S such that

yh = wsε1ai1 · · · sεnain for n 6= 0 will be recursive if and only if x ∈ {b, b−1, c, c−1d, d−1}.

Indeed, edges of this type are recursive; the assumption n 6= 0 implies that yhx ends

with a±1 or s±1. Conversely, an edge eh,x with x = a±1 or x = s±1 is degenerate in the

case where n 6= 0. The edges eh,x, for x = a±1 have in either decreasing or increasing

by 1, both of which result in a word in normal form, and thus a degenerate edge. If

x = s±1 then multiplication by x either removes or adds an sε, which either results

in a word in normal form, or peels off an s−ε from the end of the word. Both result

in a degenerate edge.

If n = 0, then we can use Lemma 2.5 detailing recursive edges of a graph product

to find recursive edges in F2 × F2. In the case that the edge is of the form eg,x for

g ∈ F2 × F2 and x ∈ {s, s−1}, we have that ygx = ygx and thus the edge eg,x is

degenerate. Recall that for an element g in F2 × F2, an edge of the form eg,x is

degenerate if either x ∈ {c±1, d±1} or if x ∈ {a±1, b±1} with yg ∈ {a±1, b±1}∗ and

recursive otherwise. Together, these remarks prove the following lemma.

Lemma 3.2. Let S be Stallings’ not FP3 group with normal form set described in

Lemma 3.1. Define the sets

A = {eh,x|yh = wsε1ai1 · · · sεnain , w ∈ NG, n > 0, x ∈ {b, b−1, c, c−1d, d−1}}

B = {eg,x|g ∈ G, x ∈ {a, a−1, b, b−1}, ygx, ygxx−1 /∈ NG}

Then the set of recursive edges in the Cayley graph of S is ~Er = A ∪ B.

Lemma 3.3. Stallings’ group S is stackable.
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Proof. From the normal forms defined in Lemma 3.1, we can define the following

stacking function φ : N × A→ A∗

φ(yh, x) =



z−1xz for h ∈ G and x ∈ {a±1, b±1} where

z ∈ {c±1, d±1} is the last letter of yh

a−ηxaη for h ∈ S and x ∈ {c±1, d±1} with

yh = wsε1ai1 · · · sεnain where w ∈ NG,

n > 0 and in = η|in| 6= 0

c−ηxcη for h ∈ S and x ∈ {b, b−1} with

yh = wsε1ai1 · · · sεnain where w ∈ Ng,

n > 0 and in = η|in| 6= 0

s−εnxa−ηxεnaη for h ∈ S and x ∈ {bη, cη, dη} with

yh = wsε1ai1 · · · ain−1sεn where n > 0

and η ∈ {1,−1}

x for h ∈ S and x ∈ A where eh,x ∈ ~Ed

It follows from the definition of φ above that φ has a finite image, φ(yh, x) =G x for

all h ∈ S and x ∈ A and φ(yh, x) = x when eh,x is a degenerate edge. To see that

<φ is a strict well-founded partial order on the set of recursive edges, consider the

following function ψ defined on recursive edges:

ψ(eh,x) =



(0, 0, `cd(yh)) when h ∈ G and x ∈ A

(n, |in|, 1) when yh = wsε1ai1 · · · sεnain with w ∈ NG,

εj ∈ {−1, 1} and ij ∈ Z for each j = 1, ..., n,

x ∈ {b, b−1} and n > 0

(n, |in|, 0) when yh = wsε1ai1 · · · sεnain with w ∈ NG,

εj ∈ {−1, 1}and ij ∈ Z for each j = 1, ..., n,

x ∈ {c±1, d±1}and n > 0
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where `cd(yh) denotes the length of the cd-tail of the word yh.

Define an ordering <ψ by e′ <ψ e if and only if ψ(e′) <N3 ψ(e), where <N3 is the

lexicographical ordering on N3. The ordering <ψ is a strict well-founded ordering on

recursive edges in the Cayley graph of S; if we show that e′ <φ e implies e′ <ψ e for e′

a child of the edge e, then we have that <φ is also a strict well-founded partial order

on recursive edges.

Case 1: Let eh,x be a recursive edge with h ∈ G and x ∈ {a±1, b±1}.

In this case, ψ(eh,x) = (0, 0, `cd(yh)). Suppose z ∈ {c±1, d±1} is the last letter

of yh. Then the edge eh,x has three children: eh,z−1 , ehz−1,x and ehz−1x,z. The first

child is degenerate, as yhz−1z = yh. The second child, ehz−1,x, has a ψ-function

value of ψ(ehz−1,x) = (0, 0, `cd(yhz−1)). However, by design, `cd(yhz−1) = `cd(yh) − 1,

and so ehz−1,x <ψ eh,x. The third child is of the form ehz−1x,z. Notice that for

the decomposition yh = uv for u ∈ {a±1, b±1}∗ and v ∈ {c±1, d±1}∗, we have that

yhz−1x = yuxyhz−1 . As yuz−1z = u, we have the third child is a degenerate edge.

Case 2: Let eh,x be a recursive edge for h ∈ S and x ∈ {c±1, d±1} with yh =

wsε1ai1 · · · sεnain where w ∈ NG, n > 0, εj ∈ {−1, 1}, ij ∈ Z for each j = 1, ..., n

with in 6= 0.

The stacking function for this edge is φ(eh,x) = z−1xz for z ∈ {a, a−1} the final

letter of yh and the ψ-function value is ψ(eh,x) = (n, |in|, 0). Similar to case 1,the first

child eh,z−1 is a degenerate edge. The second child, ehz−1,x has ψ function value of

ψ(ehz−1,x) = (n, |in| − 1, 0). which is less than ψ(eh,x) = (n, |in|, 0). Thus ehz−1 , x <ψ

eh,x. The third child is of the form ehz−1x,z. The normal form of the word hz−1x still

contains n appearances of s and s−1 and therefore the edge ehz−1x,z, which is labeled

by z ∈ {a, a−1}, is a degenerate edge.

Case 3: Let eh,x be a recursive edge for a group element h ∈ S and a generator

x ∈ {b, b−1} with yh = wsε1ai1 · · · sεnain where w ∈ NG, n > 0, εj ∈ {−1, 1}, ij ∈ Z
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for each j = 1, ..., n with in 6= 0.

The edge eh,x in this case has stacking function value φ(yh, x) = c−ηxcη, where

in = η|in| and ψ-function value ψ(eh,x) = (n, |in|, 1). This edge has three children:

eh,c−η , ehc−η ,x and ehc−ηx,cη . Unlike the previous case, each of these children is a

recursive edge. The first child, eh,c−η , has a ψ-function value of ψ(eh,c−η) = (n, |in|, 0)

which is less than ψ(eh,x) = (n, |in|, 1). Thus eh,c−η <ψ eh,x. Using Lemma 3.1, observe

that yhc−η = ywc−ηaηs
ε1ai1 · · · sεnain−η. Therefore the ψ−function value for the edge

ehc−η ,x is ψ(ehc−η ,x) = (n, |in − η|, 1). But we have the inequality |in − η| < |in| and

so ψ(ehc−η ,x) <N3 ψ(eh,x). Thus ehc−η ,x <ψ eh,x.

Finally, we consider the third child ehc−ηx,cη . The ψ−function value for this edge

is dependent on several factors. Specifically, we get different values depending on

whether x = b or x = b−1. and depending on whether η = 1 or η = −1. Let x = b.

The case where x = b−1 follows a similar argument. If η = 1, then the normal form

of the word hc−ηx is of the form w′sε1ai
′
1 · · · sεnain where w′ ∈ NG and i′j ∈ Z. It is

possible that some i′j = 0 which could cause sεj−1 to cancel with sεj . However, in this

case, we would have ψ(ehc−ηx) <N3 ψ(eh,x) based on a first coordinate comparison. If

this is not the case, the ψ−function value of ehc−ηx,cη is ψ(ehc−ηx,cη) = (n, in, 0) which

is still less than ψ(eh,x) = (n, in, 1) in the ordering <N3 . Suppose now that η = −1.

Then the normal form of the word hc−ηx is of the form w′′sε1ai
′′
1 · · · sεnain+2, where

w′′ ∈ NG and i′′j ∈ Z. Since η = −1, we know that in < 0 and so |in + 2| < |in| and

therefore ψ(ehc−ηx,cη) <N3 ψ(eh,x). Thus in all situations, ehc−ηx,cη <ψ eh,x.

Case 4: Let eh,x be a recursive edge for h ∈ S and x ∈ {bη, cη, dη} for η ∈ {1,−1} with

yh = wsε1ai1 · · · sεn where w ∈ NG, n > 0, εj ∈ {−1, 1}, ij ∈ Z for each j = 1, ..., n−1

and in = η|in|.

According to the stacking function φ, the edge eh,x has five children: eh,s−εn ,

ehs−εn ,x, ehs−εnx,a−η , ehs−εnxa−η ,sεn and ehs−εnxa−ηsεn ,aη . Children one and four are both
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degenerate, as every edge labeled by the letter s or s−1 is degenerate. Child five is also

degenerate, as an edge labeled by the letter a or a−1 with initial vertex of the form

y = wsε1 · · · sεn for n > 0 is degenerate. Recall that in this case, ψ(eh,x) = (n, |in|,m)

for m ∈ {0, 1} depends on the value of x. If n > 1, then the ψ-function value for the

second child, ehs−εn ,x is ψ(ehs−εn ,x) = (n, |in| − 1,m) and thus ψ(ehs−εn ,x) <N3 ψ(eh,x).

When n > 1, the argument above showing the fifth child is degenerate suffices to

show the third child is degenerate as well. If n = 1, then the ψ−function value for

both the second and third children is of the form (0, 0, `cd(yh)). In this case, we also

have both ψ(ehs−εn ,x) <N3 ψ(eh,x) and ψ(ehs−εnx,a−η) <N3 ψ(eh,x). Thus for e′ a child

of the edge eh,x we have e′ <ψ e.

The four cases above show that for e′ a child of an edge e, we have that e′ <ψ e.

We can now begin the proof of Theorem 3.4.

Theorem 3.4. There exists an autostackable group that does not have type FP3.

Proof. We use Lemma 3.3 to prove that S is autostackable. It is sufficient, then, to

show that the set graph(φ) is regular. To do this, we use Lemma 1.5. The stacking

function for S is relatively straightforward. When the second and third entries are

fixed, the completion of each tuple in graph(φ) is simply a word in normal form ending

with a particular generator. For example, if we fix the stacking image as cbc−1 and

the generator as b, the language which completes this tuple is exactly those words in

normal form that end in a c−1 and those that end in sεnain for in < 0.

The language of normal forms can be written as a regular expression. Define the

following set of subwords which result in a word not in normal form:

B =

 aa−1, a−1a, bb−1, b−1b, cc−1, c−1c, dd−1, d−1d, ss−1, s−1s, ca, ca−1, c−1a,

c−1a−1, da, da−1, d−1a, d−1a−1, cb, cb−1, c−1b, c−1b−1, db, db−1, d−1b, d−1b−1
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Using this set, we can then write the set of normal forms as the following regular

expression:

N = A∗ \
{{

A∗BA∗
}
∪
{
A∗s±1A∗xA∗|x ∈ {b±1, c±1, d±1}

}}

We will now split into cases to show that S is autostackable.

Case 1: Fix x ∈ b±1 as the generator, and cxc−1 as the stacking image.

Then the words which complete the 3-tuple (y, x, cxc−1) are both words in w ∈ NG

which end in a c−1 and words of the form wsε1ai1 · · · sεnain in normal form with in < 0.

Note that N ∩ {A∗c−1} = NG ∩ {A∗c−1}. The regular expression representing this

collection of words is

Sx,cxc−1 =
(
N ∩ {A∗c−1}

)
∪
(
N ∩ A∗s±1A∗a−1

)
The case where the stacking image is c−1xc is very similar.

Case 2: Fix x ∈ b±1 as the generator, and z−1xz as the stacking image where z ∈

{d±1}.

According to the stacking function, the only instance that an edge labeled by a

generator x has image φ(y, x) = z−1xz is when y ∈ NG ends with the letter z. The

regular expression for this language is

Sx,z−1xz = N ∩ {A∗z}

Case 3: Fix x = a±1 as the generator, and z−1xz as the stacking image where z ∈

{c±1, d±1}.

The set of recursive edges labeled by x with stacking image z−1xz are precisely

those whose initial vertex is labeled by a group element in G, with yg ending in the
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letter z. This language is identical to the previous case:

Sx,z−1xz = N ∩ {A∗z}

Case 4: Fix x ∈ {c±1, d±1} as the generator, and z−1xz as the stacking image where

z ∈ {a±1}.

We require an expression consisting of normal forms of the type wsε1ai1 · · · sεnain

with in > 0 if z = a and in < 0 if z = a−1. The regular expression for this language is

Sx,z−1xz = N ∩ {A∗s±1A∗z}

Case 5: Fix the word s−εnxz−1sεnz in the image of the function φ where either

x ∈ {b−1, c−1, d−1} and z = a−1 or x ∈ {b, c, d} and z = a.

The language of words in Sx,s−εnxz−1sεnz in this case are those in normal form which

end in an sεn . The following is a regular expression for this collection of words.

Sx,s−εnxz−1sεnz = N ∩ {A∗sεn}

We now consider the case where we fix a = x in (y, a, x). These represent degen-

erate edges.

Case 6: Fix z ∈ {a, a−1} as both the generator and the stacking image.

This gives the set of words y such that yz is in normal form, or those which are in

normal form and end with the letter z−1. By the setup of the normal forms for S, all

edges except those whose initial vertex has a normal form which ends with a letter

x ∈ {c±1, d±1} are degenerate The regular expression accepting words of this type is

Sz,z = N \ {A∗x|x ∈ {c±1d±1}}
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Case 7: Fix z ∈ {b, b−1} as both the generator and the stacking image.

The only instances in which an edge ey,z is degenerate are those where the word

y contains only letters from {a±1, b±1}. The set of such words is

Sz,z = N ∩ {a±1, b±1}∗.

Case 8: Fix z ∈ {c±1, d±1} as both the generator and the stacking image.

Any edge labeled by z is degenerate only when it has initial vertex label by a word

w ∈ NG. The set of these words form a regular language:

Sz,z = N ∩ (A∗s±1A∗)c

Case 9: Fix z ∈ {s, s−1} as both the generator and the stacking image.

As edges labeled by z are always degenerate, the set of words y such that φ(y, z) =

z is actually the set of normal forms N .
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Chapter 4

Examples

Free products with amalgamation arise often in topology, via the Seifert-van Kampen

theorem. Given three groups G = 〈A|R〉, H = 〈B|S〉 and K = 〈C〉, with A, B, and

C all finite, inverse-closed generating sets and injective homomorphisms α : C ↪→ A

and β : C ↪→ B, the free product with amalgamation G ∗K H can be presented as

G ∗K H = 〈A ∪B ∪ C|R ∪ S ∪ {ci = α(ci) = β(ci)|ci ∈ C}〉

When C is finite, this presentation is finite.

Theorem 4.1. Let G = G1 ∗H G2 with α : H ↪→ G1 and β : H ↪→ G2 any injective

homomorphisms. Then if G1 = Zn, G2 = Zm and H = Z, then G is autostackable.

Before we prove this, we require a couple of lemmas.

Lemma 4.2. Let α : Z ↪→ Zn. Then there exists a generating set {a1, ..., an} of Zn

and {c} of Z such that the map α is defined as α(c) = ai11 a
i2
2 · · · ainn for i1, ..., in ∈ Z

and in 6= 0. If G ∼= Zn/〈α(c)〉 then

N = {aj11 · · · a
jn−1

n−1 a
jn
n |j1, ..., jn−1 ∈ Z, 0 ≤ jn < |in|}
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is a set of normal forms for G.

Proof. We can, without loss of generality, assume that in > 0, as otherwise, we could

use inversion to get the relation a−i11 · · · a−inn = 1. As G is abelian, we can write

each element in G in the form aj11 · · · ajnn . In fact, since ainn = a−i11 · · · a−in−1

n−1 , we

can force 0 ≤ jn < in. Now, suppose that a group element g ∈ G has multiple

representations by words in N . That is, suppose g = aj11 · · · ajnn = ak11 · · · aknn with

j1, · · · jn−1, k1, · · · kn−1 ∈ Z and 0 ≤ jn, kn < in. Without loss of generality, suppose

kn ≥ jn. Then moving both words to one side and collecting terms, we get that

ak1−j11 · · · akn−jnn = 1 with k1− j1, ..., kn−1− jn−1 ∈ Z and 0 ≤ kn− jn < in. Therefore

the representation w = ak1−j11 · · · akn−jnn is a representation of the identity. Since w =G

1, we can write w in the free group as a product of conjugates of relators. Commuting

relations have exponent sum zero for each generator and applying conjugation does

not not change exponent sum, so there must be at least one instance of the relator

ai11 a
i2
2 · · · ainn , or else we have ki − ji = 0 for all 1 ≤ i ≤ n. From this, we can see that

0 ≤ kn − jn < in implies that kn − jn = k · in for k the number of times the relator

ai11 a
i2
2 · · · ainn appears in this product of relators. But as k ∈ Z, and kn − jn < in, we

must have k = 0. Therefore k1 − j1 = 0, k2 − j2 = 0, ..., kn − jn = 0 and thus N is a

set of normal forms for G.

The following lemma gives the normal forms for a free product with amalgamation

of Zn with Zm over Z.

Lemma 4.3. Let Zn = 〈a1, ..., an〉,Zm = 〈b1, ..., bm〉 and Z = 〈c〉 be three groups with

injective homomorphisms α : Z ↪→ Zn and β : Z ↪→ Zm defined by α(c) = ai11 a
i2
2 · · · ainn ,

and β(c) = bj11 b
j2
2 · · · bjmm , respectively, with i1, ...in, j1, ..., jm ∈ Z. Let Nn and Nm be

the normal form sets described in Lemma 4.2 for groups Zn/〈α(c)〉 and Zm/〈β(c)〉
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respectively. Then a set of normal forms for H = Zn ∗Z Zm is

N = {w1v1w2v2 · · ·wkvkcs | w2, ..., wk ∈ Nn \ {1}, v1, ..., vk−1 ∈ Nm \ {1}

w1 ∈ Nn, vk ∈ Nm, c = α(c) =H β(c), k, s ∈ Z}

Proof. This is true by the previous lemma, and the normal form theorem for free

products with amalgamation [23, Chapter IV, Theorem 2.6].

Lemma 4.4. Let Zm = 〈A〉, Zn = 〈B〉, and Z = {c} be free abelian groups where A =

{a1, ..., am} and B = {b1, ..., bn}. Let Zm ∗Z Zn be the free product with amalgamation

with injective homomorphisms α : Z ↪→ Zm and β : Z ↪→ Zn defined by α(c) =

ai11 · · · aimm and β(c) = bj11 · · · bjnn , respectively for i1, .., im, j1, ..., jn ∈ Z. Define the sets

A, B and C as

A = {eg,x|yg ∈ (A ∪B)∗ and x ∈ A, with yg = w · wA, where wA

is the maximal suffix of yg in A∗ and wAx, ywAxx
−1 /∈ NZm/α(c)}

B = {eg,x|yg ∈ (A ∪B)∗ and x ∈ B, with yg = w · wB, where wB

is the maximal suffix of yg in B∗ and wBx, ywBxx
−1 /∈ NZn/α(c)}

C = {eg,x|yg = wc`, with ` > 0 and x 6= c, c−1}
Then using the normal form set described in Lemma 4.3, the set of recursive edges of

Zm ∗Z Zn is ~Er = A ∪ B ∪ C.

Proof. First, observe that A∪B ∪ C ⊂ ~Er. Indeed, for an edge eg,x to be degenerate,

we have either ygx = ygx or ygxx
−1 = yg; however in the sets A, B and C, neither

equality holds by assumption. For the reverse inclusion, let eg,x ∈ ~Er. Then by

definition, neither ygx = ygx nor ygxx
−1 = yg. This implies that ygx is not in normal

form, nor does yg end with the letter x−1. Without loss of generality, suppose x ∈ B.

Then either the word wx is not in normal form in Zn/β(c), for w the maximal suffix

in B∗ at the end of yg or yg ends with the letter c and x 6= c, c−1. Hence, eg,x is in
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one of A, B or C.

We now have enough to prove the theorem.

Proof. (Of Theorem 4.1) Recall that the normal forms for each group Zm/α(c) and

Zn/β(c) give an ordering on the < on the generators. Define the flow function φ on

N × (A ∪B ∪ {c±1}) as

φ(yg, x) =



z−1xz for yg = wz where either x, z ∈ A or

x, z ∈ B with x < z and z 6= am, bn

a
−(im−1)
m ai11 · · · a

im−1

m−1 c for yg = waim−1
m and x = am

aim−1
m a−i11 · · · a−im−1

m−1 c−1 for yg = wai, where i 6= m, and x = a−1
m

b
−(in−1)
n b−j11 · · · b−jn−1

n−1 c for yg = wbin−1
n and x = bn

b
(in−1)
n bj11 · · · b

jn−1

n−1 c
−1 for yg = wbi, where i 6= n and x = b−1

n

z−1xz for yg = wz where z ∈ {c, c−1} and

x ∈ A ∪B

x for either ygx = ygx or ygxx
−1 = yg

where x ∈ A ∪B ∪ {c±1}

From the definition of φ above it follows that φ(yg, x) =G x and φ(yg, x) = x if

and only if eg,x is degenerate. To see that <φ is a strict well-founded partial order on

~Er, define a function ψ : ~Er → N 2 by

ψ(eg,x) =


(0, `(yg)) for g ∈ G with yg ∈ {A ∪B}∗ and x ∈ A ∪B \ {a±1

m , b±1
n }

(1, 0) for g ∈ G with yg ∈ {A ∪B}∗ and x ∈ {a±1
m , b±1

n }

(1, `c(yg)) for g ∈ G with yg = wdε for ε ∈ {±1} and x ∈ A ∪B

where `(yg) is the length of the word yg and `c(yg) is the length of the c-tail of the word

yg. Define an ordering <ψ on the edges in ~Er by e′ <ψ e if and only if ψ(e′) <N2 ψ(e)



55

for <N2 the lexicographical ordering on N2. We show here that for e′ a child of an

edge e, we have e′ <ψ e. It follows that <φ is a strict well-founded partial order.

Case 1: Let eg,x be a recursive edge with yg = wai and x = aj for ai, aj ∈ A and

j < i 6= m.

The edge eg,x in this case has ψ−function value ψ(eg,x) = (0, `(yg)). The edge

eg,x has three children: eg,a−1
i

, ega−1
i ,x and ega−1

i x,ai
. The first and third children are

degenerate. The second child, ega−1
i ,x has ψ function value of ψ(ega−1

i ,x) = (0, `(yga−1
i

)).

As `(yga−1
i

) = `(yg)− 1, we have ψ(ega−1
i ,x) <N2 ψ(eg,x). Therefore ega−1

i ,x <ψ eg,x.

The case where yg = wbi and x = bj for bi, bj ∈ B with j < i 6= n follows a similar

argument.

Case 2: Let eg,x be a recursive edge with yg = waim−1
m and x = am.

In this case, the ψ−function value for the edge eg,x is ψ(eg,x) = (1, 0). The first

im−1 children of this edge are degenerate, as they are peeling off the im−1 appearances

of am on the word yg. The final child, labeled by the letter c is a degenerate edge as

well. The intermediate children, labeled by a
ij
j for j = 1, ..., im− 1 are not necessarily

degenerate, depending on the exact word yg, but all have ψ function value of the

form (0, t) for t ∈ N the length of the normal form of the initial vertex of each

child. However, (0, t) < (1, 0) and so each recursive child e′ of the edge eg,x has

ψ(e′) <N2 ψ(eg,x). Thus e′ <ψ eg,x.

The cases where yg = wbin−1
n with x = bn, yg = wai for i 6= m and x = a−1

m , and

yg = wbi for i 6= n and x = b−1
n follow similar arguments.

Case 3: Let eg,x be a recursive edge with yg = wc with x ∈ A ∪B.

The ψ−function value for the edge eg,x in this case is ψ(eg,x) = (1, `c(yg)). The

stacking function gives that this edge has three children: eg,c−1 , egc−1,x and egc−1x,c.

The first and third children are both degenerate. If the second child is recursive, then

ψ(egc−1,x) = (1, `c(ygc−1)). Notice that `c(ygc−1) = `c(yg) − 1 and so ψ(egc−1,x) <N2
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ψ(eg,x). Thus egc−1,x <ψ eg,x.

The case where yg = wc−1 follows a similar argument.

Now, we show that

graph(φ) = {(y, a, φ(y, a))|y ∈ N , a ∈ (A ∪B ∪ {c±1})}

is a regular language. We will first show that the set N of normal forms is a regular

language and then we proceed using Lemma 1.5.

Let N1 and N2 be the languages of normal forms for the groups Zm/〈α(c)〉 and

Zn/〈β(c)〉 described in Lemma 4.2, respectively. Let N3 := {ck|k ∈ Z}. We can write

N1 =
im−1⋃
k=0

{
{a1}∗ ∪ {a−1

1 }∗
}
· · ·
{
{am−1}∗ ∪ {a−1

m−1}∗
}
· akm

and

N2 =

jn−1⋃
k=0

{
{b1}∗ ∪ {b−1

1 }∗
}
· · ·
{
{bn−1}∗ ∪ {b−1

n−1}∗
}
· bkn

Thus N1 and N2 are regular languages. The language N3 is also regular, as we can

express it as N3 = {c}∗ ∪ {c−1}∗. The normal form set N can be viewed as a free

product of the languages N1 and N2 concatenated with N3. In the proof of Theorem

2.7, we show that the free product of regular languages is regular and therefore the

language N is regular.

Case 1: Let a ∈ A∪B, and d−1ad ∈ im(φ) for d ∈
(
A∪B∪{c, c−1}

)
\{am, bn, a−1

m , b−1
n }

be fixed.

The words y that complete this tuple are those in normal form which end in the

letter d. The regular expression for this language is

Sa,d−1ad = N ∩
[
(A ∪B ∪ {c, c−1})∗d

]
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Case 2: Let a = am, and a
−(im−1)
m ai11 · · · a

im−1

m−1 c ∈ im(φ)

Then the words y desired here are those which are in normal form which end with

aim−1
m . The regular expression for this language is

S
am,a

−(im−1)
m a

i1
1 ···a

im−1
m−1 c

= N ∩
[
(A ∪B ∪ {c, c−1})∗ \

(
(A ∪B ∪ {c, c−1})∗am

)
· aim−1

m

]

Notice that im is a finite, predetermined number, and so this is, in fact, a regular ex-

pression. The 3-tuples (y, a−1
m , aim−1

m a−i11 · · · a−im−1

m−1 c−1), (y, bn, b
−(in−1)
n b−j11 · · · b−jn−1

n−1 c)

and (y, b−1
n , b

(in−1)
n bj11 · · · b

jn−1

n−1 c
−1) are similar to case 2.

Case 3: Let x ∈ A ∪B.

In this case, we seek degenerate edges of the form eg,x. Let x = ai for some i, and

for now, assume that i 6= m. For eg,ai to be degenerate, we need either yg = wbk or

yg = waj with j ≤ i. Then

Sai,ai = N ∩
[(

(A ∪B)∗(B∗ \ {1})
)
∪
(

i
∪
j=1

(A ∪B)∗a±1
j

)]

The above works identically if x = a−1
i . If i = m, we must be more careful, as we

now must keep track of the length of an am tail. Note that in our ordering, am ≥ ai

for all i, and thus the set of normal forms we are looking for are those which do not

end in a c, c−1 and those which do not end in aim−1
m . We can account for both of these

situations:

Sam,am = N ∩
[
(A ∪B)∗ \ (A ∪B)∗aim−1

m

]
For the case that x = a−1

m , the same idea applies. In fact, this same idea will also

cover the cases of x ∈ B.

Case 4: Let x ∈ {c, c−1}.

As mentioned previously, edges labled by c±1 are degenerate, and thus Sx,x is the
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normal form set.
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