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The complexity of a geodesic language has connections to algebraic properties of the

group. Gilman, Hermiller, Holt, and Rees show that a finitely generated group is

virtually free if and only if its geodesic language is locally excluding for some finite

inverse-closed generating set. The existence of such a correspondence and the result

of Hermiller, Holt, and Rees that finitely generated abelian groups have piecewise

excluding geodesic language for all finite inverse-closed generating sets motivated

our work. We show that a finitely generated group with piecewise excluding geodesic

language need not be abelian and give a class of infinite non-abelian groups which have

piecewise excluding geodesic languages for certain generating sets. The quaternion

group is shown to be the only non-abelian 2-generator group with piecewise excluding

geodesic language for all finite inverse-closed generating sets. We also show that there

are virtually abelian groups with geodesic languages which are not piecewise excluding

for any finite inverse-closed generating set.

Autostackable groups were introduced by Brittenham, Hermiller, and Holt as a

generalization of asynchronously automatic groups on prefix-closed normal forms and

groups with finite convergent rewriting systems. Brittenham, Hermiller, and Johnson

show that Stallings’ non-FP3 group, an HNN extension of a right-angled Artin group,

is autostackable. We extend this autostackability result to a larger class of HNN

extensions of right-angled Artin groups.
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Chapter 1

Introduction

1.1 Piecewise Excluding Geodesic Languages

For a group G generated by a finite set X, Dehn’s word problem asks if there exists an

algorithm which determines whether or not a given word over X∪X−1 represents the

trival element in G [8]. Dehn’s word problem is known to be unsolvable in general [3].

But for certain classes of groups, such as groups with a computable geodesic language

for some generating set, there are solutions to the word problem. There are two

known classes of groups with regular geodesic language for all finite generating sets:

word hyperbolic groups [9] and abelian groups [22, Theorems 4.4 and 4.1]. There are

many known types of groups with regular geodesic language for some finite generating

set: these include Coxeter groups [18], virtually abelian groups and geometically

finite hyperbolic groups [22], Artin groups of finite type and more generally Garside

groups [7], Artin groups of large type [16], and groups hyperbolic relative to virtually

abelian subgroups [1]. The class of groups with regular geodesic language for some

generating set is moreover closed under graph products [19]. Background, notation,

and definitions relevant to this section and to Chapter 3 can be found in Chapter 2.

By considering more restrictive language classes than regular, it is possible to

discover more properties of the underlying groups. In some cases, a characterization
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can be found. Gilman, Hermiller, Holt, and Rees show that a finitely generated

group is virtually free if and only if its geodesic language is locally excluding for some

finite symmetric (that is, inverse-closed) generating set [11, Theorem 1]. Hermiller,

Holt, and Rees show that a finitely generated group is free abelian if and only if, for

some finite symmetric generating set, it has piecewise excluding geodesic language

where the excluded piecewise subwords all have length one [13, Theorem 3.2]. Our

research is motivated by the existence of these correspondences and by the following

implications.

Theorem 1.1. [12, Proposition 6.2] Finitely generated abelian groups have piecewise

excluding geodesic language for all finite symmetric generating sets.

Theorem 1.2. [12, Proposition 6.3] Finitely generated virtually abelian groups have

piecewise testable geodesic language for some finite symmetric generating set.

Cannon gives an example showing that a finitely generated virtually abelian group

can have a non-regular geodesic language for some finite symmetric generating set [22].

A natural question to investigate is if Theorem 1.1 is a correspondence; that is, if

groups with a piecewise excluding geodesic language for some generating set must

be abelian. In Chapter 3, we show that a finitely generated group having piecewise

excluding geodesic language does not imply that the group is abelian, even if the

condition is strengthened to having piecewise excluding geodesic language for all

finite symmetric generating sets.

Proposition 3.3. Let K be a finitely generated abelian group, H a finite group, and

G an extension of H by K: 1 → H → G → K → 1. Then G has a piecewise

excluding geodesic language for some finite symmetric generating set.
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Proposition 3.4. The quaternion group, Q8 =< i, j, k | ijk−1, jki−1, kij−1, i4 >, has

piecewise excluding geodesic language for all finite symmetric generating sets.

We show that the group Q8 is a somewhat special 2-generator group and that the

class of groups with piecewise excluding geodesic languages for all finite symmetric

generating sets does not have nice closure properties.

Theorem 3.7. The quaternion group, Q8, is the only non-abelian 2-generator group

with piecewise excluding geodesic language for all finite symmetric generating sets.

Proposition 3.8. The class of groups which have piecewise excluding geodesic lan-

guages for all finite symmetric generating sets is not closed under direct products.

Recall that Theorem 1.2 shows that virtually abelian groups have piecewise testable

geodesic language, a class which contains piecewise excluding geodesic languages. We

show that the group property ‘virtually abelain’ also does not correspond to piece-

wise excluding geodesic language by exhibiting a family of virtually abelian groups

which have, for any finite symmetric generating set A, a geodesic word containing

both a generator and its inverse. By the proposition below, groups with a quotient

isomorphic to a group in this family have, for any finite symmetric generating set,

geodesic language which is not piecewise excluding.

Corollary 3.10. There are finitely generated virtually abelian groups whose geodesic

language is not piecewise excluding for any finite symmetric generating set.

Proposition 3.11. Let G be an extension 1→ H → G
π→ K → 1 of finitely generated

groups H and K and let A be a finite symmetric generating set for G. If awa−1 is

geodesic in K over the generating set π(A) for some a ∈ π(A) and w ∈ π(A)∗, then

the geodesic language of G over A is not piecewise excluding.
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1.2 Autostackability of certain HNN extensions

Autostackable groups were introduced by Brittenham, Hermiller, and Holt as a gen-

eralization of asynchronously automatic groups with prefix-closed normal forms and

groups with finite convergent rewriting systems [4, Theorem 4.1 and Corollary 5.4].

Autostackability of a group implies a finite presentation, a solution to the word prob-

lem, and a recursive algorithm for building van Kampen diagrams [4, Proposition

3.3]. Though by definition autostackability is a topological property of the Cayley

graph along with a language theoretic restriction on this property, Brittenham, Her-

miller, and Holt give a completely language theoretic characterization: a group is

autostackable if and only if it admits a synchronously regular bounded convergent

prefix-rewriting system [4, Theorem 5.3]. Background, notation, and definitions

relevant to this section and to Chapter 4 can be found in Chapter 2.

Although both asynchronously automatic groups with prefix-closed normal forms

and groups with finite convergent rewriting systems satisfy the homological finiteness

condition FP∞, Brittenham, Hermiller, and Johnson show that the class of autostack-

able groups includes a group not of type FP3:

Theorem 1.3. [5, Theorem 4.1] Stallings’ non-FP3 group < a, b, c, d, s | [a, c], [a, d],

[b, c], [b, d], [s, ab−1], [s, ac−1], [s, ad−1] > is autostackable.

Stallings’ group is an HNN extension of a right-angled Artin group over its as-

sociated Bestvina-Brady group. The following two theorems are the closure results

known to date for HNN extensions of autostackable groups.

Theorem 1.4. [6, Theorem 3.5] Let G be a graph of groups over a finite connected

graph Λ with at least one edge. If for each directed eddge e of Λ the vertex group

Gv corresponding to the terminal vertex v = t(e) of e is autostackable respecting the
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associated injective homomorphic image of the edge group Ge, then the fundamental

group π1(G) is autostackable.

Theorem 1.5. [14, Corolary 4.6] Let H be an autostackable group over a symmetric

generating set Z. Let A ≤ H be generated by a finite symmetric set Y ⊆ Z with

shortlex normal form set SLA (with respect to some total ordering of Y ), and let

ψ : A → H be a monomorphism with ψ(Y ) ⊆ Z. Suppose further that there are

regular subsets NH/A,NH/ψ(A) ⊆ NH , each containing 1, representing transversals of

these subgroups, and that for each y ∈ Y and ỹ ∈ ψ(Y ), the sets

Ly = {w ∈ NH |w =H transA(w)subA(w) for some transA(w) ∈ NH/A and subA(w) ∈

SLA ∩ Y ∗y} and

L′ỹ = {w ∈ NH |w =H transψ(A)(w)subψ(A)(w) for some transψ(A)(w) ∈ NH/ψ(A) and

subψ(A)(w) ∈ ψ(SLA) ∩ ψ(Y )∗ỹ}

are also regular. Then the HNN extension G = H∗ψ is autostackable.

The following is a stronger closure result for HNN extensions of algorithmically

stackable groups (a weaker condition than autostackable).

Theorem 1.6. [14, Corollary 4.7] Let H be an algorithmically stackable group, let

A,B ≤ H be finitely generated, and let ψ : A → B be an isomorphism. Suppose

further that the subgroup membership problem is decidable for the subgroups A and B

in H. Then the HNN extension G = H∗ψ is also algorithmically stackable.

In Chapter 4, we show that the autostackability result in Theorem 1.3 can be

extended to the following class of groups:

Definition 1.7. A Stallings-like group is an HNN extension H∗idA where H =<

a1, ..., an | {[ai, aj] | vi is adjacent to vj in Λ} > is the right-angled Artin group

associated to a connected finite simplicial graph Λ and A is the Bestvina-Brady group
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associated to Λ: A = ker(γ) where γ : H → Z =< x | > is defined by γ(ai) =

x for all i ∈ {1, ..., n}.

Theorem 4.4. Stallings-like groups are autostackable.

Although Theorem 1.6 implies algorithmic stackability of Stallings-like groups,

the closure results Theorem 1.4 and Theorem 1.5 do not imply autostackability of

all Stallings-like groups for cannonical choices of graph of group decomposition and

autostackable structure for right-angled Artin groups.

Remark 4.2. The graph of groups decomposition H∗idA for a Stallings-like group

with the flag complex associated to Λ not simply-connected does not satisfy the

hypotheses of Theorem 1.4.

Proposition 4.3. Let Z be the generating set and let NH be the set of normal forms

for the right-angled Artin group H =< a, b, c, d | [a, c], [a, d], [b, c], [b, d] > induced by

the finite convergent rewriting system given by Hermiller and Meier in [15]. Let A

be the Bestvina-Brady subgroup of H and let NH/A = {an |n ∈ Z}, a transversal

for A in H∗idA. Let Ly = {w ∈ NH |w =H transA(w)subA(w) for some transA(w) ∈

NH/A and subA(w) ∈ SLA ∩ Y ∗y}, where transA(w) and subA(w) are the unique ele-

ments of the transversal NH/A and of the shortlex representatives of A over Y , SLA,

respectively, such that w =H transA(w)subA(w). Then Ly is not regular for any gen-

erating set Y ⊆ Z of A and any total ordering of Y .
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Chapter 2

Background

In this paper, all groups we consider are finitely generated and all generating sets are

finite and symmetric (that is, inverse closed). We use the notation [x, y] to mean the

word xyx−1y−1. Let G be a group with generating set A. We denote the identity

element of G by 1G and use the notation g =G h to indicate that g and h are the

same element of G. The smallest normal subgroup of G containing a set {x1, ..., xn}

is denoted by < x1, ..., xn >
N . A set of normal forms for G over A is a set N of words

over A such that each element of G has a unique representative in N . The Cayley

graph of G over A, denoted Γ(G,A), is the directed graph with a vertex labeled g for

each g ∈ G and an edge labeled by a from g to ga for each a ∈ A and each g ∈ G. The

graph is endowed with a metric by making each edge isometric to the unit interval

and using the induced Euclidean metric. A geodesic word in Γ(G,A) is a word which

labels a path of minimal length between two vertices in Γ(G,A). The set of all finite

length words over A, including the empty word, is denoted by A∗. A language L over

A is a subset of A∗.

Definition 2.1. The geodesic language of G over A, denoted Geo(G,A), is the set of

all geodesic words in Γ(G,A).

For example, F2 =< x, y | > has Geo(F2, {x, y}±1) = {freely reduced words over
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{x, y}±1} and Z2 =< a, b | [a, b] > has Geo(Z2, {a, b}±1) = {words over {a, b}±1 which

do not contain both a generator and its inverse}. See Appendix for illustrations of

these Cayley graphs.

A language is regular if it can be built out of finite subsets of the alphabet using

the operations of concatenation, union, intersection, complementation, and * (Kleene

closure); such an expression for a language is called a regular expression. A language

L is regular if and only if L can be recognized by a finite state automaton. For a

reference on finite state automata and formal language theory, see [17].

The Pumping Lemma. [17, Lemma 3.1] Let L be a regular language. Then there

is a constant n such that for each word z ∈ L of length at least n, we may write

z = uvw in such a way that uv has length at most n, v has length at least one, and

for all i ≥ 0, uviw ∈ L.

Example 2.2. A virtually abelian group need not have regular geodesic language for

every finite symmetric generating set. Cannon [22] exhibits the group G = Z2 o

Z/2Z =< a, b, t | [a, b], t2, tatb−1 >, which has regular geodesic language with the

generating set A = {a, b, t}±1 but not with the generating set B = {a, d, c, t}±1, where

c =G a
2 and d =G ab. See Appendix for illustrations of these Cayley graphs. The word

tcntcm is geodesic over the generating set B whenever m < n, but tcntcm =G d
2ncm−n

so tcntcm is not geodesic if m ≥ n. By the Pumping Lemma, any regular language L

containing the word tcntcn−1 must also contain the word tcntcm for m > n if n− 1 is

greater than the number of states in a minimal finite state automaton accepting L.

2.1 Language classes

The following three language class definitions can be found in [12]. A language L

over an alphabet A is locally excluding if there is a finite set of words F ⊂ A∗
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such that w ∈ L if and only if w has no (contiguous) subword in F . For example,

F2 =< x, y | > has locally excluding geodesic language Geo(F2, {x, y}±1) with the set

of excluded subwords {xx−1, x−1x, yy−1, y−1y}. A language L over an alphabet A is

piecewise testable if L is defined by a regular expression combining terms of the form

A∗a1A
∗a2A

∗ · · ·A∗akA∗, where ai ∈ A, using the operations of concatenation, union,

intersection, complementation, and * (Kleene closure). The string a1a2 · · · an ∈ A∗

is called a piecewise subword of w if w = w0a1w1a2 · · · anwn for some wi ∈ A∗. A

language L over an alphabet A is piecewise excluding if there is a finite set of words

F ⊂ A∗ such that w ∈ L if and only if w contains no piecewise subword in F . For

example, Z2 =< x, y | [x, y] > has piecewise excluding geodesic language with the set

of excluded piecewise subwords {xx−1, x−1x, yy−1, y−1y}.

2.2 Synchronously regular languages

The following definitions and results can be found in [9]. Let $ be a symbol not

contained in the alphabet X and define Xn = (X ∪ {$})n \ {($, ..., $)}. For any n-

tuple of words u = (u1, ..., un) ∈ (X∗)n, write ui = xi,1 · · ·xi,ji with each xi,m ∈ X.

Let M = max{j1, ..., jn} and define ũi = u$M−ji so that each ũi has length M . We can

write ũi = ci,1 · · · ci,M with each ci,j ∈ (X ∪ {$}). The word µ(u) = (c1,1, ..., cn,1) · · ·

(c1,M , ..., cn,M) is the padded word over Xn induced by the n-tuple (u1, ..., un) ∈ (X∗)n.

A subset L ⊆ (X∗)n is called synchronously regular if the padded extension set

µ(L) = {µ(u) | u ∈ L} of padded words associated to the elements of L is a regular

language over the alphabet Xn.

Remark 2.3. The class of synchronously regular languages is closed under finite

unions and intersections since the padded extension of a union (resp. intersection) is

the union (resp. intersection) of the padded extensions [9].
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Lemma 2.4. [4, Lemma 2.3] The finite Cartesian product of regular languages over

X is a synchronously regular language.

Lemma 2.5. [17, Theorem 3.6] If X is a finite set, L ⊂ X∗ is a regular language,

and w ∈ X∗, then the quotient language L/w = {v ∈ X∗ | vw ∈ L} is also a regular

language.

2.3 Autostackability

The following definitions can be found in [5]; we follow their notation. Let G be a

group with finite symmetric generating set X and let Γ = Γ(G,X). Let ~E denote the

set of directed edges in Γ and let ~P denote the set of directed paths in Γ. For each

g ∈ G and x ∈ X, let eg,x denote the directed edge with initial vertex g, terminal

vertex gx, and label x. A flow function associated to a maximal tree T in Γ is a

function Φ : ~E → ~P satisfying:

(F1) for each e ∈ ~E, the path Φ(e) has the same initial and terminal vertices as e,

(F2d) if the undirected edge underlying e lies in the tree T , then Φ(e) = e, and

(F2r) the transitive closure of <Φ of the relation < on ~E, defined by e′ < e

whenever e′ lies in the path Φ(e) and the undirected edges underlying both e and

e′ do not lie in T , is a strict well-founded partial ordering.

In other words, the map Φ fixes edges in the tree and describes a flow of the non-tree

edges towards the tree; starting from a non-tree edge and iterating Φ finitely many

times results in a path in the tree labeled by a word equal in G to the label of the

initial edge [5]. The flow function is bounded if there is a constant k such that for

every e ∈ ~E, the path Φ(e) has length at most k.

Define label : ~P → X∗ to be the function which maps each directed path to the

word which labels it. For every g ∈ G, let yg denote the label of the unique geodesic
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path in T from the identity to g. Let NG = {yg | g ∈ G} denote the set of these

normal forms. Define path : NG → ~P by path(yg, w) = the path in Γ starting at g

and labeled by w. A group G is algorithmically stackable over X if there is a bounded

flow function Φ on T for which the graph of the associated stacking map

graph(φ) = {(yg, x, label(Φ(path(yg, x)))) | g ∈ G, x ∈ X}

is decidable [14]. A group G is autostackable over X if there is a bounded flow function

for which the graph of the associated stacking map is synchronously regular [4].

Brittenham, Hermiller and Susse define the condition of Theorem 1.4 as follows.

Definition 2.6. [6] A group H is autostackable respecting a finitely generated sub-

group A if H has an autostackable structure with flow function Φ and maximal tree

T on a generating set Z satisfying:

Subgroup closure: There is a finite symmetric generating set Y for A contained

in Z such that T contains a spanning tree TA for the subgraph Γ(A, Y ) of Γ(H,Z),

and for all a ∈ A and y ∈ Y , label(Φ(ea,y)) ∈ Y ∗.

A-translation invariance: The rest of T is an A-orbit of a transversal tree for A

in H, and for all a ∈ A, h ∈ H, and z ∈ Z with eh,z /∈ Γ(A, Y ), label(Φ(eh,z)) =

label(Φ(eah,z)).

Note that this requires that H is autostackable.

2.4 Rewriting systems

The following definitions can be found in [4]. A convergent prefix-rewriting system

for a group G consists of an alphabet X and a set of rules R ⊆ X∗×X∗ such that G

is presented as a monoid by G = Mon < X | u = v whenever (u, v) ∈ R > and the

set of rewritings {uy → vy | y ∈ A∗ and (u, v) ∈ R} satisfy:
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(termination) there is no infinite chain w0 → w1 → w2 → · · · of rewritings, and

(normal forms) each g ∈ G is represented by exactly one irreducible word over X.

A prefix-rewriting system is bounded if X is finite and there is a constant k such

that for each (u, v) ∈ R, there are words x, t, w ∈ X∗ such that u = ws, v = wt,

and the length of s plus the length of t is at most k. A prefix-rewriting system is

synchronously regular if X is finite and R is synchronously regular.

A finite convergent rewriting system for a group G is a finite set X and a finite

set R′ ⊆ X∗ ×X∗ presenting G as a monoid such that the set of rewritings {xuy →

xvy | x, y ∈ X∗ and (u, v) ∈ R′} satisfy the termination and normal form conditions

above. Any finite convergent rewriting system R′ has an associated synchronously

regular bounded convergent prefix-rewriting system given by R = {(xu, xv) | x ∈

X∗ and (u, v) ∈ R′} [4].

Theorem 2.7. [4, Corollary 5.4] Groups with finite convergent rewriting systems

are autostackable.

2.5 Right-angled Artin groups

Given a finite simplicial graph Λ with vertices vi, ..., vn such that each vertex vi

is labeled by a group Gi, the associated graph product, GΛ, is the quotient of the

free product of the groups Gi by the relations that elements of vertex groups corre-

sponding to adjacent vertices in Λ commute. If for each i, Gi is infinite cyclic with

generator ai, GΛ is called a right-angled Artin group and is presented by < a1, ..., an |

{[ai, aj] | vi is adjacent to vj in Λ} >. When the underlying graph has no edges, the

corresponding right-angled Artin group is the free group on n generators, Fn; when

the underlying graph is complete, the corresponding right-angled Artin group is the

free abelian group on n generators, Zn.
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Example 2.8. F2 × F2 =< a, b, c, d | [a, c], [a, d], [b, c], [b, d] > is a right-angled Artin

group with underlying graph Λ given in Figure 1.

Figure 1.

Lemma 2.9. [15, Theorem C] The graph product of finitely many groups which

admit a convergent rewriting system admits a cannonical convergent rewriting system

and, moreover, if the rewriting systems of the vertex groups are finite or regular then

the system for the graph product is as well.

Hermiller and Meier show this convergent rewriting system explicitly in [15]; as

we will only need the case when the graph product is a right-angled Artin group, we

provide a simplified version here. For the right-angled Artin group GΛ =< a1, ..., an |

{[ai, aj] | vi is adjacent to vj in Λ} >, the finite convergent rewriting system is given

by:

The alphabet is Z = {α1 · · ·αn | αi ∈ {1, ai, a−1
i } and {vi | αi 6= 1}

is a nonempty set of vertices in a complete subgraph of Λ}

and rules are R = {(α1 · · ·αj−11αj+1 · · ·αn)(β1 · · · aεj · · · βn)→

(α1 · · · aεj · · ·αn)(β1 · · · βj−11βj+1 · · · βn)} ∪

{(α1 · · · aεj · · ·αn)(β1 · · · a−εj · · · βn)→

(α1 · · ·αj−11αj+1 · · ·αn)(β1 · · · βj−11βj+1 · · · βn)},

with the assumptions that ε ∈ {±1}, that if 1 · · · 1 appears on the right hand

side of a rule it is replaced with the empty word, and that a rule only occurs if

the letters in the rule exist.
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The Bestvina-Brady Theorem. [2] Let Λ be a finite simplicial graph. Let L be

the induced flag complex, let H be the associated right-angled Artin group, and let A

be the corresponding Bestvina-Brady group. Then:

(1) A is FPn+1 if and only if L is homologically n-connected.

(2) A is FP if and only if L is acyclic.

(3) A is finitely presented if and only if L is simply connected.

2.6 HNN extensions

Given groups H =< Z |R > and A =< Y > and injective homomorphisms α, β :

A ↪→ H, the corresponding HNN extension is < Z, s |R ∪ {sα(y)s−1 = β(y) | y ∈

Y } >, denoted either H∗A or H∗β◦α−1 .

In this presentation, s is called the stable letter. It is common to begin with

A ≤ H and use a single homomorphism ψ : A ↪→ H; in this case, the HNN extension

is H∗ψ =< Z, s |R ∪ {sys−1 = ψ(y) | y ∈ Y } >. Let NA denote a set of normal

forms for A over Y , let Nψ(A) denote a set of normal forms for the cosets H/A with

1 ∈ NH/A, and let NH/ψ(A) denote a set of normal forms for the cosets H/ψ(A) with

1 ∈ NH/ψ(A).

Definition 2.10. [20, page 181] The Britton normal form set for H is

NG = {hsε1h1s
ε2h2...s

εnhn |n ≥ 0, h ∈ NH and εi = ±1 for 1 ≤ i ≤ n; if εi = 1 then

hi ∈ NH/A, if εi = −1 then hi ∈ NH/ψ(A), and if εi = −εi−1 then hi 6= 1H};

that is, NG = NH(s−1NH/ψ(A) ∪ sNH/A)
∗ \ ∪ε∈{±1}Z

∗sεs−εZ∗.

2.7 Autostackability of Stallings’ non-FP3 group

The autostackible structure of Stallings’ non-FP3 group G found in [5] is given below.

The group G = H∗idker(γ) where H = F2 × F2 =< a, b, c, d | [a, c], [a, d], [b, c],
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[b, d] >, the right-angled Artin group from Example 2.8, and γ : H → Z =< x | >

is defined by γ(z) = x for all z ∈ {a, b, c, d}. In Theorem 1.3, G is shown to be

autostackable with respect to the generating set X = {a, b, c, d, s}±1. The normal

form set for this autostackable structure is

NG = {hsε1ai1sε2ai2 · · · sεnain | h ∈ NH , n ≥ 0, εk ∈ {±1} and ik ∈ Z for all k,

and whenever ik = 0 then εk = εk+1},

where NH = {uv |u ∈ {a±1, b±1}∗ and v ∈ {c±1, d±1}∗ are freely reduced}.

The stacking map, φ : NG ×X → X∗, is defined by φ(yg, x) =



x if either ygx ∈ NG or ygxx
−1 ∈ NG

last(yg)
−1xlast(yg) if x ∈ {a, b}±1, yg ∈ Z∗, and last(yg) ∈ {c, d}±1

last(yg)
−1xlast(yg) if x ∈ {c, d}±1, yg /∈ Z∗, and last(yg) ∈ {a}±1

c−ηxcη if x ∈ {b}±1, yg /∈ Z∗, η ∈ {±1}, and last(yg) = aη

last(yg)
−1xa−ηlast(yg)a

η if x ∈ {bη, cη, dη} with η ∈ {±1} and last(yg) ∈ {s}±1

for all g ∈ G and x ∈ X, where Z = {a, b, c, d}±1, yg denotes the normal form of g in

NG, and last(w) is the last letter in the word w.
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Chapter 3

Piecewise excluding geodesic languages

The following observation proved to be useful in showing particular geodesic languages

were not piecewise excluding.

Lemma 3.1. Let G be a group generated by a finite symmetric generating set A. If

Geo(G,A) is piecewise excluding, then aa−1 must be an excluded piecewise subword

for every a ∈ A which does not represent the identity element of G.

Proof. First note that if a or a−1 is excluded from Geo(G,A), then a must represent

the identity of the group. If a 6=G 1G, then a, a−1 ∈ Geo(G,A). For any a ∈ A,

aa−1 /∈ Geo(G,A) since aa−1 =G 1G. In a piecewise excluding geodesic language, the

only way to exclude the word aa−1 from the language without excluding a or a−1 is

by excluding aa−1 as a piecewise subword.

This suggests something strong about commutativity and seems to be evidence

in favor of the existence of a correspondence between abelian groups and piecewise

excluding geodesic lanugages. But there are non-abelian groups which have piecewise

excluding geodesic language for some generating sets.

Lemma 3.2. All finite groups have a generating set whose geodesic language is piece-

wise excluding.
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Proof. Let G be a finite group and let A = G \ {1G}. Then Geo(G,A) is piecewise

excluding. In particular, Geo(G,A) = A∗ \ {A∗aA∗bA∗ | a, b ∈ A}, which is the set of

all words over A of length at most one.

Finite groups may also have piecewise excluding geodesic language for smaller

generating sets. Consider D8 =< a, b, t | a2, b2, (ab)4, ababt > and A = {a, b, t}. Then

Geo(D8, A) = A∗ \ ({A∗xA∗xA∗ | x ∈ A} ∪ {A∗xA∗yA∗zA∗ | x, y, z ∈ A}), the set

of all words over A of length at most two which do not contain duplicate letters.

Note that with the generating set B = {a, b}, however, D8 does not have piecewise

excluding geodesic language since aba ∈ Geo(D8, B). See Appendix for illustrations

of these Cayley graphs.

Proposition 3.3. Let K be a finitely generated abelian group, H a finite group, and

G an extension of H by K: 1 → H → G → K → 1. Then G has a piecewise

excluding geodesic language for some finite symmetric generating set.

Proof. Let the maps be 1 → H
ι→ G

π→ K → 1 and let A be a finite symmetric

generating set for K with 1K /∈ A. By Theorem 1.1 Geo(K,A) is piecewise excluding;

let F be the finite set of excluded piecewise subwords. For each a ∈ A, choose a unique

preimage under π, denoted ā, such that a−1 = ā−1. Let Ā = {ā | a ∈ A} and let

F̄ = {ā1 · · · ān | a1 · · · an ∈ F}. Then words over Ā are geodesic if and only if they

have no piecewise subword in F̄ . Let H̄ = ι(H \ {1H}). Note that as no generators

in H̄ represent the identity element of G, words of length one over H̄ are geodesic;

because each non-identity element of H has a representative in H̄, words of length

two over H̄ are not geodesic. Because ι(H) is a normal subgroup of G, for each

h ∈ H and each a ∈ A there is an ha ∈ H such that āι(h)ā−1 =G ι(ha). Suppose

that w ∈ (Ā ∪ H̄)∗. Write w = a1h1a2h2 · · · anhn where ai ∈ Ā∗ and hi ∈ H̄ for all

i ∈ {1, ..., n}. Then w =G h̃a1a2 · · · an where h̃ = (h1)a1(h2)a1a2 · · · (hn)a1a2···an ; that
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is, w is equal in G to a word in (Ā ∪ H̄)∗ with at most one element of H̄ followed

by a1a2 · · · an, the piecewise subword of w over Ā. Therefore any word in (Ā ∪ H̄)∗

with more than one letter from H̄ or containing a piecewise subword over Ā which

has a piecewise subword in F̄ is not geodesic. Thus Geo(G, Ā ∪ H̄) is the piecewise

excluding language whose set of excluded piecewise subwords is H̄2 ∪ F̄ .

For example, let G = H oφ K where K =< a | >, H =< t | t3 >, and φ(a)(t) =

t−1. For simplicity, supress the natural injective homomorphisms and assume that

H,K ≤ G. Let A = {a, t}±1. Then Geo(G,A) = A∗ \ ([
⋃
ε∈{±1}A

∗aεA∗a−εA∗] ∪

[
⋃
ε,δ∈{±1}A

∗tεA∗tδA∗]) is piecewise excluding. See Appendix for an illustration of

this Cayley graph.

Proposition 3.4. The quaternion group, Q8 =< i, j, k | ijk−1, jki−1, kij−1, i4 >, has

piecewise excluding geodesic language for all finite symmetric generating sets.

Proof. Because the center of the group is {1Q8 , i
2} and all other elements have order

four, any set of elements of Q8 containing at most one order four element (not includ-

ing inverses) generates an abelian group. Hence any generating set for the non-abelian

group Q8 includes at least two order four elements which do not commute. Let A be

a finite symmetric generating set for Q8, and let a and b be two order four elements

in A which do not commute. Then the eight words 1, a, a−1, b, b−1, a2, ba, and b−1a

represent distinct elements of Q8. The element 1 has order one, the element a2 has

order two, and no two of the remaining (order four) elements can be equal because

that would contradict that a and b do not commute and both have order four. Thus,

any word of length at least three is not geodesic. The language of geodesics is there-

fore piecewise excluding: the set of excluded piecewise subwords is the set of words of

length three together with all words of length at most two that are not geodesic.
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The following two lemmas are used in the proof of Theorem 3.7.

Lemma 3.5. All proper quotients of the group G = Z/5Z o Z =< a, x | a5, xax−1a2 >

are either abelian or, for some finite symmetric generating set, have a geodesic lan-

guage which is not piecewise excluding.

Proof. First note that a set of normal forms for G over A = {a, x}±1 is {aixn | i ∈

{0, 1, 2, 3, 4}, n ∈ Z}. Observe that xa =G a3x, and so xna =G a3nxn for all

n ∈ Z, and that x4a =G ax4. Any proper quotient H of G is isomorphic to

G/<ai1xn1 ,ai2xn2 ,...,aikxnk>N for some {aijxnj}kj=1 where for each j ∈ {1, ..., k}, ij ∈

{0, 1, 2, 3, 4}, nj ∈ Z, and ij, nj are not both zero.

Case A: There is a j ∈ {1, ..., k} such that nj = 0.

In this case ij ∈ {1, 2, 3, 4}, so < aij >=G< a > is trivial in the quotient. Thus

H is a quotient of Z, and so H is abelian.

Case B: There is a j ∈ {1, ..., k} such that ij = 0 and nj 6= 0 (mod4).

In this case a(xnj)a−1 =G axnja4 =G a1+4·3njxnj ∈< xnj >N , which implies that

a ∈< xnj >N for all possible nj. Thus H is a quotient of Z/njZ, and so H is abelian.

Case C: There is a j ∈ {1, ..., k} such that ij 6= 0 and nj 6= 0 (mod4).

In this case xnj(aijxnj)x−nj =G x
njaij ∈< aijxnj >N , which implies that (xnjaij)−1

=G a−ijx−nj ∈< aijxnj >N . So (aijxnj)(a−ijx−nj) =G aij+(5−ij)3nj ∈< aijxnj >N .

Note that aij+(5−ij)3nj is a nontrivial element of Z/5Z for any ij 6= 0 and nj 6= 0 (mod4).

Hence we have that a ∈< aijxnj >N in all subcases. Thus H is a quotient of Z/njZ,

and so H is abelian.

Case D: There is a j ∈ {1, ..., k} such that ij 6= 0 and nj = 0 (mod4) is nonzero.

Note that in this case nj − 2 = 2 (mod4), so xnj−2aij =G a4ijxnj−2. Thus

xnj−2 (aijxnj)x−(nj−2) =G a−ijxnj ∈< aijxnj >N . This implies that (a−ijxnj)−1 =G

aijx−nj ∈ < aijxnj >N . Hence (aijxnj)(aijx−nj) =G a2ij ∈< aijxnj >N . As a2ij is a
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nontrivial element of Z/5Z for all ij 6= 0, in all subcases we have that a ∈< aijxnj >N .

Thus H is a quotient of Z/njZ, and so H is abelian.

Case E: For every j ∈ {1, ..., k}, ij = 0 and nj = 0 (mod4) is nonzero.

Note that we can simplify the quotient to G/<xgcd(n1,...,nk)>N in this case and that

gcd(n1, ..., nk) ≥ 4. Consider the generating set B = {(ax), (xa)}±1. Observe that

(ax)−1 =G a3x−1 and (a3x−1)(xa) =G a−1 so this is in fact a generating set for G,

and thus for H as well. Note that (ax)(xa)(ax)−1 =G a3x. As a has order 5 in H,

none of the generators in B are equal in H to a3x. A word w ∈ B∗ of length two

represents a group element h ∈ G with a normal form w′ over A that has an even

power of x. So no words in B∗ of length two can be equal in H to a3x. Hence the word

(ax)(xa)(ax)−1 is geodesic in H. Therefore by Lemma 3.1, the geodesic language of

H over B is not piecewise excluding.

Lemma 3.6. All proper quotients of the group G = BS(1, 2) =< a, t | tat−1a−2 > are

either abelian or, for some finite symmetric generating set, have a geodesic language

which is not piecewise excluding.

Proof. First note that a set of normal forms for G over {a, t}±1 is {t−iantj | i, j ∈

(N ∪ 0), n ∈ Z, and 2 - n if both i, j > 0}. Any proper quotient H of G is isomorphic

to G/<t−i1an1 tj1 ,t−i2an2 tj2 ,...,t−imanm tjm>N for some {t−ikanktjk}mk=1 where for each k ∈

{1, ...,m}, ik, jk ∈ (N ∪ 0), nk ∈ Z, ik, jk, nk are not all zero, and ik 6= jk whenever

nk = 0. Let H be a non-abelian proper quotient of G. We first show that H is a

quotient of one of a specific collection of semi-direct products.

Case 1: Suppose there is an index k such that nk 6= 0.

Note that t−ikanktjk =H 1H . If ik = jk then ank =H 1H . If ik 6= jk then tik−jk =H

ank , which is equal in G to t−1a2nkt. Hence tik−jk =H a2nk , and so ank =H a2nk , which

implies that ank =H 1H and thus that tik−jk =H 1H .
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If nk is even, then tank/2 =G ankt =H t, which implies that ank/2 =H 1H . So we

can continue cutting the known order of a in H in half until we are left with an odd

number, call it n. Then ta =G a
2t implies the relations tal =H a2lt for every integer

l such that 1 ≤ l < n/2 and tal =H a2l−nt for every integer l such that n/2 < l < n.

These relations allow us to move a±1 past t±1 in either direction in any word.

Thus H is a quotient of the semidirect product Z/nZoZ =< a, t | an, tat−1a−2 > (if

ik = jk) or of the semidirect product Z/nZ o Z/|ik−jk|Z =< a, t | an, t|ik−jk|, tat−1a−2 >

(if ik 6= jk), with n odd in either case.

Case 2: Suppose there is an index k such that nk = 0.

Then ik − jk 6= 0, so we may replace t−1 with t|ik−jk|−1 in the relation tat−1 =G a
2

and obtain the relations t−1a =H a2|ik−jk|−1
t−1 and at =H ta1−2|ik−jk|−1

. So a =G

t−1a2t =H a2|ik−jk| , which implies that a2|ik−jk|−1 =H 1H . Hence H is a quotient of the

semidirect product Z/(2|ik−jk|−1)Z o Z/|ik−jk|Z =< a, t | a2|ik−jk|−1, t|ik−jk|, tat−1a−2 >.

Because H is non-abelian, Cases 1 and 2 show that H is isomorphic to either a

quotient of Z/nZ o Z with n odd and at least three or to a quotient of Z/nZ o Z/|i−j|Z

with n odd and at least three and |i− j| ≥ 2.

Note that if |i− j| = 2, then a =H t2a =H a4t2 =H a4. So in this case a3 =H 1H

and, moreover, H is isomorphic to a quotient of S3 =< x, y |x2, y2, (xy)3 >. This

means that either H has a geodesic language which is not piecewise excluding or H is

abelian: if H ∼= S3 then the word xyx−1 is geodesic over the generating set {x, y}±1;

if H is a proper quotient of S3 then H is abelian. Note that if |i − j| = 3, then

a =H t3a =H a8t3 =H a8. So in this case a7 =H 1H and, moreover, H is isomorphic to

a quotient of Z/7Z o Z/3Z =< a, t | a7, t3, tat−1a−2 >. This means that either H has a

geodesic language which is not piecewise excluding or H is abelian: if H ∼= Z/7Zo Z/3Z

then the word (at)t(at)−1 is geodesic over the generating set {(at), t}±1; if H is a

proper quotient of Z/7Z o Z/3Z then H has order 1,3, or 7 and so is abelian.
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What remains to be considered is when H is isomorphic to either Z/nZ o Z with

n odd and at least three or to Z/nZ o Z/|i−j|Z, with n odd and at least three and

|i − j| > 3. Let B = {(at), (ta)}±1. Note that (at)−1 =H t−1an−1 =G (a
n−1
2 )t−1 and

that (a
n−1
2 t−1)(ta) =G a

n+1
2 . So as (a

n+1
2 )2 =H a, the set B is a generating set for H.

Consider the word (at)(ta)(at)−1, which is equal in G to a3t.

Note that a3t cannot be equal in H to a single generator as n /∈ {1, 2} and |i−j| 6=

2: the element at is equal to in H to a3t only if a2 =H 1; the element ta is equal in H

to a3t only if a =H 1; the elements (at)−1, (ta)−1 are equal in H to a3t only if t2 =H 1.

Note also that a3t cannot be equal in H to a word of length two in the generators as

|i− j| /∈ {1, 3}: the words (at)(at), (at)(ta), (at)(ta)−1, (ta)(ta), (ta)(at), (ta)(at)−1,

(at)−1(ta), (ta)−1(at) are equal in H to a3t only if t =H 1; the words (at)−1(at)−1,

(at)−1(ta)−1, (ta)−1(ta)−1, (ta)−1(at)−1 are equal in H to a3t only if t3 =H 1.

Therefore the word (at)(ta)(at)−1 is geodesic over B. By Lemma 3.1, the geodesic

language of H over B is not piecewise excluding.

Theorem 3.7. The quaternion group, Q8, is the only non-abelian 2-generator group

with piecewise excluding geodesic language for all finite symmetric generating sets.

Proof. Consider a minimal symmetric generating set {a, b}±1 for a two generator non-

abelian group G with piecewise excluding geodesic language for all finite symmetric

generating sets. Because G is non-abelian, aba−1 /∈ {1, a, a−1, b}. Note that aba−1 is

not geodesic by Lemma 3.1, so it must then be equal in G to either b−1 or to a product

of two generators. It can be shown, by straight-forward computations, that ten of the

sixteen choices for words of length two over {a, b}±1 also lead to contradictions if they

are equal in G to aba−1. For example, aba−1 =G ab
−1 implies that b2 =G a, which con-

tradicts the assumption that a and b do not commute. Thus a representative of aba−1
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must be in the set {b−1, a−1b, a−1b−1, ba, b2, b−1a, b−2}. Similarly, the possibilites for

representatives of bab−1 can be reduced to the set {a−1, b−1a, b−1a−1, ab, a2, a−1b, a−2}.

Table 1 shows the group defined by only the two relations in each of the forty-nine

possible pairs of choices for representaives of aba−1 (along the first row) and for rep-

resentatives of bab−1 (along the first column). Note that by symmetry, the upper and

lower diagonals are isomorphic groups. Most of the finite groups were found by enter-

ing the presentation into the GAP system and referencing the small group information

within GAP; some (those listed below) required referencing groupprops.subwiki.org.

We refer readers unfamiliar with GAP to [10]. The pairs aba−1 =G a−1b−1 with

bab−1 =G b−1a−1 and aba−1 =G b−1a with bab−1 =G a−1b both returned the group

[24:3], which is SL2(Z/3Z). The pair aba−1 =G b−2 with bab−1 =G a−2 returned

the group [27,4], which is Z/9Z o Z/3Z =< x, y |x9, y3, yxy−1x−4 >. Notice that

aba−1 = a−1b and bab−1 = a2 are actually both the same relation, so this pair yields

the group BS(1, 2). Groups which were reported to be infinite were calculated by

hand using Tietze transformations. For example,

< a, b | aba−1 = b−1, bab−1 = b−1a > ∼= < a, b | ab = b−1a, bab−1 = b−1a >

∼= < a, b | ab = b−1a, bab−1 = b−1a, b2a = ab > ∼= < a, b | ab = bab−1, b2a = ab >

∼= < a, b | ab2 = ba, b2a = ab > ∼= < a, b | ab2 = ba, bab2 = ab >

∼= < a, b | ab2 = ba, ab4 = ab > ∼= < a, b | ab2 = ba, b3 = 1 > .
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b−1 a−1b a−1b−1 ba b2 b−1a b−2

a−1 Q‡8

b−1a Z/3Z o Z† 1

b−1a−1 Z/6Z× Z/2Z 1 SL2(Z/3Z)†

ab Z/3Z o Z† 1 1 1

a2 Z/2Z BS(1, 2)† S†3 Z/3Z o Z† 1

a−1b Z/6Z× Z/2Z 1 Z/5Z 1 S†3 SL2(Z/3Z)†

a−2 Z/6Z Z Z/6Z Z/5Z oα Z† Z/3Z Z/6Z Z/9Z oβ
Z/3Z†

Table 1.

The map α in the entry Z/5ZoαZ is defined by the generator of Z conjugating the

generator of Z/5Z to its square and the map β in the entry Z/9Z oβ
Z/3Z is defined by

the generator of Z/3Z conjugating the generator of Z/9Z to its fourth power. The group

Z/3Z o Z is the nontrivial semi-direct product.

The group G must be a quotient of one of the groups in the table. All quotients

of abelian groups are abelian, so G cannot be a quotient of an abelian group in the

table. The groups which are non-abelian but have a geodesic language which is not

piecewise excluding for some finite symmetric generating set, demonstrated below, are

denoted by a single dagger. We show below that all proper quotients of each of these

groups are either abelian or have a geodesic language which is not piecewise excluding

for some finite symmetric generating set. In each case of a geodesic language which

is not piecewise excluding, a check of all words of length at most two against a set

of normal forms shows that the given length three word is geodesic. Cayley graphs

illustrating these cases can be found in the Appendix.

The group S3 =< a, b | a2, b2, (ab)3 > with the generating set A = {a, b}±1 has

aba−1 ∈ Geo(S3, A). So by Lemma 3.1 Geo(S3, A) is not piecewise excluding. The
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only proper quotients of S3 are abelian. Thus G cannot be a quotient of S3.

The group SL2(Z/3Z) =< a, b | a6, b4, ab−1ab−1ab > with the generating set A =

{a, b}±1 has bab−1 ∈ Geo(SL2(Z/3Z), A). So by Lemma 3.1 Geo(SL2(Z/3Z), A) is not

piecewise excluding. The only proper quotients of SL2(Z/3Z) are quotients of A4 and

quotients of Z/3Z (see groupprops.subwiki.org). The group A4 =< a, b | a3, b2, (ab)3 >

with the generating set B = {a, b}±1 has bab−1 ∈ Geo(A4, B). By Lemma 3.1

Geo(A4, B) is not piecewise excluding. The only proper quotients of A4 are abelian.

Thus G cannot be a quotient of SL2(Z/3Z).

The group Z/9Z oβ
Z/3Z =< x, y |x9, y3, yxy−1x−4 > with the generating set A =

{x, y}±1 has xyx−1 ∈ Geo(Z/9Z oβ
Z/3Z, A). By Lemma 3.1 Geo(Z/9Z oβ

Z/3Z, A) is not

piecewise excluding. As nontrivial proper subgroups of Z/9Z o Z/3Z have order either

3 or 32, proper nontrivial quotients of Z/9Z o Z/3Z have order either 32 or 3 and thus

are abelian. Hence G cannot be a quotient of Z/9Z oβ
Z/3Z.

Lemma 3.6 shows that the group Z/3Z o Z =< a, x | a3, xax−1a >∼= BS(1,2)/<a3>N

and all its proper quotients are either abelian or have a finite symmetric generating

set with geodesic language which is not piecewise excluding. Thus G cannot be a

quotient of Z/3Z o Z.

The group Z/5ZoαZ =< a, x | a5, xax−1a2 > with the generating set A = {x, y}±1,

where y =G x
3a, has yxy−1 ∈ Geo(Z/5Z oα Z, A). By Lemma 3.1 Geo(Z/5Z oα Z, A) is

not piecewise excluding. Lemma 3.5 shows that all proper quotients of Z/5Z oα Z are

either abelian or have a finite symmetric generating set with geodesic language which

is not piecewise excluding. Thus G cannot be a quotient of Z/5Z oα Z.

The group BS(1, 2) =< a, t | tat−1a−2 > with the generating set A = {a, t}±1 has

t−1at ∈ Geo(BS(1, 2), A). By Lemma 3.1 Geo(BS(1, 2), A) is not piecewise exclud-

ing. Lemma 3.6 shows that all proper quotients of BS(1, 2) are either abelian or

have a finite symmetric generating set with geodesic language which is not piecewise
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excluding. Thus G cannot be a quotient of BS(1, 2).

The quaternion group, Q8, denoted by a double dagger, has piecewise excluding

geodesic language for all finite symmetric generating sets by Proposition 3.4. The

only proper quotients of Q8 are abelian. Therefore, as all other possibilities lead to

contradictions of our assumptions, the group G must be isomorphic to Q8.

The class of groups with piecewise excluding geodesic languages for all finite sym-

metric generating sets does not even have one of the nicest closure properties one

might hope for.

Proposition 3.8. The class of groups which have piecewise excluding geodesic lan-

guages for all finite symmetric generating sets is not closed under direct products.

Proof. Consider the generating set A = {i1, j1k2, i2, k2}±1 for the group G = Q8×Q8,

where i, j, k are as in the generating set for Q8 =< i, j, k | ijk−1, jki−1, kij−1, i4 >

and the subscripts denote to which copy of Q8 each belongs. Consider the element

g = i1(j1k2)i−1
1 =G i21j1k2. Note that g /∈ A. If g =G ab for some a, b ∈ A, then

exactly one of a, b must be (j1k2)±1 or (k2)±1 and the other must be i±1
1 so that the

projection into the second copy of Q8 is k2. But that forces the projection into the

first copy of Q8 to be one of i±1
1 , k±1

1 . Hence g cannot be written with fewer than

three generators, and so i1(j1k2)i−1
1 ∈ Geo(G,A). Thus Geo(G,A) is not piecewise

excluding by Lemma 3.1.

Proposition 3.9. Let Zn =< xi, ...xn | [xi, xj] whenever i 6= j > and let G = Zn oφ

Z/2Z for some n ∈ N with either (1) φ(xi) = x−1
i for some i ∈ {1, ..., n} and φ(xk) = xk

for all k ∈ {1, ..., n} \ {i} or (2) φ(xi) = xj for some i, j ∈ {1, ..., n} with i 6= j and

φ(xk) = xk for all k ∈ {1, ..., n} \ {i, j}. Then for every finite symmetric generating

set of A of G, the geodesic language of G over A is not piecewise excluding. Moreover,

there is a geodesic word over A containing both a generator and its inverse.
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Proof. Let B = {x1, ..., xn, y}±1, where Z/2Z =< y >, and let N = {xm1
1 · · ·xmnn yε | mi

∈ Z for all i ∈ {1, ..., n} and ε ∈ {0, 1}}, a set of normal forms for G over B. Let A

be any finite symmetric generating set for G. For every word w ∈ A∗, let ρN(w) be

the unique word in N such that ρN(w) =G w.

Case 1: φ(xi) = x−1
i for some i ∈ {1, ..., n} and φ(xh) = xh for all h ∈ {1, ..., n} \ {i}.

Subcase A: Suppose there is a generator α ∈ A such that ρN(α) = xm1
1 · · ·xmi · · ·xmnn

for some m ∈ Z \ {0}.

Let a ∈ A be the generator with ρN(a) = xm1
1 · · ·xmi · · ·xmnn such that m is max-

imal. Note that m > 0 because A is symmetric and that there must be at least

one generator in β ∈ A such that ρN(β) = xk11 · · ·xknn y. Let b ∈ A be the generator

with ρN(b) = xk11 · · · xki · · ·xknn y such that k is maximal. Suppose that aba−1 is not

geodesic. Observe that ρN(aba−1) = xk11 · · ·x2m+k
i · · ·xknn y.

subsubcase i: The word aba−1 =G γ for some γ ∈ A. Because m > 0 implies

that 2m + k > k, no generator γ ∈ A with ρN(γ) = xk11 · · ·x2m+k
i · · ·xknn y exists by

maximality of k.

subsubcase ii: The word aba−1 =G δζ for some δ, ζ ∈ A with ρN(δ) = x
m′1
1 · · ·x

p
i · · ·

x
m′n
n and ρN(ζ) = x

k′1
1 · · ·x

q
i · · ·x

k′n
n y. Then p+ q = 2m+k. But the pair of inequalites

p ≤ m and q ≤ k imply that p+q ≤ m+k < 2m+k. Thus no such pair of generators

δ, ζ ∈ A exists.

subsubcase iii: The word aba−1 =G ζδ for some δ, ζ ∈ A with ρN(δ) = x
m′1
1 · · · x

p
i · · ·

x
m′n
n and ρN(ζ) = x

k′1
1 · · ·x

q
i · · ·x

k′n
n y. Then q − p = 2m + k. But if p ≥ 0, then

q− p ≤ q ≤ k < 2m+ k; if p < 0, then |p| ≤ m implies that q− p ≤ k+m < 2m+ k.

Thus no such pair of generators δ, ζ ∈ A exists.

Hence aba−1 is geodesic over A.

Subcase B: Suppose there is no generator α ∈ A such that ρN(α) = xm1
1 · · ·xmi · · ·xmnn
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for some m ∈ Z \ {0}.

Let a ∈ A be the generator with ρN(a) = xm1
1 · · ·xmi · · ·xmnn y such that m is

maximal. Let b ∈ A be the generator with ρN(b) = xk11 · · ·xki · · · xknn y such that

k is minimal. Note that k 6= m, as otherwise A generates only elements of G

with the power of xi in normal form either 0 or m. Suppose that aba−1 is not

geodesic. Observe that ρN(aba−1) = xk11 · · · x2m−k
i · · ·xknn y. Let δ, ζ ∈ A where

ρN(δ) = x
m′1
1 · · ·x

p
i · · ·x

m′n
n yε1 and ρN(ζ) = x

k′1
1 · · ·x

q
i · · ·x

k′n
n yε2 . Note that ρN(δζ) =

x
m′1+k′1
1 · · ·xp+(−1)ε1q

i · · ·xm
′
n+k′n

n yε1+ε2(mod 2) and that if ε1 6= 0 [or ε2 6= 0], then p = 0

[q = 0]. So p + (−1)ε1q ≤ m whenever ε1 + ε2(mod 2) 6= 0. If aba−1 is equal in G

to a generator γ ∈ A with ρN(γ) = xk11 · · ·x2m−k
i · · ·xknn y or aba−1 =G δζ, we have a

contradiction to our choices of a and b since k < m implies that 2m− k > m. Hence

aba−1 is geodesic over A.

Case 2: φ(xi) = xj for some i, j ∈ {1, ..., n} with i 6= j and φ(xh) = xh for all

h ∈ {1, ..., n} \ {i, j}.

Subcase A: Suppose there is a generator α ∈ A such that ρN(α) = xm1
1 · · ·xmi · · · xkj · · ·

xmnn for some m 6= k ∈ Z.

Let c ∈ A be the generator with ρN(c) = xm1
1 · · ·xm0

i · · ·x
k0
j · · ·xmnn such that

|m0 − k0| maximal. Note that |m0 − k0| > 0 by the assumption of this subcase and

that there must be at least one generator β ∈ A such that ρN(β) = xk11 · · ·xknn y.

Let b ∈ A be the generator with ρN(b) = xk11 · · ·x
p
i · · ·x

q
j · · · xknn y such that |p − q| is

maximal. If the signs of m0 − k0 and p− q agree or if p = q, let a = c; otherwise, let

a = c−1. Let m, k ∈ Z be such that ρN(a) =G x
m1
1 · · ·xmi · · ·xkj · · ·xmnn . Suppose that

aba−1 is not geodesic. Observe that ρN(aba−1) = xk11 · · ·x
m+p−k
i · · ·xk+q−m

j · · ·xknn y.

Becuase the signs of m−k and p−q do not disagree, the difference in the powers of xi

and xj in ρN(aba−1) is |(m+p−k)−(k+q−m)| = |2(m−k)+(p−q)| = 2|m−k|+|p−q|.
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subsubcase i: The word aba−1 =G γ for some γ ∈ A. Because |m − k| > 0

implies that 2|m − k| + |p − q| > |p − q|, no generator γ ∈ A with ρN(γ) =

xk11 · · ·x
m+p−k
i · · ·xk+q−m

j · · ·xknn y exists by our choice of b.

subsubcase ii: The word aba−1 =G δζ for some δ, ζ ∈ A with ρN(δ) = x
m′1
1 · · ·xli · · ·

xrj · · ·x
m′n
n and ρN(ζ) = x

k′1
1 · · ·xsi · · ·xtj · · ·x

k′n
n y. Then l + s = m + p− k and r + t =

k + q −m. But the pair of inequalities |l − r| ≤ |m − k| and |s − t| ≤ |p − q| imply

that |(l + s)− (r + t)| ≤ |m− k|+ |p− q| < 2|m− k|+ |p− q|. Thus no such pair of

generators δ, ζ ∈ A exists.

subsubcase iii: The word aba−1 =G ζδ for some δ, ζ ∈ A with ρN(δ) = x
m′1
1 · · ·xli · · ·

xrj · · ·x
m′n
n and ρN(ζ) = x

k′1
1 · · ·xsi · · ·xtj · · ·x

k′n
n y. Then r + s = m + p− k and l + t =

k + q −m. But the pair of inequalities |l − r| ≤ |m − k| and |s − t| ≤ |p − q| imply

that |(r + s)− (l + t)| ≤ |m− k|+ |p− q| < 2|m− k|+ |p− q|. Thus no such pair of

generators δ, ζ ∈ A exists.

Hence aba−1 is geodesic over A.

Subcase B: Suppose there is no generator α ∈ A such that ρN(α) = xm1
1 · · ·xmi · · ·xkj · · ·

xmnn for some m 6= k ∈ Z.

Let a ∈ A be the generator with ρN(a) = xm1
1 · · · xmi · · ·xkj · · · xmnn y such that

|m− k| is maximal. Let b ∈ A be the generator with ρN(b) = xk11 · · ·x
p
i · · ·x

q
j · · · xknn y

such that |p − q| is minimal. Note that |m − k| 6= |p − q| as otherwise A would

only generate elements of G with even differences in powers of xi and xj in normal

forms without a y: the product (x
m′1
1 · · ·xci · · ·xdj · · · x

m′n
n y)(x

k′1
1 · · ·xei · · ·x

f
j · · ·x

k′n
n y) =G

x
m′1+k′1
1 · · ·xc+fi · · ·xd+e

j · · ·xm
′
n+k′n

n ; if |c−d| = |e−f | then |(c+f)−(d+e)| = |(c−d)−

(e−f)|, which is either 0 or 2|c−d|. Suppose that aba−1 is not geodesic. Observe that

ρN(aba−1) = xk11 · · ·x
m+q−k
i · · · xk+p−m

j · · ·xknn y. Because |m−k| > |q−p| implies that

(m−k)+(q−p) has the same sign as that ofm−k, the difference in the powers of xi and

xj in ρN(aba−1) is |(m+q−k)−(k+p−m)| = |(m−k)+(q−p)+(m−k)| = |(m−k)+
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(q−p)|+ |m−k| > |m−k|. The word aba−1 must either be equal in G to a generator

γ ∈ A with ρN(γ) = xk11 · · ·x
m+q−k
i · · ·xk+p−m

j · · ·xknn y or to a product of generators

δ, ζ ∈ A with ρN(δ) = xl11 · · ·xti · · ·xtj · · ·xlnn and ρN(ζ) = x
l′1
1 · · ·xri · · ·xsj · · ·x

l′n
n y such

that t + r = m + q − k and t + s = k + p −m (note that δζ =G ζδ). By our choice

of a, the largest possible difference in the powers of xi and xj in ρN(γ), ρN(δζ), or

ρN(ζδ) is |m− k|. Therefore neither such a generator γ nor such a pair of generators

δ, ζ exists. Hence aba−1 is geodesic over A.

Thus aba−1 ∈ Geo(G,A) for the generators a and b defined in each subcase. By

Lemma 3.1 Geo(G,A) cannot be piecewise excluding.

Corollary 3.10. There are finitely generated virtually abelian groups whose geodesic

language is not piecewise excluding for any finite symmetric generating set.

Proposition 3.11. Let G be an extension 1→ H → G
π→ K → 1 of finitely generated

groups H and K and let A be a finite symmetric generating set for G. If awa−1 is

geodesic in K over the generating set π(A) for some a ∈ π(A) and w ∈ π(A)∗, then

the geodesic language of G over A is not piecewise excluding.

Proof. Let ab1b2 · · · bna−1 ∈ Geo(K, π(A)) for some a ∈ π(A), b1, ..., bn ∈ π(A).

For each x ∈ π(A), choose a unique preimage under π in A, denoted x̄, such that

x−1 = x̄−1. If āb̄1b̄2 · · · b̄nā−1 /∈ Geo(G,A), then there is a word of length at most

n+1 over A equal in G to āb̄1b̄2 · · · b̄nā−1, say it is x1x2 · · ·xk. Then π(x1x2 · · ·xk) =K

π(x1)π(x2) · · · π(xk) =K ab1b2 · · · bna−1, which implies that ab1b2 · · · bna−1 is not geo-

desic, giving a contradiction. Thus āb̄1b̄2 · · · b̄nā−1 must be geodesic, and so by

Lemma 3.1, Geo(G,A) cannot be piecewise excluding.

Corollary 3.12. Let Zn =< xi, ...xn | [xi, xj] whenever i 6= j > and let G = Znoφ
Z/2Z

for some n ∈ N with either φ(xi) = x−1
i for some i ∈ {1, ..., n} and φ(xk) = xk for all
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k ∈ {1, ..., n} \ {i} or φ(xi) = xj for some i, j ∈ {1, ..., n} with i 6= j and φ(xk) = xk

for all k ∈ {1, ..., n} \ {i, j}. Then any group with a quotient isomorphic to G has a

geodesic language which is not piecewise excluding for any finite symmetric generating

set.
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Chapter 4

Autostackability of certain HNN extensions

We first observe that the closure results for HNN extensions of autostackable groups

known to date do not, with cannonical choices for the graph of groups decomposition

and the autostackable structure, imply autostackability of Stallings-like groups.

Remark 4.1. Right-angled Artin groups are autostackable by Lemma 2.9 and The-

orem 2.7, so they are algorithmically stackable. A result of Meier and VanWyk [21]

shows that the Bestvina-Brady subgroup is finitely generated when the underlying

graph is connected. Because the subgroup membership problem for the Bestvina-

Brady subgroup is decidable (by checking if the exponent sum of a word is 0), Theo-

rem 1.6 proves that Stallings-like groups are algorithmically stackable.

Remark 4.2. The graph of groups decomposition H∗idA for a Stallings-like group

with the flag complex associated to Λ not simply-connected does not satisfy the

hypotheses of Theorem 1.4.

Proof. In order for H to be autostackable respecting A (see Definition 2.6), the group

A itself must be autostackable, which implies that A must be finitely presented [4].

But when the flag complex associated to Λ is not simply connected, the group A is

not finitely presented by The Bestvina-Brady Theorem [2].
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Proposition 4.3. Let Z be the generating set and let NH be the set of normal forms

for the right-angled Artin group H =< a, b, c, d | [a, c], [a, d], [b, c], [b, d] > induced by

the finite convergent rewriting system given by Hermiller and Meier in [15]. Let A

be the Bestvina-Brady subgroup of H and let NH/A = {an |n ∈ Z}, a transversal

for A in H∗idA. Let Ly = {w ∈ NH |w =H transA(w)subA(w) for some transA(w) ∈

NH/A and subA(w) ∈ SLA ∩ Y ∗y}, where transA(w) and subA(w) are the unique ele-

ments of the transversal NH/A and of the shortlex representatives of A over Y , SLA,

respectively, such that w =H transA(w)subA(w). Then Ly is not regular for any gen-

erating set Y ⊆ Z of A and any total ordering of Y .

Proof. The explicit rules of the finite convergent rewriting system for H can be found

in section 2.5; the generating set is Z = {a, b, c, d, (ac), (ad), (bc), (bd), (ac−1), (ad−1),

(bc−1), (bd−1)}±1, where the parentheses indicate a single letter which is equal in H to

the word contained inside. Let Y = {(ac−1), (ad−1), (bc−1), (bd−1)}±1 and the ordering

on Y be (ac−1) < (a−1c) < (ad−1) < (a−1d) < (bc−1) < (b−1c) < (bd−1) < (b−1d).

We will show that the word vn,m = (bd−1)n(ac−1)m ∈ NH , where n,m ∈ (N ∪ 0),

is in L(a−1c) if and only if m ≤ n, which proves that L(a−1c) is not a regular language

by the Pumping Lemma. First note that transA(vn,m) = a2m for all n,m ∈ (N ∪ 0),

so subA(vn,m) =H a−2mbnamd−ncm. Let g denote an undetermined element of {a, b}

and let h denote an undetermined element of {c, d}; we will refer to these options as

fillers. For example, to add an a to a word over Y , we may either use either (ac−1)

or (ad−1); we denote this unmade choice by (ah−1).

We first compute a lower bound on the length of subA(vn,m). Because the length of

the subword of subA(vn,m) over {a, b}±1 is 3m+n, the length of subA(vn,m) must be at

least 3m+n as no letter of Y is equal in H to a word over {a, b, c, d}±1 containing both

an a±1 and a b±1. The constraint of using only elements of Y , which have exponent
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sum zero over {a, b, c, d}±1 guarantees that another min{m,n} letters must be used to

write subA(vn,m) over Y . We can overlap the subwords of subA(vn,m) over {a, b}±1 and

over {c, d}±1 in two ways: each d−1 can be paired with either a b or an a, in which case

we need an extra cm at the end of the word since c and d do not commute; or each c can

be paired with an a−1, in which case we need an extra d−n at the beginning of the word.

The final min{m,n} necessary letters come from the requirement that subA(vn,m) must

freely reduce to a−2mbnamd−nc−m. We consider the maximum possible cancellation

in the fillers by looking at the exponent sum of all occurances of each type of filler

(a nonzero exponent sum means that we need at least that many extra letters as all

fillers must cancel if we are to have the correct word in H). In the first pairing option,

for example (a−1h)2m(bd−1)n(ah−1)m(g−1c)m, the fillers labeled h have an exponent

sum m and the fillers labeled g have an exponent sum −m. In the second pairing

option, for example (gd−1)n(a−1c)m(a−1h)m(bh−1)n(ah−1)m, the fillers labeled g have

an exponent sum of −n and the fillers labeled h have an exponent sum of n. Thus,

a lower bound for the length of subA(vn,m) over Y is 3m+ n+ 2min{m,n}.

Before we move on to cases, we eliminate construction choices for subA(vn,m) that

will increase length or lexicographic weight unnecessarily. Shuffles of either pairing

option, such as those containing the subword (a−1h)(gd−1)(a−1h), create unnecessary

length: to avoid having a b between two a−1’s (so that we have the correct word in

H), we need g to be an a; both occurences of h need to be a c so that we avoid having

a d−1 between two c’s; but then we have a generator followed by its inverse. Choosing

filler options from {b, d}±1 when we could have chosen from {a, c}±1 instead increases

the shortlex weight.

Now we find subA(vn,m), the shortlex least word over Y which is equal in H to

a−2mbnamd−ncm.

Case A: Suppose that m > n.
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We pair cm with a−m to minimize length. So in this case, we have the template

(gd−1)n(a−1c)m(a−1h)m(bh−1)n(ah−1)m. We choose the lexicographically least possi-

ble options for the fillers to get (ad−1)n(a−1c)m(a−1c)m(bc−1)n(ac−1)m. To make our

word equal in H to a−2mbnamd−nc−m, we add (a−1c)n in the middle, for a resulting

word of length 3m+ 3n. So when m > n,

subA(vn,m) = (ad−1)n(a−1c)2m+n(bc−1)n(ac−1)m

Case B: Suppose that m ≤ n.

We pair d−n with some of bnam to minimize length. So in this case, we have the

template (a−1h)2m(bh−1)n(ah−1)m(gd−1)n(g−1c)m, where the d−1’s can be paired with

either the b’s or a’s. We choose c as the filler option for the fillers paired with each

a−1. Then we need to cancel these extra 2m c’s before the (gd−1)n.

subcase i: n < 2m. Since m ≤ n implies that 2m − n ≤ m, we currently have

(a−1c)2m(bc−1)n(ac−1)2m−n(ah−1)n−m(gd−1)n (g−1c)m. So we now pair n −m of the

(gd−1)n with (ah−1)n−m and then choose the lexicographically least options for the

remaining fillers. We then have the word (a−1c)2m(bc−1)n(ac−1)2m−n (ad−1)n(a−1c)m,

which is equal inH to a−2mbnam d−nc−m and has length 5m+n. So whenm ≤ n < 2m,

subA(vn,m) = (a−1c)2m(bc−1)n(ac−1)2m−n(ad−1)n(a−1c)m

subcase ii: n ≥ 2m. We use the first 2m of the fillers in (bh−1)n to get to

(a−1c)2m(bc−1)2m(bd−1)n−2m(gd−1)2m(ah−1)m(g−1c)m. So we now pair (ah−1)m withm

of the (gd−1)2m and then choose the lexicographically least options for the remaining

fillers. We then have the word (a−1c)2m(bc−1)2m (bd−1)n−2m(ad−1)2m(a−1c)m, which

is equal in H to a−2mbnamd−nc−m and has length 5m+ n. So when n ≥ 2m

subA(vn,m) = (a−1c)2m(bc−1)2m(bd−1)n−2m(ad−1)2m(a−1c)m
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Because in the cases where m ≤ n, the word (bd−1)n(ac−1)m ∈ L(ac−1) and subA(w)

is unique, the word (bd−1)n(ac−1)m /∈ L(a−1c).

Note that if we had instead chosen to use the smaller generating set Y = {(ac−1),

(ad−1), (bc−1)}±1, cases A and B would still show that L(a−1c) is not regular. If we had

used a different ordering on Y or another generating set, a similar argument could be

made to show that Lz is not regular for some z ∈ {(ac−1), (ad−1), (bc−1), (bd−1)}±1.

Theorem 4.4. Stallings-like groups are autostackable.

Proof. This proof loosely follows that of [5, Theorem 4.1]. Let G be a Stallings-like

group; that is, G is an HNN extension H∗idA where H is the right-angled Artin

group associated to a connected finite simplicial graph Λ and A is the Bestvina-Brady

group associated to Λ. Consider the finite convergent rewriting system for H given

by Hermiller and Meier in [15] (see section 2.5 for details). Let Z be the set of

generators and let R be the rules defined by this rewriting system. Let NH be the set

of irreducible words over R, a set of normal forms for H. Choose a designated vertex

v0 in Λ; let a ∈ Z denote its corresponding generator. Then

NG = {hsε1ai1sε2ai2 · · · sεmaim | h ∈ NH , εk ∈ {±1} and ik ∈ Z for all k and

whenever ik = 0 then εk = εk+1}

is the Britton normal form set for the HNN extension G over the generating set

X = Z ∪ {s}±1. Let Γ = Γ(G,X), with sets ~E and ~P of directed edges and paths,

respectively, and let T be the tree in Γ corresponding to the set of normal forms NG.

G is stackable:

We first establish all the notation we will use to prove this. Because Λ is connected,

we may define M = max{dΛ(v0, v) | v ∈ V (Λ)} and Dk = {v | dΛ(v0, v) = k} for each

1 ≤ k ≤ M , where the distance dΛ(v, v′) is the minimum number of edges in a path
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in Λ between v and v′. We define adjΛ : V (Λ) \ {v0} → V (Λ) as follows. For each

v ∈ D1, define adjΛ(v) = v0; for 2 ≤ k ≤ M and for each v ∈ Dk, let adjΛ(v) be a

vertex adjacent to v which is also an element of Dk−1. Let adjZ : {a1, ..., an} \ {a} →

{a1, ..., an} be defined by adjZ(ai) = aj where adjΓ(vi) = vj.

For all g ∈ G, let yg represent the normal form of g in NG. For each z, z′ ∈ Z

with zz′ /∈ NH , let zz′ be the result of applying the one applicable rewriting rule from

R which changes the leftmost entries of z and z′. For each u ∈ Z∗, let r(u) be the

minimum number of rewrites under R required to put u into normal form. For each

w ∈ X∗, let ns(w) denote the number of occurences of s and s−1 in w, let suffa(w)

be the length of the maximal suffix of w over {a}±1, and let l(w) be the length of w

over X. For each nonempty word w ∈ X∗, let first(w) be the first letter in w, and let

last(w) be the last letter in w. For each generator z ∈ Z, where z =H aε11 · · · aεnn and

εi ∈ {−1, 0, 1} for each i ∈ {1, ..., n}, let wt(z) be the number of indices where εi 6= 0

and let break(z) be the word aε11 · · · aεnn , where any appearence of a0
i is replaced by the

empty word.

Define φ : NG ×X → X∗ by, for all g ∈ G and x ∈ X, φ(yg, x) =

x if either ygx ∈ NG or ygxx
−1 ∈ NG

last(yg)
−1last(yg)x if x ∈ Z, yg ∈ Z∗, and ygx, ygxx

−1 /∈ NH

break(x) if yg /∈ Z∗ and x ∈ Z with wt(x) > 1

adjZ(x)−ηxadjZ(x)η if yg /∈ Z∗, x = a±1
i where vi ∈ Dk for some k ≥ 1, and

last(yg) = aη where η ∈ {±1}

last(yg)
−1xa−ηlast(yg)a

η if x = aηi where η ∈ {±1} and vi ∈ Dk for some k ≥ 1,

and last(yg) ∈ {s}±1.

Note that these cases are disjoint, so φ is well-defined. In all cases which do not

appear explicitly, either ygx or ygx
−1 lies in NG.
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Let Φ : ~E → ~P be defined by Φ(eg,x) = path(yg, φ(yg, x)). Note that properties

(F1) and (F2d) hold for Φ by our definition. To prove (F2r) also holds, we use the

following function Ψ : ~E → N4. If eg,x lies in T , define Ψ(eg,x) = (0, 0, 0, 0); otherwise

(note that this implies that x ∈ Z) define Ψ(eg,x) =



(0, 0, 0, r(ygx)) if yg ∈ Z∗ and ygx, ygxx
−1 /∈ NH

(ns(yg), 1, l(suffa(yg)), k − 1) if yg /∈ Z∗ and x ∈ Z with wt(x) > 1 where, if x =H

aε11 · · · aεnn , k = max{m | vi ∈ Dm and εi 6= 0}

(ns(yg), 0, l(suffa(yg)), k − 1) if yg /∈ Z∗, x = a±1
i , and vi ∈ Dk for some k ≥ 1.

Let <N4 denote the lexicographic ordering on N4 obtained from the standard ordering

on N, a well-founded strict partial ordering. To prove (F2r), it suffices to show that

e′ <Φ e implies that Ψ(e′) <N4 Ψ(e). Let eg,x ∈ ~E be an edge whose underlying

undirected edge does not lie in T .

Case 1: Suppose that yg ∈ Z∗ and ygx, ygxx
−1 /∈ NH .

In this case Ψ(eg,x) = (0, 0, 0, r(ygx)) and the path Φ(eg,x) contains two or three

edges, depending on the length of last(yg)x. In the subcase of three edges: e1 =

eg,last(yg)−1 , e2 = eglast(yg)−1,first(last(yg)x), and e3 = eglast(yg)−1first(last(yg)x),last(last(yg)x); in

the subcase of two edges: e′1 = eg,last(yg)−1 = e1 and e′2 = eglast(yg)−1,last(yg)x. In both

subcases, e1 lies in T .

As yg is in normal form, the only place a rewriting rule can be applied is to

last(yg)x, so there is a fixed number of rewrites that need to occur to put ygx into

normal form (push everything as far left as possible in each coordinate). So in

the first subcase, r(yglast(yg)−1first(last(yg)x)) < r(ygx) and r(yglast(yg)−1first(last(yg)x)last(

last(yg)x)) < r(ygx); in the second subcase r(yglast(yg)−1 last(yg)x) = r(ygx)− 1. Hence
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each edge ei in the path Φ(eg,x) which is not in T has Ψ(e) <N4 Ψ(eg,x).

Case 2: Suppose that yg /∈ Z∗ and x ∈ Z with wt(x) > 1.

In this case Ψ(eg,x) = (ns(yg), 1, l(suffa(yg)), k − 1) where, if x =H aε11 · · · aεnn , k =

max{m | vi ∈ Dm and εi 6= 0} and the path Φ(eg,x) contains wt(x) edges. Note that

2 ≤ wt(x) ≤ n, so Φ(eg,x) has length at most n. Each edge ei in the path Φ(eg,x) has

Ψ(ei) with first entry ns(yg) and second entry 0. Hence each edge ei in Φ(eg,x) which

is not in T has Ψ(ei) <N4 Ψ(eg,x).

Case 3: Suppose that yg /∈ Z∗, x = a±1
i with vi ∈ Dk for some k ≥ 1, and last(yg) =

aη where η ∈ {±1}.

In this case Ψ(eg,x) = (ns(yg), 0, l(suffa(yg)), k − 1) and the path Φ(eg,x) is e1e2e3

where e1 = eg,adjZ(x)−η , e2 = egadjZ(x)−η ,x, and e3 = egadjZ(x)−ηx,adjZ(x)η . If k = 1, then

e1 lies in T . If k > 1, then Ψ(e1) = (ns(yg), 0, l(suffa(yg)), k − 2) as vi ∈ Dk and

adjΛ(vi) ∈ Dk−1.

As the suffix over {a}±1 of ywsεaηmz−η for any w ∈ X∗ and z ∈ Z with wt(z) = 1

is aη(m−1), then Ψ(e2) = (ns(yg), 0, l(suffa(yg)) − 1, k − 1). Let x = aεi . If ε = η,

we have that Ψ(e3) = (ns(yg), 0, l(suffa(yg)), k − 2); otherwise Ψ(e3) = (ns(yg), 0,

l(suffa(yg))− 2, k− 2). Hence each edge ei in Φ(eg,x) which is not in T has Ψ(e) <N4

Ψ(eg,x).

Case 4: Suppose that x = aηi where η ∈ {±1} with vi ∈ Dk for some k ≥ 1 and last(

yg) ∈ {s}±1.

In this case Ψ(eg,x) = (ns(yg), 0, l(suffa(yg)), k−1) and the path Φ(eg,x) is e1e2e3e4e5

where e1 = eg,last(yg)−1 , e2 = eglast(yg)−1,x, e3 = eglast(yg)−1x,a−η , e4 = eglast(yg)−1xa−η ,last(yg),

and e5 = eglast(yg)−1xa−η last(yg),aη . Note that e1 lies in T . Because last(yg) ∈ {s}±1, the
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number ns(yglast(yg)−1) = ns(yg)−1. So Ψ(ei) has first entry ns(yg)−1 for i ∈ {2, 3, 4}.

Since last(yglast(yg)−1xa−η last(yg)) ∈ {s±1} and the edge e5 is labeled by aη, the edge e5

lies in T . Hence each edge ei in Φ(eg,x) which is not in T has Ψ(e) <N4 Ψ(eg,x).

Thus Φ is a flow function with bounding constant max{5, n}.

G is autostackable:

The function φ defined earlier in the proof is the stacking function associated to

the bounded flow function Φ. The graph of the stacking map is

graph(φ) = {(yg, x, φ(yg, x) | g ∈ G, x ∈ X} =

(
⋃
x∈X Lx × {x} × {x}) ∪

(
⋃
x∈Z L

′
x × {x} × {last(yg)

−1last(yg)x}) ∪

(
⋃
{x∈Z |wt(x)>1} L

′′
x × {x} × {break(x)}) ∪

(
⋃
k∈{1,...,M},η∈{±1},x∈{(1,...,1,a±1

i ,1,...,1)∈Z | vi∈Dk} Lk,η,x×{x}×{adjZ(x)−ηxadjZ(x)η}) ∪

(
⋃
k∈{1,...,M},η∈{±1},x∈{(1,...,1,aηi ,1,...,1)∈Z | vi∈Dk},z∈{s±1} Lk,η,x,z × {x} × {z−1xa−ηzaη})

where

Lx = {yg ∈ NG | ygx ∈ NG or ygxx
−1 ∈ NG},

L′x = {yg ∈ NG | yg ∈ Z∗ and ygx, ygxx
−1 /∈ NH},

L′′x = {yg ∈ NG | yg /∈ Z∗},

Lk,η,x = {yg ∈ NG | yg /∈ Z∗ and last(yg) = aη}, and

Lk,η,x,z = {yg ∈ NG | last(yg) = z}.

By Remark 2.3 and Lemma 2.4, it suffices to show that each of Lx, L
′
x, L

′′
x, Lk,η,x,

and Lk,η,x,z is regular in order to prove graph(φ) is synchronously regular. We can

write the set of normal forms as NG = X∗ \X∗MX∗ where M is the regular language
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defined by {xx−1 |x ∈ X}∪{h |h ∈ Z∗\NH}∪s±1({a}∗∪{a−1}∗){z | z ∈ Z\{a, a−1}}.

Then

Lx = (NG/x) ∪ (NG ∩X∗x−1),

L′x = (NG ∩ Z∗) \ Lx,

L′′x = NG \ Z∗,

Lk,η,x = (NG ∩X∗aη) \ Z∗, and

Lk,η,x,z = NG ∩X∗{z}.

Hence, by Lemma 2.5 and closure properties of regular languages, each language is

regular.
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Appendix

Let F2 =< x, y | > and Z2 =< a, b | [a, b] >. Then Geo(F2, {x, y}±1) = {freely

reduced words over {x, y}±1} and Geo(Z2, {a, b}±1) = {words over {a, b}±1 which do

not contain both a generator and its inverse}.

Γ(F2, {x, y}±1): Γ(Z2, {a, b}±1):

The group Z2 o Z/2Z =< a, b, t | [a, b], t2, tatb−1 > has regular geodesic language

with the generating set {a, b, t}±1 but not with the generating set {a, d, c, t}±1, where

c =G a
2 and d =G ab.
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Γ(Z/2Z, {a, b, t}±1): Γ(Z/2Z, {a, c, d, t}±1):

The group D8 =< a, b, t | a2, b2, (ab)4, ababt > with generating set A = {a, b, t}

has Geo(D8, A) = A∗ \ ({A∗xA∗xA∗ | x ∈ A} ∪ {A∗xA∗yA∗zA∗ | x, y, z ∈ A}); with

generating set B = {a, b}, the word aba−1 ∈ Geo(D8, B).

Γ(D8, A): Γ(D8, B):

The group G =< a, t | t3 > with generating set A = {a, t}±1 has Geo(G,A) =

A∗ \ ([
⋃
ε∈{±1}A

∗aεA∗a−εA∗] ∪ [
⋃
ε,δ∈{±1}A

∗tεA∗tδA∗]). Γ(G, {a, t}±1):
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In each Cayley graph below, the edges labeled by a and y are solid and the edges

labeled by b, x, and t are dashed. In all but the graph for S3, a path with label equal

to the stated geodesic word is dashed; the initial vertex of the path is denoted with

an open circle and its adjacent vertices are denoted by open squares.

The group S3 =< a, b | a2, b2, (ab)3 > with generating set A = {a, b}±1 has aba−1 ∈

Geo(S3, A). Γ(S3, {a, b}±1):

The group SL2(Z/3Z) =< a, b | a6, b4, ab−1ab−1ab > with generating setA = {a, b}±1

has bab−1 ∈ Geo(SL2(Z/3Z), A). Γ(SL2(Z/3Z), {a, b}±1):
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The group A4 =< a, b | a3, b2, (ab)3 > with generating set B = {a, b}±1 has bab−1 ∈

Geo(A4, B). Γ(A4, {a, b}±1):

The group Z/9Z oβ
Z/3Z =< x, y |x9, y3, yxy−1x−4 > with generating set A =

{x, y}±1 has xyx−1 ∈ Geo(Z/9Z oβ
Z/3Z, A). Γ(Z/9Z oβ

Z/3Z, {x, y}±1):
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The group Z/5Z oα Z =< a, x | a5, xax−1a2 > with generating set A = {x, y}±1,

where y =G x
3a, has yxy−1 ∈ Geo(Z/5Z oα Z, A). Γ(Z/5Z oα Z, {x, y}±1):

The group BS(1, 2) =< a, t | tat−1a−2 > with generating set A = {a, t}±1 has

t−1at ∈ Geo(BS(1, 2), A). Γ(BS(1, 2), {a, t}±1):
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