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This thesis focuses on determining when a graph with additional structure contains

certain subgraphs, particularly circuits, cycles, or trees. The specific problems and

presented results include a blend of many fundamental graph theory concepts such

as edge-coloring, routing problems, decomposition problems, and containing cycles

of various lengths. The three primary chapters in this thesis address the problems

of finding eulerian circuits with additional restrictions, decomposing the edge-colored

complete graph Kn into rainbow spanning trees, and showing a 4-connected claw-free

and N(3, 2, 1)-free graph is pancyclic.

Let G be an eulerian digraph with a fixed edge coloring (incident edges may have

the same color). A compatible circuit of G is an eulerian circuit such that every two

consecutive edges in the circuit have different colors. We characterize the existence

of a compatible circuit for digraphs avoiding certain vertices of outdegree three. For

certain families of digraphs where all the vertices are of outdegree three we also have

a characterization for when there is a compatible circuit. From our characterizations

we develop a polynomial time algorithm that determines the existence of a compatible

circuit in an edge-colored eulerian digraph and produces a compatible circuit if one

exists.

A rainbow spanning tree T is a spanning tree of an edge-colored graph where all

the edges of T have different colors. Brualdi and Hollingsworth conjectured that every

properly edge-colored Kn (n ≥ 6 and even) using exactly n− 1 colors has n/2 edge-



disjoint rainbow spanning trees, and they proved there are at least two edge-disjoint

rainbow spanning trees. Kaneko, Kano, and Suzuki strengthened the conjecture to

include any proper edge coloring of Kn, and they proved there are at least three

edge-disjoint rainbow spanning trees.

We prove that if n ≥ 1,000,000 then an edge-colored Kn, where each color ap-

pears on at most n/2 edges, contains at least bn/(1000 log n)c edge-disjoint rainbow

spanning trees.

The final result focuses on showing a 4-connected, claw-free, and N(3, 2, 1)-free

graph is pancyclic. A graph G is pancyclic if it contains cycles of all lengths from 3 to

|V (G)|. There has been interest in determining which pairs of forbidden subgraphs

imply a 4-connected graph is pancyclic. In the last chapter we present a result that

helps complete the classification of which 4-connected, claw-free, and N -free graphs

are pancyclic.
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Chapter 1

Introduction

This thesis focuses on determining when a graph with additional structure contains

certain subgraphs, particularly circuits, cycles, or trees. The specific problems and

results presented include a blend of many fundamental graph theory concepts such

as edge-coloring, routing problems, decomposition problems, and containing cycles

of various lengths. The three primary chapters in this thesis address the problems

of finding eulerian circuits with additional restrictions, decomposing the edge-colored

complete graph Kn into rainbow spanning trees, and showing a 4-connected claw-free

and N(3, 2, 1)-free graph is pancyclic.

In Chapter 3 we investigate certain routings in eulerian digraphs. An eulerian

digraph is a directed graph (edges have directions like one-way streets) that has a

walk that visits each edge exactly once and starts and ends at the same vertex. Such

a walk is called an eulerian circuit. Eulerian circuits can be used to solve routing

problems for mail delivery, garbage collection, and other routes where each edge needs

to be visited exactly once.

Often times these routes may have undesirable turns that should be avoided. For

example, U-turns can be difficult for delivery trucks and may not be desirable for a
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mail carrier [46]. UPS uses routes that avoid U-turns and left turns to reduce the

time of deliveries and number of accidents, saving millions of dollars [48]. While

eulerian circuits are often used in routing problems, eulerian circuits do not restrict

U-turns from occurring and in fact they frequently occur. This naturally leads us to

the question of when an eulerian digraph has an eulerian circuit that avoids certain

types of turns.

To answer this question we introduce several new definitions. A colored eulerian

digraph is an eulerian digraph where each edge is assigned a color (incident edges may

have the same color). A compatible circuit is an eulerian circuit in a colored eulerian

digraph such that no two consecutive edges in the circuit have the same color. We

can use colored eulerian digraphs to find eulerian circuits that avoid certain types of

turns.

A compatible circuit for an edge-colored eulerian undirected graph is defined sim-

ilarly. Kotzig [39] gave simple necessary and sufficient conditions for when an edge-

colored undirected graph has a compatible circuit by considering the size of the largest

color class incident to a vertex. Finding a compatible circuit in a colored eulerian

undirected graph has received considerable attention, since Pevzner [51] proved that

this problem can be used to solve the small-scale DNA physical mapping problem

known as the Double Digest Problem.

Benkouar et al. [6] provided a polynomial time algorithm for finding a compatible

circuit in colored eulerian undirected graphs. They claimed that a similar algorithm

also works for eulerian digraphs. However, their sufficient condition is false. Our

work shows that determining if a colored eulerian digraph has a compatible circuit is

more complicated and subtle than the undirected case.

Isaak [34] used the digraph version to find universal cycles of permutations, which

are generalizations of De Bruijn sequences. Isaak [34] and Fleischner and Fulmek [26]
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gave sufficient conditions for when a colored eulerian digraph contains a compatible

circuit.

We give a characterization of when a colored eulerian digraph G has a compatible

circuit when G has no vertices of outdegree three. The proof ideas come from con-

structing an auxiliary graph H from G, which is an edge-colored undirected graph

that models certain barriers in G. Finding a rainbow spanning tree in H turns out

to be equivalent to finding a compatible circuit in G. A rainbow spanning tree is a

spanning tree in an edge-colored graph where each edge has a different color.

This reduces the problem of finding compatible circuits to finding a rainbow span-

ning tree in an edge-colored graph. Broersma and Li [10] provided a characterization

of when an edge-colored graph contains a rainbow spanning tree using the Matroid

Intersection Theorem. In Chapter 2.1.1 we provide a graph-theoretical proof of the

same result. From these results, we show that if G is a colored eulerian digraph with

no vertices of outdegree three, then there is a polynomial time algorithm to determine

if G has a compatible circuit and gives a compatible circuit if one exists.

We also investigate digraphs where all the vertices have outdegree three, and

in certain cases we can characterize when a compatible circuit exists. Finally, we

consider the more general setting where instead of colors each edge of G has a list of

acceptable following turns. A compatible circuit is an eulerian circuit of G such that

all the turns are acceptable. We show that determining if G has a compatible circuit

in this more general setting is NP-complete.

In Chapter 4 we investigate finding edge-disjoint rainbow spanning trees. Brualdi

and Hollingsworth [11] studied the number of edge-disjoint rainbow spanning trees in

a properly edge-colored complete graph Kn with exactly n − 1 colors. Brualdi and

Hollingsworth [11] and Kaneko, Kano, and Suzuki [37] conjecture that every properly

edge-colored Kn (n ≥ 5) should have bn/2c edge-disjoint rainbow spanning trees.
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Notice that this conjecture states that when n is even the edge set of Kn decomposes

into n/2 edge-disjoint rainbow spanning trees. The best previous result towards the

conjecture was by Kaneko, Kano and Suzuki [37] who showed that every properly

edge-colored Kn (n ≥ 6) contains at least three edge-disjoint rainbow spanning trees.

In joint work with Stephen Hartke and Paul Horn we show that the number of

rainbow spanning trees in Kn is close to the conjectured linear bound.

Theorem 1.1 (Carraher, Hartke, Horn). Let Kn be a properly edge-colored complete

graph, with n ≥ 1,000,000. There are at least bn/(1000 log n)c edge-disjoint rainbow

spanning trees in Kn.

Our proof technique is to randomly construct t := bn/(1000 log n)c edge-disjoint

subgraphs of G and show that all the subgraphs have a rainbow spanning tree with

positive probability. Each random subgraph we consider is distributed as an Erdős-

Rényi random graph G(n, 1/t). To prove each subgraph has a rainbow spanning tree,

we use the result by Broersma and Li [10], carefully analyze the structure of the

random graphs, and apply Bernstein’s inequality and convexity arguments. Then we

show using the union sum bound that the probability of all t subgraphs simultaneously

having rainbow spanning trees has nonzero probability.

In Chapter 5 we study pancyclicity, which is a generalization of hamiltonicity. A

hamiltonian cycle in a graph G is a cycle through all the vertices of G. Determining

if a graph G has a hamiltonian cycle is a classic topic studied in graph theory and is

a NP-complete problem. Hence there is much interest in finding sufficient conditions

for when a graph has a hamiltonian cycle, such as the well known degree conditions by

Dirac [15] and Ore [50]. Another approach is to forbid certain induced subgraphs to

force a hamiltonian cycle. A graph G is F -free if G contains no member of the family

of graphs F as an induced subgraph. A claw-free graph is a graph that is K1,3-free.
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Another graph that appears in this chapter is the generalized net N(i, j, k), which

is obtained by identifying an endpoint of each of the paths Pi+1, Pj+1 and Pk+1 with

distinct vertices of a triangle. A well known conjecture by Matthews and Sumner [45]

has motivated much research into hamiltonicity of claw-free graphs.

Conjecture 1.2 (Matthews and Sumner [45]). If G is a 4-connected claw-free graph,

then G is hamiltonian.

The Matthews-Sumner Conjecture has inspired research into properties that gen-

eralize hamiltonicity in 4-connected claw-free graphs. We consider whether such a

graph G is pancyclic, meaning that G contains cycles of length s, for 3 ≤ s ≤ |V (G)|.

Gould,  Luczak and Pfender [30] provided a characterization of which pair of sub-

graphs in F must be forbidden in a 3-connected graph to force pancyclicity. Gould [29]

posed the problem of characterizing which pairs of forbidden subgraphs imply that a

4-connected graph is pancyclic. Initial results include Ferrara, Morris and Wenger [23]

and Ferrara et al. [22], who showed that if G is 4-connected, claw-free, and avoids

either P9 or a family of graphs known as bulls, then G is pancyclic.

In joint work with Michael Ferrara, Tim Morris, and Michael Santana we provide

a partial answer to the problem of characterizing which pairs of forbidden subgraphs

imply a 4-connected graph is pancyclic. Although all authors significantly contributed

to our main result Theorem 1.3, I was the primary author for the N(3, 2, 1) case, which

is the content in Chapter 5. We show in the pair F = {X, Y } of forbidden subgraphs,

that X is either the claw or K1,4. In the case when X is the claw, our full results

provide a complete characterization.

Theorem 1.3 (Carraher, Ferrara, Morris, Santana). Let Y be a connected graph with

at least three edges. Every 4-connected {K1,3, Y }-free graph is pancyclic if and only
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if Y is an induced subgraph of P9, the  Luczak graph, or the generalized net N(i, j, k)

with i+ j + k = 6.

The papers [22,23,30] handle all the cases except when Y is N(2, 2, 2), N(3, 2, 1),

or N(4, 1, 1). In Chapter 5 we present the case Y = N(3, 2, 1). The proofs for the

other two nets are similar. We directly show that every 4-connected {K1,3, N(3, 2, 1)}-

free graph has 3-, 4-, and 5-cycles, and inductively show that if G has an s-cycle

(5 ≤ s < n) then G has an (s + 1)-cycle. Thus a 4-connected {K1,3, N(3, 2, 1)}-free

graph must be pancyclic.
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Chapter 2

Background

2.1 Graph theory

A graph G is composed of a vertex set V (G), and an edge set E(G) where an edge

is an unordered pair of vertices. If we allow E(G) to be a multiset, then we call G

a multigraph. If we allow vv to be an edge, then G has a loop. A simple graph is

a graph with no multiple edges and no loops. Two vertices u and v are adjacent if

there is an edge uv, and the vertices u and v are incident to the edge uv. A vertex u

is a neighbor of v if uv is an edge. The neighborhood of v N(v) is the set of neighbors

of v. The degree of a vertex v, denoted deg(v), is the number of incident edges to v,

where loops are counted twice. A vertex of degree 0 is called an isolated vertex.

Let n(G) = |V (G)|, which is called the order of G. Often when G is understood,

we refer to n as the number of vertices of G. The complete graph Kn is a simple

graph on n vertices with every possible edge.

A subgraph H of G is a graph where V (H) ⊆ V (G) and E(H) ⊆ E(G). An

induced subgraph is a subgraph H of G, where if u, v ∈ V (H) and uv ∈ E(G), then

uv ∈ E(H). A graph G is called H-free if G does not have H as an induced subgraph.
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A walk in a graph is a sequence of vertices and incident edges. A path is a walk

that does not repeat any vertex. A cycle is a closed walk that does not repeat any

vertex and we do not specify the first vertex but keep the cyclic order of the vertices.

A circuit is a closed walk that does not repeat any edges and again we do not specify

the first edge but keep the cyclic order of the edges. A graph is connected if there is

a walk between every pair of vertices. The components of a graph are the maximal

connected subgraphs. A graph is k-connected if between every pair of vertices u and

v there are k vertex-disjoint paths between u and v. A subgraph T of G is called a

spanning tree when V (T ) = V (G), |E(T )| = n− 1, and T is connected.

An eulerian circuit is a walk in a graph G that starts and ends at the same vertex

and crosses each edge exactly once. We refer to graphs with an eulerian circuit as an

eulerian graph or just as eulerian. The theorem below provides a characterization for

when a graph has an eulerian circuit.

Theorem 2.1. A graph G with no isolated vertices is eulerian if and only if G is

connected and the degree of every vertex is even.

A digraph (also called a directed graph) is composed of a vertex set V (G), and an

edge set E(G) where an edge is an ordered pair of vertices, i.e. now the edges have

directions like one-way streets. The tail of an edge is the starting vertex, and the

head is the ending vertex. The indegree of a vertex deg−(v) is the number of edges

whose head is v, and the outdegree of a vertex deg+(v) is the number of edges whose

tail is v. A walk in a digraph G is a sequence of vertices and incident edges, where

each vertex is the tail of the following edge. A circuit in a digraph G is a closed

walk that never visits any edge more than once. A digraph G is strongly connected if

there is a directed walk between every pair of vertices in V (G). The theorem below

provides a characterization for when a digraph has an eulerian circuit.
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Theorem 2.2. A digraph G with no isolated vertices is eulerian if and only if G is

strongly connected and deg−(v) = deg+(v) for every vertex v ∈ V (G).

An edge coloring of a graph (or digraph) is a function f : E(G) → {1, 2, . . . , k}

that assigns each edge one color from some set of colors {1, 2, . . . , k}. A color class

is the set of edges with the same color.

For more information about basic graph theory concepts and terminology see

West [65]. In Chapter 4 we use probabilistic arguments. For an introduction to the

application of probability to combinatorics and graph theory see Alon and Spencer [5].

2.1.1 Rainbow spanning trees

Several of the problems we consider have connections to rainbow spanning trees. In

this section we give the definition of a rainbow spanning tree and provide a charac-

terization of when an edge-colored graph has a rainbow spanning tree.

Definition 2.3. Let H be an undirected multigraph with a fixed edge coloring (inci-

dent edges may have the same color). A rainbow spanning tree is a spanning tree of

H that has at most one edge from each color class.

Broersma and Li [10] showed that determining the largest rainbow spanning forest

of H can be solved by applying the Matroid Intersection Theorem [18] (see Schrijver

[56, p. 700]) to the graphic matroid and the partition matroid on the edge set of H

defined by the color classes. Schrijver [56] translated the conditions of the Matroid

Intersection Theorem into necessary and sufficient conditions for the existence of

a rainbow spanning tree, stated below in Theorem 2.4. Suzuki [59] gave a graph-

theoretical proof of the same theorem.
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Theorem 2.4. A graph H has a rainbow spanning tree if and only if, for every

partition π of V (H) into s parts, there are at least s− 1 different colors represented

between the parts of π.

Theorem 2.4 is similar to a result by Tutte [61] and Nash-Williams [49] on finding

k edge-disjoint spanning trees. For completeness we provide a graph-theoretical proof

of Theorem 2.4 that is different from Suzuki’s proof.

Proof. For any partition π of V (H) into s parts, a spanning tree must have at least

s− 1 edges between the partitions, since a tree is connected. Thus, there must be at

least s− 1 distinct colored edges between the parts of π in a rainbow spanning tree,

and hence in H as well.

To prove sufficiency, assume that for every partition π of V (H) into s parts the

number of color classes between parts is at least s − 1. Let 1, . . . , k be the k color

classes. For any subset S of the edges of H, let χ(S, i) denote the number of edges in

S with the color i, and let σ(S) =
∑

i:χ(S,i)>0(χ(S, i)− 1). When viewing a spanning

tree T as a set of edges, then σ(T ) ≥ 0 for all spanning trees, with equality if and

only if T is a rainbow spanning tree.

Let T be a spanning tree of H that minimizes the value σ(T ) over all spanning

trees. We want to show that σ(T ) = 0. Assume that σ(T ) > 0. Then there exist at

least two edges in the tree T with the same color c. Label all the edges of T with color

c with a1. We inductively extend the edge labeling of T in the following way: suppose

the labels a1, . . . , ai−1 have been assigned. An unlabeled edge e of T is labeled ai if

there exists an edge e′ in T labeled ai−1 and an edge f of H that has the same color

as e such that T + f − e′ is a spanning tree of H. The process terminates when no

such unlabeled edge exists. Note that the process may terminate leaving some edges

of T unlabeled.



11

If there is an edge ei with label ai in T and an edge f in H where T+f−ei is a tree,

where there are no edges of T with the same color as f , then we can create another

spanning tree with smaller σ value than T . Add f to the tree T and delete the edge ei

to form the tree Ti = T+f−ei. Since ei was labeled with ai there exists an edge ei−1 of

T with label ai−1 and an edge fi−1 that has the same color as ei. Add fi−1 and delete

ei−1 to form the tree Ti−1. Continuing this process, we obtain the tree T1, where T1 =

T+f−ei+fi−1−ei−1+· · ·−e1 = T+f+(−ei+fi−1)+(−ei−1+fi−2)+· · ·+(−e2−f1)−e1.

Note that ei and fi−1 have the same color for i ≥ 2 and adding f and removing e1

gives us that σ(T1) = σ(T )− 1 < σ(T ). By the extremal choice of T such an edge f

can not exist.

Therefore, for every edge ei with label ai all the edges f in H which lie between

the components of T − ei have the same color as some edge of T . Let R be the set of

edges in T that receive a label. The components of T −R create a partition π of the

vertices. We claim this partition contradicts the hypothesis. There are n − 1 − |R|

unlabeled edges in T , so s − 1 = n − 1 − (n − 1 − |R|) = |R|. Each edge f that lies

between two parts of π also lies between the components of T − e for some labeled

edge e, hence by the minimality of T edge f has the same color as an edge in R. The

number of different colors in R is strictly less than |R|, since at least two of the edges

are colored c (i.e. labeled a1). Thus, for this partition the number of colors between

the parts is smaller than |R| = s− 1, contradicting the hypothesis.

There are many known polynomial algorithms for finding maximum weight com-

mon independent sets (see Schrijver [56, p. 705-707]). Most notable are results by

Edmonds [18] and Lawler [40]. Therefore there is a polynomial time algorithm for

finding a rainbow spanning tree in an edge-colored graph H by finding a common

independent set in the graphic and partition matroid of size n − 1. The proof of
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Theorem 2.4 also gives a polynomial time algorithm for finding a rainbow spanning

tree of H or finding a partition π that demonstrates no rainbow spanning tree exists.
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Chapter 3

Compatible circuits

3.1 Introduction

A colored eulerian digraph is an eulerian digraph G with a fixed edge coloring φ

(incident edges may have the same color). A compatible circuit of G is an eulerian

circuit such that every two consecutive edges in the circuit have different colors. We

prove necessary and sufficient conditions for the existence of a compatible circuit in

colored eulerian digraphs that do not have certain vertices of outdegree three. The

methods that we use give a polynomial time algorithm determining the existence of a

compatible circuit and producing one if it exists. We investigate graphs where all the

vertices are of outdegree three, and in certain cases we can characterize when there

is a compatible circuit. Finally we show the problem of determining if an eulerian

digraph where each edge is given some fixed list of acceptable transitions has an

eulerian circuit that has all acceptable transitions is NP-complete.

Fleischner and Fulmek [26] provided sufficient conditions for the existence of a

compatible circuit when the number of colors at each vertex is large. Isaak [34] gave

stronger conditions for the existence of compatible circuits in digraphs and used these
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results to show the existence of certain universal cycles of permutations. In Section 3.3

we expand upon Isaak’s methods to determine when we can make local changes at a

vertex to construct a compatible circuit. See Fleischner [25] for an overview of topics

on eulerian digraphs, including compatible circuits in colored eulerian digraphs.

Kotzig [39] gave necessary and sufficient conditions for the existence of a compati-

ble circuit in colored eulerian undirected graphs1. Our result for digraphs is analogous

to Kotzig’s result. In an important application, Pevzner [51] used compatible circuits

in undirected eulerian graphs to reconstruct DNA from its segments. Benkouar et

al. [6] gave a polynomial time algorithm for finding a compatible circuit in a colored

eulerian undirected graph, providing an alternate proof of Kotzig’s Theorem. They

claimed that a similar algorithm holds for digraphs and gave a statement characteriz-

ing the existence of a compatible circuit in a colored eulerian digraph. However, their

sufficient condition is false, as shown by the graph on the right in Figure 3.1 below.

There are many other results on finding subgraphs avoiding monochromatic transi-

tions. Bollobás and Erdős [8] initiated the study of properly edge-colored hamiltonian

cycles (which they called alternating hamiltonian cycles) in edge-colored complete

graphs, and this study was continued in papers such as [3,4]. The problem of finding

properly edge-colored paths and circuits in edge-colored digraphs has been studied in

several articles such as Gourvès et al. [31]; see the survey paper by Gutin and Kim [32]

for an overview. Finding subgraphs with all edges having different colors (called rain-

bow or heterochromatic) has also been well studied. Kano and Li [38] gave a survey

paper on recent results about monochromatic and rainbow subgraphs in edge-colored

graphs. In our methods for eulerian digraphs we use results on rainbow spanning

trees in edge-colored undirected multigraphs.

Fleischner and Jackson [24] studied a related, but different, notion of compatible

1This answered a question Kotzig claimed was posed by Nash-Williams (see [26, p. VI.1]).
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circuits in eulerian digraphs and graphs. They showed that an eulerian digraph of

minimum degree 2k has a set S of k/2 − 1 eulerian tours such that each pair of

adjacent edges of D is consecutive in at most one tour of S. Jackson [35] studied a

variation of the problem for graphs by considering restricting certain transitions and

found sufficient conditions for the existence of a compatible circuit.

This chapter is organized as follows. In Section 3.2 we introduce definitions and

elementary necessary conditions for the existence of a compatible circuit. Section 3.3

investigates when local changes at each vertex can be used to construct a compatible

circuit. Section 3.4 gives a characterization of when a colored eulerian digraph avoid-

ing certain vertices of outdegree three has a compatible circuit. This characterization

leads to a polynomial time algorithm for finding a compatible circuit. Also in this

section, we determine the fewest number of monochromatic transitions required in

any eulerian circuit of a colored eulerian digraph that avoids certain vertices of out-

degree three. Section 3.5 investigates graphs with only vertices of outdegree three and

characterizes when certain colorings of these digraphs have a compatible circuit. In

Section 3.6 we investigate eulerian digraphs where each edge has some list of allowed

transitions and when there exists an eulerian circuit that has all allowed transitions.

Determining if there is an eulerian circuit that has all allowed transitions is a gener-

alization of finding a compatible circuit in a colored eulerian digraph. We show the

problem of determining if an eulerian digraph has a compatible circuit when each

edge is given a list of allowed transitions is NP-complete. Finally we conclude the

chapter with some open questions in Section 3.7.
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3.2 Preliminaries

In this section we introduce the basic definitions and describe elementary necessary

conditions for the existence of a compatible circuit.

Throughout the chapter we let G be an eulerian digraph with a fixed edge coloring

φ (incident edges may have the same color). We refer to G as a colored eulerian di-

graph. A monochromatic transition is two consecutive edges in a walk of G that have

the same color. A compatible circuit T is a an eulerian circuit with no monochro-

matic transitions. Our goal is to determine whether a colored eulerian digraph has a

compatible circuit. Though an eulerian circuit is defined to be a cyclic sequence of

consecutive edges, it is determined by the transitions at each vertex of the digraph

G. We will focus on finding transitions at each vertex such that the resulting eulerian

circuit is a compatible circuit.

Fleischner and Fulmek [26] considered a more general setting where the head and

tail of each directed edge can receive different colors. Such graphs can be handled in

our setting by subdividing edges with different colors on the head and tail. Similarly

we can assume that a colored eulerian digraph is loopless, since subdividing the

loop twice and coloring the new middle edge a new color results in a colored eulerian

digraph with no loops. Henceforth we consider only loopless colored eulerian digraphs.

Now we establish some notation that will be used throughout the rest of the

chapter. Let G be a colored eulerian digraph, and v a vertex of G. Define E+(v)

to be the set of outgoing edges incident to v, and E−(v) to be the set of incoming

edges incident to v. For each vertex v define Ci(v) to be the set of incident edges to

v that are colored with the color i. We assume there are a total of k colors in the

edge coloring. We refer to the sets C1(v), . . . , Ck(v) as the color classes of v. Let

γ(v) denote the size of the largest color class at v. For each color i, define C+
i (v) to
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be the set of outgoing edges incident to v that are colored i, and similarly C−i (v) for

incoming edges.

An eulerian circuit T determines a matching between E−(v) and E+(v) corre-

sponding to the transitions incident to a vertex v. Hence, if γ(v) > deg+(v) for some

vertex v, then G does not have a compatible circuit; by the Pigeonhole Principle there

will be a transition from an edge in E−(v) to E+(v) with the same color. Thus if G

has a compatible circuit, then γ(v) ≤ deg+(v) for all vertices v.

Definition 3.1. Let G be a colored eulerian digraph. Assume v is a vertex of G,

where γ(v) = deg+(v), and Ci(v) is a largest color class. If Ci(v) lies completely

inside E+(v) or E−(v), then there are no restricted transitions at v. Otherwise, if

a compatible circuit exists it must match C+
i (v) to E−(v) − C−i (v), and C−i (v) to

E+(v)− C+
i (v).

Construct a new colored eulerian digraph G′ from G, where for each vertex v with

γ(v) = deg+(v) and where the largest color class is not contained in E+(v) or E−(v),

the vertex v is split into two new vertices v1 and v2. In G′ the vertex v1 has incoming

edges E−(v) − C−i (v) and outgoing edges C+
i (v), and v2 has incoming edges C−i (v)

and outgoing edges E+(v)−C+
i (v) as depicted in Figure 3.1. The resulting digraph G′

is reduced: a reduced colored eulerian digraph G is a loopless colored eulerian digraph

with γ(v) ≤ deg+(v) for all vertices v ∈ V (G), and if γ(v) = deg+(v), then the largest

color class is either all the incoming or all the outgoing edges.

Lemma 3.2. Let G be a colored eulerian digraph and G′ be the reduced eulerian

digraph created from G. Then G has a compatible circuit if and only if G′ has a

compatible circuit.

Proof. A compatible circuit T of G′ viewed as a series of edges is also a compatible

circuit in G. If G has a compatible circuit T , then for each vertex v with γ(v) =
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G

v

G′

v1

v2

G G′

Figure 3.1: The vertex v is replaced with the vertices v1 and v2 when γ(v) = deg+(v)
and the largest color class has both incoming and outgoing edges. The example on
the the right is a digraph with no compatible circuit.

deg+(v) the edges in C+
i (v) must be matched to E−(v) − C−i (v) and the edges in

C−i (v) must be matched to E+(v) − C+
i (v). So T is also a compatible circuit in

G′.

Lemma 3.2 shows the equivalence between the colored eulerian digraph G and the

reduced eulerian digraph G′. Hence, throughout the rest of the chapter we consider

only reduced eulerian digraphs.

3.3 Fixable vertices

In the case when γ(v) = deg+(v), if the largest color class is contained in E+(v) or

E−(v), then there are no restricted transitions. Thus, every eulerian circuit has no

monochromatic transitions between E−(v) and E+(v). In this section we investigate

when we can change the transitions of an eulerian circuit at a single vertex v to create

a new eulerian circuit with no monochromatic transitions at v.

Definition 3.3. An eulerian circuit T determines a matching between E+(v) and

E−(v) by considering the segments S1, . . . , Sd between successive appearances of v

in T . We refer to these segments S1, . . . , Sd as excursions of T . There is a natural



19

matching between E+(v) and E−(v) where the first edge of Si is matched to the

last edge of Si. We wish to find nonmonochromatic transitions at v such that the

excursions are combined into one circuit.

Since it is not immediate which matchings of E+(v) and E−(v) arise from the

excursions of some eulerian circuit, we consider any matching M between E+(v) and

E−(v). Label the edges incident to v as e−1 , e
+
1 , . . . , e

−
d , e

+
d , where d = deg+(v) and

e−i ∈ E−(v) is matched in M to e+
i ∈ E+(v) for i = 1, . . . , d. The excursion graph

LM(v) is the colored digraph with vertex set consisting of v and the disjoint union

of N−(v) and N+(v). The edge set of LM(v) consists of all edges in G incident to v,

along with edges from e+
i (v) to e−i (v) for all i. The edges incident to v retain their

color from G and the new edges receive a new color k + 1 not in G. Note that the

excursion graph LM(v) is a colored eulerian digraph consisting of cycles containing v

of length three; see the right graph in Figure 3.2 for an example. When the matching

M arises from an eulerian circuit T , we write LT (v) to denote the excursion graph

LM(v).

Definition 3.4. Let G be a colored eulerian digraph. A vertex v is fixable if LM(v)

has a compatible circuit for every matching M between E+(v) and E−(v).

The usefulness of fixable vertices is clear from the following proposition.

Proposition 3.5. Let G be a colored eulerian digraph. If all the vertices of G are

fixable, then G has a compatible circuit.

Proof. Let v1, v2, . . . , vn be an ordering of the vertices of G. Let T0 be an arbitrary

eulerian circuit of G. Since v1 is fixable, the excursion graph LT0(v1) has a compatible

circuit W0. The circuit W0 determines a set of transitions between E−(v1) and E+(v1).

Let d1 = deg+(v1). We use these transitions to alter the circuit T0 by rearranging the
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order in which the excursions S1, . . . , Sd1 occur according to the transitions found in

the compatible circuit. Since LT0(v1) is compatible the resulting trail is an eulerian

trail of G which we call T1. The eulerian trail T1 has no monochromatic transitions

at v1 and introduces no new monochromatic transitions at other vertices. For each

i = 2, . . . , n we repeat the previous process with the excursion graph LTi−1
(vi). We

obtain a sequence of eulerian circuits T0, T1, . . . , Tn, where Ti has no monochromatic

transitions at vj for 1 ≤ j ≤ i. Thus, Tn has no monochromatic transitions and hence

is a compatible circuit of G.

From this proposition we see that reduced colored eulerian digraphs that do not

have compatible circuits must have nonfixable vertices. In the rest of this section

we characterize fixable vertices. We use the same approach taken by Isaak [34] to

find compatible circuits. Our proof uses Meyniel’s Theorem [47] rather than Ghouila-

Houri’s Theorem [28], which gives a slightly stronger result.

Theorem 3.6 (Meyniel [47]). Let G be a digraph on n vertices with no loops. If

deg+(x) + deg−(x) + deg+(y) + deg−(y) ≥ 2n− 1

for all pairs of nonadjacent vertices x and y in G, then G is hamiltonian.

As a direct consequence of Meyniel’s Theorem we have the following proposition.

Proposition 3.7. Let G be a colored eulerian digraph with a vertex v. If γ(v) ≤

deg+(v)− 2 or γ(v) = deg+(v)− 1 and the second largest color class has size strictly

smaller than deg+(v)− 1, then v is fixable.

Proof. Consider the excursion graph LM(v) for an arbitrary matching M between

E+(v) and E−(v). Let S1, . . . , Sd denote the directed 3-cycles of LM(v), where d =

deg+(v).
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Create a new digraph D with vertex set S1, . . . , Sd, where there is a directed edge

from Si to Sj if Sj can follow Si in a compatible circuit, i.e. i 6= j and e−i (v) is

not the same color as e+
j (v). By construction, a hamiltonian cycle of D corresponds

to a compatible circuit of LM(v). We apply Meyniel’s Theorem to show that D is

hamiltonian.

Assume that Si and Sj are distinct nonadjacent vertices in D. Then e−i (v) and

e+
j (v) have the same color, and e+

i (v) and e−j (v) have the same color. Without loss of

generality assume that e−i (v) has color 1 and e+
i (v) has color 2. The outdegree of Si

in D is at least d− |C+
1 (v)| − 1, since e−i (v) has color 1, there are |C+

1 (v)| edges with

color 1 on the other 3-cycles, and there is no loop at vertex Si in D. Similarly the

indegree of Si is at least d−|C−2 (v)|−1, the outdegree of Sj is at least d−|C+
2 (v)|−1,

and the indegree of Sj is at least d− |C−1 (v)| − 1. Therefore, the sum of the indegree

and outdegree of the vertices Si and Sj in D is at least

4d− (|C+
1 (v)|+ |C−1 (v)|+ |C+

2 (v)|+ |C−2 (v)|)− 4 = 4d− |C1(v)| − |C2(v)| − 4.

Without loss of generality assume that the size of C1(v) is at least as large as

the size of C2(v). By hypothesis, |C1(v)| ≤ deg+(v) − 1 and |C2(v)| ≤ deg+(v) − 2.

Therefore the sum of the degrees of Si and Sj in D is

deg+(Si) + deg−(Si) + deg+(Sj) + deg−(Sj) ≥ 4d− (2d− 1)− (2d− 2)− 4 = 2d− 1.

By Meyniel’s Theorem, D has a hamiltonian cycle, so LM(v) contains a compatible

circuit. Since the choice of M was arbitrary, v is a fixable vertex.

As a consequence of Proposition 3.7, if each vertex of a colored eulerian digraph

has enough color classes, then the graph has a compatible circuit.
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Corollary 3.8. Let G be a reduced colored eulerian digraph. If each vertex has at

least five different color classes then G has a compatible circuit.

Proof. If each vertex v has at least five different color classes and γ(v) ≤ deg+(v)−1,

then the second largest color class has size at most deg+(v) − 2. By Proposition

3.7, all the vertices where γ(v) < deg+(v) are fixable, and since G is reduced all the

vertices with γ(v) = deg+(v) are fixable. By Proposition 3.5, G has a compatible

circuit.

Notice that Meyniel’s Theorem does not apply when Cx(v) and Cy(v) are both of

size γ(v) = deg+(v)− 1. The next proposition provides a characterization of fixable

vertices.

Proposition 3.9. Let G be a colored eulerian digraph, and v a vertex of G, where

γ(v) = deg+(v)− 1 and deg+(v) ≥ 2. Then the graph LM(v) has a compatible circuit

unless the following properties hold:

1. The two largest color classes, Cx(v) and Cy(v), are of size deg+(v)− 1.

2. The color classes Cx(v) and Cy(v) have both incoming and outgoing edges (i.e.

the sets C−x (v), C+
x (v), C−y (v), and C+

y (v) are all nonempty).

3. The matching M matches C−x (v) to C+
y (v); C+

x (v) to C−y (v); and the two edges

not in Cx(v) and Cy(v) are matched together (hence one is an incoming edge

and the other is an outgoing edge).

If the above properties hold, then LM(v) does not have a compatible circuit.

Figure 3.2 illustrates the properties of the proposition.
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v

Figure 3.2: All nonfixable vertices have the form of the vertex on the left. The
graph to the right is an excursion graph for a nonfixable vertex of outdegree 5 with
no compatible circuit.

Proof. First we show that the colored eulerian digraph LM(v) satisfying the above

properties does not have a compatible circuit. Notice that the 3-cycles where C−x (v)

is matched to C+
y (v) can not transition to the 3-cycles where C−y (v) is matched to

C+
x (v). The only other 3-cycle in the excursion graph is created by the two edges not

in the largest color class. This 3-cycle can transition from the 3-cycles where C−x (v)

is matched to C+
y (v) (or vice versa), but it can not be used to transition back. So in

every eulerian circuit in LM(v) there is a monochromatic transition at v.

We prove the vertices not satisfying the above properties are fixable by induction

on d = deg+(v). Proposition 3.7 handles the case when the second largest color class

is of size strictly less than deg+(v)− 1.

The base cases are when d = 2, 3, 4. The case for d = 2 is an outdegree two

vertex where each edge has a distinct color. This vertex has no restrictions, so it is

fixable. For d = 3, 4 we used Sage [58] to examine all possible color combinations in

the case where we have two color classes of size deg+(v)− 1. We colored the six (or

eight) edges and checked all possible hamiltonian cycles on three (or four) vertices to

find a compatible circuit. We found a compatible circuit except in the cases where

the properties in the proposition hold. This required checking 180 configurations for

d = 3 and 1120 configurations for d = 4.
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Assume that d > 4. Pick an edge e1 in Cx(v) to match with an edge e2 in

Cy(v). Then fixing this transition and splitting the transition off the digraph of

LM(v) creates a new digraph L′M(v), which has only d− 1 directed 3-cycles. We will

pick this transition so we can apply induction to the new colored digraph L′M(v).

Let C∗(v) denote the two edges incident to v not colored x or y. Suppose that the

two edges in C∗(v) are matched together; i.e. C∗(v) = {e−i (v), e+
i (v)} for some i. If

the properties above do not hold, then either C+
x (v) = ∅, C−x (v) = ∅, or there exists

j such that e−j (v) and e+
j (v) both belong to Cx(v).

First consider the case when C+
x (v) = ∅; the case when C−x (v) = ∅ uses a symmet-

ric argument. Pick an edge e−j (v) in Cx(v) = C−x (v) and match it with an edge e+
k (v)

in Cy(v) = C+
y (v), where j 6= k. Fix this transition and split those two edges off the

vertex v. This operation combines the 3-cycles j and k to form one cycle with outgo-

ing edge e+
k (v) and incoming edge e−j (v). Contract and recolor the appropriate edges

to form a new excursion graph L′M(v). The new digraph still avoids the matching

described above, and hence we can apply induction to L′M(v).

Now consider the case when there exists j such that e−j (v) and e+
j (v) both belong

to Cx(v). If e−k (v) and e+
k (v) have the same color for k = 1, . . . i− 1, i+ 1, . . . , d, then

fix a transition e−k (v) and e+
` (v), where e+

` (v) is colored y. Splitting this transition off

results in a new excursion graph avoiding the matching described above, and hence

we can apply induction. Otherwise there exists k 6= i, j with either e+
k (v) ∈ Cx(v)

and e−k (v) ∈ Cy(v), or e−k (v) ∈ Cx(v) and e+
k (v) ∈ Cy(v). If e−k (v) ∈ Cy(v), match

e−k (v) to e+
j (v), and if e+

k (v) ∈ Cy(v), match e−j (v) to e+
k (v). After splitting off this

transition we can apply induction.

We now consider the case when the edges of C∗(v) are not matched together.

Without loss of generality we assume that C∗(v) ∩ E+(v) 6= ∅; otherwise we can use

the symmetric argument by switching + and −. Let e+
i (v) ∈ C∗(v), and assume that



25

the other edge of C∗(v) is either e+
j (v) or e−j (v). Without loss of generality assume

that e−i (v) ∈ Cx(v) (the same argument will work if e−i (v) ∈ Cx(v) by switching x

and y). If C+
y (v) − {e+

j (v)} 6= ∅, then we can match e−i (v) to an edge from this set,

and we will still have the two edges in C∗(v) not matched. Therefore after splitting

off this transition we can apply induction.

Assume that C+
y (v)−{e+

j (v)} = ∅. Then Cx(v) = C+
x (v)∪ e−i (v), where C+

x (v) =

E+(v) − {e+
i (v), e+

j (v)}. Since d > 4 we know that |C+
x (v)| > 2 and |C−y (v) −

{e−j (v)}| > 2; therefore we can match an edge from C+
x (v) to an edge in C−y (v) −

{e−j (v)}. After splitting off this transition, we can apply induction.

Corollary 3.10. Let G be a colored eulerian digraph. A vertex v is fixable if and

only if v satisfies one of the following:

1. γ(v) ≤ deg+(v)− 2.

2. γ(v) = deg+(v) − 1 and the second largest color class has size strictly smaller

than deg+(v)− 1.

3. γ(v) = deg+(v)− 1 and there are two color classes of size γ(v) = deg+(v)− 1,

where the two edges not in the largest two color classes are both incoming or

both outgoing edges.

4. γ(v) = deg+(v)− 1 and there are two color classes of size γ(v) = deg+(v)− 1,

where one of the largest color classes has only incoming edges or only outgoing

edges.

5. γ(v) = deg+(v), where a largest color class Ci(v) has only incoming edges or

only outgoing edges.
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Proof. By Proposition 3.7, Proposition 3.9, and the discussion of vertices v with

γ(v) = deg+(v), we know that the above vertices are fixable.

In the case when γ(v) > deg+(v) the excursion graph LM(v) never has a compat-

ible circuit. So all vertices v with γ(v) > deg+(v) are not fixable. If γ(v) = deg+(v)

and if a largest color class Ci(v) has both incoming and outgoing edges then we can

create a matching M where C+
i (v) is matched to E−(v)−C−i (v). When this happens

the excursion graph LM(v) does not have compatible circuit since the 3-cycles with

an edge from C+
i (v) can never be matched with the 3-cycles from C−i (v).

Proposition 3.9 shows that the only nonfixable vertices with γ(v) = deg+(v) − 1

are those with two color classes of size deg+(v)− 1, and the two other edges have an

incoming and outgoing edge.

Proposition 3.11. Let G be a colored eulerian digraph, v a fixable vertex of G, and

T a (not necessarily compatible) eulerian circuit of G. Then there exists a polynomial

time algorithm to find a compatible circuit in LT (v).

Proof. Berman and Liu [7] gave a polynomial time algorithm for finding a hamiltonian

cycle in a digraph that satisfies the hypothesis of Meyniel’s Theorem. Hence for

a fixable vertex v that satisfies the hypotheses in Proposition 3.7 we can find in

polynomial time a hamiltonian cycle in D, and thus a compatible circuit in LT (v).

In the case when γ(v) = deg+(v) and all the incoming or outgoing edges have the

same color then any eulerian circuit of LT (v) is compatible.

Finally, when the two largest color classes have size γ(v) = deg+(v)− 1, the proof

of Theorem 3.9 gives a polynomial time algorithm: we iteratively match edges from

the largest color classes together until we have an excursion graph with only four

excursions.
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3.4 Graphs with no S3 vertices

In this section we examine reduced colored eulerian digraphs with nonfixable vertices.

Let G be a reduced eulerian digraph, and let S be the set of nonfixable vertices

in G described in Lemma 3.9: these vertices have two color classes of size γ(v) =

deg+(v)− 1, where both largest color classes have incoming and outgoing edges and

there is one incoming and one outgoing edge not in the largest two color classes. Let

S3 be the nonfixable vertices v with deg+(v) = 3 with exactly three color classes.

For the rest of this section we will assume that S3 = ∅. First, we will describe sev-

eral related graphs that model the important properties of colored eulerian digraphs

when S3 = ∅.

Definition 3.12. Let G be a reduced colored eulerian digraph, and S be the set of

nonfixable vertices. For each vertex v ∈ S let Cx(v) and Cy(v) denote the two largest

color classes, and define C∗(v) = {e+(v), e−(v)} to be the two edges incident to v not

in Cx(v) ∪ Cy(v). Note that since S3 = ∅, the set C∗(v) is well defined.

We construct a new colored digraph GS by splitting all vertices in S as follows:

for v ∈ S replace v with three new vertices v1, v2, and v3, where

• v1 is incident to the edges in C∗(v),

• v2 is incident to the edges in C−x (v) ∪ C+
y (v), and

• v3 is incident to the edges in C−y (v) ∪ C+
x (v).

Notice that when the two edges in C∗(v) are deleted, the resulting vertex v′ has

γ(v′) = deg+(v′) and using the splitting from Definition 3.1 on v′ results in the

creation of the vertices v2 and v3.
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Definition 3.13. Define the component graph HG of GS as follows: the vertices of HG

are the strong components of GS. (Note that since deg+(v) = deg−(v) for all vertices

in GS, the strong components are also the weak components.) For each vertex v ∈ S

there is an edge in HG labeled with v between D1 and D2 where the component D1

contains v1 and D2 contains v2, and another edge in HG labeled v between D1 and

D3 where the component D1 contains v1 and D3 contains v3.

Note that the component graph HG is an undirected edge labeled multigraph. See

Figures 3.3 and 3.6 for pictures of the graphs G, GS, and HG.

G

D1 D2

D3 D4

HGGS

D1

D2

D3

D4

Figure 3.3: An example of a colored eulerian digraph with two nonfixable vertices
and the auxiliary graphs GS and HG.

Definition 3.14. A 2-trail is a set of two incident edges in HG with the same label

v. Either of the edges may be a loop, or the edges may be multiple edges.

Notice that in HG the edges with label v ∈ S form a 2-trail, and so the edge set of

HG can be thought of as a union of 2-trails. As we will see in Theorem 3.16, there is a

compatible circuit in G if and only if there exists an appropriate connected subgraph

of HG. We will need the following definition to make this precise.
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Definition 3.15. A 2-trail traversal is a set E ′ of edges in HG with exactly one

edge from each 2-trail such that the spanning subgraph of HG with edge set E ′ is

connected.

Theorem 3.16. Let G be a reduced colored eulerian digraph with no nonfixable ver-

tices of outdegree three with exactly three color classes (i.e. S3 = ∅). Then the graph G

has a compatible circuit if and only if the component graph HG has a 2-trail traversal.

Proof. (⇒) Let T be a compatible circuit of G. From T we will construct a 2-trail

traversal E ′ of HG.

For each vertex v ∈ S, let Cx(v) and Cy(v) be the two largest color classes at v,

and let C∗(v) = {e−(v), e+(v)} denote the two edges not in Cx(v) ∪ Cy(v). In T the

two edges in C∗(v) satisfy exactly one of the three following conditions:

1. the two edges in C∗(v) are matched together, or

2. e−(v) is matched to an edge in C+
y (v) and e+(v) is matched to an edge in C−x (v),

or

3. e−(v) is matched to an edge in C+
x (v) and e+(v) is matched to an edge in C−y (v).

T is a cyclic sequence of edges in G, so it is a sequence of edges in GS. Since T

is an eulerian circuit, the sequence visits each edge exactly once in G and in GS. Let

v be a nonfixable vertex of G, and e−(v) be the incoming edge incident to v1 in GS.

Let e be the edge following e−(v) in T .

If the edge e is in the same component in GS as e−(v), then e is e+(v). Let fv be

an arbitrary edge in HG labeled v. If the edge e is in a different component in GS

than e−(v), then e has as its tail the vertex v2 or v3. There is an edge fv labeled v

in HG that corresponds to the vertices v1 and the tail of the edge e. Notice that the

two edges in C∗(v) satisfy condition 2 or 3 above. The edge e′ preceding e+(v) in T
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is such that the head of e′ is the tail of e in GS; hence fv is consistent for the edges

e−(v) and e, and e′ and e+(v).

Let E ′ = {fv : v ∈ S} denote the set of edges fv corresponding to the nonfixable

vertices as described above. By construction there is exactly one edge from each

2-trail in E ′. We now show that the spanning subgraph of HG with edge set E ′ is

connected. Let D1 and D2 be two vertices of HG. Since GS has no isolated vertices,

we can pick an edge e1 in the component D1 in GS and an edge e2 in the component

D2 in GS. Start at the edge e1 in the circuit T and follow the circuit until we reach

the edge e2. As we move along the sequence T , whenever we move from an edge in

one component in GS to an edge in another component, there is a corresponding edge

in E ′ between these components in HG. Thus, following the circuit in GS from e1 to

e2 induces a walk in HG from D1 to D2 using only edges of E ′. Hence the spanning

subgraph of HG with edge set E ′ is connected, and so E ′ is a 2-trail traversal.

(⇐) Now assume that HG has a 2-trail traversal E ′. We will form a new graph

G′ from GS by identifying pairs of vertices according to the 2-trail traversal. The

operation of identifying two vertices v1 and vi is to remove v1 and vi from the graph

and create a new vertex v′ that is incident to the disjoint union of the edges incident

to v1 and vi.

First we assume that deg+(v2) ≥ 2 and deg+(v3) ≥ 2 in GS for all nonfixable

vertices v ∈ S. Each edge in the 2-trail traversal corresponds to two vertices v1 and

vi for i ∈ {2, 3} in GS. For all edges e in E ′, identify the corresponding vertex v1

with the vertex vi. Call the resulting graph G′.

The graph G′ is a colored digraph with deg+(v) = deg−(v) for all vertices v ∈

V (G′). Since deg+(vi) ≥ 2 the vertex in G′ created by identifying v1 and vi is a

fixable vertex by Corollary 3.10, so all vertices of G′ are fixable. We claim that G′

is connected. Let r′ and s′ be two vertices in G′. If r′ was created by identifying
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vertices v1 and vi, arbitrarily pick v1 or vi and call it r. If not, then r′ is also a vertex

in GS, but we write r for the vertex r′ in GS. We choose s similarly. Let D1 be the

component in GS containing r, and D̂ be the component containing s. Since E ′ is a

2-trail traversal there is a walk W = D1D2 . . . Dk, where D̂ = Dk, in HG using edges

of E ′. Since DiDi+1 is an edge in E ′ there exist vertices xi ∈ Di and yi+1 ∈ Di+1

identified together in G′; call this vertex zi. Since yi and xi are in the same component

Di in GS there exists a walk from yi to xi, and hence there is a walk from zi−1 to

zi. There are also walks from r to z1 and zk−1 to s in G′. Concatenating these walks

forms a walk from r to s in G′. Thus G′ is connected.

By Proposition 3.5, G′ has a compatible circuit T . Since incident edges in G′ are

incident in G, the circuit T is a compatible circuit of G.

In the case when v2 or v3 has outdegree one we need to be more careful. In the

case when the vertex v1 is identified with the vertex vi of outdegree one it does not

form a fixable vertex in G′ if the edges in C∗(v) have the same color. Instead the

created vertex requires an additional split as in Definition 3.1, which could disconnect

G′.

We claim that if HG has a 2-trail traversal, then it has a 2-trail traversal E ′ with

the property that for any edge e ∈ E ′ where

• e corresponds to vertices v1 and vi, where deg+(vi) = 1 in GS, and

• both edges of C∗(v) have the same color

then e is a bridge in the spanning subgraph of HG with edge set E ′.

By hypothesis there exists a 2-trail traversal. Both of the edges labeled v satisfy

the two properties above only when v ∈ S3. Since S3 is empty, if E ′ has an edge

e labeled v with the properties above, then we may replace the edge e with the
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other edge f labeled v, thereby reducing the number of edges in E ′ with the above

properties.

As before, we form the graph G′ by identifying vertices in GS according to the

edges in E ′. Identified vertices in G′ are fixable unless v1 and vi both have outdegree

one in GS and the two edges in C∗(v) have the same color. In this case, the edge

labeled v in E ′ is a bridge in the spanning subgraph of HG with edge set E ′, so the

identified vertex v′ in G′ is a cut vertex in the graph G′.

GS

viv1

G′

v′

Ĝ′

v′1

v′2

Figure 3.4: The identification of v1 and vi to form G′ and splitting to create Ĝ′. The
dotted and dashed edges denote different colors.

Let e−(v) and e+(v) be the incoming and outgoing edges of v1, and e′ and e be the

incoming and outgoing edges of vi. Then we split the vertex v′ according to Definition

3.1. Replace the vertex v′ with two new vertices v′1 and v′2, where v′1 has incoming

edge e−(v) and outgoing edge e and v′2 has incoming edge e′ and outgoing edge e+(v).

Note that the split at v′ preserves connectivity since v′ is a cut vertex, as shown in

Figure 3.4. Note the condition that v′ being a cut vertex is sufficient, as shown in

Figure 3.5.

Applying this splitting to all vertices v′ in G′ where v1 and vi both have degree

one in GS and the two edges in C∗(v) have the same color results in a connected

eulerian digraph Ĝ′, where deg+(v) = deg−(v) for all vertices v ∈ V (Ĝ′) and where

all the vertices are fixable. Again by Proposition 3.5, Ĝ′ has a compatible circuit T ,

and since incident edges in Ĝ′ are incident in G, the circuit T is a compatible circuit
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of G.

Figure 3.3 shows a colored eulerian digraph with no compatible circuit since HG

does not have a 2-trail traversal. Figure 3.6 gives an example of a colored eulerian

digraph with a compatible circuit and the associated graphs GS, HG, G′, and Ĝ′.

GS Ĝ′

v1 v2
v′1

v′2

Figure 3.5: If v1 and v2 are in the same component and form a 2-cut in GS, then
identifying the vertices and splitting disconnects the components in Ĝ′.

Theorem 3.16 provides necessary and sufficient conditions for the existence of a

compatible circuit in reduced colored eulerian graphs where S3 = ∅ in terms of finding

a 2-trail traversal in HG. We can determine if HG has a 2-trail traversal by finding

a rainbow spanning tree, where the color classes are the 2-trails, and arbitrarily add

an edge from every 2-trail that does not have an edge in the rainbow spanning tree.

Therefore the problem of determining whether a 2-trail traversal exists in HG can be

solved by determining if HG has a rainbow spanning tree. Section 2.1.1 discusses the

existence of rainbow spanning trees in edge-colored graphs.

3.4.1 Polynomial time algorithm

Our results give a polynomial time algorithm that determines whether a colored

eulerian digraph G has a compatible circuit. If G does, then the algorithm provides

a compatible circuit, and if not then the algorithm provides a certificate that shows

why such a compatible circuit does not exist.
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GS HG

Ĝ′

v1

v2 v3u2

u3
u1

D1

D2
D3

D1

D2 D3

G′

v′

u3

u′

v3

v′

u3

u′1

v3

u′2

∈ E ′
∈ E ′

uv v

u

G

v u

Figure 3.6: Above is an example of the auxiliary graphs GS and HG, where HG has
a 2-trail traversal E ′. From this 2-trail traversal we can construct the graphs G′ and
Ĝ′.

Algorithm

Input: A colored eulerian digraph G with no nonfixable vertices of outdegree three

with exactly three color classes.

Output: Compatible circuit of G or certificate which shows no such circuit exists.
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Step 1: Check whether γ(v) ≤ deg+(v) for all vertices v. If not, then return as the

certificate the vertex v such that γ(v) > deg+(v).

Step 2: Create the reduced colored eulerian digraph: split all vertices with γ(v) =

deg+(v) according to Definition 3.1, and subdivide all loops to create graph G′.

Check whether G′ is connected. If not, then return a separation indicating that

G′ is disconnected.

Step 3: Find the nonfixable vertices of G and construct the auxiliary graphs GS

and HG from Definitions 3.12 and 3.13.

Step 4: Determine whether HG has a rainbow spanning tree. If not, return as the

certificate the partition π of the vertices of HG that demonstrates the obstruc-

tion for the rainbow spanning tree. If HG has a rainbow spanning tree, find a

rainbow spanning tree and call it R.

Step 5: From R construct a 2-trail traversal E ′ with the two properties described

in the proof of Theorem 3.16. Form G′ (or Ĝ′) by identifying vertices in GS

according to the 2-trail traversal of HG, and split appropriate vertices according

to the proof of Theorem 3.16.

Step 6: Find an eulerian circuit T0 in G′ (where T0 is not necessarily compatible).

For each vertex vi ∈ V (G′), i = 1, . . . , n, perform the step below:

Step 6a: Construct the excursion graph LTi−1
(v). Find a compatible circuit

of LTi−1
(v), and use the transitions to rearrange the excursions of Ti−1 at v to

form the eulerian circuit Ti. Return the compatible circuit Tn of G.

Each of these steps can be completed in polynomial time. In particular, Step 4

follows from polynomial time algorithms for finding maximum common independent
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sets, as discussed in Section 2.1.1. Step 6a can be computed in polynomial time by

Proposition 3.11. Thus the entire algorithm runs in polynomial time.

3.4.2 Number of monochromatic transitions

In this section we consider finding an eulerian circuit of a colored eulerian digraph

with as few monochromatic transitions as possible. When a colored eulerian digraph

has a compatible circuit the number of monochromatic transitions is zero. Our focus

here is to colored eulerian digraphs that do not have a compatible circuit.

Recall that S is the set of nonfixable vertices described in Lemma 3.9: with two

color classes of size γ(v) = deg+(v)−1, where both largest color classes have incoming

and outgoing edges and there is one incoming and one outgoing edge not in the largest

two color classes. Again we assume there are no vertices in S3. We restrict to this

case so we can use the previous techniques from this section.

In a similar fashion to the proof of Theorem 3.16 we construct several auxiliary

graphs that are used to count the number of monochromatic transitions.

Definition 3.17. Let G be a colored eulerian digraph with no vertices in S3. Define

a new colored digraph G1, where each vertex v with exactly two color classes and

γ(v) = deg+(v) is split into two new vertices, v1 and v2, as in Definition 3.1.

Note the graph G1 does not split all vertices with γ(v) = deg+(v), but only the

vertices with exactly two color classes.

Definition 3.18. Let GS be the graph obtained from G by splitting all vertices v

with γ(v) = deg+(v) according to Definition 3.1 and splitting all nonfixable vertices

in S according to Definition 3.12.

Define the component graph HG of GS as follows: the vertices of HG are the strong

components of GS. For each vertex v ∈ S there is an edge in HG labeled v between D1
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and D2, where the component D1 contains v1 and D2 contains v2, and another edge

labeled v between D1 and D3 where the component D1 contains v1 and D3 contains

v3. This definition is consistent with Definition 3.13.

Define H ′G as follows: the vertices of H ′G are the strong components of GS. The

graph H ′G contains HG as a subgraph, and so in particular all the edges described

above. In addition, for every vertex v with γ(v) = deg+(v) there is an edge in H ′G

between D1 and D2 labeled v where D1 contains v1 and D2 contains v2 in GS.

Note that GS can be obtained from G1 by splitting the remaining vertices with

γ(v) = deg+(v) and the nonfixable vertices in S. In this way each component of G1

corresponds to some collection of components of GS. We refer to the collection of

components in GS that correspond to one component of G1 as a pseudocomponent.

The pseudocomponents do not intersect each other, since the components of G1 are

disjoint. Furthermore, the pseudocomponents correspond to a collection of vertices

in H ′G, where the only edges between the pseudocomponents have a label v, where

γ(v) = deg+(v) and there are exactly exactly two color classes incident to v in G.

Figure 3.7 gives an example of a colored eulerian digraph G along with the graphs

G1, GS, HG, and H ′G.

The following technical lemma gives us a way to switch edges between two strong

components to create one strong component.

Lemma 3.19. Let G be a digraph with exactly two strong components D1 and D2,

where e1 = uv is a directed edge in D1 and e2 = wx is a directed edge in D2. Let G′

be the digraph formed from G by removing the edges e1 and e2 and adding the edges

e′1 = ux and e′2 = wv. Then G′ is strongly connected.

Proof. Let y and z be two vertices of G′. We want to show that there is a directed

path from y to z in G′.
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Since D1 is a strong component there is a path P1 from v to u in D1 not using

the edge e1. Similarly, since D2 is a strong component there is a path P2 from x to

w not using e2.

If y and z are both in D1, then consider a path Q in G from y to z in D1. If Q

uses the edge e1, then replace e1 with uxP2wv, resulting in a path in G′ from y to z.

The case when y and z are both in D2 is similar.

In the case when y is in D1 and z is in D2, there is a path Q1 from y to u in D1

not using e1 and a path Q2 from x to z in D2 not using e2. The path Q1uxQ2 is a

path in G′ from y to z. The case when y is in D2 and z is in D1 is similar.

Next we give several definitions that are similar in nature to a 2-trail traversal in

Definition 3.15.

Definition 3.20. A traversal is a subset E ′ of the edges of H ′G, such that the spanning

subgraph with edge set E ′ is connected, and there is at least one edge from each 2-trail

in E ′.

The following definitions count the number of connected components in certain

spanning subgraphs.

Definition 3.21. Let #(G) be the number of components in the graph G. Let

rsf(HG) be the minimum number of components among all rainbow spanning forests

of HG.

Theorem 3.22. Let G be a loopless colored eulerian digraph with no vertices in S3.

Then every eulerian circuit of G has at least

(rsf(HG)− 1) + (#(G1)− 1) +
∑

v:γ(v)>deg+(v)

(γ(v)− deg+(v)). (†)
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monochromatic transitions. Furthermore, there exists an eulerian circuit with exactly

(†) monochromatic transitions.

Proof. First we show (†) is a lower bound on the number of monochromatic transitions

in any eulerian circuit T . The edges of T can be thought of as a sequence of edges

in G, and as a sequence of edges in GS. (The edges of G and GS have a natural

bijection.) Suppose e1, e2, . . . , em is the sequence of edges of T .

The circuit T naturally defines a spanning set of edges E ′ of H ′G defined in the

following way: whenever ei and ei+1 are in different components in GS, the head of

ei is some vertex vi, and the tail of ei+1 is some vertex vj, where v is a nonfixable

vertex in S or a vertex with γ(v) = deg+(v) in G. Suppose ei is in component Dk,

and ei+1 is in component D` in GS. If v has γ(v) = deg+(v), then by definition H ′G

has an edge labeled v between Dk and D`; add this edge to E ′. If v is nonfixable,

then there are two cases to consider. When vi or vj is the vertex v1, then there is

an edge labeled v between Dk and D`, add this edge to E ′. When vi and vj are the

vertices v2 and v3, there is a component D`′ containing vertex v1. Add both edges of

the 2-trail to E ′. Note that this 2-trail is a walk in H ′G from Dk to D`.

Every 2-trail that does not have an edge added in this way from T , arbitrarily

add one edge from the 2-trail to E ′.

We claim the set E ′ obtained in this fashion is a traversal. Note that whenever

the sequence T moves from one component of GS to another component, these two

components are connected by a path in the subgraph of H ′G with edge set E ′. Since

T visits all the components, this implies that the subgraph with edge set E ′ is a

spanning connected subgraph of H ′G.

Next we show that there are at least (rsf(HG)− 1) + (#(G1)− 1) monochromatic

transitions eiei+1 in T , where ei is in component Dk in GS and ei+1 is in D` in GS,
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where k 6= `. To do this we consider the edges in the traversal and when they imply

we have a monochromatic transition.

First we consider the edges in E ′ between the pseudocomponents of H ′G. Notice

that the edges between the pseudocomponents are labeled v, where γ(v) = deg+(v)

with exactly two color classes in G. There must be at least #(G1)− 1 edges in E ′ of

this type, since the subgraph of H ′G with edge set E ′ is connected. For each of these

edge in E ′ labeled v, there are two distinct transitions eiei+1 and ejej+1, where

1. v in G is the head of ei and ej and the tail of ei+1 and ej+1, and

2. ei and ej+1 are in Dk and ei+1 and ej are in D`, where Dk and D` are in different

pseudocomponents of GS (this implies they are in different components as well).

By construction the transitions eiei+1 and ejej+1 are monochromatic. This implies

there are at least 2(#(G1) − 1) monochromatic transitions between the pseudocom-

ponents.

Next we consider the edges in E ′ that are not between the pseudocomponents. For

every edge in E ′ labeled v, where γ(v) = deg+(v) there is at least one monochromatic

transition. For every 2-trail that has both edges in E ′ there is at least one monochro-

matic transition. The largest number of components in H ′G that can be connected

without monochromatic transitions is rsf(HG). We know the subgraph with edge set

E ′ in H ′G is connected. Thus there are at least rsf(HG)−#(G1) additional monochro-

matic transitions eiei+1, where ei ∈ Dk and ei+1 ∈ D` and ` 6= k.

Thus there are at least (rsf(HG) − 1) + (#(G1) − 1) monochromatic transitions

eiei+1 in T , where ei is in component Dk in GS and ei+1 is in D` in GS, where k 6= `.

By the Pigeonhole Principle each vertex with γ(v) > deg+(v) has at least γ(v)−

deg+(v) monochromatic transitions. Adding this value to (rsf(HG)−1)+(#(G1)−1)
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gives the lower bound (†) on the number of monochromatic transitions in any eulerian

circuit of G.

Now we demonstrate an eulerian circuit T of G with exactly (†) monochromatic

transitions.

Step 1. Construct a traversal of H ′G, which is used to help find the desired

eulerian circuit. Let F be a rainbow spanning forest of HG of maximum size. By

definition #(F ) is the number of components of F . By construction the graph H ′G is

connected, and HG is a subgraph of H ′G. Thus, F is a subgraph of H ′G. We can pick

#(HG)− 1 edges from H ′G such that these edges along with F form a spanning tree

T of H ′G.

Recall the pseudocomponents of H ′G form a partition of the vertices of H ′G that

corresponds to the components of G1, where the only edges in H ′G between the parti-

tioned vertices have γ(v) = deg+(v) and exactly 2 color classes. Pick edges labeled v,

where v is either nonfixable or γ(v) = deg+(v) with at least 3 color classes to connect

form exactly #(G1) components. This can be done since the components of G1 are

connected, so the edges with these labels must be between the vertices inside the

pseudocomponents. Next pick #(G1) edges between the pseudocomponents to form

a spanning tree T of H ′G.

There may be some 2-trails with no edge in T . For each 2-trail with no edge in T ,

pick the edge corresponding to vertices v1 and v2 and add it to T to form a spanning

subgraph T ′. The set T ′ is a spanning subgraph of H ′G. If there is a 2-trail edge e in

T ′ labeled v between components containing vertices v1 and vi in GS, where i ∈ {2, 3}

and deg+(vi) = 1 and the edges in C∗(v) have the same color, then the edge e in T ′

must be a bridge. If the edge is not a bridge, remove e from T ′ and add the other edge

from the 2-trail to T ′. If the other edge is also in T ′, this contradicts the maximality

of the rainbow spanning tree, because removing e and adding the other edge of the
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2-trail along with the other edges of F and an edge from a 2-trail that is in a cycle

with e is a rainbow spanning subgraph in HG with fewer than #(HG) components.

The subgraph T ′ is the subgraph we use to help find the eulerian circuit with (†)

monochromatic transitions.

Step 2. In this step we use T ′ to form an eulerian digraph G′ obtained by

identifying and augmenting certain vertices in GS.

For each 2-trail edge with exactly one edge in T ′, glue the corresponding vertices

together in GS as in Theorem 3.16. If there is a 2-trail, where the edges in C∗(v) are

the same and deg+(vi) = 1, then this edge is a bridge in T ′ and after identifying the

vertices together preform the splitting to form vertices v′1 and v′i as in Theorem 3.16.

This result in a graph with exactly #(HG) components where all the the edges in S

except the vertices whose 2-trail edges both appear in T ′, are fixable.

Next, we use Lemma 3.19 to glue the remaining components together. For every

2-trail, where both edges are in T ′ both edges are bridges in T ′. Otherwise, we can find

a larger rainbow spanning forest. By Lemma 3.19, pick the incoming edge incident

to v1 and switch with an incoming edge incident to v2, then pick the outgoing edge

incident to v1 and switch with an outgoing edge incident to v3. If v1, v2 and v3 are

in different components in GS, the result will combine all three components together.

The new vertex v′1 is monochromatic and the vertices v′2 and v′3 are fixable. Since

both edges of each 2-trail in T ′ are bridges in H ′G the vertices v1, v2 and v3 are always

in different components, since the changes at the other vertices can not connect the

components containing v1, v2 and v3 together.

For every vertex v in T ′ with γ(v) = deg+(v) we use Lemma 3.19 to glue two

different components together in GS. Each edge labeled v is a bridge, and so v1 and

v2 are in different components in GS. Suppose v has at least three color classes.

Suppose v1 has incoming edges from the color class 1 of size deg+(v) and v2 has
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outgoing edges colored 1. If N+(v1) is monochromatic, then pick an incoming edge e

incident to v2 not of that color. By Lemma 3.19 switch the edge e with the edge f ,

where f is any incoming edge incident to v1. If N+(v1) is not monochromatic, then

let e be any incoming edge of v2. In both cases, we have two new vertices v′1 and

v′2, where v′1 is fixable and v′2 has exactly one monochromatic transition (all but one

incoming edges are colored 1, all outgoing edges are colored 1).

In the case when v has exactly two color classes, pick any incoming edge incident

to v1 colored 1 and any incoming edge incident to v2 colored 2. By switching these

vertices, we end up with a new digraph with one fewer component and vertices v′1

and v′2, where v′1 and v′2 each have exactly one monochromatic transition.

After all the identifications, the resulting graph G′ is a connected colored eulerian

digraph, with the same edge set as G.

Step 3. For each vertex v with γ(v) > deg+(v) we will replace v with three new

vertices v1, v2 and v3. Assume the largest color class of v is the color 1.

Arbitrarily pick γ(v) − deg+(v) incoming and outgoing edges colored 1 to be

incident to vertex v1. Vertex v2 is incident to all other incoming edges colored 1 and

all outgoing edges not colored 1. Vertex v3 is incident to all incoming edge not colored

1 and all remaining outgoing edges colored 1. If either v2 or v3 is not incident to any

edges, remove the vertex from the graph.

If v1 and v2 are not in the same component, then select one incoming edge incident

to v1 and an incoming edge incident to v2 and use Lemma 3.19 to form a connected

digraph. Similarly, if v1 and v3 are not in the same component, then select one

outgoing edge incident to v1 and an outgoing edge incident to v3 and use Lemma 3.19

to form a connected digraph. Therefore, there is a way to replace v with three new

vertices v1, v2 and v3 such that the new digraph is connected, v1 has 1 color class and

deg+(v1) = γ(v)− deg+(v), and v2 and v3 are fixable vertices.
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Let G′′ be the resulting digraph obtained from G′ by replacing each vertex v with

γ(v) > deg+(v) in this way. Note by construction G′′ is eulerian.

Step 4. The graph G′′ is an eulerian digraph, where all the vertices are fixable,

except the vertices where:

1. the vertex v′1 from the nonfixable vertices with both edges of the 2-trail in T ′

have exactly one monochromatic transition, and v′2 and v′3 are fixable.

2. the vertices v′2, from vertices v where γ(v) = deg+(v) and v has at least three

color classes, has exactly one monochromatic transition,

3. the vertices v′1 and v′2, from vertices v where γ(v) = deg+(v) and v has exactly

two colors classes, that have exactly one monochromatic transitions each,

4. the vertices v1, from vertices v where γ(v) > deg+(v), has exactly γ(v)−deg+(v)

monochromatic transitions.

Thus, any eulerian circuit T in G′′ is an eulerian circuit with exactly (†) monochro-

matic transitions. By construction the transitions in G′′ are transitions in the original

graph G. Thus T is an eulerian circuit in G with exactly (†) monochromatic transi-

tions.

As in Section 2.6 there is a polynomial time algorithm to obtain an eulerian

circuit with exactly (†) monochromatic transitions. The digraph G′′ can be built

in polynomial time, and any eulerian circuit of G′′ has exactly (†) monochromatic

transitions.
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Figure 3.7: The graph G is a colored eulerian digraph with no compatible circuit.
The auxiliary graphs G1, GS, HG and H ′G are used to help construct the digraph G′′,
which is a colored eulerian digraph, where has an eulerian circuit with exactly (†)
monochromatic transitions. In this example, the quantity from (†) is three.
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3.5 Graphs with all vertices in S3

In this section we investigate colored eulerian digraphs where all the vertices are in

S3. Recall that S3 is the set of nonfixable vertices of outdegree three that have exactly

three color classes, where each color class has one incoming edge and one outgoing

edge. Throughout this section we consider edge-colorings of G, where the head and

tail of each edge may have different colors. Notice that this is equivalent to the

previous version by subdividing certain edges. Let φ denote the edge-coloring and for

a directed edge uv, we write φ(uv) = (a, b) where a is the color of the tail and b is

the color of the head. Up to renaming colors, we can assume that G is edge-colored

using exactly the colors 1, 2 and 3. We are interested in which colorings of G have a

compatible circuit and which coloring fail to have a compatible circuit when all the

vertices of G are in S3.

An eulerian circuit can be thought of as both a sequence of pair-wise incident

edges in G, or as a collection of transitions at each vertex. First we introduce a

formal definition of a transition.

Definition 3.23. A transition at v is a pair of incident edges at v consisting of one

incoming edge and one outgoing edge. We write evh for a transition at v, where e

is an incoming edge into v and h is an outgoing edge leaving v. A transition system

at v is a collection of transitions at v, where each edge incident to v is in exactly

one transition. A transition system of G is a collection of transition systems at v

for all vertices v in V (G). A transition system of G can be thought of as a function

f : E(G) → E(G) that assigns an incoming edge e at v to an outgoing edge h at v,

where evf is a transition in the transition system of G. We refer to such a function

as a transition function.

A transition system determines a circuit decomposition of the graph G and vice
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versa. In particular every eulerian circuit T corresponds to a transition system of G,

and hence we speak of the transitions of T .

Definition 3.24. A pseudocompatible circuit is an eulerian circuit T of a colored eu-

lerian digraph G with all vertices in S3, such that whenever there is a monochromatic

transition e1vh1 centered at a vertex v, the other transitions e2vh2 and e3vh3 at v are

also monochromatic transitions of T .

A pseudocompatible circuit is a weakening of the notion of a compatible circuit,

but as we will see in the following lemma there is a strong connection between them.

Lemma 3.25. Let G be a colored eulerian digraph with a pseudocompatible circuit

T . Then G has a compatible circuit.

Proof. The proof is by induction on the number of monochromatic transitions k in

T . When k = 0, T is a compatible circuit.

Suppose k > 0. Let v be a vertex where all the transitions of T at v are monochro-

matic, and consider the excursion graph LT (v). Since there are three excursions, the

excursion graph LT (v) has exactly two eulerian circuits. The excursions in the pseudo-

compatible circuit T correspond to an eulerian circuit of LT (v) with three monochro-

matic transitions. The other eulerian circuit of LT (v) has no monochromatic transi-

tions. Replacing the transitions at v with these nonmonochromatic transitions in T

gives a new eulerian circuit T ′ of G with fewer monochromatic transitions.

Let G be an eulerian digraph with an edge coloring φ, and let v be a fixed vertex.

We want to understand when changing only the colors of the tails of the outgoing

edges of v maintains the property that G has a compatible circuit. Let φ′ denote the

new coloring obtained by changing the colors of the tails of the outgoing edges of v.

For v to be in S3 in φ′, there is a permutation of the colors 1, 2 and 3 describing how
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to change the colors on the tails of the outgoing edges at v. The symmetric group on

three elements describes the different ways to apply this type of permutation.

The symmetric group on three elements is isomorphic to the dihedral group of

the triangle. We write S3 = {id, ρ1, ρ2, τ1, τ2, τ3} for the symmetric group on {1, 2, 3},

where ρ1 and ρ2 are the elements of order 3 (rotations of the triangle) and τ1, τ2, and

τ3 are the elements of order 2 (reflections of the triangle). The following notation is

inspired by the dihedral group of the triangle.

Definition 3.26. Let Γ = {id, ρ1, ρ2} be the subgroup of size three in S3. A rotation

of φ at v is a new edge-coloring φ′ of G where all the edges have the same color except

the tails of the edges outgoing from v are recolored by applying a fixed element of Γ.

Let N = {τ1, τ2, τ3} be the set of permutations in the symmetric group with

exactly one fixed point. A reflection of φ at v is a new edge-coloring φ′ of G where

all the edges have the same color except the tails of the edges outgoing from v are

recolored by applying a fixed element of N .

Suppose we fix some permutation σ ∈ S3 and some vertex v in G, and recolor the

heads of the incoming edges incident to v and the tails of the outgoing edges incident

to v according to σ to obtain a new edge coloring φ′. Note that v has the same

monochromatic transitions for both the edge colorings φ and φ′, so the existence or

nonexistence of a compatible circuit is preserved under permuting the colors incident

to a vertex.

Observation 3.27. Up to recoloring edges incident to a vertex v, we can assume

the head of the incoming edges for each coloring are the same for all edge colorings.

Throughout the rest of the chapter we assume that the color of the head of each edge

is fixed. Thus two colorings differ only on the color on the tails of the edges.
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The next lemma shows that the existence of a compatible circuit is also preserved

when rotating the edge coloring at a vertex.

Lemma 3.28. Let G be a colored eulerian digraph where every vertex is a nonfixable

vertex in S3. Let φ be the starting edge coloring of G, v be an arbitrary vertex of

G, and φ′ be the edge coloring of G by applying a rotation of φ at v. Then G has a

compatible circuit with edge coloring φ if and only if G has a compatible circuit with

edge coloring φ′.

Proof. Since rotations are invertible, we need only prove one direction of the state-

ment. Let T be a compatible circuit of G with edge coloring φ. We claim that T is a

pseudocompatible circuit of G with edge coloring φ′. Clearly T has no monochromatic

transitions at vertices w 6= v.

Since T is a compatible circuit for φ, the edges incoming to v with heads colored 1,

2, and 3 in φ are matched to the outgoing edges with tail colors 2, 3, and 1 respectively;

or 3, 2, 1 respectively. By applying a rotation at v to obtain φ′, the incoming edges

with heads colored 1, 2, and 3 are matched to the outgoing edges with tail colors, 1,

2, and 3 respectively; 2, 3, and 1 respectively; or 3, 2, 1 respectively. Thus for φ′, the

circuit T either has three monochromatic transitions at v or none.

Given two edge colorings φ1 and φ2 of G (where φ1 and φ2 have the same color

on the head of every edge), φ1 can be transformed into φ2 by applying a sequence

of rotations and reflections. Lemma 3.28 shows that applying rotations preserves

the existence (or nonexistence) of a compatible circuit. Therefore we can talk about

classes of colorings, where the class of colorings either all have the property of having

a compatible circuit or none of them have a compatible circuit.

Definition 3.29. An equivalence class is a set of colorings of G, where φ1 and φ2 are
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in the same equivalence class if the edge-coloring φ1 can be obtained from φ2 by a set

of rotations at the vertices of G.

All the colorings in an equivalence class either all have a compatible circuit or none

of them have a compatible circuit by Lemma 3.28. Observe that each equivalence class

has the same number of colorings.

Lemma 3.30. There is a bijection between the equivalence classes and the subsets of

vertices of G. Hence the number of equivalence classes is 2n.

Proof. Let Ai and Aj be two different equivalence classes. Let φ1 ∈ Ai and φ2 ∈ Aj

be two edge colorings. There is a series of reflections and rotations at vertices of G

to transform φ1 into φ2. Let Sij be the set of vertices that we introduced a reflection

to φ1 to obtain φ2.

We argue that this set of vertices is the same for any representatives from Ai and

Aj. Every coloring φ3 ∈ Aj differs from φ2 by rotations at vertices. Composing a

rotation by a rotation is a rotation, and composing a rotation with a reflection is a

reflection. Thus the set of vertices we need to introduce reflection to transform φ1

into φ3 is the set of vertices S12. Similarly for any φ4 ∈ Ai differs from φ1 by rotations

at vertices, so φ4 differ by reflection at the same set of vertices. Thus the set Sij is

the same for any representatives from Ai and Aj.

Fix an equivalence class A1 and a representative edge coloring φ ∈ A1. Let αA1

be the function that maps the equivalence class A1 to the empty set, and every other

equivalence class Aj to the set of vertices S1j. The map αA1 is injective, since any

two equivalence classes that differ from A1 on the same set of vertices by reflections

differ by rotations at all the vertices, thus they belong to the same equivalence class.

The map αA1 is surjective, since given any set S of vertices, introduce reflections at

each vertex v ∈ S gives a coloring in some equivalence class Aj, with S1j = S.
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This lemma shows that moving from one equivalence class to another occurs by

adding reflections at a subset of the vertices.

Throughout the rest of this section we consider building auxiliary graphs, similar

to flavor to Definitions 3.12 and 3.13. We use transitions functions from Defini-

tion 3.23 to help build auxiliary digraphs.

Definition 3.31. Let f be a transition function for a digraph G with all vertices in

S3. For each vertex v, there are three transitions, eivhi for i ∈ {1, 2, 3}. We form the

graph Gf by replacing each vertex v with three new vertices vi, where vi is incident

only to the edges ei and hi. Note that Gf is a collection of directed cycles that

represents a circuit decomposition of G, and there is a natural bijection between the

edges of G and Gf . Let D1, . . . , Dr denote the connected components in Gf .

Define the component graph HG,f,φ to be the graph obtained from Gf where the

vertices of HG,f,φ are the components of Gf , and for each vertex v ∈ V (G), there is

an edge labeled v between vertices Dk and D` in HG,f,φ (k may equal `), if vi is in Dk

and vj is in D` for distinct i, j ∈ {1, 2, 3}. The 3-circuit with label v is the set of three

edges labeled v in HG,f,φ. We often refer to a 3-circuit without being specific about

which label it receives. Note that a 3-circuit may include loops or double edges.

We call a 3-circuit with label v dashed if exactly one of the transitions at v1, v2 and

v3 in Gf is monochromatic and the other two transitions are not. Every 3-circuit that

is not dashed is called solid. Note that a solid 3-circuit either has no monochromatic

transitions or three monochromatic transitions.

Our goal is to use the auxiliary graphs to determine when a colored eulerian

digraph with all vertices in S3 has a compatible circuit, similar to Theorem 3.16.

Notice that the edge coloring φ only determines if the 3-circuits are solid or dashed in

HG,f,φ. In cases where we are working with a fixed edge coloring φ of G, we sometimes
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write HG,f instead of HG,f,φ. In fact any two colorings from the same equivalence class

always give rise to the same component graph HG,f .

Lemma 3.32. Let φ1 and φ2 be two edge colorings in the same equivalence class and

let f be any fixed transition function. Then HG,f,φ1 and HG,f,φ2 are the same graph.

Proof. Recall that in the construction of HG,f,φ, that the coloring φ only affects

whether the 3-circuit is dashed or solid. Since φ1 and φ2 are in the same equivalence

class they differ by rotations at each vertex. Therefore by definition of solid and

dashed 3-circuits, all the 3-circuits in HG,f,φ1 and HG,f,φ2 agree.

Next we define several definitions that discuss what happens when we change the

transition function. Recall that the symmetric group of three elements was given by

S3 = {id, ρ1, ρ2, τ1, τ2, τ3}, where id, ρ1, and ρ2 are rotations and τ1, τ2, and τ3 are

reflections..

Definition 3.33. A rotation of f at v is a new transition function f ′ where all the

transitions remain the same except the transitions at v are reordered by some rotation.

A reflection of f at v is a new transition function f ′ where all the transitions are

the same except the transitions at v are reordered by some reflection.

Note that if f ′ is obtained by a rotation of f at v, then the 3-circuit labeled v is

either solid in both HG,f and HG,f ′ , or dashed in both HG,f and HG,f ′ . If f ′ is formed

by a reflection at v of f , then the 3-circuit labeled v is dashed in one of HG,f and

HG,f ′ , and solid in the other.

Definition 3.34. A 3-circuit traversal is a spanning connected subgraph E of HG,f

such that there is exactly one edge from each dashed 3-circuit and for each solid

3-circuit either all or none of the edges in the 3-circuit are in E.
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Suppose G has a compatible circuit T . We next define an important set of edges

in HG,f that correspond to the compatible circuit T .

Definition 3.35. Let T = e1, e2, . . . , em be a pseudocompatible circuit in a colored

eulerian digraph G with all vertices in S3. Let fT be the transition function given

by f(ei) = ei+1 for 1 ≤ i ≤ m − 1 and f(em) = e1. We refer to fT as the transition

function given by T .

The set ET,f represents the transitions of fT that differ from f . Precisely, suppose

fT (ei) 6= f(ei). Let vi be the head of ei and vj be the tail of fT (ei) in Gf , and note

that vi and vj are distinct vertices. There is an edge x in HG,f corresponding to vi

and vj in Gf . Whenever fT (ei) 6= f(ei), we add the edge x to ET,f .

Lemma 3.37 below shows that given a pseudocompatible circuit T , the set ET,f is

a 3-circuit traversal of HG,f . To help prove Lemma 3.37 we prove the following result

that tells us some of the structure of ET,f .

Lemma 3.36. Let T be a pseudocompatible circuit and f be a transition function of

G. Then for each dashed 3-circuit in HG,f there is exactly one edge in ET,f , and for

each solid 3-circuit in HG,f either all or none of the edges in the 3-circuit are in ET,f .

Proof. A 3-circuit is dashed if there is exactly one monochromatic transition. Since

there is no vertex in T with exactly one monochromatic transition, this implies there

is at least one edge from each dashed 3-circuit in ET . Checking the cases, we see

that if there is more than one edge from a dashed 3-circuit, then T has exactly one

monochromatic transition at the vertex v, but this contradicts that T is a pseudo-

compatible circuit.

In the case of a solid 3-circuit labeled v by checking cases we discover that hav-

ing one or two edges of the solid 3-circuit in ET,f implies that T has exactly one
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monochromatic transition at v, which contradicts the fact that T is a pseudocompat-

ible circuit.

By Lemma 3.36 it is enough to show that ET,f is connected to prove that ET,f is

a 3-circuit traversal.

Lemma 3.37. Let T be a pseudocompatible circuit and f be a transition function of

G. The set ET,f is a 3-circuit traversal in HG,f .

Proof. By Lemma 3.36 there is exactly one edge from each dashed 3-circuit in ET,f

and either all of none of the edges from each solid 3-circuit. Therefore we want to

show that the subgraph with edge set ET,f is connected in HG,f . Since T visits all the

edges of the graph G and Gf , it visits all the components of Gf . Each time the circuit

T moves from one component Dj to another component Dk there is a corresponding

edge in ET,f between the vertices Dj and Dk in HG,f . Thus the subgraph with edge

set ET,f is connected.

The contrapositive of Lemma 3.37 tell us that if HG,f has no 3-circuit traversal,

then G does not have a compatible circuit. The following lemma shows that we can

determine in polynomial time whether HG,f has a 3-circuit traversal.

Lemma 3.38. There exists a polynomial time algorithm that determines if HG,f

contains a 3-circuit traversal, and produces a 3-circuit traversal if one exists.

Proof. Let E denote all the edges in the solid 3-circuits in HG,f . Since a 3-circuit

traversal can contain all the edges form each solid 3-circuit, we may as well assume

that E is part of the 3-circuit traversal if it exists. Consider the subgraph of HG,f

with edge set E. We let E denote both the edge set and the subgraph.

If E is connected, then add an arbitrary edge from each dashed 3-circuit to obtain

a 3-circuit traversal. If E is not connected, then form a new graph HE by identifying
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Figure 3.8: The graph G has no compatible circuit, but choosing f to match
monochromatic edges together gives rise to HG,f that clearly has a 3-circuit traversal.

all the vertices in each component of E together into one vertex. The only edges

between vertices in HE are the dashed 3-circuit edges. Determining if there is a

3-circuit traversal is now a question of it we can pick one edge from each dashed

3-circuit such that the spanning subgraph is connected. This is precisely a problem

of finding a rainbow spanning tree in H, which can be done in polynomial time as

discussed in Section 2.1.1.

Lemma 3.37 shows there is a map M from pseudocompatible circuits to 3-circuit

traversals in HG,f given by mapping T to ET,f . We make two important observations

about the map M . First, the map M is not surjective, as not every 3-circuit traversal

necessarily has a corresponding pseudocompatible circuit. Figure 3.8 gives an example

of a graph where HG,f has a 3-circuit traversal but G has no pseudocompatible circuit.

Second, there can be several compatible circuits T and T ′ where ET,f and ET ′,f are

the same 3-circuit traversal, so this mapping is not injective.

One important open question is whether given a graph G with no compatible

circuit is there some choice for f such that HG,f does not have a 3-circuit traversal. If

some transition function f always exists and can be found in polynomial time, then

the problem of determining if a graph has a compatible circuit is in co-NP.

Next we define a more restrictive class of 3-circuit traversals that are contained

in the image of the map M , and hence if they exist can be used to find a compatible
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circuit.

Definition 3.39. A 3-circuit tree traversal is a spanning connected subgraph E of

HG,f such that E is a 3-circuit traversal and the only cycles in the subgraph with

edge set E are triangles where all the edges of each triangle have the same label. Note

that such a triangle is a solid 3-circuit.

The existence of a 3-circuit tree traversal in HG,f is a sufficient condition for a

colored eulerian digraph G to have a compatible circuit.

Lemma 3.40. Let G be a colored eulerian digraph where all the vertices are in S3,

and let f be a transition function. If HG,f has a 3-circuit tree traversal, then G has

a compatible circuit.

Proof. By Lemma 3.25 it is enough to show that G has a pseudocompatible circuit.

Let E be a 3-circuit tree traversal of HG,f . We proceed by induction on the

number of vertices in HG,f , which we denote by k. When k = 1, Gf has exactly one

component. There are no dashed 3-circuits in HG,f , otherwise E would contain a loop

and not be a 3-circuit tree traversal. Since all the 3-circuits are solid, the transitions

at each vertex v are all nonmonochromatic, or they all are monochromatic. Thus

the one component of Gf is a directed cycle that corresponds to a pseudocompatible

circuit in G.

Now suppose k > 1 and there is an edge with label v in E. We consider two cases

based on if the 3-circuit with label v is dashed or solid.

In the case the 3-circuit labeled v is dashed there is exactly one edge e in E with

label v. The edge e is a bridge in E, so in Gf there vertices vi in component Dk and vj

in component Dk, where k 6= `. Suppose e1vih1 and e2vjh2 are transitions in Gf . Let

f ′ be a new transition function that has all the same transitions as f , except replaces
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e1vih1 and e2vjh2 with e1vih2 and e2vjh1. By Lemma 3.19 the graph Gf ′ has one

less component than Gf . The graph HG,f ′ can be obtained from HG,f by identifying

the vertices Dk and D` and changing the 3-circuit labeled v from dashed to solid.

Therefore E − {g}, where g is the edge with label v, is a 3-circuit tree traversal of

HG,f ′ . By induction, since HG,f ′ has a 3-circuit tree traversal this implies that G has

a pseudocompatible circuit.

In the case when the 3-circuit labeled v is solid there are three edges with label

v in E that form a triangle. Suppose e1v1h1, e2v2h2, and e2v3h3 are the transitions

in f . Since the 3-circuit labeled v is a triangle, the vertices v1, v2, and v3 are all in

different components of Gf . Form a new transition function by replacing the above

three transitions with e1v1h2, e2v2h3, and e3v3h1. By Lemma 3.19 the graph Gf ′ has

fewer components than Gf . The graph Gf ′ can be obtained from Gf by identifying

the three components containing v1, v2, and v3. Thus HG,f ′ has two fewer vertices,

then HG,f . The set E−{g1, g2, g3}, where g1, g2, and g3 are the edges of the 3-circuit

with label v, is a 3-circuit tree traversal of HG,f ′ . By induction, since HG,f ′ has a

3-circuit tree traversal this implies that G has a pseudocompatible circuit.

Lemma 3.40 shows that if we can find an appropriate function f such that HG,f has

a 3-circuit tree traversal, then we know G has a compatible circuit. Not every choice

of f gives rise to an appropriate transition function. Figure 3.9 gives an example of

a graph G that has a compatible circuit, but HG,f does not contain a 3-circuit tree

traversal. If G has a compatible circuit T , then there is an appropriate choice for a

transition function, namely fT . The component graph HG,fT has exactly one vertex

and n solid 3-circuits, and so has a trivial 3-circuit tree traversal. The problem is

finding a choice for f such that HG,f has a 3-circuit tree traversal. In general we do

not know how to find such a function f , and this remains an open question. However,
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G Gf HG,f

v u

v

u

Figure 3.9: The graph G has a compatible circuit, but for the choice of f the graph
HG,f does not have a 3-circuit tree traversal.

for some families of digraphs we can find an appropriate function f as discussed in

the sections below.

In the next subsections we investigate specific functions f for certain colored

eulerian digraphs G, and in many instances provide conditions for when a compatible

exists or does not exist in G.

3.5.1 Half of the equivalence classes do not have a

compatible circuit

In this section we consider a graph G with an edge-coloring where all the vertices are

in S3. We show that at least half the colorings fail to have compatible circuits.

Recall from the previous section that there are 2n equivalence classes of edge-

colorings. We will show that for at least 2n−1 of the equivalence classes, the edge-

colorings in those equivalence classes do not have compatible circuits.

Let φ be an edge-coloring of G. Let fφ be the transition function that maps each

directed edge ei to hi, where eivhi is a monochromatic transition, i.e. the color on

the head of ei is the same as the tail color of hi. Since each vertex is in S3 this is

a well defined map. The auxiliary graphs Gfφ and HG,fφ can be used to show that

certain edge-colorings of G do not have a compatible circuit.
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Lemma 3.41. Let G be an edge-colored eulerian digraph, where each vertex is in S3.

Let f be a transition function where every 3-circuit in HG,f is solid, and let v be a

fixed vertex of G. Let f ′ and f ′′ be the two transition functions obtained from f by

applying the two nontrivial rotations to f at v. The number of vertices in HG,f , HG,f ′,

and HG,f ′′ all have the same parity.

Proof. The proof is broken up into cases based on how many of the vertices v1, v2,

and v3 are in the same component. Suppose f has transitions e1v1h1, e2v2h2, and

e3v3h3; f ′ has transitions e1v1h2, e2v2h3, and e3v3h1; and f ′′ has transitions e1v1h3,

e2v2h1, and e3v3h2.

Note that is is enough to show that the number of components in Gf , Gf ′ , and

Gf ′′ have the same parity.

Case 1: The vertices v1, v2 and v3 are all in the same component.

Up to renaming assume v1, v2 and v3 appear in this order in the component Dk

in Gf . We see that Gf ′ reorders the directed cycle Dk and has the same number

of components as Gf , and Gf ′′ splits Dk into three components. In either case the

number of components in Gf , Gf ′ , and Gf ′′ have the same parity.

Case 2: The vertices v1, v2 and v3 are all in different components.

Let Pi denote the path from hi to ei. The graph Gf ′ combines the three com-

ponents in Gf into one component given by P1P2P3, and Gf ′′ combines the three

components in Gf into one component given by P1P3P2. Again the number of com-

ponents in Gf , Gf ′ , and Gf ′′ have the same parity.

Case 3: Two of the vertices are in the same component and the other vertex is

in a different component.

Without loss of generality assume v1 and v2 are in the component Dk and v3 is in

D`, where k 6= ` in Gf . Let P1 denote the path from h1 to e2, P2 be the path from



60

h2 to e1, and P3 be the path from h3 to e3 in Gf .

The graph Gf ′ replaces Dk and D` with the two components given by P1P3 and

P2, and the graph Gf ′′ replaces Dk and D` with the two components given by P1 and

P2P3. So the graphs Gf , Gf ′ , and Gf ′′ all have the same number of components.

Lemma 3.42. Let G be an edge-colored eulerian digraph, where each vertex is in S3.

If the number of vertices in HG,fφ is even, then G does not have a compatible circuit.

Recall that the number of vertices in HG,fφ is the number of components in Gfφ .

Proof. Suppose that G has a compatible circuit T . We know that fT is a transition

function and HG,fT has one component with all solid 3-circuits.

The transitions in fφ and fT differ at each vertex by a rotation. By Lemma 3.41

the number of vertices in HG,fφ and HG,fT must have the same parity. However HG,fφ

has an even number of vertices and HG,fT has one vertex, giving a contradiction.

Next we consider what happens to the parity of the number of components of Gfφ

when we apply a reflection to the edge coloring φ of G to obtain a new coloring φ′.

Lemma 3.43. Let G have edge coloring φ and G′ have edge coloring φ′, where φ′ is

obtained from φ by adding a reflection at v for some vertex v ∈ V (G). The number

of components in Gfφ and Gfφ′
have different parity.

Note that Gfφ is obtained from the graph G with edge coloring φ, and Gfφ′
is

obtained from G with edge coloring φ′.

Proof. Suppose that eivihi are the transitions in fφ given in Gfφ at the vertex v. We

can obtain the transition function fφ′ from fφ by adding a reflection of fφ at v. We

consider the specific reflection that replaces the following transitions in Gfφ e1v1h1,

e2v2h2, and e3v3h3 with the following transitions in G′I′ e1v1h2, e2v2h1, and e3v3h3.
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Note that because of the reflection in of colors in φ′, all the transitions are described

above are monochromatic. The other two reflections have a similar proof.

The proof is broken up into cases based on whether the vertices v1, v2 and v3

are in the same or different components. In each case we show that the number of

components of Gfφ and Gfφ′
always differ by one.

Case 1: The vertices v1, v2 and v3 are all in the same component.

Without loss of generality the vertices v1, v2 and v3 appear in this order in the

components Dk in GI . Let Pi denote the path from vi to vi+1, where addition is

modulo three. We can obtain Gfφ′
from Gfφ by replacing the component Dk with the

components P1 and P2P3.

Case 2: The vertices v1, v2 and v3 are all in different components.

Let Pi denote the path from hi to ei. The graph Gfφ′
can be obtained from Gfφ

by replacing the three components with the two components given by P1P2 and P3.

Case 3: Two of the vertices are in the same component and the other vertex is

in a different component.

First consider the case when v1 and v2 are in the same component Dk in GI . We

can obtain Gfφ′
from Gfφ by replacing Dk with the two components P1 and P2, where

P1 is the path from v1 to v2 and P2 is the path from v2 to v1. Next we consider the

case when v1 and v2 are in different components. Up to renaming we can assume v1

and v3 are in the same component Dk and v2 is in D` in Gfφ . Let P1 be the path from

h1 to e3, P2 be the path from h2 to e2, and P3 be the path from h3 to e1. The graph

Gfφ′
can be obtained from Gfφ by replacing Dk and D` with the single component

P1P3P2.

This proves that the parities of the number of components in Gfφ and Gf ′φ
is

always different.
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Combining Lemmas 3.42 and 3.43 we can prove that at least half the edge-colorings

of G do not have a compatible circuit.

Corollary 3.44. For every eulerian digraph G, where all vertices are in S3, at least

half the equivalence classes do not have the property of having a edge coloring with a

compatible circuit.

Proof. Fix an edge coloring φ in equivalence class A1. We want to investigate how the

parity of the number of components in Gfφ changes by adding multiple reflections. By

Lemma 3.30 we know that there is a bijection αA1 between the number of reflections

and each equivalence class. By Lemma 3.43 the edge colorings of the equivalence

classes with an even number of reflections have the same parity of the number of

components in Gfφ as φ; and the equivalence classes with an odd number of reflection

have a different parity of the number of components in Gfφ .

Therefore half of the equivalence classes have an even number of components in

Gfφ , and by Lemma 3.42 none of the edge colorings in these equivalence classes have

a compatible circuit.

Recall that each equivalence class has the same number of edge colorings. Corol-

lary 3.44 proves that at least half the edge colorings of G, where all vertices are in

S3, do not have a compatible circuit. There are graphs where exactly half the edge

colorings have compatible circuits, but there are other examples where strictly fewer

than half the edge colorings have a compatible circuit.

In the next two sections we investigate several specific families of colored eulerian

digraphs that give rise to examples with strictly fewer than half the edge colorings

have a compatible circuit. In these sections we use certain structural properties of G

to pick a specific transition function f , and show that the auxiliary graph HG,f must

have a 3-circuit tree traversal.
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3.5.2 Digraphs obtained from cubic graphs

In this section we consider the family of eulerian digraphs obtained by taking a

undirected loopless cubic graph F and creating a directed graph G by replacing each

edge uv in F with directed edges uv and vu.

Consider the transition function γ that maps every edge uv to its antiparallel

edge vu. The auxiliary graph Gγ is composed of 2-cycles corresponding to each of the

edges of the cubic graph F . The 3-circuits in Gγ are in fact triangles, since vertices

v1, v2, and v3 can not be in the same components since F is loopless.

F G

HG,γGγ

Figure 3.10: An example of a cubic graph F and the eulerian digraph G. Also shown
are the auxiliary graphs Gγ and HG,γ.

Theorem 3.45. Let G be a colored eulerian digraph obtained from a cubic graph F

where all vertices are in S3 in G. The digraph G has a compatible circuit if and only

if the component graph HG,γ has a 3-circuit tree traversal.
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Proof. (⇐) If HG,γ has a 3-circuit tree traversal, then G has a compatible circuit by

Lemma 3.40.

(⇒) Suppose G has a compatible circuit. Our goal is to show that there is a

compatible circuit T where ET,γ is in fact a 3-circuit tree traversal in HG,γ.

Out of all pseudocompatible circuits T of G, select the one where ET,γ has as few

edges as possible. In a slight abuse of notation we let ET,γ denote both the 3-circuit

traversal and the subgraph of HG,γ with edge set ET,γ.

Suppose there is a cycle D in ET,γ besides the solid 3-circuits. Let D = D1 . . . Dk

denote a smallest cycle in ET,γ where the edges in D do not all have the same label,

and the Di are vertices in HG,γ. First we make the observation that D contains at

most one edge from each 3-circuit since D is a smallest cycle.

First we show that D must have at least one edge from a solid 3-circuit. Suppose

that the edges of D come only from dashed 3-circuits. Each vertex Di in D is adjacent

to exactly two dashed 3-circuits, where both 3-circuits have an edge in D. Thus the

cycle D is not connected in ET,γ to any vertices outside of D1, . . . , Dk. Therefore D

must be a hamiltonian cycle in HG,γ since ET,γ is connected. Since D is a hamiltonian

cycle, fixing the transitions at all the components does not give rise to an eulerian

circuit but two disconnected circuits, as shown in Figure 3.11. This contradicts that

T is an eulerian circuit.

Thus D contains at least one edge from a solid 3-circuit. Up to renaming suppose

that v is the label of a solid 3-circuit that appears between the components Dk, D1

and B, where B /∈ {D1, D2, . . . , Dk}.

Suppose that e1vh1, e2vh2, and e3vh3 are the transitions in γ at v. Note that up

to renaming we can assume e1v1h1 is in a component D1 and e2v2h2 is in a component

Dk in Gγ. Let α be the transition function given by rotating the transitions of fT

at v to obtain eivhi. Note that the permutation applied at v is a rotation since the
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Gγ T

D1
D2

D3D4

D1 D2

D3D4

ET,γ

Figure 3.11: Above is a drawing of Gγ and ET,γ when D is a cycle from only dashed
3-circuit edges. and the transitions given for T . The dashed edges represent the cycle
D in HG,γ. As we can see when D is a hamiltonian cycle the result is not an eulerian
circuit, but two disconnected directed cycles.

3-circuit labeled v is solid. The transition function can not give rise to an eulerian

circuit, since this would be a new psuedocompatible circuit T ′ where ET ′,γ has fewer

edges than ET,γ. Thus the graph Gα has at least two components. Since α differs

from fT by a rotation, we know that Gα must have three components and the solid

3-circuit labeled v is a triangle between the components. Let P1, P2, and P3 be

the components of Gα. We will use the components P1, P2, and P3 to find a new

pseudocompatible circuit.

The transitions eivhi are in both γ and α. We follow the circuit P1 in the graph

Gγ, and in particular we are going to consider what happens in the components

D1, D2, . . . , Dk. The transition e1v1h1 is in the component D1, so both of those edges

are in P1.

Assume the edges in Di in Gγ are in P1 for some fixed i ≥ 1. If the edge from

DiDi+1 is dashed in ET,γ, then the edges in the component Di+1 in Gγ are also edges

in P1, as shown in Figure 3.12. Next we consider the case when the edge DiDi+1 is

solid. Let the 3-circuit containing DiDi+1 have label w. Since the 3-circuit labeled w

is in ET,γ we know the transitions of γ at w are not the same as the transitions of fT

and α at w. Therefore at least four of the edges in Di, Di+1, and B′ are in P1, where
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D
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Figure 3.12: The figure above shows the graph G′α, where the red triangles are the
3-circuits in HG,γ. As we move along the 2-cycles in the components D1, . . . , Dk there
is a solid 3-circuit labeled u, where changing the transitions of u of α results in the
transition function α′. Changing the transitions of eivhi in α′ results in an eulerian
circuit T ′.

B′ is a component containing a wj. Let u be the first vertex label of a solid 3-circuit

where Di, Di+1, and B′ have exactly four edges in P1 and the other two edges are in

Pi for i ∈ {2, 3}. We know u must exist since Dk contains e2v2h2 which is a transition
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in P2.

Therefore two of the transitions of u are in P1 and the other transition is in Pi

for i ∈ {2, 3}. Let α′ be the transition function obtained from α by rotating the

transitions at u such that they agree with the transitions of γ. As we see in Figure

3.12 the graph Gα′ has three components, and by changing the transitions at v to

agree with the transitions of fT we obtain an eulerian circuit T ′.

The eulerian circuit T ′ has all the same transitions as T except for the transitions

at u. The 3-circuit traversal ET ′,γ has fewer edges than ET,γ, since ET ′,γ has all of

the edges as ET,γ except the 3-circuit labeled u. This contradicts the minimality of

T , which proves that ET,γ must have no nontrivial cycles.

3.5.3 Planar digraphs

Next we show that certain edge-colored planar digraphs have a compatible circuit

if and only if the associated component graph HG,ψ has a 3-circuit tree traversal.

Suppose G is an edge-colored planar eulerian digraph where all the vertices are in S3

and each face is bounded by a directed circuit. (Since G can have cut vertices the

boundary of a face may be a circuit and not a cycle.) A clockwise oriented face is

an internal face if its bounding circuit is oriented clockwise, or the outer face whose

bounding circuit is oriented counterclockwise. Similarly a counterclockwise oriented

face is an internal face if its bounding circuit is oriented counterclockwise, or the

outer face whose bounding circuit is oriented clockwise. Note that if G is considered

as an undirected planar graph, the dual of G with this embedding is bipartite, where

the clockwise oriented faces and counterclockwise oriented faces form the two parts.

Every edge e in G borders two distinct faces, one of which is oriented clockwise

and the other counterclockwise. Let ψ be the transition function that maps the edge
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e to the edge f that follows e in the clockwise oriented face bordering e. Note that the

components of the graph Gψ are the clockwise oriented faces of G. See Figure 3.13

for an example.

G

HG,ψ

Gψ

Figure 3.13: An example of a planar digraph where each face is a cycle. Less than
half the edge colorings of this graph have a compatible circuit. The coloring above
does not have a compatible circuit since HG,ψ does not have a 3-circuit tree traversal.
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Theorem 3.46. Let G be an edge-colored eulerian planar digraph where all the ver-

tices are in S3 and each face is bounded by a directed circuit. The digraph G has

a compatible circuit if and only if the component graph HG,ψ has a 3-circuit tree

traversal.

Proof. (⇐) If HG,ψ has a 3-circuit tree traversal, then G has a compatible circuit by

Lemma 3.40.

(⇒) Suppose G has a compatible circuit. We create a new edge coloring φ′ from

the edge coloring φ of G as follows. For every solid 3-circuit labeled v in HG,ψ, we

rotate the colors on the tails of the outgoing edges of v such that the color of the head

of each incoming edge is the same as the outgoing edge that does not share a face

with the incoming edge, as in Figure 3.14. Note that with the edge coloring φ′ the

only nonmonochromatic transitions either follow the clockwise or counterclockwise

oriented faces at the vertices whose corresponding 3-circuits are solid in HG,ψ,φ′ .

Since φ′ differs from φ by rotations, Lemma 3.28 implies that G with edge coloring

φ′ also has a compatible circuit. Lemma 3.32 shows that the graphs HG,ψ,φ and HG,ψ,φ′

are the same graph. We will show that there is a 3-circuit tree traversal in HG,ψ,φ′ ,

which implies HG,ψ,φ also has a 3-circuit tree traversal.

Figure 3.14: Rotate the outgoing colors of the tails such that they are colored as the
figure on the left. The case when the incoming edge colors are red, green, and blue
moving counterclockwise around the vertex v is similar.

Choose T to be a compatible circuit of G with the edge coloring φ′ such that T
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minimizes the number of edges in the 3-circuit traversal ET,ψ in HG,ψ,φ′ . Notice that

we are only considering compatible circuits and not pseudocompatible circuits. We

claim that for this choice of T that ET,ψ is a 3-circuit tree traversal in HG,ψ,φ′ .

Suppose ET,ψ is not a 3-circuit tree traversal. Let D = D1D2 . . . Dk be the smallest

cycle in ET,ψ that is not a solid 3-circuit. Let V (D) denote the set of vertices of G

that appear as labels on the edges of D.

Di

Di+1
B

Di

Di+1
B

P P

ei

hj

ei
hj

Figure 3.15: The vertex on the left corresponds to a solid 3-circuit, and the figure
shows the curve P through the faces Di and Di+1. The vertex on the right corresponds
to a dashed 3-circuit, and again the figure shows the curve P . Notice that in both
cases there is no transition in T that crosses P .

There exists a closed planar curve P that does not cross any edge (except at the

endpoints) of the planar embedding of G, moves through the faces D1, D2, . . . , Dk,

and passes through each of the vertices in V (D). Note that there are edges both

inside the region enclosed by P , and edges outside P , as shown in Figure 3.15.

We claim that the edges inside P and outside P are not connected in T , contra-

dicting that T is an eulerian circuit. We say a transition evh crosses the curve P if

one of the edges e or h is inside the region enclosed by P and the other edge is outside

P .

Consider the edge DiDi+1 with label v ∈ V (D) in the cycle D. Since each face

is a directed circuit, the incoming and outgoing edges around each vertex alternate.
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Thus there is a counterclockwise oriented face B incident to v and is adjacent to

both of the faces Di and Di+1. We claim the two edges in G bordering the face B

incident to v must form a transition in T . When the 3-circuit labeled v is dashed, the

incoming edge into v adjacent to the face Di goes to the outgoing edge of v adjacent

to the face Di+1, and the incoming edge into v adjacent to the face Di+1 goes to the

outgoing edge of v adjacent to Di. Therefore there is no transition across the curve

P . When the 3-circuit labeled v is solid, the only nonmonochromatic transitions

follow the clockwise oriented faces or follows the counterclockwise oriented faces, by

how we choose the edge coloring φ′. Since the solid 3-circuit labeled v is in ET,ψ

the transitions follow the counterclockwise oriented faces, which implies there is no

transition that crosses the curve P . See Figure 3.15 for an illustration of these cases.

Since this argument holds for all v ∈ V (D), there is no transition in T that crosses

P , and hence T cannot reach both the edges of G inside P and the edges outside P .

This contradicts that T is an eulerian circuit, and thus the subgraph ET,ψ must not

have any cycles.

3.5.4 Polynomial time algorithm to find a 3-circuit tree

traversal

In this section we show that we can determine in polynomial time whether the aux-

iliary graph HG,f contains a 3-circuit tree traversal by considering spanning trees in

a related 3-uniform hypergraph.

Definition 3.47. A cycle in a hypergraph H is a sequence of vertices and incident

edges that start and end at the same vertex, i.e. v1, e1, v2, e2, . . . , vk = v1, where vi

and vi+1 are vertices contained in the edge ei. A spanning tree of H is a connected

spanning subgraph having no cycles.
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Lovász [41, 42] showed that there is a polynomial time algorithm to determine if

a 3-uniform hypergraph has a spanning tree, and the algorithm provides a spanning

tree if one exists.

There is a strong connection between spanning trees in 3-uniform hypergraphs

and finding a 3-circuit tree traversal in HG,f . The following definition constructs a

hypergraph H∗G,f that is closely related to HG,f .

Definition 3.48. LetHG,f be the auxiliary graph for an edge-colored eulerian digraph

G where all vertices are in S3, and let f be a transition function for G. Assume that

HG,f has no dashed 3-circuit that consists of three loops. Let H∗G,f be the hypergraph

with vertex set V (H∗G,f ) = V (HG,f ) ∪ {uv : the 3-circuit labeled v is dashed}, i.e.

we add a vertex for each dashed 3-circuit. The edges of H are given as follows:

for each solid 3-circuit in HG,f that is a triangle in HG,f , there is an edge in H∗G,f ;

for each dashed 3-circuit with label v between only two vertices x and y in HG,f ,

the hypergraph H∗G,f has the edge xyuv; and for each dashed 3-circuit with label v

between three vertices x, y and z in HG,f , the hypergraph H∗G,f has the edges xyuv,

xzuv, and yzuv.

We make several observations about the hypergraph H∗G,f . If HG,f has a dashed

3-circuit with three loops, then we immediately know that there is no 3-circuit tree

traversal. The hypergraph H∗G,f is defined only if HG,f does not contain a dashed

3-circuit that consists of three loops. Every solid 3-circuit not in a triangle is never

an edge in a 3-circuit tree traversal, so those edges are ignored when forming H∗G,f .

Lemma 3.49. Suppose the graph HG,f does not have a dashed 3-circuit with three

loops. The graph HG,f has a 3-circuit tree traversal if and only if the 3-uniform

hypergraph H∗G,f has a spanning tree.
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Proof. Suppose HG,f has a 3-circuit tree traversal E. We construct the following

set T of edges of H∗G,f . For each solid 3-circuit in E add the corresponding edge

to T , and for each edge xy in E from a dashed 3-circuit with label v add the edge

xyuv to T . Since HG,f is connected, we know T spans at least the vertices in HG,f .

Further, since E contains one edge from each dashed 3-circuit we know the vertices

in {uv : the 3-circuit labeled v is dashed} are also connected in T . Therefore the

subgraph in H∗G,f with edge set T is connected.

Note the vertices uv are in exactly one edge in T , so they do not belong to any

cycle. Thus since E is a 3-circuit tree traversal there are no cycles in the subgraph

with edge set T in H∗G,f , hence it is a spanning tree.

If H∗G,f has a spanning tree T , then we have a corresponding set of edges in HG,f

found in the following way: for each edge corresponding to a solid 3-circuit add that

edge to E; for each edge xyuv in T pick an edge in HG,f between the vertices x and

y to be in E. Note when the dashed 3-circuit is between only two vertices there are

two choices. The set E is a set of edges in HG,f that are connected and contain no

cycles, except for the solid 3-circuits. Thus E is a 3-circuit tree traversal.

Corollary 3.50. There is a polynomial time algorithm that determines if HG,f has

a 3-circuit tree traversal, and provides a 3-circuit tree traversal if one exists.

These results give rise to a polynomial time algorithm for determining if G has a

compatible circuit when G for the eulerian digraphs discussed in Sections 3.5.2 and

3.5.3.

Algorithm

Input: A colored eulerian digraph G where all the vertices are in S3 and G is either

constructed from a cubic graph or a planar digraph where all the faces are directed
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cycles.

Output: Compatible circuit of G or a certificate which shows no such circuit exists.

Step 1: Construct the auxiliary graphs Gf and HG,f , where f = γ if G is con-

structed from a cubic graph and f = ψ if G is a planar digraph where each face

is a directed cycle.

Step 2: If there is a dashed 3-circuit with three loops, then HG,f can not have a

3-circuit tree traversal. Return HG,f and the dashed 3-circuit as a certificate.

Otherwise, construct the 3-uniform hypergraph H∗G,f from HG,f , and determine

if H∗G,f has a spanning tree T . If H∗G,f does not have a spanning tree, then H

is a certificate that G does not have a compatible circuit.

Step 3: If H∗G,f has a rainbow spanning tree, then construct the corresponding 3-

circuit tree traversal E.

Step 4: Changing transition according to the 3-circuit tree traversal gives us a pseu-

docompatible circuit T ′. For each vertex that has three monochromatic tran-

sitions, we can rearrange the excursions to finally obtain a compatible circuit

T .

Each of these steps can be completed in polynomial time. This provides a poly-

nomial time algorithm for certain families of graphs where all the vertices are in S3.

An open question is whether there is a polynomial time algorithm to determine if G

has a compatible circuit when all the vertices are in S3.



75

3.6 General compatible circuits

Let G be an eulerian digraph. An edge e is incident to an edge h if e = uv and

h = vw for some vertices u, v, and w. The acceptable transition set for an edge e is a

nonempty set of incident edges to e. We let A(e) denote the acceptable transition set

for the edge e. Throughout the rest of this section we assume that G is an eulerian

digraph where all the edges have been assigned acceptable transition sets.

A compatible circuit is an eulerian circuit of G, call it T = e1, e2, . . . , em, such

that ei+1 ∈ A(ei) for 1 ≤ i ≤ m− 1 and em ∈ A(e1).

Definition 3.51. A vertex v is fixable if LM(v) has a compatible circuit for every

matching M between E+(v) and E−(v).

Proposition 3.52. Let G be a colored eulerian digraph. If all the vertices of G are

fixable then G has a compatible circuit.

Next we give a sufficient condition when a vertex is fixable. As in the case with

edge-coloring we use Meyniel’s Theorem.

Proposition 3.53. Let v be a vertex in G. If for each incoming edge e−i we have

|A(e−i )| ≤ deg+(v)
2

+ 1, and for each outgoing edge e+
i we have e+

i appears in at least

d+(v)/2 + 1 acceptable transition sets, then the vertex v is fixable.

Proof. Consider the excursion graph LM(v) for some vertex v and an arbitrary match-

ing M . Let H be a directed graph whose vertex set is given by the excursions, and

there is a directed edge SiSj between the vertices Si and Sj in H if i 6= j and

e+
j ∈ A(e−i ). A hamiltonian cycle in H corresponds to a compatible circuit in LM(v).

Note that H is a graph on d+(v) vertices.

We use Meyniel’s Theorem to show that H has a Hamiltonian cycle. Let Si and

Sj be nonadjacent vertices in H. Then we know e+
j /∈ A(e−i ) and e+

i /∈ A(e−j ). We also
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know that d+
H(Si) is at least d+(v)/2, since |A(e−i )| ≥ d+(v) + 1 (note e+

i ∈ A(e−i ),

but is not an edge in H). We also have d−H(Si) is at least d+(v)/2, since e+
i is in at

least d+(v)/2 + 1 lists.

Thus,

d+(Si) + d−(Si) + d+(Sj) + d−(Sj) ≥ 2d+(v) ≥ 2|V (H)| − 1

and so by Meyniel’s Theorem the digraph H has a hamiltonian cycle. Since M was

arbitrary, the graph LM(v) has a compatible circuit for all matchings M . This proves

that v is fixable.

Note that Proposition 3.53 gives sufficient conditions for when a vertex is fixable,

but they are not necessary. One open question is providing necessary and sufficient

conditions for when a vertex is fixable. Another related question is to determine if

providing a lower bound on the size of the number allowed edges would imply a vertex

is fixable.

3.6.1 Finding a general compatible circuit is NP-complete

In this section we show that determining if an eulerian digraph G with arbitrary

allowed transitions has a compatible circuit is NP-complete. We reduce our problem

to 3-SAT, which is a well known NP-complete problem. To show this reduction

we first describe an eulerian digraph where each edge has a list of allowed transitions

where compatible circuits will be related to satisfying assignments to a 3-SAT formula

Φ.

Let the variables be y1, . . . , yr and their negations y1, . . . , yr. We let xi denote a

literal which is an arbitrary element in {y1, . . . , yr} ∪ {y1, . . . , yr}. Consider a 3-SAT
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formula Φ composed of k clauses, where each clause has the form C` = (xi` ∨ xj` ∨

xk`). We may assume a clause C` does not contain both xi` and xi` since otherwise

such a clause is always true. We assume every clause has three distinct variables.

Otherwise the clause C` = (xi` ∨xj` ∨xk`) where xi` = xj` is equivalent to the clauses

(xi` ∨ xk` ∨ y) ∧ (xi` ∨ xk` ∨ y), where y is some new variable.

Definition 3.54. Let Φ denote a 3-SAT formula where there are k clauses and each

clause contains three distinct variables. Let xi` , xj` , and xk` be the literals in the

clause C`, where xa` corresponds to the variable ya` or ya` for a ∈ {i, j, k}.

Let GΦ denote the graph with vertex set {vi : for each variable yi}∪{w}, and note

that vi corresponds to both the variable yi and its negation yi. The graph GΦ has for

each clause C` = (xi` ∨xj` ∨xk`) the following nine edges: ei`j` = vi`vj` , ej`k` = vj`vk` ,

ek`i` = vk`vi` , fwi` = wvi` , fi`w = vi`w, fwj` = wvj` , fj`w = vj`w, fwk` = wvk` , and

fk`w = vk`w. See Figure 3.16 for a picture of the nine edges in GΦ corresponding to

one clause. Here we assume that the literal xi` corresponds to the variable yi` or yi` .

Next we define the acceptable transitions for each incoming edge into a vertex

v ∈ V (GΦ). The acceptable transitions for an incoming edge fa`w into w are all

outgoing edges, i.e. A(fa`w) is all outgoing edges of w. Suppose the variable yi appears

only in the clauses C`1 , . . . , C`t and yi appears only in the clauses C`t+1 , . . . , C`s . Up to

renaming we assume that the literal xi` always corresponds to yi or yi. The acceptable

transitions for each incoming edge into vi in GΦ is given by A(fwi`) = {fi`w, ei`j`} and

A(ek`i`) = {fi`+1w, ei`j`} for 1 ≤ k ≤ t; and A(fwi`) = {fi`+1w, ei`j`} and A(ek`i`) =

{fi`w, ei`j`} for t+ 1 ≤ k ≤ s.

Lemma 3.55. There are exactly two allowed transition systems at each vertex vi in

GΦ. The first has the transitions ek`i`ei`j` and fwi`fi`w for 1 ≤ i ≤ t; and ek`i`fi`w and
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w

vi` vj` vk`

fwi`

fi`w
fwj`fj`w fwk`

fk`w

ei`j`

ej`k`ek`i`

Figure 3.16: The figure shows the nine edges in GΦ corresponding to the clause
C` = (xi` ∨ xj` ∨ xk`).

fwi`ei`j` for t + 1 ≤ i ≤ s; and the second has ek`i`fi`+1w and fwi`ei`j` for q ≤ i ≤ t

and ek`i`ei`j` and fwi`fi`+1w for t+ 1 ≤ i ≤ s.

Proof. We prove that once a transition at vi is selected, then all the rest are deter-

mined. Note the following implications:

ewisfi1w ⇒ fwi1ei1j1 ⇒ ek1i1fi2w,

ek`i`fi`+1w ⇒ fwi`+1
ei`+1j`+1

⇒ eki`+1
fi`+2w for 1 ≤ ` ≤ t− 1,

tktitfit+1w ⇒ ekt+1it+1eit+1jt+1 ⇒ fwit+1fit+2w, and

fwi`fi`+1w ⇒ ek`+1i`+1
ei`+1j`+1

⇒ fwi`+1
fi`+2w for t+ 1 ≤ ` ≤ s− 1.

Therefore if we ever have one of the transitions ek`i`fi`+1w for 1 ≤ ` ≤ t or the

transition fwi`fi`+1w for t+ 1 ≤ ` ≤ s, then the rest of the transitions are forced and

we have the second transition system from the lemma.

If none of these transition appear, then we must have the transitions from the

first transition system.



79

Our goal is to show each clause is true by showing the 3-cycle ei`j`ej`k`ek`i` is not

disconnected from the graph. This corresponds to all the literals xi`j` , xj`k` , xk`i` being

false.

Definition 3.56. Given a formula Φ and the graph GΦ, we say the variable yi is

false if the transitions at vi are the first set of transitions, and yi is true if vi has the

second set of transitions.

Theorem 3.57. Let Φ be a 3-SAT formula. The formula Φ has a satisfying assign-

ment if and only if GΦ has a compatible circuit.

Proof. Let C` be a clause with literals xi` , xj` , and xk` . If the transition systems at

vi` , vj` , and vk` have truth values such that the clause C` is false, then the 3-cycle

ei`j`ej`k`ek`i` is disconnected from the graph. Otherwise, there is a walk starting and

ending at w containing the edges ei`j` , ej`k` , and ek`i` .

If Φ has a satisfying assignment, then choosing the corresponding transitions sys-

tems at each vi gives rise to a compatible circuit of GΦ (note that this does not

determine the transitions at w, but we can arrange the excursions at w arbitrarily

since there are no restrictions on the transitions).

If GΦ has a compatible circuit, then the truth value for the variable yi is given by

the transition system at vi. Since the edges ei`j` , ej`k` , and ek`i` for clause C` are in

the compatible circuit the clause C` must be true. Since this holds for every clause,

this is a satisfying assignment for Φ.

Corollary 3.58. Determining if a digraph G has a compatible circuit where each edge

has a list of acceptable transitions is NP-complete.

Proof. This follows from Theorem 3.57 and the fact that forming GΦ can be done in

polynomial time.
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3.7 Future work

Finally, we provide some open questions about compatible circuits in eulerian di-

graphs.

Question 1: Theorem 3.16 provides necessary and sufficient conditions for the exis-

tence of compatible circuits when there are no nonfixable vertices of outdegree

three. In Section 3.5 we investigate and in certain cases can classify when a

digraph has a compatible circuit when all the vertices are in S3. Can we char-

acterize the existence of a compatible circuit in a colored eulerian digraph G

with nonfixable vertices of outdegree three?

Question 2: The BEST Theorem [62,63] provides a formula that counts the number

of eulerian circuits in an eulerian digraph. Does there exist a formula to count

the number of compatible circuits in a colored eulerian digraph?

Question 3: Given a graph G with no compatible circuit is there some choice for f

such that HG,f does not have a 3-circuit traversal. If some transition function

f always exists and can be found in polynomial time, then the problem of

determining if a graph has a compatible circuit is in co-NP.

Question 4: For a digraph G that is not eulerian the Chinese Postman Problem [19]

is to find a closed walk in G that travels each edge at least once and has

the shortest length. Given an edge-colored strongly connected digraph (not

necessarily eulerian), what is the minimum length of a closed walk with no

monochromatic transitions?

The Chinese Postman Problem has many applications in routing problems. Intro-

ducing colors allows us to enforce additional restrictions on the routing. For instance
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we could color the edges of a road network such that a compatible circuit is a route

for a mail truck that avoids left turns [46]. UPS [48] uses such routes to reduce the

time of deliveries and number of accidents, saving millions of dollars.
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Chapter 4

Edge-disjoint rainbow spanning

trees in complete graphs 1

4.1 Introduction

Let G be an edge-colored copy of Kn, where each color appears on at most n/2 edges

(incident edges may have the same color). A rainbow spanning tree is a spanning

tree of G such that each edge has a different color. Brualdi and Hollingsworth [11]

conjectured that every properly edge-colored Kn (n ≥ 6 and even) where each color

class is a perfect matching has a decomposition of the edges of Kn into n/2 edge-

disjoint rainbow spanning trees. They proved there are at least two edge-disjoint

rainbow spanning trees in such an edge-colored Kn. Kaneko, Kano, and Suzuki [37]

strengthened the conjecture to say that for any proper edge-coloring of Kn (n ≥ 6)

contains at least bn/2c edge-disjoint rainbow spanning trees, and they proved there

are at least three edge-disjoint rainbow spanning trees. Akbari and Alipour [1] showed

that each Kn that is an edge-colored such that no color appears more than n/2 times

1The following chapter is joint work with Paul Horn and Stephen Hartke. Paul and I worked
together on this project during REGS in the summer of 2013.
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contains at least two rainbow spanning trees.

Our main result is

Theorem 4.1. Let G be an edge-colored copy of Kn, where each color appears on at

most n/2 edges and n ≥ 1,000,000. The graph G contains at least bn/(1000 log n)c

edge-disjoint rainbow spanning trees.

The strategy of the proof of Theorem 4.1 is to randomly construct bn/(1000 log n)c

edge-disjoint subgraphs of G such that with high probability each subgraph has a

rainbow spanning tree. This result is the best known for the conjecture by Kaneko,

Kano, and Suzuki. Horn [33] has shown that if the edge coloring is a proper coloring

where each color class is a perfect matching then there are at least εn rainbow spanning

trees for some positive constant ε, which is the best known result for the conjecture

by Brualdi and Hollingsworth.

There have been many results in finding rainbow subgraphs in edge-colored graphs;

Kano and Li [38] surveyed results and conjecture on monochromatic and rainbow (also

called heterochromatic) subgraphs of an edge-colored graph. Related work includes

Brualdi and Hollingsworth [12] finding rainbow spanning trees and forests in edge-

colored complete bipartite graphs, and Constantine [14] showing that for certain

values of n there exists a proper coloring of Kn such that the edges of Kn decompose

into isomorphic rainbow spanning trees.

The existence of rainbow cycles has also been studied. Albert, Frieze, and Reed [2]

showed that for an edge-colored Kn where each color appears at most dcne times then

there is a rainbow hamiltonian cycle if c < 1/64 (Rue (see [27]) provided a correction

to the constant). Frieze and Krivelevich [27] proved that there exists a c such that if

each color appears at most dcne times then there are rainbow cycles of all lengths.

This chapter is organized as follows. Section 4.2 includes definitions, notation,
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and results used throughout the chapter. Section 4.3, 4.4, and 4.5 contains lemmas

describing properties of the random subgraphs we generate. Section 4.6 provides the

proof of our main result and Section 4.7 provides additional open questions.

4.2 Definitions

First we establish some notation that we will use throughout the chapter. Let G be

a graph and S ⊆ V (G). Let G[S] denote the induced subgraph of G on the vertex

set S. Let [S, S]G be the set of edges between S and S in G. For natural numbers

q and k, [q] represents the set {1, . . . , q}, and
(

[q]
k

)
is the collection of all k-subsets of

[q]. Throughout the chapter the logarithm function used has base e. One inequality

that we will use often is the union sum bound which states that for events A1, . . . , Ar

that

P

[
r⋃
i=1

Ai

]
≤

r∑
i=1

P [Ai] .

Throughout the rest of the chapter let G be an edge-colored copy of Kn, where

the set of edges of each color has size at most n/2, and n ≥ 1,000,000. We assume G

is colored with q colors, where n − 1 ≤ q ≤
(
n
2

)
. Let Cj be the set of edges of color

j in G. Define cj = |Cj|, and without loss of generality assume c1 ≥ c2 ≥ · · · ≥ cq.

Note that 1 ≤ cj ≤ n/2 for all j.

Let t = bn/(C log n)c where C = 1000. Note that we have not optimized the

constant C, and C can be slightly improved at the cost of more calculation. Since

n
C logn

− 1 ≤ t ≤ n
C logn

we have

−1

t
≤ −C log n

n
and

C log n

n
≤ 1

t
≤
(

n

n− C log n

)
C log n

n
. (∗)

We will frequently use these bounds on t.
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We construct edge-disjoint subgraphs G1, . . . , Gt of G in the following way: in-

dependently and uniformly select each edge of G to be in Gi with probability 1/t.

Each Gi (considered as an uncolored graph) is distributed as an Erdős-Rényi ran-

dom graph G(n, 1/t). Note that the subgraphs are not independent. We will show

that with high probability each of the subgraphs G1, . . . , Gt simultaneously contain

a rainbow spanning tree.

To prove that a graph has a rainbow spanning tree we use Theorem 2.4 from

Section 2.1.1 that provides necessary and sufficient conditions for the existence of a

rainbow spanning tree.

Theorem 2.4. A graph G has a rainbow spanning tree if and only if, for every

partition π of V (G) into s parts, there are at least s − 1 different colors represented

between the parts of π.

We show that for every partition π of V (G) into s parts, that there are at least s−1

colors between the parts for each Gi. Sections 4.3, 4.4, and 4.5 describe properties of

the subgraphs G1, . . . , Gt for certain partitions π of V (G) into s parts. Many of our

proofs use the following variant of Chernoff’s inequality [13], frequently attributed to

Bernstein (see [16]).

Lemma 4.2 (Bernstein’s Inequality). Suppose Xi are independently identically dis-

tributed Bernoulli random variables, and X =
∑
Xi. Then

P [X ≥ E[X] + λ] ≤ exp

(
− λ2

2(E[X] + λ/3)

)

and

P [X ≤ E[X]− λ] ≤ exp

(
− λ2

2E[X]

)
.

In several places in the chapter we use Jensen’s inequality.
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Lemma 4.3 (Jensen’s Inequality (see [64])). Let f(x) be a real-valued convex function

defined on an interval I = [a, b]. If x1, . . . , xn ∈ I and λ1, . . . , λn ≥ 0 with
∑n

i=1 λi =

1, then

f

(
n∑
i=1

λixi

)
≤

n∑
i=1

λif(xi).

We also make use of the following upper bounds for binomial coefficients:

(
n

k

)
≤
(en
k

)k
= exp(k log n− k log k + k) ≤ nk.

4.3 Partitions with n or n− 1 parts

In this section we show that a partition π of V (G) into n or n− 1 parts has enough

colors between the parts. Since color classes can have small size, there might not be

any edges of a given color in a subgraph Gi. Therefore, we group small color classes

together to form larger pseudocolor classes. Recall that cj is the size of the color

class Cj, and c1 ≥ c2 ≥ · · · ≥ cq. Define the pseudocolor classes D1, . . . , Dn−1 of G

recursively as follows:

Dk =

(⋃̀
j=1

Cj

)
−

(
k−1⋃
i=1

Di

)
,

where ` is the smallest integer such that
∣∣∣(⋃`

j=1Cj

)
−
(⋃k−1

i=1 Di

)∣∣∣ ≥ n/4. Note that

the n− 1 pseudocolor classes might not contain all the edges of G.

Lemma 4.4. Each of the n − 1 pseudocolor classes D1, . . . , Dn−1 have size at least

n/4 and at most n/2.

Proof. Consider the pseudocolor class Dk, for 1 ≤ k ≤ n − 1. Since each of the

pseudocolor classes D1 . . . , Dk−1 has size at most n/2, there are at least n
2
(n − k)

edges not in
⋃k−1
i=1 Di. Therefore there exists `′ and ` such that Dk =

⋃`
i=`′ Ci, where
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|Dk| =
∑`

i=`′ ci ≥ n/4.

If `′ = ` then |Dk| = |C`| ≤ n/2. Otherwise, we know c` ≤ c`−1 ≤ c`′ ≤ n/4. So,

|Dk| =
`−1∑
i=`′

ci + c` ≤
n

4
+ c` ≤

n

4
+
n

4
=
n

2
,

which proves that the pseudocolor class Dk has size at most n
2
.

Lemma 4.5. For a fixed subgraph Gi and pseudocolor class Dj,

P
[
|E(Gi) ∩Dj| ≤

|Dj|
t
−
√

3
n

t
log n

]
≤ 1

n3
.

As a consequence, with probability at least 1 − 1
n

every subgraph Gi has at least one

edge from each of the pseudocolor classes D1, . . . , Dn−1.

Proof. Fix a subgraph Gi and a pseudocolor class Dj. The expected number of

edges in Gi from the pseudocolor class Dj is
|Dj |
t

. By Bernstein’s Inequality where

λ =
√

3n
t

log n, we have

P
[
|E(Gi) ∩Dj| ≤

|Dj|
t
−
√

3
n

t
log n

]
≤ exp

(
−3n

t
log n

2
|Dj |
t

)

≤ exp

(
−3n log n

2n
2

)
=

1

n3
.

Since |Dj| ≥ n/4 by Lemma 4.4, n ≥ 1, 000, and C ≥ 50, we have

|Dj|
t
−
√

3
n

t
log n ≥ n

4t
−
√

3
n

t
log n ≥ 1.

The second statement of the lemma follows from the previous inequalities by using

the union sum bound for the n− 1 pseudocolor classes and t subgraphs and recalling

that t < n.
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Lemma 4.5 shows that if we consider a partition π of V (G) into s parts, where

s = n there must be at least n − 1 colors in Gi between the parts of π. In the case

when the partition has s = n− 1 parts there is at most one edge inside the parts of

π, so there are at least n− 2 colors in Gi between the parts of π.

4.4 Partitions where
(
1− 14√

C

)
n ≤ s ≤ n− 2

In this section we consider partitions π of V (G) into s parts where
(

1− 14√
C

)
n ≤ s ≤

n − 2. First, we introduce a new function that will help with our calculations. The

function f will be used to bound the probability that q− (s− 2) colors do not appear

between the parts of π in Gi.

Lemma 4.6. For an integer ` and real numbers c1, . . . , cq, define

f(c1, . . . , cq; `) =
∑

I∈( [q]
q−`)

exp

(
−1

t

∑
j∈I

cj

)
.

If 1 ≤ cj ≤ n
2

for each j,
∑q

i=1 cj =
(
n
2

)
, and n

2
≤ ` ≤ n− 4, then

f(c1, . . . , cq; `) ≤ exp

(
−49C

200
(n− `) log n

)
.

Proof. For convenience we define w(I) =
∑

j∈I cj for a subset I ⊆ [q].

Claim 4.7.

f(c1, . . . , cq; `) ≤ f( 1, 1, . . . , 1︸ ︷︷ ︸
k − 1 times

, x∗,
n

2
, . . . ,

n

2︸ ︷︷ ︸
q − k times

; `),

where 1 ≤ x∗ < n
2
, and where k and x∗ are so that (k − 1) + (q − k)n

2
+ x∗ =

(
n
2

)
.



89

Proof of Claim 4.7. Since f(c1, . . . , cq; `) is a symmetric function in the cj’s, it suffices

to show that when c2 ≥ c1,

f(c1, c2, . . . , cq; `) ≤ f(c1 − ε, c2 + ε, . . . , cq; `),

where ε = min{c1 − 1, n
2
− c2}.

f(c1, c2, . . . , cq; `) =
∑

I∈([q]−{1,2}
q−` )

exp

(
−w(I)

t

)
+

∑
I∈([q]−{1,2}

q−`−2 )

exp

(
−c1

t
− c2

t
− w(I)

t

)

+
∑

I∈([q]−{1,2}
q−`−1 )

(
exp

(
−c1

t
− w(I)

t

)
+ exp

(
−c2

t
− w(I)

t

))

The first two summations are unchanged in f(c1 − ε, c2 + ε, . . . , cq; `), and hence it

suffices to show that for every I ∈
(

[q]−{1,2}
`−1

)
,

exp

(
−c1

t
− w(I)

t

)
+ exp

(
−c2

t
− w(I)

t

)
≤ exp

(
−(c1 − ε)

t
− w(I)

t

)
+ exp

(
−(c2 + ε)

t
− w(I)

t

)
.

This follows immediately by Jensen’s inequality and the convexity of exp(αx+ β) as

a function in x.

Claim 4.8.

f( 1, 1, . . . , 1︸ ︷︷ ︸
k − 1 times

, x∗,
n

2
, . . . ,

n

2︸ ︷︷ ︸
q − k times

; `) ≤ f(1, . . . , 1︸ ︷︷ ︸
k times

,
n

2
, . . . ,

n

2︸ ︷︷ ︸
q − k times

; `),
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where n(n−2)
2
≤ k + (q − k)n

2
≤
(
n
2

)
.

Proof of Claim 4.8. The function f is decreasing in each cj, and in particular ck.

Now consider

f(1, . . . , 1︸ ︷︷ ︸
k times

,
n

2
, . . . ,

n

2︸ ︷︷ ︸
q − k times

; `) =
∑

I∈( [q]
q−`)

exp

(
−1

t
w(I)

)

≤
min{`,k}∑

r=max{0,`−(q−k)}

(
k

r

)(
q − k
`− r

)
exp

(
−1

t

(
n(n− 2)

2
− (`− r)n

2
− r
))

≤
min{`,k}∑

r=max{0,`−(q−k)}

kr(q − k)(q−k)−(`−r) exp

(
−1

t

(n
2

(n− (`− r)− 2)− r
))

≤
min{`,k}∑

r=max{0,`−(q−k)}

exp

(
(q − k − `+ 2r) log n− 1

t

(n
2

(n− `+ r − 2)− r
))

≤
min{`,k}∑

r=max{0,`−(q−k)}

exp

(
log n

(
q − k − `+ 2r − C

2
(n− `+ r − 2) +

Cr

n

))
by (∗)

≤ n exp

(
log n

(
(n− `)

(
1− C

2

)
+ r

(
2− C

2
+
C

n

)
+ C

))
≤ exp

(
log n

(
(n− `)

(
1− C

2

)
+ C + 1

))
.

Since n− ` ≥ 4 and C ≥ 250, we have

1 +
1

n− `
≤ C

200
≤ C

(
1

2
− 1

n− `
− 49

200

)
.

Multiplying by (n− `) and rearranging we have

(n− `)
(

1− C

2

)
+ 1 + C ≤ −49C

200
(n− `).
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Thus the sum above is bounded by

exp

(
−49C

200
(n− `) log n

)
.

Lemma 4.9. Let Π be the set of partitions of V (G) into s parts, where
(

1− 14√
C

)
n ≤

s ≤ n− 2. For a partition π ∈ Π, let Bπ,i be the event that there are less than s− 1

colors between the parts of π in Gi. Then

P

[
t⋃
i=1

⋃
π∈Π

Bπ,i

]
≤ 1

n
.

Proof. Fix a subgraph Gi and a partition π ∈ Π. Recall that C1, . . . , Cq are the color

classes of G with sizes c1, . . . , cq, respectively. Let Iπ,i be the set of colors that do not

appear on edges of Gi between the parts of π.

The total number of edges in G that have a color indexed by Iπ,i is
∑

i∈Iπ,i cj. By

convexity of
(
x
2

)
, there are at most

(
n−s+1

2

)
edges inside the parts of π. Note that if

Iπ,i does not have size q−(s−2), then it contains a set I ′ ⊆ Iπ,i of size q−(s−2), and

the event that no edges of Gi between the parts of π have colors in Iπ,i is contained

in the event that no edges of Gi between the parts have colors in I ′. Thus,

P [Bπ,i] ≤
∑

I∈( [q]
q−(s−2))

(
1− 1

t

)∑
j∈I cj−(n−s+1

2 )

≤ f(c1, c2, . . . , cq; s− 2)

(
1− 1

t

)−(n−s+1
2 )

≤ f(c1, c2, . . . , cq; s− 2) exp

(
1

t

(
n− s+ 1

2

))
since

(
1− 1

t

)
≤ e−

1
t

≤ exp

(
−49C

200
(n− (s− 2)) log n+

(n− s+ 1)2

2t

)
by Lemma 4.6.

Since s ≥
(

1− 14√
C

)
n, we know n− s+ 1 ≤ 14n√

C
+ 1. Thus we can bound the previous
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line by

≤ exp

(
(n− s+ 1)

(
−49C

200
log n+

1

2t

(
14√
C
n+ 1

)))
≤ exp

(
(n− s+ 1) log n

(
−49C

200
+

n

n− C log n

(
14
√
C

2
+
C

2n

)))
by (∗).

We now perform a union bound over all partitions π ∈ Π. The number of partitions

of V (G) into s nonempty parts is at most

(
n

s

)
sn−s ≤

(
n

n− s

)
nn−s ≤ n2(n−s) = exp(2(n− s) log n) ≤ exp(2(n− s+ 1) log n).

Therefore,

P

 ⋃
π∈Π

with s parts

Bπ,i

≤exp

(
(n−s+1) log n

(
2− 49C

200
+

n

n−C log n

(
14
√
C

2
+
C

2n

)))
.

Since C = 1000 and n ≥ 1,000,000, we have

2− 49C

200
+

n

n− C log n

(
14
√
C

2
+
C

2n

)
≤ −1,

and since (n− s+ 1) ≥ 3,

P

 ⋃
π∈Π

with s parts

Bπ,i

 ≤ exp (−3 log n) =
1

n3
.
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This gives a bound on the probability for a fixed partition size s. Using the union

sum bound over all partition sizes s, where
(

1− 14√
C

)
n ≤ s ≤ n− 2, and over all t

subgraphs completes the proof.

This proves when s is large there are enough colors between the parts.

4.5 Partitions where 2 ≤ s ≤
(
1− 14√

C

)
n

Next, we prove several results that will be used to show there are enough colors in

Gi between the parts of the partition when the number of parts is small. Our goal is

to show that for a partition π of V (G) into s parts, the number of edges between the

parts in Gi is so large that there must be at least s− 1 colors between the parts.

Lemma 4.10. For a fixed subgraph Gi and color j,

P
[
|E(Gi) ∩ Cj| ≥

n

2t
+ 4

√
n

t
log n

]
≤ 1

n4
.

As a consequence, with probability at least 1 − 1
n

, every color appears at most n
2t

+

4
√

n
t

log n times in every Gi.

Proof. Fix a color j and a subgraph Gi. Order the edges of Cj as e1, . . . , ecj . For

1 ≤ k ≤ cj, let Xk be the indicator random variable for the event ek ∈ E(Gi). For

a color class with size less than n
2

we introduce dummy random variables, so we can

apply Bernstein’s Inequality. For cj + 1 ≤ k ≤ n/2, let Xk be a random variable

distributed independently as a Bernoulli random variable with probability 1/t.

By construction, |E(Gi) ∩ Cj| ≤ X =
∑n/2

k=1Xk and E[X] = n
2t

. By Bernstein’s
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Inequality where λ = 4
√

n
t

log n, we have

P
[
|E(Gi) ∩ Cj| ≥

n

2t
+ 4

√
n

t
log n

]
≤P
[
X ≥ n

2t
+ 4

√
n

t
log n

]
≤ exp

(
−16n

t
log n

2
(
n
2t

+ 4
3

√
n
t

log n
))

= exp

 −16 log n

1 + 8
3

√
t
n

log n


≤ exp

(
−16

1 + 8
3
√
C

log n

)
since t ≤ n

C log n
,

≤ exp

(
−16

11
3

log n

)
≤
(

1

n

)48/11

≤ 1

n4
since C ≥ 1,

which proves the first statement.

The second statement of the lemma follows from the previous inequality by using

the union sum bound for the q color classes and t subgraphs, and recalling that q < n2

and t < n.

Lemma 4.11. Fix S ⊆ V (G). Let BS,i be the event

∣∣∣[S, S ]
Gi

∣∣∣ ≤ |S|(n− |S|)
t

−
√

6|S|(n− |S|)
t

min{|S|, n− |S|} log n.

Then

P

 t⋃
i=1

⋃
S⊆V (G)

BS,i

 ≤ 4

n
.

Proof. Fix a subgraph Gi and a set of vertices S ⊆ V (G). Let r = |S|. The expected

number of edges in Gi between S and S is r(n− r)/t. By Bernstein’s Inequality with
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λ =
√

6 r(n−r)
t

min{r, n− r} log n, we have

P [BS,i] ≤ exp

(
−6 r(n−r)

t
min{r, n− r} log n

2 r(n−r)
t

)
= n−3 min{r,n−r}.

So

P

 ⋃
S⊆V (G)

BS,i

 ≤ n/2∑
r=1

(
n

r

)
n−3r +

n∑
r=n/2

(
n

n− r

)
n−3(n−r) = 2

n/2∑
r=1

(
n

r

)
n−3r

≤ 2

n/2∑
r=1

n−2r ≤ 2n−2 + 2

 n/2∑
r=2

n−4

 ≤ 2

n2
+

2

n3
≤ 4

n2
.

Applying the union sum bound for the t subgraphs gives the final statement of the

lemma.

The previous lemma gives a lower bound on the number of edges between S and

S. We use this lemma to find a lower bound on the number of edges between the

parts for a partition π = {P1, . . . , Ps} of V (G).

Definition 4.12. For x ∈ [0, n], let

f(x) =
x(n− x)

t
−
√

6x(n− x)

t
min{x, n− x} log n.

If none of the bad events BS,i from Lemma 4.11 occur, then the sum

1
2

∑
π={P1,...,Ps} f(|Pi|), where

∑s
i=1 |Pi| = n, is a lower bound on the number of edges

between the parts of the partition π. We bound this sum for all partitions. If

−f(x) was convex then we could immediately find a lower bound by using Jensen’s

Inequality 4.3. Since −f(x) is not convex, we bound it with a function that is convex.

Let h(x) be a function with domain [a, b]. We say a function h is concave down if

for x, y ∈ [a, b] and λ ∈ [0, 1], then h(λx+ (1− λ)y) ≥ λh(x) + (1− λ)h(y). First, we
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present two basic results about concave down functions.

Lemma 4.13. Let h(x) be a differentiable function with domain [a, b]. Suppose that

h is concave down on [z, b], where z ∈ (a, b). Let `(x) be the line tangent to h at the

point (z, h(z)). Then the function

h1(x) =

 `(x) if a ≤ x ≤ z,

h(x) if z < x ≤ b

is concave down.

Proof. Let y1, y2 ∈ [a, b] where y1 ≤ y2, and λ ∈ [0, 1]. If y1 and y2 are both in [a, z]

or [z, b] then

h1(λy1 + (1− λ)y2) ≥ λh1(y1) + (1− λ)h1(y2),

since ` and h are both concave down.

Consider the case when y1 ∈ [a, z) and y2 ∈ (z, b]. Let λ ∈ [0, 1] and w =

λy1 + (1− λ)y2. Let b be the y-intercept of the line `(x), i.e. `(x) = h′(z)x+ b. Since

h is concave down on the interval [z, b], we know that h lies below the tangent line `(x)

on the interval [z, b]. In particular, h′(z)y2+b ≥ h(y2). Let ε = h′(z)y2+b−h(y2) ≥ 0.

If w ≤ z, then we want to show that h1(w) = h′(z)(w−y1)+`(y1) ≥ h(y2)−`(y1)
y2−y1 (w−

y1) + `(y1). Note that it is enough to show that h′(z) ≥ h(y2)−`(y1)
y2−y1 . Since ε ≥ 0, we

have

h′(z) ≥ h′(z)
y2 − y1 − ε
y2 − y1

=
(h′(z)y2 + b− ε)− (h′(z)y1 + b)

y2 − y1

=
h(y2)− `(y1)

y2 − y1

.

Suppose w > z. The line between z and y2 is given by h(y2)−h(z)
y2−z (w − z) + h(z),

and by the concavity of h(x) on [z, b] we know h1(w) ≥ h(y2)−h(z)
y2−z (w − z) + h(z). We

want to show h(y2)−h(z)
y2−z (w− z) +h(z) ≥ h(y2)−`(y1)

y2−y1 (w− z) +h(z). It is enough to show
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that h(y2)−h(z)
y2−z ≥ h(y2)−`(y1)

y2−y1 . We know y1 < z and ε > 0. Adding h′(z)y2
2 − h′(z)y2z −

h′(z)y1y2 + h′(z)zy1− εy2 to both sides to the inequality εy1 ≤ εz and factoring gives

us

(h′(z)y2 − ε− h′(z)z) (y2 − y1) ≤ (h′(z)y2 − ε− h′(z)y1) (y2 − z)

(h′(z)y2 + b− ε)− (h′(z)z + b)

y2 − z
≤ (h′(z)y2 + b− ε)− (h′(z)y1 + b)

y2 − y1

h(y2)− h(z)

y2 − z
≤ h(y2)− `(y1)

y2 − y1

.

Lemma 4.14. Let h1 and h2 be two concave down functions. The function h(x) =

min{h1(x), h2(x)} is concave down.

Proof. For every x, y and λ ∈ [0, 1] we have

h(λx+ (1− λ)y) = min{h1(λx+ (1− λ)y), h2(λx+ (1− λ)y)}

≤ λmin{h1(x), h2(x)}+ (1− λ) min{h1(y), h2(y)}

= λh(x) + (1− λ)h(x).

We next define several functions that will lead to a concave down lower bound for

the function f . Define on [0, n] the functions

f1(x) =
x(n− x)

t
− x
√

6(n− x)

t
log n,

f2(x) =
x(n− x)

t
− (n− x)

√
6x

t
log n.

Note that

f(x) =

 f1(x) 0 ≤ x ≤ n/2,

f2(x) n/2 < x ≤ n.
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Let `(x) = f ′2(x)(x − n/2) − f2(n/2) be the tangent line of f2(x) at the point(
n
2
, n

2

4t
− n

2

√
3n
t

log n
)

. Let c be the point such that f1(x) achieves its maximum

value on the interval [0, n]. Define

f3(x) =

 `(x) 0 ≤ x ≤ n/2,

f2(x) n/2 < x ≤ n

and

f4(x) =

 f1(x) 0 ≤ x ≤ c,

f1(c) c < x ≤ n.

By Lemma 4.13 the functions f3 and f4 are concave down.

On the interval [0, n] define f5(x) = min{f3(x), f4(x)}. The function f5(x) is

concave down by Lemma 4.14, where f(x) ≥ f5(x) for all x ∈ [0, n]. Figure 4.1 shows

the functions f(x) and `(x) used to create f5(x).

Lemma 4.15. The sum
∑s

i=1 f(xi), where
∑s

i=1 xi = n and xi ≥ 1 for all i, is

bounded below by
s∑
i=1

f(xi) ≥ (s− 1)f(1) + f(n− s+ 1).

Proof. The proof is broken up into two cases based on whether s ≤ n/2, or s > n/2.

When s ≤ n/2 the function f(x) ≥ f5(x), so
∑s

i=1 f(xi) ≥
∑s

i=1 f5(xi). Since the

function f5(x) is concave down the sum
∑s

i=1 f5(x) is minimized when there is one

part of size n− s+ 1 and all the other parts are of size 1. Since n− s+ 1 ≥ n/2, we

have f5(n−s+1) = f(n−s+1). Note that `(1) ≥ f1(1), which implies f5(1) = f(1).

Thus

s∑
i=1

f(xi) ≥
s∑
i=1

f5(xi) ≥ (s− 1)f5(1) + f5(n− s+ 1) = (s− 1)f(1) + f(n− s+ 1).
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0 n/2 n

c

`(x)
f(x)

Figure 4.1: The function f(x), along with the line `(x).

When s > n/2, we have xi ≤ n/2 for all i. Therefore f(xi) = f1(xi) for all i.

Since f1(x) is concave down the sum is minimized when one parts has size n− s+ 1

and the rest have size 1.

Lemma 4.16. Let π be a partition of the vertices of G into s parts. Suppose none of

the events BS,i from Lemma 4.11 hold for all S ⊆ V (G) and 1 ≤ i ≤ t. Then in each

of the subgraphs G1, . . . , Gt, the number of edges between the parts of π is at least

1

2

(
(s−1)

(
n−1

t
−
√

6(n−1)
log n

t

)
+

(n−s+1)(s−1)

t
−(s−1)

√
6(n−s+1)

log n

t

)
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when s ≤ n/2, and

1

2

(
(s−1)

(
n−1

t
−
√

6(n−1)
log n

t

)
+

(n−s+1)(s−1)

t
−(n−s+1)

√
6(s−1)

log n

t

)

when s > n/2.

Proof. If none of the events BS,i hold then the sum 1
2

∑
π={P1,...,Ps} f(x) where∑s

i=1 |Pi| = n is a lower bound on the number of edges between the parts of π. By

Lemma 4.15 we know this sum is bounded below by 1
2

((s− 1)f(1) + f(n− s+ 1)).

Lemma 4.17. Let π be a partition of the vertices of G into s parts, where 2 ≤ s ≤(
1− 14√

C

)
n. Suppose none of the events BS,i from Lemma 4.11 hold for all S ⊆ V (G)

and 1 ≤ i ≤ t, and every color appears in each Gi at most n
2t

+ 4
√

n
t

log n times (as

in Lemma 4.10). Then in each of the subgraphs G1, . . . , Gt, the number of colors

between the parts of π is at least s− 1.

Proof. Suppose there exists a subgraph Gi and a partition π into s parts where there

are at most s− 2 colors between the parts in Gi. Then by assumption there are at

most

(s− 2)

(
n

2t
+ 4

√
n

t
log n

)
edges in Gi between the parts of π. We will show that the number of edges between

the parts of π can not be this small, giving a contradiction.

Suppose n
2
< s ≤

(
1− 14√

C

)
n. By Lemma 4.16 there are at least

1

2

(
(s−1)

(
n−1

t
−
√

6(n−1)
logn

t

)
+

(n−s+1)(s−1)

t
−(n−s+1)

√
6(s−1)

logn

t

)
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edges in Gi between the parts of π. If π has at most s−2 colors in Gi between the

parts, then

(s−2)

(
n

2t
+4

√
n

t
logn

)
≥s−1

2

(
n−1

t
−
√

6(n−1)logn

t
+(n−s+1)

(
1

t
−

√
6logn

(s−1)t

))
.

Rearranging we have

s−2

s−1

(
n

t
+8

√
n

t
logn

)
+

1

t
+

√
6(n−1)

logn

t
+(n−s+1)

√
6logn

(s−1)t
≥n
t

+
(n−s+1)

t
.

We will give an upper bound to the left side and a lower bound to the right side that

give a contradiction.

Since s is an integer and n/2 < s, we have

(n− s+ 1)

√
6

n(s− 1)
≤ n

2

√
12

n2
=
√

3. (†)

Therefore

s−2

s−1

(
n

t
+8

√
n

t
log n

)
+

1

t
+

√
6(n−1)

log n

t
+(n−s+1)

√
6 log n

(s−1)t

≤

(
n
√
C log n

n−C log n

)(
√
C+

√
C

n
+

√
n−C log n

n

(
8+

√
6(n−1)

n
+(n−s+1)

√
6

n(s−1)

))

≤
√
C log n

(
n

n−C log n

)(√
C+

√
C

n
+

√
n−C log n

n

(
8+
√

6+
√

3
))

by (†).

Since C = 1000 and n ≥ 1,000,000, n
n−C logn

≤ 1.02 and
√

n
n−C logn

≤ 1.01. Thus the

term above is bounded above by

√
C log n

(
1.02
√
C+

1.02
√
C

n
+1.01(8+

√
6+
√

3)

)
≤
√
C log n

(
1.02
√
C+12.31

)
.
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We next bound the right side. By (∗) we have 1
t
≥ C logn

n
, and since

s ≤
(

1− 14√
C

)
n, so

n

t
+

(n− s+ 1)

t
≥ C log n+ C log n

n− s+ 1

n
≥ C log n+ C log n

14√
C

=
√
C log n(

√
C + 14).

When C = 1000 and n ≥ 1,000,000 we have
√
C + 14 > 1.02

√
C + 12.31, which

gives a contradiction. So, there must be at least s− 1 colors in Gi between the parts

of π when n/2 < s ≤
(

1− 14√
C

)
n.

Suppose 2 ≤ s ≤ n/2. By Lemma 4.16 there are at least

1

2

(
(s−1)

(
n−1

t
−
√

6(n−1)
log n

t

)
+

(n−s+1)(s−1)

t
−(s−1)

√
6(n−s+1)

log n

t

)

edges in Gi between the parts of π. If π has at most s− 2 colors in Gi between the

parts then

(s− 1)

2

(
n− 1

t
−
√

6(n− 1)
log n

t
+

(n− s+ 1)

t
−
√

6(n− s+ 1)
log n

t

)

≤ (s− 2)

(
n

2t
+ 4

√
n

t
log n

)

Rearranging we have

s− 2

s− 1

(
n

t
+ 8

√
n

t
log n

)
+

1

t
+

√
6(n− 1)

log n

t
+

√
6(n− s+ 1)

log n

t

≥ n

t
+

(n− s+ 1)

t
.
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Using 1
t
≤ C logn

n−C logn
from (∗), we have

s−2

s−1

(
n

t
+8

√
n

t
logn

)
+

1

t
+

√
6(n−1)

logn

t
+

√
6(n−s+1)

logn

t

≤

(
n
√
C logn

n−C logn

)(
√
C+

√
C

n
+

√
n−C logn

n

(
8+

√
6(n−1)

n
+

√
6(n−s+1)

n

))
.

Since C = 1000 and n ≥ 1,000,000, n
n−C logn

≤ 1.02 and
√

n
n−C logn

≤ 1.01. Thus

the term above is bounded above by

√
C log n

(
1.02
√
C +

1.02
√
C

n
+ 1.01

(
8 + 2

√
6
))
≤
√
C log n

(
1.02
√
C + 13.1

)
.

Bounding the right side using 1
t
≥ C logn

n
from (∗), and s ≤ n

2
, we have

n

t
+

(n− s+ 1)

t
≥ C log n+ C log n

(n− s+ 1)

n
≥ C log n+ C log n

n
2

n

=
√
C log n

(
3
√
C

2

)
.

Again, when C = 1000 and n ≥ 1,000,000 we have 3
√
C

2
> 1.02

√
C + 13.1 which

leads to a contradiction. Thus, there must be at least s− 1 colors in Gi between the

parts of π when 2 ≤ s ≤ n
2
.

4.6 Main result

Theorem 4.1. Let G be an edge-colored copy of Kn, where each color appears on at

most n/2 edges and n ≥ 1,000,000. The graph G contains at least bn/(1000 log n)c

edge-disjoint rainbow spanning trees.
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Proof. Recall that t = n/(C log n) where C = 1000. We perform the random ex-

periment of decomposing the edges of G into t edge-disjoint subgraphs Gi by inde-

pendently and uniformly selecting each edge of G to be in the subgraph Gi with

probability 1/t. With probability at least 1− 7
n

none of the bad events from Lemmas

4.5, 4.9, 4.10, and 4.11 occur in any of the subgraphs Gi. Henceforth let G1, . . . , Gt

be fixed subgraphs where none of these bad events occur.

We want to show that each Gi has a rainbow spanning tree. By Theorem 2.4 it

is enough to show that for every partition π of V (G) into s parts, there are at least

s− 1 different colors appearing on the edges of Gi between the parts of π.

By Lemma 4.5, every Gi has at least one edge from each of the n− 1 pseudocolor

classes. When s = n there must be at least n− 1 colors in Gi between the parts of

π. When s = n− 1 there is at most one edge inside the parts of π, so there are at

least n− 2 colors in Gi between the parts of π.

If
(

1− 14√
C

)
n ≤ s ≤ n− 2, then by Lemma 4.9 every partition π of V (G) into s

parts has at least s− 1 colors in Gi between the parts, for every subgraph G1, . . . , Gt.

Finally, we assume that s ≤
(

1− 14√
C

)
n. When s = 1 there are zero colors be-

tween the parts, so the condition is vacuously true. So suppose 2 ≤ s ≤
(

1− 14√
C

)
n.

Since Lemmas 4.10 and 4.11 hold, by Lemma 4.17 the number of colors between the

parts of π is at least s− 1 for every subgraph G1, . . . , Gt.

Therefore all of the subgraphs G1, . . . , Gt contain a rainbow spanning tree, and so

G contains at least t = bn/(1000 log n)c edge-disjoint rainbow spanning trees.

4.7 Future work

We conclude this section with some future questions and directions to consider. Our

main result shows that there are at least
⌊

n
1000 logn

⌋
edge-disjoint rainbow spanning
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trees in a properly edge-colored complete graph on n vertices. Erdős-Rényi [21]

proved that the threshold function for a random graph to be connected is logn
n

. Thus

our approach can not hope to be improved past n/ log n without considering more

sophisticated constructions of the random graphs G1, . . . , Gt.

Question 1: Can one improve the bound on the number of edge-disjoint rainbow

spanning trees to get bn
2
c? Perhaps an easier question is to show that there

are Ω(n) edge-disjoint rainbow spanning trees in every properly edge-colored

complete graph.

Question 2: Are there are other graphs besides Kn that have many edge-disjoint

rainbow spanning trees when properly edge-colored? Some natural examples to

consider are the complete bipartite graph Kn,n, Cayley graphs, hypercube, or

other dense graphs.

Question 3: Are there “nice” necessary and sufficient conditions for when an edge-

colored graph G has k edge-disjoint rainbow spanning trees? This problem can

be rephrased in terms of when the graphic and partition matroids have many

common independent sets.
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Chapter 5

Characterizing forbidden

subgraphs that imply pancyclicity

in 4-connected claw-free graphs1

5.1 Introduction

A graph G is hamiltonian if it contains a spanning cycle. Determining if a graph is

hamiltonian is a NP-complete problem, and finding sufficient conditions for hamil-

tonicity has been the focus of much research. One sufficient condition we are interested

in is looking at highly connected graphs that do not have certain induced subgraphs.

Given a family F of graphs, a graph G is said to be F-free if G contains no member

of F as an induced subgraph. If F = {K1,3}, then G is said to be claw-free.

The following well known conjecture of Matthews and Sumner [45] has provided

1This chapter is joint work with Michael Ferrara, Tim Morris, and Michael Santana. This
chapter is part of a larger paper proving that a 4-connected {K1,3, N}-free graph, where N ∈
{N(2, 2, 2), N(3, 2, 1), N(4, 1, 1)}, is pancyclic. Though all authors contributed to the entire chapter,
my focus was on the net N(3, 2, 1), which is presented here.
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the impetus for a great deal of research into the hamiltonicity of claw-free graphs.

Conjecture 5.1 (The Matthews-Sumner Conjecture [45]). If G is a 4-connected

claw-free graph, then G is hamiltonian.

In [52], Ryjáček demonstrated that this is equivalent to a conjecture of Thomassen

[60] that every 4-connected line graph is hamiltonian. Also in [52], Ryjáček showed

that every 7-connected, claw-free graph is hamiltonian. Kaiser and Vrána [36] then

showed that every 5-connected claw-free graph with minimum degree at least 6 is

hamiltonian, which currently represents the best general progress towards affirming

Conjecture 5.1. Recently, in [55], Conjecture 5.1 was also shown to be equivalent to

the statement that every 4-connected claw-free graph is hamiltonian-connected.

The Matthews-Sumner Conjecture has also fostered a large body of research into

other cycle-structural properties of claw-free graphs. In this chapter, we are specifi-

cally interested in the pancyclicity of highly connected claw-free graphs. A graph G

is pancyclic if it contains cycles of each length from 3 to |V (G)|. Significantly fewer

results of this type can be found in the literature, in part because it has been shown

in many cases [53, 54] that closure techniques such as those in [52] do not apply to

pancyclicity.

In [57], Shepherd showed the following, which extended a well-known result of

Duffus, Gould and Jacobson [17]. Here N(1, 1, 1) denotes the net, which is a triangle

with a pendant joined to each vertex.

Theorem 5.2 (Shepherd [57]). Every 3-connected, {K1,3, N(1, 1, 1)}-free graph is

pancyclic.

Gould,  Luczak and Pfender [30] obtained the following characterization of for-

bidden pairs of subgraphs that imply pancyclicity in 3-connected graphs. Here  L
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denotes the graph obtained by connecting two disjoint triangles with a single edge

and N(i, j, k) is the generalized net obtained by identifying an endpoint of each of the

paths Pi+1, Pj+1 and Pk+1 with distinct vertices of a triangle. A connected, P3-free

graph is complete, which is trivially pancyclic. Therefore we consider forbidden pairs

that are not P3.

Theorem 5.3 (Gould,  Luczak, Pfender [30]). Let X and Y be connected graphs on at

least three vertices. If neither X nor Y is P3 and Y is not K1,3, then every 3-connected

{X, Y }-free graph G is pancyclic if and only if X = K1,3 and Y is a subgraph of one

of the graphs in the family

F = {P7,  L, N(4, 0, 0), N(3, 1, 0), N(2, 2, 0), N(2, 1, 1)}.

Motivated by the Matthews-Sumner Conjecture and Theorem 5.3, Gould [29]

posed the following problem at the 2010 SIAM Discrete Math meeting in Austin,

Texas.

Problem 5.4. Characterize the pairs of forbidden subgraphs that imply a 4-connected

graph is pancyclic.

The first progress towards this problem appears in [23].

Theorem 5.5 (Ferrara, Morris, Wenger [23]). If G is a 4-connected {K1,3, P10}-

free graph, then either G is pancyclic or G is the line graph of the Petersen graph.

Consequently, every 4-connected, {K1,3, P9}-free graph is pancyclic.

The line graph of the Petersen graph is 4-connected, claw-free and contains no

cycle of length 4 (see L(P ) in Figure 5.1). Noting that in Theorem 5.3, all generalized

nets of the form N(i, j, 0) with i+ j = 4 are in the family F , Ferrara, Gould, Gehrke,

Magnant, and Powell [22] showed the following.



109

Theorem 5.6 (Ferrara, Gould, Gehrke, Magnant, Powell [22]). Every 4-connected

{K1,3, N(i, j, 0)}-free graph with i+ j = 6 is pancyclic. This result is best possible,

in that the line graph of the Petersen graph is N(i, j, 0)-free for all i, j ≥ 0 with

i+ j = 7.

In joint work with Michael Ferrara, Tim Morris, and Michael Santana we pro-

vide in this chapter another step toward providing a complete characterization. In

particular, our main results are the following two theorems.

Theorem 5.7. Let X and Y be connected graphs with at least three edges such that

every 4-connected {X, Y }-free graph is pancyclic. Then, without loss of generality, X

is either K1,3 or K1,4, and Y is an induced subgraph of one of P9,  L, or the generalized

net N(i, j, k) with i+ j + k = 6.

Theorem 5.8. Let Y be a connected graph with at least three edges. Every 4-

connected {K1,3, Y }-free graph is pancyclic if and only if Y is an induced subgraph of

one of P9,  L, or the generalized net N(i, j, k) with i+ j + k = 6.

Theorem 5.8 follows from Theorems 5.5, 5.6, 5.7 and the following result.

Theorem 5.9. Every 4-connected {K1,3, N}-free graph, where N is one of N(2, 2, 2),

N(3, 2, 1), or N(4, 1, 1), is pancyclic.

In this chapter we provide the proof of N(3, 2, 1) only and omit the proofs for the

other two generalized nets. The proof for all the nets have a similar proof technique.

In Section 5.2 we provide a proof to Theorem 5.7. In Section 5.3 we provide the

proof that a 4-connected {K1,3, N(3, 2, 1)}-free graph G is pancyclic. Section 5.3 is

broken up into several subsections: Section 5.3.1 shows that there are cycles of lengths

3, 4, and 5, Section 5.3.2 gives many technical lemmas that provide a framework for
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L(S(K5)) L(P ) K4,4

G1 G2

Kn−5

Figure 5.1: Some 4-connected claw-free graphs that are not pancyclic.

showing G has cycles of length s ≥ 6, finally Section 5.3.3 proves that a 4-connected,

{K1,3, N(3, 2, 1)} graph is pancyclic.

5.2 Proof of Theorem 5.7

This section determines which possible pairs of forbidden subgraphs can imply a

4-connected graph is pancylic.

Lemma 5.10. Let X and Y be connected graphs with at least three edges. If each

4-connected, {X, Y }-free graph is pancyclic, then without loss of generality, X ∈

{K1,3, K1,4}.

Proof. Note that the line graph L(P ) of the Petersen graph, K4,4, and the graphs
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G1 and G2 of Figure 5.1 are each 4-connected and are not pancyclic as they do not

contain C4, C3, C4, and Cn, respectively. In addition, L(P ) is {K1,3, K1,4}-free.

Suppose on the contrary that X, Y /∈ {K1,3, K1,4}. As K4,4 is not pancyclic, we

may conclude without loss of generality that X is an induced subgraph of K4,4. As

X /∈ {P3, K1,3, K1,4}, X must contain an induced C4.

As G1 does not contain C4, it must contain Y as an induced subgraph. Therefore,

Y must have girth at least 5 and maximum degree 4. Furthermore, G2 is C4-free so

that Y must also be an induced subgraph of G2. However, the only induced subgraphs

of G2 with girth at least 5 and maximum degree 4 are K1,3 and K1,4. So, Y must

contain an induced K1,3 or K1,4.

Lastly, L(P ) is also C4-free so that Y must be an induced subgraph of L(P ).

However, neither K1,3 nor K1,4 is an induced subgraph of L(P ), the final contradiction

necessary to establish the lemma.

In the remainder of this section, we will assume that X and Y are connected

graphs with at least three edges such that every 4-connected, {X, Y }-free graph is

pancyclic, and X ∈ {K1,3, K1,4}. To complete the proof of Theorem 5.7, we must

characterize the possibilities for Y . In doing so, we will make use of the following

family of graphs developed by Lubotsky, Phillips, and Sarnak [43].

Theorem 5.11. For any numbers g and n, there exist infinitely many d such that

there exists a connected, d-regular, vertex-transitive graph on at least n vertices with

girth at least g. In particular, these graphs exist when d = p+ 1, where p is an odd

prime.

These graphs, often called “Ramanujan graphs,” were used by Brandt, Favaron,

and Ryjáček [9] to show that for each k ≥ 2, there exists a k-connected, claw-free
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graph that is not pancyclic. We will use a very similar approach to prove the following

lemma, which together with Lemma 5.10, immediately implies Theorem 5.7.

Lemma 5.12. There exists a 4-connected, claw-free, non-pancyclic graph G such that

if Y is an induced subgraph of L(P ), L(S(K5)), and G, then Y is an induced subgraph

of P9,  L, or N(i, j, k), with i+ j + k = 6.

The graph L(P ) is the line graph of the Petersen graph and L(S(K5)) is the line

graph of the graph obtained by subdividing each edge of the complete graph K5. See

Figure 5.1 for picture of L(P ) and L(S(K5)).

Proof. Let H be a connected, 4-regular, vertex-transitive graph with girth g ≥ 9, as

guaranteed by [43]. By a result of Mader [44], a connected, vertex-transitive, d-regular

graph must also be d-edge-connected, implying that H is also 4-edge-connected. It

follows that L(H) is a 6-regular, 4-connected, claw-free graph. Note that each vertex

v of H is represented by a graph Gv
∼= K4 in L(H), where xy ∈ E(H) corresponds

to a vertex z ∈ L(H) in exactly two K4’s.

Let H ′ be obtained from L(H) by performing a 4-split on each vertex as follows.

Let v ∈ V (L(H)) with neighbors {x1, x2, x3, y1, y2, y3}, where the xi’s and yi’s are in

distinct K4’s. Delete v and replace it with adjacent vertices x, y such that N(x) =

{y, x1, x2, x3} and N(y) = {x, y1, y2, y3}. It is well known that if a graph F is 4-

connected and F ′ is obtained from F by performing 4-splits, then F ′ is 4-connected.

Thus, H ′ is 4-connected, and it is easy to verify that H ′ is claw-free, as for every three

neighbors of a vertex v, two must be in a common K4. Note that H ′ contains 3-cycles

and 4-cycles, but does not contain cycles of length t, 5 ≤ t < 2g (recall g ≥ 9).

For a given Gv in H ′, subdivide each edge of Gv exactly twice. For the sake of

clarity, color these new vertices blue, and color the original vertices of H ′ red, and



113
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y
K12
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y1
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Figure 5.2: Forming the graph G.

then add edges so that the 12 new blue vertices induce a clique. Let Ĝv be this new

subgraph of order 16, and repeat this for each Gv in H ′ to obtain the graph G.

We claim first that G is claw-free. Indeed, if a red vertex is the center of a claw,

then at least two of the other vertices in the claw must be blue vertices lying in a

common Ĝv. A similar argument holds to show that no blue vertex is the center of a

claw. To establish that G is 4-connected, consider a set S of at most three vertices in

G. If S has any blue vertices, then it must contain three blue vertices, as removing

at most two blue vertices will not disconnect any Ĝv, let alone G. However, deleting

three blue vertices from a single Ĝv cannot disconnect G, as in the worst case these

three vertices would have a common red neighbor v′ ∈ Ĝv. If G− S is disconnected,

then separating a vertex x from Gv is akin to disconnecting H ′ by deleting only x.

As H ′ is 4-connected, this is not possible. So, we may assume S contains only red

vertices. This directly corresponds to deleting vertices in H ′, which is 4-connected.

Thus, in all cases, G− S is connected.

We claim that G is not pancyclic. Indeed, G contains cycles of length 3, . . . , 16.

However, any cycle C of length 17 must contain vertices from distinct modified K4’s

in G. If we ignore all blue vertices in C, this corresponds to a cycle C ′ in H ′ using

distinct vertices from distinct K4’s. As the smallest cycles in H ′ are of length 3, 4,
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and 2g ≥ 18, the cycle C ′ must have length at least 2g ≥ 18 in H ′, and thus C has

length at least 18 in G. Consequently, G has no cycle of length 17, and so is not

pancyclic.

Lastly, let Y be an induced subgraph of L(P ), L(S(K5)), and G. We show that

Y is an induced subgraph of P9,  L, or N(i, j, k) with i+ j + k = 6.

To begin, we claim that Y is either a tree or has girth 3. Suppose on the contrary

that Y is not a tree and has girth more than 3. Since L(P ) is C4-free, and L(S(K5))

is C5-free, Y must have girth at least 6. In addition, L(S(K5)) implies that Y has

girth at most 10, else it contains two vertices from one of the K4’s and hence contains

a 3-cycle. However, every cycle of G that has length less than 2g ≥ 18 contains a

3-cycle, a contradiction.

Suppose now that Y is not a tree. If Y has two distinct cycles, then by the above

argument, we may assume that Y has at least two distinct 3-cycles. Considering L(P ),

no two 3-cycles can share two vertices, and considering L(S(K5)), no two 3-cycles can

share exactly one vertex. So, they must be joined by a path. By considering L(P ),

it is clear that if two 3-cycles are joined by a path, they are joined by a single edge.

That is,  L is an induced subgraph of Y . While there are many induced subgraphs of

 L in G, it is easy to see that if Y 6=  L, then Y must contain a 4-cycle, a contradiction

to Y ⊆ L(P ). So, unless Y =  L, Y cannot contain two distinct cycles.

Thus, if Y has a cycle, it must be a 3-cycle, and Y must be unicyclic. That is, Y is

a generalized net. As noted in [22], L(P ) is N(i, j, k)-free when k = 0 and i+ j = 7.

It is also easy to note that L(P ) is N(i, j, k)-free when i, j, k ≥ 1 and i+ j + k = 7.

Thus, Y must be an induced subgraph of N(i, j, k) where i+ j + k = 6.

Lastly, if Y is a tree, then as L(P ) is K1,3-free, Y must be a path, and by [23], Y

must be an induced subgraph of P9. This completes the proof.
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5.3 Proof of Theorem 5.9

This section provides the proof of the main contribution of this chapter towards

Theorem 5.8. In section 5.3.1 we prove that for N ∈ {N(4, 1, 1), N(3, 2, 1), N(2, 2, 2)}

a {K1,3, N}-free graph has cycles of lengths 3, 4, and 5. In section 5.3.2 we prove

several technical lemmas. Section 5.3.3 shows that a 4-connected, claw-free, N(3, 2, 1)-

free graph is pancyclic.

All graphs in this section are simple. Throughout this chapter, we assume that all

cycles have an inherent orientation, which in our figures we always represent clockwise.

For some vertex v on a cycle C we denote the first, second, and ith predecessor of v as

v−, v−−, and v−i respectively. Similarly we denote the first, second, and ith successor

of v as v+, v++, and v+i respectively. We let xCy denote the path xx+ . . . y and xC−y

denote the path xx− . . . y. Also, xCyx denotes the cycle formed by adding an edge to

the endpoints of the path xCy. Further, let [u, v]C denote the set of vertices on uCv,

and let (u, v)C denote the set of vertices on u+Cv−. The intervals (u, v]C and [u, v)C

are defined similarly. Let 〈a; a1, a2, a3〉 denote a K1,3 in G with center vertex a and

pendant edges aa1, aa2, and aa3. Also, let N(abc; a1 . . . ai, b1 . . . bj, c1 . . . ck) denote

a N(i, j, k) generalized net with central triangle abc and pendant paths aa1 . . . ai,

bb1 . . . bj, and cc1 . . . ck.

In our proofs we frequently look at claws or nets that are subgraphs in G. These

subgraphs can not be induced, and hence imply there are additional edges in the

graph. For a forbidden subgraph H we use the notation H → S to denote the set of

possible edges in G that imply that H is not an induced subgraph of G. Often there

will be pairs of vertices in G we know are not adjacent for other reasons, and we will

not include those pairs in the set S. When we use H → S, we are using the fact that

H is not induced as well as prior reasoning to conclude that G must contain an edge
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from S.

5.3.1 Short cycles

In this section we prove that for any N ∈ {N(4, 1, 1), N(3, 2, 1), N(2, 2, 2)}, a 4-

connected, {K1,3, N}-free graph contains cycles of length 3, 4 and 5. We use the

following claim throughout this section, which we give without proof.

Claim 5.13. If G is 4-connected, claw-free, and does not contain C4, then G is

4-regular and for all v ∈ V (G), N(v) induces 2K2.

We are now ready to prove the main result of this section.

Lemma 5.14. If G is a 4-connected, {K1,3, N}-free graph, where N ∈ {N(2, 2, 2),

N(3, 2, 1), N(4, 1, 1)}, then G contains cycles of length 3, 4 and 5.

Proof. Let G be a 4-connected, {K1,3, N}-free graph. Note that as G is claw-free and

has minimum degree at least four, G necessarily contains a triangle. To demonstrate

the existence of 4-cycles and 5-cycles, we proceed by considering the distinct choices

for N separately.

Case 1: N = N(4, 1, 1).

By Theorem 5.6, if G is {K1,3, N(5, 1, 0)}-free then G is pancyclic. Therefore, G

must contain an induced N(5, 1, 0), which we denote by N1=N(a0b0c0; a1a2a3a4a5, b1).

Since G has minimum degree at least 4 and N1 is induced, c0 is adjacent to a pair

of vertices u1 and u2 that lie outside of N1. Let Nui be the N(4, 1, 1) net given by

N(a0b0c0; a1a2a3a4, b1, ui) for i ∈ {1, 2}.

Suppose first that G does not contain a 4-cycle, so that by Claim 5.13, u1 and

u2 are adjacent. Now, as G contains no 4-cycle, u1 and u2 can have no common

neighbor aside from c0, and further if u1 and u2 are adjacent to distinct vertices
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x and y, respectively, then xy /∈ E(G). This is a contradiction, as for i ∈ {1, 2},

Nui → {a2ui, a3ui, a4ui} since all other possible edges immediately result in a C4. If

a2ui is an edge, then the claw 〈a2; a1, a3, ui〉 → {a3ui}. Thus u1 and u2 must have

either a common neighbor or adjacent neighbors amongst a2, a3, and a4, implying

there is a 4-cycle.

Suppose then that G does not contain a 5-cycle. This implies that ui is not

adjacent to a1, a2 or b1, and that if ui is adjacent to b0, then u3−i is not adjacent to a0

for i ∈ {1, 2}. Assume first that neither u1 nor u2 is adjacent to either of a0 or b0. As

G is N(4, 1, 1)-free Nui is not induced, so ui must have some neighbor ap ∈ {a3, a4}.

The claw 〈ap;ui, ap−1, ap+1〉 then implies that each ui is adjacent to a pair of adjacent

vertices in {a3, a4, a5}. This implies that there is a 5-cycle.

Thus, we may assume that u1 is adjacent to one of a0 or b0. As N is not induced

and G contains no 5-cycle, the appropriate choice of 〈a0;u1, a1, b0〉 or 〈b0;u1, b1, a0〉

implies that a0 and b0 are both adjacent to u1. As either u2b0 or u2a0 would create a

C5, Nu2 → {u2a3, u2a4}. Suppose first that u2a3 ∈ E(G). As u2 is not adjacent to a2,

the claw 〈a3;u2, a2, a3〉 implies that u2a4 ∈ E(G), so we may assume u2a4 ∈ E(G).

This then implies that u1 has no neighbor in {a3, a4, a5}, as any of these possible

edges would complete a C5 in G. If u1u2 was an edge of G, then u1u2c0a0b0u1 would

be a 5-cycle, so we conclude that u1 must have some neighbor v that lies outside of

V (N1) ∪ {u2}. However, then N(a0b0u1; a1a2a3a4, b1, v) immediately forces a 5-cycle

in G unless v is adjacent to a3. However, then v is adjacent to either a2 or a4, which

implies that G contains a 5-cycle.

Case 2: N = N(3, 2, 1).

By Case 1, if G is {K1,3, N(4, 1, 1)}-free then G contains cycles of length 4 and 5

so let N1 = N(a0b0c0; a1a2a3a4, b1, c1) be an induced N(4, 1, 1) net in G.

Suppose that G does not have a 4-cycle. Since G has minimum degree at least 4,
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b1 is adjacent to three vertices u1, u2, u3 not in V (N1). By Claim 5.13, we may assume

that u3b0, u1u2 ∈ E(G). Additionally, c0 has a neighbor v1 not in V (N1); note that

vi 6= ui, since G has no 4-cycle. For i ∈ {1, 2}, let Nui = N(a0b0c0; a1a2a3, b1ui, c1).

Now, Nui → {uia1, uia2, uia3, uic1}. If both u1 and u2 are adjacent to vertices in

{a1, a2, a3}, then we obtain a 4-cycle in a manner similar to that in Case 1. So, we

may assume u2c1 ∈ E(G) and u1c1 /∈ E(G), else G contains a 4-cycle.

As δ(G) ≥ 4, c1 is adjacent to some v2 not in V (N1) where v2 6= v1, and v2 6=

ui, otherwise G would have a 4-cycle. By Claim 5.13, v2u2 ∈ E(G). Now we have

N(a0b0c0; a1a2a3, b1u1, c1)→ {u1a1, u1a2, u1a3} and N(a0c0b0; a1a2a3, c1v2, b1)→

{v2a1, v2a2, v2a3}. We obtain 4-cycles in a manner similar to that of Case 1, except

when xa1, xa2, ya3 ∈ E(G), where x ∈ {u1, v2} and y ∈ {u1, v2} − {x}. Note that

〈a3; a2, a4, y〉 → {ya4}, otherwise we get a 4-cycle. If, for instance, x = u1 and y = c1,

then N(a1a2u1; a0c0c1, a3a4, b1) is necessarily induced, a contradiction. The other

possibility for x and y are handled similarly.

Next assume that G contains no 5-cycle. By Case 1 G contains an induced

N(4, 1, 1), N1 = N(a0b0c0; a1a2a3a4, b1, c1). Since δ(G) ≥ 4, c1 has distinct neigh-

bors u1, u2 and u3 outside of V (N1) where, without loss of generality, u1 and u2 are

adjacent. Hence neither u1 nor u2 are adjacent to any vertex in {a0, a1, b0, b1}.

Now 〈c1; c0, u3, u2〉 → {u3c0, u2c0, u2u3}, so assume first that u3c0 ∈ E(G). Then

for i ∈ {1, 2} the nets N(a0b0c0; a1a2a3, b1, c1ui)→ {uia2, uia3}. This implies that u1

and u2 have adjacent neighbors in {a2, a3, a4}, implying G has a 5-cycle. Conse-

quently, u3c0 /∈ E(G), so assume instead that u2u3 ∈ E(G), which implies that none

of u1, u2 and u3 are adjacent to c0. Hence, as G contains no 5-cycle, for each

i ∈ {1, 2, 3} it follows that N(a0b0c0; a1a2a3, b1, c1ui)→ {uia2, uia3} so that two of

the vertices {u1, u2, u3} have a common neighbor in {a2, a3}. This forces a 5-cycle in

G, so we may assume that u2c0 is an edge in G, but neither c0u3 nor u2u3 are. Then



119

N(a0b0c0; a1a2a3, b1, c1u3)→ {u3a2, u3a3}. Note that as u3 is adjacent to c1 and N1

is induced, u3 must have adjacent neighbors in {a0, . . . , a4}. Hence, if u3a4 ∈ E(G),

then N(a0b0c0; a1a2, b1, c1u3a4) is induced, so we must in fact have that u3a2 and

u3a3 are in E(G). It then follows that N(u3a2a3; c1u2, a1a0b0, a4) is induced, the final

contradiction needed to complete this case.

Case 3: N = N(2, 2, 2).

By Case 2, we may assume that G is not N(3, 2, 1)-free, so let N3 = N(a0b0c0; a1

a2a3, b1b2, c1) be an induced subgraph of G. Since G has minimum degree at least 4

and N3 is induced, c1 has at least three neighbors outside of V (N3), call them u1, u2

and u3. As G is claw-free, we may assume that u1u2 ∈ E(G).

Assume first that G contains no 4-cycle so that u3c0 is an edge in G by Claim

5.13. Now, for i ∈ {1, 2}, N(a0b0c0; a1a2, b1b2, c1ui)→ {uia1, uia2, uib1, uib2}. Since

u1 and u2 have no common neighbors outside of c1, we may conclude without loss of

generality that u1a2 and u2b2 are edges in G (as G is claw-free), we also have that

one of u1a1 or u1a3 is also in G, as well as possibly u2b1.

Now, u3 has two neighbors aside from c0 and c1, call them v1 and v2. If v1 = a3,

then v2a3 is an edge by Claim 5.13. If u1a3 is an edge, then u1a3u3c1u1 is a 4-cycle

so u1a1 is an edge of G. The net N(a1a2u1; a0c0, a3v2, u2b2)→ {a0v2, v2b2}, but a0v2

is not an edge since otherwise 〈ao; a1, v2, c0〉 → {a1v2, c0v2} which both give a 4-cycle.

Thus we may assume v2b2 is an edge, and we note that 〈b2; b1, v2, u2〉 → {v2b1}. Then

N(c1u1u2; c0a0, a2a3, b2b1) is an induced copy of N(2, 2, 2), so we may assume that

v1 6= a3 and similarly v2 6= a3.

By Claim 5.13, v1 and v2 are necessarily adjacent. Without loss of general-

ity, the nets N(a0b0c0; a1a2, b1b2, u3vi) for i ∈ {1, 2} imply that v1a2 and v2b2 are

edges in G. If v2b1 /∈ E(G), then N(u3v1v2; c0a0, a2u1, b2b1) is induced. Otherwise,

N(a0b0c0; a1a2, b1v2, c1u2) is induced, so G contains a 4-cycle.
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Finally, suppose that G contains no 5-cycle; we proceed by considering how

many of u1, u2, and u3 are adjacent to c0 and note that if all three of these ver-

tices are adjacent to c0, we immediately have a C5. Thus, assume that N(c0) ∩

{u1, u2, u3) = ∅, which implies that u1, u2 and u3 are pairwise adjacent since G is

claw-free. Consequently, as G contains no C5 and no ui is adjacent to c0, the nets

Nui = N(a0b0c0; a1a2, b1b2, c1ui) imply that each ui is adjacent to one of a2 or b2,

resulting in a 5-cycle in G.

Next assume that two of u1, u2, and u3 are adjacent to c0. Since u1u2 ∈ E(G), we

must have that u1 and u2 are adjacent to c0, while u3 is not. As δ(G) ≥ 4 and G con-

tains no 5-cycle, there exist distinct vertices v1 and v2 outside of {u1, u2, u3, a0, a1, a2,

b0, b1, b2, c0, c1} such that u1v1 and u2v2 are in G. If v1 = a3, then v2 6= a3 and, since

N(a0b0c0; a1a2, b1b2, c1u3) is not induced, u3b2 ∈ E(G). However, since G does not

have a 5-cycle, this implies that N(a0b0c0; a1a2, b1b2, u2v2) is an induced N(2, 2, 2)

net. Thus v1 6= a3 and similarly v2 6= a3. Then, in a manner similar to the previous

cases, the nets N(a0b0c0; a1a2, b1b2, c1u3) and N(a0b0c0; a1a2, b1b2, uivi) for i ∈ {1, 2}

imply that G has a 5-cycle.

Thus we may assume that exactly one of u1, u2 and u3 is adjacent to c0, in

particular we claim that u3c0 must be in G. If instead u1 is the only vertex in

{u1, u2, u3} adjacent to c0, then 〈c1;u2, u3, c0〉 implies that c0c1u3u2u1c0 is a 5-cycle

in G. Thus we have that u3c0 is an edge in G, and further Nu1 and Nu2 imply that at

most one of u1a2 or u2a2 is an edge since uia2 forces the edge uia3 which would then

complete a 5-cycle in G. As neither Nu1 nor Nu2 is induced, we assume first that u1a2

(or identically u2a2) is an edge of G, so that u1a3 and u2b2 are edges of G as well.

Now u3 has two neighbors v1 and v2 distinct from N3 ∪ {u1, u2}. Neither v1 nor

v2 is adjacent to any of V (N1) ∪ {u1, u2} − {c0, c1} since G does not have a 5-cycle.

If both v1 and v2 are adjacent to c0, then 〈u3; v1, v2, c1〉 → {v1v2, v1c1, v2c1}, which
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implies that G has a 5-cycle. Thus we may assume that v2c0 is not an edge, but then

N(a0b0c0; a1a2, b1b2, u3v2) is an induced N(2, 2, 2) net.

Thus neither u1a2 nor u2a2 is an edge and we may assume that both u1b2 and u2b2

are edges. Note that u3 is not adjacent to any of {u1, u2, b0, b1, b2, a0, a1} since there is

no 5-cycle. Then N(a0b0c0; a1a2, b1b2, c1u3)→ {u3c0, u3a2}, but we cannot have both

u3c0 and u3a2 in G. If u3a2, then 〈c1; c0, u3, u1〉 → {c0u3, c0u1, u1u3} in each case there

is a 5-cycle. Thus we may assume that u3c0 is an edge. The vertex u3 has 2 neighbors

v1 and v2 other than N1 ∪ {u1, u2} − {a3}. If v2 = a3, then 〈u3; c0, v1, v2〉 → {v1v2},

but then N(a0b0c0; a1a2, b1b2, u3v1) is an induced copy of N(2, 2, 2), thus v2 6= a3.

Now, N(a0b0c0; a1a2, b1b2, u3vi)→ {vic0, via2}. If both v1c0 and v2c0 are edges, then

〈u3; v1, v2, c1〉 → {v1v2, v1c1, v2c1}, and in any case G has a 5-cycle. So assume that

v2c0 is not an edge, implying that v2a2 and thus v2a3 are edges. Then 〈c0; c1, b0, v1〉 →

{v1c1}. Now v1 has a neighbor x not in N1 and thus N(a0b0c0, a1a2, b1b2, v1x) is

induced so G is not N(2, 2, 2)-free.

5.3.2 Technical lemmas

In this section, we give a number of technical lemmas that will simplify the case

structure of the proof, where we demonstrate that a 4-connected, {K1,3, N(3, 2, 1)}-

free graph of order n contains cycle of length s for 6 ≤ s ≤ n. The majority of these

lemmas use standard techniques, so we omit or shorten many of their proofs.

Let G be a 4-connected, claw-free graph and let C be a cycle in G of length

s, where 5 ≤ s < |V (G)|, and assume that G contains no (s+ 1)-cycle. Since G

is 4-connected, for each vertex v ∈ V (G)− V (C) there exist four internally disjoint

(v − C)-paths, each containing a unique vertex from C. Let w, x, y, z ∈ V (C) be these

vertices, and let Px denote the path containing x, Py denote the path containing y,
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and so on. Assume that amongst all choices of v, w, x, y and z, |Px|+ |Py|+ |Pz| is

minimum.

The claw centered at v with one vertex from Px, Py and Pz is not induced, thus v

lies on a triangle T . For a ∈ {w, x, y, z} let Fa denote the (unique) a− T path that

is a subpath of Pa, and let a′ be the endpoint of Fa in T . It is possible that a′ = a

if v is adjacent to a, and also therefore possible that Fa is a trivial path (a path of

order one). However, since v is in V (G)− V (C) and v is in x′y′z′, at most two of x′,

y′ or z′ lie on C. Finally, let F = T ∪
(⋃

a∈{x,y,z} Fa

)
and note that the minimality

of |Px|+ |Py|+ |Pz| implies that F − {x, y, z} is induced.

Let xx1 . . . xp+1 = x′, yy1 . . . yq+1 = y′, and zz1 . . . zt+1 = z′ denote the vertices on

Fx, Fy and Fz, respectively. Also, let Ix = x1 . . . xp, Iy = y1 . . . yq and Iz = z1 . . . zt

denote the interior subpaths of Fx, Fy and Fz, and note that Ix, Iy or Iz may be

empty. The assumption that G contains no (s+ 1)-cycle also yields that x−x+, y−y+

and z−z+ are edges in G as the claws 〈x;x1, x
−, x+〉, 〈y; y1, y

−, y+〉 and 〈z; z1, z
−, z+〉

are not induced.

Up to relabeling and reversing the orientation of C, assume |Ix| ≥ |Iy| ≥ |Iz| and

also that x, y and z appear on C in this order when traversing C in the clockwise

direction. As a result, if v is adjacent to exactly one vertex on C then it is z′ = z,

and if v is adjacent to exactly two vertices on C they are y′ = y and z′ = z.

For the remainder of this section, when convenient we let a denote an arbitrary

element of {w, x, y, z} and we will use a in a flexible manner that allows us to introduce

notation relating to all of the vertices in {w, x, y, z} without the need for tedious

repetition. For instance, given the notation defined above, when unambiguous we

refer to Pa, Fa, Ia and so on. We also will frequently omit the assumption that a is

some vertex in {w, x, y, z}, again in order to minimize repetition.

Our first lemma follows routinely from the minimality of |Px|+ |Py|+ |Pz| and
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the assumption that G contains no (s+ 1)-cycle.

Lemma 5.15. If {x′, y′, z′} ∩ V (C) = ∅ then there are no edges between V (F )−

{x, y, z} and V (C) except for xx1, yy1 and zz1. If {x′, y′, z′} ∩ V (C) = {z}, i.e.

z = z′, then there are no edges between V (F )− {x, y, z} and V (C) except xx1, yy1,

x′z, and y′z. If {x′, y′, z′} ∩ V (C) = {y, z} and |Ix| ≥ 1, then there are no edges

between V (F )− {x, y, z} and V (C) except vy, vz, x1x, and possibly x1u for at most

one u ∈ V (C)− {x}.

Our next lemmas provide useful structural information about various intervals of

vertices on C.

Lemma 5.16. If u and v are vertices on C such that [u, v]C ⊆ N [a], then [u, v]C

induces a clique in G.

Proof. Suppose that b and c are nonadjacent vertices in [u, v]C such that u, b, c

and v appear in that order on C in the positive direction. The claw 〈a; a1, b, c〉 is

not induced, so without loss of generality, ba1 is an edge of G. This implies that

b /∈ {a−, a+}, lest G contain an (s+ 1)-cycle. Since c appears after b in [u, v]C , we

must have b+ ∈ [u, v]C and b+a is an edge. Then a−C−b+aa1bC
−a+a− is an (s+ 1)-

cycle in G.

For a ∈ {w, x, y, z}, let QC(a) = [a`, ar]C be the largest interval of C such that

a ∈ [a`, ar]C and [a`, ar]C ⊆ N [a]. When the context is clear, we simply write Q(a).

By Lemma 5.16, Q(a) induces a clique in G. Note that Q(a) contains, at a minimum,

the vertices a, a− and a+. Also, if G[V (C)] = Ks we have Q(a) = V (C) for all choices

of a.

If G[V (C)] 6= Ks, then the maximality of Q(a) implies that a is adjacent to neither

a−` nor a+
r . Additionally, as Q(a) is a clique, no pair of vertices in Q(a) can have a
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common neighbor in V (G)− V (C), otherwise G contain a cycle of length s+ 1. See

Figure 5.3 for a picture showing the vertices x′, y′, and z′; the paths Px, Py, and Pz

to the cycle C; and the cliques Q(x), Q(y), and Q(z).

x
y

z
x`

y` z`xr
yr

zr

x′

y′
z′

x1

y1

z1

xp
yq

zt

Q(x)
Q(y)

Q(z)

Figure 5.3: The vertices x′, y′, and z′, along with the paths to the cycle C. The
picture also shows that cliques Q(x), Q(y), and Q(z). In this figure we have y′ 6= y
and z′ 6= z, but in certain cases these vertices maybe the same.

Our next lemma follows easily from the maximality of [a`, ar]C and the fact that

G contains no (s+ 1)-cycle.

Lemma 5.17. If V (C) does not induce a complete graph, then a` and ar are only

adjacent to vertices in V (C). In particular, neither a` nor ar is in {w, x, y, z}.

Proof. Suppose a` is adjacent to some vertex v′ not on C, and consider the claw

〈a`; a, a−` , v′〉. As mentioned above, a` and a can have no common neighbors outside

of C, so either a−` a ∈ E(G), which contradicts the maximality of Q(a), or a−` v
′ ∈

E(G), forming an (s+ 1)-cycle. The case where ar has some neighbor off of C is

identical.

If Q(a) 6= Q(b), then we can assume a`, a and b`, b appear consecutively in C. If

Q(a) = Q(b), then we can assume a`, a, b appear consecutively in C. This observation

simplifies the cycles we describe throughout the chapter.
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Let O denote the set of vertices in V (C) that have a neighbor off of C. By Lemma

5.17, we know that no x ∈ O can be ar or a` for any choice of a, and further that

x−x+ is an edge in G for any such x. Hence, we can replace x−xx+ on C with x−x+

to obtain a cycle in which we may continue to utilize the structure ensured by Q(a)

as needed. Further, suppose that x1, . . . , xm, where m ≥ 2, are vertices in O that

appear consecutively on C in that order. It is not difficult to prove by induction that

since G contains no (s+ 1)-cycle, x−1 x
+
m is an edge in G. Hence, for any set X of

vertices in G we may define a cycle C(X) in which the following hold:

1. |V (C(X))| = |V (C)−X| = s− |X|,

2. the vertices in V (C(X)) = V (C)−X appear in exactly the same order on C

and C(X), and

3. for each a ∈ {w, x, y, z} −X, Q(a)−X is a clique consisting of consecutive

vertices on C(X) with endpoints ar and a`.

If X = {x1, . . . , xm}, we will sometimes write C(x1, . . . , xm) in place of the more

cumbersome C({x1, . . . , xm}).

Lemma 5.18. Let a and b be distinct elements in {w, x, y, z}, and let P be an (a− b)-

path of length λ with no internal vertices on C.

1. If 2 ≤ λ ≤ 4, then |(ar, b`)C | ≥ λ− 1 and |(br, a`)C | ≥ λ− 1.

2. If λ = 5 and ab /∈ E(G), then |(ar, b`)C | ≥ 4 and |(br, a`)C | ≥ 4.

Proof. Throughout the proof, let c and d be distinct vertices in {w, x, y, z} − {a, b}.

First, if G[V (C)] = Ks, then s ≥ 5 clearly implies that G has an (s+ 1)-cycle

when the length of P is between 2 and 5. Thus, going forward we will assume that

G[V (C)] 6= Ks.
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To establish (1 ), we consider only the scenario where λ = 4 and |(ar, b`)C | ≤ 2,

as the cases λ = 3 and λ = 2 and the symmetric case where λ = 4 and |(br, a`)C | ≤ 2

are handled similarly.

First, if 1 ≤ |(ar, b`)C | ≤ 2, then the fact that Q(a) and Q(b) are complete allow us

to replace either (ar, b`) or [ar, b`) with the interior vertices of P to obtain an (s+ 1)-

cycle. In the former case a−arC
−aPbC−b`b

+Ca− is an (s+ 1)-cycle, and the later

case a−a−r C
−aPbC−b`b

+Ca− is an (s+ 1)-cycle. Thus, suppose next that ar = b`. If

|Q(a)| ≥ 4 then either a− 6= a` or a−r 6= a. If a− 6= a` then a−2a−r C
−aPbC−b−` b

+Ca−2

is an (s+ 1)-cycle, and the case where a−r 6= a is similar. Therefore by symmetry we

have that |Q(a)| = |Q(b)| = 3 and ar = b`. As c has a neighbor in V (G)− V (C),

Lemma 5.17 implies that c /∈ Q(a) ∪Q(b), so that aPbCc−c+Ca is an (s+ 1)-cycle

in G.

Suppose a ∈ Q(b). Then, as Q(b) is complete, we can assume a and b are con-

secutive on C. Now, if c and d are not consecutive on C, then aPbCc−c+Cd−d+Ca

is an (s+ 1)-cycle. If, instead, c = d− is an edge on C, then the claw 〈c; c−, c1, d
+〉

implies that c−d+ ∈ E(G), so aPbCc−d+Ca is an (s+ 1)-cycle. Again, the case where

b ∈ Q(a) is identical.

Finally suppose ar ∈ (b`, b)C and a ∈ (b+
r , b

−
` )C . Then a−b−` C

−aPbC−b+2
` b+Ca− is

an (s+ 1)-cycle that skips the vertices b` and b+
` . Note that b+

` 6= b since ar ∈ (b`, b)C .

Therefore, suppose that the length of P is 5 and that ab /∈ E(G), so a /∈ Q(b) and

b /∈ Q(a). Suppose first that ar ∈ [b`, b)C , and note that this must also be the case in

C ′ = C(c, d). Thus, C” = a−a−r C
′−aPbC ′−a+

r b
+C ′a− skips ar and, as it also omits c

and d, has length s+ 1. Consequently, we may assume that a, ar, b` and b appear in

that order along C in the positive direction. If ar and b` are consecutive on C then

let C ′ = C(c) and consider C” = a−a−r C
′−aPbC ′−b+

` b
+C ′a−. This cycle skips ar and

b` on C ′ and has length s+ 1.
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It remains to consider when |(ar, b`)C | ∈ {1, 2, 3}. If |(ar, b`)C | = 1, then a−a−r C
−a

PbC−b+
` b

+Ca− is an (s+ 1)-cycle in G. Similarly, if |(ar, b`)C | = 2 or |(ar, b`)C | = 3,

then a−a−r C
−aPbC−b`b

+Ca− and a−arC
−aPbC−b`b

+Ca−, respectively, are (s+ 1)-

cycles in G. Thus we may conclude that |(ar, b`)C | ≥ 4, as desired, and symmetrically,

that |(br, a`)C | ≥ 4.

The following lemma by Gould,  Luczak and Pfender [30] will be useful as we

proceed.

Lemma 5.19 (Gould,  Luczak, Pfender [30]). Let G be a claw-free graph with mini-

mum degree δ(G) ≥ 3, and let C be a cycle of length t with no hops, for some t ≥ 5.

Set

X = {v ∈ V (C)|there is no chord incident to v},

and suppose for some chord xy of C we have |X ∩ V (xCy)| ≤ 2. Then G contains

cycles C ′ and C ′′ of lengths t− 1 and t− 2, respectively.

Lemma 5.20. Suppose s = |V (C)| ≥ 6 and let a and b be distinct elements of

{w, x, y, z} where at least one of a′ or b′ is not on C and a1b is not an edge. Further,

let P = aIaa
′b′Ibb have length λ. If 2 ≤ λ ≤ 5 and any of the following hold

(1) there is an edge between {a−` , a`, a} and {b−` , b`, b}, or

(2) there is an edge between {a, ar, a+
r } and {b, br, b+

r }, or

(3) Q(a) = Q(b),

then G contains an (s+ 1)-cycle unless either P = avb and the only edge satisfying

(1) or (2) is ab.

Proof. Note first that conditions (1) and (2) are identical up to the reversal of C, so

it suffices to assume that either (1) or (3) holds.
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If Q(a) 6= Q(b) and ab ∈ E(G), then since we assume that a1b /∈ E(G), 〈a; a1, a`, b〉

→ {a`b}. Further, if either a`b or ab` is an edge of G, then 〈b; b1, b`, a`〉 → {a`b`} or

〈a; a1, a`, b`〉 → {a`b`}, respectively. Therefore any edge between {a, a`} and {b, b`}

implies a`b` is an edge. Up to renaming, the case when a−` b ∈ E(G) is symmetric to

the case when ab−` ∈ E(G). Similarly, the case a−` b` ∈ E(G) is symmetric to the case

a`b
−
` ∈ E(G). Therefore when Q(a) 6= Q(b) it is enough to suppose that one of a`b`,

a−` b, a
−
` b`, or a−` b

−
` is an edge of G.

Case 1: |O| ≥ λ.

First suppose Q(a) = Q(b), so we can assume a and b appear consecutively on C.

Select S ⊆ O − {a, b}, where |S| = λ− 2. Then C(S) has length s− λ+ 2 and a and

b are consecutive vertices in C(S), so aPbC(S)a is an (s+ 1)-cycle in G. Thus, for

the remainder of this case we will assume that condition (1) holds.

If Q(a) 6= Q(b), then (because Q(a) and Q(b) are cliques so internal vertices may

be reaaranged) we can assume both aa` and bb` are edges in C. We show that if there

is an edge a∗b∗ satisfying condition (1) (i.e. a∗ ∈ {a, a`, a−` } and b∗ ∈ {b, b`, b−` }), then

there is a set S ⊆ O such that C(S) contains the vertices a∗ and b∗.

When a`b` ∈ E(G), select S ⊆ O − {a, b} with |S| = λ− 2. By Lemma 5.17

a`, b` /∈ O, so a, a`, b, and b` are all vertices in C(S), and both aa` and bb` lie on

C(S). Then, the cycle a`b`C(S)−aPbC(S)a` has length s+ 1.

Suppose then, that a−` b ∈ E(G). If λ = 2, then a−` bPaCb
−b+Ca−` is an (s+ 1)-

cycle. When λ ≥ 3 select S ⊆ O − {a, b, a−` } with |S| = λ− 3 so that a, b, and a−`

are all vertices in C(S) and vertices a−` a`a appear consecutively in C(S). The cycle

a−` bPaC(S)b−b+C(S)a−` skips a` and has length s+ 1.

Another possibility is that a−` b` ∈ E(G). If λ = 2, then a−` b`C
−a+a`aPbCa

−
` is

an (s+ 1)-cycle. When λ ≥ 3 select S ⊆ O − {a, b, a−` } with |S| = λ− 3. The cycle

a−` b`C(S)−aPbC(S)a−` has length s+ 1.
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Finally, we assume that a−` b
−
` ∈ E(G). If λ = 2 or λ = 3, then a−` b

−
` C
−a+a`aPbb`

b+Ca−` or a−` b
−
` C
−aPbb`b

+Ca−` is an (s+ 1)-cycle. When λ ≥ 4 select S ⊆ O −

{a, b, a−` , b
−
` } with |S| = λ− 4. The cycle a−` b

−
` C(S)−aPbC(S)a−` has length s+ 1.

This completes Case 1.

We know {w, x, y, z} ⊆ O, so it follows that if λ ≤ 4, then G has an (s+ 1)-cycle.

Thus, we need only to consider the cases where λ = 5 and |O| = 4 (so specifically

O = {w, x, y, z}), and where λ = 6 and 4 ≤ |O| ≤ 5.

Case 2: λ = 5 and O = {w, x, y, z}.

Case 2.1: Suppose Q(a) = Q(b) or a`b` ∈ E(G).

Let S = {c, d}. If Q(a) = Q(b), then we may assume a and b are consecutive on C

and we let C ′ = aPbC(S)a, and if a`b` ∈ E(G) let C ′ = a`b`C(S)−aPbC(S)a`. Note

that in both cases C ′ has length s+ 2. If the cycle C ′ contains a hop, then G has an

(s+ 1)-cycle, so we suppose that C ′ does not contain a hop.

Let u ∈ V (C)− (O ∪ {c`, cr}) and note d(u) ≥ 4. Suppose first that u does not

have a chord in C ′, which implies that u must be adjacent to both c and d (which

are not in V (C ′)). As u /∈ {c`, cr}, 〈c; c1, u, c`〉 → {uc`} and 〈c; c1, u, cr〉 → {ucr}

implying that c`u and cru are edges. As u does not have a chord in C ′, then c`ucr

appear consecutively and c`cr is a hop on C ′. This contradiction implies that G

has an (s+ 1)-cycle. Note that when Q(a) = Q(b) that ab is a chord of C ′, and

when a`b` ∈ E(G) then a`a and b`b are chords of C ′. Therefore every vertex in

V (C ′)− {c`, cr} must have a chord in C ′. Consequently, every chord of C ′ satisfies

the conditions of Lemma 5.19, so G has an (s+ 1)-cycle.

Case 2.2: One of a−` b, a
−
` b` or, a−` b

−
` is an edge.

Suppose a−` /∈ O. Then |O − {a, b}| = λ− 3 and |O − {a, b, b−` }| ≥ λ− 4. This

implies that regardless which of a−` b, a
−
` b`, or a−` b

−
` is an edge of G, either S =

O − {a, b, a−` } or S = O − {a, b, a−` , b
−
` } can be used to show that G has an (s+ 1)
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cycle via an identical argument as was used in Case 1.

Thus a−` ∈ O; without loss of generality assume a−` = c. If a−` b
−
` = cb−` is an edge

and b−` /∈ O, then 〈x; c1, c
−, b−` 〉 → {x−b

−
` } and aPbCc−b−` C

−a is an (s+ 1)-cycle.

If b−` ∈ O and c1b
−
` is an edge, i.e. b−` = d, then we now that c1 or d1 lies on the

subgraph F . By Lemma 5.15 we know that c1 = d1 for c, d ∈ {w, x, y, z} can only

occur if if c1 = v or c1 = x1. When c1 = x, the path aIaa
′b′Ibb has length 2 and

not 5, and when c1 = v, the vertex v appears along the path aIaa
′b′Ib, thus the path

from c to a or from d to b has length strictly less than 5 and we are in in Case 1. If

a−` b` = cb` is an edge, then 〈c; c1, a`, b`〉 → {a`b`} which by Case 2.1 implies G has an

(s+ 1)-cycle. Finally, if a−` b = bc is an edge, then the claw 〈b; b1, c, b`〉 → {b1c, b`c}

so we may assume that b1c is an edge. Then the path cIbb
′a′Iaa has length λ, where

c`a` ∈ E(G) (since a` ∈ Q(c)). Again by Case 2.1 we know G has an (s+ 1)-cycle.

In the proof we require s ≥ 6, yet to this point we have only demonstrated that

G must contain cycles of length 3, 4 and 5. The following observation shows that if

λ ≤ 6, then we may assume s ≥ 6.

Claim 5.21. If the path P = aIaa
′b′Ibb has length 2, 3, 4 or 5, then G has a 6-cycle.

Proof. Suppose for the sake of contradiction that G has no 6-cycle, so s = |V (C)| = 5.

We may assume that C contains w, x, y, and z, and some fifth vertex p, in that order.

As w, x, and z all have hops, we immediately get that G[V (C)] is either complete

or missing only the edge wz. Let p be the vertex in the set V (C)− {w, x, y, z}. By

Lemma 5.17 the vertex p must be both a` and ar for every choice of a, so G[V (C)] is

therefore complete. Consequently aPbCa has length s+ λ− 1 and we can skip any

subset of vertices in V (C)− {a, b} necessary to obtain a 6-cycle.

The next lemma shows that under certain conditions we can guarantee that G has
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an induced N(3, 2, 1) net. This will be especially helpful in later cases of the proof in

the next section to handle when Px or Pw is long.

Lemma 5.22. Suppose y′ = y, z′ = z, and hence x′ = v. Let u ∈ V (C) be a vertex

where there is an induced (u− x′)-path P = x′uk . . . u1u whose internal vertices are all

off V (C). If the length of P is at least 2 and there are no edges between {u2, . . . , uk}

and V (C), then G contains an induced N(3, 2, 2).

Proof. Define Iu = {u1, . . . , uk} and note that G[V (C)] is not a clique since yx′z has

length 2 and we are assuming that G contains no (s+ 1)-cycle. We may also assume

that there are no edges between {y, y`, y−` } and {z, z`, z−` }, lest again G contains an

(s+ 1)-cycle by Lemma 5.20.

First we show that if |Iu| ≤ 3 then u1 is not adjacent to {u`, u−` , y`, y
−
` , z`, z

−
` }.

By Lemma 5.17, a` is not adjacent to u1 for a ∈ {x, y, z}. If u1u
−
` is an edge then

G immediately has an (s+ 1)-cycle. Suppose u1a
−
` is an edge for a ∈ {y, z}. Then

the cycle a−` Iux
′yC−a`a

+Ca−` is an s+ |Iu|-cycle. We can skip any of the vertices

{a`, w, x, y, z} − {a, a−` } to form an (s+ 1)-cycle.

Note that when |Iu| = 3 implies that u1 is not adjacent to {y`, y−` , z`, z
−
` }, and

since |Iu| > 0 u1 is not adjacent to y or z. When |Iu| ≥ 3, the net N(x′yz;ukuk−1uk−2,

y`y
−
` , z`z

−
` ) is induced.

When |Iu| ∈ {1, 2} the net N(x′yz; Iuuu`, y`y
−
` , z`z

−
` ) is either induced, or G has

an (s+ 1)-cycle by Lemma 5.20.

Together the lemmas from this section provide a framework for showing a 4-

connected, {K1,3, N}-free graph G containing an s-cycle C contains an (s+ 1)-cycle.

The proof technique for Theorem 5.9 consists of considering a claw or net denoted

by H. Since G is {K1,3, N}-free, H is not induced. We proceed by case analy-

sis showing each possible adjacency within H reaches a contradiction. When ap-
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plicable Lemma 5.15 provides many non-adjacencies simplifying this case analysis.

Lemma 5.20 is also frequently used to show non-adjacencies between certain vertices.

By Claim 5.21 if there is a path P = aIaa
′b′Ibb of length at most five, then G has a

6-cycle. If P has length at most five, then G[V (C)] can not be a clique. Moreover,

whenever one of these paths has length 2, 3 or 4, there is a vertex between Q(a) and

Q(b) by Lemma 5.18. All of these conclusions will be useful as we proceed.

5.3.3 Long cycles for N(3, 2, 1)

This section concludes with proving that if G is 4-connected, {K1,3, N(3, 2, 1)}-free

and contains a cycle of length s, then G has an (s+ 1)-cycle.

Theorem 5.23. Every 4-connected, {K1,3, N(3, 2, 1)}-free graph of order n contains

cycles of length s for 6 ≤ s ≤ n.

Proof. We proceed by induction on s. By Lemma 5.14, G has cycles of length 3,

4, and 5. Thus we assume that C is a cycle of length s, where 5 ≤ s ≤ n− 1, as

described at the beginning of Subsection 5.3.2. The proof is broken up into cases

based on how many vertices of x′, y′ and z′ are in V (C). Throughout the proof

we assume there is no (s+ 1)-cycle, and we either find an induced N(3, 2, 1) or an

(s+ 1)-cycle, leading to a contradiction in either case.

If aIaa
′b′Ibb has length at most 5 for a, b ∈ {x, y, z} and G[V (C)] is a clique,

then G contains an (s+ 1)-cycle, a contradiction. Therefore whenever one of these

path lengths is short we can assume G[V (C)] is not a clique. Moreover, whenever

one of these paths has length 2, 3 or 4, there is a vertex between Q(a) and Q(b) by

Lemma 5.18.

Case 1: None of the vertices x′, y′, z′ are in V (C).
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Note that by Lemma 5.15 the only edges from F − {x, y, z} to V (C) are x1x, y1y

and z1z.

Case 1.1: |Ix| ≥ 3.

When |Iy| ≥ 1 and |Iz| ≥ 1 the net N(x′y′z′;xpxp−1xp−2, yqyq−1, zt) is an induced

N(3, 2, 1) (by construction of F and Lemma 5.15), a contradiction. Similarly, when

|Iy| ≥ 2 and |Iz| = 0 the net N(x′y′z′;xpxp−1xp−2, yqyq−1, z) is an induced N(3, 2, 1).

When |Iy| ≤ 1 and |Iz| = 0 the net N(x′y′z′; Ix, Iyyy`, zz`z
−
` ) is either induced, so

there is an N(3, 2, 1) induced subgraph, or G has an (s+ 1)-cycle by Lemma 5.20.

Case 1.2: |Ix| = 2.

Let u be y` if G[V (C)] is a clique, and any vertex in V (C)− {x, y, z} otherwise.

When |Iz| ≥ 1 the net N(y′x′z′; Iyyu, x2x1, zt) is induced and contains an induced

N(3, 2, 1). When |Iy| = 2 and |Iz| = 0 the path yIyy
′z′z has length 5, soG[V (C)] is not

a clique. When z−` 6= y, the net N(z′x′y′; zz`z
−
` , y2y1, x2) is induced by Lemma 5.15,

and when z−` = y the net N(z′x′y′; zz`z
−
` , x2x1, y1) is induced. When |Iy| ≤ 1 and

|Iz| = 0, the net N(x′y′z′; Ix, Iyyy`, zz`z
−
` ) either is induced, so there is a N(3, 2, 1)

induced subgraph, or G has an (s+ 1)-cycle by Lemma 5.20.

Case 1.3: |Ix| ≤ 1.

First consider the case when |Ix| = |Iy| = |Iz| = 1. The path aa1a
′b′b1b has length

5 for any distinct a, b ∈ {x, y, z}, so G[V (C)] is not a clique. By Claim 5.21 the graph

G has a 6-cycle, so s ≥ 6. By Lemmas 5.20 and 5.15 the net N(x′y′z′;x1xx`, y1y, z1)

is either induced or G has an (s+ 1)-cycle.

When |Iy| = 1 and |Iz| = 0, the net N(x′y′z′;xq, y1yy`, zz`) is an induced N(3, 2, 1)

or G has an (s+ 1)-cycle by Lemmas 5.20 and 5.15. When |Ix| ≤ 1 and |Iy| = 0, the

netN(x′y′z′; Ixxx`x
−
` , yy`y

−
` , zz`z

−
` ) is either induced, so there is an inducedN(3, 2, 1),

or G has an (s+ 1)-cycle by Lemmas 5.20 and 5.15.
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Case 2: The vertex z′ is in V (C), but the vertices x′ and y′ are not.

By Lemma 5.15 the only edges from F − {x, y, z} to V (C) are x1x, y1y, xz and

yz.

Case 2.1: |Iy| ≥ 3.

Let u be z` if G[V (C)] is not a clique, and any vertex in V (C)− {x, y, z} otherwise.

The net N(x′y′z; Ix, Iy, u) is induced, and contains an induced N(3, 2, 1) net.

Case 2.2: 1 ≤ |Iy| ≤ 2.

The net N(x′y′z; Ix, Iyyy`, z`z
−
` ) is induced, so N(3, 2, 1) is an induced subgraph,

or G has an (s+ 1)-cycle by Lemmas 5.20 and 5.15.

Case 2.3: |Iy| = 0.

When |Ix| ≥ 3, the net N(x′y′z; Ix, yy`, z`z
−
` ) is induced, so N(3, 2, 1) is an induced

subgraph or G has an (s+ 1)-cycle by Lemmas 5.20 and 5.15. When |Ix| = 2, the

net N(y′zx′; yy`y
−
` , z`z

−
` , x2) is induced or there is an (s+ 1)-cycle by Lemma 5.20.

When |Ix| ≤ 1, the net N(x′y′z′; Ixx`x
−
` , yy`y

−
` , z`z

−
` ) is either induced, so N(3, 2, 1)

is an induced subgraph, or G has an (s+ 1)-cycle.

Case 3: The vertices y′ and z′ are both in V (C) (and thus x′ = v is not in V (C)).

Case 3.1: |Ix| > 0.

Notice that x′xp . . . x1x has length at least two, and there are no edges between

{x2, . . . , xp} by the minimality of the path. Therefore by Lemma 4.9 the graph G has

an induced N(3, 2, 2), which implies there is an induced N(3, 2, 1) subgraph.

Case 3.2: |Ix| = 0.

Assume v and w are chosen to minimize the length of Iw, given that v is adjacent

to three vertices in V (C).

First we show that xyz forms a triangle. By Lemmas 5.20 and 5.15 the net

N(vyz;xx`x
−
` , y`y

−
` , z`) → {xy, xz}. If xy ∈ E(G), then 〈y; y`, z, x〉 → {xz}, and if
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xz ∈ E(G), then 〈z; z`, y, x〉 → {xy}, which proves xyz is a triangle.

Suppose |Iw| > 0, and let wiu be an edge with wi ∈ Iw − {w1} and u ∈ V (C).

If u /∈ {x, y, z}, then this contradicts the choice of w. If u ∈ {x, y, z}, then the

claw 〈u;u`, b, wi〉 → {bwi} (by Lemmas 5.17 and 5.20) for any b ∈ {x, y, z} − {u}.

Therefore, wi is adjacent to {x, y, z} and contradicts the extremal choice of v. Since

|Iw| > 0, G contains an induced N(3, 2, 2) by Lemma 5.22.

Next we consider the case when |Iw| = 0. The vertex v is adjacent to the vertices

w, x, y and z. Let NC(v) be the set of vertices adjacent to v that are also in V (C).

Next we show that G[NC(v)] is complete. Let a, b ∈ NC(v)− {x, y}. We show that

a is adjacent to both x and y by first considering the net N(vxy; aa`a
−
` , x`, x

−
` , y`)→

{ax, ay}. If ax ∈ E(G), then 〈x;x`, a, y〉 → {ay} by Lemmas 5.17 and 5.20, and if

ay ∈ E(G), then 〈y; y`, a, x〉 → {ax}. Similarly b is adjacent to both x and y. The

claw 〈y; y`, a, b〉 → {ab} by Lemma 5.20, which proves that G[NC(v)] is complete.

Up to renaming, the vertices w, x, y and z appear in this order on C. By Lemma

5.18, the cliques Q(a) and Q(b) do not intersect for any distinct a, b ∈ {w, x, y, z}.

If wrx`, xry`, yrz` and zrw` are edges, then the net N(wrw`w;x`xry`, zrz`, v) →

{wry`, wrz`, w`xr, x`zr, xrz`, y`zr}. Each of these edges has the form a`br, where

a, b ∈ {w, x, y, z}, and there is an edge a`cr where c ∈ {w, x, y, z} − {a, b}. For

each edge a`br in the previous set, the claw 〈a`; a, br, cr〉 → {abr, acr, brcr}, which by

Lemma 5.20 implies that G has an (s+ 1)-cycle.

Therefore the graph G does not contain all the edges wrx`, xry`, yrz` and zrw`.

Up to renaming we can assume wrx` is not an edge of G, while the other edges may

or may not be edges in G. There exists a vertex γ ∈ (wr, x`)C , where wrγ ∈ E(G),

but wru /∈ E(G) for all u ∈ (γ, x`]C . We will use the vertex γ to find an induced

N(3, 2, 1) net or an (s+ 1)-cycle.

We show the vertex v is adjacent to exactly four vertices in V (C). For each
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pair of distinct a, b ∈ NC(v)− {w}, the net N(wab;wrγγ
+, ara

+
r , br) → {γar, γ+ar,

γbr, γ
+ar, γ

+a+
r , γ

+br}. Suppose γ is adjacent to a vertex a∗r ∈ {ar, a+
r }, for some

a ∈ NC(v)− {w}. Then γ+ is adjacent to a∗r by considering the claw 〈γ;wr, γ
+, a∗r〉.

If v is adjacent to more than four vertices in V (C), then the nets and claws in

the previous three sentences imply that γ+ must be adjacent to three vertices a∗r,

b∗r and c∗r, where a∗r ∈ {ar, a+
r }, b∗r ∈ {br, b+

r } and c∗r ∈ {cr, c+
r }, for three distinct

vertices a, b, c ∈ NC(v)− {w}. This implies that G has an (s+ 1)-cycle by the claw

〈γ+; a∗r, b
∗
r, c
∗
r〉 and Lemma 5.20.

Thus v is adjacent to only the vertices w, x, y and z in V (C). If γ+ is adjacent to a

vertex a∗r ∈ {ar, a+
r } for every a ∈ {x, y, z}, then G has an (s+ 1)-cycle by considering

the claw 〈γ+;x∗r, y
∗
r , z
∗
r 〉 and Lemma 5.20. Therefore γ+ must not be adjacent to cr

and c∗r for some c ∈ {x, y, z}. The net N(wca;wrγγ
+, crc

+
r , ar) → {γar, γ+ar} for

every a ∈ {x, y, z} − {c}. Recall from the previous paragraph that γar being an

edge implies that γ+ar is an edge. Thus γ+ is adjacent to ar and br for distinct

a, b ∈ {x, y, z} − {c}.

Up to renaming, the vertex ar appears before br in (γ, w)C . Next we show that if

G contains certain edges, then G has an (s+ 1)-cycle. To help simplify the (s+ 1)-

cycles we assume that aar appear consecutively on the cycle C for all a ∈ {w, x, y, z}.

Recall the cliques Q(w), Q(x), Q(y) and Q(z) are disjoint by Lemma 5.18. If C does

not have the property that aar appear consecutively, then we can find a new cycle

C ′ on vertex set V (C) by taking all the vertices in Q(a)− {a`, ar} and reorder them

such that a appears last (note that since Q(a) is a clique C ′ is a cycle in G).

If γγ+2 is an edge, then γγ+2CavbC−arγ
+brCγ is an (s+ 1)-cycle. If γ+2br is

an edge, then γ+2brCγ
+arC

−bvaC−γ+2 is an (s+ 1)-cycle. If γb` is an edge, then

γb`C
−arγ

+CavbC−b−` brCγ is an (s+ 1)-cycle. If γar is an edge, then γarCbvaC
−γ+

brCγ is an (s+ 1)-cycle. Thus, γγ+2, γ+2br, γb` and γar are not edges in G. The
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claws 〈γ+; γ, γ+2, br〉 → {γbr} and 〈γ+; γ, γ+2, ar〉 → {γ+2ar} imply that G has the

edges γbr and γ+2ar.

If b`b
+
r is an edge, then b`b

+
r Cγbrb

+
` C
−bvaC−γ+arCb` is an (s+ 1)-cycle. The

claws 〈br; b+
r , b`, γ〉 → {γb+

r } and 〈γ;wr, γ
+, b+

r 〉 → {γ+b+
r } (wrb

+
r /∈ E(G) by Lemma

5.20, and γ+wr /∈ E(G) by the choice of γ) imply that G has the edges γb+
r and γ+b+

r .

Case 3.2.1: γ+ is adjacent to a.

Consider the net N = N(γγ+br;wrw`w
−
` , av, b`). We show that N is induced or

there is an (s+ 1)-cycle.

We now give a rather lengthy statement showing that if G has certain edges,

then G has an (s+ 1)-cycle. If γb` is an edge, then γb`C
−arγ

+CavbC−b+
` brCγ is

an (s+ 1)-cycle; if γ+b` ∈ E(G), then γ+b`C
−arγ

+2CavbC−b+
` brCγ

+ is an (s+ 1)-

cycle; if γw` ∈ E(G), then w`γC
−wrw

+
` CwvaC

−γ+arCw` is an (s+ 1)-cycle; if

γ+w` ∈ E(G), then w`γ
+C−wrw

+
` CwvaC

−γ+2arCw` is an (s+ 1)-cycle; if γw−` ∈

E(G), then w−` γC
−wrw`CwvaC

−u+arCw
−
` is an (s+ 1)-cycle; if γ+w−` ∈ E(G),

then w−` γ
+C−wrw`CwvaC

−γ+2arCw
−
` is an (s+ 1)-cycle; if brw

−
` ∈ E(G), then

brw
−
` C
−b+

r γC
−wrw`CwvaC

−γ+arCbr is an (s+ 1)-cycle; if brw` ∈ E(G), then

brw`C
−b+

r γC
−wrw

+
` CwvaC

−γ+2arCbr is an (s+ 1)-cycle.

Next we show that v is not adjacent to any vertex in V (N)− {a}. Recall that v

is only adjacent to w, x, y and z on C. The vertices γ and γ+ are in (wr, x`], so they

can not be adjacent to v. By Lemma 5.17 none of the vertices ar or a` are adjacent

to v for any a ∈ {w, x, y, z}. If v is adjacent to w−` , then G has an (s+ 1)-cycle.

By Lemma 5.20 and recalling that arγ is not an edge, we know a can not be

adjacent to any vertex in V (N)− {γ+, v}. By the extremal choice of γ we know

γ+wr is not an edge. By Lemma 5.20 arwr is not an edge. If wrw
−
` is an edge, then

〈wr;w−` , w, γ〉 → {γw
−
` , γw} which implies that G has an (s+ 1)-cycle given in the

paragraph above. If wrb` is an edge, then 〈wr;w`, b`, γ〉 → {γb`, γw`} which implies
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that G has an (s+ 1)-cycle given in the paragraph above.

This proves that either N is induced or G has one of the edges discussed above,

which implies G has an (s+ 1)-cycle.

Case 3.2.2: γ+ is not adjacent to a.

Now consider the net N = N(γγ+br;wrw`w
−
` , ara, b`). The vertex a is not adjacent

to γ, since γar is not an edge, and a is not adjacent to γ+ by assumption. Lemma

5.20 shows that a can not be adjacent to any other vertex in V (N)− {ar}.

Notice that all the cycles in the previous case never used the edge γ+a. Therefore

if any of the edges in the previous paragraph appear, then the (s+ 1)-cycle in the

table is a cycle of G. Thus it is enough to consider the edges adjacent to ar.

Using the fact that γ+a is not an edge and by the extremal choice of ar we have

〈ar; a, a+
r , γ

+〉 → {γa+
r }. Therefore in this case we can assume γa+

r is an edge. By

Lemma 5.20 arbr and arwr are not edges. The rest of the edges between vertices

of V (N) incident to ar are given in the next paragraph along with the resulting

(s+ 1)-cycle in G.

If γar ∈ E(G), then γarCbvaC
−γ+brCγ is an (s+ 1)-cycle; if arb`, then arb`C

−a+
r

γ+C−brb
−
` CbvaC

−γ+2ar is an (s+ 1)-cycle; if arw` ∈ E(G), then arw`C
−a+

r γ
+C−wr

w−` CwvaC
−γ+2ar is an (s+ 1)-cycle; if arw

−
` ∈ E(G), then arw`C

−a+
r γ

+C−wrw`Cwv

aC−γ+2ar is an (s+ 1)-cycle.

This proves that either the net N(uu+ar;wrw`w
−
` , brv, a`) is induced or G has an

(s+ 1)-cycle.

5.4 Future work

The section above proves that a 4-connected, {K1,3, N(3, 2, 1)}-free graph is pancyclic.

The proof for the nets N(2, 2, 2) and N(4, 1, 1) are similar in nature to the proof of
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Theorem 5.3.3.

Question 1: Determine the family of subgraphs such that every 4-connected, {K1,4,

Y }-free graph is pancyclic. We know the family must be a subgraph of the family

of graphs P9,  L, and the generalized nets N(i, j, k) where i+ j + k = 6.

Question 2: Show that a k-connected {K1,3, N(i, j, k)} graph is pancylic for k ≥ 5

when the sum of i, j, and k is some constant.

Question 3: Find forbidden minor conditions ensuring that a graph is pancyclic

or hamiltonian. Mark Ellingham [20] at CanaDAM 2013 presented a result for

hamiltonicity of 3-connected planar graphs with a forbidden minor.
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[36] T. Kaiser and P. Vrána. Hamilton cycles in 5-connected line graphs. European

J. Combin. to appear, 310:570–574, 2011.

[37] A. Kaneko, M. Kano, and K. Suzuki. Three edge disjoint multicolored spanning

trees in complete graphs. Preprint, 2003.

[38] Mikio Kano and Xueliang Li. Monochromatic and heterochromatic subgraphs in

edge-colored graphs—a survey. Graphs Combin., 24(4):237–263, 2008.

[39] Anton Kotzig. Moves without forbidden transitions in a graph. Mat. Časopis
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