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In 1954, Lamont Cole posed a question which has motivated much ecological work

in the past 50 years: When is the life history strategy of semelparity (organisms

reproduce once, then die) favored, via evolution, over iteroparity (organisms may

reproduce multiple times in their lifetime)? Although common sense should dictate

that iteroparity would always be favored, we can observe that this is not always the

case, since annual plants are not only prevalent, but can dominate an area. Also,

certain plant species may be perennial in one region, but annual in another. Thus, in

these areas, certain characteristics must be present which favor annuals. It has been

shown, in prior work, that high environmental volatility, a short growing season, and

a low survivorship of adult plants for perennials should favor annuals.

In this work, we seek to answer Cole’s question by constructing a single-season,

continuous-time model which takes random environmental effects into account. Using

this model, we derive an optimal reproduction strategy to maximize the expected

yield for the following season for both annuals and perennials. Then, assuming that

evolutionary forces dictate this strategy be adopted, we repeat the single-season model

for multiple seasons to determine, over a long period of time, which of annuals or

perennials is more likely to experience growth under various conditions. The goal

is to confirm the prior results as well as construct new results with a more general

model.
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Chapter 1

Introduction

In 1954, biologist Lamont Cole, in what is now considered a landmark paper in life

history ecology ([5]), put forth the issue of semelparous and iteroparous life histories,

both terms which he coined. Specifically, why do both iteroparous (organisms which

can reproduce repeatedly during their lifetimes) and semelparous (organisms which

reproduce once, then die) organisms exist, and, in a given situation, which strategy

would be favored via evolution? On one hand, it seems logical that iteroparity would

be the dominant strategy for all organisms to adopt, since, surely, an organism that

can reproduce repeatedly in its lifetime should easily trump the output of a semel-

parous organism. Yet, in nature, many semelparous organisms exist and, in some

cases, dominate an area. Therefore, Cole proposed, there must be some evolutionary

advantage to being semelparous in certain situations. Since we will be discussing

plant reproductive strategies in this work, and annual plants and perennial plants

are examples of semelparous and iteroparous organisms, respectively, from here on,

we simply use the terms “annuals” and “perennials” to describe the two different

reproductive behaviors.

The following statement, known today as “Cole’s Paradox,” summarizes the high-
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est advantage perennials can have over annuals ([5, p. 118]): “For an annual species,

the [maximal] gain in intrinsic population growth which could be achieved by chang-

ing to the perennial reproductive habit would be exactly equivalent to adding one

individual to the average litter size.” This maximal gain was derived by assuming

that reproduction takes place once every year, perennials can reproduce in their first

year of existence, and the perennials produce a fixed number of offspring per year

indefinitely with no mortality. So, if the average litter size for annuals is quite high,

gaining only one individual per litter would make little difference. Further, since

gaining one individual per litter is the maximal gain, it seems to make more practical

sense for annuals to instead attempt to increase their average litter size rather than

switch to being perennials, which would then require that they adapt to surviving

over multiple seasons. The “paradox” is that the statement goes against common

sense: it almost implies that perennials have an evolutionary disadvantage. However,

assuming all traits are the same for both annuals and perennials, Cole then went on

to conclude that perennials do have the evolutionary advantage if they have a small

average litter size and/or relatively young maturation age ([5, pp. 119-126]).

The most direct extensions of Cole’s work that followed were by Charnoff and

Schaffer ([3]) in 1973, Truman Young ([29]) in 1981, and Iwasa and Cohen ([14])

in 1989. Charnoff and Schaffer’s key result, essentially a “correction” of Cole’s key

result, is as follows ([3, p. 792]): “For an annual species, the [maximal] gain in intrinsic

population growth which could be achieved by changing to the perennial reproductive

habit would be exactly equivalent to adding P/C to the average litter size,” where P

is the average adult survivorship, and C is the average juvenile survivorship.

Young further generalized Charnoff and Schaffer’s result to include more param-

eters; for example, time between reproductive episodes and senescence (age where

reproduction can no longer occur) for perennials. Not only does he show that, under
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certain parameter conditions, Cole’s and Charnoff/Shaffer’s results are special cases

of his model, but he shows that perennials are favored when the age of senescence,

adult survivorship, and the ratio of prereproductive development time to the time be-

tween reproductive episodes are high. On the other hand, annuals are favored when

the population growth rate and juvenile survivorship are high ([29, pp. 28-34]).

Iwasa and Cohen, on the other hand, formulate a model independent of Cole’s

original model. Their model allocates energy proportionally to either a vegetative

part of the plant or a storage part, which includes both reproductive organs and

material necessary to rebuild the vegetative part of the plant during the next season.

Unlike the previously-mentioned models, however, the dynamics within a season are

assumed to occur in continuous time (the previous models occur in discrete time).

In the process of deriving an optimal energy allocation during a given season, they

also discuss that annuals will be favored over perennials if the season length is short,

storage efficiency is low, and/or the chances of catastrophic disturbances are high

([14, p. 491]).

Although these models, especially Cole’s, have led to some intriguing work and

results on the question of annuals vs. perennials by numerous biologists, mainly case

studies (see, for example, [4], [8], [11], and [30]), all of the aforementioned models are

deterministic. Since natural processes occur continuously, and environmental effects

are not wholly deterministic, we wish to extend these ideas by including continuous-

time dynamics in each season as well as environmental stochasticity. Also, all of

these models assume that reproductive output per season is known a priori; however,

evolutionary forces over time have dictated what an optimal reproductive strategy

should be for the plants. So, we would also like to see, especially with randomness

from the environment, what the effects of the environment and other parameters

are on an optimal reproductive strategy. Thus, in this work, we seek to answer the
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following questions: “In a random environment, assuming each season is measured in

continuous time, what reproductive strategy should annuals or perennials adopt in

order to maximize their expected yield for the following season? Further, if this is done

over multiple seasons, do annuals or perennials have the evolutionary advantage?”

The way that we will incorporate environmental stochasticity and continuous-time

dynamics is by way of a stochastic differential equation (SDE). The general form of

SDE (and most common in practice) that we will use is the following:

dXt = f(t,Xt)dt + g(t,Xt)dBt.

Here, dBt represents a small increment of Standard Brownian Motion, which we will

call Bt (it is also common to call it Wt since another common name is the Wiener

process; according to [16, p. 76], Wiener formalized the mathematical properties of

Standard Brownian Motion in 1923); this is a random process which has the following

properties (see, for example, [10, pp. 330-332]):

1. B0 = 0.

2. If 0 ≤ s < t, then Bt − Bs is normally distributed with mean 0 and variance

t− s.

3. If 0 ≤ s1 < s2 ≤ t1 < t2, then Bt2 −Bt1 and Bs2 −Bs1 are independent.

4. Bt is continuous almost surely (that is, with probability 1) for all t ≥ 0.

The SDE can thus be broken up into two terms on the right hand side: a deterministic

term, f(t,Xt)dt, and a random (stochastic) term, g(t,Xt)dBt. The name “determin-

istic term” comes from the fact that, if g(t,Xt) = 0, then the equation would reduce

to a deterministic ordinary differential equation (ODE). Thus, an SDE can roughly

be thought of as adding randomness to an ODE.
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SDEs have been in existence for many years; as Jarrow and Protter discuss in

[16], the first known SDE, which was of the form stated previously, was studied by

Kiyosi Ito starting in 1945, culminating in the now-fundamental Ito’s Lemma (or Ito’s

Formula) in 1951 ([16, p. 78]). Ito’s Lemma provides a method for constructing a

solution to an SDE, but, more fundamentally, defines how to compute an integral of

the form ∫ T

0

f(Xt)dBt,

where Xt may be a random process. His work was later extended by Doob in 1953,

Girsanov in the 1950s and 1960, who proved a famous theorem on transformations

of Brownian Motion, Meyer in 1962, Courrege in 1963, and Kunita and Watanabe in

1967 ([16, pp. 79-80, 83-85]). For our purposes, however, Ito’s Formula will be all we

need to analyze the SDE in the model for our plant population.

Not surprisingly, since the real world is not wholly deterministic, numerous eco-

logical papers exist which include randomness in their models. One good example is

a paper by Lande ([19]), who discusses population extinction from the standpoints

of demographic stochasticity (the growth rate is random) as well as environmental

stochasticity and random catastrophes (large, infrequent changes in the population).

Another example is a paper by Iwasa and Kubo ([15]), who discuss the optimal

reproduction strategy of plants when random environmental effects occur that can

either destroy only the vegetative part of a plant, which can be regenerated, or kill

the plant altogether. These papers do not involve SDEs, instead relying on other

results to change the stochastic problems into deterministic ones for analytical pur-

poses. However, a great resource for biological SDEs is a 2007 book by Edward Allen

([1, pp. 135-153]); he indicates both a general modeling setup for problems involving

interacting populations as well as more specific examples (epidemiology and predator-



6

prey dynamics, for instance), discussing both demographic as well as environmental

stochasticity. That being said, due to the necessity to solve many SDEs numerically

and the fact that theoretical work usually requires measure theory and advanced

probability theory, something usually not required for ODEs, it is also not surprising

that SDEs are not more prevalent in the literature.

In order to determine what reproductive strategy for a single season will optimize

the expected yield for the plants for the following season, we will use techniques

from stochastic optimal control theory. Optimal control theory involves choosing

a function in order to either maximize or minimize a given functional, subject to

differential equation constraints. Many examples of these types of problems are in

[20], including many biological problems such as determining an optimal vaccination

schedule for an epidemic ([20, pp. 117-122]) and minimizing the impact of an invasive

plant species ([20, pp. 201-202, 205-209]).

However, the inspiration for the use of control theory to solve our problem actually

did not come from biology; instead, it came from finance. Dai et al ([7]) propose a

model for pricing a financial instrument known as a guaranteed minimum withdrawal

benefit (GMWB); the basic premise is that an investor pays money to an insurance

company, which invests the money in some risky portfolio on his/her behalf. The

investor, who is out to maximize his/her profits, must decide whether to ride out

his/her entire investment contract (the insurance company is “guaranteed” to pay

back the entire amount invested over an agreed-upon period of time) or to withdraw

early and face an early withdrawal penalty. Besides the risk of the market, the

investor also pays a commission to the insurance company; this also plays a role on

the withdrawal strategy. Although the biological scenario we will model is not quite

like this, since the “investors” are not playing against anyone else, but rather against

the environment, which has no stake in the outcome, the setup of the model and the
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analysis techniques are inspired by the work done in this paper. In fact, we will also

present a possible financial interpretation of the biological model.

Although optimal control theory has been in existence for a long time, the the-

orems needed to prove optimality of controls for stochastic systems (that is, where

the constraints are SDEs) did not arise until the 1990s. In deterministic optimal

control theory, one of the most common techniques used to prove optimality is the

Pontryagin Maximum Principle, discovered by Lev Pontryagin in 1962 ([24]). An

extension of this to stochastic optimal control problems was proved by Peng in 1990

([23]), who proved a necessary condition for optimality, and Zhou in 1996 ([27]), who

turned Peng’s condition into a sufficient condition.

Keeping all of this in mind, in the following chapters, we will form the model,

which will be an optimal control problem, solve the optimal control problem to find

optimal reproductive strategies for both annuals and perennials, and then, using

these optimal strategies, see what happens to the populations over multiple seasons

to determine whether perennials or annuals are more likely to thrive under different

conditions. More specifically, here is a rough outline of the work we will perform to

answer the posed questions:

• Chapter 2 sets up the model for choosing a reproductive strategy to maximize

expected yield for the following season. This is followed by an explanation of a

possible financial interpretation of the model.

• Chapter 3 finds an optimal reproductive strategy in the absence of environmen-

tal stochasticity. It turns out that, for both annuals and perennials, the optimal

strategy is either to not reproduce initially and then, at some designated time

during the season, begin reproduction at maximum capacity, or reproduce at

maximum capacity all season long. We also discuss when season-long reproduc-
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tion will be optimal in Section 3.4.

• Chapter 4 finds an optimal reproductive strategy when considering environ-

mental stochasticity. We show that the environment will have no effect on the

choice of strategy; that is, the optimal controls found in Chapter 3 will still be

optimal.

• Chapter 5 takes the optimal controls discovered in Chapters 3 and 4, assumes

the plants follow those strategies and all parameters remain the same over multi-

ple seasons, and then investigates what happens with both annuals and peren-

nials over multiple seasons, first individually, and then comparatively. This

investigation seeks to answer the question that Cole initially posed: “When is

semelparity more advantageous over iteroparity?”

• Chapter 6 provides some numerical simulation data to not only confirm results

from Chapters 3 and 4, but also to see how accurate results from Chapter 5

are in predicting long-term behavior of the plants. As an endnote, we also

consider logistic growth and compare results with exponential growth, which

will be assumed in the model derived in Chapter 2.

• Chapter 7 summarizes all of the work done and provides indications for what

can and, in some cases, should be done in the future to extend the results.

• Two appendices are also present; the first simply details the programs used to

run the simulations in Chapter 6, and the second involves an error analysis on

some of the work done in Chapter 5.
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Chapter 2

Ecological Situation and Model

2.1 The Model and Assumptions

We now present a model for a plant species and its choice of reproduction strategy

in order to ensure optimal yield for the following season. This type of model has

assumptions and consequences like those in finance; in fact, we will discuss a financial

analog to this model in the next section.

Consider a local population (by “local,” we mean a portion of the population

located in a region where the environmental effects on the population are the same)

of a plant species which initially has known adult biomass W0 > 0 and no juveniles

or unsprouted reproductive biomass (a general term to mean any biomass which can

be spread and sprout into new plants; for example, seeds) at the start of a season,

defined as time t = 0. The population’s goal is to maximize the amount of expected

total adult biomass available at the start of next season; that is, the adult biomass

left at the end of the season which is expected to survive to next season along with

the expected biomass resulting from surviving and sprouting reproductive biomass

into adults for next season, defined as time t = T . The plants, as a population,
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“choose” (that is, we assume evolutionary forces will favor those plants which adopt

optimal reproductive strategies) how much energy to devote to reproduction, and this

will result in some amount of reproductive biomass being produced. However, as we

assume that there are environmental effects acting on the population, we assume any

energy used for reproductive purposes (that is, adult biomass which is converted to

reproductive biomass) becomes “safe.” That is, it is no longer at risk of being lost at

the hands of the environment, but it is also no longer able to grow in size during the

current season, and there is the potential of the reproductive biomass not growing

into adult plants. We also assume that “energy” and “biomass” are interchangeable;

this makes sense because, as an organism uses energy, it generally loses biomass

(think of humans who exercise and lose weight). Thus, to keep things simple, we

assume that the loss of biomass is proportional to the loss of energy; further, without

loss of generality, we can assume that both are the same measure (we could just

appropriately scale the biomass).

For this model, we assume that the adult biomass during the season will be gov-

erned by a Geometric Brownian Motion; in other words, calling Wt the adult biomass

at time t, 0 ≤ t ≤ T ,

dWt = rWtdt + σWtdBt, (2.1)

where r is the (exponential) growth rate of the population in absence of environ-

mental effects, σ is the volatility of the environment, or how “wild” swings in the

environmental effects are expected to be, and Bt is a Standard Brownian Motion.

This says that the environmental effects, which we are taking here to be an aggregate

of all external factors on the plants’ growth, such as temperature, rainfall, disease,

and predation, are essentially “white noise.” These will influence the overall growth,
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both positively and negatively.

Likewise, we assume that the plants follow an energy allocation rule similar to the

κ rule for energy allocation (discussed in [21]); that is, at any time, the proportion of

biomass used for reproduction cannot exceed κ. Whatever proportion is remaining,

which is at least 1 − κ, is then used for somatic maintenance. For this model, we

will assume 0 < κ < 1 + r is constant over time. Assuming that both the growth

and reproduction occur instantaneously and simultaneously, then κ = 1 + r would

represent the plants using all of their deterministic growth and whatever existed

previously for reproduction. Since the stochastic term has mean 0, and is random,

then we assume that this maximum value for κ is based solely on the deterministic

growth. Because of this, the population cannot use all of its biomass for reproduction

in a given instant; however, it can decide to reproduce continuously throughout the

season if that ends up being the optimal strategy. This is a logical assumption to

make since, even if the plants decide to focus solely on reproduction, they still have

to have a vegetative structure in order to create the reproductive biomass. Also, we

assume that the plants can begin or end reproduction at any time during the season,

which is certainly reasonable because most mature organisms can choose to begin or

stop reproduction whenever they want.

With this, we define γ(t) to be the (measurable) function which gives the pro-

portion of available adult biomass per unit time which is converted to reproductive

biomass at time t. This will be the control function, or strategy, for this model. In

reality, γ may also be dependent on Wt; however, for simplicity, we assume that it is

solely dependent on t for this model. By assumption, 0 ≤ γ(t) ≤ κ for all 0 ≤ t ≤ T .

We will also assume that, once the population begins to convert biomass to repro-

ductive biomass, the conversion is done instantaneously, and it cannot be stored for

multiple seasons; once reproductive biomass has been created, it will either sprout
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into adult plants next season or die.

So, combining this with (2.1), we have that, at time t,

dWt = rWtdt + σWtdBt − γ(t)Wtdt.

Of course, this equation only holds if Wt > 0; if Wt0 = 0 at any time 0 ≤ t0 < T , then

for all t0 ≤ t ≤ T , it will remain 0 since, if there is no adult biomass at any instant,

there can’t be any until next season when the reproductive biomass sprouts.

The goal for the population is to maximize its expected yield for next season, so

we next focus on how to represent this. We first define the following parameters:

a = average survivorship of adult plants from the end of the

current season to the beginning of the next

ε = average proportion of reproductive biomass which sprouts to full-grown adults

in the next season

u = average number of times more biomass a full-grown adult has than the

reproductive biomass needed for a new plant.

As their definitions suggest, we assume all of these parameters are constant. Note

that, if a = 0, then we define the plants to be annuals; otherwise, they are defined to

be perennials. These definitions are solely based on whether any adults can survive

for multiple seasons or not; however, we will show that the reproductive behavior of

the plants in each case corresponds to the observed reproductive behaviors of these

types of plants. Also, u > 1 by definition.
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We thus want to maximize the following:

E

[
aWT + εu

∫ T

0

γ(t)Wtdt

]
.

The term aWT represents the adult biomass the population will start with next season

leftover from the current season, while the integral term represents the expected adult

biomass that seeds planted during the current season will yield next season. The

integral is just adding up all of the biomass that is converted to seeds over the course

of the season, and the multiplier εu accounts for what proportion of those seeds are

expected to survive to be full-grown adults, and then how much adult biomass the

surviving (and sprouting) seeds will contribute to the population (on average) during

the next season. This can be thought of as the “reproductive utility factor.”

It is important to note that the reproductive biomass that does sprout into adults

is assumed, for the purposes of this model, to be full-grown adults at the very begin-

ning of the next season. Thus, we assume that the season begins once all sprouting

biomass has grown into adults.

We can summarize all of this into the following optimization problem, which states

that the goal for the plants is to maximize their expected yield for next season while

being subjected to both deterministic and stochastic effects:

Maximize E

[
aWT + b

∫ T

0

γ(t)Wtdt

]
(2.2)

subject to dWt = (r − γ(t))Wtdt + σWtdBt (2.3)

Wt ≥ 0, (2.4)

where b = εu. The change in notation is made because, in the analysis of this model,

these two parameters are always together as a product. Also, if Wt0 = 0 for any time
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0 ≤ t0 < T , then Wt = 0 for all t ≥ t0. This practical assumption is clear, and hence

it will be omitted from future discussion unless necessary.

Since the reproduction strategy, γ(t), is “chosen” by the population, it is natural

to turn to methods from control theory to try to solve this problem. In fact, this

optimization problem can be solved by a specific control theory method; namely, the

Pontryagin Maximum Principle. This will be explored in future sections.

2.2 A Financial Analog

Although the model just constructed is going to be used to solve an ecological problem,

we note that there is a quite convenient financial interpretation of the model.

Consider an investor whose goal is, by the end of some period of time, to maximize

his/her investment. In response, he/she decides to invest his/her money in a risky

portfolio, but also has the option to withdraw certain portions of it to be placed in

a savings account which has no risk involved and earns some rate of interest. This

will be paid based on the balance in the account at the end of the investment period.

We assume that any money taken out of the portfolio cannot be put back into it,

and no additional money will be introduced into neither the portfolio nor the savings

account during the investment period.

We also assume the standard financial assumption that the value of the risky

portfolio follows a Geometric Brownian Motion (2.1). Then, money is taken out of

the portfolio and put into the savings account at rate γ(t), where 0 ≤ t ≤ T , and γ(t)

is the chosen withdrawal rate by the investor at time t. Further, suppose that the

investor is not allowed to make excessive withdrawals from the portfolio at any time

without paying a penalty. Assuming that this penalty is harsh enough to discour-

age any thought of incurring it, we can think of this as the “somatic maintenance”
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requirement for the portfolio, thus requiring γ(t) to be less than or equal to some

constant rate κ for any time t.

In this case, the quantity u − 1 represents the simple interest rate the savings

account will earn on its ending balance, and hence, practically, u ≥ 1, but one would

expect u to be relatively close to 1 (otherwise, the bank could lose a lot of money!).

ε represents how much of each dollar taken from the portfolio and put in the savings

account can be kept after any possible transfer fees (we’ll assume the transfer fee is

a constant proportion of each transaction). So, 0 < ε ≤ 1; if ε = 1, then there are no

transfer fees. Also, 1− a represents the broker’s fee on the balance of the portfolio at

the end of the investment period; so, other than on transfers (unless ε = 1), this is the

only other time the broker collects money in this scenario. Unlike in the biological

model, however, where a can feasibly be 0, it doesn’t make sense in this interpretation

to have a be close to 0, since no rational investor would invest with a broker who

will collect almost all, or all, of the money in the risky portfolio at the end of the

investment, especially if the investor can’t pull all money out at once! It also doesn’t

make sense to have a equal to 1 since the broker would make no money off the risky

portfolio. So, in this financial model, we will assume that a is close to, but not equal

to, 1.

Thus, we can use the same set of equations as in the biological model, with the
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following changes in interpretation for the variables and parameters:

t = time

T = length of time of investment

Wt = value of portfolio at time t

γ(t) = rate which money is placed into savings account from portfolio at time t

κ = maximum withdrawal rate which can occur at time t without penalty

r = riskless interest rate compounded continuously

σ = volatility of risky portfolio

a = proportion of money left in portfolio kept after end-of-period broker’s fees

ε = proportion of money transferred to savings account kept

after transaction fees

u = value of $1 with simple interest earned on savings account at end of period.

Because the mathematical analysis of this model is the same as that of the ecological

model, we will focus solely on the ecological model for the remainder of this work.

However, the interested reader may reinterpret the findings in this financial setting if

he/she finds it more convenient or interesting.

Remark: Practically, the “somatic maintenance” requirement would most likely

be given as a minimal dollar amount which must be in the portfolio at all times during

the investment. However, for purposes of having a direct analog between the ecological

and financial situations, we stated this requirement as a maximal withdrawal rate at

any time t.
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Chapter 3

The Deterministic Case

3.1 Finding an Optimal Strategy

We now analyze the ecological model derived in Chapter 2 in the absence of random

environmental effects (that is, σ = 0). To do so, we solve the following optimization

problem:

Maximize aWT + b

∫ T

0

γ(t)Wtdt (3.1)

subject to
dWt

dt
= (r − γ(t))Wt (3.2)

Wt ≥ 0. (3.3)

Constraint (3.2) comes from dropping the stochastic term in (2.3) and, since we are

assuming continuous time, then (3.2) becomes a first-order linear differential equation

for Wt. We also note that, since all of the functions are deterministic, then

E

[
aWT + b

∫ T

0

γ(t)Wtdt

]
= aWT + b

∫ T

0

γ(t)Wtdt.
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Noting that W0 > 0 is a given constant, then it can be easily verified that

Wt = W0 · exp

(
rt−

∫ t

0

γ(s)ds

)
.

Since this holds for all 0 ≤ t ≤ T , we note that (3.3) is clearly satisfied since W0 > 0.

Thus, it is redundant, and hence we’ll no longer consider it in our analysis. We also

note that the value of the objective function is

aWT + b

∫ T

0

γ(t)Wtdt = aW0 · exp

(
rT −

∫ T

0

γ(t)dt

)
+ bW0

∫ T

0

γ(t) · exp

(
rt−

∫ t

0

γ(s)ds

)
dt.

To find a γ(t) which will maximize the objective function, we need some necessary

and sufficient conditions for optimality. In order to do this, however, we need some

definitions and assumptions.

So, consider the following general optimization problem for (t, x) ∈ [0, T ] × G,

where G ⊆ R and W0 ∈ G is given:

Maximize K(WT ) +

∫ T

0

F (t,Wt, γ(t))dt (3.4)

subject to
dWt

dt
= c(t,Wt, γ(t)). (3.5)

We define U to be the separable metric space (with metric d), which is also a convex

set with nonempty interior, which gives the range of the control functions γ(t) ∈ M .

Here, M is the set of all measurable Markov controls γ(t) (that is, the value of γ(t)

for any t ∈ [0, T ] has no dependence on the value of γ(s) for any s < t) such that

γ(t) ∈ U for all t ∈ [0, T ].

We further assume that K(x), F (t, x, v), c(t, x, v) are:
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• measurable

• continuously differentiable with respect to x

• such that there exists a constant N > 0 such that, for any choice of x,

|φ(t, x, v)| ≤ N(1 + |x|),

where φ is any one of K, F, c, or any of their partial derivatives with respect to

x

• such that there is a constant L > 0 and a “modulus of continuity” ω : [0,∞) →

[0,∞) such that, taking φ to be any of K,F, c,

|φ(t, x, v)− φ(t, x∗, v∗)| ≤ L|x− x∗|+ ω(d(v, v∗))∣∣∣∣∂φ

∂x
(t, x, v)− ∂φ

∂x
(t, x∗, v∗)

∣∣∣∣ ≤ ω(|x− x∗|+ d(v, v∗))

for all t ∈ [0, T ], x, x∗ ∈ G, v, v∗ ∈ U

• such that c, F are locally Lipschitz with respect to v

We also require that, for any W0 ∈ G, any choice of γ(t) ∈ M implies Wt ∈ G for all

t ∈ [0, T ]; that is, all possible controls are admissible. Since these will be the standard

assumptions for (3.4-3.5), we will call this list (DA) for “deterministic assumptions.”

So, (DA) implies that any choice of γ(t) will lead to a unique solution Wt of (3.5)

(see, for example, Theorem 8.13 in [18, pp. 340-342]).

Once γ(t), and hence Wt, is chosen, we define the adjoint function p(t) to be the
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function satisfying the following:

p′(t) = −
(

∂c

∂x
(t,Wt, γ(t))p(t) +

∂F

∂x
(t,Wt, γ(t))

)
p(T ) =

∂K

∂x
(WT ).

If (3.4-3.5) satisfies (DA), then there is a unique adjoint function for a given γ(t) and

Wt.

From this, we then define the following function:

H(t, x, v, p) = p(t)c(t, x, v) + F (t, x, v).

This is called the Hamiltonian for (3.1-3.3). It will play an important role in our

necessary and sufficient conditions for optimality, which we are now ready to state.

We begin with a necessary condition, which is Theorem 2.1 in Yong-Zhou (also called

the Pontryagin Maximum Principle) ([27, p. 103]):

Theorem 3.1: Assume (3.4-3.5) satisfies (DA). If γ∗(t) is an optimal control with

corresponding constraint solution W ∗
t and adjoint function p(t), then

H(t,W ∗(t), γ∗(t), p(t)) = max
v∈U

H(t,W ∗(t), v, p(t))

for almost every t ∈ [0, T ].

Proof : A proof can be found in [27, pp. 104-106].

Next, we give a sufficient condition for optimality:

Theorem 3.2: Assume (3.4-3.5) satisfies (DA). Let γ∗(t) ∈ M , W ∗
t be the corre-

sponding constraint solution, and p(t) be the corresponding adjoint function. If:

1. K is concave
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2. For any other choice of γ(t) ∈ M and corresponding Wt,

H(t,Wt, γ(t), p(t))−H(t,W ∗
t , γ∗(t), p(t)) ≤ ∂H

∂x
(t,W ∗

t , γ∗(t), p(t)) · (Wt −W ∗
t )

for all t ∈ [0, T ]

then γ∗(t) is an optimal control.

Proof : We begin by defining ξ(t) = Wt −W ∗
t . By assumption, ξ(t) satisfies

ξ′(t) =
∂c

∂x
(t,W ∗

t , γ∗(t)) · ξ(t) + α(t)

ξ(0) = 0,

where

α(t) = − ∂c

∂x
(t,W ∗

t , γ∗(t)) · ξ(t) + c(t,Wt, γ(t))− c(t,W ∗
t , γ∗(t)).
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With this in mind, along with the given assumptions, we have the following:

∂K

∂x
(W ∗

T ) · ξ(T ) = p(T )ξ(T )− p(0)ξ(0)

=

∫ T

0

(
−
(

∂c

∂x
(t,W ∗

t , γ∗(t)) · p(t) +
∂F

∂x
(t,W ∗

t , γ∗(t))

)
ξ(t)

+p(t)

(
∂c

∂x
(t,W ∗

t , γ∗(t)) · ξ(t) + α(t)

))
dt

=

∫ T

0

(
−∂F

∂x
(t,W ∗

t , γ∗(t)) · ξ(t) + p(t)α(t)

)
dt

=

∫ T

0

((
−∂H

∂x
(t,W ∗

t , γ∗(t), p(t)) + p(t)
∂c

∂x
(t,W ∗

t , γ∗(t))

)
ξ(t)

+ p(t)α(t)

)
dt

=

∫ T

0

(
−∂H

∂x
(t,W ∗

t , γ∗(t), p(t)) · (Wt −W ∗
t )

+ p(t)(c(t,Wt, γ(t))− c(t,W ∗
t , γ∗(t)))

)
dt

≤
∫ T

0

(H(t,W ∗
t , γ∗(t), p(t))−H(t,Wt, γ(t), p(t))

+p(t)(c(t,Wt, γ(t))− c(t,W ∗
t , γ∗(t)))) dt

=

∫ T

0

(F (t,W ∗(t), γ∗(t))− F (t,Wt, γ(t))) dt.

Since K(x) is assumed concave and C1(G), then

K(WT )−K(W ∗
T ) ≤ ∂K

∂x
(W ∗

T ) · (WT −W ∗
T ).

Tying this all together, we then have

K(WT ) +

∫ T

0

f(t,Wt, γ(t))dt ≤ K(W ∗
T ) +

∫ T

0

f(t,W ∗
t , γ∗(t))dt.

Since γ(t) ∈ M was arbitrary, this completes the proof of Theorem 3.2.
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Remark 1: This theorem and proof is based on Theorem 2.5 in [27, pp. 112-

113]. The key difference between their theorem and our Theorem 3.2 is that the

Hamiltonian (H(t, x, u, p)) is assumed concave with respect to x, u. Their sufficient

condition involves showing that, for almost every t ∈ [0, T ],

H(t,W ∗(t), γ∗(t), p(t)) = max
v∈U

H(t,W ∗(t), v, p(t)).

If this and concavity of H is assumed, then the condition on H used in Theorem 3.2

can be derived, leading to a virtually identical proof, and turning Theorem 3.1 into

an if-and-only-if statement. However, as we’ll soon show, the Hamiltonian for our

problem is not concave, and hence a different sufficient condition is needed.

Remark 2: In general, if an optimal γ∗(t) exists, it is not necessarily unique.

For our model, however, we will be able to show that an optimal γ∗(t) is essentially

unique; that is, except for possibly at one point, γ∗(t) is unique.

We now go back to our model and analyze it with this framework. First, we note

that G = [0,∞) and U = [0, κ] (giving U the metric | · | results in U being convex

with nonempty interior and a separable metric space) for (3.1-3.3). Since

c(t, x, v) = (r − v)x

F (t, x, v) = bxv

K(x) = ax,

these all clearly satisfy (DA) (in fact, c, F are actually Lipschitz with respect to v

since they are linear in v). Further, we can define the adjoint variable for a given

γ(t) ∈ M and corresponding Wt (M is the set of all measurable Markov controls γ(t)
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such that 0 ≤ γ(t) ≤ κ for all t ∈ [0, T ]) as follows:

p′(t) = (γ(t)− r)p(t)− bγ(t)

p(T ) = a.

Once this is solved, then we can define the Hamiltonian for (3.1-3.3) as follows:

H(t,Wt, γ(t), p(t)) = p(t)(r − γ(t))Wt + bWtγ(t)

= Wt · (rp(t) + γ(t)(b− p(t))).

Since K(x) = ax is clearly concave (it is linear), then our goal will be to find a

γ∗(t) which results in the conditions on H from Theorems 3.1 and 3.2 being satisfied.

The following sections focus on this in two cases: when a = 0 (annuals) and when

a > 0 (perennials). Recall these definitions come from whether all of the adults in

the population will die at the end of the season, or some of them will survive into the

next season, respectively.

3.2 Annuals

We now solve the problem in the deterministic case assuming that the plants are

annuals (a = 0). First, however, since a = 0 here, we note that, in this case, the

objective function becomes simplified. Hence, here, we wish to maximize

b

∫ T

0

γ(t)Wtdt.
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Recalling that

Wt = W0 · exp

(
rt−

∫ t

0

γ(s)ds

)
, (3.6)

then we wish to maximize

bW0

∫ T

0

γ(t) · exp

(
rt−

∫ t

0

γ(s)ds

)
dt. (3.7)

To construct a possible candidate for an optimal control, which we’ll refer to

as γ∗(t), consider the reproductive behavior of annual plants. By definition, annual

plants grow, reproduce once, and then die at the end of the reproductive period. Thus,

it makes sense that an optimal strategy would be to have the plants initially not allo-

cating any energy to reproduction, instead focusing on the growth and preservation of

the existing adults. Then, at some time during the season, the plants “turn on” full

reproduction until the season ends, at which point all of the adult biomass will die

off. The “turn-off, turn-on” strategy seems to also be indicated by the Hamiltonian,

since

H(t,Wt, γ(t), p(t)) = Wt · (rp(t) + γ(t)(b− p(t))).

Theorem 3.1 tells us, since Wt ≥ 0, that an optimal γ(t) can only take on two values

on [0, T ]: 0 or κ, depending on the sign of b− p(t) (although γ(t) can technically be

anything if b = p(t), for simplicity, we will assume γ(t) = κ at these points).

Thus, we will define

γ(t) = κH̄(t− dA),

where H̄(x) is the Heaviside function with H̄(0) = 1, and dA = T − d̄A, where d̄A

is to be determined. Plugging this γ(t) into (3.7) and assuming r 6= κ (r = κ is a
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special case which will be analyzed later), we obtain the following:

bW0

∫ T

0

γ(t) exp

(
rt−

∫ t

0

γ(s)ds

)
dt

= bW0κ

∫ T

dA

exp (rt− κ(t− dA)) dt

=
bW0κ

r − κ
(exp(rT − κ(T − dA))− exp(rdA)) .

Next, we will take a derivative of the above with respect to dA, set it equal to 0, and

then solve for dA to obtain the dA which maximizes (3.7). This gives us:

bW0κ

r − κ
(κ · exp(rT − κ(T − dA))− r · exp(rdA)) = 0

κ · exp(rT − κ(T − dA))− r · exp(rdA) = 0

exp(T (r − κ)) =
r

κ
· exp(dA(r − κ))

T (r − κ)− ln
( r

κ

)
= dA(r − κ)

dA = T − 1

r − κ
ln
( r

κ

)
.

If r = κ, note that the expression for dA is undefined, meaning that a different

expression for the starting time for reproduction is needed; we’ll call this d∗A. So,

plugging in γ(t) = κH̄(t− d∗A), where 0 ≤ d∗A ≤ T , into (3.7) obtains

bW0κ

∫ T

d∗A

exp (κt− κ(t− d∗A)) dt

= bW0κ(T − d∗A) exp(κd∗A).

Taking the derivative of this with respect to d∗A, setting it equal to 0, and then solving
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for d∗A obtains

d∗A = T − 1

κ
.

To verify that both dA and d∗A are the starting times that maximize (3.7) when

choosing γ(t) = κH̄(t − d), one can simply use the Second Derivative Test from

calculus (see, for example, [25, p. 284]).

Remark: One could also obtain d∗A by simply noting that

T − 1

κ
= T − d

dκ
ln(κ)

= T − lim
r→κ

ln(r)− ln(κ)

r − κ

= T − lim
r→κ

1

r − κ
ln
( r

κ

)
.

Since both dA and d∗A represent at which time during the season the plants should

begin reproducing according to this choice of γ(t), it is interesting to note that these

times are not dependent on b. This is justified because, biologically speaking, the

value of b is of much less significance to the annuals’ choice to reproduce since they

have to reproduce to sustain their population as opposed to perennials. Also, regard-

less of the values of r, κ, both of these times are less than T (both r − κ and ln
(

r
κ

)
have the same sign, and 1

κ
is positive), meaning the annuals will always reproduce;

it is just a question of when they will start. Should dA (or d∗A) as computed by the

above formula be negative, then we will take it to simply be equal to 0 for practicality

purposes, meaning that the plants will reproduce all season long; this assumption is

justified mathematically in the proof of Theorem 3.3 below. This possibility does

exist and will be discussed in Section 3.4.

The next step is to show that γ(t) = κH̄(t − dA) (or κH̄(t − d∗A)) is indeed an
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optimal choice for a reproductive strategy. To do this, we will first check that the

necessary condition (Theorem 3.1) is satisfied, followed by the sufficient condition

(Theorem 3.2), which means we need to find the corresponding adjoint function. So,

in this case,

p′(t) = (γ(t)− r)p(t)− bγ(t)

p(T ) = 0,

which has solution

p(t) = b

∫ T

t

γ(s) · exp

(
r(s− t)−

∫ s

t

γ(u)du

)
ds. (3.8)

We then have the following theorem:

Theorem 3.3: If a = 0, then γ(t) = κH̄(t−dA) is an optimal control for (3.1-3.3),

replacing dA with d∗A if r = κ.

Proof : We begin with the case r 6= κ. Plugging in γ(t) = κH̄(t− dA) into (3.8)

gives us:

p(t) =


bκ
∫ T

dA
exp (r(s− t)− κ(s− dA)) ds t < dA

bκ
∫ T

t
exp (r(s− t)− κ(s− t)) ds t ≥ dA

=


bκ

r−κ
(exp(r(T − t)− κ(T − dA))− exp(r(dA − t))) t < dA

bκ
r−κ

(exp(r(T − t)− κ(T − t))− 1) t ≥ dA

.
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Noting that, for this γ(t),

Wt =


W0 · exp(rt) t < dA

W0 · exp(rt− κ(t− dA)) t ≥ dA

,

we can find the Hamiltonian for this γ(t) as follows:

H(t,Wt, γ(t), p(t)) = Wt · (rp(t) + γ(t)(b− p(t)))

=


Wt · (rp(t)) t < dA

Wt · (rp(t) + κ(b− p(t))) t ≥ dA

=



W0brκ
r−κ

(exp(rT − κ(T − dA))− exp(rdA)) t < dA

W0brκ
r−κ

(exp(rT − κ(T − dA))− exp(rt− κ(t− dA)))

+W0κ · exp(rt− κ(t− dA))

·
(
b− bκ

r−κ
(exp(r(T − t)− κ(T − t))− 1)

)
t ≥ dA

H(t,Wt, v, p(t)) =



W0brκ
r−κ

(exp(rT − κ(T − dA))− exp(rdA))

+W0v (b · exp(rt)

− bκ
r−κ

(exp(rT − κ(T − dA))− exp(rdA))
)

t < dA

W0brκ
r−κ

(exp(rT − κ(T − dA))− exp(rt− κ(t− dA)))

+W0v · exp(rt− κ(t− dA))

·
(
b− bκ

r−κ
(exp(r(T − t)− κ(T − t))− 1)

)
t ≥ dA

.

We now need to check that

H(t,Wt, γ(t), p(t)) = max
v∈[0,κ]

H(t,Wt, v, p(t)).
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To do this, we begin with the branch where t < dA. Here, we note that only one piece

is dependent on v in the expression for H(t,Wt, v, p(t)); namely,

W0v

(
b · exp(rt)− bκ

r − κ
(exp(rT − κ(T − dA))− exp(rdA))

)
.

We want to show that this is maximized when v = 0, or, equivalently,

W0

(
b · exp(rt)− bκ

r − κ
(exp(rT − κ(T − dA))− exp(rdA))

)
≤ 0 (3.9)

for all t < dA. But, we note that the left side of (3.9) clearly strictly increases with

respect to t since W0, b > 0, and so it will suffice to verify it when t = dA. So, we

plug this value in for t and note that we want to show:

W0

(
b · exp(rdA)− bκ

r − κ
(exp(rT − κ(T − dA))− exp(rdA))

)
≤ 0

1− κ

r − κ
(exp((r − κ)(T − dA))− 1) ≤ 0

1− κ

r − κ

( r

κ
− 1
)
≤ 0

0 ≤ 0

since dA = T − 1
r−κ

ln
(

r
κ

)
. Thus, (3.9) holds.

We next look at the branch where t ≥ dA. Again, only one piece of H(t,Wt, v, p(t))

is dependent on v; namely,

W0v · exp(rt− κ(t− dA))

(
b− bκ

r − κ
(exp(r(T − t)− κ(T − t))− 1)

)
.
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We want to show that this is maximized when v = κ, or, equivalently,

W0 · exp(rt− κ(t− dA))

(
b− bκ

r − κ
(exp(r(T − t)− κ(T − t))− 1)

)
≥ 0. (3.10)

Note that the partial derivative with respect to t of the left side of this inequality is

W0br · exp(rt− κ(t− dA)),

which is positive for all t ≥ dA, and hence the left side of (3.10) is strictly increasing,

meaning it will again suffice to prove the inequality is true when t = dA. Plugging in

t = dA into the left side of (3.10) yields

W0

(
b · exp(rdA)− bκ

r − κ
(exp(rT − κ(T − dA))− exp(rdA))

)
.

We’ve already shown that this left side is equal to 0 when verifying (3.9), and hence

(3.10) holds. Thus, indeed, we have shown

H(t,Wt, γ(t), p(t)) = max
v∈[0,κ]

H(t,Wt, v, p(t)).

Finally, we need to check that the sufficient condition, Theorem 3.2, holds. So,

let γ̄(t) ∈ M be some other control with W̄t the corresponding constraint solution.

Then,

H(t, W̄t, γ̄(t), p(t))−H(t,Wt, γ(t), p(t))

= (W̄t −Wt)(rp(t)) + (W̄t · γ̄(t)−Wt · γ(t))(b− p(t))
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and

∂H

∂x
(t,Wt, γ(t), p(t)) · (W̄t −Wt) = (W̄t −Wt)(rp(t) + γ(t)(b− p(t))).

So, for Theorem 3.2 to hold, we need to show that

γ̄(t)(b− p(t)) ≤ γ(t)(b− p(t)).

By the work done previously, we’ve shown that b−p(t) < 0 if t < dA and b−p(t) ≥ 0

if t ≥ dA. So, the above inequality reduces to


γ̄(t) ≥ 0 t < dA

γ̄(t) ≤ κ t ≥ dA

.

This is clearly true by definition of M , and hence, for any γ̄(t) ∈ M ,

H(t, W̄t, γ̄(t), p(t))−H(t,Wt, γ(t), p(t)) ≤ ∂H

∂x
(t,Wt, γ(t), p(t))

for all t ∈ [0, T ]. Thus, by Theorem 3.2, γ(t) = κH̄(t−dA) is an optimal control when

r 6= κ. Should the expression for dA be negative (hence, we’d take dA = 0), then only

the branch where t is at least dA needs to be checked, and the proof is exactly the

same to show that, in this case, γ(t) = κ is an optimal control.

Next, we assume that r = κ and proceed in the same way. So, we first plug in
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γ(t) = κH̄(t− d∗A) into the formula for p(t) and obtain:

p(t) =


bκ
∫ T

d∗A
exp (κ(s− t)− κ(s− d∗A)) ds t < d∗A

bκ
∫ T

t
exp (κ(s− t)− κ(s− t)) ds t ≥ d∗A

=


bκ(T − d∗A) exp(κ(d∗A − t)) t < d∗A

bκ(T − t) t ≥ d∗A

.

For this γ(t),

Wt =


W0 · exp(κt) t < d∗A

W0 · exp(κd∗A) t ≥ d∗A

,

and thus the Hamiltonian is:

H(t,Wt, γ(t), p(t)) = Wt(κp(t) + γ(t)(b− p(t)))

=


Wt · κp(t) t < d∗A

Wt · κb t ≥ d∗A

=


W0bκ(T − d∗A) exp(κd∗A) t < d∗A

W0bκ · exp(κd∗A) t ≥ d∗A

H(t,Wt, v, p(t)) =


W0b (κ(T − d∗A) exp(κd∗A)

+v (exp(κt)− κ(T − d∗A) exp(κd∗A))) t < d∗A

W0b exp(κd∗A) (κ2(T − t) + v(1− κ(T − t))) t ≥ d∗A

.

We now need to check that

H(t,Wt, γ(t), p(t)) = max
v∈[0,κ]

H(t,Wt, v, p(t)).
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Assuming t < d∗A, the only term of H(t,Wt, v, p(t)) that depends on v is

W0bv (exp(κt)− κ(T − d∗A) exp(κd∗A)) .

Note that, if d∗A > 0, then κ(T − d∗A) = 1. We don’t need to be concerned with the

case where d∗A = 0 since this branch would be irrelevant in that case. Thus, this

expression simplifies to

W0bv (exp(κt)− exp(κd∗A)) .

Since ex is an increasing function, then this is clearly negative for all t < d∗A, meaning

that, to maximize it with respect to v ∈ [0, κ], we need to set v = 0.

Next, assuming t ≥ d∗A, the only term of H(t,Wt, v, p(t)) that depends on v is

W0bv · exp(κd∗A)(1− κ(T − t)).

Determining what value of v will maximize this comes down to determining the sign

of

1− κ(T − t) = 1 + κt− κT.

Note that, at t = T − 1
κ
, the above is equal to 0. Further, since it clearly increases

with respect to t, then this quantity is nonnegative for all t ≥ d∗A, and hence, to

maximize H(t,Wt, v, p(t)) with respect to v when t ≥ d∗A, we need to set v = κ. This,

along with the above, proves that

H(t,Wt, γ(t), p(t)) = max
v∈[0,κ]

H(t,Wt, v, p(t)).

Now, for sufficiency, we need to check that Theorem 3.2 holds. So, let γ̄(t) ∈ M be
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some other control with W̄t the corresponding constraint solution. Then, as before,

H(t, W̄t, γ̄(t), p(t))−H(t,Wt, γ(t), p(t))

= (W̄t −Wt)(κp(t)) + (W̄t · γ̄(t)−Wt · γ(t))(b− p(t))

and

∂H

∂x
(t,Wt, γ(t), p(t)) · (W̄t −Wt) = (W̄t −Wt)(κp(t) + γ(t)(b− p(t))).

So, for Theorem 3.2 to hold, we need to show that

γ̄(t)(b− p(t)) ≤ γ(t)(b− p(t)).

Looking at the expression for p(t) in this case, b− p(t) < 0 if t < d∗A and b− p(t) ≥ 0

if t ≥ d∗A. Thus, the above inequality reduces to


γ̄(t) ≥ 0 t < d∗A

γ̄(t) ≤ κ t ≥ d∗A

.

This is clearly true by definition of M , and hence, for any γ̄(t) ∈ M ,

H(t, W̄t, γ̄(t), p(t))−H(t,Wt, γ(t), p(t)) ≤ ∂H

∂x
(t,Wt, γ(t), p(t))

for all t ∈ [0, T ]. Thus, by Theorem 3.2, γ(t) = κH̄(t − d∗A) is an optimal control

when r = κ. Also, as discussed above, should the expression for d∗A be negative, we

have that γ(t) = κ is an optimal control. This completes the proof of Theorem 3.3.

Remark 1: Note that γ∗(t) = κH̄(t − dA) (or d∗A if r = κ) is an optimal repro-
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duction strategy; however, it is clearly not unique if dA > 0, as one can simply set

γ(dA) = 0 (or any value in [0, κ]) and end up with the same value for the objective

function as γ∗(t) = κH̄(t − dA) yields. However, except for that one point, we can

show that γ∗(t) is uniquely determined.

To do so, we recall that, given any γ(t) ∈ M , the adjoint is:

p(t) = b

∫ T

t

γ(s) · exp

(
r(s− t)−

∫ s

t

γ(u)du

)
ds.

Recall that we wish to maximize the Hamiltonian over the image space for controls

[0, κ]; hence, we want to maximize, with respect to v,

H(t,Wt, v, p(t)) = Wt · (rp(t) + v(b− p(t))).

Maximizing this requires that we choose v = 0 if b < p(t) and v = κ if b > p(t). So,

noting that p(T ) = 0 by definition, we must have, since b > 0, v = κ at t = T . We

work backwards from here to complete this argument.

Plugging γ(t) = κ into the formula for p(t), we note that, if γ(t) > 0, then p(t) is

continuous and strictly monotone decreasing since the integrand is always positive in

this case. Thus, there must be an interval [t∗, T ] where v = κ to maximize H. But,

it is straightforward to check that p(t) = b when t = T − 1
r−κ

ln
(

r
κ

)
; hence, this is the

t∗ for the interval where v = κ.

At that point, continuing to work backwards, we must switch to v = 0 since p(t) is

strictly monotone decreasing whenever γ(t) > 0. Thus, except for possibly the point

t∗ (if t∗ > 0, that is), γ∗(t) = κH̄(t− dA) is unique.

Remark 2: It is also important to note what the optimal value of the objective

function will be in this case. Since we know an optimal control (namely, γ∗(t) =
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κH̄(t− dA)), we simply plug it in to (3.7) to find that the optimal value is

b

∫ T

0

γ∗(t)Wtdt = bκW0

∫ T

dA

exp(rt− κ(t− dA))dt

=
bW0κ

r − κ
(exp(rT − κ(T − dA))− exp(rdA))

if r 6= κ, and

b

∫ T

0

γ∗(t)Wtdt = bW0 · exp(κd∗A)

if r = κ (use d∗A instead of dA).

Remark 3: As previously mentioned, using Theorem 3.1 as an if-and-only-if

statement won’t work here because the Hamiltonian H(t, x, v, p) = x(rp + v(b − p))

is not concave with respect to (x, v). To see why, we note that, holding t, p constant,

the corresponding Hessian matrix is

 ∂2H
∂x2

∂2H
∂x∂u

∂2H
∂u∂x

∂2H
∂2u

 =

 0 b− p

b− p 0

 .

This matrix has eigenvalues λ = ±(b − p(t)), and hence the matrix is not negative

semidefinite (that would require p(t) = b for all t, which does not satisfy the ODE

for p(t)), a necessary and sufficient condition for concavity (see, for example, [9, p.

586]). This is why we needed Theorem 3.2.

Thus, biologically, this optimal strategy says that either, initially, the plants

should not reproduce at all and then, at some designated time during the season,

reproduce as much as possible until the end of the season, or reproduce all season

long. This makes sense because this allows the population to grow for a while in many

cases, allowing more resources to be poured into reproduction (and hence allowing

for a higher potential population next season), but also giving enough time for the
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population to reproduce as much as it can. However, depending on the values of

r, κ, and T , it may be better for the population to reproduce all season long; we will

discuss this scenario in Section 3.4.

3.3 The Deterministic Case (Perennials)

We now solve the problem in the deterministic case assuming that the plants are

perennials (a > 0). So, recall that we want to maximize:

aW0 · exp

(
rT −

∫ T

0

γ(t)dt

)
+ bW0

∫ T

0

γ(t) · exp

(
rt−

∫ t

0

γ(s)ds

)
dt.

We will do this by the same method that we used in the annuals case; namely, trying

to find a γ∗(t) ∈ M that satisfies the necessary and sufficient conditions in Theorems

3.1 and 3.2, respectively. In order to do this, we’ll have to find the adjoint function;

hence, we need to solve:

p′(t) = (γ(t)− r)p(t)− bγ(t)

p(T ) = a.

This has solution

p(t) = a · exp

(
r(T − t)−

∫ T

t

γ(s)ds

)
+ b

∫ T

t

γ(s) · exp

(
r(s− t)−

∫ s

t

γ(u)du

)
ds.

(3.11)

However, unlike the annuals case, there is actually a difference in what the optimal

strategy is, depending on the ratio b/a; specifically, if b/a ≤ 1 or b/a > 1. In the case

b/a ≤ 1, we have the following lemma:
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Lemma 3.4: If a > 0 and 0 < b/a ≤ 1, then γ(t) = 0 is an optimal control for

(3.1-3.3).

Proof : We begin by plugging in γ(t) = 0 into (3.11), which gives us p(t) =

a · exp(r(T − t)).

For this γ(t),

Wt = W0 · exp(rt).

We can then find the Hamiltonian for this γ(t) as follows:

H(t,Wt, γ(t), p(t)) = Wt · (rp(t) + γ(t)(b− p(t)))

= arW0 · exp(rT )

H(t,Wt, v, p(t)) = arW0 · exp(rT ) + vW0 · exp(rt)(b− a · exp(r(T − t))).

We now need to check that

H(t,Wt, γ(t), p(t)) = max
v∈[0,κ]

H(t,Wt, v, p(t)).

To do this, we note that only one term of H(t,Wt, v, p(t)) is dependent on v; namely,

W0v · exp(rt)(b− a · exp(r(T − t))).

We want to show that this is maximized when v = 0, or, equivalently,

b− a · exp(r(T − t)) ≤ 0

b/a ≤ exp(r(T − t))

for all t ∈ [0, T ]. However, by assumption, b/a ≤ 1, and, clearly, exp(r(T − t)) ≥ 1
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for all t ∈ [0, T ], so this inequality is true. So, H(t,Wt, v, p(t)) is maximized when

v = 0, meaning, indeed,

H(t,Wt, γ(t), p(t)) = max
v∈[0,κ]

H(t,Wt, v, p(t)).

Thus, the necessary condition (Theorem 3.1) holds.

Now, we need to check that the sufficient condition (Theorem 3.2) holds. So, let

γ̄(t) ∈ M be some other control with W̄t the corresponding constraint solution. Then,

H(t, W̄t, γ̄(t), p(t))−H(t,Wt, γ(t), p(t)) = (W̄t−Wt)(rp(t))+(W̄t·γ̄(t)−Wt·γ(t))(b−p(t))

and

∂H

∂x
(t,Wt, γ(t), p(t)) · (W̄t −Wt) = (W̄t −Wt)(rp(t) + γ(t)(b− p(t))).

So, for Theorem 3.2 to hold, we need to show that

γ̄(t)(b− p(t)) ≤ 0.

By the work done previously, we’ve already shown that b − p(t) ≤ 0; hence, for any

γ̄(t) ∈ M ,

H(t, W̄t, γ̄(t), p(t))−H(t,Wt, γ(t), p(t)) ≤ ∂H

∂x
(t,Wt, γ(t), p(t))

for all t ∈ [0, T ]. Thus, by Theorem 3.2, γ(t) = 0 is an optimal control when b/a ≤ 1,

and this completes the proof of Lemma 3.4.
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Remark: If we plug in γ∗(t) = 0 into (3.1), we get the optimal value

aWT + b

∫ T

0

γ∗(t)Wtdt = aW0 · exp(rT )

in this case.

We note that this strategy of doing nothing in terms of reproduction and focusing

on preserving and growing the existing adult biomass when b/a ≤ 1 certainly makes

sense since this implies that the plant population will actually be worse off reproducing

than simply growing as is (the tradeoff for a units of adult biomass this season is b

units of adult biomass for next season).

Next, if b/a > 1, we note that, in this case, there is incentive to reproduce since

the tradeoff for one unit of adult biomass this season is more than one unit of adult

biomass next season. Taking inspiration from the annuals case, we propose that an

optimal reproduction strategy is either to initially do nothing and then turn on maxi-

mum reproduction at some time in the future until the end of the season, or to simply

have maximum reproduction going all season long (depending on the parameter val-

ues). This is indeed an optimal strategy in this case, as we now illustrate.

First, however, we need to figure out, if this strategy is adopted, when the ideal

time to turn on maximum reproduction is. To do so, we will assume that

γ(t) = κH̄(t− dP ),

where H̄(x) is the Heaviside function with H̄(0) = 1, and dP = T − d̄P , where d̄P is

to be determined. Plugging this γ(t) into (3.1) and assuming 0 ≤ dP ≤ T and r 6= κ,
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we obtain the following:

W0

(
a · exp(rT − κ(T − dP )) + bκ

∫ T

dP

exp(rt− κ(t− dP ))dt

)
= W0

(
a · exp(rT − κ(T − dP )) +

bκ

r − κ
(exp(rT − κ(T − dP ))− exp(rdP ))

)
.

Next, we differentiate this with respect to dP and set it equal to 0 to solve for the

value of dP which maximizes this function:

W0

(
aκ · exp(rT − κ(T − dP )) +

bκ

r − κ
(κ · exp(rT − κ(T − dP ))− r · exp(rdP ))

)
= 0.

Now, solving this for dP , we find that

κ

(
a +

bκ

r − κ

)
exp(rT − κ(T − dP )) =

brκ

r − κ
exp(rdP )

a(r − κ) + bκ

r − κ
=

br

r − κ
exp((T − dP )(κ− r))

ln

(
a(r − κ) + bκ

br

)
= (T − dP )(κ− r)

T − 1

r − κ
ln

(
br

a(r − κ) + bκ

)
= dP .

If r = κ, then, just like the annuals case, the given expression for dP is undefined,

meaning that a different expression for the starting time for reproduction is needed;

we’ll call this d∗P . So, plugging in γ(t) = κH̄(t − d∗P ), where 0 ≤ d∗P ≤ T , into (3.1)

obtains

W0

(
a · exp(κT − κ(T − d∗P )) + bκ

∫ T

d∗P

exp(κt− κ(t− d∗P ))dt

)

= W0 (a · exp(κd∗P ) + bκ(T − d∗P )exp(κd∗P )) .
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Differentiating this with respect to d∗P and setting it equal to 0, we can solve for the

d∗P which maximizes (3.1) as follows:

W0

(
aκ · exp(kd∗P ) + bκ2 · exp(kd∗P )(T − d∗P )− bκ · exp(kd∗P )

)
= 0

1 + (b/a)κ(T − d∗P )− b/a = 0

1 + (b/a)(Tκ− 1) = (b/a)κd∗P

d∗P = T − 1

κ
+

1

(b/a)κ

= T − b/a− 1

(b/a)κ
.

As in the annuals case, to verify that these times do indeed maximize the objective

function when assuming γ(t) = κH̄(t− d), one can use the Second Derivative Test.

Remark: One could also obtain d∗P by simply computing limr→κ dP . Further, once

dP and d∗P are known, dA and d∗A can be obtained by simply computing lima→0+ dP

and lima→0+ d∗P , respectively.

So, choosing

dP = T − 1

r − κ
ln

(
(b/a)r

r − κ + (b/a)κ

)
d∗P = T − b/a− 1

(b/a)κ
,

we return to Theorems 3.1 and 3.2. As in the annuals case, should the given formulas

above result in dP < 0 (or d∗P < 0), then we will simply choose dP = 0, meaning that

the plants will reproduce all season long; this is justified mathematically in the proof

of Theorem 3.5. Unlike in the annuals case, it is possible that the expression for dP

is greater than T ; however, we will show that the only way this occurs is when the

conditions in Lemma 3.4 are met.
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With all of this in mind, we have the following theorem:

Theorem 3.5: If a > 0, then γ(t) = κH̄(t−dP ) is an optimal control for (3.1-3.3),

replacing dP with d∗P if r = κ.

Proof : We begin with the case r 6= κ. So, plugging in γ(t) = κH̄(t − dP ) into

(3.11) gives us

p(t) =



a · exp (r(T − t)− κ(T − dP ))

+bκ
∫ T

dP
exp (r(s− t)− κ(s− dP )) ds t < dP

a · exp (r(T − t)− κ(T − t))

+bκ
∫ T

t
exp (r(s− t)− κ(s− t)) ds t ≥ dP

=


(
a + bκ

r−κ

)
exp (r(T − t)− κ(T − dP ))− bκ

r−κ
exp(r(dP − t)) t < dP(

a + bκ
r−κ

)
exp (r(T − t)− κ(T − t))− bκ

r−κ
t ≥ dP

.

For this γ(t),

Wt =


W0 · exp(rt) t < dP

W0 · exp(rt− κ(t− dP )) t ≥ dP

,
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so we then find the Hamiltonian for this γ(t) as follows:

H(t,Wt, γ(t), p(t)) = Wt · (rp(t) + γ(t)(b− p(t)))

=


Wt · (rp(t)) t < dP

Wt · (rp(t) + κ(b− p(t))) t ≥ dP

=



rW0

((
a + bκ

r−κ

)
exp (rT − κ(T − dP ))

− bκ
r−κ

exp(rdP )
)

t < dP

rW0

((
a + bκ

r−κ

)
exp (rT − κ(T − dP ))

− bκ
r−κ

exp(rt− κ(t− dP ))
)

+W0κ (b · exp(rt− κ(t− dP ))

−
(
a + bκ

r−κ

)
exp (rT − κ(T − dP ))

+ bκ
r−κ

exp(rt− κ(t− dP ))
)

t ≥ dP

H(t,Wt, v, p(t)) =



rW0

((
a + bκ

r−κ

)
exp (rT − κ(T − dP ))

− bκ
r−κ

exp(rdP )
)

+W0v
(
b · exp(rt) + bκ

r−κ
exp(rdP )

−
(
a + bκ

r−κ

)
exp(rT − κ(T − dP ))

)
t < dP

rW0

((
a + bκ

r−κ

)
exp (rT − κ(T − dP ))

− bκ
r−κ

exp(rt− κ(t− dP ))
)

+W0v (b · exp(rt− κ(t− dP ))

−
(
a + bκ

r−κ

)
exp (rT − κ(T − dP ))

+ bκ
r−κ

exp(rt− κ(t− dP ))
)

t ≥ dP

.
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We now need to check that

H(t,Wt, γ(t), p(t)) = max
v∈[0,κ]

H(t,Wt, v, p(t)).

To do this, we begin with the branch where t < dP . Here, we note that only one term

of H(t,Wt, v, p(t)) is dependent on v; namely,

W0v

(
b · exp(rt) +

bκ

r − κ
exp(rdP )−

(
a +

bκ

r − κ

)
exp(rT − κ(T − dP ))

)
.

We want to show that this is maximized when v = 0, or, equivalently,

W0

(
b · exp(rt) +

bκ

r − κ
exp(rdP )−

(
a +

bκ

r − κ

)
exp(rT − κ(T − dP ))

)
≤ 0

(3.12)

for all t < dP . But, we note that the left side of (3.12) clearly strictly increases with

respect to t since W0, b > 0, and so it will suffice to show it holds when t = dP .

We also note that, if dP = 0, then this branch is irrelevant, and so we can take

dP = T − 1
r−κ

ln
(

(b/a)r
r−κ+(b/a)κ

)
. So, we plug this value in for t and note that:

W0

(
b · exp(rdP )−

(
a +

bκ

r − κ

)
exp(rT − κ(T − dP )) +

bκ

r − κ
exp(rdP )

)
≤ 0

1−
(

a

b
+

κ

r − κ

)
(exp((r − κ)(T − dP )))− κ

r − κ
≤ 0

1− a(r − κ) + bκ

b(r − κ)

(
(b/a)r

r − κ + (b/a)κ

)
− κ

r − κ
≤ 0

1− r

r − κ
− κ

r − κ
≤ 0

0 ≤ 0.

Thus, (3.12) holds.
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We next look at the branch where t ≥ dP . As before, only one term of

H(t,Wt, v, p(t)) is dependent on v; namely,

W0v · exp(rt− κ(t− dP ))

(
b−

(
a +

bκ

r − κ

)
· exp (r(T − t)− κ(T − t)) +

bκ

r − κ

)
.

We want to show that this is maximized when v = κ, or, equivalently,

W0

((
b +

bκ

r − κ

)
exp(rt− κ(t− dP ))−

(
a +

bκ

r − κ

)
exp(rT − κ(T − dP ))

)
≥ 0.

(3.13)

Note that the partial derivative with respect to t of the left side of (3.13) is

W0br · exp(rt− κ(t− dP )),

which is positive for all t ≥ dP , and hence the left side of this inequality is strictly

increasing, meaning it will again suffice to prove the inequality is true when t = dP .

Plugging this in yields

W0

((
b +

bκ

r − κ

)
exp(rdP )−

(
a +

bκ

r − κ

)
exp(rT − κ(T − dP ))

)
≥ 0.

The left side of this inequality is equal to 0 when dP = T − 1
r−κ

ln
(

(b/a)r
r−κ+(b/a)κ

)
, as

shown previously, and hence (3.13) holds. Should this expression be negative, then,

by the fact that the left side of (3.13) is strictly increasing, the above inequality would

still hold. Thus, we have shown

H(t,Wt, γ(t), p(t)) = max
v∈[0,κ]

H(t,Wt, v, p(t)),
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and hence the necessary condition (Theorem 3.1) holds.

Finally, we need to check that the sufficient condition (Theorem 3.2) holds. So,

let γ̄(t) ∈ M be some other control with W̄t the corresponding constraint solution.

Then,

H(t, W̄t, γ̄(t), p(t))−H(t,Wt, γ(t), p(t))

= (W̄t −Wt) · (rp(t)) + (W̄t · γ̄(t)−Wt · γ(t))(b− p(t))

and

∂H

∂x
(t,Wt, γ(t), p(t)) · (W̄t −Wt) = (W̄t −Wt) · (rp(t) + γ(t)(b− p(t))).

So, for Theorem 3.2 to hold, we need to show that

γ̄(t)(b− p(t)) ≤ γ(t)(b− p(t))

By the work done previously, we know that b− p(t) < 0 if t < dP and b− p(t) ≥ 0 if

t ≥ dP . So, the above inequality reduces to


γ̄(t) ≥ 0 t < dP

γ̄(t) ≤ κ t ≥ dP

.

This is clearly true by definition of M , and hence, for any γ̄(t) ∈ M ,

H(t, W̄t, γ̄(t), p(t))−H(t,Wt, γ(t), p(t)) ≤ ∂H

∂x
(t,Wt, γ(t), p(t))

for all t ∈ [0, T ]. Thus, by Theorem 3.2, γ(t) = κH̄(t − dP ) is an optimal control
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when r 6= κ. Should the expression for dP be negative (hence, we’d take dP = 0),

then, as indicated in the proof, γ(t) = κ is an optimal control.

Next, we assume that r = κ and proceed in the same way. So, we first plug in

γ(t) = κH̄(t− d∗P ) into the formula for p(t) and obtain:

p(t) =



a · exp (κ(T − t)− κ(T − d∗P ))

+bκ
∫ T

d∗P
exp (κ(s− t)− κ(s− d∗P )) ds t < d∗P

a · exp (κ(T − t)− κ(T − t))

+bκ
∫ T

t
exp (κ(s− t)− κ(s− t)) ds t ≥ d∗P

=


(a + bκ(T − d∗P )) exp(κ(d∗P − t)) t < d∗P

a + bκ(T − t) t ≥ d∗P

.

For this γ(t),

Wt =


W0 · exp(κt) t < d∗P

W0 · exp(κd∗P ) t ≥ d∗P

,
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and hence we find the Hamiltonian for this γ(t) as follows:

H(t,Wt, γ(t), p(t)) = Wt · (κp(t) + γ(t)(b− p(t)))

=


Wt · (κp(t)) t < d∗P

Wt · (κb) t ≥ d∗P

=


W0κ(a + bκ(T − d∗P )) exp(κd∗P ) t < d∗P

W0bκ · exp(κd∗P ) t ≥ d∗P

H(t,Wt, v, p(t)) =



W0 (κ(a + bκ(T − d∗P )) exp(κd∗P )

+v (b · exp(κt)− (a + bκ(T − d∗P )) exp(κd∗P ))) t < d∗P

W0 · exp(κd∗P )

· (κ(a + bκ(T − t)) + v(b− a− bκ(T − t))) t ≥ d∗P

.

We now need to check that

H(t,Wt, γ(t), p(t)) = max
v∈[0,κ]

H(t,Wt, v, p(t)).

Assuming t < d∗P , we note that the only term of H(t,Wt, v, p(t)) that depends on v is

W0v (b · exp(κt)− (a + bκ(T − d∗P )) exp(κd∗P )) .

Note that this branch is only relevant when d∗P > 0. Hence, we take d∗P = T − b/a−1
(b/a)κ

,

and plugging this in above yields

W0bv (exp(κt)− exp(κd∗P )) .
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Since ex is a strictly increasing function, this is clearly negative for all t < d∗P , meaning

that, to maximize it with respect to v ∈ [0, κ], we need to set v = 0.

Next, assuming t ≥ d∗A, we note that the only term of H(t,Wt, v, p(t)) that depends

on v is

W0v · exp(κd∗P )(b− a− bκ(T − t)).

Determining what value of v will maximize this comes down to determining the sign

of

b− a− bκ(T − t) = b(1 + κt− κT )− a.

Note that, at t = T − b/a−1
(b/a)κ

, the above is equal to 0. Further, since this quantity

clearly increases with respect to t, then it is nonnegative for all t ≥ d∗P . Hence, to

maximize H(t,Wt, v, p(t)) with respect to v when t ≥ d∗A, we need to set v = κ. This,

along with the above, proves that

H(t,Wt, γ(t), p(t)) = max
v∈[0,κ]

H(t,Wt, v, p(t)),

and hence the necessary condition (Theorem 3.1) holds.

Now, for sufficiency, we need to verify Theorem 3.2 holds. So, let γ̄(t) ∈ M be

some other control with W̄t the corresponding constraint solution. Then,

H(t, W̄t, γ̄(t), p(t))−H(t,Wt, γ(t), p(t))

= (W̄t −Wt) · (rp(t)) + (W̄t · γ̄(t)−Wt · γ(t))(b− p(t))

and

∂H

∂x
(t,Wt, γ(t), p(t)) · (W̄t −Wt) = (W̄t −Wt) · (κp(t) + γ(t)(b− p(t))).
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So, for Theorem 3.2 to hold, we need to show that

γ̄(t)(b− p(t)) ≤ γ(t)(b− p(t)).

By the work to verify that Theorem 3.1 holds, we notice that b − p(t) < 0 if t < d∗P

and b− p(t) ≥ 0 if t ≥ d∗P . With this in mind, this inequality reduces to


γ̄(t) ≥ 0 t < d∗P

γ̄(t) ≤ κ t ≥ d∗P

This is clearly true by definition of M , and hence, for any γ̄(t) ∈ M ,

H(t, W̄t, γ̄(t), p(t))−H(t,Wt, γ(t), p(t)) ≤ ∂H

∂x
(t,Wt, γ(t), p(t))

for all t ∈ [0, T ]. Thus, by Theorem 3.2, γ(t) = κH̄(t − d∗P ) is an optimal control

when r 6= κ. Should the expression for dP be negative (hence, we’d take d∗P = 0),

then, as indicated in the proof, γ(t) = κ is an optimal control.

This completes the proof of Theorem 3.5.

Remark 1: In the same way as we did in Remark 1 of Theorem 3.3, we can

show that, except for the point t = dP (or d∗P ) if dP > 0, then the optimal strategy

γ∗(t) = κH̄(t− dP ) is uniquely determined. This is because a < b and p(t) is strictly

monotone decreasing if γ(t) > 0.

Remark 2: We also want to know what the corresponding optimal value for the

objective function is. Since Theorem 3.5 gives us an optimal control when a > 0,

then we can simply plug it in to (3.1) to find the corresponding value.
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So, plugging in γ∗(t) = κH̄(t− dP ) (use d∗P if r = κ) gives an optimal value of

aWT + b

∫ T

0

γ∗(t)Wtdt

= aW0 · exp(rT − κ(T − dP )) + bκW0

∫ T

dP

exp(rt− κ(t− dP ))dt

= W0

((
a +

bκ

r − κ

)
exp(rT − κ(T − dP ))− bκ

r − κ
exp(rdP )

)

if r 6= κ, and

aWT + b

∫ T

0

γ∗(t)Wtdt = aW0 · exp(κd∗P ) + bκW0

∫ T

d∗P

exp(κd∗P )dt

= W0 · exp(κd∗P ) (a + bκ(T − d∗P ))

if r = κ.

Remark 2: Unlike the annuals case, in the perennials case, it is possible for

dP ≥ T (or d∗P ≥ T ) depending on the parameter values. Specifically, if dP ≥ T ,

meaning that the population never reproduces during the season, and dP is defined

(that is, if r < κ, b/a > 1− r
κ
), then it is necessary that b/a ≤ 1, essentially a converse

of Lemma 3.4. To see why, we simply note that, for dP ≥ T , then we need:

1

r − κ
ln

(
(b/a)r

r − κ + (b/a)κ

)
≤ 0.
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If r < κ, requiring b/a > 1− r
κ
, then we need:

ln

(
(b/a)r

r − κ + (b/a)κ

)
≥ 0

(b/a)r

r − κ + (b/a)κ
≥ 1

(b/a)(r − κ) ≥ r − κ

b/a ≤ 1.

If r > κ, then, except for switching “≥” to “≤” in the appropriate places above,

the exact same argument holds. Note that, if r < κ, the only way that dP can’t be

defined is if b/a ≤ 1 anyway, which means Lemma 3.4 holds.

Also, if we look at d∗P = T − b/a−1
(b/a)κ

, we see that, for d∗P ≥ T , then, clearly, we

need b/a ≤ 1, again serving as essentially a converse for Lemma 3.4. In summary, if

b/a > 1, then the plants will reproduce, beginning at some point during the season

(possibly at the beginning) and lasting until the end of the season.

So, according to Theorem 3.5, whenever b/a > 1, this optimal strategy is, as in

the annuals case, to either initially not reproduce and then, at a designated time in

the future, pour all available resources into reproduction, or to reproduce all season

long. We will investigate under what condition(s) season-long reproduction is the

optimal strategy in the next section.

3.4 When is Season-Long Reproduction Optimal?

Our next task is to investigate under what condition(s) the plant populations should

reproduce all season long for maximal yields next season; that is, what conditions on

the parameters ensure that dA or dP (d∗A or d∗P if r = κ) will be 0? In order to get
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Figure 3.1: Contour plots of dP

an idea of what roles the parameters play in affecting the value of the starting time,

we look at two contour plots for dP , created using Maple, which compare the ratio

b/a to r and κ (one is fixed, the other varies for each plot) to get an idea for how the

different parameters affect the value of dP . Figure 3.1 shows the contour plots with

T = 10 and values of dP chosen relatively close to T , with κ = 0.05 in the first plot

and r = 0.02 in the second (choosing them to be any arbitrary positive value doesn’t

affect the overall shape of the contour plot).

We note a few facts from these graphs. First, the contours where dP ≥ T each

stay below the line b/a = 1, which is consistent with Lemma 3.4, and the contours

where dP < T each stay above the line b/a = 1, which is consistent with Theorem

3.5. Secondly, the contours d = 7, d = 8, and d = 9 each increase (with respect

to b/a) when r or κ is increased. That is, if r or κ increases while b/a remains

fixed, the time that reproduction should start becomes later in the season, and, if b/a

increases while r, κ remain fixed, the time that reproduction should start becomes

earlier in the season. Both of these observations make biological sense because, if
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r is increasing, holding κ and b/a fixed, the population can grow faster in a given

instant, meaning there is incentive for it to wait in order to begin reproduction since

it will have more biomass to work with. Likewise, if κ is increasing, holding r and

b/a fixed, the population can invest more of its total biomass into reproduction at

any given instant, meaning it can afford to wait longer, and hence spend more time

growing, before it needs to reproduce. If we assume that b/a is increasing, this implies

that either b is increasing and/or a is decreasing. So, the population has a higher

reproductive utility and/or has a lower proportion of adult biomass surviving from

the end of one season to the start of the next, respectively, meaning there is incentive

for the population to begin reproduction earlier in the season.

Finally, note that there are holes in these contours where r = κ; however, these are

not visible on the plots. In this case, however, we can quickly look at the expression

for d∗P and, omitting the reference to r in the previous paragraph, we note that all of

the observations still hold (since 0 < κ < 1, as b/a increases, then d∗P decreases).

Remark: It should also be noted that drawing a contour plot for dA, comparing

r and κ, leads to the same conclusions as above (ignoring the references to a and b).

Although this plot gives us an idea as to the types of conditions that guarantee

season-long reproduction is optimal, we want to be more precise, both quantitatively

and qualitatively, about when this is the case. We’ll begin by looking at annuals.

Assuming that r 6= κ, and recalling that dA = T − 1
r−κ

ln
(

r
κ

)
whenever the expression

on the right is nonnegative, if we want dA = 0, then we need:

Tκ ≤ 1

r/κ− 1
ln
( r

κ

)
. (3.14)

To see when this can occur, we consider the right side and note the following properties
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of the function

f(x) =
ln x

x− 1
, x ∈ (0,∞), x 6= 1.

First, we see that

f ′(x) =
x−1

x
− ln x

(x− 1)2
.

Note that, since d
dx

(
x−1

x

)
= 1

x2 and d
dx

(ln x) = 1
x
, then, clearly, both of these functions

are increasing on (0,∞), but, since ln x increases faster when x > 1, and x−1
x

= ln x =

0 at x = 1, then it follows that f(x) is decreasing on (1,∞). Likewise, x−1
x

increases

faster when 0 < x < 1, but, since x−1
x

= ln x = 0 at x = 1, then it follows that f(x)

is also decreasing on (0, 1). Hence, f(x) is strictly decreasing on its domain. We also

note that

lim
x→1

ln x

x− 1
= 1

lim
x→∞

ln x

x− 1
= 0

lim
x→0+

ln x

x− 1
= ∞,

where the first two limits were computed using l’Hospital’s Rule (see, for example,

[25, p. 299]). So, we see that, for (3.14) to hold, we require Tκ < 1 if r > κ (if r < κ,

then it is permissible for Tκ ≥ 1).

However, this is only a necessary condition; a sufficient condition comes from

solving the equation

ln x

x− 1
= Tκ.

Calling LamW(x) the Lambert W function (that is, the function satisfying x =
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LamW(x) · exp(LamW(x))), we note that we can solve this as follows:

ln x = (x− 1)Tκ

x = exp(Tκx− Tκ)

−Tκx · exp(−Tκx) = −Tκ · exp(−Tκ)

−Tκx = LamW(−Tκ · exp(−Tκ))

x = − 1

Tκ
LamW(−Tκ · exp(−Tκ)).

Plugging in r
κ

for x yields:

r

κ
= − 1

Tκ
LamW(−Tκ · exp(−Tκ)).

Because the argument for the Lambert W function is contained in the interval[
−1

e
, 0
)

(the function h(x) = xex has minimum value −1
e

at x = −1 and is negative

on (−∞, 0)), then there are actually two possible real-valued solutions to the equation

([6, pp. 330-331]):

r

κ
= − 1

Tκ
LamW0(−Tκ · exp(−Tκ))

OR

r

κ
= − 1

Tκ
LamW−1(−Tκ · exp(−Tκ)),

where the subscripts on LamW refer to the branch number. To further interpret these

two solutions, we turn to [6, pp. 330-331, 341-345] for more information (the reader

who is interested in proofs of the following results may refer to these pages).

The 0 branch is known as the principal branch; it is the unique real-valued branch

of the Lambert W function whenever the argument is positive, but is real-valued as

long as its argument is at least −1
e
. The only other branch which can be real-valued
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is the −1 branch; it, however, is only real-valued when its argument is in the interval[
−1

e
, 0
)
. The two branches coincide when the argument is −1

e
, or when Tκ = 1 (in

this case, both return a value of −1); otherwise, the two branches produce different

results (both will be negative, however). Specifically, the principal branch will return

values at least −1, but the −1 branch will return values only up to −1.

Keeping this in mind, we note that, if Tκ < 1, it would then follow that, by

definition of LamW,

LamW0(−Tκ · exp(−Tκ)) = −Tκ.

This would then imply that r = κ, which we assumed was not true. But, the −1

branch would return a value which would be less than −1, so, if Tκ < 1, we need to

use the −1 branch for a solution which actually exists. On the other hand, if Tκ ≥ 1,

then

LamW−1(−Tκ · exp(−Tκ)) = −Tκ.

So, it follows that, if Tκ > 1, we need to use the principal branch for a solution that

actually exists since it will have value greater than −1.

So, keeping the properties of f(x) in mind, (3.14) is satisfied if

r

κ
≤ − 1

Tκ
LamW(−Tκ · exp(−Tκ)),

where the branch number of LamW is 0 if Tκ < 1 or −1 if Tκ > 1. So, in summary,

dA = 0 if

r

κ
≤ − 1

Tκ
LamW(−Tκ · exp(−Tκ)),

assuming Tκ 6= 1. If Tκ = 1, then, to have dA = 0, we would need

1 ≤ 1

rT − 1
ln(rT ).
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But, by the discussion of f(x), this will be true so long as rT < 1, or, put another

way, r < κ.

Although this gives a mathematical condition for when season-long reproduction is

optimal, it is also important to see what biological conditions will allow this to occur.

Clearly, looking at the expression for dA, one way to ensure season-long reproduction

is optimal is to have a sufficiently short season (T is sufficiently small), as this will

eventually make dA = 0. This makes sense because a short season means the plants

won’t have a lot of time to invest in growth; if they do, they may not have enough

time to sufficiently reproduce for next season.

Let’s now look at what happens when we change either r or κ in the expression

for dA, keeping the other parameters fixed:

∂

∂r

(
T − 1

r − κ
ln
( r

κ

))
=

1

(r − κ)2
ln
( r

κ

)
− 1

r − κ
· κ

r
· 1

κ

=
1

(r − κ)2
ln
( r

κ

)
− 1

r(r − κ)

∂

∂κ

(
T − 1

r − κ
ln
( r

κ

))
= − 1

(r − κ)2
ln
( r

κ

)
+

1

r − κ
· κ

r
· r

κ2

= − 1

(r − κ)2
ln
( r

κ

)
+

1

κ(r − κ)
.

If we want these partial derivatives to be positive, we need:

r − κ

r
> ln

( r

κ

)
1− κ

r
> − ln

(κ

r

)
ln
(κ

r

)
<

κ

r
− 1
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and

ln
( r

κ

)
<

r − κ

κ

ln
( r

κ

)
<

r

κ
− 1.

So, in either case, we are investigating an inequality of the form ln x < x− 1 for any

x > 0, x 6= 1. As it turns out, this is always true. To see why, we first note that

ln x = x − 1 = 0 at x = 1, and, since d
dx

ln x = 1
x

for all x > 0, it clearly increases

at a slower rate than x − 1 for x > 1. Likewise, going backwards from x = 1, ln x

decreases faster than x− 1. As a result, ln x < x− 1 for all x > 0, x 6= 1. Hence, as

either r or κ increase, dA increases.

Thus, if we want dA = 0, we could have r and/or κ sufficiently small. The

former says that the plants’ growth rate is small, meaning that waiting a while before

reproducing won’t result in having significantly more biomass to play with than if

they started reproducing early. So, spending more time growing would then mean

the plants may not have enough time to guarantee a high yield for next season, as

more time spent growing means less time is spent reproducing. The latter says that

the maximum reproduction rate at any time t is small, meaning that, since the plants

can’t invest much of their available biomass at any one time into reproduction, waiting

to reproduce won’t give the plants enough time to ensure a high yield for next season.

In fact, it is not difficult to see that

lim
r→0+

T − 1

r − κ
ln
( r

κ

)
= lim

κ→0+
T − 1

r − κ
ln
( r

κ

)
= −∞.

This confirms, mathematically, that dA = 0 if either r and/or κ is sufficiently small.

Next, if r = κ, recalling that d∗A = T − 1
κ

as long as the right hand side is
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nonnegative, then, clearly, d∗A = 0 if Tκ ≤ 1. This says that, if the season is sufficiently

short, and/or the maximum reproduction rate at any time t is sufficiently small, it is

optimal for the plants to reproduce all season long. The biological explanations for

these are the same as for dA.

We next consider the perennials case with reproduction (that is, b/a > 1), and

we’ll begin by looking at the case where r 6= κ. In this case, recall that the plants

begin reproduction at time

dP = T − 1

r − κ
ln

(
(b/a)r

r − κ + (b/a)κ

)

if the expression on the right is positive. The optimal strategy of reproducing all

season long occurs when the right-hand side of the expression is less than or equal to

0. So, for this to occur, first assuming r > κ, we note that we need

T − 1

r − κ
ln

(
(b/a)r

r − κ + (b/a)κ

)
≤ 0

T (r − κ) ≤ ln

(
(b/a)r

r − κ + (b/a)κ

)
exp(T (r − κ)) ≤ (b/a)r

r − κ + (b/a)κ

(r − κ) · exp(T (r − κ)) ≤ (b/a) (r − κ · exp(T (r − κ))) . (3.15)

Likewise, if r < κ, then we need

(r − κ) · exp(T (r − κ)) ≥ (b/a) (r − κ · exp(T (r − κ))) . (3.16)

We note that we have to check the sign of r−κ·exp(T (r−κ)) to see if (3.15) and (3.16)

can be true or not; specifically, if r > κ, we need this quantity to be nonnegative,

and, if r < κ, we need it to not be positive. So, for this quantity to be nonnegative,
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we need

r − κ · exp(T (r − κ)) ≥ 0

r

κ
≥ exp(T (r − κ))

ln
( r

κ

)
≥ Tκ

( r

κ
− 1
)


ln(r/κ)
(r/κ)−1

≥ Tκ r > κ

ln(r/κ)
(r/κ)−1

≤ Tκ r < κ

. (3.17)

Now, to determine when (or if) (3.15) and (3.16) can be true, we recall the properties

of f(x) = ln x
x−1

previously derived, and note that we require Tκ < 1 if r > κ or Tκ > 1

if r < κ since f(x) is decreasing on (0, 1) and (1,∞).

However, this is only a necessary condition; again, a sufficient condition comes

from solving the equation

ln x

x− 1
= Tκ.

Taking x = r/κ, recall that the nontrivial, real solution of this equation is given by

r

κ
= − 1

Tκ
LamW(−Tκ · exp(−Tκ)),

where the branch number of LamW is either 0 or −1, depending on whether Tκ > 1

or Tκ < 1, respectively.

So, going back to (3.15) and (3.16), if r > κ and Tκ < 1, then the value of r/κ

given above is the breaking point for whether (3.17) is true or false. Thus, recalling

the facts above, if r/κ is less than the above solution, then (3.17) is true; otherwise,

it is false. Likewise, if r < κ and Tκ > 1, then, if r/κ is less than the above solution,
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(3.17) is false; otherwise, it is true.

Thus, tying this all together, we have proven the following lemma:

Lemma 3.6: If:

1. r
κ

< − 1
Tκ

LamW(−Tκ · exp(−Tκ))

2. Tκ < 1 if r > κ (Tκ ≥ 1 is permissible if r < κ),

then dP = 0 if

b/a ≥ (r − κ) · exp(T (r − κ))

r − κ · exp(T (r − κ))
.

Remark: Should r
κ

= − 1
Tκ

LamW(−Tκ · exp(−Tκ)), or, put another way,

ln (r/κ)

(r/κ)− 1
= Tκ,

then we have that

r − κ · exp(T (r − κ)) = 0.

As a result, (3.15) and (3.16) reduce down to

exp(T (r − κ)) ≤ 0.

This is clearly false, and hence why we needed the strict inequality for r/κ in Lemma

3.6.

To see what biological conditions we need for dP = 0, we proceed as in the annuals

case and look at partial derivatives with respect to y = b/a, r, and κ. First, we remark

that, as in the annuals case, if the season length, T , is sufficiently small, then this

will certainly make dP = 0.
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The partial derivatives are:

∂

∂y
(dP ) = − 1

r − κ
· r − κ + yκ

ry
· r(r − κ + yκ)− ryκ

(r − κ + yκ)2

= − 1

y(r − κ + yκ)

∂

∂r
(dP ) =

1

(r − κ)2
ln

(
ry

r − κ + yκ

)
− 1

r − κ
· r − κ + yκ

ry
· y(r − κ + yκ)− ry

(r − κ + yκ)2

=
1

(r − κ)2
ln

(
ry

r − κ + yκ

)
− κ(y − 1)

r(r − κ)(r − κ + yκ)

∂

∂κ
(dP ) = − 1

(r − κ)2
ln

(
ry

r − κ + yκ

)
− 1

r − κ
· r − κ + yκ

ry
· ry(1− y)

(r − κ + yκ)2

= − 1

(r − κ)2
ln

(
ry

r − κ + yκ

)
+

y − 1

(r − κ)(r − κ + yκ)
.

Since we are assuming that y > 1, then, clearly, ∂
∂y

(dP ) < 0, and so one condition to

have season-long reproduction be optimal is to have b/a sufficiently large. This says

that either the chances of reproductive biomass becoming full-grown adults is very

high, the amount of times more biomass a full-grown adult has, on average, versus

the reproductive investment to obtain that plant is very high, and/or the average

survivorship of adult biomass from one season to the next is very small. All three

of these make biological sense because having either reproductive survivorship or the

growth factor be large means that an investment in reproduction will have a high yield

for next season in terms of new biomass, and so it is definitely advantageous for the

population to start reproduction early in this case. Also, having the survivorship of

existing adults to next season be small means that, since very little existing biomass

can be carried over to next season, it is best to invest as much as possible into seeds

for next season to maximize next season’s population. However, because dP → dA

as b/a → ∞, only adjusting b/a will not, in general, force dP = 0 since it may still

be that dA > 0. Thus, r, κ, and/or T will likely need to be adjusted as well in order



66

to force dP = 0; this is also suggested by Lemma 3.6, since we require r/κ to be

sufficiently small as a necessary condition for dP = 0.

Next, we need to check the signs of the other two partial derivatives, and we’ll

begin with the one with respect to r. Specifically, if we want it to be positive, then

we need

1

(r − κ)2
ln

(
ry

r − κ + yκ

)
>

κ(y − 1)

r(r − κ)(r − κ + yκ)

ln

(
ry

r − κ + yκ

)
>

κ(y − 1)(r − κ)

r(r − κ + yκ)

=
κ(−r + κ− yκ + yr)

r(r − κ + yκ)

=
yκ

r − κ + yκ
− κ

r

ln
( z

m

)
> z −m,

where z = yκ
r−κ+yκ

> 0 and m = κ
r

> 0. So, essentially, we need to verify if z/m >

ez−m, or ze−z > me−m. First, let’s check if z > m:

yκ

r − κ + yκ
>

κ

r

ry

r − κ + yκ
> 1

ry > r − κ + yκ

y(r − κ) > (r − κ)

So, z > m if r > κ and z < m if r < κ. Note that, in the former case, this implies

m, z < 1 and, in the latter, m, z > 1.

Looking at g(x) = xe−x, we see that g′(x) = (1 − x)e−x, and hence g(x) is

increasing if x < 1 and is decreasing if x > 1. Tying all of this information together,
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we see that ze−z > me−m as we wanted. So, this says that a condition for season-long

reproduction to be optimal is if the growth rate is sufficiently small, the same as in

the annuals case. In fact, we note that

lim
r→0+

T − 1

r − κ
ln

(
(b/a)r

r − κ + (b/a)κ

)
= −∞

So, a sufficiently small r is enough to guarantee that dP = 0.

Finally, checking the sign of the partial derivative with respect to κ, if we want it

to be positive, then we need

y − 1

(r − κ)(r − κ + yκ)
>

1

(r − κ)2
ln

(
ry

r − κ + yκ

)
(y − 1)(r − κ)

r − κ + yκ
> ln

(
ry

r − κ + yκ

)
ry

r − κ + yκ
− 1 > ln

(
ry

r − κ + yκ

)
.

So, essentially, we need to check that x − 1 > ln x for x > 0, x 6= 1 (we can rule

x = 1 out because, here, that can only happen if r = κ since y > 1). But, we’ve

already proved that this is true when discussing the annuals case, and hence we see

that another condition for season-long reproduction to be optimal is if the proportion

of total biomass the plants can invest in reproduction is sufficiently small, just like in

the annuals case. However, unlike the annuals case, we note that

lim
κ→0+

T − 1

r − κ
ln

(
(b/a)r

r − κ + (b/a)κ

)
= T − (1/r) ln(b/a)

So, unless r is also sufficiently small and/or b/a is sufficiently large, then a very small

κ does not guarantee that dP = 0. This is due to perennials being able to carry some

of their adult biomass over to next season, lessening the impact of a low value of κ.



68

Finally, we discuss the case where r = κ. Recall that, in this case, we found that

d∗P = T − b/a− 1

(b/a)κ

is the optimal starting time for reproduction if d∗P > 0. So, if we want d∗P = 0, then

we need

(b/a)(Tκ− 1) ≤ −1.

The only way for this to hold is if Tκ < 1. If this is true, then, if

b/a ≥ 1

1− Tκ
,

we have that d∗P = 0. Biologically, this says that, if the season is sufficiently short, or

if only a small proportion of biomass is allowed to be invested in reproduction at a

given instant, then, pending the return on invested adult biomass into reproduction,

b/a, is sufficiently large (the smaller Tκ is, the larger b/a has to be for season-long

reproduction to be optimal), it makes sense for the plants to reproduce all season

long.

Remark: Since d∗P → d∗A as b/a → ∞, it certainly makes sense to have, as b/a

gets larger, the dominant condition for d∗P = 0 to be Tκ < 1, which was the condition

needed for d∗A = 0.
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Chapter 4

The Stochastic Case

4.1 Solving for Wt

Recall that the optimization problem we are trying to solve is:

Maximize E

[
aWT + b

∫ T

0

γ(t)Wtdt

]
(4.1)

subject to dWt = (r − γ(t))Wtdt + σWtdBt (4.2)

Wt ≥ 0. (4.3)

Compared to the deterministic case, the only extra term added to the constraint is

σWtdBt; this is the random, or “white noise,” term. However, since E[dBt] = 0 for any

t, and the objective function involves taking the expected value of the same functional

used in the deterministic case, it is logical to assume that an optimal control should

be very close to, if not exactly the same, as the optimal control in the deterministic

case. In fact, we will show that the controls we derived in the deterministic case are

still optimal in this stochastic case.

The first step in proving this is to solve the stochastic differential equation (SDE)
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making up the first constraint. To do so, we need Ito’s formula, given as Theorem

4.1.2 in Oksendal ([22, p. 44]):

Theorem 4.1 (1-D Ito’s Formula): If Xt is a stochastic process which solves the

SDE

dXt = udt + vdBt,

and Yt = f(t,Xt) ∈ C1,2([0,∞)× R), then Yt solves the SDE

dYt =

(
∂f

∂t
+

1

2

∂2f

∂x2

)
dt +

∂f

∂x
dBt.

Proof : A proof can be found in [22, pp. 46-48].

Remark: For our SDE, we are only concerned with having Xt = Bt; that is,

u = 0 and v = 1.

However, because the optimal controls we found in the deterministic case may not

be continuous, simply plugging in those choices for γ(t) and applying Ito’s formula to

get a solution won’t necessarily work. This is because the partial derivative of f with

respect to t will not necessarily be continuous. Instead, we will apply Ito’s formula

on each interval where the controls are continuous, and then join those solutions

together. Of course, we need to ensure that what we are doing results in a unique

solution of the SDE; the following, which is Theorem 5.2.5 in Oksendal ([22, p. 66]),

guarantees this:

Theorem 4.2: Suppose c : [0, T ]×R → R and σ : [0, T ]×R → R are measurable

functions which satisfy the following for all x, y ∈ R, t ∈ [0, T ], and some constants

C, D > 0:

1. |c(t, x)|+ |σ(t, x)| ≤ C(1 + |x|).

2. |c(t, x)− c(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y|.
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Further, assume Z is a random variable independent of the σ-algebra generated by

Bs, s ≥ 0, such that

E[|Z|2] < ∞.

Then the SDE

dXt = c(t,Xt)dt + σ(t,Xt)dBt

X0 = Z

has a unique t-continuous solution Xt.

Proof : A proof can be found in [22, pp. 67-70].

So, using the notation in Theorem 4.2, we see that

c(t, x) = (r − γ(t))x

σ(t, x) = σx

Z = W0.

Thus, for any choice of γ(t) ∈ M , where M is as defined in Section 3.1, taking

C = D = r + σ clearly results in all of the hypotheses of Theorem 4.2 being satisfied.

Hence, for any choice of γ(t) ∈ M , the SDE making up the first constraint has a

unique solution.

Keeping all of this in mind, we can find that unique solution of (4.2) for our

optimal controls found in Chapter 3, which is analogous to the solution found in the

deterministic case:

Lemma 4.3: If γ∗(t) = κH̄(t − d), where d = dA, d∗A, dP , or d∗P , whichever

is relevant, and W0 > 0 is a given constant, then the following stochastic process
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(strongly) solves (4.2) for all t ∈ [0, T ]:

Wt = W0 · exp

((
r − 1

2
σ2

)
t−
∫ t

0

γ∗(s)ds + σBt

)
.

Proof : To prove this, we will define

f0(t, x) = W0 · exp

((
r − 1

2
σ2

)
t + σx

)
fκ(t, x) = W0 · exp

((
r − 1

2
σ2

)
t− κ(t− d) + σx

)
,

where d is any of dA, d∗A, dP , or d∗P , whichever is relevant. We now show that the

following equation is (uniquely) solved by f0(t, Bt) using Ito’s formula:

dWt = rWtdt + σWtdBt, t ∈ (0, d].

This problem is the same as (4.2) on the interval [0, d]. Next, we note the following:

∂f0

∂t
= W0

(
r − 1

2
σ2

)
exp

((
r − 1

2
σ2

)
t + σx

)
∂f0

∂x
= σW0 · exp

((
r − 1

2
σ2

)
t + σx

)
∂2f0

∂x2
= σ2W0 · exp

((
r − 1

2
σ2

)
t + σx

)
.

As a result, substituting Bt = x, then

∂f0

∂t
=

(
r − 1

2
σ2

)
Wt

∂f0

∂Bt

= σWt

∂2f0

∂(Bt)2
= σ2Wt,
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where

Wt = f0(t, Bt) = W0 · exp

((
r − 1

2
σ2

)
t + σBt

)
.

Thus, plugging these into Ito’s formula, we find that

dWt =

((
r − 1

2
σ2

)
Wt +

1

2
σ2Wt

)
dt + σWtdBt

= rWtdt + σWtdBt.

Since f0(0, 0) = W0 (B0 = 0 by definition), then f0(t, Bt) uniquely solves (4.2) on

[0, d] by Theorems 4.1 and 4.2.

Next, assuming that this solution has been fully constructed (and hence a value

for Bd is given), we consider the following problem on [d, T ]:

dWt = (r − κ)Wtdt + σWtdBt, t ∈ (d, T ]

Wd = W0 · exp

((
r − 1

2
σ2

)
d + σBd

)
,

where Bd is the same value as that given by the distribution for the previous problem.

This problem is the same as (4.2) on the interval [d, T ]. Next, we note the following:

∂fκ

∂t
= W0

(
r − 1

2
σ2 − κ

)
exp

((
r − 1

2
σ2

)
t− κ(t− d) + σx

)
∂fκ

∂x
= σW0 · exp

((
r − 1

2
σ2

)
t− κ(t− d) + σx

)
∂2fκ

∂x2
= σ2W0 · exp

((
r − 1

2
σ2

)
t− κ(t− d) + σx

)
.
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As a result, substituting Bt = x, then

∂f0

∂t
=

(
r − 1

2
σ2 − κ

)
Wt

∂f0

∂Bt

= σWt

∂2f0

∂(Bt)2
= σ2Wt,

where

Wt = fκ(t, Bt) = W0 · exp

((
r − 1

2
σ2 − κ

)
t− κ(t− d) + σBt

)
.

Thus, plugging these into Ito’s formula, we find that

dWt =

((
r − 1

2
σ2

)
Wt +

1

2
σ2Wt

)
dt + σWtdBt

= (r − κ)Wtdt + σWtdBt.

Since fκ(d,Bd) = W0 · exp
((

r − 1
2
σ2
)
d + σBd

)
, which is independent of any informa-

tion except that already provided by the previous problem, and, by [13, p. 215],

E[|fκ(d,Bd)|2] = W 2
0 · exp

(
2rd +

3

2
σ2d

)
< ∞,

then fκ(t, Bt) uniquely solves (4.2) on [d, T ] by Theorems 4.1 and 4.2.

Since the two solutions are equal at t = d, then, by Theorem 4.2, taking the

solution defined by f0(t, Bt) on [0, d] and joining it with the solution defined by

fκ(t, Bt) on [d, T ] gives the unique solution of (4.2) on [0, T ]. This completes the

proof of Lemma 4.3.
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4.2 Finding an Optimal Strategy

Next, we prove that γ∗(t) = κH̄(t − d), where d = dA, d∗A, dP , or d∗P , whichever

is relevant, solves (4.1-4.3). To do this, we will make use of stochastic versions of

Theorems 3.1 and 3.2. First, we need some definitions and assumptions.

We begin by assuming that the only source of randomness in the problem is that

generated by Standard Brownian Motion, Bt, and the controller (in our model, the

plants via evolutionary forces) will know all relevant information up to the current

time.

With this in mind, consider the following general optimization problem for (t, x) ∈

[0, T ]×G, where G ⊆ R and W0 ∈ G is given:

Maximize E

[
K(WT ) +

∫ T

0

F (t,Wt, γ(t))dt

]
(4.4)

subject to dWt = c(t,Wt, γ(t))dt + σ(t,Wt, γ(t))dBt. (4.5)

We define U to be the separable metric space (with metric d), which is also a convex

set with nonempty interior, which gives the range of the control functions γ(t) ∈ M .

Further, M is the set of all measurable, adapted Markov controls (that is, the value

of γ(t) for any t ∈ [0, T ] has no dependence on the value of γ(s) for any s < t, but

all information for any time prior to time t is available to the controller) such that

γ(t) ∈ U for all t ∈ [0, T ].

We further assume that K(x), F (t, x, v), c(t, x, v), σ(t, x, v) are:

• measurable

• twice continuously differentiable with respect to x
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• such that there exists a constant C > 0 such that, for any choice of x,

|φ(t, x, v)| ≤ C(1 + |x|),

where φ is any one of K, F, c, σ or their first partial derivatives with respect to

x

• such that there is a constant L > 0 and a “modulus of continuity” ω : [0,∞) →

[0,∞) such that, taking φ to be any of K, F, c, σ,

|φ(t, x, v)− φ(t, x∗, v∗)| ≤ L|x− x∗|+ ω(d(v, v∗))∣∣∣∣∂φ

∂x
(t, x, v)− ∂φ

∂x
(t, x∗, v∗)

∣∣∣∣ ≤ L|x− x∗|+ ω(d(v, v∗))∣∣∣∣∂2φ

∂x2
(t, x, v)− ∂2φ

∂x2
(t, x∗, v∗)

∣∣∣∣ ≤ ω(|x− x∗|+ d(v, v∗))

for all t ∈ [0, T ], x, x∗ ∈ G, v, v∗ ∈ U

• such that c, F, σ are locally Lipschitz with respect to v, and their first partial

derivatives with respect to x are continuous in (x, v).

We also require that, for any W0 ∈ G, any choice of γ(t) ∈ M implies Wt ∈ G for

all t ∈ [0, T ] (this means all possible controls are admissible). Since these, along with

assuming Bt is the only source of randomness in the problem and the controller knows

all relevant information up to the current time, will be the standard assumptions for

(4.4-4.5), we will call this list (SA) for “stochastic assumptions.” So, (SA) implies

that any choice of γ(t) will lead to a unique solution Wt of (4.5) by Theorem 4.2.

Once γ(t) (and hence Wt) is chosen, we define the first-order adjoint equation to
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be:

dp(t) = −
(

∂c

∂x
(t,Wt, γ(t))p(t)− ∂σ

∂x
(t,Wt, γ(t))q(t) +

∂F

∂x
(t,Wt, γ(t))

)
dt + q(t)dBt

p(T ) =
∂K

∂x
(WT ).

If (4.4-4.5) satisfies (SA), then there is a unique solution (p(t), q(t)) for a given γ(t)

and Wt (discussed in [27, pp. 347-354], but, more specifically, presented as Theorem

2.2 on p. 349 with proof on pp. 349-353).

However, for (4.4-4.5), there may be the need for a second-order adjoint equation;

this occurs when σ(t, x, v) has an explicit dependence on v, since the controller also

has to worry about what will happen to the volatility when searching for an optimal

control. In our problem, this does not happen, as our σ(t, x, v) is not explicitly

dependent on v. So, we only need the first-order adjoint equation to proceed.

From this, we define the following function:

H(t, x, v, p, q) = p(t)c(t, x, v) + q(t)σ(t, x, v) + F (t, x, v),

which is the Hamiltonian for (4.4-4.5). As in the deterministic case, it will play an

important role in our necessary and sufficient conditions for optimality. We begin with

a necessary condition, which is taken from Theorem 3.2 (also called the (Pontryagin)

Maximum Principle) in Yong-Zhou ([27, p. 103]):

Theorem 4.4: Assume (4.4-4.5) satisfies (SA), and assume that σ(t, x, v) has no

explicit dependence on v. If γ∗(t) is an optimal control with corresponding constraint

solution W ∗
t and (first-order) adjoint solution (p(t), q(t)), then

H(t,W ∗(t), γ∗(t), p(t), q(t)) = max
v∈U

H(t,W ∗(t), v, p(t), q(t))
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for almost every t ∈ [0, T ], almost surely.

Proof : A proof can be found in ([27, pp. 124-137]). However, the given proof

can be greatly simplified in this case because a second-order adjoint equation is not

needed.

Next, we give a sufficient condition for optimality:

Theorem 4.5: Assume (4.4-4.5) satisfies (SA), and assume that σ(t, x, v) has

no explicit dependence on v. Let γ∗(t) ∈ M , W ∗
t be the corresponding constraint

solution, and (p(t), q(t)) be the corresponding (first-order) adjoint solution. If:

1. K is concave

2. For any other choice of γ(t) ∈ M and corresponding Wt,

H(t,Wt, γ(t), p(t))−H(t,W ∗
t , γ∗(t), p(t)) ≤ ∂H

∂x
(t,W ∗

t , γ∗(t), p(t)) · (Wt −W ∗
t )

for all t ∈ [0, T ],

then γ∗(t) is an optimal control.

Proof : The proof will largely follow that of Theorem 3.2. As in that proof, we

begin by defining ξ(t) = Wt −W ∗
t . By assumption, ξ(t) satisfies:

dξ(t) =

(
∂c

∂x
(t,W ∗

t , γ∗(t)) · ξ(t) + α(t)

)
dt +

(
∂σ

∂x
(t,W ∗(t), γ∗(t)) · ξ(t) + β(t)

)
dBt

ξ(0) = 0,

where

α(t) = − ∂c

∂x
(t,W ∗

t , γ∗(t)) · ξ(t) + c(t,Wt, γ(t))− c(t,W ∗
t , γ∗(t))

β(t) = −∂σ

∂x
(t,W ∗

t , γ∗(t)) · ξ(t) + σ(t,Wt, γ(t))− σ(t,W ∗
t , γ∗(t)).
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With this in mind, along with the given assumptions and the useful results (col-

lected from [22, p. 30 and p. 55], respectively)

E

[∫ b

a

f(t)dBt

]
= 0

d(XtYt) = XtdYt + dXtYt + dXt · dYt

for any Ito processes Xt, Yt and L2([a, b])-measurable function f , we then note the
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following:

E

[
∂K

∂x
(W ∗

T ) · ξ(T )

]
= E[p(T )ξ(T )− p(0)ξ(0)]

= E

[∫ T

0

(
−
(

∂c

∂x
(t,W ∗

t , γ∗(t))p(t)

−∂σ

∂x
(t,W ∗

t , γ∗(t))q(t) +
∂F

∂x
(t,W ∗

t , γ∗(t))

)
ξ(t)

+p(t)

(
∂c

∂x
(t,W ∗

t , γ∗(t)) · ξ(t) + α(t)

)
+q(t)

(
∂σ

∂x
(t,W ∗(t), γ∗(t)) · ξ(t) + β(t)

))
dt

]
= E

[∫ T

0

(
−∂F

∂x
(t,W ∗

t , γ∗(t)) · ξ(t) + p(t)α(t) + q(t)β(t)

)
dt

]
= E

[∫ T

0

(
−∂H

∂x
(t,W ∗

t , γ∗(t), p(t)) · ξ(t)

+ p(t) · ∂c

∂x
(t,W ∗

t , γ∗(t)) · ξ(t)

+ q(t) · ∂σ

∂x
(t,W ∗(t), γ∗(t))

+ p(t)α(t) + q(t)β(t)

)
dt

]
= E

[∫ T

0

(
−∂H

∂x
(t,W ∗

t , γ∗(t), p(t)) · (Wt −W ∗
t )

+ p(t)(c(t,Wt, γ(t))− c(t,W ∗
t , γ∗(t)))

+ q(t)(σ(t,Wt, γ(t))− σ(t,W ∗
t , γ∗(t)))

)
dt

]
≤ E

[∫ T

0

(H(t,W ∗
t , γ∗(t), p(t))−H(t,Wt, γ(t), p(t))

+p(t)(c(t,Wt, γ(t))− c(t,W ∗
t , γ∗(t)))

+q(t)(σ(t,Wt, γ(t))− σ(t,W ∗
t , γ∗(t)))) dt

]
= E

[∫ T

0

(F (t,W ∗(t), γ∗(t))− F (t,Wt, γ(t))) dt

]
.

The expected value in the second line was simplified using the two given results,
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neglecting the terms with differential pieces (dt)2 and dt · dBt (these are assumed to

be much smaller than the other terms), and using the fact that dBt · dBt = dt ([22,

p. 44]).

Since K(x) is assumed concave and C2(G), then

E

[
∂K

∂x
(W ∗

T ) · (WT −W ∗
T )

]
≥ E [K(WT )−K(W ∗

T )] .

Tying this all together, we then have

E

[
K(WT ) +

∫ T

0

F (t,Wt, γ(t))dt

]
≤ E

[
K(W ∗

T ) +

∫ T

0

F (t,W ∗
t , γ∗(t))dt

]
.

Since γ(t) ∈ M was arbitrary, this completes the proof of Theorem 4.5.

Remark: This theorem was adapted from Theorem 5.2 in Yong-Zhou ([27, pp.

138-140]) because, as in the deterministic case, our H(t, x, v, p, q) is not concave in

(x, v), which is needed in order to turn Theorem 4.4 into an if-and-only-if statement.

So, with Theorems 4.4 and 4.5, we are now ready to find some optimal controls.

First, for (4.1-4.3), we note that we have G = [0,∞) and U = [0, κ] (with metric | · |)

again. Further,

c(t, x, v) = (r − v)x

F (t, x, v) = bxv

K(x) = ax

σ(t, x) = σx.

These functions clearly satisfy (SA) (in fact, c, F, σ are actually Lipschitz in v, not
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just locally Lipschitz). So, we then set up the first-order adjoint equation, which is:

dp(t) = ((γ(t)− r)p(t) + σq(t)− bγ(t)) dt + q(t)dBt

p(T ) = a.

It can quickly be verified that, setting q(t) = 0, the adjoint equation reduces to the

same adjoint equation as in the deterministic case (3.1-3.3), and so the solution of

this equation is (p∗(t), 0), where

p∗(t) = a · exp

(
r(T − t)−

∫ T

t

γ(s)ds

)
+ b

∫ T

t

γ(s) · exp

(
r(s− t)−

∫ s

t

γ(u)du

)
ds.

Since the Hamiltonian for (4.1-4.3) is

H(t,Wt, γ(t), p(t), q(t)) = Wt(rp(t) + γ(t)(b− p(t)) + σq(t)),

then, by above, the Hamiltonian reduces to the same form as in the deterministic

case. Hence, by Theorems 4.4 and 4.5, we have the following:

Theorem 4.6: Theorem 3.3, Lemma 3.4, and Theorem 3.5 still hold in the

stochastic case. That is,

• If a = 0, then γ∗(t) = κH̄(t− dA) (or d∗A if r = κ) is an optimal control.

• If a > 0 and b/a ≤ 1, then γ∗(t) = 0 is an optimal control.

• If a > 0 and b/a > 1, then γ∗(t) = κH̄(t − dP ) (or d∗P if r = κ) is an optimal

control.

Proof : The proof is the same as the proofs for Theorem 3.3, Lemma 3.4, and

Theorem 3.5, respectively, by the above discussion.
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Remark 1: Just for reference, here is the general form of the second-order adjoint

equation for the stochastic optimization problem:

dP (t) = −

(
2P (t)

∂c

∂x
(t,Wt, γ(t)) + P (t)

(
∂σ

∂x
(t,Wt, γ(t))

)2

+ 2Q(t)
∂σ

∂x
(t,Wt, γ(t))

)

− ∂2H

∂x2
(t,Wt, γ(t), p(t), q(t))dt + Q(t)dBt

P (T ) =
∂2K

∂x2
(WT ).

It can easily be verified that (P (t), Q(t)) = (0, 0) is a solution of this equation for our

problem, and, since this equation has a unique solution (P (t), Q(t)) (Theorem 2.2 in

[27, p. 349]), this confirms that there is no need for a second adjoint equation for our

problem.

Remark 2: Recall that, in the deterministic case, we computed the corresponding

optimal values for each optimal control. These will also be the corresponding optimal

values in the stochastic case because of Jensen’s Inequality ([10, p. 109]). One of the

forms of Jensen’s Inequality is that, if X is an integrable, real-valued random variable

(meaning that, equivalently, E[|X|] < ∞), and φ is a convex function, then

φ(E[X]) ≤ E[φ(X)].

If φ is concave, then the inequality reverses. Hence, if φ is both convex and concave,

then Jensen’s Inequality becomes an equality. In our case, we take

X(t) = Wt = W0 · exp

((
r − 1

2
σ2

)
t−
∫ t

0

γ∗(s)ds + σBt

)
,

where γ∗(t) = κH̄(t − d), where d is the appropriate starting time for reproduction,
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and

φ(x(t)) =

∫ T

0

γ∗(t)x(t)dt.

Clearly, φ is a linear function in x(t), and hence it is both convex and concave. Now,

by [13, p. 215], for any value of t,

E[|X(t)|] = E[X(t)] = W0 · exp

(
rt−

∫ t

0

γ∗(s)ds

)
.

Thus, Jensen’s Inequality becomes an equality in our case, and we have that:

E

[
aWT + b

∫ T

0

γ∗(t)Wtdt

]
= aE[WT ] + b

∫ T

0

γ∗(t)E[Wt]dt

= aW0 · exp (rT − κ(T − d)) + bW0κ

∫ T

d

exp (rt− κ(t− d)) dt.

Therefore, the optimal values in the stochastic case are indeed the same as those in

the deterministic case.

Initially, this may seem quite strange, as the optimal strategies and corresponding

values are completely unchanged from the deterministic case. This is due to the fact

that we are maximizing an expected value, and, since Bt has independent normally

distributed increments with mean 0, then this is essentially equivalent to the effects

of the environment “breaking even” in the long run.

This then implies that all of the other results we derived for the deterministic case

carry over to the stochastic case.
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Chapter 5

Multiseason Analysis

We will now look at what happens to these plant populations over a large number of

seasons; specifically, we want to answer two questions:

1. What condition(s) will ensure that the population will grow over a long period

of time?

2. Under what condition(s) will perennials be favored? What about annuals?

To do this, we assume that, as a result of evolution, the plants use the optimal

reproductive strategies γ∗(t) already derived in previous sections. With this in mind,

we define the following stochastic processes for t ∈ [0, T ] and n = 0, 1, 2, . . .:

W
(n)
t = W

(n)
0 · exp

((
r − 1

2
σ2

)
t−
∫ t

0

κH̄(s− d)ds + σBt

)
W

(n)
0 = aW

(n−1)
T + b

∫ T

0

κH̄(s− d)W (n−1)
s ds

W
(0)
0 = W0,

where d is the time where reproduction begins as derived in previous sections (which-

ever of dA, d∗A, dP , or d∗P is appropriate). So, note that W
(n)
t is a continuous stochastic
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process in t for fixed n (this represents the dynamics of the plants during the nth sea-

son), and W
(n)
0 is a discrete stochastic process in n. This represents the adult biomass

that will exist at the start of the nth season under the chosen reproductive strategy;

recall that we are assuming that any reproductive biomass which will germinate into

a full-grown adult will have done so by the start of the next season.

In order to see what will happen with the plant species over a large number of

seasons, we want to investigate W
(n)
0 as n becomes very large. To do this, we first

want to rewrite this sequence in a simpler fashion. Specifically, assuming that each

season’s dynamics are independent of those of other seasons, then, calling

Yt = exp

((
r − 1

2
σ2

)
t−
∫ t

0

κH̄(s− d)ds + σBt

)
Xn = aYT + b

∫ T

0

κH̄(s− d)Ysds,

we can then say that

W
(n)
0 = W0X1 · · ·Xn.

Further, W0 is a positive constant, and the Xi’s are independent and identically

distributed (i.i.d.) random variables. The Xi’s are also continuous random variables

which take on values in the interval (0,∞). With this in mind, we notice that the

population will be considered to have grown after n seasons (that is, W
(n)
0 > W0) so

long as the product X1 · · ·Xn > 1. Likewise, the population will be considered to

have decayed after n seasons if X1 · · ·Xn < 1. To determine under what conditions

growth is more likely to occur than decay, we need to look at the distribution of W
(n)
0 ,

and we will do so in three cases:

1. a > 0, b/a ≤ 1

2. a = 0
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3. a > 0, b/a > 1.

5.1 Case 1: a > 0, b/a ≤ 1

We begin with the easiest of the cases to analyze since, in this case, the optimal

“reproductive strategy” for the perennial plants is to focus all available resources on

growth and maintenance of the existing adult population rather than reproduce, or,

mathematically, γ∗(t) = 0 (Lemma 3.4). This is equivalent to saying that dP = T

(remark after Theorem 3.5), and so we have

Yt = exp

((
r − 1

2
σ2

)
t + σBt

)
Xn = aYT

= a · exp

((
r − 1

2
σ2

)
T + σBT

)
.

Next, we note the following:

ln(W
(n)
0 ) = ln(W0) + ln(X1) + . . . + ln(Xn)

ln(Xn) = ln a +

(
r − 1

2
σ2

)
T + σBT .

So, because the Xi’s are i.i.d. random variables, and BT is a normally distributed

random variable, then so is ln(W
(n)
0 ) because it is a sum of normally distributed

random variables. This means that W
(n)
0 is a lognormally distributed random variable.

One could also get this by noting that the Xi’s are lognormally distributed and W
(n)
0

is a product of lognormally distributed random variables. But, we still need to figure

out its mean and variance, and we’ll use the above expression for ln(W
(n)
0 ) to do so.
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Recalling that E[BT ] = 0 and Var(BT ) = T by definition, we have the following:

µ = E[ln(W
(n)
0 )] = ln(W0) + n

(
ln a +

(
r − 1

2
σ2

)
T

)
ν2 = Var(ln(W

(n)
0 )) = nσ2T.

Also note that, if X is any lognormally distributed random variable such that ln X

has mean µ and variance ν2, then, by [17, p. 113],

E[X] = exp

(
µ +

1

2
ν2

)
Var(X) = (E[X])2

(
exp(ν2)− 1

)
.

As a result, for any value of n, we have that

E[W
(n)
0 ] = W0a

n · exp(nrT )

Var(W
(n)
0 ) = (W0a

n · exp(nrT ))2(exp(nσ2T )− 1).

We want to determine how likely X1 · · ·Xn > 1 for a given value of n; that is,

what is the probability that the population has grown over n seasons? For this to

happen with at least 50% certainty for any n, by above, we need

E[ln(X1) + . . . + ln(Xn)] = n

(
ln a +

(
r − 1

2
σ2

)
T

)
> 0

a > exp

(
−
(

r − 1

2
σ2

)
T

)
.

Biologically, this says that, in order to have long-term population growth occur a

majority of the time, the average amount of the adult biomass that survives from one

season to the next must be large enough so that the growth for a season is not offset
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(the exp(−rT ) piece) and neither are the expected adverse effects of environmental

variability for a season (the exp
(

1
2
σ2T

)
piece). We also make the important observa-

tion that determining whether growth is more likely than decay after any number of

seasons is independent of the number of seasons.

In fact, in this case, we can get more accurate results than this. For any choice of

n, we can get a more exact estimate for how likely the population will grow after n

seasons because we know that

ln(X1) + . . . + ln(Xn) ∼ N

(
ln(W0) + n

(
ln a +

(
r − 1

2
σ2

)
T

)
, nσ2T

)
.

So, we can use a normal distribution table to find P (ln(X1) + . . . ln(Xn) > 0), and

this will then correspond to P (X1 · · ·Xn > 1).

If we wanted to answer other interesting questions such as the likelihood of the

population having at least doubled in season n or having been cut in half (or worse)

in season n, we could use a very similar technique. For example, the likelihood of

the population having at least doubled by season n corresponds to P (ln(X1) + . . . +

ln(Xn) > ln(2)).

Remark: Although this case lends itself very nicely to mathematical analysis, it

is, of course, not viable in the long run, as, if n is sufficiently large, the population

must eventually die out since it never reproduces. Thus, the above should only be

used for small values of n to ensure a realistic analysis.
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5.2 Case 2: a = 0

5.2.1 Derivation of a Sufficient Growth Condition

Our next case to consider is the case of annuals; that is, reproduction always occurs

at some point during the season. In this case, we have

Xn = bκ

∫ T

dA

exp

((
r − 1

2
σ2

)
s− κ(s− dA) + σBs

)
ds,

where

dA =


T − 1

r−κ
ln
(

r
κ

)
r 6= κ

T − 1
κ

r = κ

taking dA = 0 if the appropriate value above is less than 0 (for distinction, we’ll

set d∗A = T − 1
κ

as before). However, unlike Case 1, since this is the integral of

a lognormally distributed random variable, we can’t simply claim that ln(Xn) is

normally distributed. Since

ln(W
(n)
0 ) = ln(W0) + ln(X1) + . . . + ln(Xn),

then, by the Central Limit Theorem (see, for example, [13, p. 308]), we know that, for

sufficiently large n, ln(W
(n)
0 ) is approximately normally distributed, and hence W

(n)
0

is approximately lognormally distributed for sufficiently large n. Thus, for sufficiently

large n, we can proceed as in Case 1. However, we have to do things in “reverse;”

that is, we’ll first need to work with Xn instead of ln(Xn).
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First, recall that, by Remark 2 after Theorem 4.6, we know that

E[Xn] =


bκ

r−κ
(exp(rT − κ(T − dA))− exp(rdA)) r 6= κ

b · exp(κd∗A) r = κ

.

Next, we turn to computing Var(Xn); this is much more difficult to do than in Case 1

due to Xn being an integral of a random variable. But, we can get an upper bound on

the integral; namely, we note that, for any choice of sample path of Bt, the following

inequality holds for t ∈ [0, T ]:

H̄(t− dA) · exp

((
r − 1

2
σ2

)
t− κ(t− dA) + σBt

)
≤ exp

((
r − 1

2
σ2

)
t + σBt

)
.

So, calling

X∗
n = bκ

∫ T

0

exp

((
r − 1

2
σ2

)
t + σBt

)
, (5.1)

we then have Xn ≤ X∗
n for any path of Standard Brownian Motion, and hence

Var(Xn) = E[X2
n]− E[Xn]2 ≤ E[(X∗

n)2]− E[Xn]2.

Now, to compute E[(X∗
n)2], we turn to Corollary 2 from Yor ([28, p. 519]), which says

the following:

Lemma 5.1: For any λ ∈ R, α ∈ R, and n = 1, 2, . . .,

E

[(∫ T

0

exp(λ(Bt + αt))dt

)n]
=

n!

λ2n

n∑
j=0

c
(α/λ)
j · exp

((
λ2j2

2
+ λjα

)
T

)
,
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where

c
(x)
j =

n∏
k=0,k 6=j

(
(x + j)2

2
− (x + k)2

2

)−1

.

Proof : The proof can be constructed in a straightforward manner using results

on pp. 510 and 517-519 of Yor ([28]). Since doing so requires 3 prior results from [28]

and Girsanov’s Theorem (see, for example, [22, pp. 153-160]), for the sake of brevity,

we will omit the proof.

Thus, taking λ = σ and α = r/σ− (1/2)σ, we have α/λ = r/σ2− 1/2, and hence,

by Lemma 5.1,

E[(X∗
n)2] =

2b2κ2

σ4

((
−r

σ2

)−1(−2r

σ2
− 1

)−1

+
( r

σ2

)−1
(
−r

σ2
− 1

)−1

exp(rT )

+

(
2r

σ2
+ 1

)−1 ( r

σ2
+ 1
)−1

exp((2r + σ2)T )

)

= 2b2κ2

(
1

r(2r + σ2)
− exp(rT )

r(r + σ2)
+

exp((2r + σ2)T )

(2r + σ2)(r + σ2)

)
.

So, as a result assuming r 6= κ,

Var(Xn) ≤ 2b2κ2

(
1

r(2r + σ2)
− exp(rT )

r(r + σ2)
+

exp((2r + σ2)T )

(2r + σ2)(r + σ2)

)
−
(

bκ

r − κ
(exp(rT − κ(T − dA))− exp(rdA))

)2

.

Next, we note that, because the Xi’s are i.i.d. random variables, then

E[X1 · · ·Xn] = (E[Xn])n

Var(X1 · · ·Xn) = (E[X2
n])n − (E[Xn])2n

≤ (E[(X∗
n)2])n − (E[Xn])2n.
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This then gives us a “worst-case scenario” for analyzing whether the population will

grow or not after a sufficiently large number of seasons. To illustrate this, we first note

that, if we know the mean and variance of a lognormally distributed random variable

X, then we can compute µ and ν2, the mean and variance of the corresponding

normally distributed random variable ln(X), respectively, via the following formulas

(these can be verified by plugging them into the formulas for E[X] and Var(X) in

Section 5.1):

µ = ln(E[X])− 1

2
ln

(
1 +

Var(X)

E[X]2

)
ν2 = ln

(
1 +

Var(X)

E[X]2

)
.

Since we computed an upper bound for Var(X1 · · ·Xn), then, by the above formulas,

the corresponding µ and ν2 for that lognormal distribution will be, respectively, less

than and greater than the true µ and ν2. Put another way, the underlying normal

distribution of the “worst-case scenario” will have a smaller mean and greater variance

than the true underlying normal distribution.

As a result, if we can find a condition on the “worst-case scenario” distribution’s

underlying normal distribution that guarantees its mean (and hence the median of

the “worst-case scenario’s” distribution by [17, p. 117]) is at least 0, then the true

median is at least that big, if not bigger. So, for the true distribution, there is at least

a 50% chance of growth in each season. Using the “worst-case scenario” distribution

to do other computations, though, may not be feasible; we’ll discuss this a little more

at the end of this section.

With this in mind, let’s return to analyzing the distribution of X1 · · ·Xn. Specif-

ically, assuming n is sufficiently large, then we can compute the corresponding mean

and variance of the underlying normal distribution of the “worst-case scenario,” µ∗
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and (ν∗)2, respectively (µ and ν2 represent the true values), as follows:

ν2 = ln

(
1 +

Var(X1 · · ·Xn)

E[X1 · · ·Xn]2

)
≤ ln

(
E[(X∗

n)2]n

E[Xn]2n

)
= (ν∗)2

(ν∗)2 = n ln

(
2(r − κ)2

(
1

r(2r + σ2)
− exp(rT )

r(r + σ2)
+

exp((2r + σ2)T )

(2r + σ2)(r + σ2)

))
+ n ln

(
(exp(rT − κ(T − dA))− exp(rdA))−2)

µ = ln(E[X1 · · ·Xn])− 1

2
ν2

≥ ln(E[Xn]n)− 1

2
(ν∗)2

= µ∗

µ∗ = n ln

(
bκ√

2(r − κ)2
(exp(rT − κ(T − dA))− exp(rdA))2

)
+ n ln

((
1

r(2r + σ2)
− exp(rT )

r(r + σ2)
+

exp((2r + σ2)T )

(2r + σ2)(r + σ2)

)−1/2
)

.

Thus, if we want to guarantee long-term population growth for these annuals at least

50% of the time, we want µ∗ to be greater than 0, or, equivalently, exp(µ∗) > 1 ([17,
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p. 117]); for this to happen, we need:

(
bκ√

2(r − κ)2

)n

(exp(rT − κ(T − dA))− exp(rdA))2n

·
(

1

r(2r + σ2)
− exp(rT )

r(r + σ2)
+

exp((2r + σ2)T )

(2r + σ2)(r + σ2)

)−n/2

> 1

b >

√
2(r − κ)2

κ
(exp(rT − κ(T − dA))− exp(rdA))−2

·
(

1

r(2r + σ2)
− exp(rT )

r(r + σ2)
+

exp((2r + σ2)T )

(2r + σ2)(r + σ2)

)1/2

b >

√
2(r − κ)2

κ
exp(−2rT )

(( r

κ

)− κ
r−κ −

( r

κ

)− r
r−κ

)−2

·
(

1

r(2r + σ2)
− exp(rT )

r(r + σ2)
+

exp((2r + σ2)T )

(2r + σ2)(r + σ2)

)1/2

,

where the last inequality was obtained by plugging in dA, which is dependent only on

r, κ, T . This assumes, of course, that dA is positive; if dA = 0, the inequality becomes:

b >

√
2(r − κ)2

κ
(exp(rT − κT ))−2

·
(

1

r(2r + σ2)
− exp(rT )

r(r + σ2)
+

exp((2r + σ2)T )

(2r + σ2)(r + σ2)

)1/2

.

So, defining

f(r, σ, T ) =

(
1

r(2r + σ2)
− exp(rT )

r(r + σ2)
+

exp((2r + σ2)T )

(2r + σ2)(r + σ2)

)1/2

,

then we can write this sufficient growth condition as:

b >


√

2(r−κ)2

κ
(exp(rT − κT ))−2 · f(r, σ, T ) T ≤ 1

r−κ
ln
(

r
κ

)
√

2(r−κ)2

κ
exp(−2rT )

((
r
κ

)− κ
r−κ −

(
r
κ

)− r
r−κ

)−2

· f(r, σ, T ) T ≥ 1
r−κ

ln
(

r
κ

) .

(5.2)
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However, if r = κ, note that all we need to do in the above computations is replace

E[Xn] with bκ(T − d∗A) · exp(κd∗A) and r with κ in E[(X∗
n)2]; otherwise, everything

else remains the same. Thus, in this case,

(ν∗)2 = n ln
(
2(T − d∗A)−2 exp(−2κd∗A)

)
+ n ln

(
1

κ(2κ + σ2)
− exp(κT )

κ(κ + σ2)
+

exp((2κ + σ2)T )

(2κ + σ2)(κ + σ2)

)
µ∗ = n ln

(
bκ√

2
(T − d∗A)2 exp(2κd∗A)

)
+ n ln

((
1

κ(2κ + σ2)
− exp(κT )

κ(κ + σ2)
+

exp((2κ + σ2)T )

(2κ + σ2)(κ + σ2)

)−1/2
)

.

So, if r = κ, to guarantee long-term growth at least 50% of the time, we want

b >


√

2
κT 2 · f(κ, σ, T ) T ≤ 1

κ

κ
√

2 · exp(2− 2κT ) · f(κ, σ, T ) T ≥ 1
κ

. (5.3)

Remark 1: To derive (5.1), note that all terms involving κ were essentially

dropped in the integrand. This is because determining when the κ term in the

exponent normally begins depends on dA; if dA > 0, then leaving it as κ(t − dA)

does give a valid upper bound, but it may be worse than (5.1), especially if dA is not

close to 0. This is because terms would be added to the exponent, not taken away,

close to 0.

Also, the change made to E[(X∗
n)2] would be to replace r with (r − κ), and so, if

r < κ, then it becomes possible for denominators to be equal to 0, depending on the

value of σ2. So, to avoid this possible complication, and to create a universal bound

that would be valid regardless of the values of r and κ, we simply decided to drop

the terms in the integrand involving κ.
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Figure 5.1: Comparison of two normal distributions (red has mean 0 and variance 1,
blue has mean -1 and variance 3)

Remark 2: As pointed out earlier, using the “worst-case scenario” for other

computations besides a sufficient condition for season-to-season as well as long-term

growth may not be feasible. To see why, let’s take two normally-distributed random

variables, A ∼ N(µ1, ν
2
1) and B ∼ N(µ2, ν

2
2), where µ1 ≥ µ2 and ν1 ≤ ν2. So,

here, B is our “worst-case scenario” distribution. Figure 5.1 illustrates this, with the

red curve representing the true distribution, A, and the blue curve representing the

“worst-case scenario,” B.

If we wanted to use B to talk about what’s going on with A, there are instances

where B rightfully deserves the name “worst-case scenario.” For example, if we

wanted to compute P (A > x1), where µ2 ≤ x1 ≤ µ1, then P (B > x1) does give a
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lower answer than P (A > x1). To see why, we quickly note that x1 − µ2 ≤ 0 and

x1 − µ1 ≥ 0 and hence

x1 − µ2

ν2

≤ x1 − µ1

ν1

.

So, in this case, calling B the “worst-case scenario” is justified. This corresponds to

the region −1 ≤ x ≤ 0 in Figure 5.1; clearly, if x is in this region, then P (B > x) <

P (A > x) since the mean represents the median for both distributions.

On the other hand, if we wanted to look at P (A > x2), where x2 ≤ µ2 or x2 ≥ µ1,

then the relationship of P (B > x2) to P (A > x2) is not as clear. To see why, we note

that there is a value of x2 where the standardized normal distributions for A and B

will produce the same values for the probabilities; this happens when:

x2 − µ1

ν1

=
x2 − µ2

ν2

x2

ν1

− x2

ν2

=
µ1

ν1

− µ2

ν2

x2(ν2 − ν1)

ν1ν2

=
µ1ν2 − µ2ν1

ν1ν2

x2 =
µ1ν2 − µ2ν1

ν2 − ν1

.

Further, we note that this value is bigger than µ1 since

µ1ν2 − µ2ν1

ν2 − ν1

≥ µ1

µ2ν1 ≤ µ1ν1

µ2 ≤ µ1,

which is true by assumption. Hence, we see that, if x2 ≤ µ2, then P (B > x2) does

again provide a lower estimate for P (A > x2), so the “worst-case scenario” label is

justified again. This is illustrated in Figure 5.1 in the region x < −1; not only is the
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median of A to the right of that of B, but, since the variance of A is smaller, then

more of its area is contained near the median compared to B. However, if x2 ≥ µ1,

then P (B > x2) only provides a lower estimate for P (A > x2) up until

x2 =
µ1ν2 − µ2ν1

ν2 − ν1

,

after which P (B > x2) provides an upper estimate for P (A > x2). For Figure 5.1,

this critical value is x = 1/2.

In summary, returning to the distributions analyzed in Case 2, where the mean and

variance of the true underlying normal distribution are not necessarily known, using

the “worst-case scenario” distribution to get a lower estimate for the true distribution

for computations of the form P (X > x) should only be done if x is less than the mean

of the underlying normal distribution of the “worst-case scenario,” µ∗. Although there

may be no harm in looking at P (B > x) to get a lower bound on P (A > x) if x is

only very slightly greater than µ∗, this should only be done if necessary, especially

since the comparison to the true distribution is not as clear in this case.

5.2.2 A Few Graphs

We now look at some graphs to help determine what roles the parameters r, κ, T ,

and σ play in terms of how high the reproductive utility, b, must be to ensure that

the sufficient condition for growth at least 50% of the time derived in the previous

section, (5.2) or (5.3), is met. We’ll look at the case r 6= κ first and then discuss what

happens on similar graphs for the case where r = κ. New graphs will only be drawn

in this case if the fundamental shape is different than what was achieved with the

r 6= κ graphs. For all of these graphs, the curve drawn will be the right hand side

of (5.2) or (5.3); the region where the condition will be met will thus be any points
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Figure 5.2: Sufficient growth condition for annuals with respect to volatility, σ2

above the curve.

The first parameter we will consider is σ. Figure 5.2 compares b with σ2, fixing

r = 0.0225, κ = 0.05, and T = 20. Thus, according to this graph, it appears the

reproductive utility needed to ensure at least a 50% chance of growth increases as σ

increases. This makes sense since, if σ increases, then the volatility of the environment

increases, meaning that large losses (large gains as well) of biomass become more likely

to occur. As a result, the utility of the seeds should increase enough to help offset

the potential higher losses during the season.

Remark: A rigorous proof of the properties of Figure 5.1 discussed (as well as

those of the following graphs) is given in the next subsection.

Note that the graph for the case r = κ will look the same (in shape) because the
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Figure 5.3: Sufficient growth condition for annuals with respect to growth rate, r

piece in (5.2) and (5.3) that is dependent on σ, f(r, σ, T ), is exactly the same as when

r 6= κ. Hence, we will omit the graph in this case.

The next parameter we will consider is r. Figure 5.3 compares b with r, fixing

κ = 0.05, σ2 = 0.2, and T = 20. So, according to this graph, as the growth rate

increases, the requirement for reproductive utility decreases. This certainly makes

sense since, when r increases, we expect that the amount of new biomass produced in

each instant will increase as well. Also, when r increases, as shown before, dA increases

(in many cases), so the plants will then usually wait a longer time before reproduction

begins. Thus, for a large growth rate, it is expected that much more biomass will

be available when reproduction begins, and hence less reproductive utility should be

needed.
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Figure 5.4: Sufficient growth condition for annuals with respect to maximum repro-
duction proportion, κ (r = 0.03, σ2 = 0.2, T = 10 on the left; r = 0.05, σ2 = 0.2,
T = 30 on the right)

The next parameter we will consider is κ. Figure 5.4 compares b with κ on two

graphs. The graph on the left fixes r = 0.03, σ2 = 0.2, and T = 10, and the

graph on the right fixes r = 0.05, σ2 = 0.2, and T = 30. On each of these graphs,

we note that the overall behavior is the same: for very small values of κ, the utility

requirement is very large. As κ increases, however, this is followed by a sharp decrease

in the requirement until a minimum is reached, after which the requirement begins

increasing again, but at a slower rate than the initial decrease.

Biologically, it certainly makes sense to have a very high reproductive utility

requirement when κ is very close to 0 because, if almost nothing can be put into

reproduction at any instant, the small amount that can be put in needs to have a

high utility in order to ensure growth for the next season since this is the only way

annuals can carry biomass into the next season. On the other hand, increasing κ

too much results in “self-cannibalization” of the resources; that is, the plants begin

to use up any growth they may experience and more for reproduction. Because of
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Figure 5.5: Sufficient growth condition for annuals with respect to growth rate =
maximum reproduction proportion, r = κ

that, if the season length is fixed, then the plants not only will, in many cases, wait

longer to reproduce as discussed previously, which increases their risk of decay, but

they most likely cannot sufficiently replenish themselves when reproduction actually

begins. These two facts could result in less biomass being used for reproduction, thus

requiring a higher utility for likely growth next season.

Of course, one issue that should be addressed is where that “minimum” utility

requirement actually occurs. The short answer is that it “occurs” at κ = r when

T ≥ 1/r (this point is not defined on this graph) and occurs at some κ > r when

T < 1/r.

But, if we consider the case where r = κ, this type of behavior doesn’t quite

occur. Figure 5.5 illustrates this, fixing σ2 = 0.2 and T = 20. Note that this graph
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Figure 5.6: Sufficient growth condition for annuals with respect to season length, T
(r = 0.03 for left graph, r = 0.1 for middle graph, r = 0.15 for right graph)

does show the same behavior as Figure 5.4 when κ is very close to 0, but, unlike

when r 6= κ, the utility requirement decreases whenever κ increases for all values of

κ, eventually approaching 0. This is because, in this case, notice that κ plays the

role of both the growth rate and the reproduction rate, and so, when κ is small here,

virtually no growth and no reproduction are taking place, so there should be a large

utility requirement. However, as κ increases, no “self-cannibalization” occurs since

the growth and reproduction rates are the same, so more biomass is expected to be

available and devoted to reproduction when reproduction begins (starting time for

reproduction will, in most cases, be delayed as κ increases), and hence the utility

requirement can be eased.

Our final parameter to consider is T . This is probably the most interesting pa-

rameter of all since three distinct types of behavior can occur. Figure 5.6 illustrates

this by fixing κ = 0.05 and σ2 = 0.2 for all three graphs, but fixing different values

of r for each graph; specifically, r = 0.03 on the left, r = 0.1 in the middle, and

r = 0.15 on the right. In all 3 scenarios, we notice that, when the season is very

short, the utility requirement is very large. However, as the season length increases,

one of three long-term behaviors may occur. In the first scenario (r = 0.03), note
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that, as T increases, the utility requirement on initially decreases, but, after hitting

a minimum, the requirement then increases and does so from then on. In the second

scenario (r = 0.1), we note that, instead of the utility requirement increasing after

hitting a minimum unboundedly, it approaches a finite limit. However, in the third

scenario (r = 0.15), the utility requirement initially follows the same behavior as in

the first two scenarios, but then begins to decrease to 0. Since there is markedly dif-

ferent behavior for increasing T in each scenario, it is important to determine under

what conditions each will occur.

Since both κ and σ2 were fixed when drawing these graphs, it appears that r

makes the difference. Note that, in the first scenario, r < (1/2)σ2, in the second,

r = (1/2)σ2, and, in the third, r > (1/2)σ2. Recall the random variable governing

single-season dynamics is

Yt = exp

((
r − 1

2
σ2

)
t−
∫ t

0

κH(s− dA)ds + σBt

)
,

where dA = T − 1
r−κ

ln
(

r
κ

)
. Since exp((r − (1/2)σ2)t) shows up as a deterministic

piece in Yt, based on this and the prior observations, it makes sense that the crtical

value would be r = (1/2)σ2.

Biologically, we can explain what’s going on by considering the single-season dy-

namics. Fixing all parameters besides T gives us dA = T − C, where C > 0 is a

constant determined by r, κ, if dA > 0. This means that, when T is increased, the

amount of absolute time spent reproducing never changes (except when C ≥ T since,

in this case, dA = 0). This extra time during the season is then used solely for growth

and maintenance (except when C ≥ T ), meaning that the plants are playing for a

longer time against the risky environment.

Because E[dBt] = 0 for any t, then, during the time when no reproduction takes
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place, we turn to (r − (1/2)σ2) to determine if we expect growth during any given

instant or not. If r < (1/2)σ2, then we expect decay, meaning that there is more

reliance on a “good” environment in order to experience growth. Because of this, as

T increases, there is an expectation of more decay before reproduction begins, and

hence the reproductive utility should be high enough to offset the expected loss to

ensure (most of the time) season-to-season growth. This is why we see, as T gets

larger, that the requirement for b increases in this case.

If r > (1/2)σ2 on the other hand, then we expect growth during any given in-

stant, meaning that, if there is more time during the season to devote to growth and

maintenance, we would expect a greater amount of biomass to convert to seeds when

reproduction time begins. Hence, there would not need to be as much of a reliance

on the utility of those seeds to have season-to-season growth, so this is why, as T gets

larger, we see the requirement for b decreasing.

However, for lower values of T , increasing T decreases the requirement on b in all

three scenarios. This is due to the fact that, when T is sufficiently small, season-long

reproduction takes place. This continues until T = C, after which any additional

time gets devoted to growth and maintenance. So, initially, additional time adds to

reproduction, not growth/maintenance. And, as a result, more biomass can then be

poured into reproduction (a short season lessens the effects of the volatility on the

population as well), which means that the utility requirement can be lowered.

The same behavior is observed in the case when r = κ, so we will not draw a

graph for this case.
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5.2.3 Analytic Properties of Sufficient Growth Condition

We now mathematically prove some of the claims made in the previous section based

on graphs as well as biological intuition. Specifically, we are looking at what b,

the reproductive utility, should be in order to guarantee that the sufficient growth

condition, (5.2) or (5.3), holds. If it does, then there will be at least a 50% chance

for growth over a sufficiently large number of seasons.

We begin by looking at the asymptotic behavior of the utility requirement with

respect to σ2. To do so, we only need to look at f(r, σ, T ) since this is the only part

of either (5.2) or (5.3) that depends on σ. Recall that

f(r, σ, T ) =

(
1

r(2r + σ2)
− exp(rT )

r(r + σ2)
+

exp((2r + σ2)T )

(2r + σ2)(r + σ2)

)1/2

.

So, the first two terms under the square root clearly approach 0 as σ2 becomes very

large, and the third term grows like exp((2r + σ2)T ) as σ2 becomes very large. Thus,

limσ2→∞ f(r, σ, T ) = ∞, and so the utility requirement should be increasing exponen-

tially for large σ. This confirms our prediction that the utility requirement increases

unboundedly when discussing Figure 5.2.

Next, we look at the asymptotic behavior of the utility requirement with respect

to r. Specifically, noting that

lim
r→∞

1

r − κ
ln
( r

κ

)
= 0,
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then it follows that, as r →∞, dA → T > 0, meaning that we want to find:

lim
r→∞

√
2(r − κ)2

κ
(exp(rT − κ(T − dA))− exp(rdA))−2 · f(r, σ, T )

= lim
r→∞

√
2(r − κ)2

κ

(
exp

(
rT − κ

(
1

r − κ
ln
( r

κ

)))
− exp

(
r

(
T − 1

r − κ
ln
( r

κ

))))−2

· f(r, T, σ2).

Noting, using l’Hospital’s Rule,

lim
r→∞

r

r − κ
ln
( r

κ

)
= lim

r→∞
ln(r)− ln(κ) + 1

= ∞,

then

lim
r→∞

√
2(r − κ)2

κ

(
exp

(
rT − κ

(
1

r − κ
ln
( r

κ

)))
− exp

(
r

(
T − 1

r − κ
ln
( r

κ

))))−2

· f(r, T, σ2)

= lim
r→∞

√
2(r − κ)2

κ

(
exp

(
− κ

r − κ
ln
( r

κ

))
− exp

(
− r

r − κ
ln
( r

κ

)))−2

· exp(−2rT )

(
1

r(2r + σ2)
− exp(rT )

r(r + σ2)
+

exp((2r + σ2)T

(2r + σ2)(r + σ2)

)1/2

= lim
r→∞

√
2(r − κ)2

κ
·
(

exp

(
− κ

r − κ
ln
( r

κ

))
− exp

(
− r

r − κ
ln
( r

κ

)))−2

·
(

1

r(2r + σ2)
− exp(−3rT )

r(r + σ2)
+

exp((−2r + σ2)T )

(2r + σ2)(r + σ2)

)1/2

= 0

since the quantity taken to the 1/2 power decays according to exp(−3rT ) as r →∞,

and the other factor grows according to (r− κ)2 (the quantity raised to the -2 power
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approaches 1 by the given facts above). But, exp(−(3/2)rT ) decays much faster than

(r−κ)2 grows, and hence the limit is 0 and is approached exponentially as r becomes

very large. This confirms our prediction that the utility requirement decreases to 0

as r becomes very large when looking at Figure 5.3.

Next, we consider the asymptotic behavior of the utility requirement with respect

to κ. We’ll begin by looking at the case where r 6= κ. Noting that

lim
κ→0+

1

r − κ
ln
( r

κ

)
= ∞,

then, as κ → 0+, dA → 0, and hence we want to compute

lim
κ→0+

√
2(r − κ)2

κ
(exp(rT − κT ))−2.

This is the only part of (5.2) that is dependent on κ; thus,

lim
κ→0+

√
2(r − κ)2

κ
(exp(rT − κT )− 1)−2

= lim
κ→0+

√
2

(
r√
κ
−
√

κ

)2

(exp(rT − κT )− 1)−2

= ∞

since r√
κ
→∞ as κ → 0+, and every other quantity involved approaches a finite limit.

So, as κ becomes very small, we note that the sufficient utility requirement increases

like f(x) = x−1/2, which we can observe in Figure 5.4.

Next, we note that there is a “minimum” utility requirement reached on the

graphs in Figures 5.4 and 5.5; we would like to get a better idea of the location of
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that minimum. To do so, recalling that

lim
κ→r

1

r − κ
ln
( r

κ

)
=

1

r
,

then the relevant branch of (5.2) as κ → r is determined by whether T ≤ 1/r (in

which case, the branch where dA = 0 is relevant) or T > 1/r (in which case, the

branch where dA > 0 is relevant). In the latter case, we note that, using Maple, we

find that

lim
κ→r

∂

∂κ

(√
2(r − κ)2

κ
exp(−2rT )

(( r

κ

)− κ
r−κ −

( r

κ

)− r
r−κ

)−2
)

= 0

and

lim
κ→r

∂2

∂κ2

(√
2(r − κ)2

κ
exp(−2rT )

(( r

κ

)− κ
r−κ −

( r

κ

)− r
r−κ

)−2
)

=

√
2 · exp(2)

3r · exp(2rT )
.

Hence, if T ≥ 1/r, r = κ represents a “local minimum” (we use quotes since the

point where r = κ is undefined here, which is why we had to take limits above) for

the utility requirement.

However, if T < 1/r, then the above result does not hold. In fact, using Maple,

we find that

lim
κ→r

∂

∂κ

(√
2(r − κ)2

κ
(exp(rT − κT ))−2

)
=
√

2

(
rT − 1

r2T 2

)
.

But, since T < 1/r, then this quantity is negative. Thus, the utility requirement is

still decreasing near this point. Next, we note that

lim
κ→∞

T − 1

r − κ
ln
( r

κ

)
= T.
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Thus, as κ →∞, dA → T > 0. So, to analyze what happens as κ →∞, we want to

compute

lim
κ→∞

√
2(r − κ)2

κ
(exp (rT − κ(T − dA))− exp (rdA))−2 .

Noting, using l’Hospital’s Rule,

lim
κ→∞

κ

r − κ
ln
( r

κ

)
= lim

κ→∞
− ln(r) + ln(κ) + 1

= ∞,

then

lim
κ→∞

√
2(r − κ)2

κ
(exp (rT − κ(T − dA))− exp (rdA))−2 = ∞

since the quantity being raised to the −2 power approaches 1 by the above facts, and

the quantity outside of it increases like κ. So, the utility requirement increases linearly

for large values of κ. Also, because we’ve shown that, when T < 1/r, the utility

requirement is decreasing at the “point” r = κ, then it must follow, by continuity,

that there is some minimum utility requirement for some κ∗ > r.

Next, we look at the case where r = κ. Here, since limκ→0+ T − 1
κ

= −∞, the

utility requirement as κ → 0+ is given by

lim
κ→0+

√
2

κT 2
· f(κ, T, σ) = ∞

since we can rewrite f(κ, T, σ) as

f(κ, T, σ) =

(
(κ + σ2)− (2κ + σ2) exp(κT ) + κ · exp((2κ + σ2)T )

κ(κ + σ2)(2κ + σ2)

)1/2

.
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Then, by l’Hospital’s Rule, we find that, as κ → 0+, this quantity approaches

(
−1− σ2T + exp(σ2T )

σ4

)1/2

.

Thus, since 1/κ → ∞ as κ → 0+, we see that, indeed, the utility requirement

approaches infinity as κ → 0+ and does so like f(x) = x−1. We can observe this on

the graph in Figure 5.5.

Also, the behavior as κ →∞ is given by

lim
κ→∞

κ
√

2 · exp(2− 2κT ) · f(κ, T, σ)

= lim
κ→∞

√
2 · exp(2)

·
(

κ · exp(−4κT )

2κ + σ2
− κ · exp(−3κT )

(κ + σ2)
+

κ2 · exp((−2κ + σ2)T )

(2κ + σ2)(κ + σ2)

)1/2

= 0

since, as κ → ∞, T − 1/κ → T > 0, so d∗A > 0. So, as κ becomes very large, the

utility requirement decays exponentially to 0 (like exp(−2κT )).

Remark: Of course, by definition, κ < 1 + r, so it is not practical to consider

very large values of κ. But, we can at least confirm mathematically that the utility

requirement should increase without bound for large values of κ when r 6= κ and

should decrease to 0 for large values of κ when r = κ, which is what we observed on

the graphs in Figures 5.4 and 5.5.

Finally, we consider what happens with the utility requirement when changing

the parameter T . For this analysis, we assume r 6= κ since the analysis for r = κ

works exactly the same way and produces the same overall results. Thus, for brevity,
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we will omit this case. So, we first note

lim
T→0+

√
2(r − κ)2

κ
(exp(rT − κT )− 1)−2 · f(r, T, σ) = ∞.

The branch of (5.2) where dA = 0 is used here because, as discussed previously,

1
r−κ

ln
(

r
κ

)
is strictly positive whenever r 6= κ. The limit is computed by noting that,

clearly, limT→0+ f(r, T, σ) is finite, and exp(rT −κT ) → 1. Hence, as T becomes very

small, the utility requirement will increase exponentially. This can be observed on all

of the graphs in Figure 5.6.

However, as T gets very large, the behavior is a little more tricky to figure out.

As the graphs in Figure 5.6 indicate, we should test values of r around (1/2)σ2. So,

let δ > 0 be given. Then, plugging in r = (1/2)σ2 − δ (in this case, also assume that

δ < (1/2)σ2 because, practically, we expect r > 0 for a viable species), and defining

d̄A =
1

(1/2)σ2 − δ − κ
ln

(
(1/2)σ2 − δ

κ

)
,

we note the following (use the branch where dA > 0 here since d̄A remains constant
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with respect to T ):

lim
T→∞

√
2((1/2)σ2 − δ − κ)2

κ

·
(
exp(((1/2)σ2 − δ)T − κ(d̄A))− exp(((1/2)σ2 − δ)(T − d̄A))

)−2

·
(

1

((1/2)σ2 − δ)(2σ2 − 2δ)
− exp(((1/2)σ2 − δ)T )

((1/2)σ2 − δ)((3/2)σ2)− δ

+
exp((2σ2 − 2δ)T )

(2σ2 − 2δ)((3/2)σ2 − δ)

)1/2

= lim
T→∞

√
2((1/2)σ2 − δ − κ)2

κ

(
exp(−κ(d̄A))− exp(−((1/2)σ2 − δ)d̄A)

)−2

·
(

exp(−4((1/2)σ2 − δ)T )

((1/2)σ2 − δ)(2σ2 − 2δ)
− exp(−3((1/2)σ2 − δ)T )

((1/2)σ2 − δ)((3/2)σ2)− δ

+
exp(2δT )

(2σ2 − 2δ)((3/2)σ2 − δ)

)1/2

= ∞

since, by assumption, (1/2)σ2 − δ is strictly positive, meaning that, looking at the

quantity raised to the 1/2 power, the first two terms go to 0, but the last one goes to

infinity, meaning the limit must equal infinity, and the utility requirement increases

exponentially (like exp(δT )).

If we assume that r = (1/2)σ2 + δ (we only need δ > 0 here), then, noting that

the only changes in the above computations are flipping the δ’s to −δ’s, then we

have that the utility requirement approaches 0 as T → ∞. This is because the last

term in the quantity being raised to the 1/2 power now goes to 0 since it decays like

exp(−2δT ), and so the utility requirement decreases exponentially in this case to 0.

Finally, if we assume that r = (1/2)σ2, setting δ = 0 in the above computations

gives us that, as T →∞, the utility requirement approaches

√
2((1/2)σ2 − κ)2

κ

(
exp(−κ(d̄A))− exp(−((1/2)σ2)d̄A)

)−2
(

1

(2σ2)((3/2)σ2)

)1/2

,
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where

d̄A =
1

(1/2)σ2 − κ
ln

(
(1/2)σ2

κ

)
.

These computations confirm all of our observations when discussing Figure 5.6.

Remark: For reference, if κ = (1/2)σ2 in the case r = κ, then, as T → ∞, the

utility requirement approaches

√
2σ2

2
· exp(2)

(
1

(2σ2)((3/2)σ2)

)1/2

.

5.3 Case 3: a > 0, b/a > 1

5.3.1 Derivation of a Sufficient Growth Condition

The final case concerns perennials whose optimal strategy is to reproduce at some

point during the season. The analysis for this case will proceed almost exactly like

Case 2 in that we will derive an upper bound on the variance of X1 · · ·Xn, where, for

all i = 1, 2, . . .,

Xi = a · exp

((
r − 1

2
σ2

)
T + κ(T − dP ) + σBT

)
+ bκ

∫ T

dP

exp

((
r − 1

2
σ2

)
s− κ(s− dP ) + σBs

)
ds,

where

dP =


T − 1

r−κ
ln
(

br
a(r−κ)+bκ

)
r 6= κ

T − b−a
bκ

r = κ

.
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Should either expression be negative, then we set dP = 0; also, for distinction, we set

d∗P = T − b−a
bκ

.

Recalling that, by Remark 2 after Theorem 4.6,

E[Xn] =


(
a + bκ

r−κ

)
exp(rT − κ(T − dP ))− bκ

r−κ
exp(rdP ) r 6= κ

b · exp(κd∗P ) r = κ

,

we now attempt to find an upper bound on the variance as follows: First, by definition,

for any two random variables X, Y ,

Var(X + Y ) = E[(X + Y )2]− E[X + Y ]2

= E[X2] + 2E[XY ] + E[Y 2]− E[X + Y ]2.

In this case, note that we can write Xn = Z1 + Z2 for any n, where:

Z1 = a · exp

((
r − 1

2
σ2

)
T + κ(T − dP ) + σBT

)
Z2 = bκ

∫ T

dP

exp

((
r − 1

2
σ2

)
s− κ(s− dP ) + σBs

)
ds.

Z1 is the random variable we analyzed in Case 1, and Z2 is the random variable we

analyzed in Case 2. Hence, most of the work in finding an upper bound on Var(Xn)

has already been done because we know what E[(Z1)
2] and E[X1]

2 = E[Z1 + Z2]
2

are, and we have an upper bound on E[(Z2)
2]. All that remains is to find an upper

bound on E[Z1 · Z2]. To do this, we again turn to Yor ([28, p. 521]), which gives us

the following formula:
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Lemma 5.2: For any λ ≥ 0, α ≥ 0, and n = 1, 2, . . .,

E

[
exp (λ(BT + αT )) ·

(∫ T

0

exp(Bt + αt)dt

)n]
= E

[
n!

n∑
j=0

c
(α+λ)
j · exp(j(BT + αT )) · exp(λ(BT + αT ))

]
,

where

c
(x)
j =

n∏
k=0,k 6=j

(
(x + j)2

2
− (x + k)2

2

)−1

.

Proof : A proof of this can be found in [28, p. 521].

Comparing this with Lemma 5.1, we notice a key difference in their hypotheses

and the form of the final results: the parameters λ, α are required to be nonnegative

in Lemma 5.2, which was not the case in Lemma 5.1. With this in mind, we first

note that, for any given path of Bt, we have the following:

exp

((
r − 1

2
σ2

)
T − κ(T − dP ) + σBT

)
·
∫ T

dP

exp

((
r − 1

2
σ2

)
t− κ(t− dP ) + σBt

)
dt

≤ exp(rT + σBT ) ·
∫ T

0

exp(rt + σBt)dt. (5.4)

We used a similar inequality in Case 2 to find an upper bound for the variance, but

here, to get a universal upper bound, we drop the −(1/2)σ2T in the exponents since

it is possible for r − (1/2)σ2 to be negative, which would violate the hypotheses of

the lemma.

Another key difference in the statement of Lemma 5.2 from Lemma 5.1 is that,

in the integrand, the Bt in the exponent has no scalar multiple. So, we will need to

make an appropriate transformation to ensure that we still have a Standard Brownian
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Motion. Specifically, we note that, if Bt is a Standard Brownian Motion, then so is

1
c
Bc2t for any c 6= 0 (see, for example, [22, p. 18]). Based on this, we have the

following:

E

[
a · exp(rT + σBT ) · bκ

∫ T

0

exp(rt + σBt)dt

]
= abκ · E

[
exp(rT + Bσ2T ) ·

∫ T

0

exp(rt + Bσ2t)dt

]
= abκ · E

[
exp((r/σ2)Tσ2 + Bσ2T ) · 1

σ2

∫ σ2T

0

exp((r/σ2)u + Bu)du

]

after making the substitution u = σ2t. Now, by Lemma 5.2, we compute this as

follows, taking λ = 1 and α = r/σ2:

abκ

σ2
E

[
exp((r/σ2)Tσ2 + Bσ2T ) ·

∫ σ2T

0

exp((r/σ2)u + Bu)du

]

=
abκ

σ2
E

[
exp((r/σ2)Tσ2 + Bσ2T )

(
((r/σ2) + 1)2

2
− ((r/σ2) + 2)2

2

)−1

·
(
1− exp((r/σ2)Tσ2 + Bσ2T )

)]

=
abκ

σ2
E

[
2σ2

2r + 3σ2
(exp(2rT + 2Bσ2T )− exp(rT + Bσ2T ))

]
=

2abκ

2r + 3σ2

(
exp((2r + 2σ2)T )− exp((r + (1/2)σ2)T )

)
.

Remark: As mentioned previously, this is not a tight upper bound, as the bound

can be made tighter when r−(1/2)σ2 is nonnegative. In that case, following the same

argument as above, but taking α = r/σ2 − 1/2, one can obtain the upper bound of

abκ

r + σ2

(
exp((2r + σ2)T )− exp(rT )

)
.
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For the remainder of this section, we will stick with the more universal upper bound

derived previously, even if r − (1/2)σ2 is nonnegative. In the following sections, we

will only use this tighter bound if it produces a significantly different result than the

universal upper bound.

With all of this information, we can now establish an upper bound on Var(Xn) =

Var(Z1 + Z2) as follows:

Var(Xn) ≤ E[(Z1)
2] + 2E

[
a · exp(rT + σBT ) · bκ

∫ T

0

exp(rt + σBt)dt

]
+ E[(Z∗

2)2]− (E[X1])
2

= a2 · exp(2(rT − κ(T − dP )) + σ2T )

+
4abκ

2r + 3σ2

(
exp((2r + 2σ2)T )− exp((r + (1/2)σ2)T )

)
+ 2b2κ2

(
1

r(2r + σ2)
− exp(rT )

r(r + σ2)
+

exp((2r + σ2)T )

(2r + σ2)(r + σ2)

)
−
((

a +
bκ

r − κ

)
exp(rT − κ(T − dP ))− bκ

r − κ
exp(rdP )

)2

.

Next, as in the annuals case, since we are assuming n is sufficiently large, we can

get estimates µ∗ and (ν∗)2 on the mean and variance µ and ν2, respectively, of the
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corresponding approximate underlying normal distribution to X1 · · ·Xn as follows:

ν2 = ln

(
1 +

Var(X1 · · ·Xn)

E[X1 · · ·Xn]2

)
≤ ln

(
E[(X∗

n)2]n

E[Xn]2n

)
= (ν∗)2

(ν∗)2 = n ln
(
a2 · exp(2(rT − κ(T − dP )) + σ2T )

+
4abκ

2r + 3σ2
(exp((2r + 2σ2)T )− exp((r + (1/2)σ2)T ))

+2b2κ2

(
1

r(2r + σ2)
− exp(rT )

r(r + σ2)
+

exp((2r + σ2)T )

(2r + σ2)(r + σ2)

))
+ n ln

(((
a +

bκ

r − κ

)
exp(rT − κ(T − dP ))− bκ

r − κ
exp(rdP )

)−2
)

µ = ln(E[X1 · · ·Xn])− 1

2
ν2

≥ ln(E[Xn]n)− 1

2
(ν∗)2

= µ∗

µ∗ = n ln

[((
a +

bκ

r − κ

)
exp(rT − κ(T − dP ))− bκ

r − κ
exp(rdP )

)2
]

+ n ln
[(

a2 · exp(2(rT − κ(T − dP )) + σ2T )

+
4abκ

2r + 3σ2

(
exp((2r + 2σ2)T )− exp((r + (1/2)σ2)T )

)
+2b2κ2

(
1

r(2r + σ2)
− exp(rT )

r(r + σ2)
+

exp((2r + σ2)T )

(2r + σ2)(r + σ2)

))−1/2
]

.

Thus, if we want to guarantee long-term population growth for these perennials at

least 50% of the time, we want µ∗ > 0, or, equivalently, exp(µ∗) > 1; for this to
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happen, we need

(
a · exp(rT − κ(T − dP )) +

bκ

r − κ
(exp(rT − κ(T − dP ))− exp(rdP ))

)2

·
[
a2 · exp(2(rT − κ(T − dP )) + σ2T )

+
4abκ

2r + 3σ2

(
exp((2r + 2σ2)T )− exp((r + (1/2)σ2)T )

)
+ 2b2κ2

(
1

r(2r + σ2)
− exp(rT )

r(r + σ2)
+

exp((2r + σ2)T )

(2r + σ2)(r + σ2)

)]−1/2
> 1. (5.5)

Unfortunately, this inequality cannot be solved easily for b (or any other parameter,

for that matter), unlike the inequality from the annuals case. This means we will

have to analyze this inequality as it is given above.

We also note that, if r = κ, then the only change in the above sufficient growth

condition is replacing the quantity being squared, which is E[Xn], with the corre-

sponding value when r = κ, and replacing all r’s with κ’s elsewhere (resulting in

using d∗P as opposed to dP ). This gives the sufficient condition for growth at least

50% of the time of:

((a + bκ(T − d∗P )) · exp(κd∗P ))2

·
[
a2 · exp(2κd∗P + σ2T )

+
4abκ

2κ + 3σ2

(
exp((2κ + 2σ2)T )− exp((κ + (1/2)σ2)T )

)
+2b2κ2

(
1

κ(2κ + σ2)
− exp(κT )

κ(κ + σ2)
+

exp((2κ + σ2)T )

(2κ + σ2)(κ + σ2)

)]−1/2

> 1. (5.6)

Remark: For either of these sufficient growth conditions, note that setting a = 0

results in the corresponding sufficient growth conditions for annuals, depending on if

r 6= κ (5.2) or if r = κ (5.3).
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5.3.2 A Few Graphs

Next, we draw some graphs of the left side of (5.5) and (5.6) to get an idea of how

the different parameters affect how likely the sufficient growth condition is to be met.

To aid us in the following discussion, we make the following definitions:

f1(a, b, r, κ, σ, T ) = a2 · exp(2(rT − κ(T − dP )) + σ2T )

+
4abκ

2r + 3σ2

(
exp((2r + 2σ2)T )− exp((r + (1/2)σ2)T )

)
+ 2b2κ2

(
1

r(2r + σ2)
− exp(rT )

r(r + σ2)
+

exp((2r + σ2)T )

(2r + σ2)(r + σ2)

)
(5.7)

F (a, b, r, κ, σ, T ) =

(
exp(rT − κ(T − dP ))

(
a +

bκ

r − κ

)
− bκ

r − κ
exp(rdP )

)2

· f−1/2
1

(5.8)

G(a, b, κ, σ, T ) = ((a + bκ(T − d∗P )) · exp(κd∗P ))2 · f1(a, b, κ, κ, σ, T )−1/2. (5.9)

Although not explicitly stated, we, of course, use d∗P if r = κ and dP otherwise where

appropriate. Thus, F > 1 corresponds to (5.5) being satisfied and G > 1 corresponds

to (5.6) being satisfied; both F and G represent lower bounds on the median of

X1 · · ·Xn.

Remark: If r − (1/2)σ2 ≥ 0, then we could instead define

f2(a, b, r, κ, σ, T ) = a2 · exp(2(rT − κ(T − dP )) + σ2T )

+
2abκ

r + σ2

(
exp((2r + σ2)T )− exp(rT )

)
+ 2b2κ2

(
1

r(2r + σ2)
− exp(rT )

r(r + σ2)
+

exp((2r + σ2)T )

(2r + σ2)(r + σ2)

)
(5.10)

and use this instead of f1 in the definitions of F and G for a tighter bound. Since f1

provides a universal bound, and, as we’ll show in the next section, the only difference
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Figure 5.7: Comparing a median lower bound with volatility, σ2

in long-term behavior between using f1 and f2 is when varying T , we will draw graphs

using f1 except when discussing T .

Let’s begin by looking at F compared to σ2. Figure 5.7 illustrates this, fixing

a = 0.6, b = 5, r = 0.03, κ = 0.1, and T = 20. For Figure 5.7 and the other graphs

in this section, we are most interested in where (5.5) is met; that is, any points on

the curve where F > 1, since the true median is at least F . So, we note that, as

σ2 increases, F appears to decrease and approach 0; that is, the sufficient growth

condition becomes much more unlikely to be met as the volatility increases. This

makes sense biologically because, as previously discussed, increasing the volatility

means making large swings in the environmental effects more common, both good

and bad. Focusing on the bad swings, as those become larger and more common, the
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Figure 5.8: Comparing a median lower bound with reproductive utility, b

other (deterministic) parameters may not be enough to help the population overcome

the detrimental effects of these swings, meaning that growth should become less likely

over multiple seasons.

The asymptotic behavior of F with respect to σ (and the other parameters in this

section) will be derived in the next section. Also, the graph of G with respect to σ2

has exactly the same structure, and so we will omit it.

Next, we graph F compared to b. This is illustrated in Figure 5.8, fixing a = 0.5,

r = 0.05, κ = 0.1, T = 20, and σ2 = 0.2. This graph leads us to the fairly logical

conclusion that increasing b leads to F increasing; in fact, F seems to become infinitely

large as b does. Biologically, this says that, as the reproductive utility increases, the

median (and hence the chances for long-term growth) should increase. This makes
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sense because, as b increases, reproduction begins sooner and goes for longer during

the season (if season-long reproduction was not already occurring), which reduces the

impact of bad environmental stretches. But, more importantly, any biomass invested

in reproduction will then pay off more in the next season as b increases. Thus, a high

b should result in a higher amount of biomass being invested into reproduction with

a higher return for the following season.

The graph of G with respect to b has exactly the same structure, and so we will

omit it.

Remark: Recall that, in this case, we assume that b is strictly larger than a, so we

cannot consider what happens as b approaches 0 (the best we can do is what happens

as b approaches a from above). This is why the graph drawn starts at b = 0.5.

Next, we graph F compared to r. Figure 5.9 illustrates this, fixing a = 0.6, b = 10,

κ = 0.05, T = 20, and σ2 = 0.1. From the graph, we observe that, as r becomes

large, F appears to become infinitely large. This says that increasing the exponential

growth rate of the plants is expected to increase the median. This certainly makes

sense because, if the growth rate is increased, then the plants are not only better

protected against bad swings in the environment, but they are also more likely to

have large, persistent growth throughout the season. And, since increasing r also

(usually) delays when reproduction begins, assuming T is fixed, the plants should

have a lot more biomass able to invest in reproduction as well as plenty left over to

carry over to the next season.

The next graph we consider compares F to κ. Figure 5.10 illustrates this, fixing

a = 0.6, b = 15, r = 0.05, T = 20, and σ2 = 0.2. Here, we notice that, as κ

increases, the value of F initially increases, hits a peak, and then appears to decrease

afterward to 0. Biologically, this says that we expect the chances for growth to initially

increase as κ increases, and then begin to decline as κ increases further. This makes



126

Figure 5.9: Comparing a median lower bound with growth rate, r

sense because, first off, a higher value of κ means more biomass can be devoted to

reproduction at any given time, so increasing κ should result in a higher median since

b/a > 1. But, as κ continues to increase, the plants begin “self-cannibalizing”, which

means that any growth obtained from the plants’ intrinsic growth rate and what can

be reasonably expected from the environment (plus more beyond that for very high

values of κ) will be used for reproduction. This is expected to leave much less biomass

for the plants to devote to reproduction or to stockpile to the next season since, in

the next instant, there is expected to be less biomass than in the previous instant.

Hence, for high values of κ, we expect that the median should decrease.

Next, we graph G compared to κ in Figure 5.11, fixing a = 0.6, b = 1, T = 5, and

σ2 = 0.2. Recall that, when considering G, r = κ, and so the behavior of G against
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Figure 5.10: Comparing a median lower bound with maximum reproductive rate, κ

κ should be fundamentally different than what we observed with F since there is,

by definition, no “self-cannibalization;” the only way the plant biomass can decay

from instant to instant is due to the environment. Here, the long-term behavior of

G is just like the long-term behavior of F with respect to r; that is, biologically, as

κ increases, we expect the median to increase as well since, not only do we expect

more biomass to be available for reproduction, but the plants are utilizing all biomass

that grows intrinsically and nothing more. So, since the environmental effects have

mean 0, the intrinsic growth rate is the main determining factor in whether we should

expect growth or not.

Our final parameter to consider is T . As in the annuals case, there will be three

possible behaviors of F as T becomes very large; however, here, we will use the tighter
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Figure 5.11: Comparing a median lower bound with maximum reproductive rate =
growth rate, κ

bound of f2 where appropriate (recall that, to use f2, we require r ≥ (1/2)σ2) to

illustrate this. For each of the graphs in Figure 5.12, we fix a = 0.6, b = 10, κ = 0.05,

and σ2 = 0.2; however, we fix r = 0.03 for the leftmost graph (we have to use f1

for this graph), r = 0.1 for the middle graph, and r = 0.12 for the rightmost graph

(we can use f2 for these two). In the first scenario, we notice that, as T increases,

F initially increases and then seems to decrease, eventually approaching 0. In the

second scenario, F increases and eventually approaches a finite limit, but, in the

third scenario, F appears to increase unboundedly. As the chosen parameter values

suggest, determining which scenario occurs means comparing r and σ2. Specifically,

we have the following:
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Figure 5.12: Comparing a median lower bound with season length, T (r = 0.03 for
left graph, r = 0.1 for middle graph, r = 0.12 for right graph)

• If r < (1/2)σ2, the first scenario occurs.

• If r = (1/2)σ2, the second scenario occurs.

• If r > (1/2)σ2, the third scenario occurs.

This is exactly the same result that we obtained in the annuals case. However, it is

worth noting that, if one uses f1 universally, then the above result changes to how r

compares to σ2.

The biological explanation for why this occurs is exactly the same as for annuals,

and so we refer the reader to Section 5.2.2 for this explanation. Also, the long-term

behavior of G with respect to T is the same as for F , and so we will omit its graphs.

Analyzing what happens to the graphs with respect to a will actually help us

answer the second question at the beginning of Chapter 5; hence, we will save this

for Section 5.4.

Remark: It is important to note that, depending on the other parameter values, it

is possible for the graphs of F and/or G against σ2, κ, and/or T (when r < (1/2)σ2)

to never exceed 1. In these cases, the sufficient growth condition tells us nothing

mathematically useful about the actual median.



130

5.3.3 Analytic Properties of Sufficient Growth Condition

We now mathematically prove some of the properties of the sufficient growth condition

(5.5) or (5.6) that were discussed in the previous section. However, because the

computations are very similar to those done in Case 2, and the expressions are much

longer and messier here, most of the proofs will be sketches.

In all of these discussions, we consider the lower bounds on the median of X1 · · ·Xn

that we derived in Section 5.3.1; namely,

F (a, b, r, κ, σ, T ) =

(
exp(rT − κ(T − dP ))

(
a +

bκ

r − κ

)
− bκ

r − κ
exp(rdP )

)2

· f−1/2
1

G(a, b, κ, σ, T ) = ((a + bκ(T − d∗P )) · exp(κd∗P ))2 · f1(a, b, κ, κ, σ, T )−1/2.

The first property we will prove is that, as the volatility, σ, becomes large, then

the lower bound on the median will approach 0. To do this, in both the expressions

for F and G, we want to compute

lim
σ→∞

f1(a, b, r, κ, σ, T )

since this is the only piece of both F and G that is dependent on σ. Now, since

f1(a, b, r, κ, σ, T ) = a2 · exp(2(rT − κ(T − dP )) + σ2T )

+
4abκ

2r + 3σ2

(
exp((2r + 2σ2)T )− exp((r + (1/2)σ2)T )

)
+ 2b2κ2

(
1

r(2r + σ2)
− exp(rT )

r(r + σ2)
+

exp((2r + σ2)T )

(2r + σ2)(r + σ2)

)
,

then it is clear that limσ→∞ f1 = ∞ since, as σ becomes very large, each term of f1

will either go to 0 or be dominated by the exponential term that is a factor of it (ex.

1
(2r+σ2)(r+σ2)

exp((2r+σ2)T ) is dominated by exp(σ2T ) for large σ). This implies that
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f1 becomes infinitely large, which then implies that F and G go to 0, and in fact

should do so exponentially since both are proportional to f
−1/2
1 .

Remark 1: It is worth noting that, although f1 has a finite limit as σ approaches

0, the limit is not correct, as it is not equal to the value that would actually be

achieved if there was no variance (see Section 3.3). This is due to the estimates used

from Yor. Also, this argument does not change if

f2(a, b, r, κ, σ, T ) = a2 · exp(2(rT − κ(T − dP )) + σ2T )

+
2abκ

r + σ2

(
exp((2r + σ2)T )− exp(rT )

)
+ 2b2κ2

(
1

r(2r + σ2)
− exp(rT )

r(r + σ2)
+

exp((2r + σ2)T )

(2r + σ2)(r + σ2)

)

is used when appropriate (r ≥ (1/2)σ2).

Remark 2: Since we’ve shown that a lower bound on the median approaches 0,

it is certainly worth noting that the true median may not follow suit. Biologically, it

certainly makes sense that this would happen, but, mathematically, all we can say is

that, since this lower bound goes to 0, for large values of σ, this does not necessarily

tell us anything useful about the actual median.

Next, we will show that, as the utility factor, b, becomes large, then the lower

bound on the median will do the same. Recalling that limb→∞ dP = dA and

limb→∞ d∗P = d∗A, we then see that the exponential functions present in F and G

will all be bounded as b becomes very large since dA and d∗A are finite by definition.

Because of this, we only need to consider that the dominant term in f1 (or f2) is of

the form b2, and the dominant term for the first part of each of F and G is also of

the form b2. Since the b2 term in the first part of F is

b2

(
κ

r − κ

)2

(exp(rT − κ(T − dP )− exp(rdP )))2 ≥ 0,
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then it follows that limb→∞ F = ∞. Likewise, since the b2 term in the first part of G

is

b2(κ(T − d∗P ))2 · exp(2κd∗P ) ≥ 0,

then it follows that limb→∞G = ∞. From this, we observe that both F and G should

increase linearly to infinity. More importantly, as b increases, the median must also

increase to infinity since F and G represent lower bounds on the median. Because of

this, for any choice of the other parameter values, then there must exist some value of

b (say, b∗) that ensures that the median is at least 1 (ensuring at least a 50% chance

for growth) for any b > b∗.

Remark: It is again worth noting that, if one were to observe F and G as b ap-

proaches a, the expected limit would not be attained (by Lemma 3.4, no reproduction

would be taking place, so all but the first term in f1 or f2 should drop out, but this

clearly doesn’t happen); this is again due to the estimates used from Yor.

Next, we will show that, as the intrinsic growth rate, r, becomes very large, then

the lower bound on the median will do the same. Using the expressions above, and

noting that r = κ when using G, we first note that

lim
r→∞

T − 1

r − κ
ln

(
br

a(r − κ) + bκ

)
= lim

κ→∞
T − b− a

bκ
= T.

This says that, as r becomes very large, virtually no time during the season is spent

reproducing. With this in mind, we notice that, as r becomes very large, the dominant

terms in the first parts of F and G will be of the form exp(2rT ), and the dominant

terms in f1 (or f2) will also be of the form exp(2rT ). Hence, F and G increase expo-

nentially as r (κ when considering G) becomes large, and limr→∞ F = limκ→∞G = ∞.

Thus, just like for b, for any choice of the other parameter values, there must exist

some value of r, say, r∗ (κ when considering G) that ensures the median is at least 1
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for any r > r∗.

The next parameter we will consider is the maximum reproductive rate, κ. We

want to show that, if r 6= κ, then, as κ becomes very large, the lower bound on the

median will approach 0 (the case where r = κ is addressed above). So, we first note

that

lim
κ→∞

T − 1

r − κ
ln

(
br

a(r − κ) + bκ

)
= T.

Thus, for sufficiently large κ, virtually no time is spent reproducing during the season.

In fact, this says that limκ→∞ κ(T − dP ) is an indeterminate form, and so we turn to

l’Hospital’s Rule to evaluate it:

lim
κ→∞

κ(T − dP ) = lim
κ→∞

1
r−κ

ln
(

br
a(r−κ)+bκ

)
(1/κ)

= lim
κ→∞

− κ2

(r − κ)2
ln

(
br

a(r − κ) + bκ

)
+

κ2(b− a)

(r − κ)(a(r − κ) + bκ)

= ∞

since the second term goes to -1 and the first term goes to infinity (the natural

log quantity goes to negative infinity). This says that any quantity of the form

exp(−κ(T − dP )) goes to 0 as κ approaches infinity. Thus, the first part of F goes

to 0 and does so exponentially (like exp(−2κ(T − dP ))), while f1 (and f2) goes to

infinity like κ2, meaning, indeed, limκ→∞ F = 0, and this is approached exponentially.

Of course, we have to keep in mind that, by definition, κ < 1 + r, so κ can never get

infinitely large according to the model; however, this does give us an idea of what

could happen if we continue to increase κ, since, in this case, we don’t get anything

necessarily useful about the actual median.
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Remark: It is also worth noting that

lim
κ→0+

F = a · exp(rT − (1/2)σ2),

which, unlike the previous cases, is the limit we would expect, since this is the median

from Case 1, where no reproduction takes place. This can be easily verified by direct

substitution and noting that

lim
κ→0+

T − 1

r − κ
ln

(
br

a(r − κ) + bκ

)
= T − 1

r
ln

(
b

a

)
.

Also, in the case where r = κ, by using l’Hospital’s Rule and that limκ→0+ T − b−a
bκ

=

−∞, and hence limκ→0+ d∗P = 0, it can be shown that

lim
κ→0+

G = a · exp(−(1/2)σ2).

This, again, is the limit we would expect to occur.

The final parameter we will consider is the season length, T . We want to show

that, depending on the relationship between r and σ2, we can end up with three

different limits for F and G. For the following discussion, since there is a difference

in behavior depending on whether f1 or f2 is used, we use f2 where it can be used

(whenever r ≥ (1/2)σ2) since it makes F or G a tighter lower bound than f1.

Clearly, as T becomes very large, so will T − 1
r−κ

ln
(

br
a(r−κ)+bκ

)
and T − b−a

bκ
, so

we can assume that dP and d∗P are each nonzero. Hence, T − dP is not dependent on

T and has a fixed, positive value for large T (see Remark 2 after Theorem 3.5). So,

let δ > 0 be given. We first want to check that, when r = (1/2)σ2 + δ, both F and G

(use κ = (1/2)σ2 + δ) becomes infinitely large as T becomes infinitely large.

So, we plug in r = (1/2)σ2 + δ into f2 and note that, as T becomes very large, the
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dominant term of f2 is of the form exp((2σ2 + 2δ)T ), and hence f
1/2
2 contributes a

dominant term of the form exp((σ2 + δ2)T ). Observing that the first parts of F and

G have dominant term of the form exp((σ2 + 2δ)T ) for this choice of r, we have that,

again,

lim
T→∞

F = lim
T→∞

G = ∞.

So, as long as r > (1/2)σ2, then we see that both F and G will increase exponentially

as T becomes very large. Hence, there must exist a value of T , say, T ∗, such that,

whenever T > T ∗, the median must be greater than 1.

Remark: Should r > σ2, a similar argument can be used to show that, under f1,

both F and G will increase exponentially to infinity as T increases to infinity.

On the other hand, if we plug in r = (1/2)σ2 − δ into f1 (f2 cannot be used

here) and assume that 0 < δ < (1/2)σ2 (this is so r > 0), then we see that, as T

becomes very large, the dominant term of f
1/2
1 is of the form exp((3/2)σ2− δ)T ). We

also observe that the first parts of both F and G have dominant term of the form

exp((σ2 − 2δ)T ). Thus,

lim
T→∞

F = lim
T→∞

G = 0

whenever r < (1/2)σ2, and both will, in fact, decrease exponentially to this limit.

Unfortunately, as was the case with σ2 and κ, this does not allow us to say anything

definitive about the actual median here.

Finally, if we plug in r = (1/2)σ2, using the above work, it is clear that the

dominant term of f
1/2
2 will be of the form exp(σ2T ) and the dominant term in the

first parts of F and G will be of the form exp(σ2T ) as well. Hence, in this case, both

F and G approach finite values as T approaches infinity.
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5.4 Annuals vs. Perennials

We now attempt to answer the second question posed at the beginning of this chap-

ter; namely, “Under what condition(s) are annuals favored over perennials (or vice

versa)?” To do this, we use the lower bounds on the median of X1 · · ·Xn, F (5.8) and

G (5.9) found earlier and draw contour plots of them, taking a, the average survivor-

ship of adult perennials from one season to the next, as the independent variable. We

want to see what happens as we increase each of the other parameters while fixing

the others; specifically, is F (or G) higher when a = 0 (annuals) or when a > 0

(perennials)? Or, put another way, do annuals or perennials appear to have a higher

chance of long-term growth?

Of course, since these are estimates, these will not say for absolute certainty which

of the two are better, but they will give us some indication as to the effects of the

different parameters on whether annuals or perennials should be more likely to persist

over the long run.

For each of these discussions, we will draw only the graphs of F , since experimen-

tation on Maple showed that the graphs of G all result in the same overall conclusions

as the corresponding graphs of F . Likewise, we will only be using f1 (5.7) here since

experimentation showed that using f2 (5.10) where appropriate did not provide any

different overall conclusions than f1. Recall that, if one sets a = 0 in F or G, then

we end up with the corresponding lower bound on the median of X1 · · ·Xn in the

annuals case, which is not only exactly what we’d expect, but is imperative to this

analysis. In order to obtain a direct comparison between annuals and perennials when

reproduction takes place, we take b > 1 for all of these graphs since, by definition,

0 ≤ a ≤ 1, and we want b/a > 1 to ensure that the perennials will reproduce.

The first parameter we consider is the environmental volatility, σ. Figure 5.13
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Figure 5.13: Annuals vs. Perennials with respect to volatility, σ2

shows a contour plot, graphing F compared with a for different chosen values of σ2

while fixing b = 3, r = 0.03, κ = 0.05, and T = 15. For this graph only, we set

z = σ2 for ease in labeling the contours. Looking at the graph, we first notice that,

as σ increases, the estimated median decreases, regardless of the value of a, as we

would anticipate from Figure 5.7. More importantly, however, we notice that, for

sufficiently high values of σ, annuals appear to be favored (the contours have their

peak at a = 0), while, for sufficiently low values of σ, perennials appear to be favored

(the value of F is higher for all values of a > 0 than at a = 0). In-between these

values of σ, however, it is possible for perennials to be favored, depending on the

value of a (annuals appear to be favored when a is low, but perennials appear to be

favored when a is high). This makes biological sense since, although large swings
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in the environment can help or hurt both perennials and annuals, they make their

reproductive decisions independent of the environment. In fact, it is worth noting

that, if all parameters except a, b are fixed,

1

r − κ
ln
( r

κ

)
>

1

r − κ
ln

(
br

a(r − κ) + bκ

)
.

This is clearly true if r > κ since, in that case, we’d have

br

a(r − κ) + bκ
<

r

κ
.

If r < κ, then this inequality flips, but, since 1/(r−κ) is negative in this case, then the

claim still holds. Hence, we have that dA ≤ dP when all except a, b are fixed. So, for

any choice of a, b, perennials will wait longer during the season to begin reproduction

than annuals will, or will begin reproduction at the same time. This makes sense

biologically because perennials are able to carry over some of their adult biomass into

the next season. But, with a high volatility, devastating swings in the environment

become more common, which are more likely to happen to perennials if they wait

longer to begin reproduction. Thus, annuals should be more likely to have long-term

growth in highly volatile environments than perennials, all other parameters being

equal.

It can also clearly be seen that

b− a

bκ
<

1

κ

for any fixed choice of κ, and hence, if κ, T are fixed, it follows that d∗A ≤ d∗P . Hence,

for any choice of a or b, annuals begin reproducing when, or before, perennials do

when r = κ as well.
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Figure 5.14: Annuals vs. Perennials with respect to b

The next parameter we consider is the reproductive utility, b. Figure 5.14 shows

a contour plot of F compared with a, fixing r = 0.05, κ = 0.1, σ2 = 0.1, and T = 10.

From this graph, we notice that, regardless of the value of a, higher values of b lead

to an increase of F , as we would anticipate from Figure 5.8. More importantly, suffi-

ciently high values of b appear to favor annuals, and sufficiently low values of b appear

to favor perennials; however, this also depends on a since, if a is sufficiently small,

then annuals appear to still be favored. Biologically, this makes sense considering

how much more important the utility of seeds is to annuals since the only way that

they can bring biomass into the next season is to reproduce; this is further evidenced

by the fact that their reproductive strategy has no dependence on b. Also, since,

assuming r, T, and κ are fixed, perennials will either begin to reproduce at the same
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Figure 5.15: Annuals vs. Perennials with respect to growth rate, r

time as annuals or wait longer before beginning to reproduce (we also observed in

Section 3.4 that, as b increases, so does dP ). So, a very high utility factor is something

that annuals may be able to take advantage of a lot sooner, and, presumably, with

more available biomass than the perennials will since perennials play against the risky

environment longer with hence a greater chance of smaller gains, or even losses. So,

if the adult season-to-season survivorship is too low, it is reasonable to assume that

perennials may not have as much long-term yield as annuals would.

The next parameter we consider is the growth rate, r. The contour plot of F

compared with a is drawn in Figure 5.15, fixing κ = 0.05, b = 3, σ2 = 0.2, and

T = 10. From this graph, we observe that, regardless of the value of a, increasing r

generally results in an increase of F , as we would anticipate from Figure 5.9. More
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importantly, it appears that sufficiently high values of r favor perennials (assuming

a sufficiently high a as well), and sufficiently low values of r appear to favor annuals.

Biologically, this makes sense because an increased intrinsic growth rate will help

soften the effects of bad environmental swings as well as enhance good ones. Since

perennials can save some of their adult biomass for the following season, but annuals

cannot, increasing r should give the perennials a good “head start” the following

season since it would be expected they would carry over a large quantity of adult

biomass. The observation that a sufficiently low a seems to favor annuals comes from

the fact that, fixing all parameters except r,

1

r − κ
ln

(
br

a(r − κ) + bκ

)
=

1

r − κ
ln

(
r

(a/b)(r − κ) + κ

)
<

1

r − κ
ln
( r

κ

)
.

Thus, dA ≤ dP here; it is also easy to check that d∗A ≤ d∗P , taking r = κ. So, for

a sufficiently low value of a, the perennials will most likely wait longer to reproduce

than annuals, especially if r is high (see Section 3.4); this again allows for a higher

risk of potentially catastrophic environmental swings which can wipe out any gains

from the high growth rate. With a low a, it is possible that not a lot of reproduction

will occur, and very little adult biomass will carry over to the following season, thus

appearing to favor annuals.

Next, we consider the maximum reproductive rate, κ. Fixing r = 0.04, b = 5,

σ2 = 0.15, and T = 20, we sketch the contour plot comparing F with a in Figure 5.16.

From this graph, we observe that the value of F with regards to κ takes on strange

behavior, depending on the value of a. Since initially increasing κ generally increases

F (there is a slight anomaly on this graph for high values of a and low values of κ

where this doesn’t occur, but this does not happen in general), but then decreases it

due to the “self-cannibalization” effect, we see these contours colliding. Looking at
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Figure 5.16: Annuals vs. Perennials with respect to maximum reproductive rate, κ

the contours, though, it appears that sufficiently high values of κ favor annuals, and

sufficiently low values of κ appear to favor perennials, pending a is also sufficiently

high.

This, again, makes sense biologically considering that annuals have to reproduce,

and perennials don’t. If the plants aren’t allowed to devote a lot of their biomass to

reproduction at any given instant, this is expected to put annuals at a disadvantage

since perennials can carry over adult biomass into the next season. Since this is the

main advantage of perennials, though, it also makes sense that having a be too low

would make this advantage almost nothing, giving the advantage back to annuals

since, all parameters except κ fixed, perennials begin reproduction when, or after,

annuals (same argument as for r). On the other hand, allowing the plants to devote
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Figure 5.17: Annuals vs. Perennials with respect to season length, T

large quantities of biomass to reproduction should favor annuals since they begin

reproduction when, or before, perennials do, so it is expected that they should get

more biomass into the following season and, with a good utility rate, should experience

more growth than the perennials.

Finally, we consider the season length, T . Although, as proven previously, there

are three possible cases for how F changes with respect to increasing T , experimen-

tation on Maple showed that, regardless of which case prevails, the overall effect of

T on whether annuals or perennials seem to be favored is the same. Hence, we will

only draw the graph for one case here.

So, fixing r = 0.03, κ = 0.05, b = 5, and σ2 = 0.1, we sketch a contour plot

comparing F with a in Figure 5.17. Looking at this graph, it seems that sufficiently
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low values of T favor perennials, and sufficiently high values of T favor annuals.

There are also some values of T in-between these which appear to favor perennials,

pending a is sufficiently high. Low values of T favoring perennials certainly makes

biological sense because, if the season is very short, the annuals won’t have much

time to devote biomass to reproduction, whereas the perennials won’t need to since

they can carry over some of their adult biomass into the next season. High values of

T favoring annuals also makes biological sense because, with a long season, a growing

period is expected to occur at the beginning of the season. But, since perennials begin

reproduction after, or at the same time as, annuals (fixing all other parameters except

T ), a longer season also means more risk. So, for example, a high enough volatility

could mean large losses for the perennials since they could have a higher risk for large

losses, and hence perennials may not have as much to devote to reproduction and not

enough adult biomass to carry over to make up the difference.

So, in summary, via this analysis, annuals are expected to be favored over peren-

nials (that is, annuals are expected to be more likely to experience long-term growth

than perennials) if one or more of the following conditions hold:

• The environmental volatility is sufficiently high.

• The utility factor of seeds is sufficiently high.

• The intrinsic growth rate is sufficiently small.

• The maximum proportion to be devoted to reproduction at any instant is suf-

ficiently high.

• The season is sufficiently long.

• The season-to-season survivorship of adult perennials is sufficiently low, pending

one or more of the previous conditions are met.



145

Chapter 6

Some MATLAB Results

In this chapter, we present some simulation work, done on MATLAB. The first set

of simulations are meant to numerically verify, given some parameter values, that the

optimal strategies found in Chapter 4 are indeed optimal in terms of expected value

for (2.2 - 2.4). We’ll compare the strategies from Chapter 4 with a handful of other

strategies. Because these are numerical simulations of stochastic processes, however,

variation will be involved as well; hence, we also list the standard deviation of the

results for each set of trials to get an idea of the overall spread of the results for each

strategy.

The second set of simulations assumes, instead of exponential growth, that logistic

growth occurs. That is, assuming r > 0 is the logistic growth rate and K > 0 is the

carrying capacity of the population, the biomass is subject to the SDE

dWt = rWt

(
1− Wt

K

)
dt− γ(t)Wtdt + σWtdBt. (6.1)

For these simulations, we attempt to get an idea of what choice for γ(t) might be

optimal, and see how the choice depends on K.
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Finally, we run these simulations, assuming optimal choices for γ(t) (in the logistic

case, we will make estimates based on the prior simulation results), over 100 seasons

to see how the multiseason analysis performed in Chapter 5 compares with the nu-

merical results. We’ll then repeat the work with logistic growth to see the differences,

especially when changing K.

For all of these simulations, the basic underlying concept is numerically approxi-

mating a solution to an SDE. To do so, we use Milstein’s approximation method (see,

for example, [12]; this is also briefly discussed in Appendix A), which, theoretically,

is the stochastic equivalent of the deterministic Euler’s method, as both have strong

convergence of order 1. What the programs, detailed in Appendix A for the inter-

ested reader, will do is create an approximation of a sample path of the solution to

the SDE (recall that a solution to an SDE is a random variable). Since T will always

be between 10 and 30 for these simulations, we’ll take a step size of T/1000 so that

we get a fairly decent approximation to a sample path.

Naturally, we want to know how many sample paths we’ll need to generate in order

to be fairly confident in our results. To do this, we’ll first define a successful run to

be a run (single or multiseason) such that at least W0 biomass will be present at the

beginning of the next season. To have 95% confidence in measuring the probability

of success with at most 5% error, note that, if

n = number of runs

p = true probability of success

p̂ = observed proportion of successes

Sn = observed number of successes,
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then we need, assuming n is sufficiently large so the Central Limit Theorem applies,

P

(
−1.96 <

Sn − np√
np(1− p)

< 1.96

)
≈ 0.95

P

(
−1.96

(√
p(1− p)

n

)
< p̂− p < 1.96

(√
p(1− p)

n

))
≈ 0.95.

The 1.96 bounds in the probablity come from a normal distribution table (see, for

example, [13, p. 656]). However, since 0 ≤ p(1− p) ≤ 0.25, then we want:

P

(
−0.98

1√
n

< p̂− p < 0.98
1√
n

)
≈ 0.95.

Setting 0.98/
√

n ≤ 0.05 for the 5% error, then note that we need n ≥ 368.64 in order

to have this level of accuracy for measuring the success probability. For simplicity,

however, we will set n = 1, 000 for all of the simulations to follow (this actually results

in about 3.1% error).

We begin with some single-season simulations to verify that the optimal strategies

we found in Chapter 4 are indeed optimal. So, first, we take r = 0.03, σ = 0.15,

T = 20, κ = 0.1, a = 0.8, b = 2, and W0 = 1000 (in fact, we’ll take W0 = 1000 in all

of the following simulations). This results in the optimal strategy γ∗(t) = κH̄(t−dP ),

where dP ≈ 7.493 here. So, indeed, the simulations in Table 6.1 confirm that γ∗(t) =

κH̄(t − dP ) should be an optimal control in terms of average (i.e., expected) value.

However, note that the corresponding standard deviation is quite high in comparison

to some of the other strategies.

Although only one set of simulations is given in Table 6.1 and those to follow,

extra sets of simulations were done to confirm accuracy of the reported results. In

fact, when doing these extra sets of simulations, there were occasions where the

average value for γ(t) = κH̄(t− 6) exceeded that of γ∗(t). This is due to the natural
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Gamma Avg. Value Std. Dev.
0 1407.2 953.5
κH̄(6− t) 1767.2 707.5
κH̄(dP − t) 1875.3 698.6
κH̄(13− t) 2132.7 756.9
κ from 4 to 11 1984.8 943.9
0 from dP to 18 2050.5 839.9
κ 2346.0 825.8
κH̄(t− 6) 2491.0 1283.6
κH̄(t− 15) 2234.5 1675.1
κH̄(t− dP ) 2539.5 1380.4

Table 6.1: Exponential growth for perennials without season-long reproduction

variability in the sample mean, the fact that 6 is pretty close to dP in this case, and

the fact that the standard deviation for the values corresponding to γ∗(t) is quite

large compared to the average value. This does not disprove that γ∗(t) is an optimal

control since we have the analytic work to back it up (Theorem 4.6 in Section 4.2),

but it does indicate a potential pitfall of relying solely on simulations to determine

an optimal control.

Experiments with smaller step sizes (1,000 steps vs. 10,000 steps) and more

trials (1,000 vs. 2,000 vs. 10,000) did not change the overall observations above.

Interestingly, even with more trials, the standard deviations did not vary too much

from what they were with 1,000 trials; some simulations actually resulted in a slight

increase in the standard deviation! This is most likely due to the natural variation

present in Geometric Brownian Motion (see Section 5.1, for example), and/or it may

be due to our choice of using the probability of success and not a measure based on

the mean to determine the number of trials we should take.

These were observed with every simulation to follow as well, and so we will omit

discussion of this from here on out. However, it is something the reader should keep

in mind if he/she wishes to replicate these findings.
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Gamma Avg. Value Std. Dev.
0 1449.1 1019.8
κH̄(1− t) 1219.5 591.7
κH̄(6− t) 1651.9 528.2
κH̄(10− t) 1857.9 587.5
κ from 2 to 9 1725.3 618.9
0 from 5 to 9 1811.4 590.5
κH̄(t− 2) 1973.2 721.8
κH̄(t− 6) 1826.1 892.6
κH̄(t− 10) 1392.8 720.5
κ 1975.1 625.8

Table 6.2: Exponential growth for perennials with season-long reproduction

Gamma Avg. Value Std. Dev.
κH̄(5− t) 1425.6 266.8
κH̄(dA − t) 2116.3 483.2
κH̄(12− t) 2253.8 568.5
κ from 5 to 15 2729.0 1204.0
0 from dA to 18 2267.2 564.2
κ 2356.4 699.3
κH̄(t− 5) 3055.8 1371.5
κH̄(t− 12) 3262.1 1985.4
κH̄(t− dA) 3405.8 1958.9

Table 6.3: Exponential growth for annuals with r 6= κ

Next, we take all of the same parameter values as in the previous simulation, but

we’ll make T = 12 so that dP = 0 here, meaning γ∗(t) = κ is the optimal strategy.

We’ll also have to look at slightly different choices for γ(t) thanks to the changed

value of T . Indeed, from Table 6.2, it appears that γ∗(t) = κ is an optimal control.

Next, we consider an annual population (a = 0), taking r = 0.05, σ = 0.15,

T = 20, κ = 0.2, and b = 2. This results in the optimal strategy γ∗(t) = κH̄(t− dA),

where dA ≈ 10.758 here. Again, Table 6.3 indicates γ∗(t) = κH̄(t− dA) does appear

to be an optimal control. Note that we did not look at the strategy γ(t) = 0 here

because, since this is the annuals case, if no reproduction occurs, obviously, there
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Gamma Avg. Value Std. Dev.
κH̄(5− t) 1010.8 199.9
κH̄(d∗A − t) 2028.2 568.4
κH̄(12− t) 2411.0 741.6
κ from 5 to 15 3271.4 1530.3
0 from d∗A to 18 2929.7 1029.4
κ 4012.1 1596.4
κH̄(t− 5) 4957.9 2504.1
κH̄(t− 12) 5242.9 3393.0
κH̄(t− d∗A) 5415.7 3176.1

Table 6.4: Exponential growth for annuals with r = κ

won’t be anything for next season.

Finally, we consider an annual population where r = κ; that is, we’ll take r = 0.1,

σ = 0.15, T = 20, κ = 0.1, and b = 2. This results in d∗A = 10 and the optimal

strategy of γ∗(t) = κH̄(t− d∗A) here. Although we again see that γ∗(t) = κH̄(t− d∗A)

appears to be optimal, according to Table 6.4, this set of simulations featured a lot

more variation in the results than the previous three. This is due to the much larger

value of r compared with the other simulations, which allows for more growth to occur

more rapidly. A set of simulations like this highlights the potential disadvantage if a

non-optimal strategy is chosen; for example, the average yield for γ(t) = κH̄(5 − t)

in the following season was less than a fifth of the average yield corresponding to

γ(t) = κH̄(t− 12) and γ∗(t).

Our next task is to run a few of these simulations again, but assume logistic growth

instead of exponential growth. To do this, recall we simply change the stochastic DE

for Wt to (6.1), where r > 0 is the logistic growth rate, and K > 0 is the carrying

capacity for the population. Note that, if we assume this DE instead of (2.3), but

keeping the objective function the same, then, referring to the Pontryagin Maximum
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Principle (Theorem 4.4), the Hamiltonian for the system (2.2, 6.1, 2.4) will be

H(t,Wt, γ(t), p(t), q(t)) = Wt

(
r

(
1− Wt

K

)
p(t) + γ(t)(b− p(t)) + σq(t)

)
,

where (p(t), q(t)) are the first-order adjoint for the system. Thus, we see that, for

γ(t) to be an optimal control under logistic growth, it, again, is either equal to 0 (if

b < p(t)) or κ (if b > p(t); we’ll also, for convenience, define γ(t) = κ if b = p(t)). So,

it makes sense to try the same strategies we looked at previously; that is, strategies of

the form γ(t) = κH̄(t− d), where d is to be determined. However, this time, we have

another parameter, K, we need to consider. Thus, we will keep all other parameters

fixed and look at three different values for K (specifically, K = 500, 1000, and 2000)

and see if varying K makes a difference in what may be an optimal strategy as well

as if the logistic assumption changes what should be an optimal strategy from the

exponential growth case.

We begin by using the parameter values from Table 6.1; that is, r = 0.03, σ = 0.15,

T = 20, κ = 0.1, a = 0.8, and b = 2. Recall that this resulted in dP ≈ 7.493. From

Table 6.5, it appears that a strategy of the form γ(t) = κH̄(t− d), where d ≥ 0 is the

starting time for reproduction, is again optimal. However, the starting time appears

to change depending on the value of K. Specifically, when K is sufficiently low

compared to W0, season-long reproduction appears optimal, but, as K is increased,

the starting time becomes later in the season (γ(t) = κ is the optimal choice among

those strategies tested when K = 500 and K = 1000, but γ(t) = κH̄(t − 2) is

the optimal choice when K = 2000). This certainly makes sense because, if K is

low, then the population should not experience much growth (and in fact is more

likely to experience decay), and our work in Section 3.4 told us that a sufficiently

low growth rate will lead to season-long reproduction. On the other hand, since, in
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this case, dP > 0, and, taking the limit of (6.1) as K approaches infinity results in

(2.3), then a very large K in this case should result in more delayed reproduction.

But, regardless of what K is, keeping all other parameters fixed, the overall growth

is expected to be less than that of the exponential growth model, and so it makes

sense that reproduction would start earlier than dP here. The standard deviations

also decrease quite a bit from what they were in the exponential case, and decrease

further as K decreases. This is most likely due to the logistic growth keeping the total

biomass largely in check thanks to the carrying capacity as compared to exponential

growth.

We now check to see if we observe the same phenomena with annuals. So, we use

the parameter values from Table 6.3; that is, r = 0.05, σ = 0.15, T = 20, κ = 0.2,

and b = 2. Recall that this resulted in dA ≈ 10.758. From Table 6.6, we notice

that, as in Table 6.5, a strategy of the form γ(t) = κH̄(t − d) seems to be optimal.

Again, sufficiently low values of K compared to W0 suggest season-long reproduction

is optimal, and the optimal d seems to increase in value as K increases (γ(t) = κ

is the optimal choice among those strategies tested when K = 500 or K = 1000,

but γ(t) = κH̄(t − 5) is the optimal choice when K = 2000). However, even as K

increases, d seems to stay below dA.

Finally, we look at some multiseason simulations. Specifically, we’ll consider two

perennials cases, each making use of the optimal strategy γ∗(t) = κH̄(t − dP ): one

where the lower bound on the median of X1 · · ·Xn found in Section 5.3, F (5.5),

is greater than 1, and one where it is less than 1. We’ll then look at one annuals

case where dA = 0. Then, we’ll repeat these with the same parameters, but using

logistic growth instead, only varying the carrying capacity K, to see what differences

there are. In this case, since Tables 6.5 and 6.6 indicate that a strategy of the form

γ∗(t) = κH̄(t− d) is optimal, we ran single-season simulations to estimate a value for
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d for the given parameter values.

For all of these simulations, in accordance with the Central Limit Theorem, we

will measure the results only after a sufficiently large number of seasons since this

is what we used to obtain the lower bound on the median of X1 · · ·Xn. So, we will

measure the results after 100 seasons since, usually, when it comes to the Central

Limit Theorem, “sufficiently large” is assumed to mean at least 30 trials, as discussed

in [13, p. 309].

To begin, we consider a perennial population, taking r = 0.05, σ = 0.05, T = 20,

κ = 0.1, a = 0.8, and b = 2. This results in dP ≈ 10.6 and F ≈ 1.293. We then

observe the following:

Probability of Success = 1

Average Yield After 100 Seasons ≈ 1.2457 · 1056

Minimum Yield After 100 Seasons ≈ 1.4609 · 1052

Maximum Yield After 100 Seasons ≈ 9.6034 · 1057

Std. Dev. After 100 Seasons ≈ 5.4284 · 1056.

So, here, we notice that even the minimum yield after 100 seasons was a staggering

amount higher than the initial amount, W0 = 1000, and the standard deviation is

also extremely large! Given that the lower bound on the median of X1 · · ·Xn is bigger

than 1, this is not a complete surprise since this indicates that the true median is

bigger than 1; however, to experience rampant growth like this seems to indicate

that the true median is actually quite a bit bigger than 1. This indicates a potential

problem with using F > 1 as a sufficient condition for likely long-term growth, and

we will explore this issue further in the following simulations and in Appendix B.

It is also worth noting, according to MATLAB, every multiseason trial experienced
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monotonic growth; that is, from season to season, growth always occurred.

Next, we take r = 0.05, σ = 0.4, T = 30, κ = 0.1, a = 0.5, and b = 5. This results

in dP ≈ 17.163 and F ≈ 0.190. We then observe the following:

Probability of Success ≈ 0.22

Average Yield After 100 Seasons ≈ 2.5991 · 1016

Minimum Yield After 100 Seasons ≈ 1.7934 · 10−26

Maximum Yield After 100 Seasons ≈ 2.5159 · 1019

Std. Dev. After 100 Seasons ≈ 7.9571 · 1017

Here, we note that it was indeed possible for the population to not experience growth

after 100 seasons, and, as the minimum yield suggests, the population may end up

essentially dying out as a result. Also, in this case, according to MATLAB, none of

the trials here experienced monotonic growth; that is, decay occurred at least once

from season to season during each trial. This is certainly not surprising, considering

the very high volatility assumed here.

Since the lower bound on the median was much less than 1, it probably doesn’t

seem too surprising that many of the multiseason trials did not experience growth

after 100 seasons. However, to illustrate the point that, just because the lower bound

is less than 1, it doesn’t imply that growth is not all that likely to occur, let’s run

another set of simulations, taking r = 0.03, σ = 0.2, T = 20, κ = 0.1, a = 0.5, and
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b = 2. This results in dP ≈ 5.549 and F ≈ 0.734. We then observe the following:

Probability of Success = 1

Average Yield After 100 Seasons ≈ 4.6952 · 1036

Minimum Yield After 100 Seasons ≈ 1.3852 · 1024

Maximum Yield After 100 Seasons ≈ 1.6607 · 1039

Std. Dev. After 100 Seasons ≈ 6.3071 · 1037

So, even with the lower bound on the median being a fairly decent amount less than

1, growth still occurred in every multiseason trial, and the minimum yield after 100

seasons was still extremely large compared to the initial yield, W0 = 1000! This

numerically illustrates the fact that, if F < 1, we really can’t predict anything about

what will happen in advance. It is still quite possible growth (and large growth, at

that) will occur!

As a final comment on F in this chapter, we will do one more set of simulations,

this time keeping the parameter values the same as in the previous set, but taking

T = 10 so that dP = 0 and F ≈ 0.886. We then observe the following:

Probability of Success = 1

Average Yield After 100 Seasons ≈ 1.1919 · 1025

Minimum Yield After 100 Seasons ≈ 5.6016 · 1017

Maximum Yield After 100 Seasons ≈ 2.4886 · 1027

Std. Dev. After 100 Seasons ≈ 9.4680 · 1025

So, although the lower bound on the median increased from the previous set of simula-
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tions, all of the statistics (except probability of success, which remained 1) decreased

in comparison to the previous set. This makes sense given the way that the lower

bound on the median was constructed in Section 5.3.1: if dP = 0, then the lower

bound on the integral of γ(t)Wt does not need to be adjusted to use formulas from

Yor. Thus, if dP is close to 0, the lower bound on the median should be tighter. For

a more detailed discussion of this lower bound on the median, refer to Appendix B.

Next, we consider an annuals population; that is, we take r = 0.03, σ = 0.15,

T = 20, κ = 0.2, and b = 2. This results in dA = 8.840 and F ≈ 0.567. We then

observe the following:

Probability of Success = 1

Average Yield After 100 Seasons ≈ 4.3943 · 1043

Minimum Yield After 100 Seasons ≈ 1.9876 · 1032

Maximum Yield After 100 Seasons ≈ 1.8689 · 1046

Std. Dev. After 100 Seasons ≈ 7.1680 · 1044

Considering the data we obtained for the perennials cases, these results aren’t too

surprising. Taking both the perennials and annuals results together, however, illus-

trates a significant flaw in assuming exponential growth over many seasons: in every

case, the average yield after 100 seasons was extremely high compared to W0, even

in the one case where growth did not occur a majority of the time.

Next, we run some multiseason simulations using some of the same parameter

values, but assuming logistic growth instead and see how the results change. As

previously discussed, the starting time for reproduction to be used in each case is

not an exact amount; instead, it’s an estimate based on MATLAB experiments with

logistic simulation and assuming the optimal control is of the form γ(t) = κH̄(t− d),
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where d is to be determined. Once again, we will also look at differences when different

carrying capacities are assumed as well.

As indicated in the single-season simulations, the optimal reproduction time can

change depending on the relationship between the initial biomass and K. Since a

different initial biomass will be present each season in the multiseason simulations, it

is expected that, for each season, the optimal reproduction time will change. However,

to keep things simple, and to also afford a direct comparison with the exponential

growth case, we will assume that reproduction begins at the same time each season

in accordance with the optimal reproduction time from the first season.

To begin, we take the same parameter value as for the first perennial multiseason

simulation with exponential growth; that is, r = 0.05, σ = 0.05, T = 20, κ =

0.1, a = 0.8, and b = 2. Table 6.7 illustrates the results. Immediately, we notice

that the average yield after 100 seasons has decreased dramatically from the results

we received when assuming exponential growth, and the standard deviations have

also decreased dramatically, this time even lower than the initial biomass of 1000.

From these results, it appears that increasing the carrying capacity does increase

the average yield and also increases the standard deviation, which also happens in

the single-season simulations. It is not surprising that average yield increases when

the carrying capacity increases since, as the carrying capacity increases, the logistic

growth becomes more and more like exponential growth. More importantly, if the

population is below the carrying capacity, it is expected to grow, whereas, if the

population is above the carrying capacity, it is expected to decay (the growth term

will be negative).

It does seem quite strange, however, that the standard deviation decreases when

going from K = 1000 to K = 500 since K = 1000 means the initial biomass is

at the carrying capacity, and this is an equilibrium solution for the deterministic
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logistic model. This seems to be due to the reproduction taking place: more absolute

gains from reproduction are expected when K = 1000 since both involve season-long

reproduction, but these larger gains, combined with environmental variability and the

changing growth rate (which should be changing faster due to the increased amount

of growth from reproduction), should result in a higher standard deviation.

Next, we take r = 0.03, σ = 0.2, T = 10, κ = 0.1, a = 0.5, and b = 2. Table

6.8 illustrates the results. Here, we notice a few differences from Table 6.7. Since the

volatility and b/a ratio were increased, it is not surprising that the end results show

a lot more variability. We also notice that, when K = 500, it was possible to end up

with runs where decay actually occurred after 100 seasons. This appears to be due

to the increased volatility as well as the decreased growth rate, season length, and

season-to-season survivorship in comparison to Table 6.7.

Finally, Table 6.9 illustrates results for an annual population, taking r = 0.03,

σ = 0.15, T = 20, κ = 0.2, and b = 2 (these are the same values as in the annual

multiseason simulation with exponential growth). These annuals definitely experience

more dramatic growth than the perennials cases in Tables 6.7 and 6.8; this appears

to be due to the higher value of κ here than in the perennial simulations (those all

featured κ = 0.1). The standard deviations all go up quite a bit as well, despite the

fact that σ was decreased from the previous perennials case. This appears to be due

to an increased T (a longer season means more potential large effects from the envi-

ronment) and an increased κ (the reproduction term in the SDE is still exponential,

and a high b could mean a very high return from season-to-season).

In summary, it appears that, in the logistic case, the carrying capacity, K, as

well as both κ and b/a (in the perennials case) carry significant weight in the overall

multiseason behavior of the plants. Since the reproduction term in (6.1) remains

an exponential term, and the objective function remains unchanged, this is not too
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surprising. This also explains why a population under logistic growth can still exceed

its carrying capacity by quite a bit over multiple seasons, as we observed in all of

the simulations. Having a higher volatility resulting in an increase in the standard

deviations as well is also not surprising, especially since the environmental term also

remains an exponential term in (6.1).

Remark: Clearly, the average yields obtained for a vast majority of these simu-

lations are not practical results, as they imply extremely rapid growth. This is due

to the choices of parameter values. However, the intent of this section was to illus-

trate the mathematical concepts, not to obtain practical results, especially since there

does not appear to be an efficient way to measure some of these parameters (ex. κ

and σ). So, any “practical” results we would have obtained would have been purely

coincidental.
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Gamma Avg. Value (K = 500) Std. Dev. (K = 500)
0 500.1 247.5
κH̄(6− t) 1231.8 283.8
κH̄(dP − t) 1337.7 318.0
κH̄(13− t) 1566.2 384.4
κ from 4 to 11 1191.8 367.4
0 from dP to 18 1417.3 349.2
κ 1731.8 458.5
κH̄(t− 2) 1357.2 288.4
κH̄(t− 15) 860.1 388.1
κH̄(t− dP ) 1283.9 480.7

Gamma Avg. Value (K = 1000) Std. Dev. (K = 1000)
0 730.5 379.7
κH̄(6− t) 1427.5 389.7
κH̄(dP − t) 1483.2 392.6
κH̄(13− t) 1800.3 499.0
κ from 4 to 11 1486.6 524.8
0 from dP to 18 1660.7 495.3
κ 2002.8 589.2
κH̄(t− 2) 1997.1 511.2
κH̄(t− 15) 1207.0 617.2
κH̄(t− dP ) 1657.7 691.8

Gamma Avg. Value (K = 2000) Std. Dev. (K = 2000)
0 988.1 569.4
κH̄(6− t) 1529.7 479.4
κH̄(dP − t) 1638.2 481.3
κH̄(13− t) 1958.3 625.8
κ from 4 to 11 1694.6 685.3
0 from dP to 18 1791.3 624.1
κ 2139.8 700.7
κH̄(t− 2) 2711.5 814.4
κH̄(t− 15) 1554.3 827.8
κH̄(t− dP ) 1995.5 940.7

Table 6.5: Logistic growth for perennials without season-long reproduction
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Gamma Avg. Value (K = 500) Std. Dev. (K = 500)
κH̄(5− t) 1204.7 186.1
κH̄(dA − t) 1700.9 325.4
κH̄(12− t) 1767.7 337.5
κ from 5 to 15 1375.7 411.7
0 from dA to 18 1812.8 359.1
κ 1928.7 370.9
κH̄(t− 5) 1553.8 482.5
κH̄(t− 12) 1055.4 386.4
κH̄(t− dA) 1133.1 397.3

Gamma Avg. Value (K = 1000) Std. Dev. (K = 1000)
κH̄(5− t) 1293.4 204.7
κH̄(dA − t) 1878.1 400.1
κH̄(12− t) 1953.5 396.9
κ from 5 to 15 1829.8 597.0
0 from dA to 18 2012.8 438.5
κ 2193.4 508.0
κH̄(t− 5) 2034.3 700.4
κH̄(t− 12) 1563.9 664.7
κH̄(t− dA) 1686.0 692.3

Gamma Avg. Value (K = 2000) Std. Dev. (K = 2000)
κH̄(5− t) 1345.8 235.3
κH̄(dA − t) 1997.5 444.4
κH̄(12− t) 2061.6 487.3
κ from 5 to 15 2174.0 814.9
0 from dA to 18 2154.4 498.7
κ 2311.4 544.1
κH̄(t− 5) 2484.5 971.8
κH̄(t− 12) 2149.5 992.1
κH̄(t− dA) 2267.7 1009.9

Table 6.6: Logistic growth for annuals with r 6= κ
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K = 500(d ≈ 0) K = 1000(d ≈ 0) K = 2000(d ≈ 2)
Success Prob. 1 1 1
Avg. End Yield 3603.8 7227.7 9789.0
Min. End Yield 2863.3 5776.9 7337.8
Max. End Yield 4366.1 9000.0 13585.0
Std. Dev. 223.0 469.8 796.7

Table 6.7: Logistic growth for perennials over multiple seasons without season-long
reproduction

K = 500(d ≈ 0) K = 1000(d ≈ 0) K = 2000(d ≈ 0)
Success Prob. 0.991 1 1
Avg. End Yield 2848.8 5665.3 11595.0
Min. End Yield 714.2 1295.7 2453.0
Max. End Yield 7372.6 15608.0 25574.0
Std. Dev. 928.1 1919.9 3669.0

Table 6.8: Logistic growth for perennials over multiple seasons with season-long re-
production

K = 500(d ≈ 0) K = 1000(d ≈ 0) K = 2000(d ≈ 5)
Success Prob. 1 1 1
Avg. End Yield 9414.3 18701.0 37688.0
Min. End Yield 5316.5 10831.0 20947.0
Max. End Yield 15177.0 28207.0 57902.0
Std. Dev. 1473.3 2825.8 5645.1

Table 6.9: Logistic growth for annuals over multiple seasons
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Chapter 7

Conclusion

In this work, we have attempted to provide an answer to Lamont Cole’s famous para-

dox about what conditions would lead to annual plants dominating over perennials

in a region. To do so, we required that both would be reproducing optimally in

the sense that they would be allocating energy during the season in a fashion that

would maximize their expected yield (in terms of adult biomass) for the following

season. Evolutionary forces dictate that the species that reproduces optimally should

dominate those that reproduce suboptimally.

Creating a model which incorporated both fixed, deterministic parameters as well

as environmental stochasticity, we showed, in Chapters 3 and 4, that the optimal

reproduction strategy for both annuals and perennials is either to reproduce all season

long, or to begin the season not reproducing at all and then waiting until a time

completely determined by the deterministic parameters to begin reproduction. In

either case, when reproduction takes place, the plants devote as much energy as they

are able to reproduction until the end of the season. Season-long reproduction, as we

showed in Section 3.4, became the optimal strategy when the season was sufficiently

short and/or the growth rate was sufficiently small. Other parameters could play a
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role as well, but these were found to be the two dominant parameters in this case.

Once this optimal strategy was established, we assumed that the plants would

follow this strategy every season. Then, assuming each season’s parameters were the

same, and each season’s dynamics were independent of all others, we attempted to

answer Cole’s question in Chapter 5, with some numerical data in Chapter 6. Overall,

we found that annuals are expected to dominate over perennials if one or more of the

following conditions are true:

• The environmental volatility is sufficiently high.

• The reproductive utility factor is sufficiently high.

• The intrinsic growth rate is sufficiently small.

• The maximum proportion to be devoted to reproduction at any instant is suf-

ficiently high.

• The season is sufficiently long.

• The season-to-season survivorship of adult perennials is sufficiently low, pending

one or more of the previous conditions are met.

Many of these conclusions are supported by prior work; for example, Young’s

model in [29] also showed that low survivorship of adult perennials was a generally

favorable condition for annuals. In [4], Clary studied grass populations in the Iberian

Peninsula, which, although was historically dominated by perennial grasses, has since

become dominated by annuals in certain areas. In the areas where annuals domi-

nated, he found the two driving forces seem to be annual rainfall (summer droughts

favored annuals) and disturbance from grazing. This seems to support the conclusion

concerning environmental volatility. A similar result was derived by Iwasa and Cohen
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in [14], who found that lower habitat reliability favored annuals. Garnier ([11]) also

cited results saying that unpredictability of the environment favored annuals. How-

ever, the main content of [11] is a study of seven types of grass of the same subfamily,

Pooideae, each type consisting of an annual and perennial species (six pairs were

of the same genus). In doing so, Garnier discovered that the corresponding annual

species always had a higher relative growth rate than the perennial species. Although

this is not a confirmation that annuals are favored when the intrinsic growth rate

is sufficiently small, it does lend credence to the observation that, for high growth

rates, perennials seem to dominate over annuals. So, to keep pace, it is justifiable

that annuals would need higher growth rates than their perennial counterparts. On

the other hand, Young ([29]) argues that a higher growth rate favors annuals, not

perennials. The climate in the regions studied by Clary in [4] are characterized by

hot, dry summers and mild, wet winters, and so the growing season in this region

is fairly long compared to, say, in interior Canada. However, as Clary explained,

there are regions he studied where perennials still dominate, so this does contradict

our conclusion that a long growing season tends to favor annuals. Iwasa and Cohen

([14]) discuss that a shorter season should favor annuals, which contradicts our con-

clusion that a shorter season would favor perennials. Our contradictions with Young

and Iwasa/Cohen seem to be due to the different sets of assumptions that were used

to construct these models and ours; nevertheless, our results should be investigated

further.

We now turn our attention to the reasonability of the model used in this work. Two

key issues about the model are issues that may need to be addressed in future work;

namely, using exponential growth as opposed to something more density-dependent,

like logistic growth (used partially in Chapter 6), and the environmental stochasticity

term. Using exponential growth, especially over multiple seasons like was done in
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Chapters 5 and 6, will, of course, lead to unrealistic results since resources are limited,

and perennials cannot continue growing at such a fast rate indefinitely. Exponential

growth may be justifiable, however, for a single-season model, especially for small

plants or plants in early stages of life in a uniform environment ([26, p. 76, 81]). It

was chosen in this work mainly due to the ability to solve the corresponding SDE

exactly, which we did in Chapter 4.

Of course, logistic growth is a more realistic assumption, since it takes resource

availability into account, assuming there is a finite supply of resources ([26, p. 86]).

However, as of this work, no one has been able to write down an analytic solution

for the logistic SDE, which makes finding an optimal control extremely difficult since

we would be essentially forced to do so numerically. But, some potential promise

in this model is that numerical simulations (Chapter 6) seemed to indicate that an

optimal control is of the same form as when exponential growth is assumed; writing

the Hamiltonian in this case indicated a “bang-bang” optimal strategy as well. So,

we may be able to derive an optimal control for the deterministic model and then

attempt to prove (though not the same way as in Chapter 4 since we can’t solve it

analytically) that the control is still optimal when stochasticity is introduced. Thus,

incorporating logistic growth is certainly something that will be done in the future.

The way that environmental stochasticity is incorporated into the model is also a

key issue, since, although randomness certainly exists in the environment, the envi-

ronment is not completely random. For example, it is known in Nebraska that, during

July and August, days where the high temperature is 90 degrees or more are common,

but are very rare in, say, May. Rainfall also has an element of predictability: many

regions typically have a “dry season” and a “wet season,” for example. Thus, it may

be more accurate to make the environmental term a sum of a deterministic piece and

a random piece. One potential idea is to use a cosine function for temperature, since
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average temperature increases at the start of a growing season, peaks somewhere in

the middle, and then decreases afterward. This could make the model extremely

difficult to solve, however, and many environmental effects (such as disease, which

would not be as predictable) would be left out, which is why it wasn’t done here.

Another issue with the model is measuring the parameters in practice. Some of

the parameters may not be too difficult to measure (T is just the length of the growing

season), but others may be extremely difficult. The two most difficult parameters to

measure appear to be κ and σ. It does appear that some work has been done with

trying to measure reproductive allocation (see, for example, [2]), however, so this

may be a tractable problem. To measure σ, it appears that, first, one would have to

measure r and then try to see what deviations from r tend to be in the environment in

order to measure σ. This appears to be very time-consuming since it seems to require

field measurements over many years as well as measurements in a more controlled

setting for comparison. Thus, use of the model in practical situations may not be

possible until efficient ways to measure all of the parameters exist.

One other issue is the multiseason analysis done in Chapter 5. Although, math-

ematically, there is nothing wrong with what was done, the sufficient condition for

growth that was derived is extremely weak (this is explored further in Appendix B),

especially since it only guarantees growth at least 50% of the time, saying nothing

of how much growth can be reasonably expected. One thing to be done in the near

future is to attempt to turn the lower bound on the median into a tighter bound,

and maybe find the median exactly. This will also serve as a check of the conditions

for annual dominance stated previously. Preferably, a stronger condition which will

also provide an idea of how much growth can be reasonably expected, can be derived.

Regardless of whether this can be done or not, none of the analysis in that chapter

will work for logistic growth, and, if the SDE can’t be analytically solved, numerical
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work may be the only way to proceed with multiseason analysis for logistic growth.

Besides looking at logistic growth, another way to extend the model would be to

break the plants into two parts; namely, the vegetative, or non-reproductive part, and

the reproductive part, known as a “root-shoot” model. Each part can be assessed its

own environmental stochasticity (the parts underground could be considered “safer”

than those above ground, for example), and the objective function can be tweaked to

account for different season-to-season survivorships for each portion of the plant.

A basic model for this is given in [20, p. 1]; specifically, taking u(t) to be the

control function, x1(t) to be the biomass in the vegetative part at time t, and x2(t) to

be the biomass in the reproductive part at time t, the constraints are given as follows:

dx1

dt
= u(t)x1

dx2

dt
= (1− u(t))x2(t).

Here, we assume 0 ≤ t ≤ T and 0 ≤ u(t) ≤ 1 for all t. Thus, the changes necessary

for this to fit our model would be relatively straightforward, and, if we continue to

assume exponential growth, the model may still be solvable. This will be investigated

in the future as well.
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Appendix A

MATLAB Routines

This appendix contains the two MATLAB routines which were used to conduct the

simulations in Chapter 6 and Appendix B, along with some brief commentary on

some of the commands.

The first routine, “ecosim,” is a program which, given parameter values, computes

the value of the objective function (2.2) after a single season. It was used in Chapter

6 to verify that the optimal controls we found in Chapter 4 were indeed optimal and

to compute some statistics when logistic growth is assumed. The routine is as follows:

function ecosim

clear all

randn(’state’,sum(100*clock));

%sets up the random number generator

%(without this, MATLAB picks the exact same values

%when using randn every time the program is restarted)
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p=1000;

%number of single-season runs

n=1000;

%number of measurement periods (steps) in season

T=20;

%length of season

k=0.1;

%kappa; max proportion of biomass that can be

%invested for reproduction

r=0.03;

%growth rate in absence of environmental effects

a=0.8;

%survivorship of adult biomass from one season to next

b=2;

%proportionality between adult biomass

%and next season potential

sigma=0.15;

%volatility of environment (standard deviation for

%the random normal distribution we’ll be drawing from)

success=0;

%counter for number of runs where growth occurs

C=zeros(n+1,p);

%matrix of adult biomasses for each sim

D=zeros(n,p);

%matrix of juvenile biomasses for each sim
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H=zeros(p,1);

%vector of populations at end of generation

N=zeros(p,1);

%vector of no. of steps no reproduction took place

for m=1:p

B=zeros(n+1,3);

%initialize the matrix of data; the first column will

%be the dBt chosen for that period, the second will be

%the amount of new (juvenile) biomass

%produced in that time period, and the third will be

%the amount of adult biomass at the end

%of the time period

B(1,3)=1000;

%initial adult biomass

norep=0;

%counter for how many steps reproduction did not occur

for j=2:n+1

brownian=sqrt(T/n)*randn;

%approximation of B(t_j)-B(t_(j-1))

B(j,1)=sigma*brownian;

if (j-1)*(T/n) >= T - (1/(r-k))*log(b*r/(a*(r-k)+b*k))

gamma=k;

%control function gamma

else gamma=0;

norep=norep+1;
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end

B(j,2)=gamma*(T/n)*B(j-1,3);

%what has been allocated for reproduction

if B(j-1,3)>=0;

B(j,3)=B(j-1,3)*(1+r*(T/n)-gamma*(T/n)+B(j,1)

+(1/2)*sigma^2*(brownian^2-(T/n)));

else B(j,3)=0;

end

if B(j,3)<=0;

B(j,3)=0;

%this is to ensure the population is never negative

else B(j,3)=B(j,3);

end

end

C(:,m)=B(:,3);

%amount of adult biomass at end of season

D=b*sum(B(2:n+1,2));

%total new adult biomass for next season

H(m,1)=D+a*C(n+1,m);

%total adult biomass for next season

if D+a*C(n+1,m)>=B(1,3);

success=success+1;

end

N(m,1)=norep*(T/n);

end
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avgsuccess=success/p

%proportion of successes

avgnorep=mean(N)

%average # of times no reproduction occured for each run

mendpop=min(H)

%minimum yield for next season of the p runs

Mendpop=max(H)

%maximum yield for next season of the p runs

avgendpop=mean(H)

%average yield for next season of the p runs

stdevendpop=std(H)

%standard deviation of the yield for next season

medianendpop=median(H)

%median yield for next season of the p runs

We make a few comments on the program. First, if one wants to consider logistic

growth instead of exponential, simply add in a value for K, the carrying capacity, in

the beginning with the rest of the parameters, and, in the line where the value for

B(j, 3) is being set, change r ∗ (T/n) to r ∗ (1 − B(j − 1, 3)/K) ∗ (T/n) since the

logistic growth piece in the SDE (see Chapter 6) is rWt(1−Wt/K) as opposed to the

exponential growth piece rWt.

Next, although the optimal starting time for reproduction is given as the point

where γ switches values from 0 to κ in the program, it can easily be changed to be

any value the user wishes (for example, if one wants γ(t) = κH̄(t − 2), simply take

(j − 1) ∗ (T/n) >= 2), or the inequality can be flipped (for example, if one wants
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γ(t) = κH̄(dP − t)). The (j − 1) factor is present to ensure that the reproduction

actually begins at the given starting time.

The most important line in this program is the line

B(j,3)=B(j-1,3)*(1+r*(T/n)-gamma*(T/n)+B(j,1)

+(1/2)*sigma^2*(brownian^2-(T/n))),

since this line allows us to approximate a sample path that serves as a solution to the

SDE. The method being used here is Milstein’s method; specifically, if we are trying

to approximate the solution to the SDE

dX(t) = f(X(t))dt + g(X(t))dB(t),

where X0 is given, t ∈ [0, T ], and f, g are functions which are “nice” enough to

guarantee a unique solution (see Theorem 4.2), then, if h is the step size (so, there

are T/h steps overall), we can approximate the solution to this SDE by the following:

Xj+1 = Xj + hf(Xj) + g(Xj)(Btj+1
−Btj) + (1/2)g(Xj)g

′(Xj)
(
(Btj+1

−Btj)
2 − h

)
for j = 0, 1, . . . , (T/h)− 1. Since, for our model, f(Wt) = (r − γ(t))Wt and g(Wt) =

σWt, then choosing a step size of T/n gives us the above line.

We will omit a theoretical discussion of Milstein’s method save for the fact that

it is strongly convergent with order 1; that is, there exists a constant C such that

E [Xn −X(tn)] ≤ Ch

for any fixed tn = n(T/h) and h sufficiently small. In contrast, the Euler-Maruyama
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method, the stochastic analog of Euler’s method from ordinary differential equations,

is strongly convergent with order 1/2; that is, the right-hand side of the above in-

equality becomes Ch1/2. The difference between Euler-Maruyama and Milstein is

simply the deletion of

(1/2)g(Xj)g
′(Xj)

(
(Btj+1

−Btj)
2 − h

)
.

The reader who is interested in more information on Euler-Maruyama and Milstein’s

methods may consult [12].

The next routine, “multiseason,” is a program which essentially takes the “ecosim”

program and duplicates it for multiple seasons; that is, the total amount of adult

biomass that will be present at the beginning of next season is used as the new

initial value, and then “ecosim” is run again. It was used in Chapter 6 to compute

multiseason statistics for both exponential and logistic growth. The routine is as

follows; note that many of the commands are exactly the same as in “ecosim,” so all

comments are omitted except for those on new commands:

function multiseason

clear all

randn(’state’,sum(100*clock));

r=1000;

%number of multiseason runs

N=100;

%number of seasons per run
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n=1000;

T=20;

k=0.2;

r=0.03;

a=0;

b=2;

sigma=0.15;

nomonotone=0;

%counter for tracking if pop is NOT

%monotone increasing over entire run

growth=0;

%counter for tracking if pop grows at end of each run

P=zeros(r,1);

%vector of biomass at end of each run

for p=1:r

A=zeros(N+1,1);

%vector of biomass at start of each season

A(1,1)=1000;

%initial adult biomass

for m=1:N

B=zeros(n+1,3);

B(1,3)=A(m,1);

%initial adult biomass at start of season

C=zeros(n,1);

for j=2:n+1
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brownian=sqrt(T/n)*randn;

B(j,1)=sigma*brownian;

if (j-1)*(T/n) >= T - (1/(r-k))*log(b*r/(a*(r-k)+b*k))

gamma=k;

else gamma=0;

end

B(j,2)=b*gamma*(T/n)*B(j-1,3);

if B(j-1,3)>=0;

B(j,3)=B(j-1,3)*(1+r*(T/n)-gamma*(T/n)+B(j,1)

+(1/2)*sigma^2*(brownian^2-(T/n)));

else B(j,3)=0;

end

if B(j,3)<=0;

B(j,3)=0;

end

end

D=sum(B(2:n+1,2));

A(m+1,1)=a*B(n+1,3)+D;

%total adult biomass for next season

end

for q=1:N

if A(q,1)>A(q+1,1)

nomonotone=nomonotone+1;

%if decay occurs between two seasons,

%then there is no monotone growth

break
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end

end

P(p,1)=A(N+1,1);

%total adult biomass to start the (N+1)st season

if P(p,1)>=A(1,1)

growth=growth+1;

end

end

noincrease=nomonotone/r

%proportion of runs that were not monotone increasing

success=growth/r

%proportion of runs that experienced growth

minendbiomass=min(P)

%minimum end biomass over the r runs

maxendbiomass=max(P)

%maximum end biomass over the r runs

avgendbiomass=mean(P)

%average end biomass over the r runs

stdevendbiomass=std(P)

%standard deviation of the end biomass

Given the “ecosim” routine, this routine is pretty self-explanatory. The only comment

that needs to be made is that this routine can take quite a while to run, especially if

one considers a large number of seasons, a pretty small step size, and a large number



179

of runs. Otherwise, all of the comments made for the “ecosim” routine can be applied

to this routine as well.
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Appendix B

Error Analysis on the Median of

X1 · · ·Xn

In Chapter 6, the multiseason analysis seemed to indicate a major problem with using

the lower bound on the median of X1 · · ·Xn computed in Chapter 5, where

Xn = a · exp

((
r − 1

2
σ2

)
T + κ(T − dP ) + σBT

)
+ bκ

∫ T

dP

exp

((
r − 1

2
σ2

)
s− κ(s− dP ) + σBs

)
ds,

and X1, X2, . . . are independent and identically distributed, to try and get an idea of

what should happen to the plants over multiple seasons. In Chapter 5, we showed

that, so long as the lower bound on the median, F (5.5), was greater than 1, then

the true median also had to be greater than 1, meaning that there was at least a 50%

chance for the plants to experience growth over a sufficiently large number of seasons.

However, even when F < 1, growth could still be quite rampant; one particular

perennial multiseason simulation, taking r = 0.03, σ = 0.2, T = 20, κ = 0.1, a = 0.5,

and b = 2 illustrated a case where F < 1 (in fact, F ≈ 0.734), y et not only did
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the plants always experience long-term growth, but the long-term growth was always

huge (on the order of at least 1021 times the initial biomass!).

Thus, our goal in this appendix is to investigate how far off the lower bound on

the median is from the true median, which will be estimated using the “ecosim”

routine described in Appendix A. What follows are the three sets of parameters used

to generate Tables 6.1-6.3, two sets used for multiseason analysis, and one additional

set. We first compute F (refer to Section 5.3.2, (5.5) for the formula for F ) for

the given set of parameters and then run “ecosim” to attempt to estimate the true

median. Recall that, although we are investigating the lower bound on the median

of X1 · · ·Xn, we showed that, for this lower bound to be greater than 1, we only need

the lower bound on the median of Xn to be greater than 1. This is why we are using

“ecosim,” since we only need to worry about single-season dynamics.

The parameters we will be using in each comparison are as follows:

Table 6.1 : r = 0.03, σ = 0.15, T = 20, κ = 0.1, a = 0.8, b = 2

Table 6.2 : r = 0.03, σ = 0.15, T = 12, κ = 0.1, a = 0.8, b = 2

Table 6.3 : r = 0.05, σ = 0.15, T = 20, κ = 0.2, a = 0, b = 2

Multiseason 1 : r = 0.05, σ = 0.05, T = 20, κ = 0.1, a = 0.8, b = 2

Multiseason 2 : r = 0.05, σ = 0.4, T = 30, κ = 0.1, a = 0.5, b = 5

New Set : r = 0.02, σ = 0.1, T = 10, κ = 0.2, a = 0, b = 1.

Table B.1 illustrates the comparisons, listing the starting times for reproduction (d)

in each case, since this played a significant role in constructing F , the values of F in

each case, and the estimated true medians in each case. So, the table suggests that

F , while it is certainly a valid lower bound, is an extremely terrible lower bound;
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Data Set d F “True” Median % Error
Table 6.1 7.493 (20) 0.832 2.221 62.5%
Table 6.2 0 (12) 0.939 1.837 48.9%
Table 6.3 10.758 (20) 0.774 2.965 73.9%
Multiseason 1 10.6 (20) 1.293 3.346 61.4%
Multiseason 2 17.163 (30) 0.190 2.025 90.6%
New Set 0 (10) 0.382 0.917 58.3%

Table B.1: Error analysis on median lower bound, F

the relative error in each case is huge. Surprisingly, even though the “New Set” of

data was an annual set which had dA = 0, meaning we did not have to factor in

an estimate for the product of two random variables nor did we have to adjust the

lower bound on the integrand to match Yor’s formula (see Section 5.2.1), the lower

bound is still quite far off from the “true” median. However, it was the only set of

parameters where F was less than 1 and so was the “true” median. In fact, in that

case, “multiseason” was run just to see what would happen, and, not only did none

of the runs experience growth, but the maximum biomass after 100 seasons was only

about 19 units after starting with 1000.

Noting that the “true” medians for both multiseason sets of parameters were much

higher than 1, it is now not surprising at all that both of those runs experienced

rampant growth over the 100 seasons; after all, if it is likely that the population

will at least double in biomass at the end of each season, then, after 100 seasons,

the biomass will likely increase by a factor of 2100 ≈ 1030! This then tells us that,

although F does provide for a nice theoretical lower bound, it is a terrible lower bound

to use in practice to try and estimate what will happen to the population over a large

number of seasons. Its only real use is when F > 1, since this guarantees that the

true median is also greater than 1.
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