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The center of a graph is the set of vertices whose distance to other vertices is minimal.

The centralizing number of a graph G is the minimum number of additional vertices in

any graph H where V (G) is the center of H. Buckley, Miller, and Slater and He and

Liu provided infinite families of graphs with each centralizing number. We show the

number of graphs with each nonzero centralizing number grows super-exponentially

with the number of vertices. We also provide a method of altering graphs without

changing the centralizing number and give results about the centralizing number of

dense graphs.

The degree sequence of a (hyper)graph is the list of the number of edges containing

each vertex. A t-switch replaces t edges with t new edges while maintaining the same

degree sequence. For graphs, it has been repeatedly shown that any realization of a

degree sequence can be turned into any other realization by a sequence of 2-switches.

However, Gabelman provided an example to show 2-switches are not sufficient for k-

graphs with k ≥ 3. We classify all pairs of 3-graphs that do not admit a 2-switch but

differ by a 3-switch. We use this to provide support that 2-switches and a 3-switch

are sufficient for 3-graphs.

Given graphs G and H, G is H-saturated if G does not contain H as a subgraph,

but H is a subgraph of G + e for any e /∈ E(G). While this is well defined for

subgraphs, the similar definition is not well defined for induced subgraphs. To avoid



this, Martin and Smith defined the induced-saturation number using trigraphs. We

show that the induced-saturation number of stars is zero. This implies the existence

of graphs that are star induced-saturated. We introduce the parameter indsat∗(n,H)

which is the minimum number of edges in an H-induced-saturated graph, when one

exists. We provide bounds for indsat∗(n,K1,3) and compute it exactly for infinitely

many n.
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Chapter 1

Introduction
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This thesis has two major mathematical topics. The first topic is about under-

standing graphs that contain a subgraph in a specified way. Chapter 2 focuses on the

subgraph being contained as the center, while Chapter 4 focuses on containment of

induced copies of the specified subgraph. The second topic, which we study in Chap-

ter 3, is examining hypergraph realizations of degree sequences. We are interested in

specific methods to move among these realizations by making small changes and we

focus on obstructions to this ability.

A recent trend in mathematics is the use of experimental mathematics: applying

computational techniques to suggest theorem statements or provide counterexamples.

Much of the work within this thesis is motivated by experimental results generated

with a computer. These computations led to insights that in turn suggested conjec-

tures and theorems. In addition, computations can be used within proofs of theorems,

such as the Four Color Theorem [3, 77], Hales’ proof of the Kepler conjecture [45],

and the nonexistence of the projective plane of order ten [60]. In this thesis, we also

use computation to prove some of our results.

In Chapter 2, we investigate centers of graphs. A graph G is an ordered pair of

a vertex set V (G) and edge set E(G) such that each edge consists of two distinct

vertices. The center of a graph is the set of vertices whose distance to other vertices

is minimal.

Centers of graphs have been of interest for such applications as facility location

and social networks. For example, when building an emergency facility such as a

hospital, it should be placed so it is not too far from any one location. Similarly,

consumers want to be located in places that are close to their desired services. For

some recent papers, see [20, 21, 80]. See Buckley [16] for a survey, as well as [17, 18,

22, 23, 46, 48, 50, 61, 75].

Graphs whose center is the entire vertex set are called self-centered. Not all graphs
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are self-centered. Buckley, Miller, and Slater [18] introduced the centralizing number

A(G) of a graph G, which is the minimum number of vertices that must be added

to G to form a supergraph H where the subgraph induced by the center of H is

isomorphic to G. Hedetniemi (see [18]) gave a construction showing the centralizing

number is at most four. The centralizing number acts as a measure of how close a

graph is to being self-centered.

Buckley et al. [18] determined the centralizing number of trees, classifying every

tree with at least three vertices to have centralizing number two or four. However, they

did not know if there existed any graphs with centralizing number three. Chen [24]

and Bielak [11] provided the earliest examples of graphs with centralizing number

three. He and Liu [67, 63] showed that, in fact, there are infinitely many graphs with

centralizing numbers three and four. The natural next question is how rare these

graphs are. In particular, what proportion of graphs on n vertices have centralizing

number three or four? We develop an algorithm that we use to compute the exact

number of graphs on at most twelve vertices with each centralizing number. This

data suggests the number of graphs with each centralizing number is increasing for

all n. We prove this statement, showing that the rate of increase is super-exponential.

Buckley et al. [18] gave a classification of the centralizing number for the sparsest

graphs, trees. For very dense graphs, we prove the centralizing number is two unless

the graph is one of two special cases and is self-centered. Additionally, we conjecture

that the densest graphs with centralizing number three and four belong to specific

families, and provide evidence toward this conjecture.

In Chapter 3 we investigate degree sequences of hypergraphs. A hypergraph is an

ordered pair of a vertex set and an edge set, where edges are subsets of the vertices.

Note that we only consider simple hypergraphs, where no edge can be repeated. A

hypergraph is k-uniform if every edge contains exactly k vertices. Graphs are 2-
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uniform hypergraphs. The degree of a vertex is the number of edges containing that

vertex. The degree sequence of a hypergraph H is the list of all vertex degrees with

their multiplicities, listed in nonincreasing order. We say H realizes that sequence. A

sequence of nonnegative integers is k-graphic if there exists a k-uniform hypergraph

realizing that sequence.

The fundamental question in the area of hypergraph degree sequences is which

sequences of nonnegative integers are k-graphic. In the case of k = 2, this prob-

lem is well understood, with many characterizations of 2-graphic sequences. Two of

the most well known characterizations are the Havel-Hakimi [47, 44] and the Erdős-

Gallai [33] characterizations. Other characterizations are surveyed by Sierskma and

Hoogeveen [79] and Mahadev and Peled [68]. However, there are significantly fewer

results for k ≥ 3.

Achuthan, Achuthan and Simanihuruk [1], Billington [13], and Choudum [25] gave

some necessary conditions for a sequence to be k-graphic. Unfortunately, Achuthan

et al. showed that none of these necessary conditions from [1, 13, 25] are sufficient.

In fact, there are surprisingly few sufficient conditions for a sequence to be k-graphic

for any k ≥ 3.

Finding a minimal set of switches that connects the space of realizations has ap-

plications in network science; specifically, generating a realization chosen uniformly at

random, which can be done using Markov chain Monte Carlo methods. The connec-

tivity of the space for 2-graphs allows for uniform random sampling. For some results

of using Markov chains for 2-graphs, see [35, 43, 52, 76]. Additionally, the Markov

Chain Monte Carlo methods can be used to give an approximation of the number

of realizations for a degree sequence [51]. If we have set of switches connecting the

space of 3-graph realizations, then we can use Markov Chain Monte Carlo with the

realizations of a 3-graphic sequence as well.
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We make small changes to move from one realization to another by replacing a

set of edges with another set of edges. A t-switch on a hypergraph H is replacing

t edges with t other edges such that the resulting hypergraph has the same degree

sequence as the original hypergraph. If a t-switch can be performed on a hypergraph,

we say the hypergraph admits a t-switch. Given a k-graphic degree sequence π and a

collection of switches S, we say the space of realizations of π is connected by S if for

any two k-graph realizations of π, one can be obtained from the other by performing

a sequence of switches from S.

Petersen [71] and subsequently others (for instance, Fulkerson, Hoffman, and

McAndrew [39]) showed that, for any two realizations of a 2-graphic sequence, one

realization can be obtained from the other by a sequence of 2-switches. However,

Gabelman [40] demonstrated that 2-switches are not enough for hypergraphs. These

examples were further generalized showing that a k-switch is needed for k-graphs,

which leads to the questions of what other examples are there that are not connected

by 2-switches and what is the minimal set of switches required to connect the space of

realizations. Many results about 2-graphic sequences rely on the fact that the space

of 2-graphic realizations is connected by 2-switches. If we know a minimum set of

moves that connect the space of realizations for 3-graphic sequences, then it is likely

that similar results can be proven for 3-graphic sequences.

The main result of Chapter 3 is a characterization of all pairs of 3-graphs that

differ by a 3-switch but do not admit 2-switches. These 3-graphs are all related to the

generalized Gabelman examples. This result provides evidence that the collection of

2-switches along with a specific 3-switch is enough to connect the space of realizations

for 3-graphic sequences.

Since the previous result restricts to 3-graphs that do not admit a 2-switch, we

also examine sequences similar to the degree sequences that we know have a realiza-
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tion space not connected by 2-switches. In particular, we look at sequences that do

not have repeated terms and few realizations. These sequences seem like the most

likely candidates for degree sequences whose realization space is not connected by

2-switches, as fewer realizations have less room to move. Additionally, if there are

repeated terms, then there is an increase in the number of realizations by the number

of isomorphic copies. This provides more support that the collection of 2-switches

along with a specific 3-switch (which we call a transversal 3-switch) is enough to

connect the space of realizations for 3-graphic sequences. As an application of using

switches, we also provide a result about packing hypergraphs.

In Chapter 4, we investigate a new version of the saturation number. The satura-

tion number of a graph is a very classic parameter. The saturation number sat(n,H)

for parameters n and graph H is the minimum number of edges in any graph G on

n vertices such that H is not a subgraph of G, but H is a subgraph if any edge is

added to G.

Erdős, Hajnal, and Moon [34] proved the earliest saturation result, computing the

saturation number for complete graphs. Kászonyi and Tuza [54] expanded upon their

work and showed that the saturation number for any graph on t vertices is less than

the saturation number of the complete graph on t vertices. A survey of results related

to the saturation number is provided by Faudree, Faudree, and Schmitt [36].

H is an induced subgraph of G if the vertices that H appears on have no other

edges. For any graph H, adding enough edges to G eventually results in G containing

H as a subgraph, but not necessarily as an induced subgraph. This lack of mono-

tonicity leads to the need of a different definition for an induced subgraph version of

the saturation number. Recently Martin and Smith [69] introduced a new definition

relating induced graphs to trigraphs instead of graphs. A trigraph has a vertex set

and each pair of vertices is either an edge, nonedge, or potential edge. A realiza-
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tion of a trigraph is a graph with the same vertex set and whose edge set consists

of all edges of the trigraph and any subset of the potential edges. A trigraph T is

H-induced-saturated if no realization of T contains an induced H, but changing any

edge or nonedge to a potential edge creates a realization containing H as an induced

subgraph. The induced-saturation number of a graph H with respect to n is the

minimum number of potential edges in a trigraph on n vertices that is H-induced

saturated. Martin and Smith computed the induced-saturation number for the path

on four vertices.

We determine the induced-saturation number for stars to be zero for sufficiently

large n. This means that there are star-induced-saturated graphs that do not have po-

tential edges in the trigraph. In such a case, we introduce the parameter indsat∗(n,H)

to be the minimal number of edges in any H-induced-saturated graph on n vertices.

We bound this parameter for the claw (a specific star) and provide the exact value

for infinitely many values of n.
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Chapter 2

Graph centers
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2.1 Introduction

Given a graph G, the centralizing number of G is the minimum number of addi-

tional vertices in a graph H where G is isomorphic to the center of H. Kopylov and

Timofeev [58] stated that for any graph G there exists such a graph H. Hedetniemi

(see [18]) gave the construction of Figure 2.1 showing that the centralizing number

of any graph is at most four. Buckley, Miller, and Slater [18] formally introduced the

w2w1 w4w3
G

Figure 2.1: Hedetniemi’s construction showing any graph G is the center of another
graph. Given a graph G, add vertices w1, w2, w3, and w4 with w1 and w2 adjacent
to every vertex of G, w3 adjacent to w1, and w4 adjacent to w2. In particular, this
construction shows A(G) ≤ 4.

concept of centralizing number and showed that every tree has centralizing number

two or four. However, they did not find a graph with centralizing number three, and

they asked if such a graph exists. Chen [24] and Bielak [11] answered affirmatively,

Liu and He [67] provided an infinite family of graphs with centralizing number three,

and Liu [63] provided an infinite family of graphs with centralizing number four.

In this chapter, we investigate the number of connected graphs on n vertices with

a given centralizing number. We develop a practical algorithm for computing the

centralizing number of a given graph, and use an implementation of the algorithm

to determine the exact number of connected graphs on at most twelve vertices with

each centralizing number. We examine centralizers generated by the algorithm to

study properties of centralizers, such as their radius. In order to generate infinite

families of graphs with centralizing number three or four, we provide results on the
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effect twinning vertices has on the centralizing number of a graph. As an application

of twinning vertices, we create families of graphs which we conjecture to be the

densest graphs with centralizing number three or four. We conclude by providing a

lower bound of the asymptotics for the number of graphs on n vertices with a given

centralizer.

Centers of graphs have been of interest in topics such as facility location problems

and social network problems. For example, when building an emergency facility such

as a hospital, it should be placed so it is not too far from any one location. Similarly,

consumers want to be located in places that are close to their desired services. For

some recent papers, see [20, 21, 80]. Additionally, see Buckley [16] for a survey, as

well as [17, 18, 22, 23, 46, 48, 50, 61, 75]. Since not all graphs are self-centered, we use

the centralizing number as a measure of how close a graph is to being self-centered.

We primarily focus on graphs with nonzero centralizing number.

Furthermore, it is not always ideal to have resources located in the center of a

graph as described above. As suggested by Klavžar, Narayankar, and Walikar [55], a

variant of this is placing two resources for the network that can efficiently serve the en-

tire network, but need to be kept far apart due to interference. Klavžar, Narayankar,

and Walikar referred to graphs containing all but two vertices in their center as al-

most self-centered graphs (ASC graphs). They provided a construction generating

ASC graphs that is similar to twinning vertices. Balakrishnan, Brešar, Changat,

Klavžar, Peterin, and Subhamathi [4] studied median and chordal ASC graphs. Note

the center of any ASC graph has centralizing number at most two.

The centralizing number of several families of graphs have been determined. Buck-

ley, Miller, and Slater [18] determined the centralizing number of trees, and Bielak [11]

identified the centralizing number of all block graphs. Other infinite families of graphs

with centralizing number two and three were found by He and Liu [67, 63]. We use



11

twinning of vertices to generate distinct infinite families of graphs with centralizing

number three and four.

Kopylov and Timofeev [58] also focused on centralizers as their own entity instead

of relating the centralizers to their central subgraph. They bounded the number of

edges in a centralizer with respect to the number of vertices in its periphery. We

pursue bounds on the number of edges in a graph with given centralizing number.

This chapter is organized as follows. Relevant definitions and notation are given in

Section 2.1.1. In Section 2.2 we present an algorithm for computing the centralizing

number of a graph. Section 2.3 contains the details of our implementation of the

algorithm and the exact number of connected graphs on up to twelve vertices with

each centralizing number, as well as questions that arose from examining examples

generated by computations. The effect that twinning vertices has on the centralizing

number of graphs is examined in Section 2.4. Section 2.5 contains an application of

twinning vertices to create dense graphs with centralizing number greater than two.

We further conjecture that these families are the densest such graphs and provide

support for the conjecture. We conclude with the asymptotics of the number of

graphs on n vertices with a given centralizer in Section 2.6.

2.1.1 Preliminaries

In general we follow the terminology and notation of West [84]. Let G be a graph with

u, v ∈ V (G). The eccentricity of v in G, denoted εG(v), is the maximum distance in G

from v to any other vertex. The horizon of v in G, horG(v), is the set of vertices in G

that are at distance εG(v) from v in G. If v is adjacent to every vertex in V (G) \ {v},

then v is a dominating vertex of G, or v dominates G, and εG(v) = 1. The radius

of G, denoted rad(G), is the minimum eccentricity of any vertex of G, while the



12

diameter of G, denoted diam(G), is the maximum eccentricity of any vertex of G.

Vertices u and v are diametral if dG(u, v) = diam(G). Additionally, v is a pendant in

G if degG(v) = 1.

The center of a graph G is the set of vertices whose eccentricity is the radius of

G. The central subgraph C(G) is the subgraph induced by the vertices in the center

of G. The periphery P (G) of G is the set of vertices whose eccentricity equals the

diameter of G.

Definition 2.1.1. The centralizing number A(G) of a graph G is the minimum num-

ber of additional vertices in a graph H where G is isomorphic to the center of H. In

other words,

A(G) = min
H
{|V (H)| − |V (G)| : C(H) ∼= G}.

A graphH is called a centralizer of a graphG if C(H) = G and |V (H)\V (G)| = A(G).

Note that in general, a centralizer of G is not unique.

If a graph has centralizing number zero, then we say the graph is self-centered.

Alternatively, a graph G is self-centered if rad(G) = diam(G). Note that if G is a

disconnected graph, then technically G is self-centered since every vertex has infinite

eccentricity. Henceforth we will assume all graphs are connected.

We also introduce the following notation for convenience throughout the paper.

Let G be a graph with centralizing number two or three, and let H be a centralizer

of G. If A(G) = 2, then let w1 and w2 be the peripheral vertices of H; if A(G) = 3,

then let w1, w2, and w3 be the peripheral vertices of H. Since the farthest vertex

from a vertex in P (H) must be another vertex of P (H), at least two pairs of the

three peripheral vertices must be diametral if A(G) = 3. Throughout this paper

we assume that if P (H) = {w1, w2, w3}, then diam(H) = dH(w1, w2) = dH(w1, w3).
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Define Ni = NH(wi) for 1 ≤ i ≤ A(G). The peripheral neighborhood distance is

dH(N1, N2), which we denote by the letter p.

2.1.2 Background

As shown by Hedetniemi’s construction (Figure 2.1), the centralizing number of a

graph is at most four. Given a graph G with nonzero centralizing number and cen-

tralizer H, any farthest vertex from a vertex in P (H) must be another vertex of

P (H). Hence there are no graphs with centralizing number one. Thus the centraliz-

ing number of any graph is either zero, two, three, or four.

Buckley, Miller, and Slater [18] determined the centralizing number of every tree,

showing that only some of the numbers are attained.

Theorem 2.1.2 ([18]). Let T be a tree with at least three vertices. If any two leaves

of T are equidistant from the center of T , then A(T ) = 2. Otherwise, A(T ) = 4.

This yields an infinite class of graphs with centralizing number two and another

infinite class with centralizing four, but no examples with centralizing number three.

Chen [24] proved the following lemma for graphs with centralizing number two, ap-

plying it to prove a specific graph had centralizing number three. Liu [63] adapted

Chen’s lemma to include graphs with centralizing number three.

Lemma 2.1.3 ([24, 63]). Let G be a graph with centralizing number two or three,

and let H be a centralizer of G. If A(G) = 2, then let w1 and w2 be the peripheral

vertices of H; if A(G) = 3, then let w1, w2, and w3 be the peripheral vertices of H

with diam(H) = dH(w1, w2) = dH(w1, w3).
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1. diam(H) = p+ 2 and rad(H) = p+ 1. Thus for any x ∈ V (H),

εH(x) =


p+ 2, for x ∈ P (H);

p+ 1, for x ∈ V (G).

2. 1 ≤ p ≤ rad(G).

3. Let x1 ∈ N1, and for fixed i where 2 ≤ i ≤ A(G), let xi ∈ Ni. Then

a) dH(x1, xi) = dG(x1, xi) ∈ {p, p+ 1}.

b) p = dH(N1, Ni) = dG(N1, Ni)

= dH(x1, Ni) = dG(x1, Ni)

= dH(xi, N1) = dG(xi, N1).

Moreover, if A(G) = 3 then p = dH(x1, N2 ∪N3) = dG(x1, N2 ∪N3).

4. Suppose that v ∈ V (G) has degree one in G and u is its neighbor in G. Then

a) v is an element of some Ni, and

b) u and v cannot belong to the same Ni.

5. Suppose diam(G) > rad(G) + 1 and u, v are vertices of G such that dG(u, v) =

diam(G). If A(G) = 2 then u and v cannot belong to different Ni. If A(G) = 3

then we cannot have u ∈ N1 with v ∈ N2 ∪N3, nor v ∈ N1 with u ∈ N2 ∪N3.

Observe that if a graph G has centralizing number two or three, then the periphery

of any centralizer H of G consists of exactly the vertices that are not in C(H).

Additionally, observe that p ≥ 1 from statement (2) implies that w1 and w2 are not

adjacent and have no common neighbors. If A(G) = 3, the same also holds for w1

and w3. However, w2 and w3 may be adjacent and may have common neighbors.

Furthermore, we can improve the lower bound on p when A(G) = 3.
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Lemma 2.1.4. If G has centralizing number 3 and H is a centralizer, then p ≥ 2.

Proof. Suppose H is a centralizer of G with p = 1. Construct the graph H ′ from H

by identifying w2 and w3: V (H ′) = V (G) ∪ {w1, w2} and E(H ′) = E(G) ∪ {w1v :

v ∈ N1} ∪ {w2v : v ∈ M}. We show that H ′ contains G as its center, contradicting

the fact that A(G) = 3. Note that dH′(w1, w2) = dH(w1, w2) = 3, and so εH′(w1) =

εH′(w2) = 3.

It is left to show that εH′(v) = 2 for v ∈ V (G). Let u ∈ V (H ′), and let P be a

shortest u, v-path in H. If P does not contain w3, then P is also a path in H ′. If

P does contain w3, then we construct a u, v-path in H ′ by replacing w3 with w2 and

shortening if P already contained w2. Hence εH′(v) ≤ εH(v) = 2. Since p ≥ 1, v

cannot be adjacent to both w1 and w2, and so εH′(v) = 2.

It is worth noting that if G has centralizing number at most three and H is

a centralizer of G, then each vertex of P (H) is adjacent to some vertex of C(H).

However, this is not the case in Hedetniemi’s construction of a centralizer for any

graph G with A(G) = 4.

2.2 Algorithm for the centralizing number of a

graph

We present a practical algorithm to compute the centralizing number of small graphs.

The fundamental idea of the algorithm is to first check if a graph G is self-centered.

If not, we add two vertices w1 and w2 to G in all possible ways in order to create a

centralizer H. If still no centralizer is found, then three vertices are added to G in

all possible ways to create a centralizer. If still no centralizer is found, then G has

centralizing number four. A description in pseudocode of this method for checking if
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a graph has centralizing number at most two is in Algorithm 1. The two main ideas

that make the algorithm practical are an extension of the Floyd-Warshall algorithm

and the selection of feasible neighborhoods of w2. We describe each step in detail in

the remainder of this section.

Algorithm 1 Computes if a graph has centralizing number zero, two, or greater than
two.

Input: A graph G with n vertices.
Output: Returns whether the centralizing number is 0, 2, or greater than 2.

Use the Floyd-Warshall algorithm on G to compute pairwise distances.
if G is self-centered then return A(G) = 0

for S ⊆ V (G) with |S| ≤ n
2

do
Create G′ from G by adding a vertex w1 with NG′(w1) = S.
Use the Floyd-Warshall extension on G′ to update pairwise distances.
for feasible T ⊆ horG′(w1) with |T | ≥ |S| do

Create H from G′ by adding vertex w2 with NH(w2) = T .
Use the Floyd-Warshall extension on H to update pairwise distances.
if C(H) ∼= G then return A(G) = 2

return A(G) > 2

2.2.1 Floyd-Warshall algorithm and extension

In order to compute the eccentricity of every vertex of a graph G, we compute the

pairwise distances by applying the well known Floyd-Warshall algorithm [37, 83] to

G. The output of the Floyd-Warshall algorithm is a pairwise distance matrix DG,

where DG[i, j] is the distance from vertex i to vertex j in G. The main idea of

the Floyd-Warshall algorithm is to compute intermediate matrices Dk
G where Dk

G[i, j]

represents the distance from vertex i to vertex j by using only the first k vertices as

intermediate vertices. Hence Dn
G = DG when G has n vertices. The Floyd-Warshall

algorithm runs in O(n3) time; see [30] for more information. We use an optimized

implementation of the Floyd-Warshall algorithm from Valerio [78].
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When we compute the matrices DG′ and DH , we could apply the Floyd-Warshall

algorithm again. However, we have already computed DG, and so we use an extension

of the Floyd-Warshall algorithm to compute DG′ from DG. We begin by computing

Dn
G′ , where G has n vertices and G′ has n + 1 vertices. After copying the pairwise

distances DG[i, j] to Dn
G′ [i, j] for 1 ≤ i, j ≤ n, we need only compute entries of

Dn
G′ that are the distances to w1. For each vertex i, 1 ≤ i ≤ n, we have that

d(i, w1) = 1 + min{d(i, j) : jw1 ∈ E(G′)}. Next, we compute Dn+1
G′ from Dn

G′ with

one iteration of the Floyd-Warshall algorithm. The creation of DG′ from DG runs in

O(n2) time.

We use this same extension to compute DH from DG′ . This extension can be

generalized to computing DH for any graph H from DG where G is an induced

subgraph of H.

2.2.2 Selecting N1

Given a centralizer H, we arbitrarily name the peripheral vertices w1 and w2. Hence

we may assume that degH(w1) ≤ degH(w2). Since Lemma 2.1.3 (2) implies that w1

and w2 do not have any common neighbors, we conclude that |N1| ≤ n
2
. Furthermore,

we check possible neighborhoods of w1 in order of increasing size. This heuristic

improves the running time since most small graphs have at least one centralizer with

a peripheral vertex of low degree.

2.2.3 Selecting N2

As described in Algorithm 1, we add vertices w1 and w2 to G in separate steps instead

of simultaneously. This allows us to eliminate some vertices of G as possible neighbors

for w2 based on the neighborhood of w1.
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Theorem 2.2.1. Suppose G is a graph with centralizing number two. Let H be a

centralizer of G with peripheral vertices w1 and w2. Let G′ be the subgraph of H

induced by V (G)∪ {w1}, and let S = {v ∈ V (G) : dG(v, u) ≤ εG′(w1) ∀u ∈ NG′(w1)}.

Then N2 ⊆ horG′(w1) ∩ S.

Proof. There exists y ∈ V (G) such that dG′(y, w1) = εG′(w1). Suppose that x ∈ N1

but dG′(x,w1) 6= εG′(w1). Since H is a centralizer, dH(w1, w2) ≥ dH(w1, x). Also,

since every path in G′ is also a path in H, we have that dH(w1, x) ≤ dG′(w1, x).

If dH(w1, x) < dG′(w1, x), then w2 must be on a shortest w1, x-path in H. This

would imply that dH(w1, w2) < dH(w1, x), which is a contradiction. Hence we

have dH(w1, x) = dG′(w1, x). Similarly dH(w1, y) = dG′(w1, y). Then dH(w1, w2) ≤

dH(w1, y) + 1 ≤ dH(w1, x), which is a contradiction. Hence N2 ⊆ horG′(w1).

Let v ∈ N2. Since N2 ⊆ horJ(w1), then dH(v,N1) = εJ(w1)− 1. By Lemma 2.1.3

(3b), p = εJ(w1) − 1. Lemma 2.1.3 (3a) implies dG(u, v) ∈ {εJ(w1) − 1, εJ(w1)} for

any u ∈ N1. Therefore v ∈ S.

Thus, the neighbors of w2 must be in the set horG′(w1) ∩ S. It is worth noting

that we do not eliminate a vertex v as a possible neighbor of w2 by checking if

dG(v, u) ≥ εG′(w1) − 1 for all u ∈ NG′(w1), since this is implied from v ∈ horG′(w1).

Furthermore, since we assumed that degH(w1) ≤ degH(w2), it is often the case that

| horG′(w1) ∩ S| is smaller than the degree of w1, and the algorithm simply moves on

to the next neighborhood for w1.

2.2.4 Beyond adding two vertices

After checking that a graph is not self-centered, we compute the diameter of the

graph. If it is not self-centered but has a diameter of two, we know that the graph

must have centralizing number two from Lemma 2.5.5.
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When attempting to create a centralizer by adding three vertices instead of two,

the same ideas apply. Recall that {w1, w2} and {w1, w3} are diametral pairs. Instead

of concluding that N2 ⊆ S ∩ horG′(w1), we have that N2 ∪ N3 ⊆ S ∩ horG′(w1)

where N3 is the neighborhood of w3. As a result, we cannot make any assumptions

about the degree of w1 in comparison to the degree of w2, but we can assume that

degH(w2) ≤ degH(w3). The other main difference when adding three vertices instead

of two is that it is possible to have the edge w2w3. Hence once N1, N2, and N3 have

been determined, we must check the eccentricities of H twice: once with the edge

w2w3 and once without.

2.2.5 Complexity

Algorithm 1 is efficient in practice, but has exponential running time in the worst

case, which leads to the following question:

Question 2.2.2. What is the computational complexity of computing the centralizing

number of a graph?

Computing whether or not a graph is self-centered is in P by using the Floyd-Warshall

algorithm. Computing that a graph G has centralizing number at most t is an NP

problem because we can verify a graph H is a centralizer for G in polynomial time

by using the Floyd-Warshall algorithm.
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2.3 Computational results

2.3.1 Centralizing number of small graphs

We implemented the algorithm of Section 2.2 in C++, and the code is available

online.1 We used geng from McKay’s nauty package [70] to generate every connected

graph (up to isomorphism) on at most twelve vertices, which was then piped to our

program to compute the centralizing number. For graphs with eleven and twelve

vertices, we performed the computations in parallel on the Open Science Grid [74].

The total computation time for each number of vertices is listed in Table 2.2.

The total number of connected graphs with each centralizing number for each n

are listed in Table 2.1, and lists for all graphs with centralizing number three or four

with at most twelve vertices are posted online.2 Note that the smallest graph with

centralizing number four has six vertices. The graph is a tree whose leaves are not

equidistant from its center, so by Theorem 2.1.2 this graph has centralizing number

four. The smallest graphs with centralizing number three are shown in Figure 2.2. The

graph in Figure 2.2a was previously discovered by Bielak [11] and Liu and He [67].

Also note that the percentage of self-centered graphs increases with n, while the

percentage of graphs with each nonzero centralizing number decreases for large enough

n. We will discuss the growth rate of the number of graphs with each centralizing

number in Section 2.6.

2.3.2 Radius and diameter of centralizers

Examining small graphs and their centralizers suggests comparing the radius and di-

ameter of a centralizer to the radius and diameter of the original graph. Hedetniemi’s

1http://www.math.unl.edu/~s-sbehren7/main/Data.html
2http://www.math.unl.edu/~s-sbehren7/main/Data.html

http://www.math.unl.edu/~s-sbehren7/main/Data.html
http://www.math.unl.edu/~s-sbehren7/main/Data.html
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n A(G)=0 A(G)=2 A(G)=3 A(G)=4

1 1 100.0%
2 1 100.0%
3 1 50.0% 1 50.0%
4 2 33.3% 4 66.7%
5 5 23.8% 16 76.2%
6 28 25.0% 83 74.1% 1 0.9%
7 223 26.1% 611 71.6% 5 0.6% 14 1.6%
8 3,151 28.3% 7,655 68.9% 127 1.1% 184 1.7%
9 79,673 30.5% 174,925 67.0% 3,988 1.5% 2,492 1.0%
10 3,853,870 32.9% 7,656,973 65.4% 163,049 1.4% 42,679 0.4%
11 357,767,742 35.5% 637,989,564 63.4% 9,924,086 1.0% 1,019,173 0.1%
12 63,104,972,067 38.5% 99,950,290,463 60.9% 967,896,377 0.6% 36,671,569 0.02%

Table 2.1: A(G) distributions for fixed n. The first number is the total number of
connected graphs on n vertices with A(G) = t while the second number is a percentage
out of all connected graphs on n vertices.

(a) (b) (c)

(d) (e)

Figure 2.2: The smallest graphs with centralizing number three.

n time
7 0s
8 3s
9 2m 10s
10 3h 17m 42s
11 13d 9h 36m 57s
12 10y 6d 23h 34m 05s

Table 2.2: The total computation time for fixed n.
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construction shows that for any graph G with centralizing number four, there exists

a centralizer H with rad(H) = 2 and diam(H) = 4. What bounds can be obtained

on the radius of the centralizer of a graph with centralizing number two or three? If

useful bounds could be obtained, we may be able to increase the computation speed

of Algorithm 1.

We begin with some trivial bounds on the radius and diameter of centralizers.

Proposition 2.3.1. Let G be a graph with centralizer H. If A(G) = 2, then 2 ≤

rad(H) ≤ rad(G) + 1 and 3 ≤ diam(H) ≤ rad(G) + 2. If A(G) = 3, then 3 ≤

rad(H) ≤ rad(G) + 1 and 4 ≤ diam(H) ≤ rad(G) + 2. The upper bounds in each case

are sharp.

Proof. Suppose G is a graph with centralizing number two and centralizer H. We

use the bounds on p from Lemma 2.1.3 to obtain bounds on the radius and diameter

of H. Since 1 ≤ p ≤ rad(G) with diam(H) = p+ 2 and rad(H) = p+ 1, we conclude

that 2 ≤ rad(H) ≤ rad(G) + 1 and 3 ≤ diam(H) ≤ rad(G) + 2. One sharpness

example for the upper bounds is a graph G that is a star with central vertex x. Stars

have a radius of one and diameter of two. A centralizer for G is the graph H where

V (H) = V (G) ∪ {w1, w2} and E(H) = E(G) ∪ {w1, x} ∪ {w2, v : v ∈ V (G) \ {x}}.

Then H has a radius of two and a diameter of three.

Similarly, suppose G is a graph with centralizing number three and centralizer H.

We use the bounds on p from Lemmas 2.1.3 and 2.1.4 to obtain bounds on the radius

and diameter of H. Since 2 ≤ p ≤ rad(G) with diam(H) = p+ 2 and rad(H) = p+ 1,

we conclude that 3 ≤ rad(H) ≤ rad(G) + 1 and 4 ≤ diam(H) ≤ rad(G) + 2. A

sharpness example for the upper bounds is the centralizer H pictured in Figure 2.3

for the graph G induced by the solid vertices. The graph G has radius three while H

has radius four and diameter five.
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Figure 2.3: An example showing the upper bound of Proposition 2.3.1 for A(G) = 3
is sharp.

Our lack of a sharpness example for the lower bounds from Proposition 2.3.1 leads

us to conjecture the lower bounds may be increased. In order to determine how much

we could increase the lower bounds, we searched for any graph G with a centralizer

H where rad(H) < rad(G). Below are two examples of families of graphs Gt with a

centralizer Ht where rad(Ht) = rad(Gt)− 1.

Proposition 2.3.2. For t ≥ 2, let C be a cycle on 2t + 4 vertices with x and y a

diametral pair, and let P be a path with t vertices whose endpoints are y and z. Let

Gt be the graph formed by C and P , where y is the only common vertex of C and

P . Let Ht be the graph containing Gt as a subgraph as well as vertices w1 and w2

with w1 adjacent to x and z and w2 adjacent to the four vertices of C that are a

distance of one or two from y. Then Ht is a centralizer of Gt with rad(Gt) = t + 2

and rad(Ht) = t+ 1.

Proof. First observe that every vertex of C has eccentricity at least t + 2 in Gt in

order to reach all vertices of C and every vertex of P has eccentricity at least t+ 2 in

Gt since any shortest path to x must use a x, y-path. In particular, dGt(y, z) = t− 1

and every vertex of Gt lies on a shortest x, y-path or y, z-path. Hence eGt(y) = t+ 2

and dG(x, z) = 2t− 1, so rad(Gt) = t+ 2 and Gt is not self-centered.

Hence in order to show A(Gt) = 2, it is left to show that C(Ht) = Gt. Note that

dHt(w1, w2) = t + 2, so we need to show every vertex of Gt has eccentricity t + 1 in
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Ht. Let C1 be the cycle in Ht using a x, y-path in C, P , and w1, and let C2 be the

cycle using the other x, y-path of C, P and w1. Thus C1 and C2 are cycles on 2t+ 3

vertices. Let v ∈ V (Gt). Then for any u ∈ V (Ht), the pair u and v either lie in C,C1,

or C2. If u and v are in C1 or C2, then dHt(u, v) ≤ t + 1. In particular, there exists

a vertex in C1 or C2 whose distance in Ht from u is t + 1. If u and v are in C then

either dC(u, v) ≤ t+ 1 or u and v are a diametral pair in C. If dC(u, v) = t+ 2, then

there exists a shorter path in Ht by using w2. Using the previous statements, we may

conclude that at least one of the four neighbors of w2 is a distance of at most t from

u in Ht. Therefore, for any u ∈ V (Gt), εHt(u) = t+ 1.

A computer search has revealed that G = G1 in the previous example, a graph

with 9 vertices, is the smallest graph with a centralizer H and rad(H) < rad(G).

Proposition 2.3.3. For t ≥ 1, let Gt be the graph formed by a disjoint union of a

cycle on 4t + 6 vertices with diametral pair x and y, and two paths with t vertices.

Additionally, include the edges from x to an endpoint of one path and y to an endpoint

of the other path. Let Ht be the graph containing Gt as a subgraph and the vertices

w1 whose neighbors are the two pendants of Gt and w2 whose neighbors are the four

vertices of the cycle that are a distance t+ 1 from x or y. Then rad(Gt) = 2t+ 3 and

rad(Ht) = 2t+ 2.

We omit the proof of Proposition 2.3.3 because it is similar to the proof of Propo-

sition 2.3.2.

The previous results lead us to conjecture the following.

Conjecture 2.3.4. Suppose G is a graph with centralizing number two and rad(G) ≥

4. If H is a centralizer of G, then rad(H) ≥ rad(G)− 1.
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Thus if Conjecture 2.3.4 is true, the families of graphs from Propositions 2.3.2

and 2.3.3 show it is also sharp. Observe that Conjecture 2.3.4 is equivalent to

diam(H) ≥ rad(G) since diam(H) = rad(H) + 1.

We modified Algorithm 1 to check the radius of every centralizer for each graph

with centralizing number two and at most ten vertices. This computer search showed

that Conjecture 2.3.4 holds for all graphs with at most ten vertices.

In order to provide support for Conjecture 2.3.4, we examine properties of a cen-

tralizer H for a graph G when rad(H) < rad(G). In particular, we consider the role

of the peripheral vertices in a graph’s centralizer. Given a graph G with centralizer

H, we define a vertex w ∈ P (H) to be used for transportation if there exists a vertex

v ∈ V (G) with u ∈ horG(v) such that εH(v) < εG(v) and a shortest u, v-path in

H uses w. If G is a graph with centralizing number two and H a centralizer, then

most centralizers have one peripheral vertex that is used for transportation while the

other peripheral vertex keeps the first peripheral vertex out of the center. However,

if rad(H) < rad(G), this cannot be the case.

Proposition 2.3.5. Let G be a graph with A(G) = 2 and centralizer H. If rad(H) <

rad(G), then both vertices in P (H) are used for transportation.

Proof. Let w1 and w2 be the peripheral vertices of H, and define

T1 = {(u, v)|u, v ∈ V (G), εH(u) < εG(u) = dG(u, v), and w1 lies on a shortest u, v-path} and

T2 = {(u, v)|u, v ∈ V (G), εH(u) < εG(u) = dG(u, v), and w2 lies on a shortest u, v-path}.

Hence T1 is the set of vertices in G using w1 for transportation and T2 is the set of

vertices using w2 for transportation.

If w2 is never used for transportation, then T2 = ∅. Since rad(H) < rad(G), this

implies that for every v ∈ V (G), there exists some u ∈ V (G) so that (u, v) ∈ T1. Let

v ∈ V (G) be a vertex in the neighborhood of w2, so εH(v) = rad(H). Then (u, v) ∈ T1
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for some u, so there is a u, v-path P containing w1 of length at most rad(H). Hence

dH(v, w1) < rad(H) and thus dH(w1, w2) ≤ rad(H), a contradiction.

By Proposition 2.3.1, for any graph with radius two and centralizing number two,

the radius of any centralizer for the graph is either two or three. However, if G is a

graph with A(G) = 2, rad(G) = 3, and a centralizer H, then we have 2 ≤ rad(H) ≤ 4.

Hence the conclusion of Conjecture 2.3.4 holds for graphs with radius at most three.

We conjecture that the lower bound can be further increased for graphs with radius

three.

Conjecture 2.3.6. Suppose G is a graph with centralizing number two and rad(G) =

3. If H is a centralizer of G, then rad(H) ≥ rad(G).

In particular, if there is a counterexample to Conjecture 2.3.6, then it is a graph

with diameter exactly four.

Proposition 2.3.7. Let G be a graph with centralizing number two and rad(G) = 3.

If there exists a centralizer H of G with rad(H) = 2, then diam(G) = 4.

Proof. Since A(G) = 2, we have diam(G) > rad(G). Suppose such an H exists

with peripheral vertices w1 and w2. Suppose u, v ∈ V (G) with dG(u, v) ≥ 3. Since

dH(u, v) = 2, either u, v ∈ NH(w1) or u, v ∈ NH(w2). Assume for the sake of

contradiction that diam(G) ≥ 5. Then there exist x, y ∈ V (G) with dG(x, y) ≥ 5.

Without loss of generality, x, y ∈ NH(w1). For any v ∈ V (G), either dG(x, v) ≥ 3 or

dG(y, v) ≥ 3, and thus v ∈ NH(w1). In particular, NH(w1) = V (G), which contradicts

Lemma 2.1.3.

We also conjecture the lower bounds of Proposition 2.3.1 can be increased for

graphs with centralizing number three.
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Conjecture 2.3.8. Suppose G is a graph with centralizing number three and

rad(G) ≥ 4. If H is a centralizer of G, then rad(H) ≥ rad(G).

From our computer search, the conjecture holds for all graphs with at most eleven

vertices. By Proposition 2.3.1, if G is a graph with A(G) = 3 and radius two or three,

then any centralizer H of G has rad(H) ≥ 3. Hence the conclusion of Conjecture 2.3.8

holds when rad(G) ≤ 3.

2.4 Effect of cloning and twinning vertices on

A(G)

As stated in the introduction, there are examples of infinite families of graphs with

each possible centralizing number. We introduce a method of constructing new graphs

from some base graph, and then focus to the specific cases of cloning and twinning

vertices. We use twinning and cloning vertices to create a new infinite family of graphs

with centralizing number three and a new infinite family with centralizing number

four. First, we introduce a sufficient condition for graphs to have centralizing number

at most two.

Definition 2.4.1. A clique is a pairwise adjacent set of vertices. A clique K in a

graph is a dominating clique if every vertex not in K is adjacent to at least one vertex

in K. Note that a dominating clique is not necessarily a maximal clique.

Proposition 2.4.2. Let G be a graph that is not complete and that contains a dom-

inating clique. Then A(G) ≤ 2. If G has diameter 3, then A(G) = 2.

Proof. Let S be the vertices in the dominating clique that are adjacent to at least one

vertex not in the clique. ConstructH fromG by adding vertex w1 whose neighborhood
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is S and adding vertex w2 with neighborhood V (G) \ S. Then for v ∈ S, εH(v) = 2

since v is adjacent to w1, v can reach any vertex of V (G)\S via some vertex of S, and

can reach w2 via a neighbor in V (G)\S. For any v ∈ V (G)\S, εH(v) = 2 because v is

adjacent to w2, v may reach any vertex of V (G)\S via w2, and can use a neighbor in

S to reach w1 or any other vertex of S. Vertices w1 and w2 are in the periphery since

every w1, w2-path has length at least three. Thus C(H) = G. Therefore A(G) ≤ 2.

Since G has a dominating clique, the diameter of G is at most three. If the

diameter of G is exactly three, then G has some vertex with eccentricity 3 in G.

However any vertex of K has an eccentricity in G of at most two, so G is not self-

centered. Thus A(G) = 2.

Corollary 2.4.3. If G has a dominating vertex and is not complete, then A(G) = 2.

Proof. If G has a dominating vertex d, then we apply Proposition 2.4.2 with K = {d}.

Since G is not complete, there exists some vertex with eccentricity two, but εG(d) = 1.

Hence G is not self-centered, so A(G) = 2.

Now we introduce the graph operation G⊕u,S J , which generalizes a construction

of Klavžar, Narayankar, and Walikar [55]. We use Corollary 2.4.3 to prove special

cases about centralizing numbers of graphs G⊕u,S J .

Definition 2.4.4. Let G and J be graphs, with u ∈ V (G) and S ⊆ V (J) (S may be

empty). Define G⊕u,S J to be the graph obtained from the disjoint union of G and

J by joining each vertex of J to all vertices in the open neighborhood of u in G, and

joining each vertex of S to u.

The next lemma shows that the operation G⊕u,S J essentially preserves distances

from G.



29

Lemma 2.4.5. Given a graph G with at least two vertices and a graph J with u ∈

V (G) and S ∈ V (J), let G′ = G ⊕u,S J . Then for any v ∈ V (J), x ∈ V (G) \ {u},

and y ∈ V (G), we have dG′(x, y) = dG(x, y) and dG′(v, x) = dG′(u, x). Hence εG(y) =

εG′(y). Furthermore, if u does not dominate G then εG′(u) = εG′(v). When u is a

dominating vertex of G, if S = V (J) then εG′(u) = 1, else εG′(u) = 2. If v ∈ S is

also a dominating vertex of J , then εG′(v) = 1, else εG′(v) = 2 for any v ∈ V (J).

Proof. Let P be a shortest x, y-path in G′. If P does not have any vertices in J then

dG′(x, y) = dG(x, y). If P contains a vertex of J , then we may swap that vertex for

u to create a path in G, and since P was a shortest path then dG′(x, y) = dG(x, y).

Hence εG′(u) = εG(u) since (in G′) u tis adjacent to every vertex of J .

Let Q be a shortest x, v-path in G′. Then v must be the only vertex of J in Q

and the vertex next to v in Q must be a neighbor of u. Thus dG′(x, v) = dG′(x, u).

Hence εG′(x) = εG(x).

This leaves the eccentricities in G′ of vertices of J . The distance in G′ between any

two vertices of V (J)∪{u} is at most two. If u is not dominating in G, then εG(u) > 1

and no vertex of J can dominate G′, so εG′(u) = εG′(v). Suppose u dominates G.

If S = V (J), then u is adjacent to every vertex of G′, so εG′(u) = 1. Otherwise

there exists some vertex v of G that is nonadjacent to u, so εG′(u) = 2. If some

v ∈ S is also dominating in J , then it is adjacent to every vertex of G′, so εG′(v) = 1.

Otherwise for any v ∈ V (J) there exists a vertex of J ∪ {u} that is not adjacent to

v, so εG′(v) = 2.

Theorem 2.4.6. Given a connected graph G and a graph J , let u ∈ V (G) be a

non-dominating vertex of J , let S ⊆ V (J), and let G′ = G ⊕u,S J . If A(G) = 0 or

A(G) = 2, then A(G′) = A(G). If A(G) = 3 or A(G) = 4, then 2 ≤ A(G′) ≤ A(G).
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If u dominates G and S = V (G) then either both G and J are complete and

A(G′) = 0, or A(G′) = 2.

If u dominates G and S 6= V (J), then one of the following occurs:

1. If G = Kn for n ≥ 2, then A(G) = 0 and A(G′) = 2.

2. If u is the only dominating vertex of G and some v ∈ S dominates J , then

A(G′) = A(G) = 2.

3. If u is the only dominating vertex of G and no v ∈ S dominates J , then A(G) =

2 and A(G′) = 0.

4. Otherwise A(G) = A(G′) = 2.

Proof. Let H be a centralizer of G and let H ′ = H ⊕u,S J . First suppose u does not

dominate G. In order to show A(G′) ≤ A(G), it is enough to show that C(H ′) = G′

since H ′ has A(G) more vertices than G′. By Lemma 2.1.3, H does not have a

dominating vertex. Thus εG′(y) = εG(y) for all y ∈ V (G) and εG′(u) = εG′(v) for all

v ∈ V (J) by Lemma 2.4.5. Hence all vertices in G′ have equal eccentricities in H ′ and

any vertices in V (H ′)\V (G′) have higher eccentricities in H ′. Therefore C(H ′) = G′.

Suppose for the sake of contradiction that A(G) ≥ 2, but A(G′) = 0. Then there

exists at least one vertex of G whose eccentricities in G and G′ are different, which

contradicts Lemma 2.4.5. Thus A(G) ≥ 2 implies that A(G′) ≥ 2.

Now suppose u is a dominating vertex of G with S = V (J). Then u also dominates

G′. If both G and J are complete, then G′ is also complete, so A(G) = A(G′) = 0. If

either G or J is not complete then G′ also has a non-dominating vertex, so A(G′) = 2

by Corollary 2.4.3.

Finally suppose u is a dominating vertex of G with S 6= V (J). Then u is not a

dominating vertex of G′. If every vertex of G is dominating, then G = Kn, so G is self-
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centered. Any vertex of G\{u} is dominating in G′, so A(G′) = 2 by Corollary 2.4.3.

If u is the only vertex of G that dominates G, then by Corollary 2.4.3 we know

that A(G) = 2. Furthermore, any vertex of G \ {u} has eccentricity two in both G

and G′. Additionally, εG′(u) = 2 and any vertex of J has eccentricity at most two

in G′. If there exists some v ∈ S that dominates J , then v is also dominating in

G′, so A(G′) = 2 be Corollary 2.4.3. Otherwise every vertex of G′ has eccentricity

two, so G′ is self-centered. Otherwise G must have at least one other dominating

vertex x 6= u, but G is not the complete graph. Then Lemma 2.4.5 tells us that

x is also a dominating vertex of G′, so applying Corollary 2.4.3 we conclude that

A(G) = A(G′) = 2.

The case of Theorem 2.4.6 where A(G) = 2 and S = V (J) was proved by Klavžar,

Narayankar, and Walikar [55]. Next we define cloning and twinning vertices, and

show how the centralizing number of a graph changes after cloning or twinning a

single vertex.

Definition 2.4.7. Given a graph G and a vertex v, the result of cloning v is a graph

G′ formed by adding a vertex v′ whose neighborhood is NG(v). We say that v′ is a

clone of v in G′. The result of twinning v is a graph G′′ formed by adding a vertex

v′′ whose neighborhood is NG(v) ∪ {v}. We say that v′′ is a twin of v in G′′.

Note that in the case where J is a single vertex v, if S = {v} then G⊕u,S J is the

graph formed from G by twinning u, and otherwise G⊕u,S J is the graph formed from

G by cloning u. Hence we have the following immediate corollaries of Lemma 2.4.5

and Theorem 2.4.6.

Corollary 2.4.8. Given a graph G with at least two vertices, let G′ be any graph

formed by cloning or twinning any vertex v of G. Let v′ be the clone or twin of v.
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Then for any vertex x ∈ V (G′)\{v, v′} and y ∈ V (G′)\{v′}, dG′(x, y) = dG(x, y) and

dG′(x, v
′) = dG′(x, v). Hence εG′(x) = εG(x) and εG′(v) = εG′(v

′). If v′ is a clone of a

vertex that dominates G, then εG′(v) = 2 = εG(v) + 1. Otherwise, εG′(v) = εG(v).

Corollary 2.4.9. Given a graph G, let G′ be any graph formed by twinning any vertex

of G or cloning any non-dominating vertex of G. If A(G) = 0 or A(G) = 2, then

A(G′) = A(G). If A(G) = 3 or A(G) = 4, then 2 ≤ A(G′) ≤ A(G).

If G′ is a graph formed from G by cloning a dominating vertex v, then one of the

following occurs:

1. If G = Kn, then A(G) = 0 and A(G′) = 2.

2. If v is the only dominating vertex of G, then A(G) = 2 and A(G′) = 0.

3. Otherwise A(G) = A(G′) = 2.

Corollary 2.4.9 raises the question of whether twinning or cloning preserves the

centralizing number. However, there exist graphs where cloning or twinning a vertex

decreases the centralizing number. An example is shown in Figure 2.4. In Figure 2.4a,

we provide the centralizer for the graph induced by the solid vertices, which has

centralizing number three. When we clone vertex v, the resulting graph G′ has

centralizing number two, as shown in Figure 2.4b. Similarly, the graphs in Figures 2.5a

and 2.5c have centralizing number four, while the cloning of vertex v results in a graph

whose centralizing number is two (Figure 2.5b) and three (Figure 2.5d).

We checked graphs with at most eleven vertices and found examples where twin-

ning a vertex causes a graph with centralizing number three to have centralizing

number two, as shown in Figure 2.6. However, we did not find any graphs where

twinning a vertex in a graph with centralizing number four resulted in a graph with

lower centralizing number.
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v

(a)

v′ v

(b)

Figure 2.4: An example where cloning a vertex causes the centralizing number to
decrease from three to two.

Question 2.4.10. Can twinning a vertex in a graph with centralizing number four

decrease the centralizing number?

v

(a)

v′ v

(b)

v

(c)

v

v′

(d)

Figure 2.5: The graphs shown in (a) and (c) have centralizing number four. When
cloning vertex v of (a), the resulting graph has centralizing number two. A centralizer
is shown in (b). Similarly, cloning vertex v of (c) results with a graph with centralizing
number three, and a centralizer is shown in (d).

Although cloning or twining a vertex may decrease the centralizing number, if a

vertex has been cloned or twinned sufficiently many times then additional cloning or

twinning will not cause the centralizing number to decrease.

Proposition 2.4.11. Given a graph G, let G′ be the graph formed by of cloning vertex

v at least once. Let G′′ be the graph formed by cloning v once more. If A(G′) ≥ 3,

then 3 ≤ A(G′′) ≤ A(G′). The same result holds if twinning is used instead of cloning.
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v

(a)

v

v′

(b)

Figure 2.6: The graph in (a) is the centralizer for the subgraph induced by the solid
vertices. The graph formed by twinning vertex v has lower centralizing number, as
shown in (b).

Proof. By Corollary 2.4.9 2 ≤ A(G′′) ≤ A(G′). Let S = (V (G′′) \ V (G)) ∪ {v},

so |S| ≥ 3. Suppose to the contrary that A(G′′) = 2 and let H be a centralizer

of G′′ with P (H) = {w1, w2}. Then by Lemma 2.1.3, w1 and w2 cannot have any

common neighbors. Hence each vertex of S is adjacent to either w1, w2, or neither.

Suppose some s ∈ S is not adjacent to w1 nor w2. Let H ′ be the induced subgraph

of H on V (H) \ {s}. Since A(G) = 3, Corollary 2.4.3 implies that G′ does not

have a dominating vertex. Hence G′′ also does not have a dominating vertex. Thus

Corollary 2.4.8 implies that εH(u) = εH′(u) for all u ∈ V (H ′), so H ′ is a centralizer

for G with P (H) = 2, a contradiction.

Hence any s ∈ S must be adjacent to w1 or w2. By the pigeonhole principle,

we have at least two vertices in S adjacent to the same peripheral vertex. Let t

be one of those vertices. Hence the induced subgraph H ′′ of H on V (H) \ {t} has

εH(u) = εH′′(u) for all u ∈ V (H ′′) by Corollary 2.4.8. Therefore H ′′ is a centralizer

for G with |P (H ′′)| = 2, a contradiction.

Proposition 2.4.12. Given a graph G, let G′ be the graph formed by a sequence of

cloning a vertex v at least three times. Let G′′ be the graph formed by cloning v once

more. If A(G′) = 4, then A(G′′) = 4. The same result holds if twinning is used
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instead of cloning.

Proof. By Proposition 2.4.11, 3 ≤ A(G′′) ≤ 4. Let S = (V (G′′) \ V (G)) ∪ {v},

so |S| ≥ 5. Suppose to the contrary that A(G′′) = 3 and let H be a centralizer

of G′′ with P (H) = {w1, w2, w3}. Then by Lemma 2.1.3, w1 and w2 cannot have

any common neighbors, and w1 and w3 cannot have any common neighbors. Hence

each vertex of S must be adjacent to either w1, w2, w3, both w2 and w3, or none of

w1, w2, w3. Suppose some s ∈ S is not adjacent to no vertex of P (H). Let H ′ be the

induced subgraph of H on V (H) \ {s}. Since A(G) = 4, Corollary 2.4.3 implies that

G′ does not have a dominating vertex. Hence G′′ also does not have a dominating

vertex. Thus Corollary 2.4.8 implies that εH(u) = εH′(u) for all u ∈ V (H ′), so H ′ is

a centralizer for G with P (H) = 3, a contradiction.

Hence any s ∈ S must be adjacent to w1, w2, w3, or both w2 and w3. By the

pigeonhole principle, we have at least two vertices in S with the same set of neighbors

in P (H). Let t be one of those vertices. Hence the induced subgraph H ′′ of H on

V (H) \ {t} has εH(u) = εH′′(u) for all u ∈ V (H ′′) by Corollary 2.4.8. Therefore H ′′

is a centralizer for G with |P (H ′′)| = 3, a contradiction.

As mentioned in the introduction, it has been previously shown that there are

infinitely many graphs with centralizing number three and infinitely many with cen-

tralizing number four (see [11, 67, 87, 63]). Propositions 2.4.11 and 2.4.12 give us

another way to generate infinitely many graphs with centralizing number three or

four.

Proposition 2.4.13. An infinite family of graphs with centralizing number four can

be formed by cloning vertices.

Proof. The graph in Figure 2.7a is a centralizer for the subgraph G1 induced by the

solid vertices. Since u is a clone of v in G1 and has centralizing number three, itera-
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tively applying Proposition 2.4.11 yields an infinite family of graphs with centralizing

number three.

Proposition 2.4.14. An infinite family of graphs with centralizing number four can

be formed by cloning vertices.

Proof. The graph G2 in Figure 2.7b is a graph with centralizing number 4. Observe

that G2 can be formed from the graph without vertices s,t, and u by twinning vertex v

three times. Hence, continuing to twin vertex v we iteratively apply Proposition 2.4.12

to obtain an infinite family of graphs with centralizing number four.

u v

(a)

s t

u v

(b)

Figure 2.7: These graphs can be used to generate an infinite family of graphs with
centralizing number three or four.

We conclude this section with another specific case of centralizing numbers with

respect to twinned vertices.

Proposition 2.4.15. Let G be a graph with a pendant vertex v, and let G′ be the

graph where v has been twinned. If A(G) ≤ 3, then A(G) = A(G′). If A(G) = 4, then

A(G′) ≥ 3.

Proof. By Corollary 2.4.9, if A(G) ≥ 3, then A(G′) ≥ 2. Hence it is left to show that

if A(G) ≥ 3, then A(G′) ≥ 3. So suppose A(G′) = 2 with H a centralizer, and let

u be the neighbor of v. By Lemma 2.1.3(4a), each of v and v′ are adjacent to some

vertex of P (H) = {w1, w2}. As argued in the proof of Proposition 2.4.11, without
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loss of generality, v is adjacent to w1 and v′ is adjacent to w2. Since v is adjacent

to v′, we conclude that dH(w1, w2) = 3, so εH(w1) = εH(w2) = 3 and εH(y) = 2 for

y /∈ P (H). Since A(G) > 2, G cannot have a dominating vertex (Corollary 2.4.3).

In particular, there exists some x ∈ V (G) where xu /∈ E(G). Hence xu /∈ E(H). As

εH(v) = εH(v′) = 2, then xw1, xw2 ∈ E(H), which contradicts dH(w1, w2) = 3.

2.5 Centralizing number of dense graphs

Theorem 2.1.2 [18] states that the sparsest connected graphs for a fixed number of

vertices (trees) have either centralizing number two or four. We examine the opposite

end of the spectrum and classify centralizing numbers of very dense graphs.

The following theorem is similar to a theorem of Buckley [15]. However, Buckley’s

focus was on self-centered graphs while we consider graphs that also have centralizing

number two.

Theorem 2.5.1. Let Gn be the collection of all graphs on n vertices with at least(
n
2

)
− dn

2
e edges. Then there are exactly two graphs in Gn that are self-centered. The

remaining graphs of Gn have centralizing number two.

Proof. Suppose G is a graph with exactly
(
n
2

)
− dn

2
e edges, so the complement of G

has dn
2
e edges. Recall that Corollary 2.4.3 states that any graph that is not complete

and contains a dominating vertex has centralizing number two. Note that G has a

dominating vertex if and only if the complement of G has an isolated vertex. The only

way to avoid an isolated vertex in the complement is if the complement is a matching

(for n even) or a matching plus an edge (for odd n). In this case, the eccentricity of

every vertex in G is two, so G is self-centered.
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The complete graph Kn is self-centered, so let G be a graph G 6= Kn whose

complement has at at least one edge and at most bn−1
2
c edges. This means there is

at least one isolated vertex in the complement, so G has a dominating vertex. Then

A(G) = 2 by Corollary 2.4.3.

Thus, with the exception of the complete graph, the densest self-centered graph

has
(
n
2

)
− dn

2
e edges, and any graph with more edges that is not the complete graph

has centralizing number two. This leads us to ask what are the densest graphs with

centralizing number three and four.

Definition 2.5.2. For n ≥ 6, let G4(n) consist of a clique on n − 5 vertices, and

three vertices that are adjacent to every vertex of the clique, two of which also have

a pendant neighbor, as shown in Figure 2.8.

Proposition 2.5.3. For n ≥ 6, A(G4(n)) = 4.

Proof. When n = 6, we have a tree, which by Theorem 2.1.2 has a centralizing

number of four. For n ∈ {7, 8, 9}, we confirm with a computer check that G4(n) also

has a centralizing number of four. For n > 9, we apply Proposition 2.4.12 to conclude

that G4(n) has a centralizing number of four because we can construct G4(n+ 1) by

twinning a vertex in the maximum clique of G4(n).

If we add edge x′y′ to G4(n), then adding w1 with neighbors z, x′, and y′ and

adding w2 adjacent to the rest of the vertices in G4(n) yields a centralizer for G4(n)

with the extra edge. If we add an edge from z to one of x, y, x′, or y′, then adding w1

with neighbors x′ and y′ and adding w2 whose neighbors are the vertices of the Kn−5

yields a centralizer. Notice that by adding any remaining possible edge to G4(n), we

may apply Proposition 2.4.2. In any case, adding an edge to G4(n) yields a graph

with centralizing number two.
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xx′ y y′

z

Kn−5

Figure 2.8: The graph G4(n). The circle indicates a clique of n−5 vertices, with x, y,
and z adjacent to each vertex in the clique.

It is worth observing that G4(6) is the unique graph on 6 or fewer vertices with

a centralizing number greater than two. A computer search has shown that G4(n) is

the unique graph with the largest number of edges and centralizing number greater

than two for n ≤ 11.

Conjecture 2.5.4. G4(n) is the unique graph with the largest number of edges on n

vertices with a centralizing number larger than two.

Since G4(n) has centralizing number four, Conjecture 2.5.4 implies that G4(n) is

the densest graph with centralizing number four. The following statements provide

support for Conjecture 2.5.4.

Lemma 2.5.5. All graphs of diameter two have centralizing number at most two.

Proof. If G is a graph with diameter two, then every vertex of G has eccentricity at

most two. If every vertex has eccentricity two, then G is self-centered, so A(G) = 0.

Otherwise there exists a vertex v with εG(v) = 1, so v is a dominating vertex, and by

Corollary 2.4.3, A(G) = 2.

Lemma 2.5.6. If G is a graph with A(G) > 2, then ∆(G) ≤ n − 3, where ∆(G) is

the maximum degree of G.
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Proof. Suppose G is a graph with centralizing number greater than two. By Corol-

lary 2.4.3, G cannot have a dominating vertex. Hence ∆(G) ≤ n − 2. If G has

a vertex v of degree n − 2, then there is exactly one vertex u that is not adjacent

to v. As G is a connected graph, there exists some vertex x that is adjacent to u.

Assuming G has at least four vertices, then {v, x} is a dominating clique satisfying

Proposition 2.4.2. If G has less than four vertices, it is easy to check that A(G) ≤ 2.

Hence ∆(G) ≤ n− 3.

Theorem 2.5.7. If G is a graph with A(G) > 2, then G has at most
(
n
2

)
− (3

2
n− 2)

edges.

Proof. By Lemma 2.5.5, if A(G) > 2, then G has diameter at least three. Hence

there exists vertices x and y with dG(x, y) = 3. Let S = V (G) \ {x, y}. Then for

any v ∈ S, at least one of xv and yv is in E(G). Additionally, xy ∈ E(G). Since

A(G) > 2, ∆(G) ≤ n − 3 (Lemma 2.5.6). Hence each vertex of S is not adjacent to

at least two vertices of G. In order to satisfy this while maximizing the number of

edges in G, we must have that one of those vertices is x or y and the other vertex is

in S. Hence |E(G)| ≥ (n− 2) + 1 + 1
2
(n− 2) = 3

2
n− 2.

In order to provide support for Conjecture 2.5.4, we also construct a necessary

condition for a graph with n vertices to have at least
(
n
2

)
− (2n − 2) edges and

centralizing number at least two.

Recall from Proposition 2.4.2 that if a graph contains a dominating clique then

the graph has centralizing number at most two.

Definition 2.5.8. If a vertex v is not adjacent to any vertex of some clique, then v

prevents the clique from being dominating and so we say that v is a blocking vertex

for the clique. Let β(C) be the number of blocking vertices for a clique C.
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Similarly, we say v is an almost blocking vertex for some clique if v is adjacent to

exactly one vertex of the clique.

Hence if a graph G has centralizing number greater than two, every clique in G has

at least one blocking vertex, so β(C) ≥ 1 for any clique C of G.

Proposition 2.5.9. Let G be a graph with n ≥ 20 vertices, at least
(
n
2

)
− (2n − 2)

edges, and A(G) > 2. Let C be a maximal clique in G where β(C) is minimized.

Then C has only one blocking vertex, so β(C) = 1.

Proof. Let β = β(C), let γ = |C|, and let B be the set of blocking vertices for C. Let

P = V (G) \ (B ∪ C) with ρ = |P |, so C, B, and P partition V (G). In other words,

P is the pool of vertices that are not in C nor B. Additionally, let A be the set of

almost blocking vertices, and note A ⊆ P .

First we use Turán’s theorem [82] to determine a bound on γ. By Turán’s The-

orem, if G is Kr+1-free then G has at most (1 − 1
r
)n

2

2
edges. Setting r = n

5
yields

(1− 1
r
)n

2

2
<
(
n
2

)
− (2n− 2). Hence G has a clique with at least bn

5
c + 1 vertices, i.e.

G has an independent set with at least bn
5
c + 1 vertices. We conclude γ ≥ 5 since

n ≥ 20.

Consider G, the complement of G. In G, C is an independent set, a blocking

vertex of C is adjacent to every vertex of C, and an almost blocking vertex of C is

adjacent to every vertex of C except one. Hence a dominating clique in G corresponds

to an independent set in G where every vertex in G is nonadjacent to some vertex

in the independent set. Additionally, since G is a graph with n vertices and at least(
n
2

)
− (2n − 2) edges, then G is a graph with n vertices and at most 2n − 2 edges.

Unless otherwise stated, assume all adjacency relations in the remainder of this proof

are in G.
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Notice that every vertex of P is adjacent to at least one vertex of C, else we would

contradict the maximality of C. Suppose a vertex p0 in P is adjacent to exactly one

vertex c0 of C and is nonadjacent to at least one vertex of B. Then (C ∪ {p0}) \ {c0}

is an independent set with γ vertices. Since β was minimized, then for every vertex

of B that is not adjacent to p0 there exists some vertex x in P that is adjacent to p0

and every vertex of C \ {c0}. Hence x is an almost blocking vertex.

Every almost blocking vertex has γ−1 ≥ 4 edges to C. Any vertex of P \A either

has at least two edges to B ∪ C or has one edge to C and one edge to an almost

blocking vertex. Every vertex of B is adjacent to every vertex of C. Hence we have

accounted for at least 2ρ+ γβ = 2n− 2γ − 2β + γβ edges in G. Thus

2n− 2γ − 2β + γβ ≤ 2n− 2,

which simplifies to

(β − 2)(γ − 2) ≤ 2.

Since γ ≥ 5 we have that β ≤ 2.

Assume for the sake of contradiction that β = 2, and let B = {b1, b2}. Then every

vertex of P is adjacent to at least one vertex of C, and every vertex of B is adjacent

to every vertex of C. Hence we have accounted for ρ + 2γ edges, and the number of

remaining edges in G is at most

(2n− 2)− (ρ+ 2γ) = n− γ = ρ+ 2. (2.5.1)

We next consider the following cases, one of which must occur.

Case 1: Some vertex p0 of P is adjacent to exactly one vertex of C and is non-

adjacent to at least one vertex of B. In this case, there are more edges that we can
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account for. As described above, p0 must be adjacent to an almost blocking vertex.

Each almost blocking vertex in P is adjacent to all but one vertex of C, so we have

an additional γ − 2 ≥ 3 edges. Each vertex p0 of P that is adjacent to exactly one

vertex of C and is nonadjacent to at least one vertex of B must be adjacent to at

least two vertices of A∪B, and each remaining vertex of P is adjacent to at least one

more vertex of B ∪C. Hence we have accounted for at least ρ+ 3 more edges, which

is larger than the value from Equation 2.5.1, and hence is too many.

Case 2: Every vertex of P is adjacent to at least two vertices in C or is adjacent

to both b1 and b2 as well as a vertex of C. In this case, each vertex of P has at least

one more edge leaving P than in the previous total. Since there were ρ+ 2 edges left

after Equation 2.5.1, at most two vertices of P can be adjacent to a third vertex in

B ∪ C. In particular, at most two vertices of P can be adjacent to both b1 and b2.

Hence we will break this case into three subcases based on the number of vertices in

P that are adjacent to both b1 and b2.

First observe that there cannot exist p0 ∈ P nonadjacent to B ∪P \ {p0}. If such

a p0 exists, then p0 has some non-neighbor c0 ∈ C. Then {p0, c0} form a dominating

clique in G.

Subcase 1: Exactly two vertices of P are adjacent to both b1 and b2. Let p1 and p2

be the two vertices of P that are adjacent to both b1 and b2. If there exists a third

vertex p3 ∈ P , p3 is nonadjacent to b1 nor b2 and there exists some vertex c1 ∈ C that

is also nonadjacent to p3. Hence {p3, c1} is a dominating clique in G. Thus ρ = 2

and we have accounted for exactly the number of edges from Equation 2.5.1. Note b1

and b2 are adjacent to every vertex except for each other, which implies the edge b1b2

in G is its own component. However, G cannot be disconnected if G has a nonzero

centralizing number.

Subcase 2: Exactly one vertex p1 ∈ P is adjacent to both b1 and b2. Then by
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Equation 2.5.1, G can have one more edge e that has not yet been described. Since

every vertex of P must be adjacent to some vertex of B ∪ P , if e is not contained

in B ∪ P then ρ = 1. This implies that the edge b1b2 is its own component in G,

contradicting that A(G) > 2. If ρ = 1 and the remaining edge e is contained in B∪P ,

the pair of vertices that we have not declared adjacent are b1 and b2. Thus e = b1b2,

which makes b1 dominating, contradicting that G is connected. Hence ρ ≥ 2, and e

is used in B ∪ P . If ρ > 2, then since every vertex of P must be adjacent to some

vertex of B ∪ P , we must have P = {p1, p2, p3} with e = p2p3. Since γ ≥ 5, there

exists an c1 ∈ C that is not adjacent to p2 nor p3, thus {p2, c1} is a dominating clique

in G. Hence ρ = 2 with P = {p1, p2} and p2 has two neighbors c1 and c2 in C.

Since p2 must have a neighbor in B∪P , then e must be from p2 to p1 or from p2 to

a vertex in B, say b1. In the former case γ ≥ 5 implies that there exists some c3 ∈ C

that is not adjacent to p1 nor p2. Thus p2, c3 is a dominating clique in G. Hence the

latter case holds. Either NC(p1) ( {c1, c2}, say c1, or p1 has a distinct neighbor c3 in

C. This completely determines G, so we examine the centralizing number of G. G is

the graph in Figure 2.9a or Figure 2.9b, respectively. For either graph in Figure 2.9,

add vertices {w1, w2} with N(w1) = {p2} and N(w2) = {b1, c1}. This yields a graph

with two more vertices than G and whose central subgraph is G. Thus A(G) ≤ 2.

Subcase 3: Every vertex of P is adjacent to at most one of b1 and b2. Hence we

assume every vertex of P has two neighbors in C. Thus we have accounted for ρ of the

edges in Equation 2.5.1 and hence have at most two edges remaining before counting

edges within B ∪ P . Since every vertex in P has a neighbor in B ∪ P , at least one

edge must be used in B ∪ P that has at least one endpoint in P . Suppose only one

edge is used. If it is contained entirely in P , say p1p2, then since γ ≥ 5, there exists

a vertex c0 ∈ C that is not adjacent to p1 nor p2 (and hence p1, c0 is a dominating

clique in G) unless γ = 5 and p1 has that third edge to a vertex in C and p1 and
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b2

b1

p2

p1 c2

c1

C

(a)

b2

b1

p2

p1
c2
c1

c3

C

(b)

Figure 2.9: Graphs described in Subcase 2. In both graphs, C is a clique and p2
is adjacent to every vertex of C \ {c1, c2}. In (a), p1 is adjacent to every vertex of
C \ {c1}. In (b), p1 is adjacent to every vertex of C \ {c3}.

p2 have disjoint neighborhoods in C. In this special case G has been determined,

so we examine G, which is the self-centered graph in Figure 2.10a. Hence the single

edge must be p1b1 (or p1b2). Once again, the edges of G have been determined, so we

examine G. G is the graph in Figure 2.10b. Add vertices {w1, w2} with N(w1) = {p1}

and N(w2) = {b1, c1, c2}. This is a centralizer for G, so A(G) = 2.

If one edge is in B, then the other edge must be p1p2, else B would contain a

dominating vertex. (Therefore we must use both edges.) Since γ ≥ 5, there exists

some c0 ∈ C that is not adjacent to p1 nor p2, and c0, p1 is a dominating clique in G.

Thus both edges have at least one endpoint in P . Hence we have two independent

vertices p1 and p2 in P . Since γ ≥ 5, there exists some c ∈ C that is not adjacent

to p1 nor p2. The only way p1, p2, c is not a dominating clique in G is if, without

loss of generality, b1 is adjacent to both p1 and p2. Then p1, p2, b2 is a dominating

clique in G unless p1 and p2 have a common neighbor in C. As this determines

G, we examine G. In G, if p1 and p2 have the same two neighbors in C, then G

is the graph in Figure 2.10c. Adding vertices {w1, w2} with N(w1) = {p1, p2} and

N(w2) = {c1, c2, b1} yields a centralizer for G, so A(G) = 2. Otherwise p1 and p2 have

exactly one common neighbor in C with respect to G. In this case, G is the graph
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Figure 2.10: Graphs described in Subcase 3. In each graph, C is a clique.

in Figure 2.10d. Add vertices {w1, w2} with N(w1) = {p1, p2} and N(w2) = {b1, c2}.

This yields a centralizer for G, so A(G) = 2.

We have concluded that each of the cases cannot happen. Therefore β = 1.

Observe the graph G4(n) satisfies the hypothesis of Proposition 2.5.9 and has a

clique with only one blocking vertex. One way to partition the vertices of G into

B∪C ∪P as described within Proposition 2.5.9 is to let y′ be the blocking vertex, let

P = {x′, y, z}, and let C be the remaining vertices. Proposition 2.5.9 shows that any

dense graph with centralizing number greater than two must be structurally similar

to G4(n).

We also conjecture that the densest graphs with centralizing number three are

subgraphs of G4(n).

Definition 2.5.10. Let G1
3(n) be the subgraph of G4(n) where one edge to vertex

z has been deleted. Let G2
3(n) be the subgraph of G4(n) where one edge within the
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initial clique of n− 5 vertices has been deleted.

Proposition 2.5.11. For n ≥ 8, A(G1
3(n)) = A(G2

3(n)) = 3.

Proof. For n = 8 and n = 9, we confirm with Algorithm 1 that G1
3(n) and G2

3(n) have

centralizing number three. For n ≥ 9, we can construct G1
3(n) from G1

3(n) and G2
3(n)

from G2
3(n) by twinning a vertex. Hence we apply Proposition 2.4.11 to conclude that

G1
3(n) and G2

3(n) have centralizing number three for n ≥ 10.

Conjecture 2.5.12. For n ≥ 9, G1
3(n) and G2

3(n) are the only two graphs of maximal

size on n vertices with centralizing number three.

We showed in Proposition 2.5.11 that G1
3(n) and G2

3(n) have centralizing number

three. If Conjecture 2.5.4 is proven, then these are examples of maximal size with

centralizing number three and only uniqueness would remain to be proven.

2.6 The asymptotic number of graphs on n

vertices with given centralizing number

In Section 2.3.1 we determined the number of graphs with each centralizing num-

ber with up to twelve vertices. The number of graphs with each centralizing number

increases with the number of vertices, but each of the percentages for nonzero central-

izing numbers decrease. We proceed by giving more general results on the asymptotic

number of graphs with each centralizing number for a fixed n.

Theorem 2.6.1. Almost all graphs have centralizing number zero.

Proof. Bollobás [14] proved that almost all graphs have diameter 2 but do not have

a dominating vertex. By Lemma 2.5.5, such graphs are self-centered.
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This leaves us with the question of how many graphs with a fixed number of

vertices actually have a nonzero centralizing number. We use dominating vertices

to construct a lower found on the number of graphs on n vertices with centralizing

number two.

Let g(n) represent the number of unlabeled graphs on n vertices. Note that

g(n) ≥ 2(
n
2)
n!

since each unlabeled graph corresponds to at most n! labeled graphs.

Theorem 2.6.2. The number of graphs on n ≥ 2 vertices with centralizing number

two is bounded below by g(n− 1)− 1.

Proof. Let G be a graph on n− 1 vertices that is not complete, and let G′ be G with

a dominating vertex. By Corollary 2.4.3, A(G′) = 2. In order to recover the original

graph G from any graph that has been created by adding a dominating vertex, we

remove a dominating vertex.

We use a construction of Liu to determine a lower bound for the number of graphs

on n vertices with centralizing number three or four.

Theorem 2.6.3 ([65]). Let G be a graph with x, y ∈ V (G) where dG(x, y) = diam(G) =

2m − 1, and let n > m. Construct G′ from G by taking the disjoint union of G and

two Pns and adding an edge from x to an endpoint of the first Pn and an edge from

y to an endpoint of the second Pn.

1. If ∀u ∈ V (G) we have dG(x, u) + dG(u, y) ≤ 2m− 1, then A(G′) = 2.

2. If ∀u ∈ V (G) we have dG(x, u) + dG(u, y) ≤ 2m and there exists a vertex v with

dG(x, v) = dG(v, y) then A(G′) = 3.

3. Otherwise, A(G′) = 4.
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The proof of Theorem 2.6.3 heavily relies on Lemma 2.1.3. Using Theorem 2.6.3,

we will construct families of graphs which then can be enumerated to obtain a lower

bound on the number of graphs on n vertices with centralizing number three or four.

Theorem 2.6.4. The number of graphs on n ≥ 11 vertices with centralizing number

three is bounded below by g(n− 10), while the number of graphs on n ≥ 12 vertices is

bounded below by g(n− 11).

Proof. Given a graph G, fix s ∈ V (G). We define graph J3(G) that satisfies part (2)

of Theorem 2.6.3 and graph J4(G) that satisfies part (3) of Theorem 2.6.3. Graphs

J3(G) and J4(G) are shown in Figure 2.11.

Define the graph J3(G) by V (J3(G)) = {x, y, t, z}∪V (G) and E(J3(G)) = E(G)∪

{xv, tv : v ∈ V (G)} ∪ {yt, zs, zt}. Observe that dJ3(G)(x, y) = 3 via the path x, v, t, y

for any v ∈ V (G). There is no shorter x, y-path since x is not adjacent to t and

y is not adjacent to any vertex of G. Since z and each vertex of G is adjacent

to t, we have εJ3(G)(x) = εJ3(G)(y) = 3, εJ3(G)(z) = 2, and εJ3(G)(v) = 2 for any

v ∈ V (G). Hence diam(J3(G)) = 3, and for any v ∈ V (J3(G)) \ {z}, we have

dJ1(x, v)+dJ1(v, y) = 3. Furthermore dJ3(G)(x, z) = dJ3(G)(z, y) = 2, so J3(G) satisfies

the hypothesis of Theorem 2.6.3 (2).

Next we define the graph J4(G) by V (J4(G)) = V (J3(G)) ∪ {z′}; E(J4(G)) =

E(J3(G))∪{zz′}. Let u, v ∈ V (J3(G)) and note that dJ4(G)(u, v) ≤ 3 since J3(G) is a

subgraph of J4(G). Also dJ4(G)(z
′, v) for any v ∈ V (J4(G) \ {z′}. Thus diam(J4) = 3

with dJ4(G)(x, z
′) + dJ4(G)(y, z

′) = 6. Hence J4(G) satisfies the hypothesis of Theo-

rem 2.6.3 (3).

Finally, for i ∈ {3, 4} we define J ′i(G) by taking the disjoint union of Ji(G) and two

P3s, adding an edge from an endpoint of one P3 to x, and an edge from an endpoint

of the other P3 to y. By Theorem 2.6.3, A(J ′i(G)) = i for i ∈ {3, 4}. J ′3(G) has 10
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vertices that are not in V (G), and J ′4(G) has 11 vertices that are not in V (G). Since

G was an arbitrary graph, then for i ∈ {3, 4}, the graph G can be any graph on the

remaining n− (7 + i) vertices. Now J ′i is a graph with n vertices and has centralizing

number i. Hence for i ∈ {3, 4}, there are at least as many graphs on n vertices with

centralizing number i as there are unlabeled graphs on n− (7 + i) vertices.

In order to show that each J ′3(G) and J ′4(G) is unique, it is left to show that we can

recover G. Assume G has at least two vertices. The graph J ′3(G) has two pendant

vertices. One pendant is part of a P5 where the intermediate vertices have degree

two in J ′3(G), while the other pendant is part of a P4 where the intermediate vertices

have degree two in J ′3(G). The non-pendant endpoint of the P4 is x. Then G is the

subgraph induced by the neighbors of x in J ′3(G) except for the neighbor that is also

on the P4. The same argument holds for J ′4(G), except that it has a third pendant

vertex whose neighbor has degree three.

t yx

z

z′

s
G

Figure 2.11: The graph above is the graph J4(G) as described in Theorem 2.6.4.
Vertices x and t are adjacent to every vertex of G. Delete vertex z′ to obtain the
graph J3(G).

Note that the methods in Thereom 2.6.4 can be used to obtain a lower bound for

graphs with centralizing number two, but Theorem 2.6.2 yields a stronger bound.

We conclude by making a conjecture about how the number of graphs on n vertices

with each nonzero centralizing number compare to each other.
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Conjecture 2.6.5. Almost all graphs with nonzero centralizing number have central-

izing number two, and almost all graphs with centralizing number greater than two

have centralizing number three.
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Chapter 3

Hypergraphs1

1Section 3.5 is joint work with Catherine Erbes, Michael Ferrara, Stephen Hartke, Benjamin
Reiniger, Hannah Spinoza, and Charles Tomlinson and has been published in [6].
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3.1 Introduction

3.1.1 Realizability

A hypergraph H is an ordered pair of a vertex set and an edge set where edges are

subsets of the vertices. A simple hypergraph contains no repeated edges, while a

multihypergraph allows for repeated edges. In a k-uniform hypergraph, or k-graph,

every edge contains exactly k edges. A 2-graph is also known as a graph. Unless

otherwise stated, we assume all k-graphs are simple.

The degree of a vertex in a hypergraph H is the number of edges containing v, and

the degree sequence of H is the list of degrees for each vertex of H. Degree sequences

are typically written in nonincreasing order. A sequence of nonnegative integers π is k-

graphic if there exists a hypergraph H that has π as its degree sequence. Furthermore,

we say H realizes π.

Given a nonincreasing sequence π, it is a natural question to ask whether or not

π is k-graphic.

Problem 3.1.1. Find an efficient characterization for the k-graphic sequences.

In the case of k = 2, Problem 3.1.1 is well understood. In fact, there are many

characterizations of graphic sequences. Two of the most famous characterizations are

the Havel-Hakimi [47, 44] and the Erdős-Gallai [33] characterizations. Sierskma and

Hoogeveen [79] listed seven different characterizations and proved they are equiva-

lent. More information on degree sequence and additional criterion were given by

Mahadev and Peled [68]. Additionally, Kleitman and Wang [56] gave a characteriza-

tion for directed graphs that is similar to the characterization of Havel and Hakimi.

With this much information for graphic sequences, it is natural to extend the prob-

lem to k-graphic sequences. However, there are significantly fewer results for k ≥ 3.
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Dewdney [31] gave the only known characterization of k-graphic sequences. His char-

acterization is similar to Havel and Hakimi’s characterization, but it is inefficient as

it requires testing the graphicality of many smaller sequences.

Bhave, Bam and Deshpande [10] also gave a characterization k-graphic sequences

with respect to linear hypergraphs that is similar to the Erdős-Gallai characteriza-

tion. Linear hypergraphs are hypergraphs where every pair of edges share at most one

vertex. Others have worked towards Problem 3.1.1 by giving necessary conditions.

Some of these necessary conditions are from Achuthan, Achuthan and Simanihu-

ruk [1], Billington [13], and Choudum [25]. Unfortunately, Achuthan, Achuthan and

Simanihuruk [1] showed that none of the necessary conditions from [1, 13, 25] are

sufficient.

There are surprisingly few sufficient conditions for a sequence to be k-graphic for

any k ≥ 3. Billington [13] gave a heuristic for constructing a hypergraph from a 3-

graphic degree sequence. Billington’s algorithm is polynomial, but it does not always

produce a hypergraph from a sequence that is 3-graphic. Behrens, Erbes, Ferrara,

Hartke, Reininger, Spinoza, and Tomlinson [6] gave several sufficient conditions that

are inspired by the results of Yin and Li [86], Aigner and Triesch [2] and Barrus,

Hartke, Jao, and West [5] for 2-graphic sequences. Their sufficient conditions depend

on the sum of the sequence and the maximum and minimum terms of the sequence.

Instead of providing necessary or sufficient conditions, Colbourn, Kocay, and Stin-

son [29] presented evidence that Problem 3.1.1 could be NP-complete for k = 3,

showing that several related problems for degree sequences are in fact NP-complete.
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3.1.2 Connectedness

As a related problem, there is interest in moving among realizations of a degree

sequence by making small changes to the hypergraphs. A t-switch on a hypergraph

H is replacing t edges with t other edges such that the resulting hypergraph has the

same degree sequence as the original hypergraph. If a t-switch can be performed on

a hypergraph, we say the hypergraph admits a t-switch. Given a k-graphic degree

sequence π and a collection of switches S, we say the space of realizations is connected

by S if for any two k-graph realizations of π, one can be obtained from the other by

performing a sequence of switches from S. In other words, if the space of realizations

is connected by S then any realization can be transformed into another realization

by only using switches from S and any intermediate k-graph is also a realization of

π (and only having simple k-graphs for intermediate graphs). Similarly, the space of

multigraph realizations is connected by S if for any two multi-k-graph realizations of

π, one can be obtained from the other by performing a sequence of switches from S.

Petersen [71] and subsequently others (for instance, Fulkerson, Hoffman, and

McAndrew [39]) showed that for any two realizations of a 2-graphic sequence, one

realization can be obtained from the other by a sequence of 2-switches. Kocay and

Li [57] proved the space of multi-3-graph realizations is connected by the set of all

possible 2-switches, and recently Behrens, Erbes, Ferrara, Hartke, Reininger, Spinoza,

and Tomlinson [6] extended Kocay and Li’s result to show the space of multi-k-graph

realizations is connected by the set of all possible 2-switches for any k. Behrens et

al. [6] also generalized an example of Gabelman [40] to show there exist sequences

whose realization graphs for simple hypergraphs is not connected by using only t-

switches for t < k. This result leads to the following problem.

Problem 3.1.2. Determine a minimum family of switches such that for any π, the
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space of simple k-uniform realizations is connected by those switches.

In fact, it is not known if the set of all t-switches for i ≤ k is sufficient to connect

the space.

Finding a minimal set of switches that connects the space of realizations has ap-

plications in network science; specifically, generating a realization chosen uniformly at

random, which can be done using Markov chain Monte Carlo methods. The connec-

tivity of the space for 2-graphs allows for uniform random sampling. For some results

of using Markov chains for 2-graphs, see [35, 43, 52, 76]. Additionally, the Markov

chain Monte Carlo methods can be used to give an approximation of the number

of realizations for a degree sequence [51]. If we have set of switches connecting the

space of 3-graph realizations, then we can use Markov chain Monte Carlo with the

realizations of a 3-graphic sequence as well.

3.1.3 Results

We approach Problem 3.1.2 for the case of k = 3 from two different directions. We

extend this classification in Section 3.3 to all 3-graphs that do not admit a 2-switch

but differ by a 3-switch. Our investigation of slanted sequences is in Section 3.4,

where we broaden the search to realizations that admit 2-switches. As an application

of using switches, we provide a result about packing in Section 3.5. In further joint

work [6], we provide sufficient conditions for a sequence to be k-graphic, show the

space of multi-k-graph realizations is connected by 2-switches for any k, and generalize

the example from Gabelman [40].
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3.2 Classification of pseudo-threshold 3-graphs

One way of approaching Problem 3.1.2 for k = 3 is to first look for sequences whose

space of realizations is not connected by using only 2-switches. Behrens et al. [6]

generalize an example of Gabelman [40] by defining a matrix A

A =



x1,1 x1,2 . . . x1,k−1 −y1

x2,1 x2,2 . . . x2,k−1 −y2
...

...
. . .

...
...

xk−1,1 xk−1,2 . . . xk−1,k−1 −yk−1

−z1 −z2 . . . −zk−1 w


where

yj =
k−1∑
i=1

xj,i, zj =
k−1∑
i=1

xi,j, and w =
k−1∑
i,j=0

xi,j.

and each set of k entries sums to zero if and only if the set forms a row or column in

A. One way to find such a matrix is to let the xi,j’s be a power of some sufficiently

small ε. They define a k-graph H on k2 vertices by assigning each vertex the weight

of a different entry of A. Any k-set is an edge of H if it has positive total weight

or corresponds to a row in A. Since a t-switch takes t edges and replaces them with

t non-edges, the switch takes t k-sets with nonnegative total weight to t k-sets with

nonpositive total weight. As the degrees remain the same, the two sets of t edges

have the same weight. Hence the total sum of vertex weights in each set of t edges is

zero, and thus the t-switch takes k-sets with a total weight of zero and replaces them

with k-sets that also have a total weight of zero. Since degrees of each vertex remain

the same, this means the t-switch is the k-switch taking the k rows to the k columns.

We formally define this type of example as a pseudo-threshold hypergraph.
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Definition 3.2.1. A k × k matrix M is a pseudo-threshold matrix if

1. The entries in any row or column sum to zero.

2. No other set of k entries of M sum to zero.

Definition 3.2.2. A k-uniform hypergraph H on k2 vertices is pseudo-threshold if

there exists a weight assignment to the vertices so that weights are the entries of a

pseudo-threshold matrix M and the edges of H meet the following criteria:

1. Any k-set of vertices with positive sum forms an edge.

2. Any k-set of vertices with negative sum does not form an edge.

3. The rows of M correspond to edges of H and the columns are non-edges, or

vice versa.

We say the matrix M is associated with H. Let HR(M) be the hypergraph with rows

as edges and HC(M) be the hypergraph with columns as edges.

In particular, observe that every pseudo-threshold matrix is associated with two

pseudo-threshold hypergraphs HR(M) and HC(M). However, every pseudo-threshold

hypergraph has infinitely many pseudo-threshold matrices associated with it. For

example, if M is associated with the pseudo-threshold hypergraph H, then 2M is

also associated with H, where 2M is the matrix formed by multiplying every entry

of M by two.

Lemma 3.2.3. If M is a pseudo-threshold matrix, then neither HR(M) nor HC(M)

admit a 2-switch. Furthermore, HR(M) and HC(M) differ by a 3-switch.

We classify all pseudo-threshold k-graphs in the case k = 3. We provide a charac-

terization of all pseudo-threshold 3-graphs by determining a complete list of matrices
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M that generate distinct pseudo-threshold hypergraphs. Every pseudo-threshold 3-

graph gives a degree sequence whose space of realizations is not connected by using

only 2-switches. In Section 3.3 we discover this list of pseudo-threshold 3-graphs yields

the complete list of hypergraphs that differ by a 3-switch but admit no 2-switch.

We take the following steps to obtain the classification of pseudo-threshold 3-

graphs.

1. Set a standard form for pseudo-threshold matrices.

2. Consider different cases of the standard form based on vertex weights.

3. Combine redundant cases.

4. For each remaining case, find the list of distinct weights of triples whose sign is

not determined by the sign of the vertex weights.

5. For each list, check each possible sign assignment with a linear program to see

if there is a pseudo-threshold matrix satisfying that assignment.

6. Eliminate matrices that generate isomorphic graphs.

In order to set a standard form for pseudo-threshold matrices, we consider oper-

ations on matrices that preserve the property of being pseudo-threshold.

Proposition 3.2.4. Let M be a pseudo-threshold matrix associated with a pseudo-

threshold hypergraph H. Let M ′ be a matrix resulting from performing row-swaps

and/or column-swaps on M and let MT be the transpose of M . Then M ′ and MT

are also associated with H. Furthermore, HR(M) ' HR(M ′) and HR(M) ' HC(MT ).

Proof. Since M , M ′, and MT have the same set of entries, each matrix has exactly

2k k-sets that sum to zero. Thus in order to show M ′ and MT are associated with H,
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then it is enough to check that the rows and columns of M ′ and MT sum to zero. Let

(a1, a2, . . . , ak) be a row of M ′. Observe that row-swaps change the order of the rows,

but the contents of the individual rows. Also, column-swaps change the order of the

contents of the rows, but does not change the actual content. Hence a1, a2, . . . , ak

are the entries of some row of M , so their sum is zero. Similarly, if (a1, a2, . . . , ak) is

a column of M ′, then a1, a2, . . . , ak are the entries of some column of M and have a

sum of zero. Since the rows and columns of MT are the columns and rows of M , we

also have that the rows and columns of MT sum to zero.

To show the isomorphisms, let e be an edge of HR(M). Then e corresponds to

a k-set (a1, a2, . . . , ak) in M that is either a row or has positive weight. If the k-set

has positive weight, follow the transformation from M to M ′ and it corresponds to

an edge in HR(M ′). If the k-set is a row, then as argued above it is also a row of

M ′, so it also corresponds to an edge in HR(M). Similarly, non-edges of HR(M) are

mapped non-edges of HR(M ′) under the transformation given by changing M into

M ′. Thus HR(M) ' HR(M ′). A similar argument applies for HR(M) ' HC(MT ),

with the exception that rows get mapped to columns and vice versa.

Step 1: Set a standard form for pseudo-threshold matrices.

As we seek a classification of pseudo-threshold 3× 3 matrices that produce different

pseudo-threshold hypergraphs, the first step towards this goal is to obtain a standard

form for the matrices. By Proposition 3.2.4, we can use row-swaps, column swaps,

and transposition to assume that any pseudo-threshold 3x3 matrix M has the form

M =


a b −(a+ b)

c d −(c+ d)

−(a+ c) −(b+ d) a+ b+ c+ d


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with |a| ≤ |b| ≤ |c| and |a| ≤ |d|. Note this is an assumption on the 2 × 2 sub-

matrix in the upper left corner of M . The entries in the third row and column

are a consequence of the requirement that rows and columns sum to zero. Observe

that no two entries can be equal since the only 3-sets with total weight zero are the

rows and columns. For example, if a = b, then the triple (b, c,−(a + c)) has weight

b+ c− a− c = a+ c− a− c = 0, but the triple is neither a row nor column of M .

Step 2: Consider different cases of the standard form based on vertex

weights.

To continue the classification of pseudo-threshold matrices, we break the format of

the matrix into cases based on the signs of the vertex weights. If we look at the sign

of the vertex weights, we can sometimes determine if a triple is an edge or nonedge

without knowing the exact value of the weights. Notice that any three nonnegative

weighted vertices must form an edge, while any three nonpositive weighted vertices

cannot form an edge. However, if we have a mixture of positive and negative weights,

then we must know the exact weights to determine whether or not those vertices form

an edge. Hence, in order to determine all pseudo-threshold 3-graphs, we can focus on

determining which combinations of positive weight mixed sign triples can occur.

Recall we assume |a| ≤ |b| ≤ |c| and |a| ≤ |d|. If we also place assumptions on

whether each of a, b, c, and d are nonnegative (+) or nonpositive (−), we obtain the

sixteen cases shown in Figure 3.1. Observe that the sign of the remaining five entries

of the matrix are frequently determined by the combination of assumptions on the

signs and relative magnitudes of a, b, c and d. For example, if a > 0 and d < 0 then

a + d > 0 and hence the entry −(a + d) must be positive. However there are times

when the sign of the weight of a vertex is not determined. Entries whose signs are

not determined are represented by a question mark.
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+ + −
+ + −
− − +


(a)

− + −
+ + −
− − +


(b)

+ − +
+ + −
− ? +


(c)

+ + −
− + ?
+ − ?


(d)+ + −

+ − ?
− ? ?


(e)

− − +
+ + −
− ? +


(f)

− + −
− + ?
+ − ?


(g)

− + −
+ − ?
− ? ?


(h)+ − +

− + ?
+ ? ?


(i)

+ − +
+ − ?
− + ?


(j)

+ + −
− − +
+ ? −


(k)

+ − +
− − +
+ + −


(l)− + −

− − +
+ ? −


(m)

− − +
+ − ?
− + ?


(n)

− − +
− + ?
+ ? ?


(o)

− − +
− − +
+ + −


(p)

Figure 3.1: Assume |a| ≤ |b| ≤ |c| and |a| ≤ |d|. Given the sign (nonnegative or
nonpositive) of the values a, b, c, and d, the signs of most of the entries in the third
row and third column are also determined. The question mark represents entries with
nondetermined signs.

Step 3: Combine redundant cases.

Figure 3.1 gives a total of 24 = 16 cases with additional subcases for each unde-

termined entry. However, these cases are not unique; in fact, they are extremely

redundant. As an example, let a = 1, b = 2, c = 3, and d = 4, which yields the

following pseudo-threshold matrix.


1 2 −3

3 4 −7

−4 −6 10


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This matrix is in the form of Figure 3.1a. Applying row-swaps, column-swaps, and

transpositions, we also obtain the following matrices.


4 −6 2

−7 10 −3

3 −4 1




3 4 −7

−4 −6 10

1 2 −3




2 −3 1

4 −7 3

−6 10 4


These three matrices match the form of Figures 3.1i, 3.1k and 3.1j, respectively. Thus

one pseudo-threshold matrix can be written in the form of at least four of the cases

listed in Figure 3.1. In order to combine redundant cases, we apply Proposition 3.2.4

to show that every case is equivalent to either Figure 3.1h or 3.1i

Proposition 3.2.5. Any pseudo-threshold 3-graph is associated with a pseudo-threshold

matrix M with the form of Figure 3.1i or Figure 3.1i.

Proof. Observe that every matrix in Figure 3.1 except for 3.1e and 3.1o contain(
+ −
− +

)
or
( − +
+ −
)

as a submatrix. In the matrix of Figure 3.1e, if the question mark

in the second row or column was nonnegative, we would have a desired submatrix. If

both are nonpositive, then the remaining question mark must be nonnegative, which

also obtains a desired submatrix. The case for the matrix in Figure 3.1o follows

symmetrically. Thus any pseudo-threshold matrix contains
(
+ −
− +

)
or
( − +
+ −
)

as a

submatrix.

Recall that we assume a pseudo-threshold matrix has the standard form


a b −(a+ b)

c d −(c+ d)

−(a+ c) −(b+ d) a+ b+ c+ d


with |a| ≤ |b| ≤ |c| and |a| ≤ |d| and we achieved this by using row-swaps, column-
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swaps, and transpositions to place the four entries in the desired order. Let M be a

pseudo-threshold matrix, and let M ′ be matrix obtained from M by applying row-

swaps and column swaps to put a
(
+ −
− +

)
or
( − +
+ −
)

submatrix in the upper left corner.

By Proposition 3.2.4, M ′ is a pseudo-threshold matrix and M and M ′ are associated

with the same pair of pseudo-threshold hypergraphs. Apply row-swaps, column-

swaps, and transpositions to M ′ to put the four entries of the upper left corner in the

desired order and let M ′′ be the resulting matrix. Observe the upper left corner of

M ′′ still has either the
(
+ −
− +

)
or
( − +
+ −
)

pattern. Note the entries in the third row and

column of the matrices in Figure 3.1 are a direct result of the assumption made on the

four entries in the upper right corner. Hence M ′′ has the form of either Figure 3.1i or

Figure 3.1i and is associated with the same pseudo-threshold hypergraphs as M .

Corollary 3.2.6. Any pseudo-threshold hypergraph H is associated with a pseudo-

threshold matrix M where M or −M has the form of Figure 3.1i.

Proof. If H is not associated with a matrix in the form of Figure 3.1i, then by Propo-

sition 3.2.5 it must be associated with a matrix M in the form of Figure 3.1h. Observe

Figures 3.1h and 3.1i share nondetermined entries a every determined entry in Fig-

ure 3.1h is the negative of the corresponding entry in Figure 3.1i. Thus −M (the

matrix formed by taking the negative entries of M) is in the form of Figure 3.1i.

Since we have limited the cases to only one of the matrices from Figure 3.1, we

determine the possible subcases of Figure 3.1i. If we assume that the question mark

in the second column of Figure 3.1i is nonnegative, then we have |d| ≤|b| ≤|c|, so the

question mark in the second row is also nonnegative. In order for the third row or

column to have a sum of zero the question mark in the third row and third column

must be nonpositive. This yields the sign matrix of Figure 3.2a. In order for the third

column to have a total weight of zero, at least one of the two question marks in the
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third row must be nonpositive. Thus if the question mark in the second column is

nonpositive, then the sign matrix must be one of Figure 3.2b, 3.2c, or 3.2d.+ − +
− + +
+ + −


(a)

+ − +
− + +
+ − −


(b)

+ − +
− + −
+ − +


(c)

+ − +
− + −
+ − −


(d)

Figure 3.2: The four ways to fill out the question marks from Figure 3.1i.

Step 4: For each remaining case, find the list of distinct weights of triples

whose sign is not determined by the sign of the vertex weights.

By Corollary 3.2.6, every pseudo-threshold 3-graph can be represented by a matrix

M or −M with the form of one of the four matrices of Figure 3.2. Observe the

complement of HR(M) is HC(−M). In other words, the list of all pseudo-threshold

matrices M that are in the form of Figure 3.1i and that generate distinct hypergraphs

along with −M will generate the complete list of pseudo-threshold 3-graphs. For each

of the four matrices in Figure 3.2, we seek the distinct pseudo-threshold 3-graphs with

a matrix of that form. In order to accomplish this, we now focus on the sign of the

weight of each triple, which then allows us to focus on the possible edge combinations.

For example, in every matrix with the form of Figure 3.2a, a + d − (c + d) > 0 as

each of a, d, and −(c + d) are nonnegative, so the associated hypergraph must have

the edge (a, d,−(c+ d)). Similarly, (b, c, a+ b+ c+ d) is a nonedge. However (a, b, c)

may or may not be an edge, based on the actual values of a, b, and c. For all triples,

we use SageMath [81] version 5.8 to determine whether or not the sign of the total

weight is known based on the assumptions about the sign of a, b, c, and d as well of

the relationships between the absolute values of a, b, c, and d. The SageMath code is

given in Algorithm 2.
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Any triple whose weight is not determined by those assumptions is recorded. Addi-

tionally we notice relationships among the list of undetermined triples. In particular,

we found triples whose weight was the negative of the weight of another triple on the

list. For example, in Figure 3.2a, exactly one of (a, b,−(c+ d)) and (−(a+ b), c, d) is

an edge since their weights are a+ b− c− d and −(a+ b− c− d). Hence only one of

the two triples needs to be listed as the edge status of the second triple is determined

by the first triple.

Algorithm 2 Finds triples whose weight is not determined for Case 3.2a

a, b, c, d=var(‘a, b, c, d’)
assume(c < b, b < 0, 0 < a, a < d, a < −b)
assume(a+ c < 0, b+ d < 0, c+ d < 0, a+ b+ c+ d < 0)
pos=[a, d,−(a+ b),−(c+ d),−(a+ c),−(b+ d)]
neg=[b, c, a+ b+ c+ d]
for i, j ∈ pos, k ∈ neg, i 6= j do

wt=i+ j + k
if not bool(wt > 0) and not bool(wt< 0) and not bool(wt== 0): then

print (i, j, k)

for i ∈ pos, j, k ∈ neg, j 6= k do
wt=i+ j + k
if not bool(wt > 0) and not bool(wt< 0) and not bool(wt== 0): then

print (i, j, k)

For each matrix in Figure 3.2, the weights for each undetermined triple is listed

in Table 3.1.

Step 5: For each list, check each possible sign assignment with a linear

program to see if there is a pseudo-threshold matrix satisfying that

assignment.

At this point we have the list of weights of triples whose sign is not determined.

In order to obtain a complete list of pseudo-threshold 3-graphs, we take each list of

nondetermined weights and check each possible sign assignment to the weights of the
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Case 3.2a
a+ b+ d
a+ c+ d

2a+ b+ c+ 2d
a+ b− c− d

2a+ b
2a+ c
c+ 2d
b+ 2d

−a− 2b+ c− d
−a+ b− 2c− d

Case 3.2b
a+ c+ d

2a+ b+ c+ 2d
−2b− d

a+ b− c− d
2a+ b

a− b− c− 2d
c+ 2d

−a− 2b− c− 2d
−2a− c

−a+ b− 2c− d

Case 3.2c
−b− c− d
−2b− d
−2c− d

2a+ 2b+ c+ d
2a+ b+ 2c+ d

2a+ b
2a+ c

a+ 2b+ 2c+ d
−a+ b− 2c− d
a− b− c− 2d

Case 3.2d
−2b− d
−2a− c
−2a− b

−a+ b− 2c− d
a+ 2b+ c+ 2d
a+ b+ 2c+ 2d
a− b− c− 2d

Table 3.1: List of weights of triples whose sign is not determined.

triples to check if there exists a matrix satisfying the sign assumptions. For example,

the Linear Program 3 with B = 1111000000 checks if there exists a way of assigning

values to a, b, c, and d satisfying the assumptions on a, b, c, and d such that the first

four sums in the first column of Table 3.1 are positive and the remaining sums are

negative.

Linear Program 3 Finding possible vertex weights for Case 3.2a

Solve: a, b, c, d

Subject to: a ≥ 0
b ≤ 0
c < b
d > a
b+ d ≤ 0
a, b, c, d ∈ R

Additional constraints:

Input: B ∈ {0, 1}10
for i ∈ {1, 2, . . . , 10} do

Let y be the ith entry of Case 3.2a in Table 3.1
if B[i] = 1 then

y > 0
else

y < 0
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The matrices generated in this manner gives us a partially complete list of pseudo-

threshold hypergraphs. As mentioned earlier, we ignored the matrix of Figure 3.1h.

Hence for each matrix M on this list, we must also add the matrix −M to the list.

Now we have a list of matrices representing every pseudo-threshold hypergraph. Note

this list produces isomorphic pseudo-threshold hypergraphs. One way this arises is

that
(
+ −
− +

)
or
( − +
+ −
)

appears multiple times in the matrices of Figure 3.2.

Step 6: Eliminate matrices that generate isomorphic graphs.

For each hypergraph from this list, no two vertices have the same degree. Hence we

check for isomorphic hypergraphs by ordering the vertices by degree and searching

for identical edge assignments. After removing isomorphic copies, a list of matrices

representing every pseudo-threshold hypergraph appears in Table 3.2.

41 edges
a b c d
0 4 6 -1
0 5 6 -2
0 6 7 -4
0 7 9 -4
-2 3 11 -7
-3 4 19 -9
-4 5 14 -11
-4 6 11 -10

42 edges
a b c d
0 1 7 -3
0 2 9 -5
0 3 6 -1
0 3 6 -2
0 5 7 -4
0 6 9 -4
-2 3 12 -9
-2 3 16 -7

42 edges (ctd)
a b c d
0 -1 -7 3
0 -2 -9 5
0 -3 -6 1
0 -3 -6 2
0 -5 -7 4
0 -6 -9 4
2 -3 -12 9
2 -3 -16 7

43 edges
a b c d
0 -4 -6 1
0 -5 -6 2
0 -6 -7 4
0 -7 -9 4
2 -3 -11 7
3 -4 -19 9
4 -5 -14 11
4 -6 -11 10

Table 3.2: The complete list of non-isomorphic pseudo-threshold 3-graphs, each rep-
resented by the matrix with the given weights.

Theorem 3.2.7. The complete list of pseudo-threshold 3-graphs is given by Table 3.2.

Observe all of the pseudo-threshold 3-graphs have between 41 and 43 edges, which

is within one of half of the number of possible triples. Additionally, none of these

3-graphs are self-complementary.
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3.3 Hypergraphs with no 2-switch

Recall our focus is on Problem 3.1.2. In this section, we focus on hypergraphs that do

not admit a 2-switch and seek switches necessary to connect the space of realizations.

If two hypergraphs differ by a 3-switch, it does not imply that the two hypergraphs

are in separate components of the space of realizations via 2-switches. For example,

Figure 3.3 shows how to achieve a 3-switch by using only 2-switches. However, if the

hypergraph already contains any of the intermediate edges of Figure 3.3, then this

sequence cannot be used to obtain the 3-switch by 2-switches. To ensure the 3-switch

is required, we focus on 3-graphs that do not admit a 2-switch. This guarantees that

there is no way to obtain a t-switch for t ≥ 3 by using 2-switches. For example, if

(x, y, z) and (u, v, w) are edges in a 3-graph H that does not admit 2-switches, then

either (x, v, w) or (u, y, z) must also be in E(H). Otherwise H would admit the 2-

switch from (x, y, z) and (u, v, w) to (x, v, w) and (u, y, z). More specifically, for any

two disjoint edges of H and any way of splitting those six vertices into two triples,

at least one of the triples must be in E(H). Additionally, for any two edges of H

that share one vertex z and any way of splitting the remaining four vertices into pairs

(x, y) and (u, v), at least one of (x, y, z) and (u, v, z) must be in E(H).

It may be possible that there exists a pair of hypergraphs on the same degree

sequence that are in separate components of the space of realizations over 2-switches

where at least one of the hypergraphs admits a 2-switch. However, the only currently

known examples where the space of realizations is disconnected is with a pair of

hypergraphs where neither admits a 2-switch.

Now if H1 and H2 are two 3-graphs that differ by a 3-switch but neither 3-graph

admits a 2-switch, we have that H1 and H2 are isolates in the space of realizations over

2-switches. However, they are connected in the space of realizations over 2-switches
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Figure 3.3: An example of how a 3-switch can be accomplished by using 2-switches.

and 3-switches. Hence we say H1 and H2 are an isolated pair.

Definition 3.3.1. An isolated pair is a pair of 3-graphs H1 and H2 such that nei-

ther hypergraph admits a 2-switch and the two hypergraphs have the same degree

sequence.

For example, every matrix M represented in Table 3.2 yields the isolated pair

HR(M) and HC(M). We prove that every isolated pair that differ by a 3-switch

contains a 3-graph from Table 3.2 as an induced subhypergraph.

For any isolated pair, the two 3-graphs must differ by a t-switch for some t ≥ 3.

While some 3-switches involve nine distinct vertices, such as the 3-switch in Figure 3.3,

some 3-switches only involve eight or fewer vertices. For example, the 3-switch ex-

hibited in Figure 3.4 involves six distinct vertices. We show that any isolated pair is

on at least nine vertices.

Figure 3.4: An example of a 3-switch on 6 vertices.

Lemma 3.3.2. There are no isolated pairs on eight or fewer vertices.

Proof. To determine that no isolated pairs on eight or fewer vertices exist, we solve

Integer Program 4.
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Integer Program 4 Isolated pairs on 8 vertices

Define: V = {0, 1, . . . , 7}
T =

{
{i, j, k} : i, j, k ∈ V, |{i, j, k}| = 3

}
Solve: {xt}t∈T {yt}t∈T

Subject to: 1. x{0,1,2} = 1, y{0,1,2} = 0
2. xs + xt − (xa + xb) ≤ 1 ∀s, t, a, b ∈ T : |s ∩ t| ∈ {0, 1},

a ∩ b = s ∩ t, a ∪ b = s ∪ t
3. ys + yt − (ya + yb) ≤ 1 ∀s, t, a, b ∈ T : |s ∩ t| ∈ {0, 1},

a ∩ b = s ∩ t, a ∪ b = s ∪ t
4.
∑
t3i

(xt − yt) = 0 ∀i ∈ V

5. xt, yt ∈ {0, 1} ∀t ∈ T

The two sets of variables, {xt}t∈T and {yt}t∈T correspond to triples of vertices in

the hypergraphs H1 and H2. In particular, xt = 1 if and only if t ∈ E(H1), and yt = 1

if and only if t ∈ E(H2). Setting x{0,1,2} = 1 and y{0,1,2} = 0 guarantees that H1 and

H2 are different hypergraphs.

Constraints 2 and 3 of Integer Program 4 enforce that neither hypergraph admits

a 2-switch. Suppose that s, t ∈ E(H1) share at most one vertex, and that a and b are

triples with a ∩ b = s ∩ t and a ∪ b = s ∪ t. Then at least one of a or b is an element

of E(H1), else H1 would admit a 2-switch. Observe xs + xt − (xa + xb) > 1 if and

only if s, t ∈ E(H1) and a, b /∈ E(H1). Thus the constraint xs + xt − (xa + xb) ≤ 1

prevents H1 from having a 2-switch from s, t to a, b. Note that no 2-switch is possible

involving s and t if s and t have more than one vertex in common.

In order to ensure the two hypergraphs are a isolated pair, they must have the

same degree sequence and neither hypergraph can admit a 2-switch. Note that
∑
t3i

xt

is the degree of vertex i in H1, so constraint 4 enforces that H1 and H2 have the same

degree sequence.

We solved Integer Program 4 using CPLEX [49] and GLPK [41] on a linux-based

computer powered by a quad-core Intel CPU running at 2.4GHz, and it finished in
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two hours. The integer program revealed there is no solution to the given parameters,

so there does not exist an isolated pair on eight vertices. If there was an isolated pair

with fewer vertices, then the integer program would have found a solution where both

hypergraphs have an isolated or dominating vertex. Thus every isolated pair has at

least nine vertices.

Proposition 3.3.3. If H1 and H2 are an isolated pair on nine vertices, then there

exists a matrix M with entries given in Table 3.2 so that H1 ' HR(M) and H2 '

HC(M).

Proof. We run Integer Program 5 to determine the existence of isolated pairs that

are not pseudo-threshold hypergraphs.

Integer Program 5 Isolated pairs on 9 vertices
Define: V = {0, 1, . . . , 8}

T =
{
{i, j, k} : i, j, k ∈ V, |{i, j, k}| = 3

}
Solve: {xt}t∈T {yt}t∈T

Subject to: 1. x{0,1,2} = 1, y{0,1,2} = 0
2. xs + xt − (xa + xb) ≤ 1 ∀s, t, a, b ∈ T : |s ∩ t| ∈ {0, 1},

a ∩ b = s ∩ t, a ∪ b = s ∪ t
3. ys + yt − (ya + yb) ≤ 1 ∀s, t, a, b ∈ T : |s ∩ t| ∈ {0, 1},

a ∩ b = s ∩ t, a ∪ b = s ∪ t
4.
∑
t3i

(xt − yt) = 0 ∀i ∈ V

5.
∑
t3i

xt −
∑
t3i+1

xt ≥ 0 ∀i ∈ V \ {2, 8}

6.
∑
t30

xt −
∑
t33

xt ≥ 0

7.
∑
t∈T

xt = m

8.
∑

t∈E(H)

xt < m ∀ pseudo-threshold hypergraphs H on m edges

9. xt, yt ∈ {0, 1} ∀t ∈ T

Integer Program 5 is made from Integer Program 4 by adding constraints 5-8 and

increasing the number of vertices to nine. To further break symmetries, we place an

order on the vertex degrees. Lemma 3.3.2 implies that all nine vertices are involved

in the t-switch. Hence any maximum degree vertex must appear in some edge in
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the first hypergraph that is not an edge in the second hypergraph. Thus we assume

vertex 0 is a vertex with maximum degree. Additionally, we may assume that vertex

1 has higher degree than vertex 2, and vertex i has higher degree than vertex i + 1

for i ∈ {3, 4, 5, 6, 7}. This is reflected in constraints 5 and 6.

We split the search into cases by total number of edges m, as set in constraint

7. First, we set it to look for isolated pairs with at most 40 edges, and again with

at least 44 edges (changing constraint 7 to an inequality). These searches yield no

examples. Next, we examine the three cases of 41, 42, and 43 edges. For any of

the pseudo-threshold matrices, there are exactly two ways of placing an associated

pseudo-threshold 3-graph onto vertices following the assumptions on vertex degrees

(one for the row and one for the column). Hence in our search for a fixed number

of edges, we eliminate the previously found pseudo-threshold 3-graph examples by

adding the constraint that the sum of the triples forming edges in those examples is

less than the total number of edges. This is reflected in constraint 8.

The integer program returns that there is no integer solution to the given pa-

rameters. Hence there are no additional isolated pairs on nine vertices. The inte-

ger program for each case by number of edges was run on a single computer using

GLPK [41] and CPLEX [49]. The GLPK version finished in four hours for each case,

while CPLEX finished in about twenty minutes for each case.

Note that we have been focusing on 3-graphs on nine vertices, but Definition 3.3.1

allows for more vertices. In fact, it is possible that an isolated pair H1 and H2 are

hypergraphs on more than nine vertices. For example, for some pseudo-threshold 3×3

matrix M , let H1 be the hypergraph defined with vertex set V (HR(M))∪ {u, v} and

edge set E(HR(M)) ∪ {(u, v, x) : x ∈ V (HR(M))} and H2 on the same vertices with
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edge set E(HC(M)) ∪ {(u, v, x) : x ∈ V (HC(M))}. Then H1 and H2 are an isolated

pair. Hence the statement of Theorem 3.3.4 only requires the pseudo-threshold 3-

graphs to be induced.

Theorem 3.3.4. If H1 and H2 are an isolated pair that differ by a 3-switch, then H1

and H2 each contain as an induced subhypergraph a pseudo-threshold 3-graph on the

9 vertices involved in the 3-switch.

Proof. SupposeH1 andH2 are an isolated pair on at least ten vertices. By Lemma 3.3.2,

H1 and H2 must differ on at least nine vertices. Thus the 3-switch must occur on ex-

actly nine distinct vertices as any 3-switch involves at most nine vertices. Let G1 and

G2 be the induced subhypergraphs of H1 and H2 on those nine vertices. Then neither

G1 nor G2 admits a 2-switch, else H1 or H2 would admit a 2-switch. Hence G1 and

G2 are a isolated pair on nine vertices. In particular, G1 and G2 are pseudo-threshold

3-graphs.

Suppose a 3-switch replaces the edges {e1, e2, e3} with the edges {e4, e5, e6}. The

3-switch is a transversal 3-switch if whenever vertices u and v are in the same edge

from {e1, e2, e3} then they are in different edges of {e4, e5, e6} and vice versa. An

example of a transversal 3-switch is given in Figure 3.5. Since HR(M) and HC(M)

differ by a transversal 3-switch for any pseudo-threshold matrix M , we obtain the

following corollary.

Corollary 3.3.5. Suppose H1 and H2 are an isolated pair that differ by a 3-switch.

Then the 3-switch connecting them must be a transversal switch.

Since Proposition 3.3.3 did not depend on a 3-switch, the proof of Theorem 3.3.4

also yields the following result.
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(a) (b)

Figure 3.5: A transversal 3-switch.

Corollary 3.3.6. If H1 and H2 are an isolated pair that differ on at most nine

vertices, then H1 and H2 differ by a 3-switch.

3.4 Slanted sequences

In the previous section, we found specific examples of spaces of realizations that are

not connected by 2-switches. However, each of those examples became connected if we

added the transversal 3-switch. In this section, we continue the search for additional

examples of when the space of realizations is not connected by 2-switches. There are

many sequences of length nine, so we need to narrow down this list.

There is a dominance order on sequences with a fixed sum. In this poset, Aigner

and Triesch [2] showed that 2-graphic sequences form a downset, while Billington [12]

shows that k-graphic sequences also form a downset. Berger [9] showed that if π′ is

below π, then π′ has at least as many 2-graphic realizations as π. Barrus, Hartke, Jao,

and West [5] proved that sequences with gaps, and in particular sequences without

repeated values, are also less likely to be 2-graphic. Using these results about 2-graphs

suggest we should examine sequences that do not have repeated terms.

Theorem 3.3.4 gives examples of sequences whose space of realizations is not con-

nected by 2-switches and does not have repeated terms. Similar sequences seem like

the most likely candidates for degree sequences whose realization space is not con-

nected by 2-switches, as fewer realizations have less room to move. Additionally, if
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two vertices have the same degree and there exist realizations where switching the

vertices creates a distinct realization, then the number of realizations is increased

with more isomorphic copies.

We say a k-graphic sequence is slanted if it does not have any repeated values. We

used a Python program to generate the list of slanted sequences in colexicographic

order. Each sequence was then tested with the necessary conditions of Achuthan,

Achuthan and Simanihuruk [1], Billington [13], and Choudum [25] so it could be

quickly eliminated if it was not 3-graphic. For each remaining slanted sequence π,

we used the libexact library of Kaski and Pottonen [53] to generate the 3-graph

realizations of π. Libexact uses the Knuth’s dancing links technique for updating the

data structure to solve combinatorial exact covering problems. If libexact finds over

50,000 realizations, we move on to the next sequence. For each sequence with at most

50,000 realizations, we use a breadth-first search to check that the realizations are

connected by a 2-switch. We performed the computations in parallel on the Open

Science Grid [74]. This search yields the following result.

Theorem 3.4.1. Every 3-graphic slanted sequence of length at most 8 with at most

50,000 realizations is connected by the set of 2-switches. Every 3-graphic slanted

sequence of length 9 with at most 50,000 realizations is either connected by the set of

2-switches and the transversal 3-switch.

In particular, there were exactly 45 sequences that required a transversal 3-switch

in addition to the 32 sequences given by pseudo-threshold 3-graphs. Additionally,

there exists a pseudo-threshold 3-graphs with sequence π if and only if π is a slanted

sequence with a realization space consisting of two isolates. This theorem provides

more support that the collection of 2-switches along with the transversal 3-switch is

enough to connect the space of realizations for 3-graphic sequences.
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Conjecture 3.4.2. The space of realizations for 3-graphic sequences is connected by

the set of 2-switches and the transversal 3-switch.

3.5 Applications

In this section we use 2-switches to gain further insight with k-graphic sequences. We

introduce notation to refer to a specific 2-switch. Let e and e′ be distinct edges in a

k-graph H, and choose vertices u ∈ e \ e′ and v ∈ e′ \ e. The operation e
u


v
e′ deletes

the edges e and e′ and adds the edges e−u+v and e′−v+u (where e−u+v denotes

the set e− {u} ∪ {v}).

3.5.1 Obtaining a “good” realization

One consequence of the Havel-Hakimi characterization of 2-graphic sequences is that

any graphic sequence has a realization in which a specified vertex v is adjacent to

vertices whose degrees are the highest-degree vertices in the graph. This elementary

fact has been proved in several places, for instance [39]. Motivated by this, we prove

the following.

Theorem 3.5.1. Let π = (d1, . . . , dn) be a nonincreasing k-graphic sequence, and

let H be a k-realization of π on vertices {v1, . . . , vn} such that d(vi) = di for each

i, 1 ≤ i ≤ n. Let i < j and suppose there is an edge e in H such that vj is in e but vi

is not in e. Then there is a realization H ′ of π such that e− vj + vi is an edge in H ′.

Proof. If e − vj + vi is already an edge in H, we are done. So we can assume this

edge does not exist. Since di ≥ dj, there is an edge f such that vi is in f but vj is

not. Additionally, some such f has the property that f − vi + vj is not an edge in H.



78

Perform the exchange e
vj


vi
f . This does not create any multi-edges, so we have the

desired realization.

An immediate corollary of this result is that for any vertex v of positive degree,

there is a k-realization of π such that v is in an edge with the k−1 remaining vertices

of highest degree. Thus, there is always a realization of π in which the k vertices of

highest degree are in a single edge. If we could prove the existence of a k-realization

in which the link of a vertex contains only the highest degree vertices, then we would

be able to obtain a Havel-Hakimi-type characterization of k-graphic sequences.

3.5.2 Packing k-graphic sequences

Two n-vertex graphs G1 and G2 pack if they can be expressed as edge-disjoint sub-

graphs of the complete graph Kn. Kostochka, Stocker, and Hamburger [59], and

Piĺsniak and Woźniak [72, 73] recently studied packing of hypergraphs. Busch et

al. [19] extended the idea of graph packing to graphic sequences. We utilize edge

exchanges to examine related questions for hypergraphic sequences.

Let π1 and π2 be k-graphic sequences with π1 = (d
(1)
1 , . . . , d

(1)
n ) and π2 = (d

(2)
1 , . . . , d

(2)
n ).

We say that π1 and π2 pack if there exist edge-disjoint k-graphs G1 and G2 on vertex

set {v1, . . . , vn} such that dG1(vi) = d
(1)
i and dG2(vi) = d

(2)
i for all i. When we discuss

packing of graphic sequences, the sequences need not be nonincreasing; however, no

reordering of the indices is allowed.

Dürr, Guiñez, and Matamala [32] showed that the problem of packing two graphic

sequences is NP-complete, and we show that the same conclusion holds when consid-

ering k-graphic sequences for k ≥ 3.

Theorem 3.5.2. The degree-sequence packing problem for k-graphs is NP-complete

for all k ≥ 2.
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Proof. The degree-sequence packing problem for k ≥ 2 is in NP since the certificate

giving realizations that pack can easily be checked in polynomial time. NP-hardness

for k = 2 is shown in [32]. For k ≥ 3 we show that any instance of the degree-sequence

packing problem for 2-graphs can be reduced to an instance of the degree-sequence

packing problem for k-graphs. Given 2-graphic sequences π1 and π2, add k − 2 new

entries to each sequence to create sequences πk1 and πk2 , with each new entry of πki

equal to 1
2
σ(πi). Then, any k-realization of πki has the same number of edges as a

2-realization of πi, and each of the k − 2 vertices associated with the new entries

must appear in every edge. Hence there is a one-to-one correspondence between

2-realizations of the original sequences and k-realizations of the new sequences.

Given the computational complexity of the overarching problem, it is natural to

seek sufficient conditions that ensure a pair of k-graphic sequences pack. Busch et al.

showed that if π1 and π2 are graphic sequences and ∆ ≤
√

2δn − (δ − 1), where ∆

and δ are the largest and smallest entries in π1 + π2, then π1 and π2 pack. We prove

a similar result for k-graphic sequences when k ≥ 3.

For a vertex v in a k-graphH, we define the neighborhood of v, NH(v), to be the set

of vertices that are in at least one edge with v. Similarly, for a set S = {v1, . . . , vm} of

vertices in H, the neighborhood of S is NH(S) = ∪mi=1NH(vi). When H is understood,

we write N(v). Also, let H[S] denote the subgraph of H induced by the vertices in

S.

Theorem 3.5.3. Fix an integer k ≥ 2. There exist constants c1, c2 (depending only

on k) such that if π1 and π2 are k-graphic sequences each with length n that satisfy

n > c1
∆k/(k−1)

δ
+ c2∆, (3.5.1)
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where ∆ and δ are the maximum and minimum entries of π1 + π2, then π1 and π2

pack.

Proof. Among all k-realizations of π1 and π2, let H1 and H2 be k-realizations such

that the number of double edges in H1 ∪ H2 is minimized. We may assume that

H1 ∪ H2 has at least one multiple edge, lest H1 and H2 give rise to a packing. Let

H = H1 ∪H2, e = {v1, . . . , vk} be a double edge in H, and I = V (H) \
⋃k
i=1NH(vi).

Taking c2 > k2 − k, inequality (3.5.1) implies that I 6= ∅. Let Q = NH(I).

If there is some edge f that contains more than one vertex of I, say i1 and i2, then

the 2-switch e
v1


i1
f reduces the number of double edges, contradicting the choice of

H1 and H2. Hence, each edge including a vertex of I consists of that vertex and k−1

vertices of Q.

Let Qi = NHi
(I) for i ∈ {1, 2}. Suppose Q1 is not a clique in H. That is, let

A = {y1, . . . , yk} be a set of vertices in Q1 that is not an edge in H. Since each yj

is in Q1, for each j with 1 ≤ j ≤ k there is an edge fj ∈ H1 that contains both yj

and some vertex of I. Let E = {f1, . . . , fk} be a set of such edges in H1, where it

is possible that some fj’s are equal. Now we can repeatedly perform 2-switches of

the form e
vj


yj
fj until one copy of e is replaced by the new edge {y1, . . . , yk}, in the

following way. First, do the exchange S1 = e
v1


y1
f1 to obtain edges e1 = e − v1 + y1

and f ′1 = f1 − y1 + v1. The edge e1 may already exist in H, but it will be removed in

the next step. The edge f ′1 cannot exist in H, as it contains both a vertex of e and

a vertex of I. Having performed edge exchanges S1 through Sj, the next exchange

is Sj+1 = ej+1

vj+1



yj+1

fj+1, unless fj+1 = fp for some p ≤ j. In that case, fj+1 = fp is

no longer an edge, but has been transformed into the edge f ′p = fp − yp + vp. Then

Sj+1 = ej+1

vj+1



yj+1

f ′p, and the new edges created in this exchange are ej+1 = ej−vj +yj

and f ′j = f ′p − yj + vj. After the kth iteration of this process, we have created the
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edge consisting of the vertices in A, and removed one of the copies of e, while no new

double edges have been created. Since this contradicts our choice of H1 and H2, the

vertices of A must already form an edge, so Q1 is a clique. The same argument shows

that Q2 is a clique.

Let vi ∈ e and x ∈ Q, and suppose that e − vi + x is not an edge in H. Let

f be an edge containing x and a vertex of I. Then the switch e
vi


x
f reduces the

number of double edges in H. Hence every vertex of Q is in an edge with each of the

(k − 1)-subsets of e.

Let q = |Q| and r = |E(H[Q])|. Since Q1 and Q2 are cliques, r ≥ 2
(
q/2
k

)
. Counting

the degrees of vertices in Q, we have

∆q ≥ kq + (k − 1)δ|I|+ kr

≥ kq + (k − 1)δ|I|+ 2k

(
q/2

k

)
.

Rearranging gives

|I| ≤
(∆− k)q − 2k

(
q/2
k

)
(k − 1)δ

. (3.5.2)

By the principle of inclusion-exclusion, we also know that

|I| = n−

∣∣∣∣∣∣
k⋃
i=1

NH(vi)

∣∣∣∣∣∣ (3.5.3)

= n+
k∑
s=1

(−1)s
∑
B⊆e
|B|=s

∣∣∣∣∣∣
⋂
v∈B

NH(v)

∣∣∣∣∣∣ .
For any subset B of e, we have that all of Q and e\B are in the common neighborhood
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of B in H; thus

q + k − |B| ≤

∣∣∣∣∣∣
⋂
v∈B

NH(v)

∣∣∣∣∣∣ .
On the other hand, the size of this common neighborhood is maximized when all

vertices in B have the same neighborhood; hence

∣∣∣∣∣∣
⋂
v∈B

NH(v)

∣∣∣∣∣∣ ≤ (k − 1)(∆− 2) + k − |B|.

Using these inequalities in (3.5.3), we have

|I| ≥ n−
∑
s odd

(
k

s

)(
(k − 1)(∆− 2) + k − s

)
+
∑
s even

(
k

s

)
(q + k − s)

= n+
k∑
s=1

(−1)s(k − s)
(
k

s

)
− (k − 1)(∆− 2)

∑
s odd

(
k

s

)
+ q

∑
s even

(
k

s

)
.

Applying the binomial theorem, this becomes

|I| ≥ n− k − (∆− 2)(k − 1)
(

2k−1
)

+ q
(

2k−1 − 1
)

(3.5.4)

= n−∆(k − 1)
(

2k−1
)

+ q
(

2k−1 − 1
)

+ (k − 1)
(

2k − 1
)
− 1.

Combining equations (3.5.2) and (3.5.4) yields

(k − 1)δ
(
n−∆(k − 1)

(
2k−1

)
+ (k − 1)

(
2k − 1

)
− 1
)

≤ (∆− k)q − (k − 1)δ
(

2k−1 − 1
)
q − 2k

(
q/2

k

)
(3.5.5)

≤ ∆q − 2k
qk

(2k)k
.

Without loss of generality, suppose |Q1| ≥ |Q2|, and let q1 = |Q1|. Since Q1 is
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a clique,
(
q1−1
k−1

)
≤ ∆, so q1 ≤ c′∆1/(k−1) for some constant c′ depending only on k.

Then, since Q = Q1 ∪ Q2, we have q ≤ 2q1 ≤ 2c′∆1/(k−1) = c∆1/(1−k). Inequality

(3.5.5) now becomes

n ≤

(
c− ck

(2k)k−1

)
∆k/(k−1)

δ
+
(

(k − 1)2k−1
)

∆.

This establishes the theorem, with c1 =
(
c− ck

(2k)k−1

)
and c2 =

(
(k − 1)2k−1

)
.

When δ = o
(

∆1/(k−1)
)

, the bound in Theorem 3.5.3 reduces to

n > c
∆k/(k−1)

δ

for c = c1 + c2. We show that for δ in this range, Theorem 3.5.3 is best possible up

to the choice of c.

Fix k and δ and choose an integer x � δ such that x−k
δ(k−1) is an integer. Form a

complete k-graph on x vertices; set aside k of these vertices to form the set B, and

let T be the set of remaining vertices. Add an independent set I of order

(x− k)

ρ(k − 1)δ

(
x− 1

k − 1

)
,

where ρ > 1 is chosen such that 1
ρ

(
x−1
k−1

)
is an integer. Partition T into sets T1, . . . , Tr,

each of size δ(k − 1), where r = x−k
δ(k−1) , and partition I into sets I1, . . . , Ir of size

1
ρ

(
x−1
k−1

)
. For each vertex v ∈ Ij, create edges e1, . . . , eδ, where each edge consists of v

and k− 1 distinct vertices of Tj. Thus, N(v) = Tj and each vertex in Tj is in exactly

one edge with each vertex of Ij. Finally, add an independent set of size x− k + |I|.
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We now have a k-graph H where each vertex in T has degree

(
x− 1

k − 1

)
+

1

ρ

(
x− 1

k − 1

)
=

(
1 +

1

ρ

)(
x− 1

k − 1

)
,

each vertex in B has degree
(
x−1
k−1

)
, and each vertex in I has degree δ.

Consider two orderings of the degree sequence of H:

π1 =

(x− 1

k − 1

)k
,

((
1 +

1

ρ

)(
x− 1

k − 1

))x−k

, 0x−k, δ|I|, 0|I|


π2 =

(x− 1

k − 1

)k
, 0x−k,

((
1 +

1

ρ

)(
x− 1

k − 1

))x−k

, 0|I|, δ|I|

 .

Note that n, the length of sequences π1 and π2, is

n = 2x− k + 2|I|

= 2x− k +
2(x− k)

ρ(k − 1)δ

(
x− 1

k − 1

)
= Θ(xk/δ).

In π1+π2 the minimum degree is δ and the maximum degree is ∆ = 2
(
x−1
k−1

)
= Θ(xk−1).

Hence ∆ = Θ((δn)(k−1)/k).

In any realization of π1, Lemma 3.5.4 implies that the vertices of degree greater

than δ must form a clique. Since the k vertices of B must be in this clique, those

vertices must form an edge in any realization of π1. The same argument applies to

π2, hence the sequences do not pack.
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Lemma 3.5.4 ([6]). If π = (d1, . . . , dn) is a k-graphic sequence, then

t∑
i=1

di ≤ k

(
t

k

)
+ (k − 1)

n∑
j=t+1

dj

for k ≤ t ≤ n. If equality holds, then the t vertices of highest degree in any k-

realization of π form a clique, and any edge not contained in the clique contains

exactly one vertex outside the clique.
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Chapter 4

Induced-saturation1

1This is chapter is the result of joint work with Catherine Erbes, Michael Santana, Derrek Yager,
and Elyse Yeager and appears in [7].
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4.1 Background and introduction

A well known graph parameter is the saturation number, defined for a graph H and

a whole number n as the minimum number of edges in a graph G on n vertices such

that H is not a subgraph of G, but H occurs if any edge of G is added to G. Formally,

sat(n,H) = min{|E(G)| : G has n vertices, H 6⊆ G, and ∀e /∈ E(G), H ⊆ G+ e}.

Determining the saturation number for a given graph H has proven, in general,

quite difficult. For more information on the saturation number, see the dynamic

survey of Faudree, Faudree, and Schmitt [36].

A natural attempt at defining an induced variant of graph saturation would be

to state that an n-vertex graph G is H-induced-saturated if G is H-free and for all

e /∈ E(G), G+e contains H as an induced subgraph. Unfortunately, this is not always

well defined. That is, there exist graphs H and values of n ≥ |V (H)| for which every

n-vertex graph G either contains H as induced subgraph, or there exists e /∈ E(G)

such that G+ e is H-free. A simple example is n = 4 and H = K1,3.

In this chapter, we consider a variant of the saturation number introduced by

Martin and Smith in 2012 that looks for induced copies of H, and considers deleting

as well as adding edges. To create a well defined parameter, Martin and Smith

[69] make use of trigraphs, objects also used by Chudnovsky and Seymour in their

structure theorems on claw-free graphs [27].

Definition 4.1.1. A trigraph T is a quadruple (V (T ), EB(T ), EW (T ), EG(T )), where

V (T ) is the vertex set and the other three elements partition
(
V (T )
2

)
into a set EB(T )

of black edges, a set EW (T ) of white edges, and a set EG(T ) of gray edges. These

can be thought of as edges, nonedges, and potential edges, respectively. For any
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e ∈ EB(T ) ∪ EW (T ), let Te denote the trigraph where e is changed to a gray edge,

i.e. Te = (V (T ), EB(T )− e, EW (T )− e, EG(T ) + e).

A realization of T is a graph G = (V (G), E(G)) with V (G) = V (T ) and E(G) =

EB(T ) ∪ S for some S ⊆ EG(T ). Let R(T ) be the family of graphs that are a

realization of T .

A trigraph T is H-induced-saturated if no realization of T containsH as an induced

subgraph, but H occurs as an induced subgraph of some realization whenever any

black or white edge of T is changed to gray. Formally,

indsat(n,H) = min{|EG(T )| :|V (T )| = n,∀G ∈ R(T ), H 6≤ G,

and ∀e ∈ EB(T ) ∪ EW (T ), H ≤ G′

where G′ ∈ R(Te)}.

The induced saturation number of a graphH with respect to n, written indsat(n,H),

is the minimum number of gray edges in an H-induced-saturated trigraph with n ver-

tices.

Notice that a trigraph with EG(T ) = ∅ has a unique realization, so if indsat(n,H) =

0, there is a graph G that has no induced copy of H yet adding or removing any edge

creates an induced copy of H. We will call such a graph H-induced-saturated.

The complement of a trigraph T , denoted T , is the trigraph with V (T ) = V (T ),

EB(T ) = EW (T ), EW (T ) = EB(T ), and EG(T ) = EG(T ).



89

4.1.1 Notation

For graphs G and H, we let G∪H denote the disjoint union, G∨H denote the join,

and G�H denote the Cartesian product of the two graphs. A trivial component of

a graph is an isolated vertex. For a graph G, we use n(G) for the number of vertices

and e(G) for the number of edges in G. We let Pn denote the path on n vertices and

Cn the cycle on n vertices. Kn is the complete graph on n vertices, and for k ≥ 2,

Ka1,...,ak is the complete multipartite graph with parts of size a1, . . . , ak. K
+
1,3 is the

paw, which is obtained by adding a single edge to K1,3. For a set S ⊆ V (G), G[S]

is the subgraph of G induced by S, and if S = {v1, . . . , vp}, we will sometimes write

G[v1, . . . , vp]. For a vertex v ∈ V (G), NG(v) (or N(v), if G is clear from context) is

the set of neighbors of v in G, and N [v] = N(v) ∪ {v}. We use degG(v) or deg(v) to

denote the degree of v, that is, |N(v)|. In a trigraph, the black (resp. gray) degree

of a vertex is the number of black (resp. gray) edges incident to that vertex. We say

a set S of vertices dominates G, and we call S a dominating set, if every vertex of

G − S is adjacent to some vertex in S; if S = {v}, we say v is a dominating vertex.

Similarly, a vertex u dominates a vertex set S if u is adjacent to every vertex in S.

Finally, for an integer n, we let [n] = {1, . . . , n}. Other notation will be defined as it

is used, or see [84] for any undefined terms.

4.1.2 Observations and previous results

By definition, the only trigraphs on fewer than v(H) vertices that are H-induced-

saturated are those in which all edges are gray. Thus we will usually assume that

n ≥ |V (H)| when we discuss indsat(n,H).

The following theorem summarizes the results of Martin and Smith [69]:

Theorem 4.1.2. Let H be a graph.
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• For all n ≥ |V (H)|, indsat(n,H) ≤ sat(n,H). By [54], sat(n,H) ∈ O(n), so in

particular indsat(n,H) ∈ O(n).

• For all n ≥ m ≥ 3, indsat(n,Km) = sat(n,Km). (Note that sat(n,Km) was

determined by Erdős, Hajnal, and Moon in [34].)

• For all n ≥ m ≥ 2, and for e ∈ E(Km), indsat(n,Km − e) = 0. In particular,

for all n ≥ 3, indsat(n, P3) = 0.

• For all n ≥ 4, indsat(n, P4) =
⌈
n+1
3

⌉
.

We also make the following observation:

Observation. A trigraph T is H-induced-saturated if and only if T is H-induced-

saturated. In particular, indsat(n,H) = indsat(n,H).

Proof. Suppose a trigraph T has a realization G such that H is an induced subgraph

of G. Then H is an induced subgraph of G. Using the definition of T , G is a

realization of T . It follows that a trigraph T is H-induced-saturated if and only if T

is H-induced-saturated.

4.1.3 Minimally H-induced-saturated graphs

In this chapter we show that indsat(n,H) is zero for stars, which as noted above,

means that there exists a graph that is H-induced-saturated. This leads to the

natural question: What is the minimum number of edges in such a graph?

Definition 4.1.3. For a graph H and whole number n with indsat(n,H) = 0, we

define

indsat∗(n,H) := min{e(G) : |V (G)| = n and G is H-induced-saturated}.
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We say a graph G on n vertices with indsat∗(n,H) edges is minimally H-induced-

saturated.

By Observation 4.1.2, the maximum number of edges in an n-vertex H-induced-

saturated graph is
(
n
2

)
− indsat∗(n,H).

In this chapter we show that stars (K1,t) have induced-saturation number zero for

n sufficiently large. We also determine indsat∗(n,K1,t) within a factor of 2 and show

that the upper bound is correct for K1,3. Finally, we introduce the induced-saturation

number of a family of graphs and show that while every graph in a family may

have induced-saturation number zero, the family itself could have nonzero induced-

saturation number. In further joint work [7], we show that the following graphs have

induced-saturation number zero for n sufficiently large: K+
1,3, stars , C4, odd cycles,

some modifications of even cycles, and matchings. Additionally, we provide bounds

on indsat∗(n,H) for the graphs listed above. In particular, we characterize the K+
1,3-

induced-saturated graphs, which in turn completely determines indsat∗(n,K+
1,3).

4.2 Stars

Recall that K1,2 = P3, and indsat(n, P3) = 0 for n ≥ 3, as established in [69]. In

this section we provide a construction extending this result, to show that for fixed

k ≥ 2 and n sufficiently large, indsat(n,K1,k+1) = 0. Additionally, our construction,

together with a simple argument, determines indsat∗(n,K1,k+1) within a factor of two.

The case when k = 2, which refers to the graph K1,3, commonly known as the claw,

will be addressed in further detail in Section 4.3.

Construction 4.2.1. Fix k ≥ 2 and n ≥ 3k. Let z,R be positive integers such that

n = z3k + R with 0 ≤ R < 3k. Let H be the graph K1
3 �K2

3 � · · ·�Kk
3 , where Ki

3
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denotes a single copy of K3. In other words, V (H) = {(α1, . . . , αk) : αi ∈ [3]}, and

(α1, . . . , αk)(β1, . . . , βk) ∈ E(H) if and only if
∑
|{i : αi 6= βi}| = 1. Define H ′ where

V (H ′) is the disjoint union of V (H) and V (KR), and E(H ′) consists of E(H), E(KR)

and the edges between H and KR satisfy: for each v ∈ V (KR), vα ∈ E(H ′) if and

only if α = (α1, 1, 1, . . . , 1), α1 ∈ [3]. We now define G to be the disjoint union of

z − 1 copies of H and a single copy of H ′.

Proposition 4.2.2. The graphs in Construction 4.2.1 are K1,k+1-induced-saturated.

Proof. Given fixed n and k, let G and R be as defined in Construction 4.2.1. Let F

denote the subgraph of H ′ isomorphic to H. Suppose that G contains an induced

K1,k+1 with center x, and suppose first that x is in a copy of H. Since V (G) can

be represented by k-dimensional vectors as described in the construction, any set of

k + 1 neighbors of x contains two vertices with vectors that differ in exactly one

coordinate. Thus, x cannot have k+ 1 neighbors which form an independent set, and

H is K1,k+1-free.

If H ′ contains an induced K1,k+1, then x cannot be in the KR as the neighborhood

of x would be a clique. Thus, x is in F . If this induced K1,k+1 contains no vertices

from the copy of KR, then the above argument produces a contradiction. Thus, this

K1,k+1 contains a vertex from the copy of KR, and without loss of generality, we

may assume that x is represented by (1, 1, . . . , 1) in F . Consequently, our K1,k+1 has

exactly one vertex in KR, but then contains no vertices of the form (α1, 1, 1, . . . , 1)

other than x. Hence, x has at most k − 1 other neighbors from F in this copy of

K1,k+1 from F . So G is K1,k+1-free.

It is clear that every vertex in a copy of H (or in F ) is the center of an induced

K1,k. Thus, if we add an edge between two components of G, one component must be

a copy of H, and we obtain an induced K1,k+1. Thus, it remains to consider adding an



93

edge within a component. Note that by the construction of H ′, the only possible way

to add an edge is within F , which is isomorphic to H. So, it suffices to consider adding

an edge to a copy of H. Suppose we add the edge uv. Without loss of generality, we

may assume that u is represented by (1, 1, . . . , 1). Since u and v were not adjacent

in H, their corresponding vectors must differ in at least two coordinates, say the

first and second. As a consequence, v is adjacent to neither y nor w, where y ∈

{(2, 1, 1, . . . , 1), (3, 1, 1, . . . , 1)} and w ∈ {(1, 2, 1, 1, . . . , 1), (1, 3, 1, 1, . . . , 1)}. Thus,

{u, v, w, y} is an induced K1,3 centered at u. To this set we add vertices α3, α4, . . . , αk,

where αi has all coordinates equal to 1 except that the ith coordinate is either 2 or

3. This induces K1,k+1.

Lastly, suppose we remove an edge uv. There are three cases to consider. The

first case is if uv is in a copy of H (or in F ). Here, we may assume u = (2, 1, 1, . . . , 1)

and v = (3, 1, 1, . . . , 1). The second case is if both u and v are in KR. The last

case is if only one endpoint, say v, is in KR. Here, we may again assume that

u = (2, 1, 1, . . . , 1). In all three cases, (1, 1, . . . , 1) together with u, v, and the vertices

α2, . . . , αk defined above induce a K1,k+1. This completes the lemma.

Corollary 4.2.3. For fixed k ≥ 2 and n ≥ 3k, indsat(n,K1,k+1) = 0.

Theorem 4.2.4. For n ≥ 2 · 3k and k ≥ 2, there exist constants c1 = c1(k) and

c2 = c2(k) such that nk
2
− c1 ≤ indsat∗(n,K1,k+1) ≤ nk + c2.

Proof. Given fixed n and k, let G and R be as defined in Construction 4.2.1.

We establish e(G) by considering vertex degrees. The component H ′ has at most

2 ·3k vertices, and so (trivially) at most
(
2·3k
2

)
edges. The remaining vertices, of which

there are at most n − 3k, all have degree 2k for a contribution of at most (n − 3k)k

edges. All told, e(G) ≤ nk − k · 3k +
(
2·3k
2

)
.



94

To show the lower bound, suppose that G is a K1,k+1-induced-saturated graph.

Let S = {x ∈ V (G) : deg(x) ≤ k − 1}. We claim that |S| ≤ k.

If |S| > k, then there exist x, y ∈ S such that xy /∈ E(G). Let G′ denote G+ xy.

As G was K1,k+1-induced-saturated, G′ must contain an induced K1,k+1, using the

edge xy with either x or y as the center of this K1,k+1. However, as both x and y are

adjacent to at most k − 1 vertices in G, this cannot happen. So |S| ≤ k, as claimed.

Observe:

e(G) ≥ 1

2

k(n− |S|) +
∑
x∈S

deg(x)

 ≥ nk

2
− k2

2
.

This establishes the lower bound.

It is worth noting that we can extend Construction 4.2.1, as any graph formed as

a Cartesian product of exactly k cliques, each of size at least three, is K1,k+1-induced-

saturated.

4.3 The claw

For sufficiently large n, Theorem 4.2.4 states that indsat∗(n,K1,k+1) is linear in n,

and in particular, we know the coefficient within a factor of two. In this section,

we will determine the coefficient of indsat∗(n,K1,3), which coincides with the upper

bound given in Theorem 4.2.4. Additionally, we will provide better constructions than

that in Construction 4.2.1, which will ultimately determine indsat∗(n,K1,3) within an

additive constant of four.

Values of indsat(n,K1,3) were determined for 4 ≤ n ≤ 10 by computer search2

and are listed in Table 4.1, along with trigraphs that achieve the minimum number

2A program was written in C++ and is available at http://www.math.unl.edu/~s-sbehren7/
main/Data.html.

http://www.math.unl.edu/~s-sbehren7/main/Data.html
http://www.math.unl.edu/~s-sbehren7/main/Data.html
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of gray edges. This, together with Corollary 4.2.3 determines indsat(n,K1,3) for all

n. We now turn our attention to indsat∗(n,K1,3).

indsat(4, K1,3) =
3

indsat(5, K1,3) =
3

indsat(6, K1,3) =
3

indsat(7, K1,3) =
2

indsat(8, K1,3) =
2

indsat(9, K1,3) =
0

indsat(10, K1,3) = 0

Table 4.1: Values of indsat(n,K1,3) for 4 ≤ n ≤ 10 along with trigraphs realizing
those values. All K1,3-induced-saturated graphs for n = 9 and n = 10 are shown.

Theorem 4.3.1. The following bounds hold for n ≥ 9, n 6= 14, 17:

indsat∗(n,K1,3) = 2n if n ≡ 0 mod 3

indsat∗(n,K1,3) = 2n− 2 if n ≡ 1 mod 3

2n ≤ indsat∗(n,K1,3) ≤ 2n+ 2 if n ≡ 2 mod 3.

In order to prove Theorem 4.3.1, we first prove a series of lemmas that will aid

in producing the lower bounds of the statement. Then we construct families of K1,3-

induced-saturated graphs that exhibit the upper bounds of Theorem 4.3.1.

The following lemma shows that K1,3-induced-saturated graphs have few vertices

of low degree.

Lemma 4.3.2. Let G be a K1,3-induced-saturated graph. Then G has
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1. at most one isolated vertex,

2. no vertices of degree one,

3. at most one vertex of degree two, and

4. at most two vertices of degree three.

Furthermore, if G has an isolated vertex v, then δ(G − v) ≥ 4. Additionally, if G

has a vertex of degree three, then G does not have a vertex of degree two. If G has

two vertices of degree three or a vertex of degree two, then G has a vertex of degree

at least five.

Proof. Let G be a K1,3-induced-saturated graph. Observe that if we had two isolated

vertices, then adding the edge between them would not yield a K1,3. Also, any edge

of G lies in a triangle, so there are no vertices of degree one.

Suppose that u and v are vertices of degree two. Since every edge lies in a triangle

the neighbors of u are adjacent, as are the neighbors of v. Thus, if u and v are not

adjacent, adding the edge uv does not create an induced K1,3. If u and v are adjacent,

then N [u] = N [v] = {u, v, w} for some w. However, removing uw does not create an

induced K1,3 as v would have to have been its center. So G has at most one vertex

of degree two.

To prove (4), suppose u is a vertex of degree three with neighbors u1, u2, u3.

Since every edge is in a triangle, we may assume that u1u2, u2u3 ∈ E(G). Case 1:

u1u3 /∈ E(G). Then adding u1u3 creates an induced K1,3 centered at either u1 or u3;

say u1. Then u1 has two nonadjacent neighbors x and y that are distinct from u2 and

u3. However, {u, u1, x, y} induces a K1,3 in G, a contradiction. Case 2: u1u3 ∈ E(G).

In particular, every vertex of degree three in G is contained in a K4. Let v be another

vertex of degree three. By the above, N [v] induces K4. If uv /∈ E(G), then adding
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uv does not create an induced K1,3. Thus, u and v are adjacent, and consequently

the only vertices of degree three are contained in N [u].

If we remove uu1, then an induced K1,3 exists, centered at either u2 or u3. So at

least one of them has degree at least four, say u3. Similarly, removing uu3 creates

an induced K1,3 centered at either u1 or u2 so that at least one of them has degree

at least four. In any case, at most two vertices in N [u], and as a result in G, have

degree three. Thus, (4) holds.

If G has an isolate, u, and another vertex v with deg(v) ≤ 2, then adding uv

cannot create an induced K1,3 unless deg(v) = 2. In this case, the neighbors of v

cannot be adjacent, however every edge of G must be in a triangle, a contradiction.

Suppose u and v are vertices with deg(u) = 2 and deg(v) = 3. By previous

arguments, the neighbors of u form a clique, as do the neighbors of v. Thus, if

uv /∈ E(G), adding uv does not create an induced K1,3. So uv ∈ E(G), and in

particular, u is in the K4 induced by N [v]. However, deg(u) = 2, a contradiction.

Now, suppose u and v are vertices with deg(u) = deg(v) = 3. By the above, they

must be contained in the same K4, so let u, v, x, y denote the vertices of this K4. If

we delete xy, then x and y are the leaves of a K1,3, but this K1,3 is not centered at u

or v, so x and y have a common neighbor z 6∈ {u, v}. If we delete xz, the resulting

K1,3 is centered at a common neighbor of x and z. If that common neighbor is not

y, then deg(x) ≥ 5, and if it is, then deg(y) ≥ 5.

Similarly, suppose deg(v) = 2, with N(v) = {x, y}. Since every edge is in a

triangle, xy ∈ E(G). If we consider deleting the edge xy, we note that the K1,3

formed does not have center v, so x and y share another neighbor z, and z has a

neighbor z′ nonadjacent to both x and y. Consider deleting the edge vx. The K1,3

formed must be centered at y, so y has a neighbor nonadjacent to v or x. Then this

neighbor y′ is not any of the vertices already named. Similarly, x has a neighbor
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x′ 6∈ {v, x, y, y′, z, z′}. Then {x′, y′} ⊆ N(z) else G[x, x′, v, z] or G[y, y′, v, z] is a K1,3.

Thus, deg(z) ≥ 5.

Corollary 4.3.3. Any graph that is K1,3-induced-saturated (on n ≥ 9 vertices) has at

least 2n−2 edges. That is, indsat∗(n,K1,3) ≥ 2n−2 for n ≥ 9. Furthermore, if G is a

K1,3-induced-saturated graph that does not have an isolated vertex, then |E(G)| ≥ 2n.

Proof. Apply the degree-sum formula and Lemma 4.3.2.

As indicated in Corollary 4.3.3, if a graph on n vertices obtaining the minumum

number of edges among K1,3-induced-saturated graphs exists, then it is four-regular

except for an isolated vertex. We provide the following structural results to show

such a graph only exists if n ≡ 1 mod 3.

Lemma 4.3.4. Suppose G is a K1,3-induced-saturated graph, and for some v ∈ V (G),

every vertex in N [v] has degree precisely 4. Then G[N(v)] ∈ {2K2, P4}.

Proof. Since we are assuming every vertex in N [v] has degree 4, then we can let

N(v) = {u, x1, x2, x3}. Next, we show that ∆(G[N(v)]) ≤ 2. Suppose to the contrary

that some vertex, say u ∈ N(v), has three neighbors within N(v); hence, N(u) ∩

N(v) = {x1, x2, x3}. By deleting ux1, we see that u and x1 have a common neighbor

besides v. Using the symmetry of x1, x2, and x3, without loss of generality x1x2, x2x3 ∈

E(G). Now N(x2) = {u, v, x1, x3}, because deg(x2) = 4. Consider deleting ux1. The

common neighbors of u and x1 are v, x2, and maybe x3. Neither v nor x2 can be the

center of a K1,3 since all of their neighbors are adjacent to u or x1. Hence x3 must be

the center of the induced K1,3, so x1x3 ∈ E(G). But then N(x3) = {v, u, x1, x2} so

the K1,3 supposedly centered at x3 has no third leaf.
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This shows that ∆(G[N(v)]) ≤ 2. Because every edge is in a triangle, if ∆(G[N(v)]) <

2, then G[N(v)] = 2K2, so suppose ∆(G[N(v)]) = 2. Then G[N(v)] is either C4 or

P4.

Suppose x1x2x3x4 = P4 ⊆ G[N(v)]. If x1x4 6∈ E(G), then G[N(v)] = P4, so

suppose x1x4 ∈ E(G). Deleting the edge x2x3 shows that x2 and x3 have a common

neighbor y ∈ V (G) \ N [v]. Separately, consider deleting x3x4. The only possible

common neighbors of x3 and x4 are v and y. Because x1x4 ∈ E(G), v cannot be the

center of the K1,3 created by deleting x3x4, so the center is y. Then the third leaf

must be some vertex y′ 6∈ N(x3) ∪ N(x4). But we also know that y′ 6∈ N(x2), since

deg(x2) = 4, so G[y, y′, x2, x4] is an induced K1,3, a contradiction.

For the remainder of this section, we define R(G) := {v ∈ V (G) : G[N(v)] = 2K2}

and B(G) := {v ∈ V (G) : G[N(v)] = P4} for any graph G. Hence if G is a four-

regular K1,3-induced-saturated graph, then V (G) is partitioned into R(G) and B(G).

We will call the vertices in R(G) red vertices and those in B(G) blue vertices.

Lemma 4.3.5. If G is a 4-regular K1,3-induced-saturated graph, then B(G) induces

kK3 for some k.

Proof. Let v ∈ B(G) so that G[N(v)] is a path x1x2x3x4. Since P3 ⊆ G[{v, x1, x3}] ⊆

G[N(x2)] and P3 ⊆ G[{v, x2, x4}] ⊆ G[N(x3)], Lemma 4.3.4 implies that x2, x3 ∈

B(G). Furthermore, as deleting x2x3 creates an induced K1,3, which cannot be

centered at v, then x2 and x3 share another common neighbor, call it y. Since

N(x2) = {v, x1, x3, y}, x1 ∈ B(G) if and only if x1 and y are neighbors. So if

x1y ∈ E(G), we consider adding vy to G. This creates an induced K1,3, which

must be centered at y. However, since G is 4-regular, y has at most one neighbor

outside of {x2, x3, x4, v} and cannot be the center of this induced K1,3, a contra-

diction. Thus, x1 ∈ R(G), and by symmetry, x4 ∈ R(G). Repeating the above
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argument for x2 instead of v shows that y ∈ R(G). Hence, {x2, x3, v} ⊆ B(G) but

N({x2, x3, v}) = {x1, x4, y} ⊆ R(G) and so {x2, x3, v} induces a triangle of vertices

in B(G).

An example of a 4-regular K1,3-induced-saturated graph, with R(G), B(G) 6= ∅ is

shown in Figure 4.1. Observe that B(G) induces 8K3, which is in accordance with

Lemma 4.3.5.

Figure 4.1: A 4-regular K1,3-induced-saturated graph. Vertices in R(G) are white,
and vertices in B(G) are gray.

Lemma 4.3.6. Let G be a 4-regular K1,3-induced-saturated graph. Every edge of G

is in either one or two triangles, and there are |B(G)| edges that are in two triangles.

Proof. Recall that every edge in a K1,3-induced-saturated graph is in at least one

triangle. Suppose there exists xy ∈ E(G) where x and y have three common neighbors

u, v, w. ThenG[N(x)] cannot be in {2K2, P4}, which contradicts Lemma 4.3.4. Hence,

each edge is in at most two triangles.
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Let b be the number of edges that are in two triangles. Label edge xy with vertex

z if xyz is a triangle, and allow for multiple labels. Thus b edges have two labels and

hence

|E(G)|+ b =
∑

z∈V (G)

|{e ∈ E(G) : e has label z}|.

Since each red vertex gives its label to two triangles and each blue vertex gives its label

to three triangles, we have
∑

z∈V (G) |{e ∈ E(G) : e has label z}| = 2|R(G)|+3|B(G)|.

Thus, since G is 4-regular,

2n+ b = |E(G)|+ b

=
∑

z∈V (G)

|{e ∈ E(G) : e has label z}|

= 2|R(G)|+ 3|B(G)|

= 2(n− |B(G)|) + 3|B(G)|

= 2n+ |B(G)|

Therefore, there are precisely |B(G)| edges that are in two triangles.

Proposition 4.3.7. If G is a 4-regular, K1,3-induced-saturated graph on n vertices,

then n ≡ 0 mod 3.

Proof. Let b = |B(G)|. By Lemma 4.3.5, 3 divides b. By Lemma 4.3.6, 2n− b edges

are in precisely one triangle, and b edges are in precisely two triangles. If t is the

number of triangles in G, then 3t = (2n − b) + (2b) = 2n + b. Since 3 divides b, we

know 3 divides 2n, and so 3 divides n.
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The previous lemmas will be used in the proof of Theorem 4.3.1 to obtain a lower

bound indsat∗(n,K1,3) ≥ 2n − 1 for n ≡ 0 mod 3. The next two propositions show

that certain degree sequences do not have a K1,3-induced-saturated realization. This

allows us to increase the lower bound of indsat∗(n,K1,3) for certain values of n.

Proposition 4.3.8. If G is a K1,3-induced-saturated graph, then the degree sequence

of G is not (5, 5, 4, . . . , 4).

Proof. Suppose G is a counterexample to the claim, and let v be a vertex of degree

5.

Case 4.3.8.1. ∆(G[N(v)]) = 4.

That is, v has a neighbor u such that X := N(u) ∩ N(v)is a set of order 4. If

we delete vx′ for some x′ ∈ X, then the resulting K1,3 is not centered at u since the

neighbors of u are adjacent to v. Thus x′ and v share a neighbor x ∈ X and there is

some ∈ N(x) \ [N(x′) ∪ N(v)]. Now N(x) = {u, v, x′, y} and uy, vy, x′y /∈ E(G), so

the edge xy is in no triangle, a contradiction.

Case 4.3.8.2. ∆(G[N(v)]) = 3.

That is, there exist u ∈ N(v), w /∈ N [u], and X ⊆ N(u) with |X| = 3 so that

N(v) = {u,w} ∪X. Since deleting the edge vw creates a K1,3, there exist vertices x′

and y such that x′ is a common neighbor of v and w, y is adjacent to x′, and y is not

adjacent to w nor v. Note x′ ∈ X and y /∈ N [v]. Then to prevent a K1,3 in G with

center x′ and leaves u,w, y, we have uy ∈ E(G). Then, u, v are the vertices of degree

5 and all other vertices have degree 4 so that N(x′) = {u, v, y, w}. Since u is not the

center of a K1,3, and x′ has no neighbors in X, the vertices of X \ {x} (call them a

and b) are adjacent.

Note that u was chosen as an arbitrary vertex of N(v) with three neighbors in

N(v), and we showed deg(u) = 5.
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Now, deg(a) = deg(b) = 4 and each of a and b currently has two neighbors

in N(v). If a (or b) were adjacent to w, then the argument previously applied to

u would guarantee that deg(a) = 5 (or deg(b) = 5), thus giving us at least three

vertices of degree 5. Therefore a and b each have a neighbor outside of N [v]; due to

the necessity that every edge be in a triangle, they share this neighbor, which we shall

name z. It is possible that z = y. Suppose z 6= y, then deleting az should create an

induced K1,3 centered at at common neighbor of a and z. However, the only option

is b, which is not the center of such a K1,3, a contradiction. So suppose z = y, then

degN(u)(a) = 3. By the previous argument with u, we must have degG(a) = 5, a

contradiction.

Case 4.3.8.3. ∆(G[N(v)]) ≤ 2.

N(v) has no independent set of size three, lest it be the center of a K1,3. Then

G[N(v)] ∈ {K2 +K3, C5}.

Suppose first G[N(v)] = K2 +K3, with {x1, x2, x3} inducing K3. We may suppose

deg(x1) = deg(x2) = 4 since at most one of the vertices in the copy of K3 may

have degree 5. So each of x1 and x2 have a neighbor outside of N [v], say y and z,

respectively. If y 6= z, then since every edge is contained in a triangle, x3 is adjacent

to both y and z. However, this implies that deg(z) = 5 and ∆(G[N(z)]) ≥ 3, as

evidenced by x1. This puts us in Case 4.3.8.2.

So y = z, and consequently, N [x1] = N [x2]. The only common neighbors of x1

and y are x2 and possibly x3. If x3 /∈ N(x) ∩ N(y), removing x1y should create an

induced K1,3 centered at x2, but it does not. Thus, removing x1y creates an induced

K1,3 centered at x3, which implies that x3 is adjacent to y, as well as another vertex

y′ not in N [v] ∪ {y}. However, this implies that deg(x3) = 5, and ∆(G[N(x3)]) ≥ 3,

as evidenced by x1. This also puts us in Case 4.3.8.2.
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Suppose now G[N(v)] = C5 with cycle x1x2x3x4x5. We may assume that x1, x2, x3,

and x4 all have degree 4. The only common neighbors of v and x2 are x1 and x3.

When removing vx2 we obtain an induced claw centered at either x1 or x3. Without

loss of generality, assume it is x3. Since x4 is not a leaf of a K1,3 that features v as a

leaf, x3 has a neighbor y 6∈ N(v) ∪N(x2). Since G[x3, x2, x4, y] cannot be a K1,3, we

must have yx4 ∈ E(G). Similarly, if we delete vx3, the candidates for center of the

ensuing K1,3 are x2 and x4; we know the neighborhood of x4, and so see that x2 is

the center. Then there exists y′ ∈ N(x2) such that y′ 6∈ N(v) ∪N(x3), and as before

y′x1 ∈ E(G). Now we know the neighborhoods of x1, x2, x3, and x4. If we add the

edge x1x4, we find that no K1,3 is formed, a contradiction.

Proposition 4.3.9. Let G be a K1,3-induced-saturated graph. Then for any n ≥ 7,

the degree sequence of G is not (6, 4, . . . , 4).

Proof. Suppose G is a counterexample to this claim. Let v have degree six, and

let F = G[N(v)], so |F | = 6, ∆(F ) ≤ 3, and α(F ) ≤ 2 else v is the center of a

K1,3. In fact α(F ) = 2 in order for the vertices of N(v) to have degree four in G.

If δ(F ) = 3, then N [v] is a component of G, and this component is K1,3-induced-

saturated. However, from the computer search, with results listed in Table 4.1, we

know that there is no nontrivial K1,3-induced-saturated graph on fewer than nine

vertices. Therefore δ(F ) ≤ 2. Indeed, we claim δ(F ) = 2. If δ(F ) ≤ 1, let u be a

vertex with minimum F -degree (i.e. degF (u) is minimum), and let T = F \ N [u].

Then T is a clique, else two nonadjacent vertices in T together with u and v form a

K1,3. Hence |T | = 4 and the vertices of T have no neighbors outside of N [v] in G.

Now, deleting the edge between v and any vertex of T does not create an induced

K1,3, so δ(F ) = 2.

Let u be a vertex in F with degF (u) = 2, and let T = F \ N [u]. As before, T
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is a clique, specifically a triangle. Let NF (u) = {u′, u′′}. Since degF (u) = 2, u has

one neighbor w outside of N [v]; since every edge is in a triangle, we may assume

that w is adjacent to u′. Now, the only common neighbors of v and u are in NF (u).

Since δ(F ) = 2, u′ must have another neighbor in F other than u. Thus, the only

neighbor of u′ not in N [v] is w, and if we delete vu, the resulting induced K1,3 cannot

be centered at u′. So it must be centered at u′′, which in turn has a neighbor w′′

outside of N [v] ∪ {w}. Since u′′w′′ is in a triangle and δ(F ) = 2, u′′ and w′′ share a

neighbor t′′ in F . Since δ(F ) = 2, no vertex in F has two neighbors outside N [v]. So

t′′ 6= u′, and hence t′′ ∈ T . But now deg(t′′) ≥ 5, a contradiction.

Finally, we construct graphs which we use to find an upper bound for indsat∗(n,K1,3).

Lemma 4.3.10. If G is a graph where the neighborhood of every vertex induces 2K2,

then G is K1,3-induced-saturated.

Proof. Since no vertex has three independent neighbors, G contains no induced K1,3.

Suppose we delete an edge xy. Since every edge is in a triangle, say xyz, deleting xy

leaves z as the center of a K1,3 with leaves x, y, and any other neighbor of z. If we

add an edge between two vertices with no common neighbors, then we take the new

edge together with two nonadjacent neighbors of one of the vertices and find a K1,3.

Therefore it suffices to consider adding an edge xy, where x and y share a neighbor.

Let N(x) = {u1, u2, v1, v2} with u1u2, v1v2 ∈ E(G), and suppose u1 ∈ N(y). Then

u2 /∈ N(y) otherwise N(u2) would contain a P3 and not be 2K2. Similarly, both v1

and v2 cannot be in N(y). So we may assume v2 /∈ N(y). Then upon adding xy,

{x, y, u2, v2} induces a K1,3.

Lemma 4.3.11. Let G be a graph with at most one isolated vertex, where each non-

trivial component is one of the graphs in Figure 4.2. Then G is K1,3-induced-saturated.
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(a) H = K3�K3, 9 vertices (b) Graph J on 11 vertices

(c) Graph K on 12 vertices (d) Graph L on 15 vertices

Figure 4.2: These graphs are K1,3-induced-saturated.

Proof. By inspection, the graph in Figure 4.2b is K1,3-induced-saturated, and since

the graphs in Figures 4.2a, 4.2c, and 4.2d have the property that the neighborhood

of every vertex induces 2K2, they are K1,3-induced-saturated by Lemma 4.3.10.

Now let G be a graph with at most one isolated vertex and each of the remaining

components are one of the graphs from Figure 4.2. Since each nontrivial component

of G is K1,3-induced-saturated, we only need to consider adding an edge xy between

components. When we add the edge xy, at least one of x and y must be in a nontrivial

component, say x. By inspection we see every vertex in every graph of Figure 4.2 has

two nonadjacent neighbors, and in particular, this holds for x. Thus, x together with

these two neighbors and y induce a K1,3. Therefore, G is K1,3-induced-saturated.

We now can prove Theorem 4.3.1.
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Proof of Theorem 4.3.1. We exhibit graphs with the desired number of edges to prove

the upper bounds.

Case 4.3.11.1. n ≡ 0 mod 3, n ≥ 9

Use bn/9c − 1 copies of H, together with one copy of H, K, or L, for a graph

with 2n edges. Alternatively, we could generalize L for n ≥ 15 by having n/3 vertices

in the outer cycle, n/3 vertices in the inner cycle, and n/3 vertices between the two

cycles.

Case 4.3.11.2. n ≡ 1 mod 3, n ≥ 10

Use an isolated vertex with a graph from Case 4.3.11.1 for a graph with 2n − 2

edges.

Case 4.3.11.3. n ≡ 2 mod 3, n ≥ 20 or n = 11.

If n = 11, the graph J suffices. If n ≥ 20, then take J and a construction from

Case 4.3.11.1. This achieves 2n+ 2 edges.

For the lower bound, let G be any K1,3-induced-saturated graph. Corollary 4.3.3

gives us a general lower bound of 2n− 2. Suppose G has no isolated vertex. Then by

Corollary 4.3.3, e(G) ≥ 2n, as desired. Suppose then that G does have an isolated

vertex, and n 6≡ 1 mod 3. Then (n − 1) 6≡ 0 mod 3, so by Lemmas 4.3.2 and

4.3.7, the minimum degree of the non-isolated vertices is at least 4, and ∆(G) ≥ 5.

Then e(G) ≥
⌈
4(n−1)+1

2

⌉
= 2n − 1, with equality only if the degree sequence of G is

(5, 5, 4, . . . , 4, 0) or (6, 4, . . . , 4, 0). Since the graph obtained by deleting the isolate is

K1,3-induced-saturated, by Propositions 4.3.8 and 4.3.9, e(G) ≥ 2n.
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4.4 Families of graphs

In this section we extend the definition of induced saturation to families of graphs in

the natural way.

Definition 4.4.1. For a family F of graphs, a trigraph T is F-induced-saturated if no

realization of T contains any member of F as an induced subgraph, but whenever any

black or white edge of T is turned to gray, some member of F occurs as an induced

subgraph of some realization.

The induced saturation number of F with respect to n, written indsat(n,F), is the

minimum number of gray edges in an F -induced-saturated trigraph with n vertices.

For any family F containing all graphs on k vertices, indsat(n,F) =
(
n
2

)
.

Construction 4.4.2 and Proposition 4.4.3 demonstrate that for any family F , all

of whose elements are odd cycles, even cycles with a pendant, or even cycles with

a triangle chord, indsat(n,F) = 0 for n sufficiently large. However, we could have

indsat(n,F) 6= 0 even if there is some G ∈ F such that indsat(n,G) = 0 as demon-

strated in Proposition 4.4.4 below. One may suspect this is because of the presence of

P4, which has nonzero induced-saturation number, yet it is also possible for a family

F to consist of graphs that each individually have induced saturation number zero,

while the induced saturation number of F is nonzero. We provide an example of this

in Proposition 4.4.5.

Construction 4.4.2 ([7]). For k ≥ 3 and n ≥ (k + 1)2 + 2, let n = (k + 1)t − s,

where t =
⌈

n
k+1

⌉
≥ k + 2 and 0 ≤ s ≤ t− 3. Let Gn,k be formed from the Cartesian

product Kk+1�Kt by removing s vertices from one copy of Kt.

Proposition 4.4.3 ([7]). Let C ′2k denote a cycle of length 2k with a pendant vertex,

and Ĉ2k denote an even cycle with a chord between two vertices at distance 2 from
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each other. If H ∈ {C2k−1, C
′
2k, Ĉ2k}, then the graph Gn,k in Construction 4.4.2 is

H-induced-saturated.

Proposition 4.4.4. For all n, indsat(n, {2K2, P4, C4}) 6= 0.

Proof. The graphs that contain no induced 2K2, P4, or C4 are precisely the threshold

graphs [28]. These graphs are characterized in a second way: they are constructed

by iteratively adding a vertex to a graph either as an isolate or a dominating vertex.

Thus, an n-vertex threshold graph can be represented as a string of n symbols from

{−,+} as follows: on the vertex set V = {v1, . . . , vn}, for every i > j, vivj is an edge

if and only if the ith symbol in the string is +.

We claim that for any threshold graph G with at least one edge, there exists

e ∈ E(G) such that G− e is also threshold. Let π = s1, . . . , sn be a string of symbols

from {−,+} representing G. Suppose there exists i ∈ [n − 1] such that si = − and

si+1 = +, and let i be minimal with this property. Then the graph G′ = G − vivi+1

is represented by the symbol list π′ = s1 . . . si−1si+1sisi+1 . . . sn, so G′ is threshold.

If no such index i exists, then π is a list consisting only of +, so G is the complete

graph Kn; however, Kn − e is also threshold.

Thus, for any graph G with no induced 2K2, P4, or C4, there exists an edge e ∈ G

such thatG−e also has no induced 2K2, P4, or C4. It follows that indsat(n, {2K2, P4, C4}) 6=

0.

The family of split graphs is another family of graphs that can be characterized

by a set of forbidden induced subgraphs. A split graph is a graph whose vertex set

can be partitioned into a clique and an independent set. Földes and Hammer [38]

showed that a graph is a split graph if and only if it contains no induced 2K2, C4, or

C5.
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Proposition 4.4.5. For all n, indsat(n, {2K2, C4, C5}) 6= 0.

Proof. Since adding or deleting an edge between the clique part and the independent

set of a split graph still results in a split graph, it follows that indsat(n, {2K2, C4, C5}) 6=

0.

We have shown that indsat(n, 2K2), indsat(n,C4), and indsat(n,C5) are all equal

to zero for sufficiently large n. Thus, this example shows that even though every

graph in a family has induced-saturation number zero, the family itself may not have

induced-saturation number zero.

Other families characterized by a (not necessarily finite) family of forbidden in-

duced subgraphs include perfect graphs [26], trivially perfect graphs [85], [42], interval

graphs [62], and line graphs [8]. It would be interesting to determine indsat(n,F)

and indsat∗(n,F) for these families. We suspect that doing so will be much more

difficult than for threshold and split graphs, as the families of forbidden graphs are

significantly more complicated.
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[33] Paul Erdős and Tibor Gallai. Graphs with prescribed degrees of vertices (hun-

garian). Mat. Lapok, 11:264–274, 1960.



115
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