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This thesis explores several models in continuum mechanics from both local and nonlo-

cal perspectives. The first portion settles a conjecture proposed by Filippo Gazzola and

his collaborators on the finite-time blow-up for a class of fourth-order differential equa-

tions modeling suspension bridges. Under suitable assumptions on the nonlinearity and

the initial data, a finite-time blowup is demonstrated as a result of rapid oscillations with

geometrically growing amplitudes. The second section introduces a nonlocal peridynamic

(integral) generalization of the biharmonic operator. Its action converges to that of the

classical biharmonic as the radius of nonlocal interactions—the “horizon”—tends to zero.

For the corresponding steady state problem, which represents a peridynamic analog of a

hinged or clamped plate under load, the existence and uniqueness are shown. By utilizing a

compactness result devised by Jean Bourgain, Haı̈m Brezis, and Petru Mironescu and em-

ploying a method developed by Qiang Du and Tadele Mengesha, it is demonstrated that as

the horizon tends to zero, the solutions of the nonlocal boundary value problems converge

strongly in L2 to the solutions of the corresponding classical elliptic problems.
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Chapter 1

Introduction

Thin plates and curved shells are ubiquitous components in many natural and man-made

structures. For example, bridges, ship hulls, domes, membranes, and airfoils can all be

described and analyzed with plate/shell theory. This exposition will investigate certain as-

pects of thin-plate dynamics from both “local” (classical, or differential) and “nonlocal”

(interal) perspectives. Respectively, we begin our investigation with the local perspective

in Section 2.1 which provides an overview of the literature and a brief introduction to the

rich theory surrounding suspension bridge modeling. Our journey in the local setting con-

tinues in Chapter 2, where we delve into the analysis of a specific fourth-order equation

describing bridge oscillations. Various invariants, energies, and technical estimates related

to the equation are developed, culminating with the proof of a previously open conjec-

ture proposed by Filippo Gazzola pertaining to blowup of traveling wave solutions of the

equation.

No discussion of suspension bridges (or many other thin-plate systems) would be com-

plete without mentioning material failure, an inevitable occurrence in many structures.

Unfortunately, modeling the formation and propagation of fractures remains a challeng-

ing area of research; however, a recently developed theory called peridynamics provides a
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method of modeling material fatigue and system dynamics within a single unified solution

by utilizing nonlocal operators. In this nonlocal setting, points are allowed to “interact”

with one another over a finite distance called the horizon. Chapter 3 starts with a review of

the literature in section 3.1 and then introduces a nonlocal formulation of the biharmonic

operator ∆2 which appears in many formulations in thin-plate theory. Then theorems de-

scribing conditions for the nonlocal Laplacian to be Lipschitz continuous and the nonlocal

biharmonic to be L2 integrable are presented. Next, nonlocal formulations of a fourth order

elliptic equation with hinged and clamped boundary conditions will be introduced and ana-

lyzed with well-posedness results proven. We conclude the chapter with the main nonlocal

results, Theorems 3.7.6 and 3.7.3, which demonstrate a powerful connection between the

local and nonlocal theory; specifically, that solutions to the nonlocal hinged and clamped

systems converge strongly in L2 to the weak solutions of their local analogues when the

horizon converges to 0.
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Chapter 2

Finite time blow-up in nonlinear

suspension bridge models

In this chapter we will look at the local theory of plate dynamics, particularly with reference

to suspension bridge oscillations. We begin in Section 2.1 with an overview of the literature

and background information. We then proceed to Section 2.2 where we present our main

result, Theorem 2.2.1, regarding equation (2.1.2): a sufficient condition for finite time blow-

up. Section 2.2 also includes a few observations as well as open problems. For the reader’s

convenience, Section 2.4 presents a comprehensive list of constants and energy functions

used throughout the chapter. In Section 2.5 we prove several lemmas about the energies

introduced in Section 2.4, while Section 2.6 contains some results concerning the shape of

the graphs of solutions to equation (2.1.2). We conclude our local analysis with Section

2.7 where we derive additional estimates for solutions of (2.1.2) and complete the proof of

Theorem 2.2.1.
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2.1 Local models and literature overview

The topic of suspension bridges is a celebrated area of applied mathematics filled with

engineering marvels, as well as many dramatic events. One of the most notorious dis-

asters is the Tacoma Narrows Bridge collapse of 1940. The collapse of the bridge had

been previously explained by a resonance-like effect produced by a wind of under 80km/h

[2]; however, in recent literature (e.g. [17], [26]) it has been demonstrated that resonance

theory does not accurately describe these vibrational patterns. The phenomenon of self-

amplifying oscillations in bridge dynamics is now recognized to be far more complex than

originally believed; see the wonderful historical overview of existing theories in [14], [26].

To explain these dynamics, several models have been proposed. The following model based

on the Euler-Bernoulli beam equation was introduced by Lazer and McKenna in [27] and

investigated further in [26]:

utt + uxxxx + γu+ = W(x, t), x ∈ (0, L), t > 0. (2.1.1)

In the above model u denotes vertical displacement, L > 0 is the length of the bridge,

u+ = max {u, 0}, γu+ represents the force from the cables treated as springs with a one-

sided restoring force, and W accounts for additional forces such as weight and wind. In

[28] McKenna and Walter investigated traveling waves for this model. After some normal-

ization, traveling wave solutions to (2.1.1) necessarily satisfy

w′′′′(t) + kw′′(t) + f (w(t)) = 0 (2.1.2)

with f (s) = (s + 1)+ − 1. In [10], a smooth analog of this nonlinearity given by f (t) = et − 1

was considered.

Recent research (e.g. [14]) shows that the stability of a bridge can be critically affected
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by torsional oscillations, in particular, their interactions with vertical displacements. Con-

sequently, a one-dimensional model in the above interpretation does not accurately describe

large oscillations, as twisting effects would not be taken into account. Indeed, traveling

wave solutions corresponding to (2.1.2) are global when f (s) ∈ Liploc(R), f (s)s > 0 for

s , 0, and f (s) has at most linear growth either as s → +∞ or as s → −∞, which was

shown in [5].

Observations of actual bridge oscillations (Millennium Bridge [4]) and collapses (Tacoma

Narrows Bridge [13]) reinforce the idea that torsional and vertical oscillations in suspension

bridges are coupled. To model this interaction, [11] introduced a second unknown function

to measure potentially unbounded torsional effects. Subsequently, it was suggested in [16]

that the coupling mechanism be incorporated into a one-dimensional model by allowing the

forcing term f to take arbitrarily large negative values. In this new model positive values of

w correspond to vertical oscillations, while negative ones describe torsional deformations.

A suitable function f would necessarily be sign preserving, e.g. f (s) = s3 + s. For an

extensive overview of the theory for ODEs of the form (2.1.2) see the book [33] by Peletier

and Troy.

The study of traveling waves for (2.1.1) when vertical and torsional oscillations are un-

bounded has been a challenging open problem. The current chapter investigates finite time

blow-up of solutions to equation (2.1.2) when f is a locally Lipschitz function unbounded

as |t| → ∞.

In their paper [17] Gazzola and Pavani offered an innovative proof of blow-up for the

case k ≤ 0; this range for k corresponds to models of beams in tension where −k ≥ 0

represents the tension [18]. The scenario k > 0 corresponds to traveling wave solutions

u(t, x) = w(x + ct)
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of the Euler-Bernoulli equation, with k = c2 where c is the speed of the wave. Numerical

evidence strongly supports the blow-up for k > 0, as presented in [17]. This case, how-

ever, remained open until now since positive values of the parameter k critically alter some

intrinsic invariants associated with the ODE. We settle the blow-up conjecture when

• k ∈ (0, 2) for a large class of nonlinear functions; see Theorem 2.2.1.

• k ≥ 2 for scaled versions of nonlinearities satisfying the hypothesis of Theorem 2.2.1;

see Corollary 2.2.3.

Moreover, we cover the case k ≤ 0 with an alternate proof that requires less regular-

ity on f and w. For all ranges of k, the assumptions on f are satisfied for power-type

nonlinearities. We mention that the splitting into the cases k < 2 and k ≥ 2 happens for

technical reasons in our proof; however, it may be related to the fact that the corresponding

linearized system for (2.1.2) has 2-dimensional stable and unstable manifolds for |k| < 2

and has purely imaginary eigenvalues when k ≥ 2, see [5, Prop. 20].

The approach for all cases is inspired by the remarkable strategy developed in [17];

however, major challenges had to be overcome to accommodate k > 0:

• First, most of the energy functionals used in [17] are not convex for k > 0, yet

this ingredient is critical in understanding the behavior of solutions. We introduce

new energy functionals adapted to (2.1.2) and take advantage of their convexity and

monotonicity properties to describe the behavior of solutions.

• An essential feature in the proof of the blow-up in [17] for k ≤ 0 was the ability to

ensure the existence of exactly one inflection point between consecutive zeros of the

function. The same analysis does not extend to k > 0 so our proof allows multiple

inflection points on an interval of one sign. Numerical evidence seems to indicate
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that for sufficiently large energy there is eventually only one inflection point between

neighboring zeros; however, verifying this conjecture is still an open problem.

• The intricate employment of test functions from [17] could not be reproduced for k >

0. Instead, we rely on geometric features of energy functions to show the growth and

blow-up of solutions. This approach also allows us to handle less regular solutions,

since we do not need to differentiate the ODE multiple times.

The theoretical work described above corroborates preliminary numerical computations

that we have performed; together they prompt the following remarks with physical impli-

cations:

• For fourth order ODEs, the blow-up phenomenon, although oscillatory, seems to

be driven not by frequency (as in resonance for second-order ODEs), but rather by

the amplitude of the oscillations. Nonmonotone blow-up in finite time cannot be

reproduced with a time-dependent external forcing that matches the frequency of the

system. Instead, the mechanism is based on a transversal displacement inducing a

torsional oscillation and vice versa. This “dual-excitation” process leads to a finite-

time blow-up of the traveling wave solution.

• The forcing term f (u) considered in this work is defocusing from the perspective

of the hyperbolic or Petrovsky dynamics. However, in the context of traveling wave

formation this restoring force has the opposite effect and induces a locally unbounded

profile.

Our results are applicable to the study of some partial differential equations, e.g. Zakharov-

Kuznetsov equations [24] and biharmonic coercive equations [15, Section 3].
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2.2 Main blow-up result

Assume that f satisfies the regularity conditions:

f ∈ C1 (R) and there exists a κ1 ∈ R such that f ′ ≥ κ1. (2.2.1)

We also impose that f satisfies the following growth condition: there exist constants

p > q ≥ 1, α ≥ 0, and 0 < ρ ≤ β

such that

ρ|s|p+1 ≤ s f (s) ≤ α|s|q+1 + β|s|p+1 ∀s ∈ R . (2.2.2)

Furthermore, let

F(s) :=
∫ s

0
f (τ)dτ.

Theorem 2.2.1. Assume f satisfies (2.2.1) and (2.2.2). Let k < 2 ,

a = ρ

(
2

ρ(p + 1)

) p+1
p−1

−

(
2

ρ(p + 1)

) 2
p−1

, γ2 =
α(p + 1) + β(q + 1)

(q + 1)(p + 1)ρ
,

µ3 ∈


(
0,

2 − k
k

)
, k ∈ (0, 2)

(0,∞), k ≤ 0

, c ∈


(
0,

2 − (1 + k)µ3
k
2 + kγ2

)
, k ∈ (0, 2)

(0,∞), k ≤ 0 .

If w(t) is a local solution to (2.1.2) that satisfies

k
2

w′(0)2 + w′(0)w′′′(0) + F(w(0)) −
1
2

w′′(0)2 >
α

q + 1
−

a
c
, (2.2.3)

then w blows up in finite time for t > 0.
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Remark 2.2.2 (Conditions on the initial data). The condition (2.2.3) is in the spirit of [17,

Eqn. (12)]; however, here we define it in terms of the energy E (introduced below in

(2.4.2)), which is constant in time and therefore is a more natural invariant for the problem,

obtained in fact through the classical energy multiplier w′ applied to (2.1.2). Instead [17,

see (12) and p. 20] employs a different non-constant convex invariant to characterize the

initial data. Global existence for other data sets is under investigation; numerical evidence

suggests that nontrivial solutions may exist globally in time. For example, see Figure 2.1

where the solution does not satisfy (2.2.3) and appears to be stable and doubly-periodic.

Figure 2.1: Numerically obtained solution of (2.1.2) for:
k = 1.6, f (t) = t3, and [w(0),w′(0),w′′(0),w′′′(0)] = [0.05,−0.06, 0, 0.1]. These initial
conditions do not satisfy the sufficient assumption (2.2.3) for blow-up.

Using linear transformations we are able to prove blow-up results for k ∈ R provided

the nonlinearity f satisfies certain conditions.

Corollary 2.2.3. Let c1, c2 , 0 and c3, r ∈ R be such that r/c2
2 < 2. Let g be chosen so that

f (s) :=
1

c1c4
2

g (c1 [s + c3]) (2.2.4)

where f satisfies conditions (2.2.1) and (2.2.2). Let a, γ2, µ2, and c be defined as in Theorem
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2.2.1. Suppose u solves

u′′′′ + ru′′ + g(u) = 0 (2.2.5)

with initial conditions satisfying

r
2c2

1c4
2

u′(0)2 +
1

c2
1c4

2

u′(0)u′′′(0) + F
(

1
c1

u(0) − c3

)
−

1
2c1c4

2

u′′(0)2

>
α

q + 1
−

a
c
.

(2.2.6)

Then u blows up in finite time on the right-maximal existence interval [0, ω) if c2 > 0, and

on the left-maximal interval (−ω, 0] if c2 < 0.

(See Example 2.2.4 below for an application.)

Proof. Let

w(t) :=
1
c1

u
(

t
c2

)
− c3

so that u(t) = c1 (w (c2t) + c3) . Rewrite equation (2.2.5) in terms of w:

0 =u′′′′(t) + ru′′(t) + g(w(t))

=c1c4
2w′′′′(c2t) + rc1c2

2w′′(c2t) + g (c1 [w(c2t) + c3])

=c1c4
2w′′′′(c2t) + rc1c2

2w′′(c2t) + c1c4
2 f (w(c2t)) using (2.2.4) .

Dividing by c1c4
2 results in

0 = w′′′′(c2t) +
r
c2

2

w′′(c2t) + f (w(c2t)), t ≥ 0.

Set k = r/c2
2 < 2. If u satisfies (2.2.5) on some neighborhood (−C,C) of 0, then for τ = c2t,

the function w satisfies

w′′′′(τ) + kw′′(τ) + f (w(τ)) = 0
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on the interval (−C/|c2|,C/|c2|). The restriction on the initial conditions of u from equation

(2.2.6) implies

k
2

w′(0)2 + w′(0)w′′′(0) + F(w(0)) −
1
2

w′′(0)2 >
α

q + 1
−

a
c
.

The conclusion now follows from Theorem 2.2.1. �

Example 2.2.4. Consider a function w(t) satisfying

u′′′′(t) + ru′′(t) + |u(t)|bu(t) = 0

with r > 0 and b > 0. If we pick c1 = 1, c2 =
√

r, c3 = 0, notice from (2.2.4) we have that

f (s) :=
1
r2 g(s) =

1
r2 |s|

bs

satisfies conditions (2.2.1) and (2.2.2) and r/c2
2 = 1 < 2. Corollary 2.2.3 now gives a set of

initial conditions where u will blow up. In particular, when

1
2r

u′(0)2 +
1
r2 u′(0)u′′′(0) +

|u(0)|b+2

r2(b + 2)
−

1
2r2 u′′(0)2 >

α

q + 1
−

a
c
.

Corollary 2.2.3 can also be used to tackle some nonlinearities not satisfying conditions

(2.2.1) and (2.2.2). The next example will look at the nonlinearity f (w) = w3−3w2 +4w−2

which certainly doesn’t satisfy (2.2.2).

Example 2.2.5. Consider a function u(t) satisfying

u′′′′(t) + ru′′(t) + u3 − 3u2 + 4u − 2 = 0
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where r > 0. Set c1 = 1, c2 =
√

r, c3 = 1. Then

f (s) :=
1
r2 g(s + 1) =

1
r2 (s3 + s)

satisfies conditions (2.2.1) and (2.2.2). Corollary 2.2.3 now prescribes initial conditions for

which u will blow up in finite time. In particular, u blows up when

1
2r

u′(0)2 +
1
r2 u′(0)u′′′(0) +

1
r2

(
(u(0) − 1)3

3
+

(u(0) − 1)2

2

)
−

1
2r2 u′′(0)2

>
α

q + 1
−

a
c
.

2.3 Outline of the proof to Theorem 2.2.1

The proof of the main Theorem 2.2.1 relies on three main components:

• The first step, to show that global solutions to (2.1.2) cannot be eventually of one

sign, has been settled for k ≥ 0 in [5] under suitable conditions on f . In [17] an

oscillation result was proven for k ≤ 0. The only contribution to this step by the

present dissertation is a modified proof of the oscillation result for k ≤ 0 which holds

under relaxed differentiability assumptions on f .

• Inspired by the approach in [17], we introduce certain energy functions in Sections

2.4, which are studied in Section 2.5. We use the energy functions to prove in Section

2.6 that extremum values for the solution grow at least geometrically fast.

• Using the results of Section 2.6 we show in Section 2.7 that distances between con-

secutive zeros of a solution w form a summable sequence, therefore |w| necessarily

blows up in finite time. To accomplish this we employ the following properties, de-

rived in Section 2.6, of a solution of (2.1.2) satisfying the hypothesis of Theorem
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2.2.1:

(W1) w changes sign at zeros and is never eventually of one sign.

(W2) On an interval of one sign [zi, zi+1] where w(zi) = w(zi+1) = 0, there is exactly

one extremum mi.

(W3) On [zi,mi] and [mi, zi+1], |w| is nondecreasing and nonincreasing respectively.

(W4) On [mi, zi+1] we know w is concave down on an interval of positivity and con-

cave up on an interval of negativity.

For an example of a numerically obtained solution see Figure 2.2. Notice how the peaks

increase in magnitude while the zeros converge to a limit point.

Figure 2.2: Blow-up through oscillations. This numerically obtained function was rescaled
vertically to exhibit more peaks.

The plot in Figure 2.3 exhibits the behavior between consecutive zeros on a positivity

interval and the geometric features (W1)–(W4) of the solution.
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Figure 2.3: Numerically obtained solution of (2.1.2) for:
k = 3.5, f (t) = t5, and [w(0),w′(0),w′′(0),w′′′(0)] = [0, 0.5, 0.3,−0.6].
zi, zi+1 : consecutive zeros of the solution.
mi : unique extremum on the interval of positivity.
ri : first inflection point after the zero zi.
——–: w(t)
− − −: w′(t)
· · · · · · : w′′(t)

2.4 Summary of constants and energy functions

In this section we summarize for easy reference all parameters and energy functions that

will be used to prove the main theorem. Recall from condition (2.2.2) that ρ, p, and q were

constants used to quantify the growth of f . If we let a be the minimum of the polynomial
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ρ|x|p+1 − x2 then

a := ρ

(
2

ρ(p + 1)

) p+1
p−1

−

(
2

ρ(p + 1)

) 2
p−1

.

Parameters γ1, γ2, ζ1, ζ2 will describe the growth of F(s) :=
∫ s

0
f (τ)dτ in (2.5.2), Lemma

3.7.1, and they are defined by

γ1 :=
ρ

(p + 1)(α + β)
ζ1 := −γ1α

γ2 :=
α

(q + 1)ρ
+

β

(p + 1)ρ
ζ2 :=

α

q + 1
.

The set of constants to follow will be used to define suitable energy functions associated

with solution w. We begin with µ3 which will be a free parameter in the interval

µ3 ∈


(
0,

2 − k
k

)
, k ∈ (0, 2)

(0,∞), k ≤ 0.

The constant c will be used to determine admissible initial energies for blow-up results.

It can be set to any value in

c ∈


(
0,

2 − (1 + µ3)k
k
2 + kγ2

)
, k ∈ (0, 2)

(0,∞), k ≤ 0.
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In terms of the above parameters we define:

µ1 := 2 − k
(c
2

+ cγ2 + 1 + µ3

)
α1 :=

1
2

(2 − k(µ3 + cγ2 + 1))

µ2 := µ3 + c
(
γ2 +

3
2

)
α2 :=

c
2

+ µ3 + cγ2 + 1

α3 := µ3 + cγ2 + 1.

(2.4.1)

It will be shown that these constants are positive. Recall that κ1 was a lower bound on f ′

(from (2.2.1)). Using it we define

κ2 := min
{
|µ2|

|k| + 1
,
|µ1|

|κ1| + 1

}

We now introduce the energy functions (and compute some of their derivatives) that will

aid in exhibiting the blow-up mechanism of solutions to (2.1.2). These functionals inspired

by similar constructs in [17] are able to detect the blow-up of w through their properties

(e.g. convexity for G and H):

E(t) :=
k
2

w′(t)2 + w′(t)w′′′(t) + F(w(t)) −
1
2

w′′(t)2

A(t) :=w(t) f (w(t)) + w′′(t)2 + 2w(t)w′′(t) .

(2.4.2)

It will be shown that the above energy E remains invariant during the life-time of solu-

tions; E and A together will be used to establish the growth and convexity properties of the

following functional G, which will be one of the primary tools for showing the blow-up of
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w:

G(t) :=α1w(t)2 + α2w′(t)2 − α3w(t)w′′(t)

G′(t) =2α1w(t)w′(t) + (2α2 − α3) w′(t)w′′(t) − α3w(t)w′′′(t)

G′′(t) =2α1

(
w(t)w′′(t) + w′(t)2

)
+ 2 (α2 − α3)

(
w′(t)w′′′(t) + w′′(t)2

)
+ α3

(
w′′(t)2 − w(t)w′′′′(t)

)
.

(2.4.3)

In addition the following two functionals will be employed to prove the geometric

growth of the extremum values of w. (Φ was previously introduced in [17]):

Φ(t) :=
1
2

w′′(t)2 + F(w(t))

H(t) :=G(t) + κ2Φ(t)

=α1w(t)2 + α2w′(t)2 − α3w(t)w′′(t) +
κ2

2
w′′(t)2 + κ2F(w(t)).

(2.4.4)

2.5 Convexity of G and H

This section proves several properties of the energy functions introduced in (2.4.2)–(2.4.4),

in particular the strict convexity of G and H. We begin by showing that E is conserved in

time.

Lemma 2.5.1. If w is a solution to equation (2.1.2) then E(t) = E(0) for all t in the interval

of existence.

Proof. Assume w is a solution of equation (2.1.2), then (suppressing “(t)”)

dE
dt

= kw′w′′ + w′w′′′′ + w′′w′′′ + f (w)w′ − w′′w′′′

= w
(
kw′′ + w′′′′ + f (w)

)
= 0.
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�

The next lemma introduces and derives a lower bound for the function A. A will be

used later to provide a lower bound on G′′.

Lemma 2.5.2. Assume f satisfies condition (2.2.2) and

A(t) := w(t) f (w(t)) + w′′(t)2 + 2w(t)w′′(t).

Then

A(t) ≥ a := ρ

(
2

ρ(p + 1)

) p+1
p−1

−

(
2

ρ(p + 1)

) 2
p−1

for all t in the interval of existence.

Proof. We estimate directly:

A = w f (w) + (w′′)2 + 2ww′′ ≥ ρ|w|p+1 + (w′′)2 + 2ww′′ (condition (2.2.2))

= ρ|w|p+1 − w2 + w2 + (w′′)2 + 2ww′′

≥ ρ|w|p+1 − w2 (Young’s inequality)

≥ a.

The last line follows by minimizing ρ|x|p+1 − x2 with x ∈ R. �

The next result describes the growth of F and will be used later to show the convexity

of the energy G.

Lemma 2.5.3 (Growth of F). Assume f satisfies condition (2.2.2) (with parameters α, β, p, q).

Let F(s) :=
∫ s

0
f (τ)dτ, and

γ1 =
ρ

(p + 1)(α + β)
, ζ1 = −γ1α, γ2 =

α(p + 1) + β(q + 1)
(q + 1)(p + 1)ρ

, ζ2 =
α

q + 1
,
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then for all s ∈ R

ρ

p + 1
|s|p+1 ≤ F(s) ≤

α

q + 1
|s|q+1 +

β

p + 1
|s|p+1 . (2.5.1)

Consequently, by (2.2.2) for all t in the interval of existence

γ1w(t) f (w(t)) + ζ1 ≤ F(w(t)) ≤ γ2w(t) f (w(t)) + ζ2 . (2.5.2)

Proof. Recall that p > q. Then for all s (note that both s ≥ 0 and s < 0 yield the same

result via lower bound in (2.2.2)) we have

F(s) =

∫ s

0
f (τ)dτ ≥

∫ s

0
ρτ|τ|p−1dτ

=
ρ

p + 1
|s|p+1 = γ1 (α + β) |s|p+1

= γ1α
(
1 + |s|p+1

)
+ γ1β|s|p+1 − γ1α

≥ γ1α|s|q+1 + γ1β|s|p+1 + ζ1

≥ γ1s f (s) + ζ1.

We find the upper bound in a similar manner (again both s ≤ 0 and s > 0 yield the same
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inequality using the upper bound in (2.2.2)):

F(s) =

∫ s

0
f (τ)dτ ≤

∫ s

0
ατ|τ|q−1 + βτ|τ|p−1dτ

=
α

q + 1
|s|q+1 +

β

p + 1
|s|p+1

≤
α

q + 1

(
1 + |s|p+1

)
+

β

p + 1
|s|p+1

=
α

q + 1
+

(
α

q + 1
+

β

p + 1

)
|s|p+1

= ζ2 + γ2ρ|s|p+1

≤ ζ2 + γ2s f (s).

�

Recall from Section 2.4 the definition of the energy function G:

G(t) = α1w(t)2 + α2w′(t)2 − α3w(t)w′′(t)

where coefficients αi satisfy

α1 =
1
2

(2 − k( µ3 + cγ2 + 1︸         ︷︷         ︸
α3

)), α2 =
c
2

+ µ3 + cγ2 + 1 .

The next lemma will show that by placing certain restrictions on the initial energy we can

ensure that G′′ is bounded below by a positive constant.

Lemma 2.5.4 (Strict convexity of G). Assume w is a local solution to equation (2.1.2) and

f satisfies condition (2.2.2). Let ε > 0, k < 2,

µ3 ∈


(
0,

2 − k
k

)
, k ∈ (0, 2)

(0,∞), k ≤ 0

, c ∈


(
0,

2 − (1 + µ3)k
k
2 + kγ2

)
, k ∈ (0, 2)

(0,∞), k ≤ 0

,
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µ1 = 2 − k
(c
2

+ cγ2 + 1 + µ3︸         ︷︷         ︸
α3

)
, µ2 = µ3 + cγ2 +

3c
2
.

Then µ1, µ2, µ3, α1, α2, α3 > 0 and if E(0) satisfies cE(0) > ζ2c − a then for some ε > 0 we

have

G′′ ≥ ε + µ1(w′)2 + µ2(w′′)2 + µ3w f (w) (2.5.3)

on the interval of existence of the solution.

Proof. First let us verify the positivity of the constants. If k ≤ 0 then all above constants

are trivially positive; therefore, let us consider k ∈ (0, 2). It is clear that µ3 and c exist and

are positive. Because γ2 > 0 we have µ2, α2, α3 > µ3 > 0. Next, we focus on µ1. Recall c

satisfies

0 < c <
2 − (1 + µ3)k

k
2 + kγ2

so that
ck
2

+ ckγ2 < 2 − k − µ3k

and

0 < 2 −
ck
2
− ckγ2 − k − µ3k = µ1 .

Since 2α1 = 2 − kα3 = µ1 +
ck
2

we have that α1 > 0 as well.

Now we will establish a lower bound on G′′. Recall from (2.4.3) that

G′′ = 2α1

(
ww′′ + (w′)2

)
+ 2 (α2 − α3)

(
w′w′′′ + (w′′)2

)
+ α3

(
(w′′)2 − ww′′′′

)
.

Since cE(0) > ζ2c − a pick ε > 0 such that cE(0) ≥ ζ2c − a + ε. Utilizing the lower bound



22

on the energy function A(t) from Lemma 2.5.2, we obtain

cζ2 + ε

≤cE(0) + a

≤cE(t) + A(t)

=
ck
2

(w′)2 + cw′w′′′ +
[
cF(w)

]
−

c
2

(w′′)2 + w f (w) + (w′′)2 + 2ww′′

≤
ck
2

(w′)2 + cw′w′′′ +
[

cγ2w f (w) + cζ2︸             ︷︷             ︸
by (2.5.2)

]
−

c
2

(w′′)2 + w f (w) + (w′′)2 + 2ww′′.

Subtracting cζ2 from each side, and adding and subtracting µ3w f (w) results in

ε ≤
ck
2

(w′)2 + cw′w′′′ + cγ2w f (w) −
c
2

(w′′)2 + w f (w) + (w′′)2 + 2ww′′

+µ3w f (w) − µ3w f (w)︸                      ︷︷                      ︸
=0

=
ck
2

(w′)2 + cw′w′′′ −ckγ2ww′′ − cγ2ww′′′′︸                       ︷︷                       ︸
cγ2w f (w)=cγ2w(−kw′′−w′′′′)

−
c
2

(w′′)2 −kww′′ − ww′′′′︸              ︷︷              ︸
w f (w)=w(−kw′′−w′′′′)

+ (w′′)2 + 2ww′′ −µ3kww′′ − µ3ww′′′′︸                    ︷︷                    ︸
µ3w f (w)=µ3w(−kw′′−w′′′′)

−µ3w f (w).
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Combining like terms and using arithmetic manipulations yields

ε ≤
ck
2

(w′)2 + cw′w′′′ + (−ckγ2 − k + 2 − µ3k) ww′′ − (cγ2 + 1 + µ3)︸           ︷︷           ︸
α3

ww′′′′

+

(
1 −

c
2

)
(w′′)2 − µ3w f (w)

=
ck
2

(w′)2 + cw′w′′′ + (−ckγ2 − k + 2 − µ3k) ww′′ − α3ww′′′′ +
(
1 −

c
2

)
(w′′)2

− µ3w f (w) + c
(
(w′′)2 − (w′′)2

)︸             ︷︷             ︸
=0

+(−ckγ2 − k + 2 − µ3k)
(
(w′)2 − (w′)2

)︸            ︷︷            ︸
=0

+ α3

(
(w′′)2 − (w′′)2

)︸             ︷︷             ︸
=0

=c(w′w′′′ + (w′′)2) + (−ckγ2 − k + 2 − µ3k)(ww′′ + (w′)2) + α3((w′′)2 − ww′′′′)

+

(
ck
2

+ ckγ2 + k − 2 + µ3k
)

(w′)2 +

(
1 − c − cγ2 −

c
2
− 1 − µ3

)
(w′′)2

− µ3w f (w)

=2 (α2 − α3)
(
w′w′′′ + (w′′)2

)
+ 2α1

(
ww′′ + (w′)2

)
+ α3

(
(w′′)2 − ww′′′′

)
− µ1(w′)2 − µ2(w′′)2 − µ3w f (w)

=G′′ − µ1(w′)2 − µ2(w′′)2 − µ3w f (w) .

We conclude

G′′ ≥ ε + µ1(w′)2 + µ2(w′′)2 + µ3w f (w) ≥ ε .

�

The proof of Theorem 2.2.1 will rely on the fact that G is convex and therefore we will

frequently appeal to the following condition on the initial energy E(0) (note also that since

since c, ζ2 ≥ 0 and a ≤ 0 we infer E(0) > 0):

cE(0) > ζ2c − a > 0 (2.5.4)
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which is precisely the condition (2.2.3) in the hypothesis of Theorem 2.2.1.

The next result will show that H is convex.

Lemma 2.5.5 (Strict convexity of H). Let w be a nontrivial local solution to equation

(2.1.2) with k < 2. Assume f satisfies conditions (2.2.1) and E(0) satisfies (2.5.4). Let

Φ(t) :=
1
2

w′′(t)2 + F(w(t)) and H(t) := G(t) + κ2Φ(t)

where κ2 > 0 is given by

κ2 := min
{
|µ2|

|k| + 1
,
|µ1|

|κ1| + 1

}
(2.5.5)

Then H′′(t) ≥ ε, for some ε > 0.

Proof. By condition (2.2.1) we know f ′ > κ1. We differentiate Φ twice to find

Φ′′(t) = (w′′′)2 − k(w′′)2 + f ′(w)(w′)2 ≥ −k(w′′)2 + κ1(w′)2.

Recall from Lemma 2.5.4 that

G′′ ≥ µ1(w′)2 + µ2(w′′)2 + ε

since µ3w f (w) ≥ 0. Thus,

H′′ = κ2Φ
′′ + G′′

≥ −kκ2(w′′)2 + κ2κ1(w′)2 + µ1(w′)2 + µ2(w′′)2 + ε

≥ −

∣∣∣∣∣ µ2

|k| + 1
k
∣∣∣∣∣ (w′′)2 −

∣∣∣∣∣ µ1

|κ1| + 1
κ1

∣∣∣∣∣ (w′)2 + µ1(w′)2 + µ2(w′′)2 + ε

≥ ε.

�
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Now that we have convexity results for G and H we can infer several interesting prop-

erties of w that will be discussed in the next section.

2.6 Growth of G and behavior of w

The convexity results in Section 2.5 prove that both G and H are eventually strictly in-

creasing. This fact leads to several interesting properties of hypothetical global solutions

to (2.1.2). As Section 2.7 will subsequently demonstrate, these conditions lead to a contra-

diction implying that global solutions to (2.1.2) cannot exist. The first result we prove is

that G(t) grows exponentially for t sufficiently large.

Lemma 2.6.1. Assume f satisfies (2.2.2), k < 2, w is a global solution to (2.1.2), and E(0)

satisfies (2.5.4). For some T ≥ 0, there exist constants θ > 0, C1 > 0, and C2 ∈ R such that

G(t) ≥ C1eθt + C2 for all t ≥ T .

Proof. Since p > 1, µ3, ε > 0, there exists C3 > 0 such that

C3

(
µ3ρ|w|p+1 + ε

)
≥

(
α1 +

α3

2

)
w2.

Recall µ1, µ2, µ3 > 0. Find C4 > 0 such that

C4 ≥ max
{

C3,
α2

µ1
,
α3

2µ2

}
.
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Then

C4G′′ ≥ C4ε + C4µ3w f (w) + C4µ1(w′)2 + C4µ2(w′′)2

≥ C4(ε + µ3ρ|w|p+1︸    ︷︷    ︸
condition (2.2.2)

) + C4µ1(w′)2 + C4µ2(w′′)2

≥

(
α1 +

α3

2

)
w2 + α2(w′)2 +

α3

2
(w′′)2

= α1w2 + α2(w′)2 + α3

(
w2

2
+

(w′′)2

2

)
≥ α1w2 + α2(w′)2 − α3ww′′

= G .

Because G′′ is strictly positive by Lemma 3.7.1, we can find a time T > 0 such that G(t) ≥ 0

and G′(t) ≥ 1 for t ≥ T . Then for t ≥ T we know G is bounded below by the solution to

the initial value problem:

C4u′′(t) = u(t) for t ≥ T, with u(T ) = 0, u′(t) = 1 .

Hence for t ≥ T ,

G(t) ≥ C1eθt + C2 .

�

The next result provides a lower exponential bound for the growth of w(t) at extrema

when t is taken sufficiently large.

Lemma 2.6.2 (Growth of w at the extrema). Assume w is a nontrivial global solution to

equation (2.1.2), f satisfies condition (2.2.2), and E(0) satisfies (2.5.4). There exists a

T ≥ 0 and positive constants C, r such that for any local extremum m ≥ T of w we have

|w(m)| ≥ Cerm.



27

Proof. Since w′(m) = 0 we have

E(m) = F(w(m)) −
1
2

w′′(m)2 = E(0)

G(m) = α1w(m)2 − α3w(m)w′′(m) .

Solving for |w′′(m)| in the energy equation yields

|w′′(m)| =
√

2F(w(m)) − 2E(0).

Notice that at a local extremum m we always have w(m)w′′(m) ≤ 0 and consequently,

G(m) = α1w(m)2 + α3|w(m)|
√

2F(w(m)) − 2E(0).

Thus by bound (2.5.1) on F from Lemma 3.7.1, and using p > q

G(m) ≤ α1w(m)2 + α3|w(m)|

√
2α

q + 1
|w(m)|q+1 +

2β
p + 1

|w(m)|p+1

≤ c1 + c2|w(m)|
p+3

2 .

(2.6.1)

where c1, c2 > 0 are sufficiently large. By Lemma 2.6.1 we know there is a T such that for

m ≥ T we have G(m) ≥ C1eθm + C2 for some constants C1,C2 > 0. Consequently,

|w(m)| ≥
(
C1eθm + C2 − c1

c2

) 2
p+3

and for sufficiently large T (and consequently large m),

|w(m)| ≥
(

C1

2c2

) 2
p+3

e
2θ

p+3 m. (2.6.2)

�
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We will discover that w is never eventually of one sign. This coupled with the above

lemma allows us to conclude that w is unbounded, at least asymptotically. Next we will

look at the value of G(t) at an extremum, m, of w. The next Lemma will show that for m

sufficiently large, G(m) is comparable to |w(m)|
p+3

2 .

Lemma 2.6.3 (Bounds on G(m)). Assume f satisfies condition (2.2.2). If w is a nontrivial

global solution to (2.1.2) with initial conditions satisfying (2.5.4), then there exists non-

negative constants T,C1, and C2, such that if m is a local extremum of w and m ≥ T,

then

C1|w(m)|
p+3

2 ≤ G(m) ≤ C2|w(m)|
p+3

2 .

Proof. The upper bound follows as in the proof of Lemma 2.6.2, from (2.6.1) and the fact

that w(m) is eventually large, as dictated by (2.6.2).

For the lower bound, again, since m is an extremum, we know w(m)w′′(m) ≤ 0 and

E(m) = F(w(m)) −
1
2

w′′(m)2 ⇔ |w′′(m)| =
√

2F(w(m)) − 2E(0). (2.6.3)

Thus for a sufficiently large m,

G(m) = α1w(m)2 − α3w(m)w′′(m)

= α1w(m)2 + α3|w(m)|
√

2F(w(m)) − 2E(0) (Equation (2.6.3))

≥ α1w(m)2 + α3|w(m)|

√
2ρ

p + 1
|w(m)|p+1 − 2E(0) (Lemma 3.7.1 )

≥ α1w(m)2 + α3|w(m)|
√

ρ

p + 1
|w(m)|p+1 (use Lemma (2.6.2) and large m)

≥ α3

(
ρ

p + 1

) 1
2

|w(m)|
p+3

2 (recall p > 1)

= C2|w(m)|
p+3

2 .
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2.6.1 Oscillatory behavior of w

Following the approach of [17], the proof of the main result is based on the fact that w

cannot remain of one sign and exist globally.

The following result comes from [5, Thm. 4]. For our purposes, it states that if k ≥ 0

and f satisfies conditions (2.2.1) and (2.2.2), then nontrivial global solutions to (2.1.2) are

never eventually of one sign.

Theorem 2.6.4 (Oscillations of w when k ≥ 0. [5, Thm. 4]). Let k ≥ 0 and suppose

f ∈ Liploc(R), f (t)t > 0 for every t ∈ R\ {0} .

If w is a nontrivial global solution to (2.1.2), then w(t) changes sign infinitely many times

as t → ∞ and as t → −∞.

First we need the following lemma that will also come in handy later on when proving

some geometric properties of the graph of w.

Lemma 2.6.5 (Decreasing |w| after an extremum). Assume f satisfies (2.2.1) and (2.2.2),

k < 2, and w is a nontrivial global solution to (2.1.2) with initial conditions satisfying

(2.5.4). Let (zi, zi+1) be an interval where w is of one sign. There exists a T ≥ 0 such

that if zi ≥ T, mi ∈ (zi, zi+1) is a zero of w′, and |w| is strictly decreasing on some interval

(mi,mi + δ) ⊂ (mi, zi+1) with δ > 0, then w′ , 0 on (mi, zi+1].

Proof. To the contrary, assume ni ≥ mi + δ is the next point where w′(ni) = 0 in (mi, zi+1].

By assumption |w(ni)| < |w(mi)|. If in addition w(ni) = 0, then the energy satisfies E(ni) =

−1
2w′′(ni)2 ≤ 0 contradicting (2.5.4) which requires E(0) > 0. Thus w(ni) , 0, in particular
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ni < zi+1. Since |w| is decreasing till ni, we know ni cannot be a point of maximum of |w|

and consequently

w(ni)w′′(ni) ≥ 0 .

Now recall,

G(ni) = α1w(ni)2 − α3w(ni)w′′(ni)

G(mi) = α1w(mi)2 − α3w(mi)w′′(mi) .

Provided mi is sufficiently large, Lemma 2.5.4 implies G(ni) > G(mi); hence,

α1w(ni)2 − α3w(ni)w′′(ni) > α1w2(mi) − α3w(mi)w′′(mi).

This implies that

0 > α1w2(ni) − α1w2(mi) > α3w(ni)w′′(ni) − α3w(mi)w′′(mi) .

It follows that w(mi)w′′(mi) > w(ni)w′′(ni). However, w(mi)w′′(mi) ≤ 0 and so w(ni)w′′(ni) <

0 contradicting w(ni)w′′(ni) ≥ 0. We conclude w′ , 0 on (mi, zi+1]. �

The oscillation result for the case k ≤ 0 was proven in [17] using the assumption that

f is twice continuously differentiable away from 0 and imposing some restrictions on f ′′.

Using the ideas in [5, 17] we provide a modified proof (see 4.1) of this result by requiring

assumptions on only one derivative of f , consequently requiring less regularity on w.

Lemma 2.6.6 (Oscillations of w when k ≤ 0, cf. [17]). Assume f satisfies conditions

(2.2.1) and (2.2.2), k ≤ 0, and w is a global solution of (2.1.2) with initial conditions

satisfying (2.5.4). Then w is never eventually of one sign.
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Proof. See 4.1. �

2.6.2 Shape of the graph and geometric growth

In the last section we learned that provided certain conditions were met, a solution w of

(2.1.2) is never eventually of one sign. In this section we establish the behavior of w

between consecutive zeros. We also gather previous results here to give a general picture

of w in a region of one sign. In the first lemma we discover only one extremum can exist

on an interval of one sign.

Lemma 2.6.7 (Single extremum on an interval of one sign). Assume f satisfies conditions

(2.2.1) and (2.2.2) and w is a nontrivial global solution to equation (2.1.2) with initial

conditions satisfying (2.5.4). There exists a T ≥ 0 such that if w(zi) = w(zi+1) = 0 for

zi ≥ T, and (zi, zi+1) is an interval where w is of one sign, then there exists exactly one

local maximum of |w| on [zi, zi+1]; moreover, |w| is increasing on [zi,mi] and decreasing on

[mi, zi+1].

Proof. Either by Lemma 2.6.5, or just observing that G′(zi) = α2w′(zi)2 and G′ is eventually

positive, we know that w′(zi) , 0. So |w| is increasing on some interval [zi, zi + ε]. Let mi

be the first place in [zi, zi+1] such that |w| is not increasing on some interval [mi,mi + ε).

If |w| is decreasing on some [mi,mi + δ), δ ≤ ε, then we are done by Lemma 2.6.5. We

know w is not constant anywhere as solutions are unique, in particular, by continuity there

cannot be a dense subset of zeros of w′. We also know that we can not have a sequence of

isolated points
{
n j

}
converging to mi from the right with w′(n j) = 0 unless |w| is increasing

on each interval [n j+1, n j], as for j large that would contradict the assumption that |w| is

non-increasing [mi,mi + ε). We conclude there is exactly one local maximum of |w| on

[zi, zi+1] and the monotone behavior before and after mi on [zi, zi+1] follows. �
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There are several consequences of Lemmas 2.6.5 and 2.6.7 that are of use to us. Pro-

vided T is sufficiently large and the hypotheses of the two lemmas hold, we know

• w changes sign at zeros.

• w has exactly one extremum, mi, on an interval [zi, zi+1] where w(zi) = w(zi+1) = 0

and w is of one sign on (zi, zi+1).

• |w| is nondecreasing on [zi,mi) and decreasing on (mi, zi].

To simplify things, we introduce some notation. Any global nontrivial solutions to (2.1.2)

satisfying the hypothesis of Theorem 2.6.4, will have infinitely many zeros, extrema, and

inflection points, denoted as follows:

• Z := {zi} will be the zeros of w with zi < zi+1.

• M := {mi} will be the extremas of w with mi ∈ (zi, zi+1).

• R = {ri } where ri is the smallest number in [zi,mi] such that w′′(ri) = 0.

The next result will show that not only the sequence {|w(mi)|} is unbounded, but eventually

it grows geometrically.

Lemma 2.6.8 (Geometric growth of w at extrema). Assume f satisfies conditions (2.2.1)

and (2.2.2) and w is a nontrivial global solution to equation (2.1.2) with initial conditions

satisfying (2.5.4). There exists a T ≥ 0 such that any subsequence of {|w(mi)| : mi ∈ M,mi ≥ T }

is bounded below by the sequence
{(

4
3

) i
p+1 : i ∈ N

}
.

Proof. The argument was motivated by the approach in [17, Step 6, p. 25]. Let `i be the

last inflection point between mi−1 and mi, possibly mi itself (one must exist because one m

is a local minimum, while the other is a local maximum). Let T be sufficiently large so that

the consequences of Lemma 2.6.3 are valid and Lemma 2.5.5 implies H′(t) > 0,H(t) > 0.
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Recalling

F(w) − E = −
k
2

(w′)2 − w′w′′′ +
1
2

(w′′)2

and w′(mi−1) = 0 results in

κ2 (2F(w(mi−1)) − E(mi−1)) = κ2

[
F(w(mi−1)) +

1
2

(w′′(mi−1))2
]
.

At any extremum mi−1 we know w(mi−1)w′′(mi−1) ≤ 0 and w′(mi−1) = 0; therefore,

κ2 [2F(w(mi−1)) − E(mi−1)] ≤ κ2

[
F(w(mi−1)) +

1
2

(w′′(mi))2
]

− α3w(mi−1)w′′(mi−1) + α1w2(mi−1)

= H(mi−1)

≤ H(`i) (Lemma 2.5.5)

= α1w(`i)2 + α2w′(`i)2 + κ2F(w(`i)).

(2.6.4)

By Lemma 2.6.5, on [`i,mi) we know f (w) and w′ have the same sign, thus F(w(t)) and

w2(t) are both nondecreasing; as a result from (2.6.4) we have

κ2 [2F(w(mi−1)) − E(mi−1)] ≤ α1w(mi)2 + α2w′(`i)2 + κ2F(w(mi)). (2.6.5)

By Lemma 2.6.3 (comparing growth of G(mi) and w(mi)),

α2w′(`i)2 ≤ α1w(`i)2 + α2w′(`i)2 = G(`i) ≤ G(mi) ≤ C1|w(mi)|
p+3

2 . (2.6.6)

Since p > 1 we have p + 1 > p+3
2 > 2. Furthermore |w(mi)| → ∞ by Lemma 2.6.2. Also

recall the growth estimate

F(s) ≥
ρ

p + 1
|s|p+1
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from Lemma 3.7.1. These facts, equation (2.6.6), and T taken sufficiently large show that

F(w(mi)) is of higher order than any of the terms appearing in (2.6.6). Hence, choosing a

specific constant, const = κ2/2, (which affects the choice of T ) we get from (2.6.6)

α1w(mi)2 + α2w′(`i)2 + κ2E(0) < α1w(mi)2 + C1|w(mi)|
p+3

2 + κ2E(0)

<
κ2

2
F(w(mi)).

(2.6.7)

Recall that E(mi−1) = E(0) by Lemma 2.5.2, so

2κ2F(w(mi−1))
(2.6.5)
≤ κ2E(mi−1) + α1w(mi)2 + α2w′(`i)2 + κ2F(w(mi))

(2.6.7)
≤

κ2

2
F(w(mi)) + κ2F(w(mi)) .

Since κ2, defined in (2.5.5), is positive, we conclude

4
3

F(w(mi−1)) ≤ F(w(mi)) .

Reindex mi, so that m0 > T . Then
(

4
3

)i
F(w(m0)) ≤ F(w(mi)). From (2.5.1) we see that for

|s| large there is a constant (dependent on α, β, p, q) such that

F(s) ≤ C|s|p+1.

Hence
F(w(m0))

C

(
4
3

) i
p+1

≤ |w(mi)|.

We may assume that F(w(m0)) > C and drop the coefficient on the left, which yields the

desired result. �

The next result will show that |w| is strictly concave on [mi, zi+1] when mi is taken

adequately large.
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Lemma 2.6.9 (Concave behavior after an extremum). Assume f satisfies conditions (2.2.1)

and (2.2.2) and w is a nontrivial global solution to equation (2.1.2) with initial conditions

satisfying (2.5.4). There exists a T ≥ 0 such that if (zi, zi+1) is an interval where w is of one

sign and zi ≥ T, then there are no inflection points after the extremum point mi; therefore,

|w| is strictly concave on [mi, zi+1].

Proof. Take T to be large enough for the consequences of Lemma 2.6.5 to hold. To the

contrary, assume n ∈ (mi, zi+1] is the next inflection point of |w| on (zi, zi+1) after mi. If we

appeal to Lemma 2.5.4 and T is sufficiently large so that G′(t) > 0 for all t ≥ T we have

0 < G′(n) =2α1w(n)w′(n) − α3w(n)w′′′(n)

⇒ 2α1w(n)w′(n) > α3w(n)w′′′(n) .

Thus 2α1w′(n) > α3w′′′(n) on an interval of positivity (hence, 2α1w′(n) < α3w′′′(n) on an

interval of negativity). We conclude w′′′(n) < 0 on an interval of positivity (w′′′(n) > 0 on

an interval of negativity); however, this implies, for an interval of positivity, w′′ < 0 (w′′ > 0

on an interval of negativity) on some interval (n, n+ε′) with ε′ > 0. This contradicts though

the fact that n is the next inflection point after m. �

The next result describes the slope of w at its zeros. In particular, the lemma shows that

|w′(zi)| grows geometrically when z0 is taken sufficiently large.

Lemma 2.6.10 (Geometric growth of w′ at zeros of w). Assume w is a global solution to

equation (2.1.2), f satisfies conditions (2.2.1) and (2.2.2), and the initial conditions satisfy

(2.5.4). There exists a T > 0 such that if z0 ≥ T, then

w′(zi)2 ≥
C1

α2

(
4
3

) (p+3)i
2(p+1)

,

where {zi} is a sequence of consecutive zeros of w.
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Proof. Pick T sufficiently large so that G′(t) > 0 for t ≥ T (Lemma 2.5.4) and the conse-

quences of Lemmas 2.6.3 and 2.6.8 are valid. Then

α2w′(zi)2 = G(zi) ≥ G(mi−1) ≥ C1|w(mi−1)|
p+3

2 ≥ C1

(
4
3

) (p+3)i
2(p+1)

.

�

Recall that ri ∈ R denotes the first zero of w′′ in the interval [zi,mi]. In the proof of the

Theorem 2.2.1 it will be necessary for w(ri) to be large. The next lemma will show that

provided the inflection point is large enough, this is indeed the case.

Lemma 2.6.11 (Geometric growth of w at inflection points). Assume w is a global solu-

tion to equation (2.1.2), k < 2, f satisfies conditions (2.2.1) and (2.2.2), and the initial

conditions satisfy (2.5.4). There exists a T ≥ 0 so that if z0 ∈ Z and z0 ≥ T then

|w(ri)| ≥
(
α1

α3

) 1
p+1 C1

α2

(
4
3

) 2(p+3)
(p+1)2

i

for ri ∈ R, and for each i ≥ 0.

Proof. Let T be chosen so that G′(t) > 0 for t ≥ T (Lemma 2.5.4) and the conclusions of

Lemmas 2.6.9 and 2.6.10 hold. Let δ = 1
2 min {µ1, µ2}. By Lemma 2.5.4,

d
dt

(
G′ − δ

(
w′

)2
)

= G′′ − 2δw′w′′

≥ ε + µ1
(
w′

)2
+ µ2

(
w′′

)2
+ µ3w f (w) − µ1

(
w′

)2
− µ2

(
w′′

)2

= ε + µ3w f (w)

≥ ε.

For some t0 ≥ T we have w′(t0) = 0 by Theorem 2.6.4 and Lemma 2.6.6. Since G′(t) ≥ 0
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for t ≥ t0,

G′(t) > δw′(t)2, ∀t ≥ t0. (2.6.8)

Henceforth without loss of generality let T = t0. Next notice

G′(ri) = 2α1w(ri)w′(ri) − α3w(ri)w′′′(ri).

Recall w(ri) , 0 as otherwise G′(ri) = 0 contradicting Lemma 2.5.4. Solving for w′′′(ri)

yields

w′′′(ri) =
2α1

α3
w′(ri) −

G′(ri)
α3w(ri)

.

Substitute the last identity into the definition of the energy function E(t) and recall E(t) =

E(0) by Lemma 2.5.1:

k
2

w′(ri)2 + F(w(ri)) +
2α1

α3
w′(ri)2 −

w′(ri)G′(ri)
α3w(ri)

− E(0) = 0.

Hence multiplication by w(ri) results in

F(w(ri))w(ri) −
1
α3

w′(ri)G′(ri) +

(
2α1

α3
+

k
2

)
w′(ri)2w(ri) − E(0)w(ri) = 0.

Assume ri is on an interval of positivity. Consequently, we have

F(w(ri))w(ri) +

[(
2α1

α3
+
|k|
2

)
w′(ri)2 − E(0)

]
w(ri) −

1
α3

w′(ri)G′(ri) ≥ 0. (2.6.9)

To simplify the subsequent analysis introduce a shorthand:

x := w(ri), u :=
(
2α1

α3
+
|k|
2

)
w′(ri)2 − E(0), v :=

1
α3

w′(ri)G′(ri).
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From Lemma 2.6.9 we have w′(ri) ≥ w′(zi) ≥ 0, then by Lemma 2.6.10 it follows that if

ri > zi ≥ T for T sufficiently, large then u > 0. Then we may rewrite equation (2.6.9) as

xF(x) + ux − v ≥ 0, u > 0. (2.6.10)

By equation (2.6.8) we know that

v =
1
α3

w′(ri)G′(ri) ≥
δ

α3
w′(ri)3.

Since u
3
2 has cubic growth in w′(ri), and the latter can be assumed sufficiently large, then

there exists a constant y > 0 such that for all ri ≥ T

yu
3
2 <

1
α3

w′(ri)G′(ri) = v.

Consequently, by (2.6.10)

xF(x) + ux − yu
3
2 > 0.

Recalling the estimate on F from Lemma 3.7.1 we obtain

(
β

p + 1
|x|p+1 +

α

q + 1
|x|q+1

)
x + ux − yu

3
2 > 0.

We claim that x > u
1

p+1 . To the contrary, suppose x ≤ u
1

p+1 , then

(
β

p + 1
|x|p+1 +

α

q + 1
|x|q+1

)
x + ux − yu

3
2

≤
β

p + 1
u

p+2
p+1 +

α

q + 1
u

q+2
p+1 + u

p+2
p+1 − yu

3
2 .

(2.6.11)
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From condition (2.2.2), we have

0 <
q + 2
p + 1

<
p + 2
p + 1

<
3
2
,

hence the right side of (2.6.11) can not be positive for large u. This yields a contradiction

and so we assume on an interval of positivity with ri ≥ T that

x = w(ri) ≥ u
1

p+1 =

((
2α1

α3
+
|k|
2

)
w′(ri)2 − E(0)

) 1
p+1

. (2.6.12)

By Lemma 2.6.10 we know that for T large

α1

α3
w′(ri)2 − E(0) ≥ 0.

Consequently,

w(ri) ≥
(
α1

α3

) 1
p+1

w′(ri)
2

p+1 . (2.6.13)

By Lemma 2.6.9 we know that w is convex on [wi, ri); consequently,

(
α1

α3

) 1
p+1

w′(ri)
2

p+1 ≥

(
α1

α3

) 1
p+1

w′(zi)
2

p+1 . (2.6.14)

Lastly, Lemma 2.6.10 gives us

(
α1

α3

) 1
p+1

w′(zi)
2

p+1 ≥

(
α1

α3

) 1
p+1

(
C1

α2

) 1
p+1

(
4
3

) (p+3)
2(p+1)2

i

.

Combining (2.6.12), (2.6.13), and (2.6.14) results in

w(ri) ≥
(
α1C1

α3α2

) 1
p+1

(
4
3

) (p+3)
2(p+1)2

i

.
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A similar proof works if ri is on an interval of negativity. �

2.7 Estimating distances between zeros

In this section we will show the distances between consecutive zeros of w are bounded

above by a summable geometric series. This observation along with the fact

lim
i→∞
|w(mi)| = ∞

from Lemma 2.6.8 will give finite time blow-up for solutions of (2.1.2) provided the as-

sumptions of Theorem 2.2.1 are satisfied.

Begin with the following auxiliary result for G similar to the one used back in Lemma

2.6.6 about oscillations of w for k ≤ 0.

Lemma 2.7.1. Assume w is a global solution to equation (2.1.2), f satisfies (2.2.1) and

(2.2.2), and the initial conditions satisfy (2.5.4). Let λ > 0 be such that

(p + 1)(1 + λ)
p − λ

< 2 and 2(1 + λ) < p + 1 (2.7.1)

(λ exists since p > 1). The set of points t in [0,∞) where w exists and

|w′|2(1+λ)(t) < 2w(t) f (w(t))

has finite measure (the factor 2 is just for convenience).
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Proof. From the definition of G it follows that whenever |w′|2(1+λ) < 2w f (w) we have

G1+λ

.|(w′)|2(1+λ) + |w|2(1+λ) + |ww′′|1+λ + 1

.|w′|2(1+λ) + |w|2(1+λ) + |w|p+1 + |w′′|
(p+1)(1+λ)

p−λ + 1 (Young’s Inequality)

.|w′|2(1+λ) + |w|p+1 + |w′′|2 + 1 (recall p + 1 ≥ 2(1 + λ))

.w f (w) + |w′′|2 + 1 (condition (2.2.2) and |w′|2(1+λ) < 1
2w f (w)) .

From Lemma 2.5.4 we have

G′′ ≥ µ1(w′)2 + µ2(w′′)2 + µ3w f (w) + ε

≥ µ1(w′)2 + µ2(w′′)2 + µ3ρ|w|p+1 + ε

and so for some constant β > 0 we have

βG′′(t) > G(t)1+λ (2.7.2)

on sets where

|w′(t)|2(1+λ) < 2w(t) f (w) .

Let U be the union of all (open) sets where |w′(t)|2(1+λ) < 2w(t) f (w(t)), then on U the

estimate (2.7.2) holds. Any solution u to the differential inequalities u′ > ε > 0 and

βu′′(t) > u(t)1+λ has only finite existence time. For T sufficiently large we know that

G′ > ε > 0 on [T,∞) by Lemma 2.5.4. Since G satisfies (2.7.2) on the set U, and G

remains strictly increasing outside U, we conclude that |U | < ∞, otherwise, G blows up in

finite time. �

Remark 2.7.2. The proof for Theorem 2.2.1 simplifies drastically in both cases, k > 0 and
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k ≤ 0, if one shows inequality (2.7.2) holds on the entire real line. This inequality reduces

to showing

(w′)2(1+λ) . (w′)2 + (w′′)2 + w f (w).

Numerical evidence supports this conjecture, however, we were unable to prove it at this

point.

The following lemma was motivated by [17, pp. 22–24] and will show

∑
|mi − zi+1| < ∞.

Lemma 2.7.3. Assume w is a global solution to equation (2.1.2), f satisfies conditions

(2.2.1) and (2.2.2), and the initial values satisfy (2.5.4). There exists a T sufficiently large

such that if z0 ∈ Z and z0 ≥ T then

|mi − zi+1| <
C

√
w(mi)

≤ C
(
3
4

) p−1
4(p+1) i

where i ∈ N and C = C(k, ρ, p).

Proof. Let T be large enough for the consequences of Lemmas 2.6.8 and 2.6.9 to be valid

and Lemma 2.5.4 implies G′(t) > 0 for t ≥ T . For convenience reindex the set of zeros Z

so that z0 ≥ T . Since w(t − mi) is a solution to equation (2.1.2) if and only if w(t) is, we

may assume mi = 0. Integrating w′′′′ + kw′′ + f (w) = 0 four times with respect to t results

in

w(t) = t3 w′′′(0)
6

+ t2 w′′(0)
2

+

(
t +

t3k
6

)
w′(0) +

(
1 +

t2k
2

)
w(0)

− k

t∫
0

t3∫
0

w(t2)dt2dt3 −

t∫
0

t3∫
0

t2∫
0

t1∫
0

f (w(t0))dt0dt1dt2dt3.

(2.7.3)
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Suppose that [zi, zi+1] is an interval of positivity of w. Since mi = 0 is a maximum we

know that w′(0) = 0 and w′′(0) ≤ 0. Additionally, by Lemma 2.5.4 we know G′(0) =

−α3w(0)w′′′(0) ≥ 0. It follows that w′′′(0) ≤ 0. Applying this to equation (2.7.3) yields

w(t) ≤
(
1 +

t2k
2

)
w(0) − k

t∫
0

t3∫
0

w(t2)dt2dt3 −

t∫
0

t3∫
0

t2∫
0

t1∫
0

f (w(t0))dt0dt1dt2dt3.

Recall from condition 2.2.2, that f (w) ≥ ρwp since we are on an interval of positivity. Thus

w(t) ≤
(
1 +

t2|k|
2

)
w(0) + |k|

t∫
0

t3∫
0

w(t2)dt2dt3 − ρ

t∫
0

t3∫
0

t2∫
0

t1∫
0

w(t0)pdt0dt1dt2dt3.

By Lemmas 2.6.7 and 2.6.9 we know w is decreasing and concave on [0, zi+1). Conse-

quently, for any δ ∈ (0, zi+1) and t ∈ [0, zi+1] we know that

w(t) ≥ `(t) := w(0) −
w(0)
δ

t

and w(t) ≤ w(0). We conclude

w(t) ≤
(
1 +

t2|k|
2

)
w(0) + |k|w(0)

t∫
0

t3∫
0

dt2dt3 −

t∫
0

t3∫
0

t2∫
0

t1∫
0

ρ`(t0)pdt0dt1dt2dt3.

Evaluating at t = δ gives us

w(δ) ≤
w(0)

24 + 6p

(
24 + 6p + δ2(6|k|p + 24|k|) − w(0)p−1ρδ4

)
.

Since w(δ) ≥ 0, we have

0 ≤ 24 + 6p + δ2(6|k|p + 24|k|) − w(0)p−1ρδ4 .
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Consequently,

δ2 ≤
(6|k|p + 24|k|) +

√
(6|k|p + 24|k|)2 + 4ρ(24 + 6p)w(0)p−1

2ρw(0)p−1 .

This inequality along with Lemma 2.6.8 (about w(mi) being eventually large, whence here

we may assume that for w(0)) implies that

δ ≤
C

w(0)
p−1

4

, for some C = C(k, p, ρ) > 0.

Note that C is not dependent on mi. This estimate holds uniformly for every δ ∈ [mi, zi+1),

hence

|mi − zi+1| ≤
C

w(0)
p−1

4

=
C

w(mi)
p−1

4

.

The result follows by recalling |w(mi)| ≥
(

4
3

) i
p+1 from Lemma 2.6.8. A similar proof works

for an interval of negativity. �

The next and final lemma will show that
∑
|zi − mi| < ∞.

Lemma 2.7.4. Assume w is a global solution to equation (2.1.2), f satisfies conditions

(2.2.1) and (2.2.2), and the initial values satisfy (2.5.4). There exists a T ≥ 0 such that if

zi ≥ T, then
∞∑

i=1

|zi − mi| < ∞.

Proof. Let T be sufficiently large so that G′ > 0 for t ≥ T (Lemma 2.5.4) and the conse-

quences of Lemmas 2.6.7, 2.6.10, and 2.6.11 are valid. For convenience reindex the set of

zeros Z so that z0 ≥ T . Recall w(t) f (w(t)) ≥ ρ|w|p+1 by condition (2.2.2). Let λ > 0 be

chosen as in Lemma 2.7.1. By Lemma 2.7.1 we know the total measure of sets where

|w′(t)|2(1+λ) < 2w(t) f (w(t))
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is finite so we will consider subsets of [zi,mi] where

|w′(t)|2(1+λ) > w(t) f (w(t)) ≥ ρ|w(t)|p+1 .

The sets where these (strict) inequalities hold forms an open cover of the interval of ex-

istence of w. Let us focus on a subinterval [zi,mi] and assume it resides in an interval of

positivity.

We know the inequality |w′|2(1+λ) > ρ|w|p+1 is equivalent to

w′ > ρ
1

2(1+λ) w
p+1

2(1+λ)

since w,w′ are nonnegative.

By Lemma 2.6.11 we know that ξi ≤ ri where ri is the first inflection point on [zi,mi].

Using the estimate on w(ri) from Lemma 2.6.11 we see that there exists ξi ∈ (zi, ri] such

that

w(ξi) = ν :=
(
α1C1

α2α3

) 1
p+1

(
4
3

) (p+3)
2(p+1)2

i

.

We will now give a bound on the measure of sets contained in [ξi,mi] where w′ > ρ
1

2(1+λ) w
p+1

2(1+λ) .

Consider the initial value problem


u′ = ρ

1
2(1+λ) uν+1

u(ξi) = uξi

for ν :=
p + 1

2(1 + λ)
− 1 > 0 .

Solving the above equation for u results in

u(t) =

−νρ 1
2(1+λ) t + νρ

1
2(1+λ) ξi +

1
uνξi

− 1
ν

=

νρ 1
2(1+λ) (ξi − t) +

1
uνξi

− 1
ν

.

It is clear that the solution u to the above initial value problem is only defined for t <
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ξi +
(
uνξi
νρ

1
2(1+λ)

)−1
. Thus, using the definition of uξi , we see that the existence time for u in

the interval [ξi,mi] is no more than

(
uνξi
φρ

1
2(1+λ)

)−1
≤ C(α1, α2, φ, ρ, k)

(
4
3

)− φ(p+3)
2(p+1)2

i

with φ > 0.

By Lemma 2.6.5 we know w monotonically increases to w(mi) on the first part [zi,mi] of

the positivity interval [zi, zi+1]. Thus the existence time in [ξi,mi] for w where |w′|2(1+λ) >

ρ|w|p+1 is no larger than the existence time for u; therefore, an upper bound on the measure

of sets where |w′|2(1+λ) > ρ|w|p+1 in [ξi,mi] is given by C(α1, α2, φ, ρ, k)
(

4
3

)− φ(p+3)
2(p+1)2

i
. We

conclude
∞∑

i=1

|ξi − mi| < ∞.

Now let us consider the interval [zi, ξi]. Since ξi ≤ ri we know that w is convex on the

interval. Thus w(ξi) ≥ (ξi − zi)w′(z j). Appealing to Lemma 2.6.10, we obtain

w′(z j) ≥
(
C1

α2

) 1
2
(
4
3

) (p+3)i
4(p+1)

.

Consequently ,

|ξi − zi| < w(ξi)
(
w′(z j)

)−1

≤

(
α1C1

α2α3

) 1
p+1

(
4
3

) (p+3)
2(p+1)2

i (
α2

C1

) 1
2
(
3
4

) (p+3)i
4(p+1)

=

(
α1C1

α2α3

) 1
p+1

(
α2

C1

) 1
2
(
3
4

)( p+3
4(p+1)−

p+3
2(p+1)2

)
i

.

Since p > 1 we know p+3
4(p+1) −

p+3
2(p+1)2 > 0 and so

∞∑
i=1

|ξi − zi| < ∞.
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Now we are in position to finish the proof of Theorem 2.2.1.

Theorem 2.2.1. We will show that no global solution exists. To the contrary, assume w is

a global solution to (2.1.2) with initial energy satisfying (2.2.3). By Theorem 2.6.4 and

Lemma 2.6.6 we know that w must change sign infinitely many times as t → ∞. If {mi} are

the extrema of w, Lemma 2.6.8 implies {|w(mi)|} → ∞ as i → ∞. Lemmas 2.7.3 and 2.7.4

imply the zeros of w, hence mi’s, have a limit point m∞. We conclude w(t) is unbounded in

a neighborhood of m∞. So w cannot be extended past m∞. �
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Chapter 3

A nonlocal biharmonic operator and its

connection with the classical analogue

In this chapter we investigate the nonlocal theory of plate dynamics by analyzing nonlocal

formulations of elliptic equations. The benefit of this approach is a reduced requirement

on the regularity of solutions which allows fracture propagation and other discontinuities

to be modeled. With this goal in mind, we begin our journey into the nonlocal theory with

a literature overview in Section 3.1. Then the nonlocal framework is outlined in Section

3.2. Following this, necessary conditions for L2 integrability of the nonlocal Laplacian and

nonlocal biharmonic, as well as Hölder-continuity of the nonlocal Laplacian are proven. In

Section 3.3 we define the nonlocal spaces in which we prove our well-posedness results.

Section 3.4 reviews critical compactness results that are necessary for the proof of our main

theorems. Section 3.5 addresses the connection between the local and nonlocal operators,

by proving convergence results (and rates of convergence results) as the size of the support

of the kernel shrinks to zero. Section 3.6 presents the well-posedness proof for the nonlocal

steady state problem with hinged and clamped boundary conditions. Finally, our main

results lie in Section 3.7 where it is proven that when the horizon approaches zero, solutions
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of the nonlocal clamped and hinged steady state problems converge strongly in L2 to the

weak solutions of their local analogues.

3.1 Nonlocal background and literature overview

Classical models of continuum mechanics give rise to fourth-order elliptic PDEs describ-

ing transversal deformations of thin plates, shells or beams, possibly in coupling with ad-

ditional equations quantifying shear forces [36, 38]. Under some regularity conditions on

the boundary, solutions to fourth-order elliptic boundary value problem generally acquire

four orders of weak differentiability with respect to the regularity of the interior forcing

term. In two dimensions, systems with square integrable forcing such systems typically

possess weak solutions that have at least H2 ⊂ W1,∞ Sobolev regularity. In particular, such

solutions (in the 2D case) are necessarily continuous which makes it non-trivial to account

for irregularities, such as cracks. On the other hand, prime examples of plates structures

are suspension bridges, where the dynamic formation of cracks and their evolution is of

great interest, whereas discontinuities corresponding to damage preclude the inclusion of

smoothness assumptions on the solutions.

A proposed paradigm for investigating less regular solutions is to replace the classi-

cal operators of elasticity theory with suitable approximations that replace derivatives with

singular integral operators. This approach is prompted by physical considerations, such as

describing the stress at a point via the cumulative interaction with points from its neighbor-

hood; this interaction is often captured through a suitable integral kernel.

Nonlocal versions of the classical Laplace operator have been investigated in various

settings and phenomena: nonlocal diffusion [3], population and swarm models [9, 30], and

image processing [19]. Recently, this nonlocal operator was used in the peridynamic the-

ory developed by Silling [37] to describe the evolution of damage in solids. The relaxed
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regularity conditions permit fractures to be represented in the solution of the system rather

than being considered through separate ad-hoc frameworks. Within the context of the state-

based formulation of peridynamics, nonlocal models for beams and plates were developed

in [31, 32]; however, the nonlocality in these models resembles more the nonlocal Lapla-

cian structure (see [6, 12, 20]). Higher order nonlocal operators have been considered;

however, much of the work has been on time-asymptotics as seen in [3]. In [22] a com-

position of a local Laplacian with a nonlocal Laplacian was investigated. By replacing

differential operators with integral operators it is possible to have well-defined solutions

with discontinuities (in fact without any Sobolev regularity).

Motivated by these developments we introduce a nonlocal version of the biharmonic op-

erator, obtained by iterating the nonlocal Laplacian. We show that solutions of the nonlocal

biharmonic equation with nonlocal analogues of hinged or clamped boundary conditions

require minimal integrability assumptions; moreover, in the limit they recover the classical

weak solutions to the corresponding elliptic fourth-order problem.

As previous works have also demonstrated, the nonlocal setting offers an alternative

way to study problems in a weak formulation. In contrast with the classical framework

which often considers regularized solutions to a problem and passes to the limit in a weaker

topology to obtain a less regular solution, in the nonlocal framework the investigation starts

in a weaker topology, and then as the support of the kernel shrinks the corresponding weak

solutions converge (in the weak topology) to a more regular solution. The diagram below

stresses this idea:

Modeling approach Convergence

Local/Classical regularized approximations→ weak solution

Nonlocal L2 approximations→ weak solution

Finally, the results presented here do not rely on the scalar setting, so they are transferrable

to the vectorial framework as introduced in [12].
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Boundary conditions. Although a nonlocal form of the biharmonic operator appears nat-

ural, the form of the boundary conditions (BC) is more delicate. Two types of homoge-

neous BC are fundamental in plate systems: hinged (u = 0, ∆u = 0 on the boundary of

the domain) and clamped (u = 0,
∂u
∂ν

= 0). Since nonlocal operators are associated with

collar-type constraints—imposed on sets of positive Lebesgue measure that surround the

domain—we need to find appropriate nonlocal generalizations that converge to the classical

conditions in the limit as the approximations improve. To our knowledge, this is the first

work that deals with integral approximations of higher order elliptic operators with first and

second order boundary conditions. One of the features of the nonlocal approach is that ap-

proximations and their boundary conditions can be formulated for very rough domains. If

the domain has C1 regularity (in fact, some relaxation might be possible, see Remark 3.4.4)

then these nonlocal solutions converge in L2 to some function as the “interaction horizon”

decreases. The limit can be shown to be a distributional solution to the original PDE. Natu-

rally, this can be identified with weak (or strong) solutions of the classical elliptic problem

only if the domain possesses some additional smoothness C2 (or C4).

Some of the main tools used in local theories are compactness results (such as Gagliardo-

Nirenberg-Sobolev embedding theorems), estimates obtained through Poincaré-type in-

equalities, and in parabolic/elliptic theory one often uses the gain in the smoothness of

solutions. For nonlocal problems in the case of operators with weakly (i.e. integrable) sin-

gular kernels, however, these methods do not apply. Whereas solutions to the Poisson prob-

lem gain two degrees of regularity over the forcing term, in the nonlocal scenario there is

no improvement in regularity. A nonlocal version of Poincaré’s inequality exists, however,

it does not yield higher Lp integrability for the solution from bounds of the nonlocal gradi-

ent. In addition, the embedding theorems do not hold, unless the kernel exhibits a strong

(i.e. non-integrable) singularity. One of the key tools is the result of of Bourgain, Brezis,

and Mironescu [7] that exhibits compactness when the kernel is “almost-integrable”. Such
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compactness theorems have been used and further developed by Du and Mengesha [29]

(which is also an inspiration for our work), as well as by Ignat and his collaborators [23].

3.1.1 Contributions to the nonlocal theory

The contributions of this exposition to the development of nonlocal theories and under-

standing the connections between local and nonlocal models are as follows:

• we introduce a higher-order nonlocal analogue to the biharmonic operator and we

formulate nonlocal equivalents of clamped and hinged boundary conditions; we es-

tablish well-posedness of solutions to these nonlocal boundary values problems sup-

plemented with nonlocal BCs;

• under certain assumptions on the kernel of the integral operator (which include singu-

lar and weakly singular cases) we prove several properties for the nonlocal operators

such as: L2 integrability as well as Hölder continuity of the nonlocal Laplacian ap-

plied to a sufficiently regular function (see Proposition 3.2.12, respectively, Theorem

3.2.13);

• we show L2 strong convergence of the sequence of nonlocal solutions to the local one

as the radius of the support of the kernel in the integral operator goes to zero.

3.2 Background

This section contains definitions of several fundamental integral operators and associated

function spaces that will be central to our work. Henceforth, Ω will denote an open bounded

connected subset of Rd; in some results, we will specialize to d = 2 as the more interesting

case due to the integrability conditions and because of its connection to the thin plate the-

ory. As we will see in the sequel the existence results for solutions to the nonlocal problems
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Ω′

Ω \Ω′

Ω

Figure 3.1: The nonlocal domain Ω′ with its collar boundary Ω \Ω′.

defined below do not require any regularity conditions on Ω. However, in order to establish

connections between nonlocal and classical systems, we will need impose some smooth-

ness conditions on the boundary. The open subdomain Ω′ will be compactly contained in

Ω (see Figure 3.1 for an example of the domain Ω′ with its boundary Ω \Ω′).

3.2.1 Operators

As in [12], we introduce several nonlocal peridynamic operators.

Definition 3.2.1 (Nonlocal divergence). For a function ν : Ω × Ω → Rk and an antisym-

metric vector-valued kernel α : Ω × Ω → Rk, the nonlocal divergence operator Dα is a

function-valued mapping whose imageDα[ν] is defined byDα[ν] : Ω→ R

Dα[ν](x) :=
∫

Ω

(ν(x, y) + ν(y, x)) · α(x, y)dy for x ∈ Ω .

Definition 3.2.2 (Nonlocal two-point gradient). Given a function u(x) : Rd → R, the

formal adjoint of Dα is the nonlocal two-point gradient operator Gα : u 7→ Gα where
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Gα : Ω ×Ω→ Ω is given by

Gα[u](x, y) = (u(y) − u(x))α(x, y) for (x, y) ∈ Ω ×Ω .

Definition 3.2.3 (Nonlocal normal derivative). For a function ν : Ω × Ω → Rk and an

antisymmetric vector-valued function α : Ω × Ω → Rk, the nonlocal normal operator is a

mapping Nα : ν 7→ Nα[ν] where Nα[ν] : Ω→ R is given by

Nα[ν](x) :=
∫

Ω\Ω′
(ν(x, y) + ν(y, x)) · α(x, y)dy for x ∈ int(Ω′). (3.2.1)

Definition 3.2.4 (Nonlocal Laplacian). Let u : Ω → R and µ = α2 where α : Ω × Ω → Rk

is an antisymmetric vector-valued function. The nonlocal Laplace operator is defined by:

Lα[u](x) := Dα [Gα[u]] = 2
∫

Ω

(u(y) − u(x))µ(x, y)dy for x ∈ Ω .

It was shown in [12, Prop. 5.4], that if α2 is formally replaced by distributional application

of 1
2∆yδ(y − x), then Lα can be identified, in the sense of distributions, with the Laplace

operator ∆x.

Following the above framework we define the nonlocal biharmonic operator:

Definition 3.2.5 (Nonlocal biharmonic). Let α : Ω × Ω → Rk be an antisymmetric vector

valued function and u : Ω→ R. We define the nonlocal biharmonic by

Bα[u](x) = Lα[Lα[u]], for x ∈ Ω. (3.2.2)
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3.2.2 Continuity and integrability

Let us recall and prove several results regarding the integrability and continuity for some

of the above nonlocal operators.

First let us recall a nonlocal version of the “integration by parts” theorem, a simple

consequence of the fact that the integrand is antisymmetric:

Proposition 3.2.6 (Nonlocal integration by parts [12]). Let Ω ⊂ Rd be open, u,w : Ω→ R,

α : Ω × Ω → Rk be antisymmetric, and ν : Ω × Ω → Rk. When Dαv ∈ L2(Ω) and

Gα ∈ L2(Ω ×Ω) we have

∫
Ω

u(x)Dα[ν]dx = −

∫
Ω

∫
Ω

Gα[u] · νdydx . (3.2.3)

As a special case, when Lα[u],w ∈ L2(Ω) and Gα[u],Gα[w] ∈ L2(Ω ×Ω), we have

∫
Ω

Lα[u]wdx = −

∫
Ω

∫
Ω

Gα[u]Gα[w]dydx. (3.2.4)

As remarked subsequently, the identity (3.2.4) by definition applies to weak nonlocal Lapla-

cian introduced below in Definition 3.3.3.

Remark 3.2.7. The terms in “nonlocal” integration by parts already incorporate the infor-

mation from the collar of the domain, thus boundary terms do not explicitly appear in

(3.2.3) or (3.2.4).

The next result provides us with an inequality that gives an upper bound for the nonlocal

gradient in terms of its classical counterpart:

Theorem 3.2.8 (c.f. [7, Thm. 1]). Let Ω be a bounded Lipschitz domain. Suppose f ∈
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W1,p(Ω), 1 ≤ p < ∞ and let ξ ∈ L1(Rd), ξ ≥ 0. Then

∫
Ω

∫
Ω

| f (x) − f (y)|p

|x − y|p
ξ(x − y)dxdy ≤ C‖ f ‖p

W1,p(Ω)‖ξ‖L1(Ω),

where C depends only on p and Ω.

Remark 3.2.9. The result [7, Thm. 1] focuses on smooth domains, but the proof only

requires the function in question to have a W1,p(Rn) extension. So it suffices for Ω to satisfy

a strong locally Lipschitz condition, or equivalently be bounded and Lipschitz (see, for

example, [1, p. 83 and Thm. 5.24 on p. 154]).

We will need the following assumption, first introduced in [7], on the family of kernels

used in our nonlocal formulations.

Assumption 3.2.10 (Kernel α). For δ > 0 let ρδ be a radial compactly-supported mollifier

satisfying

ρδ : C∞(R+;R+),
∫
Rd
ρδ(|x|)dx = 1, supp(ρδ) ⊂ [0, δ) . (3.2.5)

Define

αδ(x, y) :=

√
ρδ(|x − y|)
|x − y|2

(x − y) . (3.2.6)

Henceforth when if δ is held constant in the context, we will often drop subscript temporar-

ily denoting

α := αδ

whenever there is no confusion.

With Assumption 3.2.10 placed on α, we will study the conditions that must be placed

on the function u so that Lα[u] ∈ L2(Ω) and Bα[u] ∈ L2(Ω). In particular, note that Lα

is formally quadratic in α which means that the kernel µ in Definition 3.2.4 would not be



57

integrable for domains Ω ⊂ R2. The next few propositions will provide sufficient conditions

which ensure that these functions are well-defined.

Proposition 3.2.11. Suppose ρ ∈ C∞c (Rd) and d ≥ 2. If Ω ⊂ Rd is bounded and a > 0, then

the following mapping is continuous on Rd:

F(x) :=
∫

Ω

ρ(|y − x|)
|y − x|2−a dy .

Proof. Fix x ∈ Rd. Note that the result clearly holds for a ≥ 2, so assume 0 < a < 2. Since

|y − x|−(2−a) ∈ L1(Rd) for a > 0 and d ≥ 2, there exists an r > 0 such that

∫
B(x,r)

1
|y − x|2−a dy <

ε

3‖ρ‖L∞
. (3.2.7)

Since ρ is smooth, clearly

y 7→ κ(x, y) :=
ρ(|y − x|)
|y − x|2−a ∈ C

(
Rd \ B

(
x,

r
2

))
.

Thus there exists a δ ∈
(
0, r

2

)
such that whenever x′ ∈ B(x, δ) we have

|κ(x, y) − κ(x′, y)| <
ε

3|Ω|
for all y ∈ Ω \ B(x, r) .
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Then

|F(x) − F(x′)| =
∣∣∣∣∣∫

Ω

[
κ(x, y) − κ(x′, y)

]
dy

∣∣∣∣∣
≤

∣∣∣∣∣∣
∫

Ω\B(x,δ)

[
κ(x, y) − κ(x′, y)

]
dy

∣∣∣∣∣∣
+ ‖ρ‖L∞

∫
B(x,δ)

1
|y − x|2−a dy + ‖ρ‖L∞

∫
B(x,δ)

1
|y − x′|2−a dy

(3.2.7)
≤

ε

3|Ω|

∫
Ω\B(x,δ)

dy + ‖ρ‖L∞
ε

3‖ρ‖L∞
+ ‖ρ‖L∞

∫
B(x′,δ)

1
|y − x′|2−a dy

(3.2.7)
≤ ε.

The second to last line follows by noting that integrating 1
|y−x′ |2−a in terms of y over a ball

centered at x′ will be larger than integrating over a ball of the same radius centered at any

other point since the singularity is at y = x′. It follows that F ∈ C(Rd). �

Proposition 3.2.12 (L2-integrability of the nonlocal Laplacian). Suppose α satisfies As-

sumption 3.2.10 and d ≥ 2. If Ω ⊂ Rd is a bounded Lipschitz domain and u ∈ W1,p(Ω) with

p > 2 then Lα[u] ∈ L2(Ω).

Proof. For a shorthand let

κ(x, y) :=
ρ(|x − y|)
|y − x|

and q(x, y) :=
u(y) − u(x)
|y − x|

.

Also, henceforth, if ψ(x, y) is a function on Ω ×Ω then Lq(Ω, x) or Lq(Ω, y) will denote the

Lq norm of the y- or x-section of ψ respectively.

By Hölder’s inequality, for any ε ∈ (0, 1) we have

‖Lα[φ]‖2L2 =

∫
Ω

∣∣∣∣∣∫
Ω

u(y) − u(x)
|y − x|2

ρ(x, y)dy
∣∣∣∣∣2 dx

≤

∫
Ω

(
‖q(x, y)‖Lp(Ω,y) ‖κ(x, y)‖Lp∗ (Ω,y)

)2
dx .
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where p = 2−ε
1−ε and p∗ is the Hölder conjugate of p.

Another application of Hölder’s inequality to the integral in x yields:

‖Lα[u]‖2L2 ≤

∫
Ω

‖q(x, y)‖2Lp(Ω,y) ‖κ(x, y)‖2Lp∗ (Ω,y) dx

≤
∥∥∥ ‖q(x, y)‖2Lp(Ω,y)

∥∥∥
L

p
2 (Ω,x)

∥∥∥∥ ‖κ(x, y)‖2Lp∗ (Ω,y)

∥∥∥∥
L

p∗
ε (Ω,x)

=

(∫
Ω

∫
Ω

|q(x, y)|pdydx
) 2

p
∫

Ω

(∫
Ω

κ(x, y)p∗dy
) 2
ε

dx


ε
p∗

.

Applying Theorem 3.2.8 (for instance with ξ = χΩ) to the first integral factor to obtain:

‖Lα[φ]‖2L2(Ω) .
(
‖u‖p

W1,p

) 2
p
[ ∫

Ω

(∫
Ω

(
ρ(|x − y|)
|y − x|

)p∗

dy
) 2
ε

dx
] ε

p∗

.

Proposition 3.2.11 implies that

∫
Ω

(
ρ(|x − y|)
|y − x|

)p∗

dy

is bounded on Ω (notice p∗ = 2−ε); consequently, ‖Lα[u]‖L2(Ω) < ∞ provided u ∈ W1,p(Ω).

As ε↘ 0 the integrability index p tends to 2 from above, hence the condition p > 2.

�

Theorem 3.2.13 (Hölder countinuity of the nonlocal Laplacian). Suppose α satisfies As-

sumption 3.2.10, Ω ⊂ Rd is a bounded open set, and d ≥ 2. If u ∈ C2(Ω) ∩W2,∞(Ω), then

for any a ∈
(
0, 1

2

)
we have Lα[u](x) ∈ C0,a(Ω).

Proof. From the assumption it follows that u is Lipschitz on Ω, hence (u(y)− y(x))/|y− x|2

is integrable on Ω, provided the space dimension is d ≥ 2. Utilizing the definition of the
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nonlocal Laplacian, we have

|Lα[u](x) − Lα[u](x′)|

≤

∣∣∣∣∣∫
Ω

(u(y) − u(x))ρ(|y − x|)
|y − x|2

−
(u(y) − u(x′))ρ(|y − x′|)

|y − x′|2
dy

∣∣∣∣∣
≤

∫
Ω

|u(y) − u(x)||ρ(|x − y|) − ρ(|y − x′|)|
|y − x|2

dy

+

∫
Ω

ρ(|y − x′|)
∣∣∣∣∣u(y) − u(x)
|y − x|2

−
u(y) − u(x′)
|y − x′|2

∣∣∣∣∣ dy ≤ · · ·

Since both ρ and u are bounded and Lipschitz continuous and via |x− y| − |x′ − y| ≤ |x− x′|

we can estimate the above integrals as

. . . ≤ M|x − x′|
∫

Ω

1
|y − x|

dy + M
∫

Ω

∣∣∣∣∣u(y) − u(x)
|y − x|2

−
u(y) − u(x′)
|y − x′|2

∣∣∣∣∣ dy.

Since d ≥ 2, the first term is bounded by some K|x − x′| for some constant K. It remains to

estimate the second integral. Use the fact that a fortiori u ∈ C1(Ω) with support compactly

contained in Ω to define

A(x, y) :=
∫ 1

0
∇u(λy + (1 − λ)x)dλ and ξ̂ :=

ξ

|ξ|
,

for ξ a vector in Rd. Then we have

∫
Ω

∣∣∣∣∣u(y) − u(x)
|y − x|2

−
u(y) − u(x′)
|y − x′|2

∣∣∣∣∣ dy =

∫
Ω

∣∣∣∣∣∣A(x, y) · ˆy − x
|y − x|

−
A(x′, y) · ˆy − x′

|y − x′|

∣∣∣∣∣∣ dy

≤

∫
Ω

∣∣∣∣∣∣A(x, y) ·
(

ˆy − x − ˆy − x′
)

|y − x|

∣∣∣∣∣∣ dy

+

∫
Ω

∣∣∣∣∣∣ ˆy − x′ · (A(x, y)|y − x′| − A(x′, y)|y − x|)
|y − x||y − x′|

∣∣∣∣∣∣ dy =: I1 + I2

(3.2.8)

Consider the resulting integrals I1 and I2 separately. Beginning with the more straighfor-
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ward one I2 we get, by adding and subtracting ˆy − x′ · A(x, y)|y − x| in the numerator:

I2 =

=

∫
Ω

∣∣∣∣∣∣ ˆy − x′ ·
(
|y − x′| − |y − x|

)
A(x, y)

|y − x||y − x′|

∣∣∣∣∣∣ dy +

∫
Ω

∣∣∣∣∣∣ ˆy − x′ · (A(x, y) − A(x′, y))
|y − x′|

∣∣∣∣∣∣ dy

≤

∫
Ω

|A(x, y)|

∣∣∣|y − x′| − |y − x|
∣∣∣1−a

|y − x| |y − x′|
∣∣∣|y − x′| − |y − x|

∣∣∣ady

+

∫
Ω

∣∣∣∣∣∣ ˆy − x′ (A(x, y) − A(x′, y))
|y − x′|

∣∣∣∣∣∣ dy

≤ |x − x′|a
∫

Ω

|A(x, y)|
2(1−α)(|y − x′|1−a + |y − x|1−a)

|y − x||y − x′|
dy

+

∫
Ω

∣∣∣∣∣∣ ˆy − x′ (A(x, y) − A(x′, y))
|y − x′|

∣∣∣∣∣∣ dy

≤M |x − x′|a + M|x − x′|
∫

Ω

1
|y − x′|

dy

The last line follows by noting that ∇u is Lipschitz continuous on Ω. Thus the last integral

I2 in (3.2.8) is bounded by K|x − x′|a. Now consider I1:

I1 =

∫
Ω

∣∣∣∣A(x, y)
(

ˆy − x − ˆy − x′
)∣∣∣∣

|y − x|
dy ≤ M

∫
Ω

1
|y − x|

∣∣∣ ˆy − x − ˆy − x′
∣∣∣ dy

Notice that the difference of two normalized vectors is
√

2(1 − cos(θ)) where θ is the

angle between them. Let’s look at the triangle formed by x, y and y′.

θy

x

x′

Without loss of generality assume that (x′ − y) = (x′1 − y1)î with y1 < x′1; hence, |y − x′| =
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x′1 − y1. Then

1
2
|ŷ − x − ŷ − x′|2 =1 − cos(θ)

=1 −
(x′ − y) · (x − y)
|y − x′||y − x|

= 1 −
x1 − y1

|y − x|
=
|y − x| − x1 + y1

|y − x|

≤
|y − x′| + |x′ − x| − x1 + y1

|y − x|

=
x′1 − y1 + |x′ − x| − x1 + y1

|y − x|
≤ 2
|x′ − x|
|y − x|

Therefore

I1 ≤M
∫

Ω

2
|y − x|

√
|x′ − x|
|y − x|

dy = 2M|x′ − x|1/2
∫

Ω

dy
|y − x|3/2

Finally we conclude

|L[u](x) − L[u](x′)| ≤ K|x − x′|a + N|x − x′|
1
2

where

N = 2M
∫

Ω

dy
|y − x|3/2

< ∞.

�

Proposition 3.2.14 (Integrability of the nonlocal biharmonic). Let ε ∈ (0, 1), d ≥ 2 and

Ω ⊂ Rd be a bounded open set. Suppose u ∈ W2,∞(Ω) ∩ C2(Ω). Furthermore, let ρ ∈

C∞c (R+). Then Bα[u] ∈ L2(Ω).

Notice for x ∈ Ω we have

Bα[u](x) =

∫
Ω

(Lα[u](x′) − Lα[u](x))ρ(|x′ − x|)
|x′ − x|2

dx′
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By appealing to Theorem 3.2.13 we know Lα[u] is a-Hölder continuous on Ω for some

a > 0 (in particular, at least a ∈ (0, 1/2)), and consequently there exists a constant M such

that

|Bα[u](x)| ≤ M
∫

Ω

1
|x′ − x|2−a dx′ ≤ M′

∫
R2

1
|x′|2−a dx′ < ∞.

Since Ω ⊂ R2 is bounded we conclude |B[u](x)| is bounded on Ω. Thus Bα[u] ∈ L2(Ω).

3.3 Nonlocal function spaces

This section will introduce various Hilbert spaces we will be working in for the formulation

of our nonlocal problems later in the chapter. Following [29] we will utilize the functional

space

H 1
α (Ω) :=

{
u ∈ L2(Ω) : ‖Gα[u]‖L2(Ω×Ω) < ∞

}
. (3.3.1)

Define the bilinear forms

((
u,w

))
1 =

∫
Ω

∫
Ω

Gα[u]Gα[w]dx′dx (3.3.2)

and

(u,w)H 1
α

= (u,w)L2(Ω) +
((
u,w

))
1 . (3.3.3)

Note that if |α|2 is integrable, then H 1
α (Ω) is equivalent to L2(Ω). However, under Assump-

tion 3.2.10, this may not be the case when Ω ⊂ R2.

Theorem 3.3.1 (c.f. [29, Thm 2.2]). Assume α satisfies Assumption 3.2.10. Then, H 1
α (Ω)

is a Hilbert space with inner product (3.3.3).

Definition 3.3.2. For Ω′ ⊂⊂ Ω, define H 1
0 (Ω′) to be the closed subspace of functions
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vanishing on Ω \Ω′

H 1
α,0(Ω′) =

{
u ∈H 1

α (Ω) : u = 0 a.e. in Ω \Ω′
}
.

Definition 3.3.3. Let u ∈ H 1
α (Ω). We say v ∈ L2(Ω) is the nonlocal weak Laplacian of u

provided

−
((
u, φ

))
1 =

∫
Ω

vφdx ∀φ ∈H 1
α (Ω).

Proposition 3.3.4. Let Ω ⊂ Rd be open, u : Ω → R, α : Ω × Ω → Rk be antisymmetric.

If Lα[u] ∈ L2(Ω) and Gα[u] ∈ L2(Ω2) then the weak nonlocal Laplacian L∗α[u] and the

nonlocal Laplacian Lα[u] agree a.e. in Ω.

Proof. Let v ∈ C∞c (Ω). Then by Definition 3.3.3 and Proposition 3.2.6 we have

∫
Ω

L∗[u]vdx = −

∫
Ω

∫
Ω

Gα[u]Gα[v]dydx =

∫
Ω

L[u]vdx.

Since this holds for any v ∈ C∞c (Ω) we conclude L∗[u] = L[u] a.e. in Ω. �

Remark 3.3.5. For the remainder of the chapter, we will use the notation Lα[u] to denote

the weak Laplacian of the function u. When the distinction between weak and original

definition is essential it will be indicated. To begin with, note that the integration by parts

Proposition 3.2.6 holds for the nonlocal weak Laplacian simply by definition of the latter.

Definition 3.3.6. Let

H 2
α (Ω) :=

{
u ∈H 1

α (Ω) : Lα[u] ∈ L2(Ω)
}

(3.3.4)

and defining ((
u,w

))
2 :=

∫
Ω

∫
Ω

Lα[u]Lα[w]dx′dx (3.3.5)
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introduce an inner product on H 2
α :

(u,w)H 2
α

= (u,w)H 1
α

+
((
u,w

))
2 .

Proposition 3.3.7. Suppose α satisfies Assumption 3.2.10. The space H 1
α (Ω) is a Hilbert

space with inner product (·, ·)H 1 .

Proof. All that remains to be proven is completeness. Let (un) be a Cauchy sequence in

H 1
α (Ω). By definition, (un) is a Cauchy sequence in L2(Ω) and consequently there exists a

strong L2(Ω)-limit u ∈ L2(Ω). Similarly, we also know Gα[un] converges to some L2-norm

limit v ∈ L2(Ω×Ω). Consider the truncated kernel ατ = αχ[ 1
τ ,∞) for τ > 0. For every τ > 0

and φ ∈ L2(Ω ×Ω) we have by proposition 3.2.6,

lim
n→∞

∣∣∣∣∣∫
Ω

∫
Ω

(
Gατ[un] − Gατ[u]

)
· φdydx

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∫
Ω

∫
Ω

Gατ[un − u] · φdydx
∣∣∣∣∣

= lim
n→∞

∣∣∣∣∣∫
Ω

(un − u)Dατ[φ]dx
∣∣∣∣∣

≤ lim
n→∞
‖un − u‖L2‖Dατ[φ]‖L2

= 0

Note that Dατ[v] ∈ L2(Ω) since (v′ + v)ατ ∈ C∞c (Ω × Ω) for every τ > 0. We conclude

lim
n→∞
Gατ[un] = Gατ[u] a.e. for (x, y) ∈ Ω ×Ω. Combining this with the fact that Gα[un]→ v

in L2(Ω ×Ω) implies for every τ > 0,

Gατ[u] = lim
n→∞
Gατ[un] = lim

n→∞
Gα[un] = v a.e. in

{
(x, y) ∈ Ω ×Ω : |x − y| ≥

1
τ

}
.

From this we conclude Gα[u] = v a.e. in Ω ×Ω.

�

Proposition 3.3.8. The space H 2
α (Ω) is a Hilbert space with inner product (·, ·)H 2

α
.
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Proof. Again we only need to verify completeness. Let (un) be a Cauchy sequence in

H 2
α (Ω). Then (un), (G[un]), and (Lα(un)) are Cauchy in L2 and consequently have L2 limits

u, v, and w respectively. Using the same method as in Proposition 3.3.7, we have v = G[un]

a.e. Let φ ∈H 1(Ω).

Appealing to Proposition 3.2.6, Theorem 3.2.8, and Hölder’s inequality, we obtain

lim
n→∞

∫
Ω

∫
Ω

Gα[un − u]Gα[φ]dydx ≤ lim
n→∞
‖Gα[u − un]‖L2(Ω×Ω)‖Gα[φ]‖L2(Ω×Ω)

≤ lim
n→∞

C‖Gα[u − un]‖L2(Ω×Ω)‖φ‖W1,2(Ω)

= 0

and

lim
n→∞

∫
Ω

∫
Ω

(w − Lα[un])φdydx ≤ lim
n→∞
‖w − Lα[un]‖L2(Ω)‖φ‖L2(Ω)

= 0.

Putting this together, we obtain via Proposition 3.2.6

−

∫
Ω

∫
Ω

Gα[u]Gα[φ]dx = − lim
n→∞

∫
Ω

∫
Ω

Gα[un]Gα[φ]dx

= lim
n→∞

∫
Ω

Lα[un]φdx =

∫
Ω

wφdx

Thus, w = Lα[u] a.e. in Ω in the nonlocal weak sense and, consequently, u ∈H 2
α (Ω). �

Finally, we define Hilbert spaces associated with the boundary conditions that we will

consider.

Definition 3.3.9 (Nonlocal “hinged” and “clamped” spaces). Let Ω′′ ⊂⊂ Ω′ be an open
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sub-domain of Ω′. Define respectively

H 2
α,H(Ω′,Ω′′) =

{
u ∈H 1

α,0(Ω′) ∩H 2
α (Ω) : Lα[u] = 0 a.e. on Ω′ \Ω′′

}
(3.3.6)

H 2
α,C(Ω′) =

{
u ∈H 1

α,0(Ω′) ∩H 2
α (Ω) : Nα[Gα[u]] = 0 a.e. on int(Ω′)

}
(3.3.7)

From the definition (3.2.1) of the nonlocal normal operator and the nonlocal two-point

gradient (3.2.2) it follows that

Nα[Gα[u]](x) =

∫
Ω\Ω′

(u(y) − u(x))µ(x, y)dy for x ∈ int(Ω′) .

Moreover, because in the clamped space we also have u(y) = 0 on Ω \Ω′, then the identity

Nα[Gα[u]](x) = 0 actually reduces to

−u(x)
∫

Ω\Ω′
µ(x, y)dy = 0 .

If we set Ω′ = Ωδ where

Ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ}

and choose α = αδ as in Assumption 3.2.10, then because y 7→ µ(x, y) is strictly positive

and continuous on Ω\Ω′ for any fixed x ∈ int Ωδ, we conclude that u(x) = 0 a.e. in Ω\Ω2δ.

Thus we have an alternative representation for the nonlocal “clamped” space:

H 2
αδ,C(Ωδ) = H 1

α(2δ),0(Ωδ) ∩H 2
αδ

(Ω) . (3.3.8)
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3.4 Compactness theorems

A key tool in subsequent analysis will be the following version of a nonlocal Poincaré

inequality.

Theorem 3.4.1 ([34, Thm. 1.2]). Assume Ω is a bounded domain of dimension d =

dim Ω ≥ 2 with Lipschitz boundary. Let (δn) be a sequence of positive numbers decreasing

to 0. Let (ρδn) be a sequence of functions satisfying (3.2.5). There exists a constant Cp,d,Ω

dependent on the domain, p (and also on the choice of the sequence of mollifiers ρδn) such

that

‖ f − fΩ‖
p
Lp(Ω) ≤ Cp,d,Ω

∫
Ω

∫
Ω

| f (x) − f (y)|p

|x − y|p
ρδn(|x − y|)dxdy

for every f ∈ Lp(Ω) with the convention that the right-hand side is +∞ when diverges.

Here fΩ is the average value of f in Ω.

Remark 3.4.2. It should be noted that in [34], the result of Theorem 3.4.1 is extended to

dimension d = 1; however, in that case, it is necessary to place an additional constraint on

ρδn .

In the nonlocal setting we cannot appeal to the embedding and compactness methods

of Sobolev theory. Instead, the crucial compactness result in this context will be provided

by the following theorem of Brezis, Bourgain, and Mironescu:

Theorem 3.4.3 ([7, Thm. 4]). Let Ω be a bounded domain of class C1. Let (δn) be a

sequence decreasing to 0. Suppose ( fn) is a sequence in Lp(Ω), 1 ≤ p < ∞, of functions

satisfying the uniform estimate

∫
Ω

∫
Ω

| fn(x) − fn(y)|p

|x − y|p
ρδn(|x − y|)dxdy ≤ C0 (3.4.1)
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where (ρδn) is a sequence of non-increasing mollifiers satisfying (3.2.5). If

∫
Ω

fn(x)dx = 0 for all n, (3.4.2)

then

(i) the sequence ( fn) is relatively compact in Lp(Ω), so up to a subsequence we may

assume fn → f in Lp(Ω)

(ii) if, in addition, 1 < p < ∞, then f ∈ W1,p(Ω) and ‖∇ f ‖Lp(Ω) ≤ K(p, d)C0 for K

dependent only on p and the dimension d.

Remark 3.4.4. The compactness in Lp (part (i)) result of [7, Thm. 4] uses Riesz-Fréchet-

Kolmogorov’s theorem (e.g., see [8, Thm. IV.25, p. 72]) which establishes this compact-

ness result on a set compactly contained within a given open domain. To get the conclusion

on all of Ω, the proof of [7, Thm. 4] uses an extension of the functions fn by reflec-

tion across the boundary of Ω; due to the monotonicity condition on ρδn such a reflection

preserves the property (3.4.1). Thus, part (i) needs the C1 regularity only to obtain an Lp-

preserving extension by reflection. This result reduces to a change of variable theorem for

the mapping that locally defines the boundary; this procedure could potentially be carried

out under weaker boundary regularity conditions, for instance, see [21].

Recall that

Ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ}

Below we prove a useful corollary to Theorem 3.4.3:

Corollary 3.4.5. In Theorem 3.4.3 we can replace assumption (3.4.2) by the assertion that

( fn) are bounded in Lp(Ω). Moreover, if 1 < p < ∞ and supp fn ⊂ Ωδn , then f ∈ W1,p
0 (Ω).
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Proof. Let an :=
1
|Ω|

∫
Ω

fn(x)dx. Since Ω is bounded and ( fn) is bounded in Lp(Ω), then

the scalar sequence (an) is bounded. Define

gn(x) := fn(x) − an .

Then each gn obeys (3.4.1) and has zero average. By Theorem 3.4.3 we know {gn} is pre-

compact in Lp(Ω). Because (an) is a bounded scalar sequence and Ω is bounded, then { fn}

is also pre-compact in Lp(Ω).

Now to show f ∈ W1,p
0 (Ω). Recall supp fn ⊂⊂ Ωδn . Choose Ωext ⊂ R

d open and

bounded such that Ω ⊂⊂ Ωext. Let

f̃n =


fn, x ∈ Ω

0, x ∈ Ωext \Ω

Notice that the integral in

∫
Ωext

∫
Ωext

| f̃n(x) − f̃n(y)|p

|x − y|p
ρδn(|x − y|)dxdy

can be decomposed as

[∫
Ω

∫
Ω

+

∫
Ωext\Ω

∫
Ω

+

∫
Ω

∫
Ωext\Ωδn

]
(. . .)dxdy

When x ∈ Ωext \ Ω then either y ∈ Ω \ Ωδn in which case f̃n(x) − f̃n(y) = 0 via the zero

condition on the collar possibly excluding a set of measure zero, or the distance between

x and y is at least δ whence ρδn(|x − y|) = 0. So the second double integral above is 0. A
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symmetric argument shows that the third one is zero as well. Conclude:

∫
Ωext

∫
Ωext

| f̃n(x) − f̃n(y)|p

|x − y|p
ρδndxdy =

∫
Ω

∫
Ω

| fn(x) − fn(y)|p

|x − y|p
ρδndxdy ≤ C0

By Theorem 3.4.3 we know f̃ := lim
n→∞

f̃n ∈ W1,p(Ωext). Notice that f̃ is a W1,2 extension of f

to Ωext across ∂Ω. The trace of f̃ on the (C1) sub-manifold ∂Ω is then uniquely determined

(e.g., [1, Thm. 5.36]) by treating it as the boundary of Ω and of Ωext \Ω respectively. Since

f̃ = 0 on Ωext \Ω we conclude f = 0 on ∂Ω. �

The preceding Corollary 3.4.5, in turn allows us to state two versions of Theorem 3.4.1

applicable to functions compactly supported in Ω:

Corollary 3.4.6 (Nonlocal Poincaré with zero shrinking collar for a sequence). Under the

assumptions of Theorem 3.4.1, suppose ( fn) is a family of functions in Lp(Ω) such that

supp fn ⊂ Ωδn . Then there is a constant Cp,d,Ω > 0 satisfying

‖ fn‖
p
Lp(Ω) ≤ Cp,d,Ω

∫
Ω

∫
Ω

| fn(x) − fn(y)|p

|x − y|p
ρδn(|x − y|)dxdy

for every n with the convention that the right-hand side is +∞ when undefined.

Proof. Proceed by contradiction as in [34, p. 12]. Suppose we can extract a subsequence

(re-indexed again by n) so that the candidates for “Cp,d,Ω” diverge to +∞. In particular,

suppose a sequence of scalars (cn) diverges to +∞ and for every n

‖ fn‖
p
Lp(Ω) ≥ cn

∫
Ω

∫
Ω

| f (x) − f (y)|p

|x − y|p
ρδn(|x − y|)dxdy

Re-normalizing both sides by ‖ fn‖
p
Lp(Ω) we may just assume that ‖ fn‖Lp = 1 and

lim
n→∞

∫
Ω

∫
Ω

| fn(x) − fn(y)|p

|x − y|p
ρδn(|x − y|)dxdy = 0 . (3.4.3)
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By Corollary 3.4.5 functions ( fn) converge strongly to f in Lp(Ω) with ‖ f ‖Lp(Ω) = 1. More-

over, f ∈ W1,p
0 (Ω). In addition, by and the same Corollary (referring now to part (ii) of

Theorem 3.4.3) we have from (3.4.3) that ‖∇ f ‖Lp(Ω) = 0. Poincaré-Wirtinger’s inequality

now implies that f = 0 in W1,p
0 (Ω) thus contradicting the fact that ‖ f ‖Lp(Ω) = 1. �

Corollary 3.4.7 (Nonlocal Poincaré with zero collar). Under the assumptions of Theorem

3.4.1, suppose if Ω0 ⊂⊂ Ω. Then there is a constant Cp,d,Ω,Ω0 > 0 such that

‖ f ‖p
Lp(Ω) ≤ Cp,d,Ω,Ω0

∫
Ω

∫
Ω

| f (x) − f (y)|p

|x − y|p
ρδn(|x − y|)dxdy

for all f ∈ Lp(Ω) satisfying supp f ⊂ Ω0

Proof. The proof by contradiction reduces to a construction of a sequence ( fn) in Lp(Ω) that

violates Corollary 3.4.6. Since Ω0 ⊂⊂ Ω is fixed, then we may assume that each Ω0 ⊆ Ωδn

for all n. �

3.5 Convergence of the nonlocal operators

3.5.1 Scaled operators

With appropriate scaling, the nonlocal Laplace and biharmonic operators converge to their

local analogues. Throughout this subsection suppose Assumption 3.2.10 holds for kernel

αδ and

µδ(x, y) := |αδ(x, y)|2 =
ρδ(|x − y|)
|x − y|2

Since this is a radial function we may write with a slight abuse of notation:

µδ(x, y) = µδ(|x − y|) and µδ(s) =
ρδ(s)

s2 .
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Definition 3.5.1 (Scaling). Let

πδ(r) :=
∫ δ

r
sµδ(s)ds . (3.5.1)

Let ωd−1 be the surface measure of unit sphere in Rd and define

C(δ) :=
1
2

∫
Bδ(0)

π(|z|)dz =
1
2
ωd−1

∫ δ

0
π(r)rd−1dr, (3.5.2)

which is finite for d ≥ 2.

Proposition 3.5.2. Let δ > 0 and C(δ) be given by (3.5.2). Then

C(δ) = 1/(2d)

Proof. By appealing to the definitions of C(δ), πδ(r), µδ(s) and changing the order of inte-

gration, we obtain

C(δ) =
ωd−1

2

∫ δ

0

∫ δ

r

ρδ(s)
s

rd−1dsdr =
ωd−1

2

∫ δ

0

∫ s

0
rd−1ρδ(s)

s
drds

=
ωd−1

2d

∫ δ

0
sd−1ρδ(s)ds

The result follows since by construction
∫
Rd ρδ(x)dx =

∫
Bδ(0)

ρδ(x)dx = 1. �

In light of the previous proposition we can write C rather than C(δ) in (3.5.2) and

introduce

σ := C−1 = 2d . (3.5.3)

Accordingly, we redefine the nonlocal Laplacian and biharmonic operators with the scaling
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term:

Lαδu(x) := σ

∫
Ω

[u(y) − u(x)]µδ(x, y)dy (3.5.4)

Bαδu(x) := Lαδ
[
Lαδ[u](x)

]
. (3.5.5)

3.5.2 Pointwise convergence

We will show that the nonlocal operators approach uniformly their classical versions when

acting on smooth functions as the peridynamic horizon δ goes to zero. The proofs of the

following results were inspired by the strategy used in the upcoming paper [35].

Lemma 3.5.3. Let Ω ⊂ Rd≥2 be bounded and open, u ∈ C2(Ω)∩W1,∞(Ω). Further suppose

αδ satisfies Assumption 3.2.10. Then for any x ∈ Ω and all δ > 0 such that Bδ(x) ⊂ Ω,

Lαδ[u](x) = σ

∫ 1

0

∫
Bδ(0)

s
(
∆u(x + sz) − ∆u(x)

)
π(|z|)dzds + ∆u(x) .

Proof. We interpret Lαδ as the weak nonlocal Laplacian, but since u is a fortiori in W1,p(Ω)

then Lα[u] ∈ L2(Ω) by Proposition 3.2.12 and we may use the pointwise original definition

according to Proposition 3.3.4. Because the support of µδ is contained in Bδ(x), we have

Lαδ[u](x) = σ

∫
Bδ(x)

[u(y) − u(x)]µδ(x, y)dy

= σ

∫
Bδ(x)

∫ 1

0

d
ds

[
u(x + s(y − x))

]
µδ(x, y)dsdy

= σ

∫
Bδ(x)

∫ 1

0
∇u(x + s(y − x)) · (y − x)µδ(x, y)dsdy.

Because u is Lipschitz and (y − x)µδ(x, y) is integrable, then we can change the order of
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integration and then apply substitution z = y − x to obtain

Lαδ[u](x) = σ

∫ 1

0

∫
Bδ(0)
∇u(x + sz) · [zµδ(|z|)]dzds.

With π given by (3.5.1) we know

∇zπ(|z|) = π′(|z|)
z
|z|

= −µδ(|z|)z

and consequently,

Lαδ[u](x) = −σ

∫ 1

0

∫
Bδ(0)
∇u(x + sz) · ∇zπ(|z|)dzds.

Since π(δ) = 0, then integration by parts gives

Lαδ[u](x) =σ

∫ 1

0

∫
Bδ(0)

divz[∇u(x + sz)]π(|z|)dzds

=σ

∫ 1

0

∫
Bδ(0)

∆u(x + sz) s π(|z|)dzds .

Let ωd−1 be the surface measure of the unit sphere in Rd. Using the identity

∫
Bδ(0)

π(|z|)dz =

∫ δ

0
π(r)ωd−1rd−1dr

we may rewrite Lαδn [u](x) in the desired form:

Lαδ[u](x) =σ

∫ 1

0

∫
Bδ(0)

(∆u(x + sz) − ∆u(x)) sπ(|z|)dzds

+ σ∆u(x)
ωd−1

2

∫ δ

0
π(r)rd−1dr.

Then apply the fact that σ = 2d and use the definition (3.5.2) along with Proposition 3.5.2
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to establish that all constants in the right-most term cancel. �

Theorem 3.5.4 (Convergence of the nonlocal Laplacian). Suppose Ω ⊂ Rd≥2 is bounded

and open, and αδ satisfies Assumption 3.2.10. Let u ∈ C4(Ω) ∩ W4,∞(Ω) and σ = 2d in

(3.5.4). Then there is K(u, d) > 0 dependent only on u and n such that

|Lαδ[u](x) − ∆u(x)| ≤ K(u, d)δ2 whenever Bδ(x) ⊂ Ω . (3.5.6)

In addition

sup
x∈Ωδ

|Lαδ[u](x)| ≤ ‖∆u‖L∞(Ω) + K(u, d)δ2 . (3.5.7)

so as δ→ 0

χΩδ
Lαδn [u]→ ∆u strongly in L2(Ω) . (3.5.8)

And, if supp u ⊂⊂ Ω with δ < 1
2 · dist(supp u, ∂Ω) then

sup
x∈Ω
|Lαδ[u](x)| ≤ ‖∆u‖L∞(Ω) + K(u, d) · dist(supp u, ∂Ω)2 . (3.5.9)

whence as δ→ 0

Lαδn [u]→ ∆u strongly in L2(Ω) . (3.5.10)

Proof. Let δ > 0 be sufficiently small so that Bδ(x) ⊂ Ω. Then by Lemma 3.5.3

Lαδ[u](x) = σ

∫ 1

0

∫
Bδ(0)

s[∆u(x + sz) − ∆u(x)]π(|z|)dzds + ∆u(x) .

Thus,

Lαδ[u](x) − ∆u(x) = σ

∫ 1

0

∫
Bδ(0)

s
[
∆u(x + sz) − ∆u(x)

]
π(|z|)dzds

We will let Pi(s) be a polynomial of degree i in s, that will be chosen appropriately. Rewrite
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s = d
ds ( s2−1

2 ) =: P′2(s) and integrate by parts in s using d
ds (∆u(x + sz)) = ∆∇u(x + sz) · z) in

order to obtain

Lαδ[u](x) − ∆u(x) = −σ

∫
Bδ(0)

∫ 1

0
P2(s)[∆∇u(x + sz)] · zπ(|z|)dsdz

= −σ

∫
Bδ(0)

∫ 1

0
P2(s)[∆∇u(x + sz) − ∆∇u(x)] · zπ(|z|)dsdz

where the last step follows from

∫
Bδ(0)

zπ(|z|)dz = 0.

Since fourth-order derivatives of u are bounded, then we know that |∆∇u(x+sz)−∆∇u(x)| ≤

M(u)|sz| for some constant M(u). Thus, we obtain

|Lαδ[u](x) − ∆u(x)| ≤ σM(u)
∫

Bδ(0)

∫ 1

0
|P2(s)s||z|2π(|z|)dsdz

. σM(u)
1
2
ωd−1

∫ δ

0
ρn+1π(ρ)dρ.

Finally, use the fact that ρn+1 ≤ ρd−1δ2 for ρ ∈ (0, δ) and definition (3.5.2) along with

Proposition 3.5.2 to obtain

|Lαδ[u](x) − ∆u(x)| ≤ K(u, d)δ2σC = K(u, d)δ2 . (3.5.11)

For any x ∈ Ωδ, we know (3.5.11) holds since Bδ(x) ⊂ Ω (note the same δ is valid all

x ∈ Ωδ). Thus

‖Lαδ[u](x)‖L∞(Ωδ) ≤ ‖∆u‖L∞(Ωδ) + K(u, d)δ2 .

This supplies a uniform bound on χΩδ
Lαδn [u], so the convergence result (3.5.8) follows



78

from (3.5.6) which applies on Ωδ and the fact that the measure of Ω \Ωδ tends to 0.

To verify (3.5.9) take δ ≤ 1
2 · dist(supp u, ∂Ω). When x ∈ Ω \ Ωδ notice that ∆u(x) =

Lαδ[u](x) = 0. Wheres for all x ∈ Ωδ estimate (3.5.11) holds (note δ does not depend on x

here). Thus for all δ ≤ 1
2 · d(supp u, ∂Ω) we have

sup
x∈Ω
|Lαδ[u](x)| ≤ ‖∆u‖L∞(Ω) + K(u, d) · d(supp u, ∂Ω)2 .

The assertion of a compact support simplifies (3.5.8) to (3.5.10). �

Theorem 3.5.5 (Convergence of the nonlocal biharmonic). Suppose Ω ⊂ Rd≥2 is bounded

and open, x ∈ Ω, and αδ satisfies Assumption 3.2.10. Let u ∈ C5(Ω)∩W5,∞(Ω) and σ = 2d.

Then there is a constant K(u, d) > 0 dependent only on u and d, such that

|Bαδ[u](x) − ∆2u(x)| ≤ K(u, d)δ

whenever Bδ(x) ⊂ Ω. Moreover, if supp u ⊂⊂ Ω and δ < 1
3 · d(supp u, ∂Ω) then the estimate

is uniform in x and

sup
x∈Ω
|Bαδ[u]| ≤ ‖∆2u‖L∞(Ω) + K(u, d) · d(supp u, ∂Ω)

Proof. Function u has sufficient regularity to expand the weak biharmonic according to its

definition:

Bαδ[u](x) = σ

∫
Bδ(x)

[
Lαδ[u](y) − Lαδ[u](x)

]
µδ(x, y)dy.
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Appealing to Lemma 3.5.3, and canceling σ with C, yields

Bαδ[u](x) =σ

∫
Bδ(x)

[
∆u(y) − ∆u(x)

+ σ

∫ 1

0

∫
Bδ(0)

s[∆u(y + sz) − ∆u(y)]π(|z|)dzds

− σ

∫ 1

0

∫
Bδ(0)

s[∆u(x + sz) − ∆u(x)]π(|z|)dzds
]
µδ(x, y)dy.

(3.5.12)

The first term in the above equation can be simplified using the definition of (scaled) non-

local Laplacian Lαδ:

σ

∫
Bδ(x)

[
∆u(y) − ∆u(x)

]
µδ(x, y)dy = Lαδ [∆u] (x).

From Lemma 3.5.3, again, we obtain

Lαδ [∆u] (x) = σ

∫ 1

0

∫
Bδ(0)

s[∆2u(x + sz) − ∆2u(x)]π(|z|)dzds + ∆2u(x).

Substituting this back into (3.5.12) results in

Bαδ[u](x) − ∆2u(x)

=σ

∫
Bδ(x)

[
σ

∫ 1

0

∫
Bδ(0)

s[∆u(y + sz) − ∆u(y)]π(|z|)dzds

− σ

∫ 1

0

∫
Bδ(0)

s[∆u(x + sz) − ∆u(x)]π(|z|)dzds
]
µδ(x, y)dy

+ σ

∫ 1

0

∫
Bδ(0)

s[∆2u(x + sz) − ∆2u(x)]π(|z|)dzds .

(3.5.13)

Demonstrating that the boxed term is of order δ is a simplified version of the argument

necessary for the first two integrals (which incorporate the non-integrable kernel µδ). The

rest of the proof will focus on the first two summands in (3.5.13).
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For s introduce

Fs(x) := σ

∫
Bδ(0)

[∆u(x + sz) − ∆u(x)]π(z)dz

and rewrite the first two terms on the right in (3.5.13) as
∫ 1

0
sLδ[Fs](x) ds. By Lemma

3.5.3

∫ 1

0
sLδ[Fs](x) ds

=

∫ 1

0
sσ

∫ 1

0

∫
Bδ(0)

s̃ (∆Fs(x + s̃z̃) − ∆Fs(x)) π(|z̃|)dz̃ds̃ + ∆Fs(x)ds
(3.5.14)

Recall u ∈ C5(Ω) ∩W5,∞(Ω), whence there exists M > 0 such that

sup
0≤i≤4

∥∥∥Di (u(x + sz) − u(x))
∥∥∥
Rni ≤ M|sz|.

Therefore,

|∆Fs(x)| ≤σ
∫

Bδ(0)

∣∣∣∆2u(x + sz) − ∆2u(x)
∣∣∣ π(z)dz

≤σM
∫

Bδ(0)
|sz|π(z)dz

≤σM|s|ωd−1

∫
Bδ(0)

rdπ(r)dr (change of variables)

≤|s|δMσωd−1

∫ δ

0
rd−1π(r)dr

≤2|s|δM (By definition of σ)

(3.5.15)
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By applying (3.5.15) to (3.5.14) we obtain the bound

∫ 1

0
sLδ[Fs](x) ds ≤

∫ 1

0
sσ

∫ 1

0

∫
Bδ(0)

s̃ (4|s|δM) π(|z̃|) dz̃ds̃ + 2|s|δM ds

≤M′δ

(
σ

∫
Bδ(0)

π(|z̃|) dz̃ + 1
)

≤3M′δ

Combining (3.5.13) with (3.5.2), we finally arrive at

|Bαδ[u](x) − ∆2u(x)| ≤ K(n, u) · δ (3.5.16)

Now to verify the uniform bound. Suppose δ < 1
3 · d(supp u, ∂Ω). First consider x ∈

Ω\Ωδ. Since Bδ(x) ∩ supp(u) = ∅ we have

Lαδ[u](x) = σ

∫
Bδ(x)

(u(y) − u(x))µ(x, y)dy = 0

Likewise, for any y ∈ Bδ(x) we have Bδ(y) ∩ supp(u) = ∅. Consequently,

Lαδ[u](y) = σ

∫
Bδ(y)

(u(z) − u(y))µ(y, z)dz = 0

We conclude, for any x ∈ Ω\Ωδ we have

Bαδ[u](x) = σ

∫
Bδ(x)

(Lαδ[u](y) − Lαδ[u](x))µ(x, y)dy = 0

Thus Bαδ[u] and ∆2u agree on Ω\Ωδ. Also notice that ∀x ∈ Ωδ we have Bδ(x) ⊂ Ω and so

(3.5.16) holds (note δ does not depend on x here). Thus for all δ < 1
2 · d(supp u, ∂Ω) we

have

sup
x∈Ω
|Bαδ[u]| ≤ ‖∆2u‖L∞(Ω) + K(u, d) · d(supp u, ∂Ω).
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�

3.6 Well-posedness of the nonlocal steady state problem

Throughout this section Ω is any bounded open set in Rd for d ≥ 2. The first problem we

will look at is the nonlocal elliptic biharmonic equation

Bα[u] = f in Ω′ (3.6.1)

with nonlocal equivalent of hinged or clamped boundary conditions (Definition 3.3.9):

u ∈ H = H 2
α,H or H 2

α,C (3.6.2)

Note that both the spaces are topologized by the norm in H 2
α .

Proposition 3.6.1. Suppose f ∈ L2(Ω′), and α satisfies Assumption 3.2.10. There exists a

unique (weak) solution u ∈ H of the nonlocal PDE (3.6.1).

Proof. We prove this result by using the Lax-Milgram Lemma. For v ∈ H the associated

weak formulation is ∫
Ω

Bα[u]v dx =

∫
Ω

f v dx.

Using the fact that v = 0 on Ω \ Ω′ (regardless of the definition of H) and through

repeated application of Proposition 3.2.6 we obtain

a[u, v] =

∫
Ω

f v dx,

where

a[u, v] =

∫
Ω

Lα[u]Lα[v]dx.
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This bilinear form is continuous since

|a[u, v]| ≤ ‖Lα[u]‖L2(Ω)‖Lα[v]‖L2(Ω) ≤ ‖u‖H 2(Ω)‖v‖H 2(Ω).

It remains to show coercivity. Since all functions in H vanish on a fixed collar Ω \Ω′, then

by Corollary 3.4.7 there is C > 0 such that

‖u‖2L2(Ω) ≤ C‖Gα[u]‖2L2(Ω×Ω) . (3.6.3)

Integration by parts (Proposition 3.2.6) and Hölder’s inequality yields

‖Gα[u]‖2L2(Ω×Ω) = −

∫
Ω

uLα[u]dx ≤ ‖Lα[u]‖L2(Ω)‖u‖L2(Ω) . (3.6.4)

By combining (3.6.3) and (3.6.4) we conclude that ‖u‖L2(Ω) ≤ C1‖L[u]‖L2(Ω) and ‖Gα[u]‖L2(Ω×Ω) ≤

C‖L[u]‖L2(Ω). Thus, there is c2 > 0 such that for all u ∈ H

a(u, u) = ‖L[u]‖2L2(Ω) ≥ c2‖u‖2H 2(Ω)

Since H is a Hilbert space, by the Lax-Milgram theorem there exists a unique element

u ∈ H satisfying

B[u] = f .

�

3.7 Convergence results

In this section we will show that the solution to a nonlocal system approximates the cor-

responding solution of the classical elliptic boundary value problem as the horizon ap-
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proaches 0. Such a study has been previously carried out for the Navier system in [29].

Before proceeding to the biharmonic operator we collect several results for the classical

and nonlocal Poisson problems:


∆v = f , x ∈ Ω

v = 0, x ∈ ∂Ω

(3.7.1)

and its nonlocal analogue:


Lαδn [vn] = f , x ∈ Ωδ̃n

vn = 0, x ∈ Ω \Ωδ̃n
, δ̃n ≥ δn .

(3.7.2)

Note that for convenience we allow the zero Dirichlet data to be prescribed over a possibly

thicker collar than the horizon of the Laplace operator. Recall that we are using the scaled

(by σ = 2d) version of the Laplacian (3.5.4). The following result is an adjusted version of

[29, Thm 5.4].

Theorem 3.7.1 (cf. [29, Thm 5.4]). Let Ω ⊂ Rd, d ≥ 2, be an open bounded set of

class C1. Suppose a sequence of positive scalars (δn) converges to 0 as n → ∞. For any

f ∈ L2(Ω), the sequence of solutions {vn} ⊂ H 1
αδn ,0

(Ωδ̃n
) to (3.7.2) converges strongly in

L2(Ω) to v ∈ W1,2
0 (Ω) where v is the weak (variational) solution of the Laplace equation

(3.7.1). In addition, there is C > 0 so that for all n

‖vn‖L2(Ω) + ‖Gαδn [vn]‖L2(Ω×Ω) ≤ C‖ f ‖L2(Ωδ̃n ) . (3.7.3)

Moreover, if Ω is of class C2 then the classical elliptic theory (see, for instance, [8, Thm.

IX.25, p. 181]) gives v ∈ W2,2(Ω) ∩W1,2
0 (Ω).

Proof. To invoke Theorem 3.4.3 we first establish bounds on ‖Gαδn [vn]‖L2(Ω×Ω) and on
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‖vn‖L2(Ω), independently of n. Apply Corollary 3.4.6, nonlocal integration by parts, and

Hölder’s inequality:

‖vn‖
2
L2(Ω) ≤C‖Gαδn [vn]‖2L2(Ω×Ω)

= −C〈Lαδn [vn], vn〉L2(Ω)

= −C〈Lαδn [vn], vn〉L2(Ωδ̃n )

= −C〈 f , vn〉L2(Ωδ̃n )

≤C‖ f ‖L2(Ωδ̃n )‖vn‖L2(Ω) ,

(3.7.4)

where C is independent of n. Dividing by ‖vn‖L2(Ω) yields a bounds on the latter in terms

of ‖ f ‖L2(Ωδ̃n ). That in turn gives a bound on the nonlocal gradient verifying (3.7.3) up to a

minor adjustment of the constant.

We conclude by Corollary 3.4.5 that {vn} is relatively compact in L2(Ω). We will show

that every cluster point of {vn} solves the classical Poisson equation (3.7.1) which has a

unique solution in W1,2
0 (Ω). Let (vn) be a convergent subsequence. Consider a test function

φ ∈ C∞c (Ω). We may assume that δ̃n is small enough to ensure that supp φ ⊂ Ωδ̃n
. Then via

Proposition 3.2.6

∫
Ω

vnLαδn [φ]dx =

∫
Ω

Lαδn [vn]φdx =

∫
Ωδ̃n

Lαδn [vn]φdx =

∫
Ω

fφdx .

Since vn → v strongly in L2(Ω), and by the result of Theorem 3.5.4 applied to the compactly

supported function φ the limit as n→ ∞ gives

∫
Ω

v∆φ dx =

∫
Ω

fφdx

as δn → 0, verifying that v is the distributional solution of the Poisson problem. Since

v ∈ W1,2
0 (Ω), then via integration by parts we conclude that v is the weak variational solution
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to the Poisson problem. �

Now consider a family of equations


Lαδn [vn] = fn, x ∈ Ωδ̃n

vn = 0, x ∈ Ω \Ωδ̃n
, δ̃n ≥ δn

(3.7.5)

where vn ∈H 1
αδn ,0

(Ωδ̃n
).

Corollary 3.7.2. The result of Theorem 3.7.1 holds if in each nonlocal problem (3.7.2) and

in (3.7.3) we replace f by fn ∈ L2(Ω) assuming that fn → f in L2(Ω).

Proof. Since fn are uniformly bounded in L2(Ω) then as in (3.7.4) in the proof of Theorem

3.7.1 we conclude that {vn} is relatively compact in L2(Ω). Let v be a cluster point of this

sequence. Consider a test function φ ∈ C∞c (Ω). We may assume that supp φ ⊂ Ωδ̃n
for all n.

By Proposition 3.2.6 we obtain

∫
Ω

vnLαδn [φ]dx =

∫
Ω

Lαδn [vn]φdx =

∫
Ωδ̃n

Lαδn [vn]φdx =

∫
Ω

fnφdx .

Since fn → f and vn → v in L2, via Theorem 3.5.4 applied to φ conclude

∫
Ω

v∆φdx =

∫
Ω

fφdx

From the W1,2
0 (Ω) regularity it follows that v is a weak solution of the Poisson problem

(3.7.1). �

3.7.1 Convergence to the classical solution for the hinged problem

We turn to the elliptic problem for the nonlocal biharmonic and the analog of hinged bound-

ary conditions. Note that second-order boundary condition will be applied to the extended
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Ω2δ

Ω \Ω2δ

Ω \Ωδ

Ω

Figure 3.2: The nonlocal domain Ω with its collar boundaries Ω \Ω2δ and Ω \Ωδ.

collar. In particular we consider this problem on the space H 2
αδn

(Ωδ,Ω2δ) according to the

definition (3.3.6).

Theorem 3.7.3. Let Ω ⊂ Rn, d ≥ 2, be a bounded domain of class C2. Suppose sequence

of positive scalars (δn) converges to 0 as n → ∞. The solutions of the nonlocal hinged

problems 
Bαδn [un] = f , x ∈ Ω2δn

un = 0, x ∈ Ω \Ωδn

Lαδn [un] = 0, x ∈ Ωδn \Ω2δn

(3.7.6)

converge in L2(Ω) to the weak (variational) solution u ∈ W2,2(Ω) ∩W1,2
0 (Ω) of


∆2u = f , x ∈ Ω

u = ∆u = 0, x ∈ ∂Ω

(3.7.7)

as n→ ∞. If, in addition, Ω is of class C4, then u is also in W4,2(Ω).



88

Remark 3.7.4 (If Lαδn [un] were also zero on Ω \ Ωδn). We conjecture that such an overlap

would actually enforce u to be zero on the full extended collar Ω \Ω2δ. In turn, by the same

argument, that would imply u = 0 on Ω\Ω3δ which might contradict the data in the interior

unless very special “ f ” is considered.

Proof. Step 1. Let χδ be the characteristic function of Ωδ. Set

vn(x) := χδ(x)Lαδn [un](x) .

Due to the support of µδn(x, ·) the value ofBαδn [un](x) for x ∈ Ω2δn only depends onLαδn [un]

in Ωδn . Since in Ωδn the functions vn and Lαδn [un] coincide (by definition) then

Lαδn [vn](x) = Bαδn [un](x) = f (x) for x ∈ Ωδ2n .

When x ∈ Ω \ Ωδn then vn = 0, and if x ∈ Ωδn \ Ω2δn , then vn(x) = Lαδn [un](x) = 0 by the

second boundary condition in (3.7.6). Hence vn satisfies


Lαδn [vn] = f , x ∈ Ω2δn

vn = 0, x ∈ Ω \Ω2δn .

By Theorem 3.7.1 (with δ̃n = 2δn ≥ δn) we know that vn → v in L2(Ω) with v ∈ W1,2
0 (Ω) ∩

W2,2(Ω), where ∆v = f .

Step 2. By definition of vn, we also know that un solves


Lαδn [un] = vn, x ∈ Ωδn

un = 0, x ∈ Ω \Ωδn .

According to Corollary 3.7.2 (now δ̃n = δn), un → u in L2(Ω), where u ∈ W1,2
0 (Ω) and u is
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the weak solution to ∆u = v. Then it follows that

∆2u = ∆v = f

in the sense of distributions. Since u ∈ W1,2
0 (Ω) and ∆u = v ∈ L2(Ω), then C2 regularity

of the domain ensures u ∈ W2,2(Ω) ∩ W1,2
0 (Ω). This fact, along with ∆u ∈ W1,2

0 (Ω) via

integration by parts of the distributional identity ∆2u = f verifies that u is, in fact, a weak

solution of (3.7.7).

Moreover, from the elliptic theory follows that if the boundary is of class C4 then u ∈

W4,2(Ω) [25, Sec 3A, pp. 282–284] (the latter, in fact, deals with smooth boundary, but it

suffices to consider the order of boundary regularity which matches that of the operator,

namely, C4). �

3.7.2 Convergence to the classical solution for the clamped problem

The next result deals with a nonlocal version the clamped biharmonic problem. This time

the boundary conditions are up to the first order, and are both prescribed on the “original”

collar Ω\Ωδn . As indicated earlier in the analysis of nonlocal clamped boundary conditions,

this condition in fact affects the extended collar too (3.3.6) essentially forcing the solution

to be zero on the extended collar.

Remark 3.7.5 (Distinction between nonlocal hinged and clamped). Note that u = 0 on

Ω \Ω2δ does not provide Lαδn [un] = 0 on Ωδ \Ω2δ as imposed in the hinged case, since the

nonlocal Laplacian on Ωδ \Ω2δ subdomain also draws information from inside Ω2δ.

Had all boundary conditions in (3.7.6) were instead imposed on the same collar Ω \Ωδ,

then those conditions would have been a consequence of the nonlcoal clamped data on Ωδ.
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
Bαδn [un] = f , x ∈ Ω2δ

un = Nαδn [Gαδn [un]] = 0, x ∈ Ω \Ωδn , (equiv. un = 0, x ∈ Ω \Ω2δ)
(3.7.8)

and its classical analog: 
∆2u = f , x ∈ Ω

u =
∂u
∂ν

= 0, x ∈ ∂Ω .
(3.7.9)

Theorem 3.7.6. Let Ω ⊂ Rn, d ≥ 2, be bounded open of class C6. Suppose sequence of

positive scalars (δn) converges to 0 as n→ ∞. For all f ∈ L2(Ω), the sequence of solutions

{un} ⊂ H 2
αδn ,C

(Ωδn) to (3.7.8) converges strongly in L2(Ω) to v ∈ W2,2
0 (Ω), which is a weak

solution of (3.7.9), as n → ∞. Moreover u, in fact, is the regular solution to this elliptic

problem: u ∈ W4,2(Ω).

Proof. Step 1. We plan to invoke Theorem 3.4.3 (Corollary 3.4.5), so we need to demon-

strate an upper bound on ‖Gαδn [un]‖L2(Ω), independent of n. Apply the Poincaré-type in-

equality of Corollary 3.4.6 and nonlocal integration by parts (Proposition 3.2.6, applied in

the weak sense as indicated in Remark 3.3.5):

c‖un‖
2
L2(Ω) ≤ ‖Gαδn [un]‖2L2(Ω×Ω) = −

∫
Ω

Lαδn [un]undx

≤‖Lαδn [un]‖L2(Ω)‖un‖L2(Ω)

(3.7.10)

for some c > 0. Hence

c‖un‖L2(Ω) ≤ ‖Lαδn [un]‖L2(Ω)

‖Gαδn [un]‖2L2(Ω×Ω) ≤
1
c
‖Lαδn [un]‖2L2(Ω) .
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Thus:

‖un‖
2
L2(Ω) ≤

1
c
‖Gαδn [un]‖2L2(Ω×Ω) ≤

1
c2 ‖Lαδn [un]‖2L2(Ω)

=
1
c2

∣∣∣〈Bαδn [un], un〉L2(Ω)

∣∣∣ . (3.7.11)

Since the clamped space (3.3.8) enforces zero data on the extended collar Ω \ Ω2δ we

continue the estimate (3.7.11)

. . . ≤
1
c2

∣∣∣〈Bαδn [un], un〉L2(Ω2δ)

∣∣∣ =
1
c2

∣∣∣〈 f , un〉L2(Ω)

∣∣∣
≤

1
c2 ‖ f ‖L2(Ω)‖un‖L2(Ω)

(3.7.12)

where c is independent of n. Therefore, (un) is bounded in L2(Ω) and so is (Gαδn [un]). By

Corollary 3.4.5, {un} is relatively compact in L2(Ω) and if u is a cluster point of {un}, then

u ∈ W1,2
0 (Ω).

It remains to show that any cluster point of {un} is the unique weak solution of (3.7.9).

Pick a test function φ ∈ C∞c (Ω). We may assume that δn is small enough so that supp φ ⊂

Ω3δn (note the factor of 3 instead of just 2). By Proposition 3.2.6 we then have

〈Bαδn [φ], un〉L2(Ω) = 〈φ,Bαδn [un]〉L2(Ω) = 〈φ, f 〉L2(Ω)

Use the fact that un → u strongly in L2(Ω) and Theorem 3.5.5 to conclude that

∫
Ω

∆2φ u dx =

∫
φ f dx

as n→ ∞. This verifies that u ∈ W1,2
0 (Ω) is a distributional solution to

∆2u = f .
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Step 2. Let’s prove u ∈ W2,2(Ω). Set zn = Lαδn [un]. From (3.7.11)–(3.7.12)

‖zn‖
2
L2(Ω) ≤ ‖ f ‖

2
L2(Ω)‖un‖

2
L2(Ω) .

Since (un) is bounded in L2(Ω) then so is (zn). Conclude that (zn) converges weakly to some

z in L2(Ω). At the same time, for φ ∈ C∞c (Ω) nonlocal integration by parts gives

〈zn, φ〉L2(Ω) = 〈un,Lαδn [φ]〉L2(Ω)

We know un → u strongly in L2(Ω) and because φ is compactly supported, by Theorem

3.5.4 we also have Lαδn [φ] → ∆φ strongly in L2(Ω). And since zn converges weakly then

in the limit n→ ∞ this identity becomes

〈z, φ〉L2(Ω) = 〈u,∆φ〉L2(Ω) .

So z ∈ L2(Ω) is the distributional Laplacian of u. Since u ∈ W1,2
0 (Ω) and the domain Ω is

smooth, then the elliptic regularity ensures that u ∈ W2,2(Ω) ∩W1,2
0 (Ω).

Step 3. To prove that u is the weak variational solution of the classical biharmonic

problem it remains to establish that u has zero normal trace. For this purpose consider

a family of test functions that belong to C4(Ω) ∩ W4,∞(Ω), which will be used to apply

Theorem 3.5.4, and whose boundary traces are dense in L2(Γ). For, instance, relying on 2D

Sobolev embeddings, it suffices to consider W6,2(Ω). If Ω is sufficiently smooth, e.g., of

(uniform) C6 regularity, then the traces of these functions are exactly the space W5+ 1
2 ,2(Γ)

which is dense in L2(Γ).

Fix such a test function ψ. We have just shown that ∆u ∈ L2(Ω) and that zn = Lαδn [un]
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converges to ∆u weakly in L2(Ω). Thus

lim
n→∞

∫
Ω

Lαδn [un]ψ dx =

∫
Ω

∆uψ dx . (3.7.13)

The goal is to verify that ∫
Ω

∆uφ dx =

∫
Ω

u∆φ dx

Invoke again nonlocal integration by parts:

∫
Ω

Lαδn [un](x)ψ(x)dx =

∫
Ω

un(x)Lαδn [ψ](x)dx

=

(∫
Ωδn

+

∫
Ω\Ωδn

)
un(x)Lαδn [ψ](x)dx

The second of the two integrals vanishes since un(x) = 0 on the collar Ω \ Ωδ. Whereas

χΩδn
Lαδn [ψ] converges strongly to ∆ψ by Theorem 3.5.4. Along with the strong conver-

gence un → u in L2(Ω) this argument gives

lim
n→∞

∫
Ω

Lαδn [un]ψ(x)dx =

∫
Ω

u∆ψdx.

In combination with (3.7.13) we conclude

∫
Ω

∆uψdx =

∫
Ω

u∆ψdx .

Since u = 0 on the boundary, this identity for every ψ ∈ W6,2(Ω) implies

∂u
∂ν

= 0

because the traces of ψ are dense in L2(Γ). Thus u is a weak solution to the elliptic problem

(3.7.9). The additional W4,2(Ω) regularity follows from the same remarks as at the end at
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the end of the proof of Theorem 3.7.3. �
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Chapter 4

Appendix

4.1 Oscillations of w when k ≤ 0

A critical component of the blowup result from Chapter 2 was knowledge that global so-

lutions of (2.1.2) could never eventually be of one sign. The following lemma supporting

this for the case k ≤ 0 appeared without proof in Chapter 2. Below we provide the proof.

Lemma 2.6.6 Assume f satisfies conditions (2.2.1) and (2.2.2), k ≤ 0, and w is a global

solution of (2.1.2) with initial conditions satisfying (2.5.4). Then w is never eventually of

one sign.

Proof. We will assume that w is eventually nonnegative. A similar proof will work in the

case when w is eventually nonpositive. Suppose there exists a T ≥ 0 such that w(t) ≥ 0

for t ≥ T . We will show that w blows up in finite time. Let T be sufficiently large so the

consequences of Lemma 2.6.5 hold.

Step 1. We will show that w′ ≥ 0 for t ≥ T . Suppose w′ < 0 for some t ≥ T . Lemma
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2.6.5 implies w′ < 0 as long as w ≥ 0; thus w′ < 0 for all t ≥ T . Recall

G′ =2α1ww′ + (2α2 − α3)w′w′′ − α3ww′′

E =
k
2

(w′)2 + ww′′′ + F(w) −
α3

2
(w′′)2.

From Lemma 2.5.2 we know E(t) is constant. From Lemma 2.5.4 we know G′ → ∞

(monotonically for t large) as t → ∞. We conclude

G′ + α3E = 2α1ww′ + (2α2 − α3)w′w′′ +
kα3

2
(w′)2 + α3F(w) −

α3

2
(w′′)2

→∞ (monotonically for t large) as t → ∞ .

Since w is bounded, we know F(w) is bounded. Thus

2α1ww′ + (2α2 − α3)w′w′′ +
kα3

2
(w′)2 −

1
2

(w′′)2 → ∞ as t → ∞ .

Recall that w ≥ 0, w′ < 0, k ≤ 0, consequently, dropping non-positive terms gives

(2α2 − α3)w′w′′ → ∞.

Since α2 > α3 by (3.2.11) and w′ < 0, we must have w′ or w′′ → −∞ contradicting w ≥ 0.

We conclude

w,w′ ≥ 0 for t ∈ (T,∞) . (4.1.1)

Step 2. We claim that w→ ∞. Since w is monotone increasing (w′ ≥ 0), it suffices to

prove that w is unbounded. To the contrary, assume it is bounded. From (2.1.2) and (2.2.2)

d
dt

(w′′′ + kw′) = w′′′′ + kw′′ = − f (w) ≤ −ρwp
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it follows that for t large w′′′ + kw′ is strictly decreasing. Thus we may assume that T is, in

addition, sufficiently large so that for some constant C

w′′′ < C − kw′, t ≥ T. (4.1.2)

Since w ≥ 0 we have from the definition of the energy

E ≤
k
2

(w′)2 + w(C − kw′) + F(w) −
1
2

(w′′)2.

By Lemma 2.5.4 we have lim
t→∞

(G + E) = ∞ so,

α1w2 + α2(w′)2 − α3ww′′ +
k
2

(w′)2 + w(C − kw′) + F(w) −
1
2

(w′′)2

≥G + E → ∞ as t → ∞ .

By our assumption that w is bounded, we have α1w2, Cw, F(w), and −α3ww′′ − 1
2 (w′′)2 are

all bounded above. Dropping these terms and the non-positive quantity
k
2

(w′)2 (note that

k ≤ 0) we arrive at

lim
t→∞

(
α2(w′)2 + |k|ww′

)
= ∞ .

Since w ≥ 0 is bounded and w′ ≥ 0 we must have lim
t→∞

w′ = ∞ contradicting w being

bounded. Thus

w→ ∞ monotonically on (T,∞) . (4.1.3)

Step 3. Positivity of w′′. It follows from (2.2.2) and (4.1.3) that

− f (w)→ −∞ as t → ∞.
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Now let us look at the behavior of w′′(t). We will show that w′′(t) ≥ 0 for all t sufficiently

large. To the contrary, suppose w′′(t) ≤ 0 for all t ∈ (T1,∞) for some T1 ≥ T . From

equation (2.1.2) and the assumption k ≤ 0 we get

w′′′′ = −kw′′ − f (w)→ −∞ as t → ∞,

which implies that w(t)→ −∞, contradicting our initial assertion that w ≥ 0.

We conclude that w′′ must be positive somewhere on (T,∞). Assume b1 is the next

point where w′′ changes sign, i.e. w′′ is positive on a left neighborhood of b1, negative on a

right neighborhood and w′′′(b1) ≤ 0. Let (b1, b2) be the subsequent maximal right-interval

of negativity for w′′. From equation (2.1.2) we obtain

w′′′′ = −kw′′ − f (w) ≤ − f (w) on (b1, b2) .

Because we may assume that w is positive (in fact increasing), we conclude w′′ is nega-

tive and strictly concave on (b1, b2), whence b2 = ∞. But then we contradict the earlier

observation that w′′ can not remain negative on an interval of the form (T1,∞).

Thus, for T sufficiently large,

w,w′,w′′ ≥ 0, t ∈ (T,∞) . (4.1.4)

Step 4. Finite-time blow-up. From equation (2.1.2) we have

d2

dt2

(
kw + w′′

)
= kw′′ + w′′′′ = − f (w)

≤ −ρwp (condition (2.2.2) for |w| large).
(4.1.5)

Recall from (4.1.3) that w → ∞ monotonically. Combining this with (4.1.5) allows us to
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find a C > 0 such that for sufficiently large t we have

d2

dt2 (kw(t) + w′′(t)) ≤ −C < 0.

So for all large t, kw + w′′ < 0. In other words, we may assume that T is large enough so

that −kw = |k|w > w′′ on (T,∞).

To summarize: on (T,∞) we have w,w′,w′′ ≥ 0 and |k|w > w′′. Consequently

G′ = 2α1ww′ + 2α2w′w′′ − α3(w′w′′ + ww′′′)

≤ (α1 + α2|k|)2w′w − α3(w′w′′ + ww′′′).

For t ≥ T we obtain:

G(t) −G(T ) =

∫ t

T
G′ds

≤ (α1 + α2|k|)w(t)2 − α3w(t)w′′(t) + CT .

(4.1.6)

Pick λ > 0 such that (p+1)(1+λ)
p−λ < 2 (equivalent to λ < p−1

p+3 ) and 2(1+λ) < p+1. Since p > 1,

such a λ exists. With . below indicating omitted positive constant factors (independent of

t or the solution) we have for t ≥ T ,

G1+λ ≤
(
(α1 + α2|k|)w2 − α3ww′′ + CT + G(T )

)1+λ
(by (4.1.6))

.
(
|w2| + |ww′′| + 1

)1+λ

. |w|2(1+λ) + |ww′′|1+λ + 1

. |w|2(1+λ) + |w|p+1 + |w′′|
(p+1)(1+λ)

p−λ + 1 (by Young’s inequality)

. |w|p+1 + |w′′|2 + 1
(
recall p + 1 ≥ 2(1 + λ) and (p+1)(1+λ)

p−λ < 2
)

. w f (w) + |w′′|2 + 1 (by condition (2.2.2))

. G′′ (Lemma 2.5.4).
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From Lemma 2.5.4 we know G′′ ≥ ε > 0, so G is positive and strictly increasing for t

sufficiently large. This along with the fact G1+λ . G′′ for all t ≥ T implies G blows up in

finite time. This in turn implies w blows up in finite time. �
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Higher order models in physics and mechanics.

[34] A. C. Ponce. An estimate in the spirit of Poincaré’s inequality. J. Eur. Math. Soc.
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