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HOMOLOGY OF ARTINIAN MODULES OVER COMMUTATIVE
NOETHERIAN RINGS

Micah Josiah Leamer, Ph. D.

University of Nebraska, 2011

Advisers: Professors S. Iyengar and R. Wiegand

This work is primarily concerned with the study of artinian modules over commutative
noetherian rings.

We start by showing that many of the properties of noetherian modules that make
homological methods work seamlessly have analogous properties for artinian modules.
We prove many of these properties using Matlis duality and a recent characteriza-
tion of Matlis reflexive modules. Since Matlis reflexive modules are extensions of
noetherian and artinian modules many of the properties that hold for artinian and
noetherian modules naturally follow for Matlis reflexive modules and more generally
for mini-max modules.

In the last chapter we prove that if the Betti numbers of a finitely generated
module over an equidimensional local ring are eventually non-decreasing, then the

dimensions of sufficiently high syzygies are constant.
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Chapter 1

Introduction

This work is primarily concerned with the study of artinian modules over commutative
noetherian rings.

The work in Chapters 2 and 3 is joint with B. Kubik and Sean Sather-Wagstaff.
In Chapters 2 and 3 we show that many of the properties that make homological
methods work seamlessly when they are applied to finitely generated (i.e. noetherian
modules) have analogous properties when applied to artinian modules. We prove
many of these properties using Matlis duality and a recent characterization of Matlis
reflexive modules. Matlis reflexive modules are always an extension of noetherian
and artinian modules; see Fact 2.1.17 or [6, Theorem 12]. Consequently many of the
properties that hold for artinian and noetherian modules also hold for Matlis reflexive
modules and more generally for min-max modules. A module M is mini-max provided
thaht it contains a noetherian submodule N such that the quotient M /N is artinian.

The primary way of viewing a finitely generated module is to give a list of gener-
ators and relations. This can come in the form of matrix, which defines the first map
in a free resolution of the module. Alternatively, for an artinian module or another

module that contains torsion elements, finding an embedding of that module in its



injective hull may prove to be a better way of viewing the module. Although a di-
rect construction of an injective resolution may seem elusive, Matlis duality offers an
alternative approach to this construction. Matlis duality sends a flat resolution of a
module to an injective resolution of its Matlis dual; see [12, Theorem 3.2.9]. In the
case of an artinian R-module A we can use this correspondence to compute a minimal
injective resolution of A. By first computing a minimal projective resolution of the
Matlis dual of A, which is noetherian over a suitable semi-local complete ring and
then applying Matlis duality to the free resolution, one obtains the desired minimal
injective resolution. A simple consequence of this construction is that all of the Bass
and hence the Betti numbers of artinian modules are finite.

When one applies Ext’(—, —) and Tor:*(—, —) to a pair of noetherian modules the
result is always noetherian. Similarly, we show that Tor;"(A, L) is artinian whenever
A is artinian and for all maximal ideals m € Supp(A) the ith Betti number of L with
respect to m is finite. Alternatively Ext’(A, L) is noetherian over the completion
with respect to Nmesupp(a)M Whenever A is artinian and for all m € Supp(A) the ith
Bass number of L with respect to m is finite. A special case occurs when ¢ = 0, A
and A" are artinian and N is noetherian: Both A ® g A" and Hompg (A, N) are finite-
length modules. Given a module L and a Matlis reflexive module M such that for all
m € m-Spec(R) N Supp(M) the ith Bass and Betti numbers of L with respect to m
are finite we show that Tor®(M, L) and Ext% (M, L) are Matlis reflexive modules.

When N is a noetherian R-module localization commutes with Ext, i.e., for any
multiplicatively closed set U C R and any R-module L we have U~ Ext’ (N, L) =
Exti 1 p(U'N,U'L) for all i. Note that in general Tor always commutes with lo-
calization. When A is an artinian R-module, L is any R-module and U is a multiplica-
tively closed set disjoint from Upegupp(aym we have Extly (A, L) 2 Ext}, 1 ,(U~1A, ULL).

Artinian modules actually have a much more direct connection to localization than



noetherian modules do. In particular Supp(A) always consists of a finite set of
maximal ideals. For any maximal ideal m € Supp(A) the composition I'y(A4) —
A — Ay is an isomorphism, so that A = @ csuppa) [m(A) = Dncsupp(a) Am-
Consequently, Ext% (A4, L) = @

69mESupp(A) Torﬁm (AlTU Lm)

We use Matlis duality to better understand of the vanishing behavior of Ext’y (A, A”).

EXté{n\(Ama Lm)? and Simﬂarly TOI'lR(A, L) =

meSupp(A)

Given noetherian modules N and N’ the length of any maximal N’-regular sequence
in Ann(N) equals inf{i > 0 | Extiz(N, N’) # 0}; see [9, Proposition 1.2.3] for de-
tails. Let a = Nunesupp(a)usupp(anm and let (—)Y denote the Matlis duality functor;
see Definition ??. We show that Exth(A, A’) = Ext%a(A'v,Av). Since A" and AY
are noetherian R®-modules it follows that inf{i >0 | Ext% (A, A') # 0} is the length
of the longest AY-regular sequence in Anng,(A’).

Let L and L' be R-modules. Since Matlis duality commutes with taking homology,
the correspondence between a free resolution and an injective resolution of the Matlis
dual implies the isomorphism Tor?(L, L')Y = Ext%(L, L'). To see this isomorphism
apply Hom-tensor adjointness to (L ®pg F.) where F. is a free resolution of L'. Sim-
ilarly there is a map from Tor®(L, L") to Ext%(L, L)V given by the applying the
Hom-evaluation morphism to appropriate left and right derived functors; see Remark
2.1.7. When L is a noetherian this map is an isomorphism. We show that if L is
Matlis reflexive and the Bass numbers of L’ are finite then the map is an isomorphism;
see Theorem 2.4.8.

The results in Chapter 4 are joint work with K. Beck. Let R be a local ring with
maximal ideal m. When M is a finitely generated R-module, the local cohomology
modules H: (M) are artinian for all 7 > 0. In Chapter 4, we use local cohomology
to show that if the Betti numbers of a finitely generated module over an equidimen-

sional local ring are eventually non-decreasing, then the dimensions of sufficiently



high syzygies are constant. Let €2, (M) denote the nth syzygy module of M. Since
Supp(M) contains more information than just the dimension of M our results are
focused on describing the asymptotic behavior of Supp(€2,(M)). In particular if the
Betti numbers of M are eventually non-decreasing then Supp, (M) is a 2-periodic
function of n for all n > 0. Also, in this case we show that the minimal elements of
Supp(2,(M)) are actually minimal elements of Spec(R) for all n > 0.

All of the theorems, propositions and corollaries in this document that have not
been explicitly cited from another source represent original research. Conversely, all
of the statements labeled as facts in this document were previously known regardless
of whether or not a citation has been included. Many of the lemmas found in the
background sections in Chapters 2 and 3 require only trivial arguments or elementary
observations for their proofs and we consider them to be likely known even if an
explicit citation for where they can be found is not included. Our convention is that
all of the Lemmas, which are not either in a background section or specifically citing

another source, constitute original research.



Chapter 2

Homology of Artinian and
Mini-max Modules over Local

Rings

The results in this chapter are joint work with B. Kubik and S. Sather-Wagstaff.
Most of the results in this chapter can be found in [17].

Throughout this chapter R will denote a unital, commutative, (noetherian) local
ring with maximal ideal m and residue field £ = R/m. The m-adic completion of R
is denoted R, the injective hull of k is E = Eg(k), and the Matlis duality functor is
(—)Y = Hompg(—, E). We denote the length of an R-module L by Ag(L).

This work is concerned, in part, with properties of the functors Hompg(A, —) and
A ®p —, where A is an artinian R-module. To motivate this, recall that [13, Propo-
sition 6.1] shows that if A and A’ are artinian R-modules, then A ®p A’ has finite
length. Similarly if N is a noetherian R-module, then Hompg(A, V) also has finite
length; see Corollaries 2.2.12 and 2.3.9. In light of this fact, it is natural to investigate
the properties of Ext’ (A, —) and Torf(A, —). Let uh(L) := Ar(Ext(k, L)) denote



the ith Bass number of L and 3*(L') := Ag(Tor?(k, L')) denote the ith Betti number
of L. In general, the modules Ext%(A, N) and Tor?(A, A’) will not have finite length.

However, we have the following; see Theorems 2.2.2 and 2.3.1.

Theorem 2.1. Let A be an artinian R-module, and let i > 0. Let L and L' be
R-modules such that (L) and BE(L') are finite. Then Extly(A, L) is a noetherian

R-module, and Tor (A, L') is artinian.

One should note that the Bass and Betti numbers of any artinian or noetherian
module are always finite. In particular, when A and A’ are artinian, Theorem 2.1
implies that Extl(A4, A') is a noetherian R-module. The next result, contained in

Theorem 2.4.3, gives another explanation for this fact.

Theorem 2.2. Let A and A" be artinian R-modules, and let i > 0. Then there is an
isomorphism Extl (A, A') = Ext%(A’V,AV). Hence there are noetherian R-modules

N and N’ such that Exti(A, A') = Extiﬁ(N, N').

This result proves useful for studying the vanishing of Ext’(A, A’), since the
vanishing of Ext’ﬁ(N , N") is somewhat well understood.

We say that an R-module M is Matlis reflexive provided that the natural biduality
map dy: M — MYV, given by dp(x) (1)) = 1(x), is an isomorphism. Our next result
shows how extra conditions on the modules in Theorem 2.1 imply that Ext’ (A, L)

and Tor®(A, L) are Matlis reflexive; see Corollaries 2.2.4 and 2.3.3.

Theorem 2.3. Let A, L, and L' be R-modules such that A is artinian. Assume
that R/(Anng(A) + Anng(L)) and R/(Anng(A) + Anng(L')) are complete. Given
an index i > 0 such that pb(L) and BE(L') are finite, the modules Ext'y(A, L) and

Tor®(A, L') are Matlis reflexive.



We say that an R-module M is mini-max when M has a noetherian submodule
N such that M /N is artinian. In particular, noetherian modules are mini-max, as are
artinian modules. A key point in the proof of the last theorem is a result of Belshoff,
Enochs, and Garcia Rozas [6]: An R-module M is Matlis reflexive if and only if it is
mini-max and R/ Anng(M) is complete.

A standard application of Hom-tensor adjointness shows that Tor®(L, L")V =
Ext’ (L, L'V) for any R-modules L and L’. Similarly when N is noetherian an ap-
plication of the Hom-evaluation morphism shows that Ext (N, L')Y = Tor(N, L'V).

However this last isomorphism does not hold in general if we replace N by a non-

noetherian module. We do, however, get the following:

Theorem 2.4. Let A, M, M’ and L be R-modules such that A is artinian and Matlis-
reflexive, M is Matlis-reflexive, and M’ is mini-maz. We have Extl(M, M')Y =
Torf (M, M") and Exty(M', M)¥ = Tor®(M', MV). Fiz an index i > 0. If (L)
is finite, then Extl(A, L)Y = Torf(A,LV). If ui(L) and i (L) are finite then
Exth (M, L)Y = Torf*(M, LY).

Many of our results generalize to the non-local setting. As this generalization

requires additional tools, we treat it separately in Chapter 3.

2.1 Background and Preliminary Results

Torsion Modules

Definition 2.1.1. Let a be a proper ideal of R. The a-adic completion of R, which
is denoted by ﬁ“, is the inverse limit of the inverse system whose objects are R/a" for
all n > 0 and whose maps are the natural surjections R/a” — R/a™ with n > m > 0.

Given an R-module L, set I';(L) = {x € L | a”z =0 for n>> 0}. We say that L



is a-torsion if L = T'y(L). A prime ideal p of R is associated to L if there is an
R-module monomorphism R/p < L; the set of primes associated to L is Assg(L).
The support of an R-module L is Suppy(L) = {p € Spec(R) | L, # 0}. The set of
minimal elements of Suppg(L) with respect to inclusion is denoted Ming(L). Also

the variety of a is given by V(a) = {p € Spec(R)| a C p}.

Fact 2.1.2. Let a be a proper ideal of R, and let L be an a-torsion R-module.

(a) Every artinian R-module is m-torsion. In particular, the module E is m-torsion.
(b) We have Suppg(L) C V(a). Hence if L is m-torsion, then Suppy(L) C {m}.

(¢) The module L has an R*-module structure that is compatible with its R-module
structure, as follows. For each x € L, fix an exponent n such that a”z = 0. For
cach r € R®, the isomorphism R®/a”R®* & R/a" provides an clement ro € R such

that r —rg € a"}?i“, and we set rx = roz.

(d) If R/a is complete, then R® is naturally isomorphic to R. To see this, assume that

R/a is complete. Given n > 1 such that R/a" is complete we claim that R/a™*!
is complete. Let a = (fi,...,f.) and let ¢ : @;_, R/a® — R/a™"! given by
multiplying the ith component by f;. Then Ker(¢) is complete since submodules

of complete modules are complete. If we consider the natural map from the exact

sequence
0 —= Ker(¢) —= @7, R/a" — R/a™' — = R/a—=0

to the sequence we get by taking the completion, then it follows from the Five

Lemma that R/a"™' is complete. This explains the second step in the next



display:

—a

R* = lim R/a" = lim R/a"R = (R) = R

For the last step in this display, see, e.g., [1, Exercise 10.5].
Lemma 2.1.3. Let a be a proper ideal of R, and let L be an a-torsion R-module.

1. A subset Z C L is an R-submodule if and only if it is an R*-submodule.

2. The module L is noetherian (artinian, mini-max respectively ) over R if and

only if it is noetherian (artinian, mini-max respectively) over R°.

Proof. (1) Every R*-submodule of L is an R-submodule by restriction of scalars.
Conversely, fix an R-submodule Z C L. Since L is a-torsion, so is Z, and Fact 2.1.2(c)
implies that Z is an R*-submodule.

(2) follows immediately from (1). O
Lemma 2.1.4. Let a be a proper ideal of R, and let L be an a-torsion R-module.

1. The natural map L — Re ®gr L is an isomorphism.

2. The left and right R*-module structures on R ®pg L are the same.

Proof. The natural map L — R ® r L is injective, as R is faithfully flat over R. To
show surjectivity, it suffices to show that each generator r ® x € R*® r L is of the
form 1 ® 2’ for some ' € L. Let n > 1 such that a”z = 0, and let ry € R such
that r —rg € a"R®. Tt follows that r ® z = ro @ x = 1 ® (rox), and this yields the

conclusion of part (1). This also proves (2) because 1 ® (roz) = 1 ® (rx). O

Lemma 2.1.5. Let a be a proper ideal of R, and let L and L' be R-modules such that

L is a-torsion.
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1. If L' is a-torsion, then Hompg(L, L) = Homgp. (L, L'); thus LY = Homgp, (L, E).
2. One has Hompg(L, L") = Homp(L,I'y(L")) = Homp. (L, Tq(L")).

Proof. (1) It suffices to verify the inclusion Homg(L, L") € Hompg. (L, L'). Let x € L
and r € R°, and fix v € Homp(L, L'). Let n > 1 such that a"z = 0 and a™)(z) = 0.
Choose an element rg € R such that r —ry € a” R It follows that 1 (rz) = ¢ (rez) =
rot(x) = ri(x); hence ¢ € Homp, (L, L'). (Part (1) can also be deduced from Hom-
tensor adjointness, using Lemma 2.1.4(1).)

(2) For each f € Hompg(L, L"), one has Im(f) C I'y(L’). This yields the desired

isomorphism, and the equality is from part (1). ]
A Natural Map from Tor}(L,L") to Extk(L,L')"

Definition 2.1.6. Let L be an R-module, and let J be an R-complex. The Hom-
evaluation morphism

Opy1: L ®p Hompg(J, L") — Homg(Hompg(L, J), L)

is given by 0p,0 (I @ V) (@) = ¥ (p(1)).

Remark 2.1.7. Let L and L' be R-modules, and let J be an injective resolution of
L'. Using the notation (—)¥, we have 0, ,5: L ®p JY — Hompg(L, J)¥. The complex
JY is a flat resolution of L'V; see, e.g., [12, Theorem 3.2.16]. This explains the first

isomorphism in the following sequence:

Tor®(L, L) 2 Hi(L @5 J) 220 1 (Homp(L, 1)) S Extiy(L, L)Y



—_
—_

For the second isomorphism, the exactness of (—)¥ implies that H;(Homg(L, J)") =

H'(Hompg(L, J))Y = Exth(L, L')V.

Definition 2.1.8. Let L and L’ be R-modules, and let J be an injective resolution

of L'. The R-module homomorphism

o Torf(L, L") — BExth(L, L)Y

is defined to be the composition of the the maps displayed in Remark 2.1.7.

Remark 2.1.9. Let L, L', and N be R-modules such that N is noetherian. It is
straightforward to show that the map ©%;, is natural in L and in L.
The fact that E is injective implies that ©%;, is an isomorphism; see [26, Lemma 3.60).

This explains the first of the following isomorphisms:

Ext’ (N, L)Y = Tor®(N, L") Torf(L, L)Y = Ext(L, L').

The second isomorphism is a consequence of Hom-tensor adjointness,

Note that Definitions 2.1.6 and 2.1.8 will be valid in the non-local setting where
is replaced with a minimal injective cogenerator; see Definition 3.1.1. Also Remarks

2.1.7 and 2.1.9 will hold in the non-local setting.

Numerical Invariants

Definition 2.1.10. Let L be an R-module. For each integer i, the ith Bass number

of L and the ith Betti number of L are respectively

(L) = Ar(Extiy(k, L)) and  BR(L) = Ap(Torl(k, L)),
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where Ag(L’) denotes the length of an R-module L'.

Remark 2.1.11. Let L be an R-module.

(a) If I is a minimal injective resolution of L, then for each index ¢ > 0 such that
pin(L) < o0, we have I' = EFr(D) @ Ji where J' does not have E as a summand,
that is, Tin(J*) = 0; see, e.g., [21, Theorem 18.7]. Similarly, the Betti numbers of a
noetherian module are the ranks of the free modules in a minimal free resolution.
The situation for Betti numbers of non-noetherian modules is more subtle; see,

e.g., Lemma 2.1.18.

(b) We have that pub(L) < oo for all # > 0 if and only if 3%(L) < oo for all i > 0;

see [19, Proposition 1.1].

When a = m, the next invariants can be interpreted in terms of vanishing of Bass

and Betti numbers.

Definition 2.1.12. Let a be an ideal of R. For each R-module L, set
gradeg(a; L) = inf{i > 0 | Exti(R/a,L) # 0}
widthg(a; L) = inf{i > 0 | Tor®(R/a, L) # 0}.

We write depthy(L) = gradeg(m; L) and widthg(L) = widthg(m; L).

Part (2) of the next result is known. We include it for ease of reference. All
of the parts of the next Lemma generalize to the non-local setting with the same
proof. The non-local analog of Lemma 2.1.13(2) is slightly different it can be found

in Lemma 3.1.17(2).

Lemma 2.1.13. Let L be an R-module, and let a be a non-zero ideal of R.
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1. Then widthg(a; L) = gradeg(a; LY) and widthg(a; LY) = gradeg(a; L).
2. For each index i > 0 we have BE(L) = pb(LY) and BE(LY) = uis(L).
3. L =alL if and only if gradeg(a; LY) > 0.
4. LY = a(LY) if and only if gradeg(a; L) > 0.
5. gradeg(a; L) > 0 if and only if a contains a non-zero-divisor for L.

Proof. Part (1) is from [14, Proposition 4.4], and part (2) follows directly from Remark
2.1.9.
(3)—(4) These follow from part (1) since L = al if and only if widthg(a; L) > 0.
(5) By definition, we need to show that Homg(R/a, L) = 0 if and only if a con-
tains a non-zero-divisor for L. One implication is explicitly stated in [9, Proposi-
tion 1.2.3(a)]. One can prove the converse like [9, Proposition 1.2.3(b)], using the

fact that R/a is finitely generated. O]
The next result characterizes artinian modules in terms of Bass numbers.
Lemma 2.1.14. Let L be an R-module. The following conditions are equivalent:
1. L is an artinian R-module;
2. L is an artinian }A%—module;
3. R ®gr L is an artinian ﬁ—module; and
4. L is m-torsion and p%(L) < oc.

Proof. (1) <= (4) If L is artinian over R, then it is m-torsion by Fact 2.1.2(a), and
we have p%(L) < oo by [12, Theorem 3.4.3]. For the converse, assume that L is

m-torsion and ; = p% (L) < oco. Since L is m-torsion, so is Eg(L). Thus, we have
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Eg(L) = E*°| which is artinian since ° < co. Since L is a submodule of the artinian
module Eg(L), it is also artinian.

To show the equivalence of the conditions (1)—(3), first note that each of these
conditions implies that L is m-torsion. (For condition (3), use the monomorphism
L Re r L.) Thus, for the rest of the proof, we assume that L is m-torsion.

Because of the equivalence (1) <= (4), it suffices to show that
(L) = py(L) = p%(R @r L).
These equalities follow from the next isomorphisms
Hompg(k, L) = Hom;(k, L) = Homp(k, R @ L)

which are from Lemmas 2.1.5(1) and 2.1.4, respectively. O
Lemma 2.1.15. Let L be an R-module.

1. The module L is noetherian over R if and only if LV is artinian over R.

2. If LV is noetherian over R or over ﬁ, then L is artinian over R.

3. Let a be a proper ideal of R such that R/a is complete. If L is a-torsion, then

L is artinian over R if and only if LV is noetherian over R.

Proof. (1) This is [12, Corollary 3.4.4].

(2) If LY is noetherian over R, then we conclude from [12, Corollary 3.4.5] that L
is artinian over R. To complete the proof of (2), we assume that LV is noetherian over
R and show that L is artinian. Fix a descending chain Ly O Ly O --- of submodules
of L. Dualize the surjections L — --- — L/Ls — L/L; to obtain a sequence of

R-module monomorphisms (L/L;)¥ < (L/Ly)¥ < --- < LY. The corresponding
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ascending chain of submodules must stabilize since LY is noetherian over }/%, and it
follows that the original chain Ly O L, O - - - of submodules of L also stabilizes. Thus
L is artinian.

(3) Assume that L is a-torsion. One implication is from part (2). For the con-
verse, assume that L is artinian over R. From [21, Theorem 18.6(v)] we know
that Homz(L, E) is noetherian over R, and Lemma 2.1.5(1) implies that LV =

Hompz(L, E). Thus, Lemma 2.1.3(2) implies that L" is noetherian over R. O

Mini-max and Matlis Reflexive Modules

Definition 2.1.16. An R-module M is mini-maz if there is a noetherian submodule

N C M such that M/N is artinian.

Fact 2.1.17. An R-module M is Matlis reflexive if and only if it is mini-max and
R/ Anng(M) is complete; see [6, Theorem 12]. Thus, if M is mini-max over R, then

R ®pr M is Matlis reflexive over R.

Lemma 2.1.18. If M is mini-maz over R, then BE(M) < oo and p%(M) < oo for

all1 > 0.

Proof. We show that p' (M) < oo for all « > 0; then Remark 2.1.11(b) implies that
BE(M) < oo for all i > 0. The noetherian case is standard. If M is artinian, then we
have p%(M) < oo by Lemma 2.1.14; since E#2M) is artinian, an induction argument

shows that p% (M) < oo for all i > 0. One deduces the mini-max case from the

artinian and noetherian cases, using a long exact sequence. L]

Lemma 2.1.19. Let L be an R-module such that R/ Anng(L) is complete. The

following conditions are equivalent:

1. L is Matlis reflexive over R;
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2. L is mini-max over R;
3. L is mini-mazx over R; and
4. L 1s Matlis reflexive over R.

Proof. The equivalences (1) <= (2) and (3) <= (4) are from Fact 2.1.17. Note that
conditions (3) and (4) make sense since L is an R-module; see Fact 2.1.2.

(2) = (3) Assume that L is mini-max over R, and fix a noetherian R-sub-
module N C L such that L/N is artinian over R. As R/ Anng(L) is complete and
surjects onto R/ Anng(N), we conclude that R/ Anng(N) is complete. Fact 2.1.2(d)
and Lemma 2.1.3(1) imply that N is an R-submodule. Similarly, Lemmas 2.1.3(2)
and 2.1.14 imply that N is noetherian over ﬁ, and L/N is an artinian over R. Thus
L is mini-max over R.

(3) = (2) Assume that L is mini-max over R, and fix a noetherian R-submodule
L' C L such that L/L’ is artinian over R. Lemmas 2.1.3(2) and 2.1.14 imply that L’

is noetherian over R, and L/L’ is artinian over R, so L is mini-max over R. O

Lemma 2.1.20. Let L be an R-module such that m'L = 0 for some integer t > 1.

Then the following conditions are equivalent:
1. L is mini-maz over R (equivalently, over fi),
2. L is artinian over R (equivalently, over R );
3. L is noetherian over R (equivalently, over ﬁ), and
4. L has finite length over R (equivalently, over ﬁ)

Proof. Lemma 2.1.19 shows that L is mini-max over R if and only if it is mini-max
over R. Also, L is artinian (noetherian, resp., finite length) over R if and only if it is

artinian (noetherian, resp., finite length) over R by Lemmas 2.1.14 and 2.1.3(2).
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The equivalence of conditions (2)—(4) follows from an application of [12, Proposi-
tion 2.3.20] over the artinian ring R/m!. The implication (2) = (1) is evident. For
the implication (1) = (2), assume that L is mini-max over R. Given a noetherian
submodule N C L such that L/N is artinian, the implication (3) = (2) shows that

N is artinian; hence so is L. O

Definition 2.1.21. A full subcategory of the category of R-modules is a Serre sub-

category if it is closed under submodules, quotients, and extensions.

Lemma 2.1.22. The category of mini-maz (resp., noetherian, artinian, finite length,

or Matlis reflexive) R-modules is a Serre subcategory.

Proof. The noetherian, artinian, and finite length cases are standard, as is the Matlis
reflexive case; see [12, p. 92, Exercise 2|. For the mini-max case, fix an exact sequence
0> L% o Identify L’ with Im(f). Assume first that L is mini-
max, and fix a noetherian submodule N such that L/N is artinian. Then L' N N
is noetherian, and the quotient L'/(L' N N) = (L' + N)/N is artinian, since it is
a submodule of L/N. Thus L’ is mini-max. Also, (N + L’)/L’ is noetherian and
[L/L')/[(N+L")/L'] = L/(N + L') is artinian, so L” = L/L’ is mini-max.

Next, assume that L' and L” are mini-max, and fix noetherian submodules N’ C L/
and N” C L"” such that L'/N’ and L”/N" are artinian. Let xi,...,z, be coset
representatives in L of a generating set for N”. Let N = N'+ Rxy+ ...+ Rxj,. Then

N is noetherian and the following commutative diagram has exact rows:

0—>NTL’ N N” 0

L

0 L L L’ 0.

The sequence 0 — L'/(NNL') — L/N — L"/N"” — 0 is exact by the Snake Lemma.
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The module L'/(N N L') is artinian, being a quotient of L'/N’. Since the class of
artinian modules is closed under extensions, the module L/N is artinian. It follows

that L is mini-max. O

The next two lemmas apply to the classes of modules from Lemma 2.1.22 and also

work over non-local rings.
Lemma 2.1.23. Let C be a Serre subcategory of the category of R-modules.
1. Given an exact sequence L' ENY AN L" if ',)L" € C, then L € C.
2. Giwen an R-complex X and an integer i, if X; € C, then H;(X) € C.
3. Given a noetherian R-module N, if L € C, then Exti(N, L), Torf*(N, L) € C.

Proof. (1) Assume that L', L"” € C. By assumption, Im(f),Im(g) € C. Using the
exact sequence 0 — Im(f) — L — Im(g) — 0, we conclude that L is in C.

(2) The module H;(X) is a subquotient of X}, so it is in C by assumption.

(3) If F'is a minimal free resolution of N, then the modules in the complexes

Hompg(F, L) and F' ®g L are in C, so their homologies are in C by part (2). O]

Lemma 2.1.24. Let R — S be a local ring homomorphism, and let C be a Serre
subcategory of the category of S-modules. Fiz an S-module L, an R-module L', an

R-submodule L" C L', and an index i > 0.
1. If Ext(L, L"), Exti(L, L' /L") € C, then Exti»(L, L") € C.
2. If Exthy(L", L), Exth(L'/L", L) € C, then Extiy(L', L) € C.

8. If Torf(L, L"), Tor}'(L, L' /L") € C, then Tori(L, L") € C.
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Proof. We prove part (1); the other parts are proved similarly. Apply Ext’ (L, —) to

the exact sequence 0 — L” — L' — L'/L” — 0 to obtain the next exact sequence:
Ext’ (L, L") — Ext’%(L, L') — Ext»(L, L' /L").

Since L is an S-module, the maps in this sequence are S-module homomorphisms.

Now, apply Lemma 2.1.23(1). m

2.2 Properties of Exth(M, —)

This section documents properties of the functors Ext% (M, —), where M is a mini-

max R-module.

Noetherianness of Exth (A, L)

Lemma 2.2.1. Let A and L be R-modules such that A is artinian and L is m-torsion.
1. Then Hompg(L, A) = Homp(L, A) = Homp(AY, LY).
2. If L is artinian, then Hompg(L, A) is a noetherian R-module.

Proof. (1) The first equality is from Lemma 2.1.5(1). For the second equality, the

fact that A is Matlis reflexive over R explains the first step below:
Homp(L, A) = Homp(L, A™) = Homp(AY, L) = Homp(AY, LY)

where (—)" = Hompz(—, E). The second step follows from Hom-tensor adjointness,
and the third step is from Lemma 2.1.5(1).
(2) If L is artinian, then LY and AV are noetherian over R, so Homgz(AY,LY) is

also noetherian over R. O
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The next result contains part of Theorem 2.1 from the beginning of the chapter.
When R is not complete, the example Homg(FE, E) = R shows that Ext’ (A, L) is

not necessarily noetherian or artinian over R.

Theorem 2.2.2. Let A and L be R-modules such that A is artinian. For each index

i >0 such that p'(L) < 0o, the module Ext’y (A, L) is a noetherian R-module.

Proof. Let J be a minimal R-injective resolution of L. Remark 2.1.11(a) implies that

Tw(J) =2 E#e(), Lemma 2.1.5(2) explains the first isomorphism below:
Hompg (A, J)' = Homp(A, T'n(J)") = Hompg(A, E)#%(L).

Lemma 2.2.1 implies that these are noetherian R-modules. The differentials in the
complex Homp(A, T'n(J)) are R-linear because A is an R-module. Thus, the subquo-

tient Ext’(A, L) is a noetherian R-module. O

Corollary 2.2.3. Let A and M be R-modules such that A is artinian and M is

mini-maz. For each index i > 0, the module Ext'y(A, M) is a noetherian R-module.
Proof. Apply Theorem 2.2.2 and Lemma 2.1.18. O]
The next result contains part of Theorem 2.3 from the beginning of the chapter.

Corollary 2.2.4. Let A and L be R-modules such that R/(Anng(A) + Anng(L)) is
complete and A is artinian. For each index i > 0 such that p's(L) < oo, the module

Extiy(A, L) is noetherian and Matlis reflezive over R and R.

Proof. Theorem 2.2.2 shows that Ext%(A, L) is noetherian over R; so, it is Matlis
reflexive over R. As Anng(A) + Anng(L) C Anng(Ext’ (A, L)), Lemmas 2.1.3(2)

and 2.1.19 imply that Ext% (A, L) is noetherian and Matlis reflexive over R. O
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Corollary 2.2.5. Let A and L be R-modules such that R/(Anng(A) + Anng(L)) is
artinian and A is artinian. Given an index i > 0 such that p'(L) < oo, one has

Ar(Exth (A, L)) < oo.

Proof. Apply Theorem 2.2.2 and Lemma 2.1.20. O

Matlis Reflexivity of Extl, (M, M’)

Theorem 2.2.6. Let A and M be R-modules such that A is artinian and M 1s mini-

max. For each i > 0, the module Extzé(M, A) is Matlis reflexive over R.

Proof. Fix a noetherian submodule N C M such that M/N is artinian. Since A is
artinian, it is an R-module. Corollary 2.2.3 implies that Ext%(M/N, A) is a noetherian
R-module. As Extiy(N, A) is artinian, Lemma 2.1.24(2) says that Extiy(M, A) is a

mini-max R-module and hence is Matlis reflexive over R by Fact 2.1.17. [

Theorem 2.2.7. Let M and N’ be R-modules such that M is mini-max and N’ is
noetherian. Fiz an inder ¢ > 0. If R/(Anng(M) 4+ Anng(N')) is complete, then

Ext’ (M, N') is noetherian and Matlis reflexive over R and over R.

Proof. Fix a noetherian submodule N C M such that M/N is artinian. If the ring
R/(Anng(M) + Anng(N’)) is complete, then so is R/(Anng(M/N) 4+ Anng(N')).
Corollary 2.2.4 implies that Ext’ (M /N, N') is noetherian over R. Since Ext’% (N, N')
is noetherian over R, Lemma 2.1.24(2) implies that Ext%(M, N') is noetherian over
R. As R/(Anng(Exth,(M, N"))) is complete, Fact 2.1.17 implies that Ext (M, N')
is also Matlis reflexive over R. Thus Ext% (M, N') is noetherian and Matlis reflexive

over R by Lemmas 2.1.3(2) and 2.1.19. O

Theorem 2.2.8. Let M and M’ be mini-max R-modules, and fix an index i > 0.
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1. If R/(Anng(M)+Anng(M")) is complete, then Ext'y(M, M') is Matlis reflezive
over R and R.

2. If R/(Anng(M) + Anng(M")) is artinian, then Extly(M, M') has finite length.

Proof. Fix a noetherian submodule N’ C M’ such that M’/N’ is artinian.

(1) Assume that R/(Anng(M) + Anng(M’)) is complete. Theorem 2.2.7 implies
that the module Ext’ (M, N') is Matlis reflexive over R. Theorem 2.2.6 shows that
Exti, (M, M'/N") is Matlis reflexive over R; hence it is Matlis reflexive over R by
Lemma 2.1.19. Thus, Lemmas 2.1.24(1) and 2.1.19 imply that Ext’, (M, M) is Matlis
reflexive over R and R.

(2) This follows from part (1), because of Fact 2.1.17 and Lemma 2.1.20. O
A special case of the next result can be found in [5, Theorem 3].

Corollary 2.2.9. Let M and M’ be R-modules such that M is mini-maz and M’ is
Matlis reflexive. For each index i > 0, the modules Extly(M, M') and Extly(M’, M)

are Matlis reflerive over R and R.

Proof. Apply Theorem 2.2.8(1) and Fact 2.1.17. O

Length Bounds for Homg (A, L)

Lemma 2.2.10. Let A and L be R-modules such that A is artinian and m"T' (L) = 0
for somen > 0. Let t be a non-negative integer such that m'A = m'* A, and let s be

an integer such that s > min(n,t). Then

Homp(A, L) = Homgr(A/m°A, L) = Hompg(A/m*A, (0 :p m?)).
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Proof. Given any map ¢ € Homg(A/m*A, L), the image of 1 is annihilated by m®.
That is, Im(0) C (0 : m®); hence Hompg(A/m*A, L) = Homg(A/m*A, (0 :p m*)). In

the next sequence, the first and third isomorphisms are from Lemma 2.1.5(2):
I‘IOIDR(147 L) = HOIHR(A, Fm(L)) = HomR(A/mSA, Fm<L)) = HOIIIR<A/I’I1$A, L)

For the second isomorphism, we argue by cases. If s > n, then we have m*T',,(L) =0
because m"T' (L) = 0, and the isomorphism is evident. If s < n, then we have n >
s>t somA=m*A=m"A since m'A = m'™1 4; it follows that Hompg(A, ['n(L)) =

Homp(A/m" A, T (L)) = Homp(A/m* A, T (L)). 0

For the next result, the example Hompg(F, E) = R shows that the condition

m"[, (L) = 0 is necessary.

Theorem 2.2.11. Let A and L be R-modules such that A is artinian and m"I'y (L) =
0 for somen > 0. Let t be a non-negative integer such that m'A = m'™ A, and let s

be an integer such that s > min(n,t). Then there are inequalities

Ar(Homp(A, L)) < BE(A)AR(0 :p m*)

Ar(Hompg(A, L)) < Ap(A/m*A) g, (L)

Here, we use the convention 0 - oo = 0.

Proof. We deal with the degenerate case first. If 3%(A) = 0, then A/mA = 0, so
Hompg(A, L) = Homp(A/mA, L) = Homg(0, L) =0

by Lemma 2.2.10. So, we assume for the rest of the proof that S(A) # 0. We also

assume without loss of generality that Ag(0 :f m®) < co.
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Lemma 2.2.10 explains the first step in the following sequence:

/\R(HOIIIR(A, L)) = )\R(HomR(A/msA, (0 L ms)))
< BHA/MPA)AR(0 1, m®)

= ﬁ(l]%(A))\R(O L ms).

The second step can be proved by induction on B{(A/m*A) and Ag(0 ;1 m®). Similarly

we get the sequence:

)\R(HOHIR(A, L)) = )\R(HOHIR<A/ITLSA, (O ‘L ms)))
< MA/m*A) (0 :p m)
A A/ AL
The second step can be proved by induction on Ag(A/m*A) and p%(0 ;7 m*). O

The next result can also be obtained as a corollary to [13, Proposition 6.1]. Ex-

ample 2.6.3 shows that A\p(Ext’ (A, N)) can be infinite when i > 1.

Corollary 2.2.12. If A and N are R-modules such that A is artinian and N is

noetherian, then Agr(Hompg(A, N)) < oo.

Proof. Apply Theorem 2.2.11 and Lemma 2.1.18. [

2.3 Properties of Tor?(M, —)

This section focuses on properties of the functors Tor(M, —), where M is a mini-max

R-module.
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Artinianness of Tor}'(A, L)

The next result contains part of Theorem 2.1. Recall that a module is artinian over

R if and only if it is artinian over }A%; see Lemma 2.1.14.

Theorem 2.3.1. Let A and L be R-modules such that A is artinian. For each index

i >0 such that 3F(L) < oo, the module Tor(A, L) is artinian.

Proof. Lemma 2.1.13(2) implies that pb(LY) = BF(L) < co. By Remark 2.1.9, we
have Ext’y (A, LY) = Tor®(A, L)V. Thus, Tor’(A, L)V is a noetherian R-module by

Theorem 2.2.2, and we conclude that Tor®(A, L) is artinian by Lemma 2.1.15(2). O

For the next result, the example £ ®z R = F shows that Tor!(A, L) is not

necessarily noetherian over R or R.

Corollary 2.3.2. Let A and M be R-modules such that A is artinian and M mini-

maz. For each index i > 0, the module Tor (A, M) is artinian.
Proof. Apply Theorem 2.3.1 and Lemma 2.1.18. O]

The proofs of the next two results are similar to those of Corollaries 2.2.4 and 2.2.5.

The first result contains part of Theorem 2.3 from the beginning of the chapter.

Corollary 2.3.3. Let A and L be R-modules such that R/(Anng(A) + Anng(L)) is
complete and A is artinian. For each index i > 0 such that B(L) < oo, the module

Tor®(A, L) is artinian and Matlis reflezive over R and R.

Corollary 2.3.4. Let A and L be R-modules such that R/(Anng(A) + Anng(L)) is
artinian and A is artinian. Given an indexr i > 0 such that SF(L) < oo, one has

Ar(Torf(A, L)) < co.
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Tor}(M, M) is Mini-max
Theorem 2.3.5. Let M and M’ be mini-max R-modules, and fix an index i > 0.
1. The R-module Torf(M, M') is mini-maz over R.

2. If R/(Anng(M) + Anng(M')) is complete, then Tori(M, M') is Matlis reflexive
over R and R.

3. If R/(Anng(M) 4 Anng(M")) is artinian, then Torl (M, M’) has finite length.

Proof. (1) Choose a noetherian submodule N C M such that M /N is artinian. Lem-
mas 2.1.22 and 2.1.23(3) say that Tor(N, M) is mini-max. Corollary 2.3.2 implies
that Tor*(M /N, M’) mini-max, so Tor*(M, M') is mini-max by Lemma 2.1.24(3).

Parts (2) and (3) now follow from Lemmas 2.1.19 and 2.1.20. O
A special case of the next result is contained in [5, Theorem 3].

Corollary 2.3.6. Let M and M' be R-modules such that M is mini-max and M’ is
Matlis reflexive. For each index i > 0, the module Tor®(M, M') is Matlis reflexive

over R and ﬁ

Proof. Apply Theorem 2.3.5(2) and Fact 2.1.17. ]

Length Bounds for A ®r L

Lemma 2.3.7. Let A be an artinian module, and let a be a proper ideal of R. Fix

an integer t > 0 such that atA = a'*1A. Given an a-torsion R-module L, one has

A®p L2 (A)a'A) @p L= (A)a'A) @p (L/a'L).
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Proof. The isomorphism (A/a’A) @p L = (A/a’A) ®@p (L/a’L) is from the following:

(A/a'A) ®p L= [(A/d'A) @R (R/a")] @ L
= (A/atA) QR [(R/at) ®p L]

> (A/a'A) @r (L/alL).

For the isomorphism A @ L = (A/a'A) @ L, consider the exact sequence:

0—a'Ad—A— A/a'A— 0.

The exact sequence induced by — ®x L has the form

(@A) ®p L - AR L — (A/a'A) @z L — 0. (2.1)

The fact that L is a-torsion and a’A = a’™A for all i > 1 implies that (a’A)®z L = 0,

so the sequence (2.1) yields the desired isomorphism. O

Theorem 2.3.8. Let A be an artinian R-module, and let L be an m-torsion R-module.

Fiz an integer t > 0 such that m'A = m*™1A. Then there are inequalities

Ae(A @5 L) < Ar (A/m'A) B(L) (2.2)

(A @k L) < SR (L/m'L). (23)

Here we use the convention 0 - oo = 0.

Proof. From Lemma 2.3.7 we have

A®p L= (A/m'A) @x (L/m'L). (2.4)
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Lemmas 2.1.18 and 2.1.20 imply that Ag(A/m’A) < co and Bf(A) < oco.

For the degenerate cases, first note that Ag(A/m‘A) = 0 if and only if SE(A) = 0.
When Ag(A/mfA) = 0, the isomorphism (2.4) implies that A ® g L = 0; hence the
desired inequalities. Thus, we assume without loss of generality that 1 < SF(A) <
Ar(A/m!A). Further, we assume that 3(L) < co.

The isomorphism (2.4) provides the first step in the next sequence:
Me(A®r L) = Ag((A/m'A) @p (L/m'L)) < A\g(A/m*A)BE(L).

The second step in this sequence can be verified by induction on Ag(A/m'A) and

BE(L). This explains the inequality (2.2), and (2.3) is verified similarly. ]

Notice that the condition that L is m-torsion from the last theorem is necessary.
For instance, suppose that dim(R) > 0, A= F and L = R. Then F ®r R = E has
infinite length but Az(E/m!E)B(R) has finite length for any t.

The next corollary recovers [13, Proposition 6.1]. Note that Example 2.6.4 shows

that Ag(Tor®(A, A’)) can be infinite when i > 1.
Corollary 2.3.9. If A and A’ are artinian R-modules, then Agr(A ®r A') < cc.

Proof. Apply Theorem 2.3.8 and Lemmas 2.1.18 and 2.1.20. (Alternatively, apply

Corollary 2.12 and Matlis duality.) O

2.4 The Matlis Dual of Ext,(L, L)

This section contains the proof of Theorem 2.4 from the beginning of the chapter;
see Corollary 2.4.13. Most of the section is devoted to technical results for use in the

proof.



29

Lemma 2.4.1. Let L be an R-module. If I is an R-injective resolution of L, and J

~

s an fi-mjectwe resolution of]?i®R L, then there is a homotopy equivalence 'y, (1) —

Pa(J) = Fya(J)-

Proof. Each injective R-module .J' is injective over R; this follows from the isomor-
phism Hompg(—,J') = HomR(—,Homﬁ(E, J)) = Homﬁ(é ®pr —,J') since R is flat
over R. Hence there is a lift f: I — J of the natural map £: L — R ®pg L. This lift
is a chain map of R-complexes.

We show that the induced map I'n(f): I'n(I) = I'n(J) = I 5(J) is a homo-
topy equivalence. As I'n(I) and I'y,(J) are bounded-above complexes of injective R-
modules, it suffices to show that I'y,(f) induces an isomorphism on homology in each
degree. The induced map on homology is compatible with the following sequence:

H (D (1)) 2 HE(L) 22 1 (R @p L) 2 H Dy ().

o)

The map HY (¢): H: (L) — an(ﬁ ®pr L) is an isomorphism (see the proof of [9,

Proposition 3.5.4(d)]), so we have the desired homotopy equivalence. O

Lemma 2.4.2. Let L and L' be R-modules such that L is m-torsion. Then for each

index 1 = 0, there are R-module 1somorphisms
Exth(L, L') 2 Exthy(L, R®p L') 2 Exth(L, Rog L').

Proof. Let I be an R-injective resolution of L', and let J be an }A%—injective resolution

of R®g L'. Because L is m-torsion, Lemma 2.1.5(2) explains the three isomorphisms
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in the next display:

Hompg (L, ) 2 Homg(L,T'w(I)) ~ Homg(L,T'w(J)) = Homg(L, J)

Homp (L, Tw(.J)) = Homp (L, T, #(J)) = Homp(L, T, =(J)) = Homgz(L, J).

The homotopy equivalence above is from Lemma 2.4.1. The second equality above is
from Lemma 2.1.5(1). Since L is m-torsion, it is an ﬁ—module, so the isomorphisms
and the homotopy equivalence in this sequence are R-linear. In particular, the com-
plexes Hompg(L,I) and Hompg(L,.JJ) and Hompz(L, J) have isomorphic cohomology

over R, so one has the desired isomorphisms. ]

The next result contains Theorem 2.2 from the beginning of the chapter. It shows,
for instance, that, given artinian R-modules A and A’, there are noetherian R-modules
N and N’ such that Ext’ (A, A) = Ext%(N, N'); thus, it provides an alternate proof

of Corollary 2.2.3.

Theorem 2.4.3. Let A and M be R-modules such that A is artinian and M is mini-

maz. Then, for each index i > 0, we have Ext’y(A, M) = Ext%(Mv, AY).

Proof. Case 1: R is complete. Let F' be a free resolution of A. It follows that each
F; is flat, so the complex F is an injective resolution of AY; see [12, Theorem 3.2.9].
We obtain the isomorphism Ext’ (A, M) = Ext’% (MY, AY) by taking cohomology in

the next sequence:
Homp(F, M) = Hompg(F, M"") = Homgp(M", F").

The first step follows from the fact that M is Matlis reflexive; see Fact 2.1.17. The

second step is from Hom-tensor adjointness
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Case 2: the general case. The first step below is from Lemma 2.4.2:
Exth(A, M) = Exto(A, R @p M) = ExtL((R @ M)", A”) 22 Ext: (MY, AY).

Here (—)" = Homp(—, F). Since M is mini-max, it follows that R®p M is mini-max
over R. Thus, the second step is from Case 1. For the third step use Hom-tensor

adjointness and Lemma 2.1.5(1) to see that (R ®p M)" = MY and A® = A, O

Fact 2.4.4. Let L and L' be R-modules, and fix an index 7 > 0. Then the following

diagram commutes, where the unlabeled isomorphism is from Remark 2.1.9:

6 .
Ext’, (L/,L)

Exti (L', L) Extb (L', L)Y
Ext;'%(L/,aL)j j(eiL,L)V

Extiy (L, LYV) ——— Tor™(L/, LV).

Lemma 2.4.5. Let N and L be an R-module such that N is noetherian. Fixz an index
i > 0. Then the map Ext(N,d): Exth(N, L) — Exth(N, LVV) is an injection. If

ph(L) < oo, then Extly(k,d1) is an isomorphism.

Proof. Remark 2.1.9 states that
Ok, : Tor (N, L") — Exth(N, L)Y
is an isomorphism. Hence (©Y%;,)" is also an isomorphism. Also the map

Ot v,y - ExtR(N, L) = Exti(N, L)""

i
xtpr

is an injection. Using Fact 2.4.4 with L' = N, we conclude that Exti(N, ;) is an

injection.



32

The assumption % (L) < co says that Exth(k, L) is a finite dimensional k-vector

space, so it is Matlis reflexive over R; that is, the map
Oreei (h,ry - Exty(k, L) — Exti(k, L)

is an isomorphism. Using Fact 2.4.4 with L' = k, we conclude that Ext’(k,d;) is an

isomorphism, as desired. O

Lemma 2.4.6. Let L be an R-module such that pkL(L) is finite. Then

L=L'e (PE)

a€S
where S is an index set, and p%(L') is finite.

Proof. Let uk(L) = n. Note that any map ¢ € Homg(FE, F) = R is just multiplication
by some element 7 € R and hence any map in ¢ € Homg(FE, E") = R" is just
multiplication by some vector v € R". Givenv € R" let ¢, € Hom r(E, E™) denote the
map which is multiplication by the vector v. Let I° = J& (.7 Eu) with I'n(J) =0,
where 7 is an index set. Here E, = E for every a. Let ¢ : I® — I' be the first map
in the injective resolution I. Then I'n(v) : @, o7 Ea = @), E can be described
component wise as (P, )acr With v, € R". Since R" is a noetherian ﬁ—module7 SO

is the submodule N := >’ Ifzva. Therefore we can choose aj,...,q,, € T such

a€es
that N = ZTzl ﬁvaj. Given 3 € T choose ri,...,7r,, € R such that Vg =Y i TiUgy-
Let X5 := {[e, —rie,—ree,...,—rme] € Eg & (P, Es)| e € E}. Then the map
from E to Xz defined by e — [e, —r1e, —rae, ..., —rpe] is an isomorphism. However,

X3 is in Ker(¢) so it is naturally a submodule of L. Since an injective submodule

of L is a direct summand, Xg = E is naturally a direct summand of L. Let § =
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a1,0Q9,...,0, . Then the sum X3 is an internal direct sum of 1Y, and
T\{ ’ ) ) } BES B )

> Xg+ iEai = Eo =Tu(1").

BES i= €T

It follows that > pes Xp 18 isomorphic to a direct sum of copies of F and is naturally
a submodule of L. Therefore L =Y 5 ¢ Xs® L' = 3", o '@ L’ where the injective
hull of L' is J & (@], E.,). Thus p% (L") = m and the result follows. O

Lemma 2.4.7. Let A and L be R-modules such that A is artinian and p' (L) is finite

for some i > 0. Then the map
Ext’(A,0L): Bxth(A, L) — Exty(A, LYY)
18 an isomorphism, and the map
Ext (A, 0): Extid (A, L) — Extid (A, LYY)

18 an injection.

Proof. Case 1 suppose ¢ = 0. Lemma 2.4.5 implies that the map
Hompg(k,dr): Hompg(k, L) — Homp(k, LVY)

is an isomorphisms and the map Exty(k, §z) is an injection. As the biduality map 6,

is injective, we have an exact sequence
0— L2 LYY — Coker s, — 0. (2.5)

Using the long exact sequence associated to Extz(k, —), we conclude that Hompg(k, Coker ) =
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0. In other words, we have u%(Cokerd;) = 0. Thus Eg(Cokerd;) does not have
E as a summand by Remark 2.1.11(a). That is, we have I'(Cokerdy) = 0, so

Lemma 2.1.5(2) implies that
Hompg(A, Cokerdyr) = Homp (A, I'n(Cokerdy)) = 0.

From the long exact sequence associated to Ext (A, —) with respect to (2.5) it follows
that Homp(A,§;) is an isomorphism and Extp(4, ;) is an injection.

Now suppose that ¢ > 0. Let J be a minimal injective resolution of L and let
L' = Ker(J"=! — J?). It suffices to show that the map Exty(A4, &) is an isomorphism
and Ext%(A,d}) is an injection. Since uk(L') = pk(L) < co Lemma 2.4.6 implies
that L' = L" & (P,cs F) such that S is an index set and p°(L”) < co. Since the
maps Ext}, (A, 0@, s B)) and Ext(A, 0(@,.s B)) are both just the map from the zero
module to the zero module it suffices to show that Extp(A, ) is an isomorphism
and Exth(A,dp) is an injection.

Lemma 2.4.5 implies that for £ = 0,1 the map
EXt%(k, 5[/’): EXt%(l{;, L//) N EXt%(k, L//\/V)

is an isomorphisms and the map Ext%(k,d») is an injection. From the long exact
sequence associated to Ext(k, —) with respect to (2.5) we conclude that for ¢t = 0,1
we have Ext(k, Coker d;») = 0. In other words, we have u%(Coker ;) = 0. Let [
be a minimal injective resolution of Coker d;». The previous paragraph shows that
for t = 0,1 the module I does not have E as a summand by Remark 2.1.11(a). That

is, we have I'y,(I") = 0, so Lemma 2.1.5(2) implies that

HOHIR(A, It) = HomR(A, Fm(It)) =0.
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It follows that Ext% (A, Coker(dr)) = 0 for ¢ = 0,1. From the long exact sequence
associated to Extn(A, —) with respect to (2.5), it follows that Ext}(A,d.+) is an

isomorphism, Ext% (A, d.») is an injection and the result follows. m
We are now ready to tackle the main results of this section.

Theorem 2.4.8. Let A and L be R-modules such that A is artinian and p'% (L) is

finite for some 1 > 0.

1. There is an R-module isomorphism Exth(A, L)’ = Tor®(A, LV) where ()" =
Homp(—, E).

2. If R/(Anng(A) + Anng(L)) is complete, then ©Y; provides an isomorphism
Torf(A, LV) = Exth (A, L)V.

Proof. (2) Corollary 2.2.4 and Lemma 2.4.7 show that the maps

Omei ) Extip(A, L) = Extyp(A, L)Y

Exth(A,6.): Exth(A, L) — Exth(A, LYY)

are isomorphisms. Fact 2.4.4 implies that (©%;)" is an isomorphism, so we conclude
that ©Y;, is also an isomorphism.

(1) Lemma 2.4.2 explains the first step in the next sequence:

Extiy(A, L)® 2 Extt(A, R @g L)’
= Torf(A, (R@p L)")
= Tor/(A, (R®p L)")

=~ Torf(A, LY).
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The second step is from part (2), as R is complete and M%(§®RL) = p’(L) < co. The
fourth step is from Hom-tensor adjointness. For the third step, let P be a projective
resolution of A over R. Since R is flat over R, the complex R ®pr P is a projective
resolution of R @z A = A over R;: see Lemma 2.1.4(1). Thus, the third step follows

from the isomorphism (}A% ®r P)®pz (fAi ®@r L)’ = P ®pg (ﬁ ®@pr L)". O

Corollary 2.4.9. Let A and M be R-modules such that A is artinian and M is mini-
maz. For each index i > 0, one has Ext'y(A, M)" = Tor®(A, MV), where (=)’ =

Homp(—, E).
Proof. Apply Theorem 2.4.8(1) and Lemma 2.1.18. O

Theorem 2.4.10. Let M and L be R-modules such that M is mini-maz and p'y (M)
and 'S (M) are finite for a fived i > 0. If R/(Anng (M) + Anng (L)) is complete,

then ©Y,, is an isomorphism

Proof. Since M is mini-max over R, there is an exact sequence of R-modules homo-
morphisms 0 - N — M — A — 0 such that N is noetherian and A is artinian. The
long exact sequences associated to Tor(—, L") and Exty(—, L) fit into the following

commutative diagram:

-+ —— Torf(N, LV) — Tor;"(M, LV) — Tor[ (A, LY) —— - - -

Leﬁ\w lG}WL lekL

e Bxtip(N, L) ——= Bixtip(M, L)" —— Bixtip(A, L)Y —= -

Remark 2.1.9 shows that ©%,; and % are isomorphisms. Theorem 2.4.8(2) implies
that ©%, and ©%' are isomorphisms. Hence the Five Lemma shows that ©%,; is an

isomorphism. O
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Corollary 2.4.11. Let M and L be R-modules such that M is Matlis reflexive. Fix

an index © > 0 such that p*(L) and '™ (L) are finite. Then ©Y,; is an isomorphisms.

Corollary 2.4.12. Let M and M' be mini-maz R-modules such that R/(Anng (M) +

Anng (L)) is complete. Then

Exth (M, M')" = Extiy(M, M')" = Tor®(M, M")

where (—)” = Homz(—, E).

Proof. Theorem 2.2.8(1) implies that Ext’ (M, M') is Matlis reflexive over R, so

Lemma 2.1.5(1) and Fact 2.1.17 imply that Ext’ (M, M")* = Ext’ (M, M")V. O

The next result contains Theorem 2.4 from the beginning of the chapter. A special

case of it can be found in [5, Theorem 3].

Corollary 2.4.13. Let M and M’ be mini-mazx R-modules, and fix an index i > 0.
If either M or M’ is Matlis reflezive, then ©Y,,, is an isomorphism, so one has

Extly (M, M')" = Extly(M, M")Y = Tor/{(M, M"), where (—)” = Homz(—, E).
Proof. Apply Theorem 2.4.10 and Fact 2.1.17. [

The next example shows that the modules Ext%(L, L')Y and Tor*(L, L") are not

isomorphic in general.

Example 2.4.14. Assume that R is not complete. We have Anng(E) = 0, so the ring
R/ Anng(E) = R is not complete, by assumption. Thus, Fact 2.1.17 implies that F is
not Matlis reflexive, that is, the biduality map 0z: F < EVY is not an isomorphism.
Since EVY is injective, we have EYY = E @ J for some non-zero injective R-module

J. The uniqueness of direct sum decompositions of injective R-modules implies that
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EVY 2 E. This provides the second step below:
Homp(E,E)Y 2 EVW #E~E@r R~ E @y E".

The third step is from Lemma 2.1.4(1), and the remaining steps are standard.

2.5 Vanishing of Ext and Tor

In this section we describe the sets of associated primes of Hompg (A, M) and attached
primes of A ®g M over R. The section concludes with some results on the related

topic of vanishing for Ext’ (A, M) and Tor(A, M).

Associated and Attached Primes

The following is dual to the notion of associated primes of noetherian modules; see,

e.g., [20] or [21, Appendix to §6] or [24].

Definition 2.5.1. Let A be an artinian R-module. A prime ideal p € Spec(R) is
attached to A if there is a submodule A’ C A such that p = Anng(A/A"). We let

Attp(A) denote the set of prime ideals attached to A.

Lemma 2.5.2. Let A be an artinian R-module such that R/ Anng(A) is complete,

and let N be a noetherian R-module. There are equalities

Suppz(A4Y) = Upeasspan)V (P) = Upeattn(a)V (p)
AttR(Nv) = ASSR(N)

AttR(A) = ASSR(A\/).
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Proof. The R-module AY is noetherian by Lemma 2.1.15(3), so the first equality is
standard, and the second equality follows from the fourth one. The third equality is

from [28, (2.3) Theorem]. This also explains the second step in the next sequence
Attgr(A) = Attp(AYY) = Assg(AY)

since AV is noetherian. The first step in this sequence follows from the fact that A is

Matlis reflexive; see Fact 2.1.17. O]

The next proposition can also be deduced from a result of Melkersson and Schen-

zel [22, Proposition 5.2].

Proposition 2.5.3. Let A and L be R-modules such that p%(L) < oo and A is

artinian. Then
ASSE(HOIHR(A, L)) = ASSE(AV) N Suppﬁ(Fm(L)V) = AttE(A) N Suppé(Fm(L)v).

Proof. The assumption p%(L) < oo implies that ['y(L) is artinian. This implies that
I'w(L)" is a noetherian R-module, so a result of Bourbaki [7, IV 1.4 Proposition 10]

provides the third equality in the next sequence; see also [9, Exercise 1.2.27]:

Assp(Homp(A, L)) = Assp(Homp(A, I'n(L)))
= Assp(Homp(T'w(L)Y, AY))
= Assp(AY) N Suppp(Tw(L)Y)

= Att(A) N Suppp(Twm(L)Y).

The remaining equalities are from Lemmas 2.1.5(2), 2.2.1(1), and 2.5.2, respectively.
]
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Corollary 2.5.4. Let M and M’ be mini-maz R-modules such that the quotient

R/(Anng(M) 4+ Anng(M')) is complete.
1. For each index i > 0, one has Ext'y (M, M') = Ext’ (M"Y, MY).

2. If M' is noetherian, then

Assp(Homp(M, M')) = Attz(M"™) N Suppp(Tm(MY)Y).

Proof. (1) The first step in the next sequence comes from Theorem 2.2.8(1):

Exth (M, M) = Extb (M, M)V = (Tor® (M, M'V))¥ = Exth (M"Y, MY).

The remaining steps are from Theorem 2.4.10 and Remark 2.1.9, respectively.

(2) This follows from the case i = 0 in part (1) because of Proposition 2.5.3. [

Proposition 2.5.5. Let A and L be R-modules such that A is artinian and SE(L) is

finite. Then

Attz(A®p L) = Ass(AY) N Suppp(Tw(LY)Y) = Attz(A) N Suppg(Tw(LY)Y).

Proof. Theorem 2.3.1 implies that A ®g L is artinian. Hence we have

Homp(A ®g L, E) = Homp(A ®p L, E) = Hompg(A, L")

by Lemma 2.1.5(1), and this explains the second step in the next sequence:

Attz(A ®pr L) = Assg(Homp(A ®p L, E)) = Assp(Hompg (A, LY))
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The first step is from Lemma 2.5.2. Since u%(LY) < oo by Lemma 2.1.13(2), we

obtain the desired equalities from Proposition 2.5.3. ]

Next, we give an alternate description of the module 'y, (L)Y from the previous

results. See Lemma 2.5.2 for a description of its support.

Remark 2.5.6. Let L be an R-module. There is an isomorphism T'y, (L)Y = LV. In
particular, given a noetherian R-module N, one has 'y (NY)Y = R®p N. When R
is Cohen-Macaulay with a dualizing module D, Grothendieck’s local duality theorem
implies that T'w(N) = R ®p E><;t}1%im(R)(]\f7 D); see, e.g., [9, Theorem 3.5.8]. A sim-
ilar description is available when R is not Cohen-Macaulay, provided that it has a

dualizing complex; see [15, Chapter V, §6].

Vanishing of Hom and Tensor Product

For the next result note that if L is noetherian, then the conditions on u%(L)
and R/(Anng(A) + Anng(I'y(L))) are automatically satisfied. Also, the example
Hompg(F,E) = R when R is complete shows the necessity of the condition on

R/(Anng(A) + Anng(I'n(L))).

Proposition 2.5.7. Let A be an artinian R-module. Let L be an R-module such that
R/(Anng(A) + Anng(Tw(L))) is artinian and pu%(L) < oco. Then Hompg(A, L) = 0 if
and only if A=mA or I'y(L) =0.

Proof. It ', (L) = 0, then we are done by Lemma 2.1.5(2), so assume that I'y,(L) # 0.
Theorem 2.2.2 and Lemma 2.1.20 show that Hompg(A, L) has finite length. Thus

Proposition 2.5.3 implies that Homg(A, L) # 0 if and only if mR € Assz(AY), that
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is, if and only if depthz(AY) = 0. Lemma 2.1.13(3) shows that depthz(AY) = 0 if
and only if mRA # A, that is, if and only if mA # A. ]

For the next result note that the conditions on L are satisfied when L is artinian.

Proposition 2.5.8. Let A be an artinian R-module, and let L be an m-torsion R-

module. The following conditions are equivalent:
1. AQr L =0;
2. either A =mA or L = mL; and
3. either depthy(AY) > 0 or depthyz(LY) > 0.

Proof. (1) <= (2) If A®gr L =0, then we have

0=Ar(A®g L) = BH(A)BHL)

so either Bf{(A) = 0 or B(L) = 0, that is A/mA = 0 or L/mL = 0. Conversely,
if A/mA = 0 or L/mL = 0, then we have either 3f{(4) = 0 or (L) = 0, so
Theorem 2.3.8 implies that Ag(A ®gr L) = 0.

The implication (2) <= (3) is from Lemma 2.1.13(3). O
The next result becomes simpler when L is artinian, as I'y,(L) = L in this case.

Theorem 2.5.9. Let A and L be R-modules such that A is artinian and p%(L) < oo.

The following conditions are equivalent:
1. HOIIIR(A, L) = 0,’
2. Hompg(A,T'w(L)) =0;

3. Homz(I'n(L)Y, AY) = 0;
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4. there is an element x € Anng(I'n(L)) such that A = zA;
5. Anngp(I'n(L))A = A;
6. Anng(I'w(L)) contains a non-zero-divisor for AY; and
7. Att(A) N Supps(Iw(L)Y) = 0.

Proof. The equivalence (1) <= (2) is from Lemma 2.1.5(2). The equivalence (2) <=
(7) follows from Proposition 2.5.3, and the equivalence (2) <= (3) follows from
Lemma 2.2.1(1). The equivalence (4) <= (6) follows from the fact that the map
A 5 A is surjective if and only if the map AY = AV is injective. The equivalence
(5) <= (6) follows from Lemma 2.1.13, parts (3) and (5).

The module I'y (L) is artinian as u%(L) < oo. Since AV and I'y(L)" are noetherian

over R, the equivalence (3) <= (6) is standard; see 9, Proposition 1.2.3]. O

As with Theorem 2.5.9, the next result simplifies when L is noetherian. Also, see

Remark 2.5.6 for some perspective on the module I'y, (LY)Y.

Corollary 2.5.10. Let A be a non-zero artinian R-module, and let L be an R-module

such that BE(L) < oo. The following conditions are equivalent:
1. A®r L =0;
2. Annp(T'w(LY))A = A;
3. there is an element x € Anng(I'n(LY)) such that xA = A;
4. Anng(I'(LY)) contains a non-zero-divisor for AY; and

5. Att5(A) N Suppp(Twm(LY)Y) = 0.
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Proof. For an artinian R-module A’, one has Attz(A’) = 0 if and only if A" =0 by
Lemma 2.5.2. Thus, Proposition 2.5.5 explains the equivalence (1) <= (5); see [24,
Corollary 2.3]. Since one has A®gL = 0if and only if (A®g L)Y = 0, the isomorphism
(A®g L)Y =2 Hompg(A, LY) from Remark 2.1.9 in conjunction with Theorem 2.5.9

shows that the conditions (1)—(4) are equivalent. O

Depth and Vanishing

Proposition 2.5.11. Let A and L be R-modules such that A is artinian. Then
Ext’% (A, L) = 0 for all i < depthg(L).

Proof. Let J be a minimal R-injective resolution of L, and let i < depthg(L). Tt
follows that Ext’(k, L) = 0, that is p%(L) = 0, so the module E does not appear as a
summand of J*. As in the proof of Theorem 2.2.2, this implies that Homp (A, J)* = 0,

so Exth(A, L) = 0. O

The next example shows that, in Proposition 2.5.11 one may have Ext%(A, L) = 0

when ¢ = depth(L). See also equation (2.6).
Example 2.5.12. Assume that depth(R) > 1. Then mFE = FE by Lemma 2.1.13(3),
so Lemma 2.2.10 implies that

Exty(E, k) = Homg(E, k) = Homg(E/mE, k) = 0

even though depthy(k) = 0.

Proposition 2.5.13. Let A and L be R-modules such that A is artinian. Then for

all i < depthy(LY) one has Torf(A, L) = 0.
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Proof. When i < depthg(L"), one has Torj'(A, L) = Exth(A,LY) = 0 by Re-
mark 2.1.9 and Proposition 2.5.11, so Tor(A, L) = 0. O

Theorem 2.5.14. Let A and A’ be artinian R-modules, and let N and N’ be noethe-

rian R-modules. Then one has

gradesz(Anng(A4'); AY) = inf{i > 0| Ext}(4, A) # 0} (2.6)
gradeg(Anng(N'); AY) = inf{i > 0| Exth(A, N"Y) # 0} (2.7)
gradegy(Anngz(N'); N) = inf{i > 0| Exth(NY, N") # 0}. (2.8)

Proof. We verify equation (2.6) first. For each index i, Theorem 2.4.3 implies that
Extj(A, A) = Ext (A", AY).
Since A and A’V are noetherian over ﬁ, this explains the first equality below:
inf{i > 0 | Ext’(A4, A') # 0} = grades(Annz(A"™Y); AY) = grades(Anng(A'); AY).

The second equality is standard since A" = Homp(A’, ) by Lemma 2.1.5(1).
Next, we verify equation (2.7). Since N’V is artinian, equation (2.6) shows that

we need only verify that
grades(Anng(N™); AY) = gradey(Anng(N'); AY). (2.9)
For this, we compute as follows:

~ (1) ~ (2)
R®p N' = Homp(Hompz(R @p N', E), E) = Homp(N", E).
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Step (1) follows from the fact that R®g N’ is noetherian (hence Matlis reflexive) over

~

R, and step (2) is from Hom-tensor adjointness. This explains step (4) below:

~

Anng(N") © Anng(Homp (N, E)) @ Annﬁ(ﬁ ®@r N') © Anng(N')R.
Steps (3) and (5) are standard. This explains step (6) in the next sequence:
grades(Anng(N™); AY) © gradeE(AnnR(N’)I??; AY) @ gradep(Anng(N'); AY).

Step (7) is explained by the following:
N ~ (8) PN
Ext%(R/ Anng(N')R, AY) = Ext5(R ®g (R/ Anng(N')), AY)

(9)

=~ Exth(R/ Anng(N'), AY).

Step (8) is standard, and step (9) is a consequence of Hom-tensor adjointness. This
establishes equation (2.9) and thus equation (2.7).

Equation (2.8) follows from (2.7) because we have
gradep(Anng(N'); NYY) = widthg(Anng(N'); NV) = gradey(Anng(N'); N)

by Lemma 2.1.13(1). O

Corollary 2.5.15. Let A and A’ be artinian R-modules, and let N and N’ be noethe-
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rian R-modules. Then

grades(Anng(A'); AY) = inf{i > 0| Tor/(A, A") # 0} (2.10)
gradeg(Anng(N'); AY) = inf{i > 0 | Torf*(A, N') # 0} (2.11)
gradeg(Anng(N'); N) = inf{i > 0 | Tor®(NY, N') # 0}. (2.12)

Proof. We verify equation (2.10); the others are verified similarly.
Since Ext(A, A’) # 0 if and only if Homz(Ext,(A, A'), E) # 0, the isomorphism
Homz(Extly (A, A), E) = Torj(A, A") from Corollary 2.4.9 shows that

inf{i > 0| Exth(A, A') # 0} = inf{i > 0| Tor®(A4, A) # 0}.

Thus equation (2.10) follows from (2.6). O

2.6 Examples

This section contains some explicit computations of Ext and Tor for the classes of
modules discussed in this paper. Our first example shows that EX‘G%(A, A’) need not

be mini-max over R.

Example 2.6.1. Let & be a field, and set R = k[X1, ..., X4](x,,...x,)- We show that

Homg(E, E) = R is not mini-max over R. Note that R is countably generated over
k, and R = k[X1,...,X4] is not countably generated over k. So, R is not countably
generated over R. Also, every artinian R-module A is a countable union of the finite
length submodules (0 :4 m™), so A is countably generated. It follows that every mini-

max R-module is also countably generated. Since R is not countably generated, it is

not mini-max over R.
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Our next example describes Ext’ (A, A’) for some special cases.

Example 2.6.2. Assume that depth(R) > 1, and let A be an artinian R-module. Let
r € m be an R-regular element. The map F = F is surjective since F is divisible,
and the kernel (0 :g z) is artinian, being a submodule of E. Using the injective

resolution 0 — £ = E — 0 for (0 :g 2), one can check that

;

(0 LAV :L‘) ifi=0

1%

Extp(4, (05 7)) 2 AV /A ifi=1

0 ifi0,1.

\

For instance, in the case A = (0 :g ), the isomorphism (0 :g z)¥ = }A%/xﬁ implies

R/zR ifi=0,1

1%

Ext%((O g x),(0:gx))
0 if i 40,1,

On the other hand, if z,y is an R-regular sequence, then (0 :p y)" = E/yﬁ, it follows

that z is (0 :g y)"-regular, so one has

~ ~

. R/(z,y)R ifi=1
Ext®((0:ry),(0:gx)) =
0 if i # 1.

The next example shows that Ext’;(A4, N) need not be mini-max over R.

Example 2.6.3. Assume that R is Cohen-Macaulay with d = dim(R), and let A be
an artinian R-module. Assume that R admits a dualizing (i.e., canonical) module D.

(For instance, this is so when R is Gorenstein, in which case D = R.) A minimal
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injective resolution of D has the form

J = 0= Dupypy=0 Er(B/p) = - = Bri(p)=a_1 Er(B/p) = E = 0.

In particular, we have I'y(J) = (0 —-0—0—--- - 0 — E — 0) where the copy of

E occurs in degree d. Since Homg(A, J) = Hompg(A, 'y (J)), it follows that

A AV ifi=d
Exth(A, D) =
0 ifitd

Assume that d > 1, and let z € m be an R-regular element. It follows that the
map D = D is injective, and the cokernel D/xD is noetherian. Consider the exact
sequence 0 — D = D — D/xD — 0. The long exact sequence associated to

Exth(A, —) shows that

.

0:gvz) ifi=d—1

Extyp(A, D/aD) = ¢ AY [z AV ifi=d

0 ifi£d—1,d.

\

As in Example 2.6.2, we have (0 :z z)” = R/zR and

A R/zR ifi=d—1,d
Extk((0 :g z),D/xD) =
0 ifi£d—1,d.
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Also, if z,y is an R-regular sequence, then (0 :p y)¥ = ﬁ/yﬁ and

~ ~

| R/(x,y)R ifi=d
ExtR((0:g y), D/xD) = (@)

0 if § £ d.

Next, we show that Tor®(A, A’) need not be noetherian over R or R.

Example 2.6.4. Assume that R is Gorenstein and complete with d = dim(R).
(Hence D = R is a dualizing R-module.) Given two artinian R-modules A and
A’, Theorem 2.3.1 implies that Tor/(A, A') is artinian, hence Matlis reflexive for
each index 4, since R is complete. This explains the first isomorphism below, and

Remark 2.1.9 provides the second isomorphism:

| ‘ A ifi=d
Tor[/(A, E) = Tor{ (A, E)"Y = Extp(A, EV)" = Exth(A4, R)Y =

0 ifid.

Example 2.6.3 explains the fourth isomorphism. Assume that d > 1, and let z € m

be an R-regular element. Then (0 :p 2)¥ = R/xR, so Example 2.6.3 implies that

(

AJzA  ifi=d—1

Tor{/(A, (0 :p ) = Extip(A, (0:5 2)")" 2 S (04 2) ifi=d

0 ifi£d—1,d

\
0:pa) ifi=d—1,d
Torf((0 :5 2), (0 :p 7)) =
0 ititd—1,d
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On the other hand, if z,y is an R-regular sequence, then

Tor (0 1p ). (0 ip 2 & 4 V) = Bryepnlk) i =d

0 if i #£d.
Lastly, we provide an explicit computation of £ ®p E.

Example 2.6.5. Let k be a field and set R = k[X,Y]/(XY,Y?). This is the com-
pletion of the multi-graded ring R’ = k[X,Y]/(XY,Y?) with homogeneous maximal
ideal m’ = (X, Y)R'. The multi-graded structure on R’ is represented in the following
diagram:
v
o e

where each integer valued point, (n,m), represents the corresponding monomial,
z"y™, in R'. Tt follows that £ & FEp(k) = k[X '] ® kY ! with graded module

structure given by the formulas

X-1=0 X - X"n=Xx'" X-Yl=0

Y- -1=0 Y. .Y 1=1 Y - XT"=0

for n > 1. Using this grading, one can show that mE = m'E = k[X '] and m*F =

mFE. These modules are represented in the next diagrams:
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It follows that E/mE = k., so Lemma 2.3.7 implies that

EQrE=(E/mE)®g (E/mE) =2 krk = k.

A similar computation shows the following: Fix positive integers a, b, c such that
¢ > b, and consider the ring S = k[X,Y]/(X%Y? Y*) with maximal ideal n and

Es = Eg(k). Then n°°Eg = n°"*"1 Eg and we get the following:

Be/n“ s 2 S/(X*,Y*™)S = k[X,Y]/(X", V*™)

Es ®s Es = (Es/n""Eg) ® (Es/n“"Eg) = §/(X*,Y*™")S.
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Chapter 3

Homology of Artinian and Matlis
Reflexive Modules Over

Commutative Rings

Introduction

The results in this chapter are joint work with B. Kubik and S. Sather-Wagstaff.
Throughout this chapter R will denote a commutative noetherian ring with iden-
tity. In this chapter we generalize many of the results from the previous chapter to

the case where R may not be local.

3.1 Background

Definition 3.1.1. Given an R-module L we let Eg(L) denote the injective hull of
L. Let Er = @nemspec(r) Er(f2/m) be the minimal injective cogenerator for R.

The terminology minimal injective cogenerator refers to the fact that an injective
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R-module I will cause Homg(—, ) to be a faithful functor if and only if Ey is a
direct summand of /. To see this note that for any m € m-Spec(R) and any injective
R-module I the module Homg(Eg(R/m), I) is nonzero if and only if Ex(R/m) is
a direct summand of I. Let (—)" = Hompg(—, Eg) be Matlis duality functor.
When is clear to which ring we are referring we will simply write (—)¥ for (—)Y(%).
Set (—)¥Y = ((—)Y)". For each R-module L, let 6,: L — LYY denote the natural
biduality map given by 6.(l)(¢)) = (1), where | € L and ¢ € Hompg(L, Eg). As
in the previous chapter we say tht an R-module L is Matlis reflexive if the natural

biduality map d;, is an isomorphism.

Lemma 3.1.2. Fiz a proper ideal a C R. For each prime ideal p € V(a) we have
Er(R/p) = Bp, (R°/pRP) = Ego (R /p ). (3.1)
Also there is an isomorphism

Ep = @mem-spec(R)mV(a) Er(R/m). (3.2)

In particular, the module Eg, is a-torsion.

Proof. To see this, first recall that aR® is contained in the Jacobson radical of ﬁ“, and
that R®/aR® = R/a; see [21, Theorems 8.11 and 8.14]. From this, it is straightforward

to show that there are inverse bijections

m-Spec(R) NV (a) < m-Spec(R%) (3.3)
mi mRe
nnNRk in
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Using the isomorphisms (R®) = (R®) = R = RP and the fact that R®/pR® =
R/p for each p € Spec(R) NV (a), we obtain the isomorphisms in (3.1). The isomor-
phism (3.2) now follows from (3.3) and (3.1).

For each m € m-Spec(R) NV (a), the module Eg(R/m) is m-torsion; hence it is

a-torsion, since a C m. It follows that Eg, is a-torsion. O

Fact 3.1.3. Let py,...p, € Spec(R). Let U = R\ U}, p; . Let p € Spec(R). Ifp C p,
for some i, then Egr(R/p)) = U 'Egr(R/p) = Ey-1zg(U'R/pU'R). Otherwise
U ER(R/p)=0. If p; € p; for i # j, then Ey-1x = @) Er(R/p).

Fact 3.1.4. Let a be an ideal of R. For each p € Spec(R), one has

En(R/p) ifaC
Fu(Bn(Rypy — | P A

0 if a p.
Lemma 3.1.5. Let a be an ideal of R. Then I's(ER) = Ep..

Proof. Fact 3.1.4 explains the third equality in the next display

La(ER) = Fa<®mem_spec(3) Er(R/m))
= @mém—Spec(R) FG(ER(R/m>>

= @mEm—Spec(R)ﬁV(u) ER(R/m)
~ B,
and the isomorphism is from Lemma 3.1.2. O

Lemma 3.1.6. Let a be an ideal of R. Let L and L' be R-modules such that L is

a-torsion and a"L' = a"™'L/. Then L®r L' 2 L ®@g L' /a™L'.
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Proof. First we prove that L @ a"L' = 0. Let t®y € L ®p a"L'. Choose m € N
such that a”x = 0. Since a"L’ = a"t'L’ it follows a"L’ = a"tL/ for all ¢ > 0.
Thus y € a"™™ L', and we can write y = Z?:1 s;c; for some s; € a™ and ¢; € a”L'.

Therefore

h h h
$®y:x®25jcj:stjx®cj:ZO®cj:O;
j=1 j=1

j=1
hence L ®g a™L’' = 0. Applying L Qg (—) to 0 — a"L/ — L' — L' /a"L' — 0 we get

an exact the sequence 0 - L ®g L' — L ®gr L'/a"L' — 0, and the result follows. [

Fact 3.1.7. Let a and b be co-maximal ideals of R and L an ﬁ“—module. Then
L=0bL.
Choose a € aand b € b so that a+b=1. Then b =1 — a is a unit in R® with

inverse 32°°(—a)’. Hence b, = bR'L = R*L = L.

Fact 3.1.8. Let U C R be a multiplicatively closed set and a an ideal of R such that

anU #0. Let L be a U7 R-module. Then L = aL.

Fact 3.1.9. For each R-module L, the natural biduality map 0,: L — L'V is a

monomorphism.

Fact 3.1.10. [6, Theorem 12] An R-module L is Matlis reflexive if and only if L is
mini-max and R/ Anng(L) is semi-local and complete, that is, complete with respect

to its Jacobson radical.
Lemma 3.1.11. Let A be an artinian R-module.

1. The support of A consists entirely of maximal ideals of R, that is Suppg(A) C
m-Spec(R).

2. We have Ming(A) = Assg(A) = Suppy(A4).
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3. The support of A is finite.

Proof. (1) Assume there exist p € Supp(A)\ m-Spec(R). Let a € A be an element
such that its image under the natural map A — A, is non-zero. Then Ann(a) C p.
Thus Ra surjects onto R/p. Since R/p is the homomorphic image of a submodule
of an artinian module, it is artinian. However, by our assumption R/p is a ring of
positive dimension. Thus it cannot be artinian. From this contradiction it follows
that Supp(A) consists of maximal ideals.

(2) From part (1) we conclude that each m € Suppg(A) is both maximal and
minimal in Suppg(A). This explains the inclusion Suppz(A) C Ming(A), and the
inclusions Ming(A) C Assg(A) € Suppg(A) hold for all modules; see [21, Theorem
6.5 (ii) and (iii)] the proof of which only uses that the module is finite for part (i).

(3) From part (2), for each m; € Supp(A) we have m; € Assp(A). Hence we
can choose a submodule A; C A such that A; =2 R/m;. Let A" := )"

m; ESupp

(A =
_ R/m;. Since A is artinian, so is the submodule A’. Therefore the direct
@ImGSupp(A)

sum must be finite. O
Lemma 3.1.12. Let L be an R-module.

1. If L is artinian over R, then UL is an artinian U~ R-module for each mul-

tiplicatively closed subset U C R.

2. The R-module L is artinian if and only if Suppgr(L) is a finite set and Ly is

artinian over R, for each p € Suppg(L).

Proof. (1) Each descending chain of U~! R-submodules of U~!L has the form U~'L D
UL, D U 'Ly O --- for some descending chain L O L; O Ly D --- of R-
submodules. Since L is artinian, the second chain stabilizes, hence the first chain

also stabilizes.
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(2) The forward implication follows from part (1) and Lemma 3.1.11.

For the reverse implication, assume that Suppy(L) is finite, with Suppg(L) :=
{p1,...,pn}, and that Ly, is artinian over R, for i =1,... h. Let L = Ly O Ly D
Ly O - - be a descending chain of R-modules. Since Ly, = (Lo)p, 2 (L1)p, 2 (L2)p; 2

- stabilizes for ¢ = 1,...,h, we may choose j € N so that (L;),, = (Lj+n)p, for
i=1,...,h and for all n € N. For each p € Spec(R) \ Suppy(L), we have L, = 0,
50 (L;)p = (Ljin)p for all n € N. Hence we have L; = Ljy, for all n € N, and L is

artinian. O

Definition 3.1.13. Let L be an R-module, p € Spec R and k(p) := R,/pR,. For
each integer ¢ > 0, the ith Bass number of L with respect to p and the ith Bett:

number of L with respect to p are as follows:

pi(p, L) = dimyy (Extly (k(p), Ly)) B (p, L) = dimygy (Tor/” (k(p), Ly)).

Remark 3.1.14. Let L, L' and N be R-modules such that N is noetherian. Let
m € m-Spec(R). As Exti(N, L), = Extgp(Np,Lp) and Tor/ (L', L), = Torf”(L;, Ly)

for all p € Spec(R); see [27, Propositions 7.17 and 7.39] . It follows that
ph(m, L) = Ag(Exth(R/m, L)) and B (m,L) = Ag(Torf(R/m, L)).

Fact 3.1.15. Let L be an R-module. For each p € Spec(R) and for each integer
i > 0, we have ph(p, L) = MRP(Lp) and B4 (p, L) = ,ng(Lp). This is immediate from

the definitions. For the local definitions see Definition 2.1.10.
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Definition 3.1.16. Let a be an ideal of R. For each R-module L, set

depthp,(L) = sup{gradeg(m; L)| m € m-Spec(R)}

widthp(L) = sup{widthg(m; L)| m € m-Spec(R)};
see Definition 2.1.12.
Lemma 3.1.17. Let L be an R-module, and let a be an ideal of R.

1. One has Ag(LY) = Ar(L); in particular, Ag(L") < oo if and only if \g(L) < oo.

2. For each index i > 0 and m € m-Spec(R) one has Bf(m; L) = pt(m; L) and

B (m; LY) = p(m; L).

Proof. (1) It is straightforward to show that for each maximal ideal m C R, we have
(R/m)¥ = R/m. An inductive argument using the additivity of length shows that if
L has finite length, then Ag(L"Y) = Ag(L) < co. Using Fact 3.1.9, we conclude that
if Ag(LY) < 0o, then Ag(L) < 0.

Part (2) follows from Remark 2.1.9. O
Remark 3.1.18. Let L be an R-module and let p € Spec R.
(a) One has uy(p. L) = An, (Socr, (L)) and 5(p. L) = An, (Ly/pLy).

(b) If I is a minimal injective resolution of L, then for each index i > 0 we have
I' = Ex(R/p)#=®1) @ Ji where .J' does not have Ez(R/p) as a summand; see,
e.g., [21, Theorem 18.7].

(c) One has pb(p, L) < oo for all i > 0 if and only if S%(p, L) < oo for all i > 0;

see [19, Proposition 1.1] and Fact 3.1.15.
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Lemma 3.1.19. Let M be a mini-max R-module, U a multiplicatively closeed set and

p € Spec R. Then U~'M is a mini-maz U~ R-module, and for all i > 0 we have that

wi(p, L) and Bl (p, L) are finite.

Proof. The result that U~'M is a mini-max U~!R-module follows from the fact that
localization is exact and localizing a noetherian (artinian) R-module with resepct
to U yields a noetherian (artinian) U~'R-module. Therefore the finiteness of the
Bass and Betti numbers follows from the local case and Lemma 2.1.18, by using the

behavior of Bass and Betti numbers under localization. O

Corollary 3.1.20. Let A be an artinian R-module. Let J be a minimal injective
resolution for A. For i > 0, the module J' = Drncsupp(a) Er(R/m)*=(™4) s o finite

direct sum of injective hulls of residue fields.

Proof. This follows from Fact 3.1.15, Remark 3.1.18(b) and Lemmas 3.1.11 and 3.1.19.
[

We will use the next lemma to get some localization behavior for Ext.
Lemma 3.1.21. Let my,...,m, € m-Spec(R), and set b = Nj_;m;.
1. There are isomorphisms R® = [[_ Rm; = [[j_; R™.

2. Each R®-module L has a unique decomposition as L = EB?:l L; where each L;

8 an ﬁmj—module, specifically, with L; = Ly, where n; = mjfib.

Proof. Part (1) is contained in [21, Theorem 8.15]. Part (2) is a standard consequence

of (1), using the natural idempotents in []_, R™. O

Lemma 3.1.22. Let A be an artinian R-module. Set a = Nnesuppraym. Then A is

a-torsion.
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Proof. Let x € A. The submodule Rx C A is artinian because A is artinian. It is
noetherian since it is finitely generated, so it has finite length, say n = Ag(Rx). Also,
we have Suppz(Rx) C Suppg(A). Let ¢ = Nmesupp(rayM. Since Supp(Rx) € Supp(A),
it follows that a C ¢. Since ¢ kills socle elements of Rz it follows that ¢"z = 0 for

some n > 0. Thus a"z = 0. OJ

Lemma 3.1.23. Let a be a proper ideal of R, and let L and L' be R-modules such

that L is a-torsion. Then LY = LY(J&).

Proof. The result a consequence of the next display:
Homp(L, Er) = Homp(L,I'y(Er)) = Hompg(L, Ep.) = Homp. (L, Eg.).

The isomorphisms above follow from Lemma 2.1.5 (1) and (2) along with Lemma 3.1.5.

]

The next result is particularly useful for artinian modules; see Lemma 3.1.22.

Lemma 3.1.24. Let F be a finite set of maximal ideals and let b = Nperm. Let L

be a b-torsion module. We have the following:
1. For eachm € m-Spec(R), the composition ' (L) — L — Ly, is an isomorphism.
2. There is an internal direct sum Y »T'n(L) = L= @ o7 L.

Proof. Fact 2.1.2 (c) implies that L is an R'-module, and we have L = DPrcr L
by Lemma 3.1.21(2). Since bR, = mR,, for all m € F, it follows that L, is m-
torsion. Choose my € Supp(L). Let a = Nuer qmeym. Suppose € P, cr Lm is
mo-torsion. Then z = y + 2z with y € Ly, and 2z € @me]-'\{mo} Ly. Since z and y

are my-torsion so is z. However z is also a-torsion. Therefore z is (mgy + a)-torsion
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but mg+a = R so z = 0. It follows that 'y, (L) = Ly,. Combing this with the

isomorphism L = @ . » Ly gives us the internal direct sum ) -I'w(L) =L. O

meF

The following result is equivalent to [29, (1.4) Proposition].

Lemma 3.1.25. If A is an artinian R-module, then A = @mESuppR(A) An.

Proof. Let A be an artinian R-module. Lemma 3.1.11 implies that Suppg(A) is a
finite set of maximal ideals. With a = Nuesupp,(4)M, Lemma 3.1.22 implies that A is

a-torsion, so the isomorphism A = @ Ay is from Lemma 3.1.24(2). H

meSupppr (A4)

Lemma 3.1.26. Let L be an R-module such that R/ Anng(L) is semi-local and com-

plete. The set m-Spec(R) N Suppg (L) is finite and equals m-Spec(R) NV (Anng(L)).

Proof. Set R = R/ Anng(L). We may Assume L # 0. Let 7 : R — R be the natural
surjection and 7* : Spec(R) — Spec(R) the induced map given by 7*(p) = 7 '(p).
Since L, = 0 for all p not containing Anng(L) we get Suppy(L) = 7*(Suppg(L)).
Therefore m-Spec(R) N Suppg(L) = m*(m-Spec(R) N Suppg(L)).

The ring R is a finite product of complete local rings, say R =2 [T, R;. Since
L is an R-module we have L = H?:l L; where L; is an R;-module. By construction

Anng(L) = 0, so for all ¢ we have L, # 0. Thus m-Spec(R) C Suppp(L). This

explains the second equality in the following display. The last equality is standard.

m-Spec(R) N Suppr(L) = 7*(m-Spec(R) N Suppr(L))

= 1" (m-Spec(R))

= m-Spec(R) NV (Anng(L))

As R is semi-local | m-Spec(R) N Suppg(L)| = | m-Spec(R) N Suppx(L)| < oo. O
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Lemma 3.1.27. Let L be an R-module such that R/ Anng(L) is semi-local and com-

plete. Set b = Nuem-Spec(R)NSuppy(L)M, and let a C b.

1. L has an R*-module structure that is compatible with its R-module structure via

the natural map L — Re ®gr L.

2. If a is a finite intersection of maximal ideals in m-Spec(R), then there is an

isomorphism LV = V(R

3. A subset Z C L is an R-submodule if and only if it is an R*-submodule.

4. L is a noetherian (artinian, minimaz respectively) R-module if and only if it is

a noetherian (artinian, mini-max respectively) R*-module.

Proof. Set R = R/ Anng(L). Assume without loss of generality that L # 0.

(1) There is a commutative diagram of ring homomorphisms

R Ro

|

R/ Anng(L) —= R*/ Anng(L)R®.

The map in the bottom row is an isomorphism because R/ Anng(L) is semi-local and
complete with Jacobson radical b/ Anng(L); this uses Lemma 3.1.26. Since L’ has an
R/ Anng(L)-module structure that is compatible with its R-module structure via the
natural map R — R/ Anng(L), the isomorphism in the bottom row shows that L’ has
a compatible R® / AnnR(L)ﬁa—module structure. It follows that L’ has a compatible
R*-module structure.

(2) Assume in this paragraph that a is a finite intersection of maximal ideals, and

let F be a finite set of maximal ideals containing m-Spec(R) N Suppg(L) such that

a = Nmerm. Note that Eg, = @,,.» Er(R/m) is the minimal injective cogenerator
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of R®. Part (1) explains the first step in the following sequence.

Hom (L, ) — o (L &, )
= HOmR(L7 Homﬁu (§a7 Eﬁu))
= Hompg(L, E.)

= HOIHR(L, ER)

The second step is Hom-Tensor adjointness. The third step is standard and the last
step follows from the fact that m-Spec(R) N Supp(L) C F.

(3) The subset Z C L' is an R-submodule if and only if it is an R-submodule. The
isomorphisms in the diagram from part (1) show that Z is an R-submodule if and only
if it is an R®/ Anng(L)R*-submodule, that is, if and only if it is an R®-submodule.

(4) From part (3) we have { R-submodules of L'} = {R%-submodules of L'}. Thus,
the first set satisfies the ascending chain condition (respectively the descending chain
condition) if and only if the second one does. Lastly given a submodule N of L we
have L/N is artinian as an R-module if and only if it is artinian as a R*-module. It

follows that L is a mini-max R-module if and only if it is a mini-max R-module. [

Lemma 3.1.28. Let a be a proper ideal of R and A an artinian R-module. Let

b = Nmesupp(a)v@m. Then R @p A = To(A) = Ty(A) = Buesuppaivo Im(A),

and these modules are artinian both as R-modules and as R*-modules.

Proof. Let ¢ = Nmesuppapv@m. Then A = I'y(A) ® I'((A). Since ¢ and a are
co-maximal by Fact 3.1.7 we have R* = ¢R°. Therefore by Lemma 3.1.6 we have
R* @p I(A) = R/"R* @ I(A) = 0. Since a C b, it follows that T'y(A) is a-
torsion. Therefore by Lemma 2.1.4 (1) we have that R*®p I'y(A) = T'y(A). Therefore
R*®p A = Ty(A). Since a C b the R-module I'y(A) is a-torsion. It follows from
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Lemma 2.1.3 (2) that I'y(A) is an artinian R*-module.
The isomorphism I'y(A) = @ csupp(a)nv(a) Im(L) follows from Lemma 3.1.24.

Since a C b it follows that T'y(A) C I'y(A). Since ¢ + a = R we get the following:
0=Tgr(A) =Ta(A) =T (A) NTL(A)

Since A = T'y(A) + I'((A) is an internal direct sum, we get the reverse inclusion

I'4(A) CTy(A), and the result follows. O

Lemma 3.1.29. Let U C R be a multiplicatively closed set and A an artinian R-
module. Let F = {m € Supp(A)| mNU = 0}, V = R\ Uper m and b = Nyperm.
Then UA = V1A = Ty(A) = @cr Am, and these modules are artinian both as

R-modules and as U~'R-modules.

Proof. Let G = {m € Supp(4A)| mNU # 0}. Let m € G, c € mNU and a € A,,.
Choose n € N such that m"a = 0. Since U is multiplicatively closed ¢* € U. Since
c"a =0 and a € A,, was arbitrary it follows that U~'A,, = 0.

Let n € F. Since nNU = () it follows that nU ' R is a maximal ideal in U "' R. Let
W =R\nand W' = U 'R\nU'R. Since Supp,-1z(UA,) = {nU'R}, Lemma
3.1.24 explains the first step in the following sequence U'A, = (U 'Ay)w-1p =
W-lUA, =2 WA, = A,. Thus the result follows from the decomposition in

Lemma 3.1.25. O

Lemma 3.1.30. Let a be a proper ideal of R. If M is a mini-max R-module, then

R*®pr M is a mini-mazr R*-module.

Proof. 1If M is mini-max over R, then there is an exact sequence of R-module homo-
morphisms

0—-N—-M-—=>A-=0
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where N is noetherian over R and A is artinian over R. The ring R is flat over R,

so the base-changed sequence
0—>1§“®RN—>I§“®RM—>J§“®RA—>O

is an exact sequence of R*-module homomorphisms. The R*module R* ® r N is
noetherian. Lemma 3.1.28 implies that the R*module R*® rA is artinian, so R'® rM

is mini-max over R°. O

Lemma 3.1.31. Let L be an R-module, and let F be a finite subset of m-Spec(R).

Set a = Nperm. Then the following conditions are equivalent:
1. L is artinian over R and Suppg(L) C F;

2. L has an R*-module structure, compatible with its R-module structure, such that

L 1s an artinian ﬁ“—module;
3. R*®@p L is an artinian R*-module and Suppg(L) C F;
4. L is a-torsion and p%(m, L) < oo for all m € m-Spec(R); and
5. L is a-torsion and p%(m, L) < oo for allm € F.

Proof. (1) = (2) Assume that L is artinian over R such that Suppg(L) C F.

Lemma 3.1.22 implies that L is a-torsion, so Fact 2.1.2 (¢) and Lemma 2.1.3 (2)
imply (2).

(2) = (4) Assume that L has an R®-module structure, compatible with its R-
module structure, such that L is an artinian R*-module. The Jacobson radical of R®
is aR°. Since L is artinian over }A%“, we know that L is aﬁ“—torsion, so it is a-torsion.
By Lemma 2.1.3 (2) it follows that L is an artinian R-module. Thus by Lemma 3.1.19

we get that u%(m, L) < oo for all m € m-Spec(R).
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(4) = (5) This is evident.

(5) = (1) Assume that L is a-torsion and pu%(m,L) < oo for all m € F. By
Lemma 3.1.24 (2) we have that L =2 @, _» Lw. Therefore the indecomposable in-
jective summand of Eg(L) are all of the form Egr(R/m) for some m € F. Since
p%(m, L) < oo for all m € F, it follows that Ex(L) is a finite co-product of artinian
modules. Therefore Eg(L) is artian. Since L injects into Er(L) we have that L is
artinian.

(1) = (3) This is follows immediately from Lemma 3.1.28.

(3) = (2) Assume that R* ®x L is an artinian R®-module and Suppg(L) C F.
Since L, = 0 for all p ¢ F we have u%(p, L) = 0 for all p ¢ F. Since Ex(R/m) is
a-torsion for all m € F it follows that Eg(L) = @,..» Eg(R/m)*»(™D) is q-torsion.
Since L injects into Ex(L) it is a-torsion. By Lemma 2.1.4 (1) we know that L is iso-
morphic to R*®p L. Therefore L is an artinian R*-module. Hence by Lemma 2.1.3 (2)

it follows that L is an artinian R-module. O]

Lemma 3.1.32. Let L be an R-module such that R/ Anng(L) is semi-local and com-
plete. Set b = Nuem-spec(R)nSuppr(L)M, and let a C b. Then the following conditions

are equivalent:
1. L s mini-max as an R-module;
2. L is mini-maz as an E“-module;
3. L is Matlis reflexive as an R-module; and
4. L is Matlis reflexive as an R*-module.

Proof. Assume without loss of generality that L # 0.
(1) <= (2) This is stated in Lemma 3.1.27 (4).

(1) <= (3) This is an immediate consequence of Fact 3.1.10.
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(2) < (4) Since R/ Anng(L) = R*/ Anng(L)R* = R*/ Anng, (L). The equiva-

lence is a consequence of Fact 3.1.10. O

Lemma 3.1.33. Let L be an R-module such that R/ Anng(L) is artinian. Then L

has finite length if and only if L is mini-mazx.

Proof. If L has finite length then clearly it is mini-max. Conversely assume that L
is mini-max. Then L is mini-max as an R/ Anng(L)-module. Over an artinian ring
artinian and noetherian modules have finite length; hence so do mini-max modules,

and the result follows. O

Lemma 3.1.34. Given an R-module L, there is a inclusion
Suppgr(L) Nm-Spec(R) C Suppx(LY) N m-Spec(R).

Proof. Let m € Suppg(L) N m-Spec(R). Since L, # 0, there is an element x € L
such that /1 # 0 in Ly. Thus, the submodule L' = Rz C L is finitely generated
and L], # 0. It follows that

(L) 2 (L)) £
The inclusion L' C L yields an epimorphism (LY)y, — (L"), # 0, implying that
(LY)m # 0. This shows that m € Suppy(L"Y) N m-Spec(R), as desired. O

The next example shows that the inclusion in Lemma 3.1.34 can be strict.

Example 3.1.35. Let R = k[X], n = RX and L = @ Ry~ fny 12/m. The

mem-Spec(

maximal ideal n is not in Suppy(L). We claim, however, that n € Suppg(LY). To see
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this, observe that

LY = HmEm—Spec(R)\{n}(R/m)v = Hme—Spec(R)\{n} R/m

The natural map R — [[,,, B/m = LY given by 1 — {1 + m} is a monomorphism

since its kernel is Nyzam = 0. It follows that n € Suppy(R) C Suppy(LY).

3.2 Properties of Exth(M, —) and Tor/ (M, —)

Theorem 3.2.1. Let A and L be R-modules such that A is artinian. Let F be a
finite subset of m-Spec(R) containing Supp(A) N Supp(L). Let b = Nyerm. Given
any i > 0 such that p'y(m, L) < oo for all m € Supp(A) N Supp(L) we have that

Exti (A, L) is a noetherian R®-module.

Proof. Let J be the minimal R-injective resolution of L. For m € m-Spec(R), we
have Ty(J%) 2 @,cr () = @,e r Er(R/m)#a(™) . This explains the second step

in the next sequence.

Homp(A, J') = Bncsupp(4) Homa(An, 79
= Drnesupp(a) Homp (A, Cw(JY))
= ®m€Supp(A) Homp(An, ER(R/m))Nfz(myL)
= 69mESulop(A)ﬁSupp(L) Homp(An, ER(R/m))%(va)

= 69""‘GSupp(A)ﬁSupp(L) Homﬁm (Am, ER(R/m))M%(va).

The second and last steps are from Lemma 2.1.5. The first step is from Lemma 3.1.24.

The fourth step follows from the fact that u%(m, L) = 0 whenever m ¢ Supp(L).
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By Matlis duality, Hom g, (Am, Eg(R/m)) is a noetherian R™module and hence
a noetherian R® module. Therefore Hompg(A, J') is a complex of noetherian R"-
modules. (Also, the differentials in Homp (A, J°) are R®-linear.) Thus, the subquotient

Ext’ (A, L) is a noetherian Rb-module by Lemma 2.1.23 (2). ]

Corollary 3.2.2. Let A be an artinian R-module and M a mini-max R-module. Let
F be a finite subset of m-Spec(R) containing Supp(A) N Supp(M). Let b = Nyerm.

Then Ext(A, M) is a noetherian R°-module.

Theorem 3.2.3. Let A and L be R-modules so that A is artinian. For any i > 0 with

BE(m, L) < oo for all m € Supp(A) N Supp(L), the module Torl(A, L) is artinian.

Proof. Since A is artinian, Lemma 3.1.11 implies that Suppy(A) is finite. Thus, the
inclusion

Suppg(Tor[ (A, L)) C Suppg(A) N Suppg(L) (3.4)

implies that Suppy(Torf (A, L)) is finite. For each p € Suppg(Torf(A, L)), the R,-
module A, is artinian. Furthermore, we have Bl *(Ly) = Bf(p,L) < oo by Lemma
3.1.19. Hence by [17, Theorem 3.1], the R,-module Tor!® (A, Ly) = Torf(A, L), is

artinian. Thus, Lemma 3.1.12 implies that Tor*(A, L) is artinian. O

Corollary 3.2.4. Let A be an artinian R-module and M a mini-maz R-module. Then

for all i >0, the R-module Tor (A, M) is artinian.

Theorem 3.2.5. Let M and M’ be mini-max R-modules. Then for all i > 0, the

R-module Tor®(M, M") is mini-max.

Proof. Let N be a noetherian submodule of M such that the quotient M/N is artinian.
Lemma 2.1.23(3) and Corollary 3.2.4 imply that Tor?(N, M’) and Tor/(A, M) are

mini-max. Thus, Tor!*(M, M') is mini-max by Lemma 2.1.24(2). O
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Proposition 3.2.6. Let A be an artinian R-module and M a mini-max R-module.
Let F be a finite subset of m-Spec(R) containing Supp(A) N Supp(M). Let b =

Nmerm. Then Ext’ (M, A) is a Matlis reflezive R®-module.

Proof. Fix a noetherian submodule N C M such that M /N is artinian. Lemma 2.1.23(3)

implies that Ext% (N, A) is an artinian R-module. Since N is noetherian, we have
Supp(Exti(N, A)) € Suppg(N) N Suppg(A) € Suppg(M) N Suppg(4) C F,

so we conclude from Lemma 3.1.31 that Exti (N, A) is an artinian B®-module. Corol-
lary 3.2.2 implies that Exti(M/N, A) is a noetherian R-module. Since F is a finite
set of maximal ideals, the ring R is semi-local and complete. Hence Fact 3.1.10
implies that the R°-modules Ext’ (N, A) and Extl(M/N, A) are Matlis reflexive.
Therefore Ext’y (M, A) is a Matlis reflexive R-module by Lemma 2.1.24(2). O

Theorem 3.2.7. Let M and M’ be mini-max R-modules.

1. If the quotient ring R/(Anng (M) + Anng(M")) is semi-local and complete then
Torf (M, M) is a Matlis reflevive R-module.

2. If R/(Anng (M) + Anng(M')) is artinian then Tor (M, M') has finite length.

Proof. (1) Since Anng (M) + Anng (M') € Anng (Torl*(M, M')) we get an epimor-
phism:
R/(Anng (M) + Anng (M) — R/ Anng (Tor® (M, M")).

Therefore R/ Anng (Tor? (M, M')) is semi-local and complete. It follows from Fact 3.1.10
and Theorem 3.2.5 that Tor(M, M') is Matlis reflexive over R.
(2) Part (1) and Lemma 3.1.33 imply that Tor®(M, M’) has finite length. O
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Corollary 3.2.8. Let M be a mini-max R-module and M' a Matlis reflexive R-

module. Then Tor® (M, M’) is a Matlis reflexive R-module.
Theorem 3.2.9. Let M and M’ be mini-mazx R-modules.

1. If the quotient ring R/(Anng (M )+ Anng(M’)) is semi-local and complete, then

Ext’ (M, M") is a Matlis reflexive R-module.
2. If R/(Anng (M) + Anng(M')) is artinian then Extly (M, M') has finite length.

Proof. (1) Fix a noetherian submodule N C M such that M/N is artinian. The

inclusions

Anng(M) + Anng(M’) € Anng(N) + Anng(M') C Anng(Exth (N, M'))

provide an epimorphism:

R/(Anng(M) + Anng(M')) — R/ Anng(Ext: (N, M)).

Therefore R/ Anng(Extz(N, M")) is semi-local and complete. Thus, Fact 3.1.10 and
Lemma 2.1.23 (3) imply that Ext’ (N, M’) is Matlis reflexive over R.

Similarly, since

Anng(M) + Anng(M') € Anng(M/N) + Anng(M’) C Anng(Exts(M/N, M")),

it follows that R/ Anng(Ext% (M /N, M")) is semi-local and complete. Let

b= MNneSupp (Extly (M/N,M7))T and @ = Nuesupp (M/N)NSupp (M) M.
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Then a C b. Corollary 3.2.2 implies that Ext(M/N,M’) is mini-max as an R°-
module, so it is mini-max as an R-module by Lemma 3.1.32. Using Fact 3.1.10, we
conclude that Exth(M/N, M’) is Matlis reflexive over R. Thus, Lemma 2.1.24(2)
implies that Ext% (M, M) is also Matlis reflexive over R.

(2) Part (1) and Lemma 3.1.33 imply that Ext’ (M, M’) has finite length. O

Corollary 3.2.10. Let M be a mini-max R-module and M' a Matlis reflexive R-
module. Then Ext’ (M, M) and Ext,(M’, M) are Matlis reflexive R-modules.

Proposition 3.2.11. Let M be a mini-max R-module and N’ a noetherian R-module
such that R/(Anng(M) 4+ Anng(N')) is semi-local and complete. Let F be a finite
subset of m-Spec R containing the finite set m-Spec(R) N Supp(M) N Supp(N'). Let

b = Nmerm. Then Extly (M, N') is noetherian as an R-module and as an R®-module.

Proof. The set m-Spec(R) N Suppg (M) N Suppy(N') is finite, because the quotient
R/(Anng(M) + Anng(N')) is semi-local. Let N be a noetherian submodule of M

such that M /N is artinian. Lemma 2.1.23(3) implies that Ext% (N, N’) is a noetherian
R-module. Since m-Spec(R) N Suppr(M/N) N Suppg(N') C F, it follows by Corol-

lary 3.2.2 that Ext’ (M /N, N') is a noetherian R'-module. As R/ Anng(Ext(M/N, N'))

is semi-local and complete, Lemma 3.1.27(4) implies that Ext% (M /N, N) is a noethe-

rian R-module. Therefore the R-module Ext’ (M, N') is also noetherian, by Lemma 2.1.24(2).
Since R/ Ann(Ext% (M, N')) is semi-local and complete, Lemma 3.1.27(4) implies that

Exti, (M, N') is a noetherian R°~-module. O

3.3 Change of Rings Results for Ext,(A, L)

Lemma 3.3.1. Let I be an injective R-module, and G be a finite subset of m-Spec(R).

Let b = NpegMm, V = R\ Upegm and U be a multiplicatively closed set contained in
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V. Then the natural map Ty(I) — Ty(ULI) is bijective.

Proof. Tt is straightforward to show that if pNU = (), then U~ Eg(R/p) = Er(R/p).
Also, if pNU # (), then U~ Ex(R/p) = 0.

Write I = D, cspec(r) Er(R/p)®#»). From the previous paragraph, the localization
map p: [ — U1 is a split surjection with Ker(p) = Do Er(R/p)*). Since p is
a split surjection, it follows that I'y(p): T's(I) — ['y(U ') is a split surjection with
Ker(I's(p)) = Dprvrso Ly(Er(R/p))#). Thus, it remains to show that I'y(Eg(R/p)) =
0 when p N U # 0.

Assume that pNU # 0. Then pNV # 0, so p € m for any m € G. Since G is
a set of maximal ideals it follows that m & p for any m € G and b = Npegm € p.

Therefore I'y(Er(R/p)) = 0 and the result follows. O

Lemma 3.3.2. Let I be an injective R-module and F be a finite subset of m-Spec(R).
Let b = Nperm and let a be a proper ideal such that F C V(a). Then the natural

map To(I) — To(R® @g I) is bijective.

Proof. By Lemma 2.1.4 (1) Ty (R°*®Eg(R/m)) 2 Ty (Eg(R/m)) for all m € F. Also for
allm € m-Spec(R) and p € Spec(R) with p # m we have that Fm(§“®RER(R/p)) =0.

Therefore for all p ¢ F we have

~

To(R* @5 Er(R/p)) = Bper Tn(R® @ Er(R/p)) = 0 = [y(Er(R/p)).

]

Theorem 3.3.3. Let A and L be R-modules such that A is artinian. Let F =
Suppr(A)NSuppr(L). Let G be a finite set of maximal ideals containing F. Let a be

a proper ideal such that F C V(a). Let U C R be a multiplicatively closed set such
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that U C R\ Uner m. Then

Extly(A, L) = Ext 1 (U A, U L) & [,eq Extls (Am, L)

meg

= Excth, (Ta(A), B @p L) = [[eq Bxth, (An, B" ®5 L).

Proof. Let I' be an injective resolution of L. Let b = Npegm and let V = R\ Upeg
m. For all m ¢ F either A, = 0 or [',(I') = 0. It follows that Homg(An, ) =
Homp(Am, I'n(l)) = 0 for all m ¢ F. Since Suppr(A) and G both contain F this

explains the third isomorphism in the next display.

Homp(A, I') = Homp (D nesupp 4y Am: LalL))
o HmeSuppR(A) Homp(An, I')
= [[ineg Homp (A, I')
2 [neg Homp(Am, Tn(1))
= [,e Homp(Am, Tn(Z;,))
= [[eg Homp(Am, Hompg, (Ru, 1))
= [[neg Homp, (An ®p Ru, 1)

= Hmeg HomRm (ATH? Im)

The second, sixth and last steps are standard. The seventh step is from Hom-tensor
adjointness. The first, fourth and fifth steps come from Lemmas 3.1.25, 2.1.5(2) and

3.3.1 respectively. Taking cohomology we have Ext(A, L) & [],..s Extly (Am, L)

We may assume G = {m € Suppg(A)| mNU = 0}. Let b = Nyegm. Continuing
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from the third line in the previous display we get the first step in the next display.

Hompg (A, I') = []..c.c Homg(An, I')

meg
= Homp(Peg Am: 1)

= Hompg(I'y(A), I)

= Homp(Ty(A), Ty(I'))

>~ Homp([(A), Do (U11))

>~ Homp([s(A), U™T)

~ Homgr(U 1A, U'T)

=~ Homp(U A, Homy-1z(ULR, ULT))
~ Homy-1z(UTA@r UTTR,UTT)

= HOHlUflR(U_lA, U_II')

The second, eigth and last steps are standard. The ninth step is Hom-tensor ad-
jointness. Steps four and six are from Lemma 2.1.5 (2). Steps three, five and seven
are from Lemmas 3.1.24, 3.3.1 and 3.1.29 respectively. Taking cohomology we have
Ext’ (A, L) 2 Extl, 1 p(U A, UL).

We may assume that G = V' (a) N Supp(A). Let b = Npegm. Then the first four
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lines of the previous display hold so that we get the first step in the following display

Hompg (A, I') = Hompg(T'y(A), s (1))
~ Homp(Ty(A), Ty(R* @5 I'))
= Hompg(I's(A), R ®p I')
=~ Homp(I's(A), B* @5 I)
>~ Hompg(Ta(A), Hom s, (R®, R* @5 I'))
= Homp, (Ta(A) @5 R, R* @5 )

~

= Homp, (I'q(A), R* ®@r I')

Step five is standard and step six is from Hom-tensor adjointness. Steps two and three
are from Lemmas 3.3.2 and 2.1.5 (2) respectively. Lastly steps steps four and seven are
from Lemma 3.1.28. Taking cohomology we have Extj(A, L) & Ext’s, (I4A4, R*@rL).

The isomorphism Ext}, (Aw, L) = Ext%m(Am, R"® R, Lm) is immediate from [17,

Lemma 4.2], which explains the final isomorphism in the Theorem. O

Corollary 3.3.4. Let A and L be R-modules such that A is artinian. Let U C R be
a multiplicatively closed set and let a be a proper ideal of R. Then Ext%(UflA, L) =
Exty 1 p(U™'A,U'L) and Extly(Ta(A), L) = Extls, (Ta(A), R ®p L)

Proof. This follows from Lemmas 3.1.28, 3.1.29 and Theoerem 3.3.3. O]

The following result shows that, when A is artinian and L is mini-max, the module
Ext’ (A, L) can be computed as an extension module over a semi-local complete ring
with a Matlis reflexive module in the first component and a noetherian module in

the second component. Alternatively, it can be computed as a finite coproduct of
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extension modules over complete local rings with Matlis reflexive modules in the first

component and noetherian modules in the second component.

Lemma 3.3.5. Let F be a finite subset of m-Spec(R). Set b = Nyerm and U =

RN Unerm. Then U'Ep = Ex,.

Proof. Fact 3.1.3 explains the second isomorphism in the next display:

U_IER = @mEm-Spec(R) v ER(R/m) = @me]: ER(R/m) = Eﬁ"'

The first isomorphism is by definition, and the third one is from Lemma 3.1.2. O

Theorem 3.3.6. Let A be an artinian R-module and let M be a mini-max R-module.
Let F be a finite subset of m-Spec(R) containing Suppr(A) N Suppyr(M). Let b =

Nmerm and let U = R\ Uyerm. Then

Ext}(A, M) = Ext’, (Homp(M,U ™' ER), (U~ A)Y) (3.5)
> Prcr Ext%m(HomR(M, Er(R/m)), (An)Y). (3.6)

Note that Homp(M,UEg) = (R* @ M)"®) s o Matlis reflexive R®-module and

(U*A)Y is a noetherian R*-module.

Proof. Lemma 3.1.30 implies that R'® r M is mini-max over R. Since R® is semi-
local and complete, Fact 3.1.10 shows that RO ®gr M is Matlis reflexive over R

Theorem 3.3.3 implies that
Extl(A, M) 2 Ext (U A, R @ M). (3.7)

Let F be a free resolution of U~'A over RY.
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Lemma 3.3.5 shows that U~ ' Eg = Eg,. In particular U Ep is injective over R,
so the complex Homp, (F, U ER) is an injective resolution of Homg, (U™'A, U™ ER)

over R'. Thus, the isomorphism
Exti, (U7 A, R® ©p M) 2 Ext’, (Homg(M, U™ Eg), (U A)V(7) (3.8)
follows from taking cohomology in the next sequence:

Hom s (F, R* ® M) 2 Hom g (F, Hom g, (Hom s (R® @ M, U~ Eg), U~ Eg))
2 Hom s, (Hom s, (R® @ M, U~ Eg), Hom g, (F, U~ ER))
2 Hom s, (Homg(M, Hom s, (R®, U~ Eg)), Homp, (F, U~ Eg))

>~ Homg, (Homp(M, U ' ER), Homz, (F, U ER)).

The first step is from the fact that R® ®p M is Matlis reflexive over R*. The second
and third steps follow by Hom-tensor adjointness, and the fourth step is standard.
Lemma 3.1.12(1) implies that U~ 'A is artinian over U'R. Tt follows from
Lemma 3.1.22 that U~!A is torsion with respect to the Jacobson radical of U"'R. In
particular U~'A is b-torsion, so Lemma 3.1.23 shows that (U~1A)V(E) = (U-14)V.
Combining this with (3.7) and (3.8), we have the isomorphism (3.5).
To verify (3.6), argue similarly, using the isomorphism

meF EXtiﬁm (Ama ﬁm ®R M)

Extip(A, M) =

from Theorem 3.3.3. OJ

The following result shows that extension functors applied to two artinian modules

over arbitrary noetherian rings can be computed as a finite direct sum of extension
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functors applied to pairs of noetherian modules over complete local rings.

Corollary 3.3.7. Let A and L be R-modules such that A is artinian and L is ei-
ther artinian or Matlis reflexive. Let F be a finite subset of m-Spec(R) containing

Suppr(A) N Suppg(L). Setting b = Nperm and U = R\ Uperm, we have
Exty (A4, L) = Exth, (U'L)", (U A)") 2 @ e r Exti, (Lw)”, (An)).

Fact 3.3.8. Let L and L’ be R-modules, and fix an index 7 > 0. Then the following

diagram commutes where d; and (5Ext¢R () are the natural biduality maps

Oy (L',L)

Ext(L, L) ——"> Ext’y (L', L)"V

Extﬁé(L’ﬁL)j j(GiL/L)V

Ext (L, LYY) —— Torf (L', LV)".

The unlabeled isomorphism is from Remark 2.1.9, and ©%,, is from Definition 2.1.8.

Lemma 3.3.9. Let N and L be R-modules such that N is noetherian. Let m €
m-Spec(R) and fiz an indexi > 0. The map Ext’s(N,61): Extiy(N, L) — Extys(N, LYY)

is an injection. If us(m; L) < oo, then Ext'y(R/m,dL) is an isomorphism.

Proof. Remark 2.1.9 implies that
o Torf(N,LY) — ExtbL(N, L)Y
is an isomorphism. Hence (©Y%;,)" is also an isomorphism. The map

Opeiy v,y ¢ ExtR(N, L) — Extip(N, L)YV
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is an injection. Using Fact 3.3.8 with L' = N, we conclude that Ext%(N,dz) is an
injection.

The assumption p%(m, L) < oo implies that Extlz(R/m, L) is a finite dimensional
R/m-vector space, so it is Matlis reflexive over R; hence dgyi (r/m,z) 18 an isomorphism.
Again, using Fact 3.3.8 we conclude that Ext’(R/m, d;) is an isomorphism, as desired.

]

Lemma 3.3.10. Let A and L be R-modules such that A is artinian. Fiz an index
i > 0 such that the Bass numbers p's(m; L) are finite for all m € Suppg(A). Then

the map
Exth(A,6.): Exth(A, L) — Exth(A, LYY)

18 an isomorphism, and the map
Extt (A, 0): Exte (A, L) — Exti (A, LYY)

18 an injection.

Proof. Since A = @ (a) Aw is a finite direct sum, the maps Ext’ (A, 01) decom-

meSupp

poses into a direct sum of maps € Ext’(An,62). The proof that each of

meSupp(A)

these maps are isomorphisms parallels that of the local case, Lemma 2.4.7. The same

reasoning also shows that Ext)f'(A,d.) is an injection. O

Lemma 3.3.11. Let A, I and L be R-modules such that A is artinian and I is

injective. Let a be an ideal contained in b = Npesupp(A)nsupp(n™. Then
A QR HOIIlR(I, L) = A XR HOIIIR(FQ(I), L)

Proof. There is an isomorphism I = @, cqp0. 1 Er(R/p)") where {1y }pespec(r) i
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a sequence of sets. If p € Suppy(I)\ Supp(A), then Eg(R/p)*) is an R,-module;
hence so is Homg(Eg(R/p)*), L'). In this case since b € p Fact 3.1.8 explains the

second step in the following display:

HOmR(®P€SUPPR(1)\SuppR(A) ]ER(_R/p)(:U*F)7 L)
= HpeSuppR(I)\SuppR(A) HomR(ER(R/p)(Mp)7 L)
= HpeSuppR([)\SuppR(A) b HomR(ER(R/p)(NP)7 L)

=b HpeSuppR(I)\SUPpR(A) Hompg(Egr(R/p)*»), L)

The first step above is standard and the third step follows from the fact b is finitely

generated. Let X := @ (4) Er(R/m)#). Since A is b-torsion it follows

peSupp i (I)\Suppg

from Lemma 3.1.6 that A ® g Hompg(X, L) = 0. Also we have that

12 (B rcsupp,y (4)Suppp(l) Er(R/m)m)) @ X =T (I) @ X.
Therefore
A QR HOI’HR([, L) = A QR HOIDR(F[,<I) D X, L) =2 A QR HOH]R<F[,(I), L)

Since I'y(1) is injective and I'y(I'q(1)) = I'y(I) a similar argument shows that A ®p
Hompg(I'y(I), L) =2 A®g Hompg(['y(1), L) and the result follows. O
Lemma 3.3.12. Let A and L be R-modules such that A is artinian. Let a be an ideal

contained in NmeSupp(A)nsupp(L)M- For each index 1 > 0, there is an isomorphism

Torf (A, Homg(L, Ep.)) = Torf(A, LY).
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Proof. Lemma 3.3.11 explains the first and fourth steps in the following display:

A®pHomg(I, Eg) =2 A®g Homg(Ty(1), ER)
>~ A Qr HOI’HR(Fa(I); Pa(ER))
=~ A®p HomR(Fa(I)J Eﬁ“)

= A Xnr HOIHR(I, E}’%a)

The second and third isomorphism are from Lemmas 2.1.5 (2) and 3.1.5 respectively.
Since E'g is injective, the complex Hompg(1, ER) is a flat resolution of Homg(L, Er) =
LY; see [12, Theorem 3.2.16]. Similarly, the complex Hompg(I, Eg,) is a flat resolution

of Homg (L, Eg.). Therefore the result follows by taking homology. O

Theorem 3.3.13. Let A and L be R-modules such that A is artinian. Let F be a
finite set of maximal ideals containing Suppg(A) N Suppg(L), and set b = Nyperm.
Fiz an index i > 0 such that the Bass numbers p's(m; L) are finite for all m €

Suppr(A) N Suppg(L). Then we have the following:
1. There is an isomorphism BExt (A, L)V(Rb) >~ Tor®(A, LY); and

2. If R/(Anng(A) + Anng(L)) is semi-local and complete, then ©'y; provides an
isomorphism Ext’sy (A, L)Y = Tor/ (A, LV).

Proof. (2) Assume that R/(Anng(A) + Anng(L)) is semi-local and complete. Theo-

rem 3.2.9(2) and Lemma 3.3.10 show that the maps

Opxe () Extip(A, L) = Extp(A, L)Y

Ext’(A,0r): BExth(A, L) — Extl(A, LYY)
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are isomorphisms. Fact 3.3.8 implies that (©%;)" is an isomorphism, so we conclude
that ©%; is also an isomorphism.

(1) Set U = R~ Uperm. We first verify that
Tor® (U'A, (R* @5 L)V E)) 2 Tor (A, (R® @ L)Y E). (3.9)

For this, let P be a projective resolution of A over R. Since R is flat over R,
the complex R® ®z P is a projective resolution of R® @z A = U~'A over R®; see

Lemmas 3.1.28 and 3.1.29. Thus, we have
(Eb Rr P) ® s (ﬁb QR L)v(ﬁb) ~ Py (R\b Or L)V(ﬁh)

and the isomorphism (3.9) follows by taking homology.

Theorem 3.3.3 explains the first step below:

Extiy (A, L)V(E") = Exth, (U7'A, R* @ L)V
= Torf (U7 A, (R® @g L)VF)
~ Tor®(A, (R® ®p L)v(ﬁb)>
= Tor[ (A, Homg(L, E,))

=~ Torl(A, LY).

The second step is from part (2); this uses the fact that R® is semi-local and complete,
and the equality uf, (MR R® @p L) = piy(m;L) < oo for all m € Suppg(A4) N
Suppg(L). The third step is from (3.9), and the fourth step is from Hom-tensor

adjointness. The fifth step is from Lemma 3.3.12. O

Corollary 3.3.14. Let A and M be R-modules such that A is artinian and M is
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mini-mazx. Let F be a finite set of mazimal ideals containing Suppr(A) N Suppr(M).

Let b = Nperm. For each index i > 0, one has Extiy(A, M)V(E) = TorR(A, MY).

Theorem 3.3.15. Let M and L be R-modules such that M 1is mini-max and the
quotient R/(Anng(M) + Anng(L)) is semi-local and complete. Fiz an index i > 0
such that ph(m; L) and p' ! (m; L) are finite for all m € Suppg(M) N Suppg(L) N

m-Spec(R). Then O, is an isomorphism, so
Exth (M, L)Y = Torf (M, LY).

Proof. Since M is mini-max over R, there is an exact sequence of R-modules homo-
morphisms 0 -+ N — M — A — 0 such that N is noetherian and A is artinian. The
long exact sequences associated to Tor(—, L") and Ext(—, L) fit into the following

commutative diagram:

oo —Tor®(N, L) — Tor(M, L) — Tor*(A, L) —— - --

o o o

oo — > Exth(N, L)Y — Extl(M, L)Y — Bxthy(A, L)Y — - - .

By Remark 2.1.9, the maps ©%, and ©%} are isomorphisms. Theorem 3.3.13(2)
implies that ©%; and ©%' are isomorphisms. Hence the map ©¢,; is an isomorphism

by the Five Lemma. O

Corollary 3.3.16. Let M, M' and L be R-modules such that M is Matlis reflexive

and M’ is mini-mazx. Then for all i > 0, ©',,,, is an isomorphism, so
Extb (M, M)Y = Tor(M', MY)

Fix an index i > 0 such that pub(m; L) and pf*(m; L) are finite for allm € Suppz(M)N
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Suppr(L) Nm-Spec(R). Then ©%,; is an isomorphism, so
Exth(M, L)Y = Torf (M, LY).

Corollary 3.3.17. Let M and M' be mini-max R-modules such that the quotient
R/(Anng(M) + Anng(M")) is semi-local and complete. Let F be a finite set of max-
imal ideals containing Suppg(M) N Suppr(M’) N m-Spec(R), and set b = Nperm.

Then for all i = 0 the map O, is an isomorphism, so
Ext’ (M, M’)V(Rb) >~ Exthy (M, M')Y = Torf (M, M™).

Proof. Theorem 3.2.9(1) implies that Ext’ (M, M) is Matlis reflexive over R. There-
fore by Lemma 3.1.27(2) it follows that Ext’ (M, M) = Exth(M, M’)V(ﬁb). Also
it follows from Theorem 3.3.15 that ©';,, is an isomorphism for all ¢ > 0; hence

Exth (M, M"Y = Torj"(M, M"). O

3.4 Length of Homg(L,L') and L ®p L’

Fact 3.4.1. Let A be an artinian R-module, and let b be an ideal of R. Fix an integer

t > 0 such that b’A = bt A. Given a b-torsion R-module L, one has
ARr L= (A/b'A)@p L= (A/0'A) ®p (L/6'L).

This is proved as in Lemma 3.1.6 or [17, Lemma 3.5].

Lemma 3.4.2. Let a be a finite intersection of mazximal ideals. Let A and L be R-
modules such that A is artinian and L is a-torsion. Let F = Suppg(A) N Suppg(L)

and b be an ideal contained in Nyerm. Choose t > 0 such that b'A = b1 A. For
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each m € F choose oy = 0 such that either m® A = m® A or m™[ = mom+l],

Then there are isomorphisms

A®p L= (A/6'A) @5 (L/b'L)

= Dner(A/mA) @5 (L/m*L)

Proof. The isomorphism A®gr L = @me 7 A @ Ly follows from Lemma 3.1.24 along
with the fact that A, ®p L, = 0 for m # n € m-Spec(R). Since m*A = mo14
implies m* A, = m* 1A, and we have A/m®A = A, /m® A, the isomorphism
ARrRAZ P cr(A/m*™A) ®p (L/m* L) follows from Fact 3.4.1.

Since b'A = b1 A we have b'A, = b1 A,. By Fact 3.4.1 we have A ®p L =
Ducr An/b'An ®p L /b'L. Since Ap/b'An ®@p Ly/b'Ly = 0 when either m # n or

m =n ¢ F we get the first step in the next display:

A QR L= @mESupp(A) @HESupp(L) Am/btAm ®r L“/thﬂ

~ A/b'A®p L/b'L.

The second step above follows from Lemma 3.1.24. n

Theorem 3.4.3. Let a be a finite intersection of maximal ideals. Let A and L be
R-modules such that A is artinian and L is a-torsion. Let F = Suppgz(A)NSuppg(L)
and b be an ideal contained in Nyerm. Choose t > 0 such that b'A = b1 A. For

each m € F choose oy = 0 such that either m™ A = m® A or mom[ = mom+iL,
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Then there are inequalities

M(A®p L) < nermin {Ag (A/mA) B (m, L), Bf(m, A)Ag (L/m>~L)}
< Ag (A/b'A) max{B(m, L)| m € F}

< Mg (A/6"A) Ag(L/BL).

Here we use the convention 0 - oo = 0.

Proof. By Lemma 3.1.24 we get the first step in the next display:

A QR L= @mESupp(A) @nESupp(L) Am ®r Ly = @me]-— Am Or Lm

The second step above follows from that fact that A, ®g L, = 0 when either m # n

or m =n ¢ F. This explains the first step in the next display:

AR(A®R L) = 3 ner Ar(An @R L)

< Lner min{Ar(A/m A) B (L), B (Am)Ar(L/mL)}

Since a tensor of m-torsion modules is the same whether the tensor is over R or k™
the second step in the last display follows from Theorem 2.3.8 and Lemma 2.1.3 (1).

Since b'A = b A it follows that b'A, = b A, for all m € m-Spec(R). Notice
that b'A, = biTom A C mitom A = m™ A,. This explains the second step in the

next display:

Ar(A[6°A) 2 3o Ar(An/b An)
wer AR(An/mem AL)

ner Ar(A/mem A)

\%
M M M
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Also we have the following:

Ar(L/OL) = Ar(L/(Nmerm)L)
= 2mer Ar(L/mL)

= Zmé]—' 6(1)'%(“17 L)

The first step in the last display follows from the assumption b C Nperm. The
second step follows from the Chinese remainder Theorem. It is elementary to show
that A% (m, L) = Ag(L/mL) and the third step follows. The inequlities in the last two

displays imply the last two inequlities in the Theorem; hence the result follows. [
From Theorem 3.4.3 one easily recovers [13, Proposition 6.1]

Corollary 3.4.4. If A and A’ be artinian R-modules, then A\r(A ®pr A’) < oo.
The next result provides conditions equivalent to the vanishing of A @ A’.

Proposition 3.4.5. Let A and A’ be artinian R-modules. Let

F = Supp(A) N Supp(A’) and b = Nperm. Then the following are equivalent:
1. A®r A =0;
2. Supp(A/bA) N Supp(A’'/bA") = 0);
3. For allm € F, either A=mA or A’ =mA’; and

4. For allm € F, either gradep(m; AY) > 0 or grade(m; A"Y) > 0.
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Proof. The equivalence (3) <= (4) follows from the next sequence of equivalences:

mA = A R/m@p A=0
Homp(R/m @ A, E) =0

HomR(R/m, HOIHR<147 E)) =0

1117

gradep(m; Homg(A, E)) > 0

(1) = (3): Assume that A ® A" = 0, and let m € Suppy(A) N Suppr(A’). The

natural map R — R/m yields the surjection in the next sequence

A®R A/ — R/m ®R (A ®R A/) = (R/m ®R A) ®R/m (R/m ®R A/)

= (A/mA) Qp/m (A /mA).

The isomorphisms are standard. Hence we have (A/mA) ®p/m (A'/mA’) = 0. Since
A/mA and A’/mA’ are vector spaces over R/m, it follows that either A/mA = 0 or
A'/mA" = 0, as desired.

(3) = (1): Assume that for each m € Suppy(A) N Suppy(A’), either A = mA or

A’ =mA’. Then by Lemma 3.4.2

AR A 2 @ r(An/mPAn) @p (Al /m°AL) = 0.

(3) = (2): Assume that for each m € F, either A = mA or A’ = mA’. In general
for n # m € m-Spec(R) we have nA,, = A,. Let m € F and suppose that A = mA.
Then Ay = mAy = [[,er1An = bAy. So (A/bA)y = An/bA, = Ay/mA, = 0.
Thus m & Supp(A/bA). Since Supp(A/bA) N Supp(A’'/bA") C Supp(A) N Supp(A4’)
it follows that Supp(A/bA) N Supp(A’'/bA") = 0.
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(2) = (3): Assume that Supp(A/bA) N Supp(A’/bA") = (). Let m € F. Without
loss of generality suppose m ¢ Supp(A/bA). Therefore 0 = (A/bA), = An/bA, =

Ap/mAg; hence A, = mA,,. Since A = P ) A, and A, = mA, for all maximal

neSupp(A

ideals n # m it follows that A = mA. m

Proposition 3.4.6. Let A and L be R-modules such that A is artinian. Let F =

{m € Supp(A)| (0: m) # 0}. Let a be an ideal contained in b = Nperm. Then
Hompg(A, L) = Hompg(I's(A),Ta(L)) = B,y » Homp(Am, Tn(L))
If in addition Ag(0 : b) < oo then
Homp(A, L) = Homp, (Ty()", Tu(A)") 2 @5 Homp (Tn(L)", AY).

Note that Ty(L)Y and Ty(A)Y are noetherian R®-modules while Tw(L)" and Ay are

noetherian B™-modules.

Proof. The first sequence of isomorphisms above follows from We get the first step
and last step in the next display follow from Lemma 3.1.24 (2) and the second step

is from Lemma 2.1.5 (2).

HOIIIR<A, L) = @ HOHIR(Am, L)

meSupp(A)
= Ornesupp(a) Homr(Am, I'n(L))
o~ @me? Hompg(Am, I'n(L))

~ @me? @nef Homp(Am, I'n(L))

>~ Homp([(A), To(L))

The third step above follows from the fact that for all maximal ideals m ¢ F either
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Ay = 0 or I'y(L) = 0. The fourth step follows from the fact that for m # n €
m-Spec(R) we have Hompg(Aw, I'n(L)) = Hompg(Aw, [min(L)) = 0. Similarly since
[e(A) = Tp(Te(A)) and Ty(L) = Tp(Iy(L)) it follows that Homp (T (A), (L)) =
Hompg(I'y(A),I'y(L)) = Hompg(A, L).

Assume that Ag(0 :z b) < oo. Since (0 :f b) = @, (0 :z m) it follows that
E(T'w(L)) is a finite direct sum of copies of E(R/m) for all m € F. Hence I'y(L) is

artinian and so is I'y(L) for all m € F. The isomorphisms
Homp(A, L) = Hompg, (I's (L)Y, AY) = P e r Homp (Fn(L)Y, AY).
follow from Corollary 3.3.7. The note about the modules being noetherian over the

rings R® and R™ follows from Lemma 2.1.5 (1). O

Proposition 3.4.7. Let A be an artinian R-module and let L be an R-module. Let
F ={m € Supp(A4)| (0:1 m) # 0} and b = Nyerm. Suppose there exists x > 0 such
that 6°Ty(L) = 0. Choose y = 0 such that YA = bY™' A, Let n = min{z, y}. For all

m € F choose oy > 0 such that either m®m A = m 1A or mo~T' (L) = 0. Then

Hompg(A, L) = @, r Homg(A/m* A, (0 :p m*)) = Homp(A/b"A, (0 :1 b™))
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Proof. The first step in the following display is from Proposition 3.4.6:

Hompg (A, L) = Hompg(I's(A), T's(L))
= HOIIlR<Fh (A)/bzrh (A)7 Fb(L))
=~ Hompg(A/b" A, Ty(L))
=~ Homp(A/b6"A, Ty (L))

=~ Homp(A/b"A, (0 :, b")).

The second step follows from the assumption b*I'y(L) = 0. The third step follows by

noticing that T'y(A) = P, » Am and bA, = A, for all m € m-Spec(R)\ F.

meF

For the fourth step, we need to show that m"A = m*A. If n = z, this is clear. If
n # x, then n = y < x. From the assumption bYA = bY*"1 A it follows that m"A =
mYA = m”A. The last step is a consequence of the fact that b” € Ann(A/b"A).
Since b"I'y(L) = 0 it follows that m*T" (L) = 0 for all m € F. A similar sequence of

isomorphisms to the one above shows the first isomorphism in the Proposition and

the result follows. O

Proposition 3.4.8. Let A be an artinian R-module and let L be an R-module. Let
F = {m € Supp(A)| (0:1 m) # 0} and b = Nwerm. Suppose there exists x = 0 such
that b*Ty(L) = 0. Choose y > 0 such that bYA = b¥**A. Let n = min{x,y}. For all

m € F choose ay > 0 such that either m®m A = m* 1A or m*~T' (L) = 0. Then

/\R(HomR(A, L)) < Zme]: /\R(A/mA)/\R(O 'L mo““)
max{Ag(A/mA)| m € F}Ag(0:, b")

< Ar(A/bA)AR(0 :p 7).



94

Here, we follow the convention 0 - oo = 0.

Proof. An inductive argument on A(A/m) and A(0 :; m*") shows that

)\R HomR(A/ma“‘A, (O L mo““)) < )\R(A/mA))\R(O L mo‘"‘)

Therefore by Proposition 3.4.7 and the additivity of length we get the first inequality
in the proposition.

By the Chinese remainder Theorem A/bA = @ __r A/mA. Similarly, I'y(L) =

meF

Ducr ['m(L). From these isomorphisms we deduce that n > max{an| m € F} and
that (0 :1 b") = @,,c+(0 :r m"). From the injections (0 :, m*™) < (0 :; m") and

the additivity of length of direct sums we conclude that

>\R<A/bA) = Zme}' )\R(A/mA) and )\R<0 'L bz) = Zme]—' )\R(O 'L m“'").

The last two inequalities in the proposition follow. O

Corollary 3.4.9. Let A and N be R-modules such that A is artinian and N 1is
noetherian. Then Ag(Hompg(A, N)) < oc.

Definition 3.4.10. Given an R-module L we say that p € Spec(R) is an attached
prime of L if there exists a submodule L’ of L such that p = Anng(L/L’). We denote

by Attg(L) the set of attached primes of L.

Proposition 3.4.11. Let A and L be R-modules such that A is artinian. Let F =

{m € Supp(A)| (0 :p m) # 0}. Let b = Nuerm and suppose that Ag(0 :f b) < oo
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(equivalently % (m, L) < oo for allm € F). Then

Ass g (Homp(A, L)) = Assz (T(A)Y) N Supp e (T (L))

= Att e (T(A)) N Suppge (To(L)Y)

Proof. By Lemma 3.4.6 Homp(A, L) = Homp, (I's(L)",['y(A)Y). Since I'y(L)" is a
noetherian R*-module we can apply a result from Bourbaki [7, IV 1.4 Proposition
10] to get the first equality in the Proposition above. Also by [24, Proposition 2.7]
Assze (I's(A)Y) = Attﬁb(Fb(A)v)V(ﬁb)) = Attz (Ip(A)). O

Proposition 3.4.12. Let A and L be R-modules such that A is artinian. Let F =
{m € Supp(A4)| (0 :x m) # 0}. Let b = Nperm and suppose that Agr(0 : b) < oo.

Then the following conditions are equivalent:
1. Homg(A, L) =0;
2. Homp(I's(A),I'y(L)) = 0;
3. Homp, (I'y (L)Y, Te(A)Y) = 0;
4. Anng (Ty (L)) (A) = Te(A);
5. Anng, (I'e(L)) contains an I'y(A)Y-regular element;
6. Assp, (I's(A)Y) N Suppgs (Te(L)Y) = 0; and
7. Att 5, (T's(A)) N Suppge (Te(L)Y) = 0.

Proof. Lemma 3.4.6 gives the equivalence of (1)-(3). Since I'y(L)" and I'y(A)Y are

noetherian R*-module the equivalence of (3) and (5) is standard; see |9, Proposition
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1.2.3]. Let I := Anng,(I's(L)). The isomorphism I's(A)Y = Fb(A)V(ﬁb) along with
Lemma 2.1.13 (3) gives the equivalence of (4) and (5). The equivalence of (3), (6) and
(7) follows from Proposition 3.4.11 and the fact that the R*-module Hompg(A, L) = 0

iff Assp(Homp(A, L)) = 0. O
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Chapter 4

Asymptotic Behavior of

Dimensions of Syzygy Modules

The results in this chapter are joint work with K. Beck. Throughout this chapter let
R be a commutative (noetherian) local ring with maximal ideal m and residue field
k= R/m. Let M be a non-zero finitely generated R-module with length A\(A/). The
nth Betti number of M is given by £,(M) := dimy(Tor?(k, M)). A minimal free

resolution of M then has the form

. R,BQ(M)&R/&I(M)LRBO(M)LM&)O_

The nth syzygy module of M is Q,(M) := Im(d,) = Ker(d,_1). In particular
Qo(M) = M. Recall that Min(M) denotes the set of minimal elements of Supp(M).
The projective dimension of M is given by pd(M) := inf{n| 5,(M) = 0}. Given an
ideal @ C R the ith local cohomology functor with respect to a is denoted H:(—) and
is defined by H:(M) = H'(T'y(I)), where I is an injective resolution of M, and H'(—)

is the ith homology functor. In particular, the functor H'(—) are the right derived
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functors of the functor I'y;(—). For background on local cohomology see [16].

The asymptotic behavior of the depths of syzygy modules is known. If pd(M) =
00, then depth(€2,(M)) > depth(R) for n > max{0,depth(R) — depth(M)}, with at
most one strict inequality at either n = 0 or n = depth(M) — depth(R) + 1; see [23].
However, the asymptotic behavior of dim(£2,(A/)) is not known in general. Many of

our results are motivated by trying to answer the following open question.
Question 4.1. Is dim(Q,(M)) constant for n > 07

Several instances in which this question is known to have an affirmative answer
are given in [11, Remark 5.2].

We prove new instances in which Question 4.1 has an affirmative answer. All
of our results are for modules whose Betti numbers are eventually non-decreasing.
Therefore finding an affirmative answer to the following open question first asked by

L. Avramov would improve our results.

Question 4.2. [3] Are the Betti numbers of a finitely generated module over a local

ring always eventually non-decreasing?

In [3] and [10] several instances are given for which this question has an affirmative
answer.

Whenever the Betti numbers of a module are eventually strictly increasing it is
known that the the dimension of a sufficiently high syzygy will have the dimension

of the ring.

Remark 4.3. If 5;(M) > ;_1(M) for some i > 0, then Supp(€;11(M)) = Spec(R);
hence dim(Q;41(M)) = dim(R).

Proof. We prove the contrapositive. Suppose Supp(Q2,(M)) # Spec(R). Then,

there exist a minimal prime p such that QF (M), = 0. Let n = Ag,(R,). Localizing
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the exact sequence 0 — QF (M) — R#M) — RA-1(M) at p we obtain an injection
Rgi(M) — Rfi‘l(M) from an module of length n3;(M) to a module of length ng;_1(M).

It follows that 3; < [;_1. O

Lemma 4.4. Let n be a positive integer. Suppose that Supp(Qa,(M)) # Spec(R) and
that Bo(M) < 51(M) < ... < Ban_1(M). Then we have the following:

1. BQz(M) = 52i+1(M> fO’f’ 1= Oa sy 1;
2. Supp(€2,(M)) C Supp(Qa,_2(M)) C ... C Supp(2(M)) C Supp(M); and
3. Supp(Q22,(M)) N Min(R) = Supp(M) N Min(R).

Proof. Choose p € Min(R)\ Supp(£2s,(M)). Localizing part of a minimal free reso-

lution of M at p, we get an exact sequence of finite-length R,-modules:

0 REZH,I(M) $an—1 REZH,g(M) P2n—2 . RfO(M) %o Mp 0.

Since ¢,,_1 is an injection, )\(RfQ”’Q(M)) > )\(Rf%’l(M)); hence fo,, o(M) = Pop_1(M).
It follows that B,_o(M) = Ba,—1(M) and, since R, has finite length, that ¢q,_; is
an isomorphism. Therefore ¢, 5 is the zero map. By an inductive argument it fol-
lows that fo;(M) = Boi1(M), ¢oiyq is an isomorphism, and ¢o; is the zero map for
1=0,...n—1.

Since ¢y is the zero map M, = 0; hence p ¢ Supp(M). It follows that
Supp(M) N Min(R) C Supp(£22,(M)) N Min(R). (4.1)

Let q € Spec(R)\ Supp(Qe;(M)) for some i with 0 < i < n — 1. Localizing
the exact sequence 0 — Qgipo(M) — RPM) — RE:M) (M) at q we ob-

tain an exact sequence 0 — Qg1 0(M), — RE%(M) — Rf%(M) — 0. It follows that



100

Qoir2(M)q = 0 and q ¢ Supp(Qai2(M)). Thus Supp(Qgi2(M)) C Supp(2s;(M)) for
i=0,...,n—1. In particular we have Supp(Qs,(M))NMin(R) C Supp(M)NMin(R)

and statement (3) from the lemma follows from display (4.1). O

Fact 4.5. Let B be a square n by n matrix with entries in R defining a map from R"
to R". Then using invertible row and column operations one can transform B into a
matriz A = I,,, ® B" where I, is the m by m identity matriz for some integer m and
B’ has entries in m. Indeed, the following row and column operations are invertible

and, hence each represent a change of basis for R":
1. swapping two rows or columns;
2. multiplying a row or column by a unit; and
3. adding a multiple of a row (column) to another row (column,).
The proof of our original statement follows using standard techniques in linear algebra.

Theorem 4.6. Suppose that the sequence (5;(M))2, is eventually non-decreasing.

Then we have the following:
1. For all i > 0, Min(Q;(M)) € Min(R);
2. The sequences (Supp(§e;(M)))2y and (Supp(Qeir1(M)))52, stabilize;

3. Fither Supp(§e;(M)) = Spec(R) for all i > 0, or [y (M) = Poiy1(M) for all

1> 0; and

4. Either Supp(Qa;41(M)) = Spec(R) for all i > 0, or By(M) = Boy_1(M) for all

1> 0.

Proof. We may assume that pd(M) = oco. By replacing M by a sufficiently high

syzygy, one may assume that [;11(M) > 5;(M) for all ¢ > 0. If Supp(Qe(M)) =
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Spec(R) for i > 0 then all of the statements hold for even (odd) syzygies, that is
assuming M was replaced by an even (odd) syzygy. Therefore we may suppose that
there exist infinitely many ¢ € N such that Supp(Qs;(M)) # Spec(R). Since we
could have replaced M by either an odd or an even syzygy it suffices to show that
Boi(M) = Boiy1(M) for all i > 0, the sequence (Supp(Qg;(M)))2, stabilizes, and
Min(Qs;(M)) C Min(R) for i > 0.

Since Min(R) is a finite set we may choose p € Min(R) such that there are infinitely
many ¢ € N for which p ¢ Supp(Q;(M)). For each positive integer ¢ such that p ¢
Supp(Q22.(M)) Lemma 4.4 applied to Supp(£22.(M)) implies that we have [q;(M) =
Poiv1(M) and Supp(Qe;2(M)) C Supp(Qe(M)) for all 0 < i < ¢. Since, ¢ can be
chosen to be arbitrarily large we have [o;(M) = Bo;y1(M) and Supp(Qi2(M)) C
Supp(§2e;(M)) for all 7 > 0. Since closed sets in the Zariski topology satisfy DCC it
follows that we may choose m > 0 such that Supp(Qaopm2;(M)) is constant for all
1> 0.

Therefore it remains to show that Min(€Qy;(M)) € Min(R) for ¢ > 0. Choose
q € Min(Qo,(M)). Let S := Ry, M; := (Qami2i(M)), for all i > 0 and n := qR, be

the maximal ideal of S. For all 7« > 0 we have an exact sequence of the form

B;

O—>MZ‘+1 Sbi Sbi MZ 0 .

If the matrix B; defining the map S% — S% has some entries which are units, then by
Fact 4.5 we can reduce this sequence by taking away free summands; hence we may
assume that B; has all of its entries in n. For all ¢ > 0 let N; = Im(B;). Since M; 4
has finite length, a minimal injective resolution I of M;,; is m-torsion. It follows

that 0 = H/(I) = H/(['w(I)) = H? (M) for all j > 0. From the exact sequence
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0—— M;, Sbi o N; 0 we get an exact sequence
0 — M — HY(SY) — HY(N;) — 0 (4.2)

and isomorphisms HZ(¢;) : H?(S%) — HI(N;) for all j > 1. Similarly the exact

sequence 0 N; Vi, gbi M; 0 yields an exact sequence
0 — HY(N;) — HY(S%) — M; — H}(N;) — Hy(S%) = 0 (4.3)

and isomorphims HZ(¢;) : HI (N;) — HZ(S%) for all j > 2. By the additivity of length
we get the first and third steps in the next display from sequences (4.3) and (4.2)

respectively.

A(M;) = A(H(S")) — AH(N:)) + AM(Im(M; — Hy(V;)))
> A(HJ(S™)) — AH(V;))

= /\(Mz+1>

Since the sequence (A(M;))2, is positive and non-increasing it is eventually constant.
Choose t € N such that A(M,) = M(M1). Then A(Im(M, — HL(N,))) = 0.
Therefore the map M, — HL(N,) is the zero map. From sequence (4.3), it follows

that the map H}(¢;) : HL(N;) — HL(S%) is an isomorphism. Thus
H)(B,) = Hy() o Hi(¢) : H(S™) — Hi(S™)

is an isomorphism for all j > 1. Since H/(—) is an additive functor the map H/(B;)
is just matrix multiplication by the matrix B; applied to the components of H7(S%).

Since B; has entries in n it must kill socle elements of H7(S%). Therefore H (S%) has
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no socle elements. Since HZ(S%) is n-torsion it follows that HZ(S%) = 0 for all j > 1.

By [16, Theorem 9.3] we get the first equality in the next display:

dim(S) = sup{n| H3(S) # 0} = 0;

hence q € Min(R). Thus Min((M)) € Min(R) for all ¢ > 0, and the result

follows. O

Corollary 4.7. Suppose the sequence (5;(M))2,, is non-decreasing for i > 0. Then
(dim(Q9;(M)))52, and (dim(Q9;41(M)))52, are constant for i > 0. If pd(M) = oo
then one sequence stabilizes to dim(R) and the other sequence stabilizes to dim(R/p)

for some p € Min(R).

Corollary 4.8. Suppose the sequence (5;(M))2,, is non-decreasing for i > 0. If R

satisfies one of the following conditions then dim(2;(M)) is constant for i > 0:
1. R is equidimensional (i.e. dim(R/p) is constant for all p € Min(R));
2. R is a domain; or
3. dim(R) < 1.
Proof. (1) Follows from Corollary 4.7. (2) and (3) are special cases of (1). O

Remark 4.9. It should be noted that [11, Remark 5.6] claims that using [11, Propo-
sition 5.5] one can show that if R is equidimensional and Question 4.2 has an affir-
mative answer, then dim(2,(M)) is constant for n > 0. Howewver, [11, Proposition
5.5] requires the assumption that dim(R) > 2. Therefore although the conclusions of
[11, Remark 5.6] are correct, the justification given for these conclusions is invalid.
One should note the justification uses a localization argument, so it is invalid in every

positive dimension, not just dimension 1.
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The goal of the next two results, Lemma 4.10 and Proposition 4.12, is to show
how quickly the sequence (Supp(€2e;(M)))22, stabilizes when the Betti numbers of M

are non-decreasing.

Lemma 4.10. Giveni > 0, if 3;(M) = Bi11(M), then Supp(€;(M)) = Supp(Q2;42(M)).
Suppose Bo(M) = B1(M). Then we have the following:

1. If Supp(M )\ Supp(Qa(M)) # 0, then M is not a first syzygy of any module.
2. If p € Min(M)\ Supp(22(M)) then height(p) = 1.

Proof. Suppose that b := Sy(M) = 1(M) and Supp(M )\ Supp(22(M)) # 0. Choose
p € Min(M)\ Supp(£22(M)). As M, has finite length 0 — Rfl(M) — RfO(M) — 0 has
non-zero finite length homology. By the New Intersection Theorem [25] dim(R,) < 1.
If we suppose that dim(R,) = 0, then 0 # A\(M,) = /\(Rfl(M)) - )\(Rgl(M)) = 0, which
is a contradiction. Thus, height(p) = dim(R,) = 1.

Since 0 — Rg — Rg — M, — 0 is exact, Fact 4.5 implies that there exists a
minimal Ry-free resolution of M, of the form 0 — Ry — Ry — M, — 0 for some
n > 0. Therefore pdg (M,) = 1; hence depthp (M,) = depth(R,) — 1.

Assume that M = Q(L) for some R-module L we will obtain a contradiction.
Since M, is finite length and dim(R,) = 1 it follows that M, has no R,-free summands.

Therefore M, = Q?"(Lp). Since
0 < depthp (M) = depth(R,) — 1 < dim(R,) —1=1-1=0

it follows that depth(R,) = 1 and depth(M,) = 0. However, since M, is a first syzygy
depth(M,) > min{1,depth(R,)} = 1. This is a contradiction; hence M is not a first

syzygy of any module.
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Now suppose that 5;(M) = ;41(M) for some i > 0. Since Q;(M) is a first syzygy
of Q;_1(M) it follows that Supp(€2;(M)) C Supp(Qi;2(M)). By Lemma 4.4 we get

the opposite inclusion and the result follows. O
The following is an example where 3, (M) = (M) but Supp(M) € Supp(Q:(M)).

Example 4.11. Let S = k[z,y,z] and m = (z,y,2). Let R = Sy/yzSn and let

M = R/zyR. The compler ...—~>R—~R—Z2>R-—"~R M 0 is a
minimal free resolution of M. We have Qo(M) = zR = R/(y). The prime ideal

p = (x, z) of height 1 is in Suppr(M )\ Suppg(22(M)).

Proposition 4.12. Suppose that M is a non-zero finitely generated R-module with
non-decreasing Betti numbers. Then, either Supp(Qo;(M)) is constant for alli > 1, or
there exists n > 0 such that Supp(£2e;(M)) = Spec(R) for alli > n and Supp(Qq;(M))

s constant for 1 < j < n.

Proof. Suppose Supp(€2;(M)) # Spec(R) for for some n > 2. By Lemma 4.4 it
follows that Soj(M) = Baj11(M) for all j with 0 < j < n. From Lemma 4.10 we get

that Supp(€2s;(M)) is constant for 1 < j < n, and the result follows. O
The following example is due to Hamid Rahmati and can be found in [11]

Example 4.13. Let R = k[[z,y]]/ (2% zy) and M = R/(y). Then we have a minimal

free resolution of the form

ooy - - S - SR Y

Then dim(M) = dim(22(M)) = 0 and dim(§2;(M)) = 1 = dim(R) fori # 0, 2.

The following example shows that the even syzygies can have support equal to

Spec(R) while the odd syzygies do not.
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Example 4.14. Let R = [a,b,c,d, e]/(ade — bce). Let M be the cokernel of the first

map in the following matrix factorization:

28 e 1%t

—ce ae

[ d]

R? R?

Then Supp(:(M)) = Spec(R) and Supp(Qai1(M)) = Supp(R/(€)) # Spec(R) for
allt > 0.

The following example is due to Craig Huneke and can be found in [11].

Example 4.15. Let S = Q[z,y, z,u,v] and let I C S be the ideal

I = (2% x2,2%, zu, 2v,u? v?, 20 + 20 + UV, Yu, Yo, yr — 2U, Yz — TV).

Consider R = S/I, which is a 1-dimensional ring of depth 0. A computation using

Macaulay?2 yields that y is a parameter, (0 :y) = (u,v,2?) and (y) = (0:zr (0:ry)).

[u v 22]

R3

Let M be the cokernel of the rightmost map. Then the first and third syzygy modules
of M are R/(y) and (0 : y) respectively. These are both finite length since y is a

parameter, but all other syzygies have dimension 1.
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