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This work is primarily concerned with the study of artinian modules over commutative

noetherian rings.

We start by showing that many of the properties of noetherian modules that make

homological methods work seamlessly have analogous properties for artinian modules.

We prove many of these properties using Matlis duality and a recent characteriza-

tion of Matlis reflexive modules. Since Matlis reflexive modules are extensions of

noetherian and artinian modules many of the properties that hold for artinian and

noetherian modules naturally follow for Matlis reflexive modules and more generally

for mini-max modules.

In the last chapter we prove that if the Betti numbers of a finitely generated

module over an equidimensional local ring are eventually non-decreasing, then the

dimensions of sufficiently high syzygies are constant.
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Chapter 1

Introduction

This work is primarily concerned with the study of artinian modules over commutative

noetherian rings.

The work in Chapters 2 and 3 is joint with B. Kubik and Sean Sather-Wagstaff.

In Chapters 2 and 3 we show that many of the properties that make homological

methods work seamlessly when they are applied to finitely generated (i.e. noetherian

modules) have analogous properties when applied to artinian modules. We prove

many of these properties using Matlis duality and a recent characterization of Matlis

reflexive modules. Matlis reflexive modules are always an extension of noetherian

and artinian modules; see Fact 2.1.17 or [6, Theorem 12]. Consequently many of the

properties that hold for artinian and noetherian modules also hold for Matlis reflexive

modules and more generally for min-max modules. A module M is mini-max provided

thaht it contains a noetherian submodule N such that the quotient M/N is artinian.

The primary way of viewing a finitely generated module is to give a list of gener-

ators and relations. This can come in the form of matrix, which defines the first map

in a free resolution of the module. Alternatively, for an artinian module or another

module that contains torsion elements, finding an embedding of that module in its



2

injective hull may prove to be a better way of viewing the module. Although a di-

rect construction of an injective resolution may seem elusive, Matlis duality offers an

alternative approach to this construction. Matlis duality sends a flat resolution of a

module to an injective resolution of its Matlis dual; see [12, Theorem 3.2.9]. In the

case of an artinian R-module A we can use this correspondence to compute a minimal

injective resolution of A. By first computing a minimal projective resolution of the

Matlis dual of A, which is noetherian over a suitable semi-local complete ring and

then applying Matlis duality to the free resolution, one obtains the desired minimal

injective resolution. A simple consequence of this construction is that all of the Bass

and hence the Betti numbers of artinian modules are finite.

When one applies ExtiR(−,−) and TorRi (−,−) to a pair of noetherian modules the

result is always noetherian. Similarly, we show that TorRi (A,L) is artinian whenever

A is artinian and for all maximal ideals m ∈ Supp(A) the ith Betti number of L with

respect to m is finite. Alternatively ExtiR(A,L) is noetherian over the completion

with respect to ∩m∈Supp(A)m whenever A is artinian and for all m ∈ Supp(A) the ith

Bass number of L with respect to m is finite. A special case occurs when i = 0, A

and A′ are artinian and N is noetherian: Both A⊗R A′ and HomR(A,N) are finite-

length modules. Given a module L and a Matlis reflexive module M such that for all

m ∈ m-Spec(R) ∩ Supp(M) the ith Bass and Betti numbers of L with respect to m

are finite we show that TorRi (M,L) and ExtiR(M,L) are Matlis reflexive modules.

When N is a noetherian R-module localization commutes with Ext, i.e., for any

multiplicatively closed set U ⊆ R and any R-module L we have U−1 ExtiR(N,L) ∼=

ExtiU−1R(U−1N,U−1L) for all i. Note that in general Tor always commutes with lo-

calization. When A is an artinian R-module, L is any R-module and U is a multiplica-

tively closed set disjoint from ∪m∈Supp(A)m we have ExtiR(A,L) ∼= ExtiU−1R(U−1A,U−1L).

Artinian modules actually have a much more direct connection to localization than
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noetherian modules do. In particular Supp(A) always consists of a finite set of

maximal ideals. For any maximal ideal m ∈ Supp(A) the composition Γm(A) →

A → Am is an isomorphism, so that A =
⊕

m∈Supp(A) Γm(A) ∼=
⊕

m∈Supp(A) Am.

Consequently, ExtiR(A,L) ∼=
⊕

m∈Supp(A) ExtiRm
(Am, Lm), and similarly TorRi (A,L) ∼=⊕

m∈Supp(A) TorRm
i (Am, Lm).

We use Matlis duality to better understand of the vanishing behavior of ExtiR(A,A′).

Given noetherian modules N and N ′ the length of any maximal N ′-regular sequence

in Ann(N) equals inf{i > 0 | ExtiR(N,N ′) 6= 0}; see [9, Proposition 1.2.3] for de-

tails. Let a = ∩m∈Supp(A)∪Supp(A′)m and let (−)∨ denote the Matlis duality functor;

see Definition ??. We show that ExtiR(A,A′) ∼= Exti
R̂a(A

′∨, A∨). Since A′∨ and A∨

are noetherian R̂a-modules it follows that inf{i > 0 | ExtiR(A,A′) 6= 0} is the length

of the longest A∨-regular sequence in AnnR̂a(A′).

Let L and L′ be R-modules. Since Matlis duality commutes with taking homology,

the correspondence between a free resolution and an injective resolution of the Matlis

dual implies the isomorphism TorRi (L,L′)∨ ∼= ExtiR(L,L′∨). To see this isomorphism

apply Hom-tensor adjointness to (L⊗R F·)∨ where F· is a free resolution of L′. Sim-

ilarly there is a map from TorRi (L,L′∨) to ExtiR(L,L′)∨ given by the applying the

Hom-evaluation morphism to appropriate left and right derived functors; see Remark

2.1.7. When L is a noetherian this map is an isomorphism. We show that if L is

Matlis reflexive and the Bass numbers of L′ are finite then the map is an isomorphism;

see Theorem 2.4.8.

The results in Chapter 4 are joint work with K. Beck. Let R be a local ring with

maximal ideal m. When M is a finitely generated R-module, the local cohomology

modules H i
m(M) are artinian for all i > 0. In Chapter 4, we use local cohomology

to show that if the Betti numbers of a finitely generated module over an equidimen-

sional local ring are eventually non-decreasing, then the dimensions of sufficiently
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high syzygies are constant. Let Ωn(M) denote the nth syzygy module of M . Since

Supp(M) contains more information than just the dimension of M our results are

focused on describing the asymptotic behavior of Supp(Ωn(M)). In particular if the

Betti numbers of M are eventually non-decreasing then Suppn(M) is a 2-periodic

function of n for all n� 0. Also, in this case we show that the minimal elements of

Supp(Ωn(M)) are actually minimal elements of Spec(R) for all n� 0.

All of the theorems, propositions and corollaries in this document that have not

been explicitly cited from another source represent original research. Conversely, all

of the statements labeled as facts in this document were previously known regardless

of whether or not a citation has been included. Many of the lemmas found in the

background sections in Chapters 2 and 3 require only trivial arguments or elementary

observations for their proofs and we consider them to be likely known even if an

explicit citation for where they can be found is not included. Our convention is that

all of the Lemmas, which are not either in a background section or specifically citing

another source, constitute original research.
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Chapter 2

Homology of Artinian and

Mini-max Modules over Local

Rings

The results in this chapter are joint work with B. Kubik and S. Sather-Wagstaff.

Most of the results in this chapter can be found in [17].

Throughout this chapter R will denote a unital, commutative, (noetherian) local

ring with maximal ideal m and residue field k = R/m. The m-adic completion of R

is denoted R̂, the injective hull of k is E = ER(k), and the Matlis duality functor is

(−)∨ = HomR(−, E). We denote the length of an R-module L by λR(L).

This work is concerned, in part, with properties of the functors HomR(A,−) and

A⊗R −, where A is an artinian R-module. To motivate this, recall that [13, Propo-

sition 6.1] shows that if A and A′ are artinian R-modules, then A ⊗R A′ has finite

length. Similarly if N is a noetherian R-module, then HomR(A,N) also has finite

length; see Corollaries 2.2.12 and 2.3.9. In light of this fact, it is natural to investigate

the properties of ExtiR(A,−) and TorRi (A,−). Let µiR(L) := λR(ExtiR(k, L)) denote
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the ith Bass number of L and βRi (L′) := λR(TorRi (k, L′)) denote the ith Betti number

of L′. In general, the modules ExtiR(A,N) and TorRi (A,A′) will not have finite length.

However, we have the following; see Theorems 2.2.2 and 2.3.1.

Theorem 2.1. Let A be an artinian R-module, and let i > 0. Let L and L′ be

R-modules such that µiR(L) and βRi (L′) are finite. Then ExtiR(A,L) is a noetherian

R̂-module, and TorRi (A,L′) is artinian.

One should note that the Bass and Betti numbers of any artinian or noetherian

module are always finite. In particular, when A and A′ are artinian, Theorem 2.1

implies that ExtiR(A,A′) is a noetherian R̂-module. The next result, contained in

Theorem 2.4.3, gives another explanation for this fact.

Theorem 2.2. Let A and A′ be artinian R-modules, and let i > 0. Then there is an

isomorphism ExtiR(A,A′) ∼= Exti
R̂

(A′∨, A∨). Hence there are noetherian R̂-modules

N and N ′ such that ExtiR(A,A′) ∼= Exti
R̂

(N,N ′).

This result proves useful for studying the vanishing of ExtiR(A,A′), since the

vanishing of Exti
R̂

(N,N ′) is somewhat well understood.

We say that an R-module M is Matlis reflexive provided that the natural biduality

map δM : M →M∨∨, given by δM(x)(ψ) = ψ(x), is an isomorphism. Our next result

shows how extra conditions on the modules in Theorem 2.1 imply that ExtiR(A,L)

and TorRi (A,L′) are Matlis reflexive; see Corollaries 2.2.4 and 2.3.3.

Theorem 2.3. Let A, L, and L′ be R-modules such that A is artinian. Assume

that R/(AnnR(A) + AnnR(L)) and R/(AnnR(A) + AnnR(L′)) are complete. Given

an index i > 0 such that µiR(L) and βRi (L′) are finite, the modules ExtiR(A,L) and

TorRi (A,L′) are Matlis reflexive.
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We say that an R-module M is mini-max when M has a noetherian submodule

N such that M/N is artinian. In particular, noetherian modules are mini-max, as are

artinian modules. A key point in the proof of the last theorem is a result of Belshoff,

Enochs, and Garćıa Rozas [6]: An R-module M is Matlis reflexive if and only if it is

mini-max and R/AnnR(M) is complete.

A standard application of Hom-tensor adjointness shows that TorRi (L,L′)∨ ∼=

ExtiR(L,L′∨) for any R-modules L and L′. Similarly when N is noetherian an ap-

plication of the Hom-evaluation morphism shows that ExtiR(N,L′)∨ ∼= TorRi (N,L′∨).

However this last isomorphism does not hold in general if we replace N by a non-

noetherian module. We do, however, get the following:

Theorem 2.4. Let A, M , M ′ and L be R-modules such that A is artinian and Matlis-

reflexive, M is Matlis-reflexive, and M ′ is mini-max. We have ExtiR(M,M ′)∨ ∼=

TorRi (M,M ′∨) and ExtiR(M ′,M)∨ ∼= TorRi (M ′,M∨). Fix an index i > 0. If µiR(L)

is finite, then ExtiR(A,L)∨ ∼= TorRi (A,L∨). If µiR(L) and µi+1
R (L) are finite then

ExtiR(M,L)∨ ∼= TorRi (M,L∨).

Many of our results generalize to the non-local setting. As this generalization

requires additional tools, we treat it separately in Chapter 3.

2.1 Background and Preliminary Results

Torsion Modules

Definition 2.1.1. Let a be a proper ideal of R. The a-adic completion of R, which

is denoted by R̂a, is the inverse limit of the inverse system whose objects are R/an for

all n > 0 and whose maps are the natural surjections R/an → R/am with n > m > 0.

Given an R-module L, set Γa(L) = {x ∈ L | anx = 0 for n� 0}. We say that L
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is a-torsion if L = Γa(L). A prime ideal p of R is associated to L if there is an

R-module monomorphism R/p ↪→ L; the set of primes associated to L is AssR(L).

The support of an R-module L is SuppR(L) = {p ∈ Spec(R) | Lp 6= 0}. The set of

minimal elements of SuppR(L) with respect to inclusion is denoted MinR(L). Also

the variety of a is given by V (a) = {p ∈ Spec(R)| a ⊆ p}.

Fact 2.1.2. Let a be a proper ideal of R, and let L be an a-torsion R-module.

(a) Every artinian R-module is m-torsion. In particular, the module E is m-torsion.

(b) We have SuppR(L) ⊆ V (a). Hence if L is m-torsion, then SuppR(L) ⊆ {m}.

(c) The module L has an R̂a-module structure that is compatible with its R-module

structure, as follows. For each x ∈ L, fix an exponent n such that anx = 0. For

each r ∈ R̂a, the isomorphism R̂a/anR̂a ∼= R/an provides an element r0 ∈ R such

that r − r0 ∈ anR̂a, and we set rx = r0x.

(d) If R/a is complete, then R̂a is naturally isomorphic to R̂. To see this, assume that

R/a is complete. Given n > 1 such that R/an is complete we claim that R/an+1

is complete. Let a = (f1, . . . , fc) and let φ :
⊕c

i=1 R/a
n → R/an+1 given by

multiplying the ith component by fi. Then Ker(φ) is complete since submodules

of complete modules are complete. If we consider the natural map from the exact

sequence

0 // Ker(φ) //
⊕c

i=1R/a
n // R/an+1 // R/a // 0

to the sequence we get by taking the completion, then it follows from the Five

Lemma that R/an+1 is complete. This explains the second step in the next
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display:

R̂a ∼= lim
←
R/an ∼= lim

←
R̂/anR̂ = (̂R̂)

a
∼= R̂.

For the last step in this display, see, e.g., [1, Exercise 10.5].

Lemma 2.1.3. Let a be a proper ideal of R, and let L be an a-torsion R-module.

1. A subset Z ⊆ L is an R-submodule if and only if it is an R̂a-submodule.

2. The module L is noetherian (artinian, mini-max respectively ) over R if and

only if it is noetherian (artinian, mini-max respectively) over R̂a.

Proof. (1) Every R̂a-submodule of L is an R-submodule by restriction of scalars.

Conversely, fix an R-submodule Z ⊆ L. Since L is a-torsion, so is Z, and Fact 2.1.2(c)

implies that Z is an R̂a-submodule.

(2) follows immediately from (1).

Lemma 2.1.4. Let a be a proper ideal of R, and let L be an a-torsion R-module.

1. The natural map L→ R̂a ⊗R L is an isomorphism.

2. The left and right R̂a-module structures on R̂a ⊗R L are the same.

Proof. The natural map L→ R̂a ⊗R L is injective, as R̂a is faithfully flat over R. To

show surjectivity, it suffices to show that each generator r ⊗ x ∈ R̂a ⊗R L is of the

form 1 ⊗ x′ for some x′ ∈ L. Let n > 1 such that anx = 0, and let r0 ∈ R such

that r − r0 ∈ anR̂a. It follows that r ⊗ x = r0 ⊗ x = 1 ⊗ (r0x), and this yields the

conclusion of part (1). This also proves (2) because 1⊗ (r0x) = 1⊗ (rx).

Lemma 2.1.5. Let a be a proper ideal of R, and let L and L′ be R-modules such that

L is a-torsion.
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1. If L′ is a-torsion, then HomR(L,L′) = HomR̂a(L,L′); thus L∨ = HomR̂a(L,E).

2. One has HomR(L,L′) ∼= HomR(L,Γa(L
′)) = HomR̂a(L,Γa(L

′)).

Proof. (1) It suffices to verify the inclusion HomR(L,L′) ⊆ HomR̂a(L,L′). Let x ∈ L

and r ∈ R̂a, and fix ψ ∈ HomR(L,L′). Let n > 1 such that anx = 0 and anψ(x) = 0.

Choose an element r0 ∈ R such that r− r0 ∈ anR̂a. It follows that ψ(rx) = ψ(r0x) =

r0ψ(x) = rψ(x); hence ψ ∈ HomR̂a(L,L′). (Part (1) can also be deduced from Hom-

tensor adjointness, using Lemma 2.1.4(1).)

(2) For each f ∈ HomR(L,L′), one has Im(f) ⊆ Γa(L
′). This yields the desired

isomorphism, and the equality is from part (1).

A Natural Map from TorRi (L,L′∨) to ExtiR(L,L′)∨

Definition 2.1.6. Let L be an R-module, and let J be an R-complex. The Hom-

evaluation morphism

θLJL′ : L⊗R HomR(J, L′)→ HomR(HomR(L, J), L′)

is given by θLJL′(l ⊗ ψ)(φ) = ψ(φ(l)).

Remark 2.1.7. Let L and L′ be R-modules, and let J be an injective resolution of

L′. Using the notation (−)∨, we have θLJE : L⊗R J∨ → HomR(L, J)∨. The complex

J∨ is a flat resolution of L′∨; see, e.g., [12, Theorem 3.2.16]. This explains the first

isomorphism in the following sequence:

TorRi (L,L′∨)
∼=−→ Hi(L⊗R J∨)

Hi(θLJE)−−−−−→Hi(HomR(L, J)∨)
∼=−→ ExtiR(L,L′)∨.
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For the second isomorphism, the exactness of (−)∨ implies that Hi(HomR(L, J)∨) ∼=

Hi(HomR(L, J))∨ ∼= ExtiR(L,L′)∨.

Definition 2.1.8. Let L and L′ be R-modules, and let J be an injective resolution

of L′. The R-module homomorphism

Θi
LL′ : TorRi (L,L′∨)→ ExtiR(L,L′)∨

is defined to be the composition of the the maps displayed in Remark 2.1.7.

Remark 2.1.9. Let L, L′, and N be R-modules such that N is noetherian. It is

straightforward to show that the map Θi
LL′ is natural in L and in L′.

The fact that E is injective implies that Θi
NL′ is an isomorphism; see [26, Lemma 3.60].

This explains the first of the following isomorphisms:

ExtiR(N,L′)∨ ∼= TorRi (N,L′∨) TorRi (L,L′)∨ ∼= ExtiR(L,L′∨).

The second isomorphism is a consequence of Hom-tensor adjointness,

Note that Definitions 2.1.6 and 2.1.8 will be valid in the non-local setting where E

is replaced with a minimal injective cogenerator; see Definition 3.1.1. Also Remarks

2.1.7 and 2.1.9 will hold in the non-local setting.

Numerical Invariants

Definition 2.1.10. Let L be an R-module. For each integer i, the ith Bass number

of L and the ith Betti number of L are respectively

µiR(L) = λR(ExtiR(k, L)) and βRi (L) = λR(TorRi (k, L)),
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where λR(L′) denotes the length of an R-module L′.

Remark 2.1.11. Let L be an R-module.

(a) If I is a minimal injective resolution of L, then for each index i > 0 such that

µiR(L) <∞, we have I i ∼= EµiR(L) ⊕ J i where J i does not have E as a summand,

that is, Γm(J i) = 0; see, e.g., [21, Theorem 18.7]. Similarly, the Betti numbers of a

noetherian module are the ranks of the free modules in a minimal free resolution.

The situation for Betti numbers of non-noetherian modules is more subtle; see,

e.g., Lemma 2.1.18.

(b) We have that µiR(L) < ∞ for all i > 0 if and only if βRi (L) < ∞ for all i > 0;

see [19, Proposition 1.1].

When a = m, the next invariants can be interpreted in terms of vanishing of Bass

and Betti numbers.

Definition 2.1.12. Let a be an ideal of R. For each R-module L, set

gradeR(a;L) = inf{i > 0 | ExtiR(R/a, L) 6= 0}

widthR(a;L) = inf{i > 0 | TorRi (R/a, L) 6= 0}.

We write depthR(L) = gradeR(m;L) and widthR(L) = widthR(m;L).

Part (2) of the next result is known. We include it for ease of reference. All

of the parts of the next Lemma generalize to the non-local setting with the same

proof. The non-local analog of Lemma 2.1.13(2) is slightly different it can be found

in Lemma 3.1.17(2).

Lemma 2.1.13. Let L be an R-module, and let a be a non-zero ideal of R.
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1. Then widthR(a;L) = gradeR(a;L∨) and widthR(a;L∨) = gradeR(a;L).

2. For each index i > 0 we have βRi (L) = µiR(L∨) and βRi (L∨) = µiR(L).

3. L = aL if and only if gradeR(a;L∨) > 0.

4. L∨ = a(L∨) if and only if gradeR(a;L) > 0.

5. gradeR(a;L) > 0 if and only if a contains a non-zero-divisor for L.

Proof. Part (1) is from [14, Proposition 4.4], and part (2) follows directly from Remark

2.1.9.

(3)–(4) These follow from part (1) since L = aL if and only if widthR(a;L) > 0.

(5) By definition, we need to show that HomR(R/a, L) = 0 if and only if a con-

tains a non-zero-divisor for L. One implication is explicitly stated in [9, Proposi-

tion 1.2.3(a)]. One can prove the converse like [9, Proposition 1.2.3(b)], using the

fact that R/a is finitely generated.

The next result characterizes artinian modules in terms of Bass numbers.

Lemma 2.1.14. Let L be an R-module. The following conditions are equivalent:

1. L is an artinian R-module;

2. L is an artinian R̂-module;

3. R̂⊗R L is an artinian R̂-module; and

4. L is m-torsion and µ0
R(L) <∞.

Proof. (1)⇐⇒ (4) If L is artinian over R, then it is m-torsion by Fact 2.1.2(a), and

we have µ0
R(L) < ∞ by [12, Theorem 3.4.3]. For the converse, assume that L is

m-torsion and µ0 = µ0
R(L) < ∞. Since L is m-torsion, so is ER(L). Thus, we have
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ER(L) ∼= Eµ0 , which is artinian since µ0 <∞. Since L is a submodule of the artinian

module ER(L), it is also artinian.

To show the equivalence of the conditions (1)–(3), first note that each of these

conditions implies that L is m-torsion. (For condition (3), use the monomorphism

L→ R̂⊗R L.) Thus, for the rest of the proof, we assume that L is m-torsion.

Because of the equivalence (1)⇐⇒ (4), it suffices to show that

µ0
R(L) = µ0

R̂
(L) = µ0

R̂
(R̂⊗R L).

These equalities follow from the next isomorphisms

HomR(k, L) ∼= HomR̂(k, L) ∼= HomR̂(k, R̂⊗R L)

which are from Lemmas 2.1.5(1) and 2.1.4, respectively.

Lemma 2.1.15. Let L be an R-module.

1. The module L is noetherian over R if and only if L∨ is artinian over R.

2. If L∨ is noetherian over R or over R̂, then L is artinian over R.

3. Let a be a proper ideal of R such that R/a is complete. If L is a-torsion, then

L is artinian over R if and only if L∨ is noetherian over R.

Proof. (1) This is [12, Corollary 3.4.4].

(2) If L∨ is noetherian over R, then we conclude from [12, Corollary 3.4.5] that L

is artinian over R. To complete the proof of (2), we assume that L∨ is noetherian over

R̂ and show that L is artinian. Fix a descending chain L1 ⊇ L2 ⊇ · · · of submodules

of L. Dualize the surjections L � · · · � L/L2 � L/L1 to obtain a sequence of

R̂-module monomorphisms (L/L1)∨ ↪→ (L/L2)∨ ↪→ · · · ↪→ L∨. The corresponding
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ascending chain of submodules must stabilize since L∨ is noetherian over R̂, and it

follows that the original chain L1 ⊇ L2 ⊇ · · · of submodules of L also stabilizes. Thus

L is artinian.

(3) Assume that L is a-torsion. One implication is from part (2). For the con-

verse, assume that L is artinian over R. From [21, Theorem 18.6(v)] we know

that HomR̂(L,E) is noetherian over R̂, and Lemma 2.1.5(1) implies that L∨ =

HomR̂(L,E). Thus, Lemma 2.1.3(2) implies that L∨ is noetherian over R.

Mini-max and Matlis Reflexive Modules

Definition 2.1.16. An R-module M is mini-max if there is a noetherian submodule

N ⊆M such that M/N is artinian.

Fact 2.1.17. An R-module M is Matlis reflexive if and only if it is mini-max and

R/AnnR(M) is complete; see [6, Theorem 12]. Thus, if M is mini-max over R, then

R̂⊗RM is Matlis reflexive over R̂.

Lemma 2.1.18. If M is mini-max over R, then βRi (M) < ∞ and µiR(M) < ∞ for

all i > 0.

Proof. We show that µiR(M) < ∞ for all i > 0; then Remark 2.1.11(b) implies that

βRi (M) <∞ for all i > 0. The noetherian case is standard. If M is artinian, then we

have µ0
R(M) <∞ by Lemma 2.1.14; since Eµ0R(M) is artinian, an induction argument

shows that µiR(M) < ∞ for all i > 0. One deduces the mini-max case from the

artinian and noetherian cases, using a long exact sequence.

Lemma 2.1.19. Let L be an R-module such that R/AnnR(L) is complete. The

following conditions are equivalent:

1. L is Matlis reflexive over R;
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2. L is mini-max over R;

3. L is mini-max over R̂; and

4. L is Matlis reflexive over R̂.

Proof. The equivalences (1)⇐⇒ (2) and (3)⇐⇒ (4) are from Fact 2.1.17. Note that

conditions (3) and (4) make sense since L is an R̂-module; see Fact 2.1.2.

(2) =⇒ (3) Assume that L is mini-max over R, and fix a noetherian R-sub-

module N ⊆ L such that L/N is artinian over R. As R/AnnR(L) is complete and

surjects onto R/AnnR(N), we conclude that R/AnnR(N) is complete. Fact 2.1.2(d)

and Lemma 2.1.3(1) imply that N is an R̂-submodule. Similarly, Lemmas 2.1.3(2)

and 2.1.14 imply that N is noetherian over R̂, and L/N is an artinian over R̂. Thus

L is mini-max over R̂.

(3) =⇒ (2) Assume that L is mini-max over R̂, and fix a noetherian R̂-submodule

L′ ⊆ L such that L/L′ is artinian over R̂. Lemmas 2.1.3(2) and 2.1.14 imply that L′

is noetherian over R, and L/L′ is artinian over R, so L is mini-max over R.

Lemma 2.1.20. Let L be an R-module such that mtL = 0 for some integer t > 1.

Then the following conditions are equivalent:

1. L is mini-max over R (equivalently, over R̂);

2. L is artinian over R (equivalently, over R̂);

3. L is noetherian over R (equivalently, over R̂); and

4. L has finite length over R (equivalently, over R̂).

Proof. Lemma 2.1.19 shows that L is mini-max over R if and only if it is mini-max

over R̂. Also, L is artinian (noetherian, resp., finite length) over R if and only if it is

artinian (noetherian, resp., finite length) over R̂ by Lemmas 2.1.14 and 2.1.3(2).
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The equivalence of conditions (2)–(4) follows from an application of [12, Proposi-

tion 2.3.20] over the artinian ring R/mt. The implication (2) =⇒ (1) is evident. For

the implication (1) =⇒ (2), assume that L is mini-max over R. Given a noetherian

submodule N ⊆ L such that L/N is artinian, the implication (3) =⇒ (2) shows that

N is artinian; hence so is L.

Definition 2.1.21. A full subcategory of the category of R-modules is a Serre sub-

category if it is closed under submodules, quotients, and extensions.

Lemma 2.1.22. The category of mini-max (resp., noetherian, artinian, finite length,

or Matlis reflexive) R-modules is a Serre subcategory.

Proof. The noetherian, artinian, and finite length cases are standard, as is the Matlis

reflexive case; see [12, p. 92, Exercise 2]. For the mini-max case, fix an exact sequence

0 → L′
f−→ L

g−→ L′′ → 0. Identify L′ with Im(f). Assume first that L is mini-

max, and fix a noetherian submodule N such that L/N is artinian. Then L′ ∩ N

is noetherian, and the quotient L′/(L′ ∩ N) ∼= (L′ + N)/N is artinian, since it is

a submodule of L/N . Thus L′ is mini-max. Also, (N + L′)/L′ is noetherian and

[L/L′]/[(N + L′)/L′] ∼= L/(N + L′) is artinian, so L′′ ∼= L/L′ is mini-max.

Next, assume that L′ and L′′ are mini-max, and fix noetherian submodulesN ′ ⊆ L′

and N ′′ ⊆ L′′ such that L′/N ′ and L′′/N ′′ are artinian. Let x1, . . . , xh be coset

representatives in L of a generating set for N ′′. Let N = N ′+Rx1 + . . .+Rxh. Then

N is noetherian and the following commutative diagram has exact rows:

0 // N ∩ L′� _

��

// N //� _

��

N ′′� _

��

// 0

0 // L′ // L // L′′ // 0.

The sequence 0→ L′/(N ∩L′)→ L/N → L′′/N ′′ → 0 is exact by the Snake Lemma.
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The module L′/(N ∩ L′) is artinian, being a quotient of L′/N ′. Since the class of

artinian modules is closed under extensions, the module L/N is artinian. It follows

that L is mini-max.

The next two lemmas apply to the classes of modules from Lemma 2.1.22 and also

work over non-local rings.

Lemma 2.1.23. Let C be a Serre subcategory of the category of R-modules.

1. Given an exact sequence L′
f−→ L

g−→ L′′, if L′, L′′ ∈ C, then L ∈ C.

2. Given an R-complex X and an integer i, if Xi ∈ C, then Hi(X) ∈ C.

3. Given a noetherian R-module N , if L ∈ C, then ExtiR(N,L),TorRi (N,L) ∈ C.

Proof. (1) Assume that L′, L′′ ∈ C. By assumption, Im(f), Im(g) ∈ C. Using the

exact sequence 0→ Im(f)→ L→ Im(g)→ 0, we conclude that L is in C.

(2) The module Hi(X) is a subquotient of Xi, so it is in C by assumption.

(3) If F is a minimal free resolution of N , then the modules in the complexes

HomR(F,L) and F ⊗R L are in C, so their homologies are in C by part (2).

Lemma 2.1.24. Let R → S be a local ring homomorphism, and let C be a Serre

subcategory of the category of S-modules. Fix an S-module L, an R-module L′, an

R-submodule L′′ ⊆ L′, and an index i > 0.

1. If ExtiR(L,L′′),ExtiR(L,L′/L′′) ∈ C, then ExtiR(L,L′) ∈ C.

2. If ExtiR(L′′, L),ExtiR(L′/L′′, L) ∈ C, then ExtiR(L′, L) ∈ C.

3. If TorRi (L,L′′),TorRi (L,L′/L′′) ∈ C, then TorRi (L,L′) ∈ C.
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Proof. We prove part (1); the other parts are proved similarly. Apply ExtiR(L,−) to

the exact sequence 0→ L′′ → L′ → L′/L′′ → 0 to obtain the next exact sequence:

ExtiR(L,L′′)→ ExtiR(L,L′)→ ExtiR(L,L′/L′′).

Since L is an S-module, the maps in this sequence are S-module homomorphisms.

Now, apply Lemma 2.1.23(1).

2.2 Properties of ExtiR(M,−)

This section documents properties of the functors ExtiR(M,−), where M is a mini-

max R-module.

Noetherianness of ExtiR(A,L)

Lemma 2.2.1. Let A and L be R-modules such that A is artinian and L is m-torsion.

1. Then HomR(L,A) = HomR̂(L,A) ∼= HomR̂(A∨, L∨).

2. If L is artinian, then HomR(L,A) is a noetherian R̂-module.

Proof. (1) The first equality is from Lemma 2.1.5(1). For the second equality, the

fact that A is Matlis reflexive over R̂ explains the first step below:

HomR̂(L,A) ∼= HomR̂(L,Avv) ∼= HomR̂(Av, Lv) ∼= HomR̂(A∨, L∨)

where (−)v = HomR̂(−, E). The second step follows from Hom-tensor adjointness,

and the third step is from Lemma 2.1.5(1).

(2) If L is artinian, then L∨ and A∨ are noetherian over R̂, so HomR̂(A∨, L∨) is

also noetherian over R̂.
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The next result contains part of Theorem 2.1 from the beginning of the chapter.

When R is not complete, the example HomR(E,E) ∼= R̂ shows that ExtiR(A,L) is

not necessarily noetherian or artinian over R.

Theorem 2.2.2. Let A and L be R-modules such that A is artinian. For each index

i > 0 such that µiR(L) <∞, the module ExtiR(A,L) is a noetherian R̂-module.

Proof. Let J be a minimal R-injective resolution of L. Remark 2.1.11(a) implies that

Γm(J)i ∼= EµiR(L). Lemma 2.1.5(2) explains the first isomorphism below:

HomR(A, J)i ∼= HomR(A,Γm(J)i) ∼= HomR(A,E)µ
i
R(L).

Lemma 2.2.1 implies that these are noetherian R̂-modules. The differentials in the

complex HomR(A,Γm(J)) are R̂-linear because A is an R̂-module. Thus, the subquo-

tient ExtiR(A,L) is a noetherian R̂-module.

Corollary 2.2.3. Let A and M be R-modules such that A is artinian and M is

mini-max. For each index i > 0, the module ExtiR(A,M) is a noetherian R̂-module.

Proof. Apply Theorem 2.2.2 and Lemma 2.1.18.

The next result contains part of Theorem 2.3 from the beginning of the chapter.

Corollary 2.2.4. Let A and L be R-modules such that R/(AnnR(A) + AnnR(L)) is

complete and A is artinian. For each index i > 0 such that µiR(L) < ∞, the module

ExtiR(A,L) is noetherian and Matlis reflexive over R and R̂.

Proof. Theorem 2.2.2 shows that ExtiR(A,L) is noetherian over R̂; so, it is Matlis

reflexive over R̂. As AnnR(A) + AnnR(L) ⊆ AnnR(ExtiR(A,L)), Lemmas 2.1.3(2)

and 2.1.19 imply that ExtiR(A,L) is noetherian and Matlis reflexive over R.
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Corollary 2.2.5. Let A and L be R-modules such that R/(AnnR(A) + AnnR(L)) is

artinian and A is artinian. Given an index i > 0 such that µiR(L) < ∞, one has

λR(ExtiR(A,L)) <∞.

Proof. Apply Theorem 2.2.2 and Lemma 2.1.20.

Matlis Reflexivity of ExtiR(M,M′)

Theorem 2.2.6. Let A and M be R-modules such that A is artinian and M is mini-

max. For each i > 0, the module ExtiR(M,A) is Matlis reflexive over R̂.

Proof. Fix a noetherian submodule N ⊆ M such that M/N is artinian. Since A is

artinian, it is an R̂-module. Corollary 2.2.3 implies that ExtiR(M/N,A) is a noetherian

R̂-module. As ExtiR(N,A) is artinian, Lemma 2.1.24(2) says that ExtiR(M,A) is a

mini-max R̂-module and hence is Matlis reflexive over R̂ by Fact 2.1.17.

Theorem 2.2.7. Let M and N ′ be R-modules such that M is mini-max and N ′ is

noetherian. Fix an index i > 0. If R/(AnnR(M) + AnnR(N ′)) is complete, then

ExtiR(M,N ′) is noetherian and Matlis reflexive over R and over R̂.

Proof. Fix a noetherian submodule N ⊆ M such that M/N is artinian. If the ring

R/(AnnR(M) + AnnR(N ′)) is complete, then so is R/(AnnR(M/N) + AnnR(N ′)).

Corollary 2.2.4 implies that ExtiR(M/N,N ′) is noetherian over R. Since ExtiR(N,N ′)

is noetherian over R, Lemma 2.1.24(2) implies that ExtiR(M,N ′) is noetherian over

R. As R/(AnnR(ExtiR(M,N ′))) is complete, Fact 2.1.17 implies that ExtiR(M,N ′)

is also Matlis reflexive over R. Thus ExtiR(M,N ′) is noetherian and Matlis reflexive

over R̂ by Lemmas 2.1.3(2) and 2.1.19.

Theorem 2.2.8. Let M and M ′ be mini-max R-modules, and fix an index i > 0.



22

1. If R/(AnnR(M)+AnnR(M ′)) is complete, then ExtiR(M,M ′) is Matlis reflexive

over R and R̂.

2. If R/(AnnR(M) + AnnR(M ′)) is artinian, then ExtiR(M,M ′) has finite length.

Proof. Fix a noetherian submodule N ′ ⊆M ′ such that M ′/N ′ is artinian.

(1) Assume that R/(AnnR(M) + AnnR(M ′)) is complete. Theorem 2.2.7 implies

that the module ExtiR(M,N ′) is Matlis reflexive over R. Theorem 2.2.6 shows that

ExtiR(M,M ′/N ′) is Matlis reflexive over R̂; hence it is Matlis reflexive over R by

Lemma 2.1.19. Thus, Lemmas 2.1.24(1) and 2.1.19 imply that ExtiR(M,M ′) is Matlis

reflexive over R and R̂.

(2) This follows from part (1), because of Fact 2.1.17 and Lemma 2.1.20.

A special case of the next result can be found in [5, Theorem 3].

Corollary 2.2.9. Let M and M ′ be R-modules such that M is mini-max and M ′ is

Matlis reflexive. For each index i > 0, the modules ExtiR(M,M ′) and ExtiR(M ′,M)

are Matlis reflexive over R and R̂.

Proof. Apply Theorem 2.2.8(1) and Fact 2.1.17.

Length Bounds for HomR(A,L)

Lemma 2.2.10. Let A and L be R-modules such that A is artinian and mnΓm(L) = 0

for some n > 0. Let t be a non-negative integer such that mtA = mt+1A, and let s be

an integer such that s > min(n, t). Then

HomR(A,L) ∼= HomR(A/msA,L) ∼= HomR(A/msA, (0 :L ms)).
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Proof. Given any map ψ ∈ HomR(A/msA,L), the image of ψ is annihilated by ms.

That is, Im(ψ) ⊆ (0 :L ms); hence HomR(A/msA,L) ∼= HomR(A/msA, (0 :L ms)). In

the next sequence, the first and third isomorphisms are from Lemma 2.1.5(2):

HomR(A,L) ∼= HomR(A,Γm(L)) ∼= HomR(A/msA,Γm(L)) ∼= HomR(A/msA,L).

For the second isomorphism, we argue by cases. If s > n, then we have msΓm(L) = 0

because mnΓm(L) = 0, and the isomorphism is evident. If s < n, then we have n >

s > t, so mtA = msA = mnA since mtA = mt+1A; it follows that HomR(A,Γm(L)) ∼=

HomR(A/mnA,Γm(L)) ∼= HomR(A/msA,Γm(L)).

For the next result, the example HomR(E,E) ∼= R̂ shows that the condition

mnΓm(L) = 0 is necessary.

Theorem 2.2.11. Let A and L be R-modules such that A is artinian and mnΓm(L) =

0 for some n > 0. Let t be a non-negative integer such that mtA = mt+1A, and let s

be an integer such that s > min(n, t). Then there are inequalities

λR(HomR(A,L)) 6 βR0 (A)λR(0 :L ms)

λR(HomR(A,L)) 6 λR(A/msA)µ0
R(L)

Here, we use the convention 0 · ∞ = 0.

Proof. We deal with the degenerate case first. If βR0 (A) = 0, then A/mA = 0, so

HomR(A,L) ∼= HomR(A/mA,L) = HomR(0, L) = 0

by Lemma 2.2.10. So, we assume for the rest of the proof that βR0 (A) 6= 0. We also

assume without loss of generality that λR(0 :L ms) <∞.
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Lemma 2.2.10 explains the first step in the following sequence:

λR(HomR(A,L)) = λR(HomR(A/msA, (0 :L ms)))

6 βR0 (A/msA)λR(0 :L ms)

= βR0 (A)λR(0 :L ms).

The second step can be proved by induction on βR0 (A/msA) and λR(0 :L ms). Similarly

we get the sequence:

λR(HomR(A,L)) = λR(HomR(A/msA, (0 :L ms)))

6 λ(A/msA)µ0
R(0 :L ms)

= λ(A/msA)µ0
R(L).

The second step can be proved by induction on λR(A/msA) and µ0
R(0 :L ms).

The next result can also be obtained as a corollary to [13, Proposition 6.1]. Ex-

ample 2.6.3 shows that λR(ExtiR(A,N)) can be infinite when i > 1.

Corollary 2.2.12. If A and N are R-modules such that A is artinian and N is

noetherian, then λR(HomR(A,N)) <∞.

Proof. Apply Theorem 2.2.11 and Lemma 2.1.18.

2.3 Properties of TorRi (M,−)

This section focuses on properties of the functors TorRi (M,−), where M is a mini-max

R-module.
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Artinianness of TorRi (A,L)

The next result contains part of Theorem 2.1. Recall that a module is artinian over

R if and only if it is artinian over R̂; see Lemma 2.1.14.

Theorem 2.3.1. Let A and L be R-modules such that A is artinian. For each index

i > 0 such that βRi (L) <∞, the module TorRi (A,L) is artinian.

Proof. Lemma 2.1.13(2) implies that µiR(L∨) = βRi (L) < ∞. By Remark 2.1.9, we

have ExtiR(A,L∨) ∼= TorRi (A,L)∨. Thus, TorRi (A,L)∨ is a noetherian R̂-module by

Theorem 2.2.2, and we conclude that TorRi (A,L) is artinian by Lemma 2.1.15(2).

For the next result, the example E ⊗R R ∼= E shows that TorRi (A,L) is not

necessarily noetherian over R or R̂.

Corollary 2.3.2. Let A and M be R-modules such that A is artinian and M mini-

max. For each index i > 0, the module TorRi (A,M) is artinian.

Proof. Apply Theorem 2.3.1 and Lemma 2.1.18.

The proofs of the next two results are similar to those of Corollaries 2.2.4 and 2.2.5.

The first result contains part of Theorem 2.3 from the beginning of the chapter.

Corollary 2.3.3. Let A and L be R-modules such that R/(AnnR(A) + AnnR(L)) is

complete and A is artinian. For each index i > 0 such that βRi (L) < ∞, the module

TorRi (A,L) is artinian and Matlis reflexive over R and R̂.

Corollary 2.3.4. Let A and L be R-modules such that R/(AnnR(A) + AnnR(L)) is

artinian and A is artinian. Given an index i > 0 such that βRi (L) < ∞, one has

λR(TorRi (A,L)) <∞.
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TorRi (M,M′) is Mini-max

Theorem 2.3.5. Let M and M ′ be mini-max R-modules, and fix an index i > 0.

1. The R-module TorRi (M,M ′) is mini-max over R.

2. If R/(AnnR(M)+AnnR(M ′)) is complete, then TorRi (M,M ′) is Matlis reflexive

over R and R̂.

3. If R/(AnnR(M) + AnnR(M ′)) is artinian, then TorRi (M,M ′) has finite length.

Proof. (1) Choose a noetherian submodule N ⊆M such that M/N is artinian. Lem-

mas 2.1.22 and 2.1.23(3) say that TorRi (N,M ′) is mini-max. Corollary 2.3.2 implies

that TorRi (M/N,M ′) mini-max, so TorRi (M,M ′) is mini-max by Lemma 2.1.24(3).

Parts (2) and (3) now follow from Lemmas 2.1.19 and 2.1.20.

A special case of the next result is contained in [5, Theorem 3].

Corollary 2.3.6. Let M and M ′ be R-modules such that M is mini-max and M ′ is

Matlis reflexive. For each index i > 0, the module TorRi (M,M ′) is Matlis reflexive

over R and R̂.

Proof. Apply Theorem 2.3.5(2) and Fact 2.1.17.

Length Bounds for A⊗R L

Lemma 2.3.7. Let A be an artinian module, and let a be a proper ideal of R. Fix

an integer t > 0 such that atA = at+1A. Given an a-torsion R-module L, one has

A⊗R L ∼= (A/atA)⊗R L ∼= (A/atA)⊗R (L/atL).



27

Proof. The isomorphism (A/atA)⊗R L ∼= (A/atA)⊗R (L/atL) is from the following:

(A/atA)⊗R L ∼= [(A/atA)⊗R (R/at)]⊗R L

∼= (A/atA)⊗R [(R/at)⊗R L]

∼= (A/atA)⊗R (L/atL).

For the isomorphism A⊗R L ∼= (A/atA)⊗R L, consider the exact sequence:

0→ atA→ A→ A/atA→ 0.

The exact sequence induced by −⊗R L has the form

(atA)⊗R L→ A⊗R L→ (A/atA)⊗R L→ 0. (2.1)

The fact that L is a-torsion and atA = at+iA for all i > 1 implies that (atA)⊗RL = 0,

so the sequence (2.1) yields the desired isomorphism.

Theorem 2.3.8. Let A be an artinian R-module, and let L be an m-torsion R-module.

Fix an integer t > 0 such that mtA = mt+1A. Then there are inequalities

λR(A⊗R L) 6 λR
(
A/mtA

)
βR0 (L) (2.2)

λR(A⊗R L) 6 βR0 (A)λR
(
L/mtL

)
. (2.3)

Here we use the convention 0 · ∞ = 0.

Proof. From Lemma 2.3.7 we have

A⊗R L ∼= (A/mtA)⊗R (L/mtL). (2.4)
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Lemmas 2.1.18 and 2.1.20 imply that λR(A/mtA) <∞ and βR0 (A) <∞.

For the degenerate cases, first note that λR(A/mtA) = 0 if and only if βR0 (A) = 0.

When λR(A/mtA) = 0, the isomorphism (2.4) implies that A ⊗R L = 0; hence the

desired inequalities. Thus, we assume without loss of generality that 1 6 βR0 (A) 6

λR(A/mtA). Further, we assume that βR0 (L) <∞.

The isomorphism (2.4) provides the first step in the next sequence:

λR(A⊗R L) = λR((A/mtA)⊗R (L/mtL)) 6 λR(A/mtA)βR0 (L).

The second step in this sequence can be verified by induction on λR(A/mtA) and

βR0 (L). This explains the inequality (2.2), and (2.3) is verified similarly.

Notice that the condition that L is m-torsion from the last theorem is necessary.

For instance, suppose that dim(R) > 0, A = E and L = R. Then E ⊗R R ∼= E has

infinite length but λR(E/mtE)βR0 (R) has finite length for any t.

The next corollary recovers [13, Proposition 6.1]. Note that Example 2.6.4 shows

that λR(TorRi (A,A′)) can be infinite when i > 1.

Corollary 2.3.9. If A and A′ are artinian R-modules, then λR(A⊗R A′) <∞.

Proof. Apply Theorem 2.3.8 and Lemmas 2.1.18 and 2.1.20. (Alternatively, apply

Corollary 2.12 and Matlis duality.)

2.4 The Matlis Dual of ExtiR(L,L
′)

This section contains the proof of Theorem 2.4 from the beginning of the chapter;

see Corollary 2.4.13. Most of the section is devoted to technical results for use in the

proof.
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Lemma 2.4.1. Let L be an R-module. If I is an R-injective resolution of L, and J

is an R̂-injective resolution of R̂⊗RL, then there is a homotopy equivalence Γm(I)
∼−→

Γm(J) = ΓmR̂(J).

Proof. Each injective R̂-module J ′ is injective over R; this follows from the isomor-

phism HomR(−, J ′) ∼= HomR(−,HomR̂(R̂, J ′)) ∼= HomR̂(R̂ ⊗R −, J ′) since R̂ is flat

over R. Hence there is a lift f : I → J of the natural map ξ : L→ R̂ ⊗R L. This lift

is a chain map of R-complexes.

We show that the induced map Γm(f) : Γm(I) → Γm(J) = ΓmR̂(J) is a homo-

topy equivalence. As Γm(I) and Γm(J) are bounded-above complexes of injective R-

modules, it suffices to show that Γm(f) induces an isomorphism on homology in each

degree. The induced map on homology is compatible with the following sequence:

Hi(Γm(I)) ∼= Hi
m(L)

Him(ξ)−−−→∼= Hi
m(R̂⊗R L) ∼= Hi(Γm(J)).

The map Hi
m(ξ) : Hi

m(L) → Hi
m(R̂ ⊗R L) is an isomorphism (see the proof of [9,

Proposition 3.5.4(d)]), so we have the desired homotopy equivalence.

Lemma 2.4.2. Let L and L′ be R-modules such that L is m-torsion. Then for each

index i > 0, there are R̂-module isomorphisms

ExtiR(L,L′) ∼= ExtiR(L, R̂⊗R L′) ∼= Exti
R̂

(L, R̂⊗R L′).

Proof. Let I be an R-injective resolution of L′, and let J be an R̂-injective resolution

of R̂⊗R L′. Because L is m-torsion, Lemma 2.1.5(2) explains the three isomorphisms
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in the next display:

HomR(L, I) ∼= HomR(L,Γm(I)) ∼ HomR(L,Γm(J)) ∼= HomR(L, J)

HomR(L,Γm(J)) = HomR(L,ΓmR̂(J)) = HomR̂(L,ΓmR̂(J)) ∼= HomR̂(L, J).

The homotopy equivalence above is from Lemma 2.4.1. The second equality above is

from Lemma 2.1.5(1). Since L is m-torsion, it is an R̂-module, so the isomorphisms

and the homotopy equivalence in this sequence are R̂-linear. In particular, the com-

plexes HomR(L, I) and HomR(L, J) and HomR̂(L, J) have isomorphic cohomology

over R̂, so one has the desired isomorphisms.

The next result contains Theorem 2.2 from the beginning of the chapter. It shows,

for instance, that, given artinian R-modules A and A′, there are noetherian R̂-modules

N and N ′ such that ExtiR(A,A′) ∼= Exti
R̂

(N,N ′); thus, it provides an alternate proof

of Corollary 2.2.3.

Theorem 2.4.3. Let A and M be R-modules such that A is artinian and M is mini-

max. Then, for each index i > 0, we have ExtiR(A,M) ∼= Exti
R̂

(M∨, A∨).

Proof. Case 1: R is complete. Let F be a free resolution of A. It follows that each

Fi is flat, so the complex F∨ is an injective resolution of A∨; see [12, Theorem 3.2.9].

We obtain the isomorphism ExtiR(A,M) ∼= ExtiR(M∨, A∨) by taking cohomology in

the next sequence:

HomR(F,M) ∼= HomR(F,M∨∨) ∼= HomR(M∨, F∨).

The first step follows from the fact that M is Matlis reflexive; see Fact 2.1.17. The

second step is from Hom-tensor adjointness
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Case 2: the general case. The first step below is from Lemma 2.4.2:

ExtiR(A,M) ∼= Exti
R̂

(A, R̂⊗RM) ∼= Exti
R̂

((R̂⊗RM)v, Av) ∼= Exti
R̂

(M∨, A∨).

Here (−)v = HomR̂(−, E). Since M is mini-max, it follows that R̂⊗RM is mini-max

over R̂. Thus, the second step is from Case 1. For the third step use Hom-tensor

adjointness and Lemma 2.1.5(1) to see that (R̂⊗RM)v ∼= M∨ and Av ∼= A∨.

Fact 2.4.4. Let L and L′ be R-modules, and fix an index i > 0. Then the following

diagram commutes, where the unlabeled isomorphism is from Remark 2.1.9:

ExtiR(L′, L)
δ
Exti

R
(L′,L)

//

ExtiR(L′,δL)
��

ExtiR(L′, L)∨∨

(Θi
L′L)∨

��
ExtiR(L′, L∨∨)

∼= // TorRi (L′, L∨)∨.

Lemma 2.4.5. Let N and L be an R-module such that N is noetherian. Fix an index

i > 0. Then the map ExtiR(N, δL) : ExtiR(N,L) → ExtiR(N,L∨∨) is an injection. If

µiR(L) <∞, then ExtiR(k, δL) is an isomorphism.

Proof. Remark 2.1.9 states that

Θi
NL : TorRi (N,L∨)→ ExtiR(N,L)∨

is an isomorphism. Hence (Θi
NL)∨ is also an isomorphism. Also the map

δExtiR(N,L) : ExtiR(N,L)→ ExtiR(N,L)∨∨

is an injection. Using Fact 2.4.4 with L′ = N , we conclude that ExtiR(N, δL) is an

injection.
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The assumption µiR(L) <∞ says that ExtiR(k, L) is a finite dimensional k-vector

space, so it is Matlis reflexive over R; that is, the map

δExtiR(k,L) : ExtiR(k, L)→ ExtiR(k, L)∨∨

is an isomorphism. Using Fact 2.4.4 with L′ = k, we conclude that ExtiR(k, δL) is an

isomorphism, as desired.

Lemma 2.4.6. Let L be an R-module such that µ1
R(L) is finite. Then

L ∼= L′ ⊕ (
⊕
α∈S

E),

where S is an index set, and µ0
R(L′) is finite.

Proof. Let µ1
R(L) = n. Note that any map φ ∈ HomR(E,E) ∼= R̂ is just multiplication

by some element r ∈ R̂ and hence any map in φ ∈ HomR(E,En) ∼= R̂n is just

multiplication by some vector v ∈ R̂n. Given v ∈ R̂n let φv ∈ HomR(E,En) denote the

map which is multiplication by the vector v. Let I0 = J⊕(
⊕

α∈T Eα) with Γm(J) = 0,

where T is an index set. Here Eα = E for every α. Let ψ : I0 → I1 be the first map

in the injective resolution I. Then Γm(ψ) :
⊕

α∈T Eα →
⊕n

i=1 E can be described

component wise as (φvα)α∈T with vα ∈ R̂n. Since R̂n is a noetherian R̂-module, so

is the submodule N :=
∑

α∈S R̂vα. Therefore we can choose α1, . . . , αm ∈ T such

that N =
∑m

j=1 R̂vαj . Given β ∈ T choose r1, . . . , rm ∈ R̂ such that vβ =
∑m

i=1 rivαi .

Let Xβ := {[e,−r1e,−r2e, . . . ,−rme] ∈ Eβ ⊕ (
⊕m

i=1Eαi)| e ∈ E}. Then the map

from E to Xβ defined by e 7→ [e,−r1e,−r2e, . . . ,−rme] is an isomorphism. However,

Xβ is in Ker(φ) so it is naturally a submodule of L. Since an injective submodule

of L is a direct summand, Xβ
∼= E is naturally a direct summand of L. Let S =
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T�{α1, α2, . . . , αm}. Then the sum
∑

β∈S Xβ is an internal direct sum of I0, and

∑
β∈S

Xβ +
m∑
i=1

Eαi =
⊕
α∈T

Eα = Γm(I0).

It follows that
∑

β∈S Xβ is isomorphic to a direct sum of copies of E and is naturally

a submodule of L. Therefore L ∼=
∑

β∈S Xβ ⊕ L′ ∼=
∑

β∈S E ⊕ L′ where the injective

hull of L′ is J ⊕ (
⊕m

i=1Eαi). Thus µ0
R(L′) = m and the result follows.

Lemma 2.4.7. Let A and L be R-modules such that A is artinian and µiR(L) is finite

for some i > 0. Then the map

ExtiR(A, δL) : ExtiR(A,L)→ ExtiR(A,L∨∨)

is an isomorphism, and the map

Exti+1
R (A, δL) : Exti+1

R (A,L)→ Exti+1
R (A,L∨∨)

is an injection.

Proof. Case 1 suppose i = 0. Lemma 2.4.5 implies that the map

HomR(k, δL) : HomR(k, L)→ HomR(k, L∨∨)

is an isomorphisms and the map Ext1
R(k, δL) is an injection. As the biduality map δL

is injective, we have an exact sequence

0→ L
δL−→ L∨∨ → Coker δL → 0. (2.5)

Using the long exact sequence associated to ExtR(k,−), we conclude that HomR(k,Coker δL) =
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0. In other words, we have µ0
R(Coker δL) = 0. Thus ER(Coker δL) does not have

E as a summand by Remark 2.1.11(a). That is, we have Γm(Coker δL) = 0, so

Lemma 2.1.5(2) implies that

HomR(A,Coker δL) ∼= HomR(A,Γm(Coker δL)) = 0.

From the long exact sequence associated to ExtR(A,−) with respect to (2.5) it follows

that HomR(A, δL) is an isomorphism and Ext1
R(A, δL) is an injection.

Now suppose that i > 0. Let J be a minimal injective resolution of L and let

L′ = Ker(J i−1 → J i). It suffices to show that the map Ext1
R(A, δ′L) is an isomorphism

and Ext2
R(A, δ′L) is an injection. Since µ1

R(L′) = µiR(L) 6 ∞ Lemma 2.4.6 implies

that L′ ∼= L′′ ⊕ (
⊕

α∈S E) such that S is an index set and µ0(L′′) < ∞. Since the

maps Ext1
R(A, δ(

⊕
α∈S E)) and Ext2

R(A, δ(
⊕
α∈S E)) are both just the map from the zero

module to the zero module it suffices to show that Ext1
R(A, δL′′) is an isomorphism

and Ext2
R(A, δL′′) is an injection.

Lemma 2.4.5 implies that for t = 0, 1 the map

ExttR(k, δL′′) : ExttR(k, L′′)→ ExttR(k, L′′∨∨)

is an isomorphisms and the map Ext2
R(k, δL′′) is an injection. From the long exact

sequence associated to ExtR(k,−) with respect to (2.5) we conclude that for t = 0, 1

we have ExttR(k,Coker δL′′) = 0. In other words, we have µtR(Coker δL′′) = 0. Let I

be a minimal injective resolution of Coker δL′′ . The previous paragraph shows that

for t = 0, 1 the module I t does not have E as a summand by Remark 2.1.11(a). That

is, we have Γm(I t) = 0, so Lemma 2.1.5(2) implies that

HomR(A, I t) ∼= HomR(A,Γm(I t)) = 0.
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It follows that ExttR(A,Coker(δL)) = 0 for t = 0, 1. From the long exact sequence

associated to ExtR(A,−) with respect to (2.5), it follows that Ext1
R(A, δL′′) is an

isomorphism, Ext2
R(A, δL′′) is an injection and the result follows.

We are now ready to tackle the main results of this section.

Theorem 2.4.8. Let A and L be R-modules such that A is artinian and µiR(L) is

finite for some i > 0.

1. There is an R-module isomorphism ExtiR(A,L)v ∼= TorRi (A,L∨) where (−)v =

HomR̂(−, E).

2. If R/(AnnR(A) + AnnR(L)) is complete, then Θi
AL provides an isomorphism

TorRi (A,L∨) ∼= ExtiR(A,L)∨.

Proof. (2) Corollary 2.2.4 and Lemma 2.4.7 show that the maps

δExtiR(A,L) : ExtiR(A,L)→ ExtiR(A,L)∨∨

ExtiR(A, δL) : ExtiR(A,L)→ ExtiR(A,L∨∨)

are isomorphisms. Fact 2.4.4 implies that (Θi
AL)∨ is an isomorphism, so we conclude

that Θi
AL is also an isomorphism.

(1) Lemma 2.4.2 explains the first step in the next sequence:

ExtiR(A,L)v ∼= Exti
R̂

(A, R̂⊗R L)v

∼= TorR̂i (A, (R̂⊗R L)v)

∼= TorRi (A, (R̂⊗R L)v)

∼= TorRi (A,L∨).
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The second step is from part (2), as R̂ is complete and µi
R̂

(R̂⊗RL) = µiR(L) <∞. The

fourth step is from Hom-tensor adjointness. For the third step, let P be a projective

resolution of A over R. Since R̂ is flat over R, the complex R̂ ⊗R P is a projective

resolution of R̂ ⊗R A ∼= A over R̂; see Lemma 2.1.4(1). Thus, the third step follows

from the isomorphism (R̂⊗R P )⊗R̂ (R̂⊗R L)v ∼= P ⊗R (R̂⊗R L)v.

Corollary 2.4.9. Let A and M be R-modules such that A is artinian and M is mini-

max. For each index i > 0, one has ExtiR(A,M)v ∼= TorRi (A,M∨), where (−)v =

HomR̂(−, E).

Proof. Apply Theorem 2.4.8(1) and Lemma 2.1.18.

Theorem 2.4.10. Let M and L be R-modules such that M is mini-max and µiR(M)

and µi+1
R (M) are finite for a fixed i > 0. If R/(AnnR (M) + AnnR (L)) is complete,

then Θi
ML is an isomorphism

Proof. Since M is mini-max over R, there is an exact sequence of R-modules homo-

morphisms 0→ N →M → A→ 0 such that N is noetherian and A is artinian. The

long exact sequences associated to TorR(−, L∨) and ExtR(−, L) fit into the following

commutative diagram:

· · · // TorRi (N,L∨) //

ΘiNL
��

TorRi (M,L∨) //

ΘiML
��

TorRi (A,L∨)

ΘiAL
��

// · · ·

· · · // ExtiR(N,L)∨ // ExtiR(M,L)∨ // ExtiR(A,L)∨ // · · · .

Remark 2.1.9 shows that Θi
NL and Θi−1

NL are isomorphisms. Theorem 2.4.8(2) implies

that Θi
AL and Θi+1

AL are isomorphisms. Hence the Five Lemma shows that Θi
ML is an

isomorphism.
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Corollary 2.4.11. Let M and L be R-modules such that M is Matlis reflexive. Fix

an index i > 0 such that µi(L) and µi+1(L) are finite. Then Θi
ML is an isomorphisms.

Corollary 2.4.12. Let M and M ′ be mini-max R-modules such that R/(AnnR (M)+

AnnR (L)) is complete. Then

ExtiR(M,M ′)v = ExtiR(M,M ′)∨ ∼= TorRi (M,M ′∨)

where (−)v = HomR̂(−, E).

Proof. Theorem 2.2.8(1) implies that ExtiR(M,M ′) is Matlis reflexive over R, so

Lemma 2.1.5(1) and Fact 2.1.17 imply that ExtiR(M,M ′)v = ExtiR(M,M ′)∨.

The next result contains Theorem 2.4 from the beginning of the chapter. A special

case of it can be found in [5, Theorem 3].

Corollary 2.4.13. Let M and M ′ be mini-max R-modules, and fix an index i > 0.

If either M or M ′ is Matlis reflexive, then Θi
MM ′ is an isomorphism, so one has

ExtiR(M,M ′)v = ExtiR(M,M ′)∨ ∼= TorRi (M,M ′∨), where (−)v = HomR̂(−, E).

Proof. Apply Theorem 2.4.10 and Fact 2.1.17.

The next example shows that the modules ExtiR(L,L′)∨ and TorRi (L,L′∨) are not

isomorphic in general.

Example 2.4.14. Assume that R is not complete. We have AnnR(E) = 0, so the ring

R/AnnR(E) ∼= R is not complete, by assumption. Thus, Fact 2.1.17 implies that E is

not Matlis reflexive, that is, the biduality map δE : E ↪→ E∨∨ is not an isomorphism.

Since E∨∨ is injective, we have E∨∨ ∼= E ⊕ J for some non-zero injective R-module

J . The uniqueness of direct sum decompositions of injective R-modules implies that
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E∨∨ 6∼= E. This provides the second step below:

HomR(E,E)∨ ∼= E∨∨ 6∼= E ∼= E ⊗R R̂ ∼= E ⊗R E∨.

The third step is from Lemma 2.1.4(1), and the remaining steps are standard.

2.5 Vanishing of Ext and Tor

In this section we describe the sets of associated primes of HomR(A,M) and attached

primes of A ⊗R M over R̂. The section concludes with some results on the related

topic of vanishing for ExtiR(A,M) and TorRi (A,M).

Associated and Attached Primes

The following is dual to the notion of associated primes of noetherian modules; see,

e.g., [20] or [21, Appendix to §6] or [24].

Definition 2.5.1. Let A be an artinian R-module. A prime ideal p ∈ Spec(R) is

attached to A if there is a submodule A′ ⊆ A such that p = AnnR(A/A′). We let

AttR(A) denote the set of prime ideals attached to A.

Lemma 2.5.2. Let A be an artinian R-module such that R/AnnR(A) is complete,

and let N be a noetherian R-module. There are equalities

SuppR(A∨) = ∪p∈AssR(A∨)V (p) = ∪p∈AttR(A)V (p)

AttR(N∨) = AssR(N)

AttR(A) = AssR(A∨).
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Proof. The R-module A∨ is noetherian by Lemma 2.1.15(3), so the first equality is

standard, and the second equality follows from the fourth one. The third equality is

from [28, (2.3) Theorem]. This also explains the second step in the next sequence

AttR(A) = AttR(A∨∨) = AssR(A∨)

since A∨ is noetherian. The first step in this sequence follows from the fact that A is

Matlis reflexive; see Fact 2.1.17.

The next proposition can also be deduced from a result of Melkersson and Schen-

zel [22, Proposition 5.2].

Proposition 2.5.3. Let A and L be R-modules such that µ0
R(L) < ∞ and A is

artinian. Then

AssR̂(HomR(A,L)) = AssR̂(A∨) ∩ SuppR̂(Γm(L)∨) = AttR̂(A) ∩ SuppR̂(Γm(L)∨).

Proof. The assumption µ0
R(L) <∞ implies that Γm(L) is artinian. This implies that

Γm(L)∨ is a noetherian R̂-module, so a result of Bourbaki [7, IV 1.4 Proposition 10]

provides the third equality in the next sequence; see also [9, Exercise 1.2.27]:

AssR̂(HomR(A,L)) = AssR̂(HomR(A,Γm(L)))

= AssR̂(HomR̂(Γm(L)∨, A∨))

= AssR̂(A∨) ∩ SuppR̂(Γm(L)∨)

= AttR̂(A) ∩ SuppR̂(Γm(L)∨).

The remaining equalities are from Lemmas 2.1.5(2), 2.2.1(1), and 2.5.2, respectively.
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Corollary 2.5.4. Let M and M ′ be mini-max R-modules such that the quotient

R/(AnnR(M) + AnnR(M ′)) is complete.

1. For each index i > 0, one has ExtiR(M,M ′) ∼= ExtiR(M ′∨,M∨).

2. If M ′ is noetherian, then

AssR̂(HomR(M,M ′)) = AttR̂(M ′∨) ∩ SuppR̂(Γm(M∨)∨).

Proof. (1) The first step in the next sequence comes from Theorem 2.2.8(1):

ExtiR(M,M ′) ∼= ExtiR(M,M ′)∨∨ ∼= (TorRi (M,M ′∨))∨ ∼= ExtiR(M ′∨,M∨).

The remaining steps are from Theorem 2.4.10 and Remark 2.1.9, respectively.

(2) This follows from the case i = 0 in part (1) because of Proposition 2.5.3.

Proposition 2.5.5. Let A and L be R-modules such that A is artinian and βR0 (L) is

finite. Then

AttR̂(A⊗R L) = AssR̂(A∨) ∩ SuppR̂(Γm(L∨)∨) = AttR̂(A) ∩ SuppR̂(Γm(L∨)∨).

Proof. Theorem 2.3.1 implies that A⊗R L is artinian. Hence we have

HomR̂(A⊗R L,E) ∼= HomR(A⊗R L,E) ∼= HomR(A,L∨)

by Lemma 2.1.5(1), and this explains the second step in the next sequence:

AttR̂(A⊗R L) = AssR̂(HomR̂(A⊗R L,E)) = AssR̂(HomR(A,L∨))
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The first step is from Lemma 2.5.2. Since µ0
R(L∨) < ∞ by Lemma 2.1.13(2), we

obtain the desired equalities from Proposition 2.5.3.

Next, we give an alternate description of the module Γm(L)∨ from the previous

results. See Lemma 2.5.2 for a description of its support.

Remark 2.5.6. Let L be an R-module. There is an isomorphism Γm(L)∨ ∼= L̂∨. In

particular, given a noetherian R-module N , one has Γm(N∨)∨ ∼= R̂ ⊗R N . When R

is Cohen-Macaulay with a dualizing module D, Grothendieck’s local duality theorem

implies that Γm(N)∨ ∼= R̂ ⊗R Ext
dim(R)
R (N,D); see, e.g., [9, Theorem 3.5.8]. A sim-

ilar description is available when R is not Cohen-Macaulay, provided that it has a

dualizing complex; see [15, Chapter V, §6].

Vanishing of Hom and Tensor Product

For the next result note that if L is noetherian, then the conditions on µ0
R(L)

and R/(AnnR(A) + AnnR(Γm(L))) are automatically satisfied. Also, the example

HomR(E,E) ∼= R when R is complete shows the necessity of the condition on

R/(AnnR(A) + AnnR(Γm(L))).

Proposition 2.5.7. Let A be an artinian R-module. Let L be an R-module such that

R/(AnnR(A) + AnnR(Γm(L))) is artinian and µ0
R(L) <∞. Then HomR(A,L) = 0 if

and only if A = mA or Γm(L) = 0.

Proof. If Γm(L) = 0, then we are done by Lemma 2.1.5(2), so assume that Γm(L) 6= 0.

Theorem 2.2.2 and Lemma 2.1.20 show that HomR(A,L) has finite length. Thus

Proposition 2.5.3 implies that HomR(A,L) 6= 0 if and only if mR̂ ∈ AssR̂(A∨), that
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is, if and only if depthR̂(A∨) = 0. Lemma 2.1.13(3) shows that depthR̂(A∨) = 0 if

and only if mR̂A 6= A, that is, if and only if mA 6= A.

For the next result note that the conditions on L are satisfied when L is artinian.

Proposition 2.5.8. Let A be an artinian R-module, and let L be an m-torsion R-

module. The following conditions are equivalent:

1. A⊗R L = 0;

2. either A = mA or L = mL; and

3. either depthR(A∨) > 0 or depthR(L∨) > 0.

Proof. (1)⇐⇒ (2) If A⊗R L = 0, then we have

0 = λR(A⊗R L) > βR0 (A)βR0 (L)

so either βR0 (A) = 0 or βR0 (L) = 0, that is A/mA = 0 or L/mL = 0. Conversely,

if A/mA = 0 or L/mL = 0, then we have either βR0 (A) = 0 or βR0 (L) = 0, so

Theorem 2.3.8 implies that λR(A⊗R L) = 0.

The implication (2)⇐⇒ (3) is from Lemma 2.1.13(3).

The next result becomes simpler when L is artinian, as Γm(L) = L in this case.

Theorem 2.5.9. Let A and L be R-modules such that A is artinian and µ0
R(L) <∞.

The following conditions are equivalent:

1. HomR(A,L) = 0;

2. HomR(A,Γm(L)) = 0;

3. HomR̂(Γm(L)∨, A∨) = 0;
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4. there is an element x ∈ AnnR̂(Γm(L)) such that A = xA;

5. AnnR̂(Γm(L))A = A;

6. AnnR̂(Γm(L)) contains a non-zero-divisor for A∨; and

7. AttR̂(A) ∩ SuppR̂(Γm(L)∨) = ∅.

Proof. The equivalence (1)⇐⇒ (2) is from Lemma 2.1.5(2). The equivalence (2)⇐⇒

(7) follows from Proposition 2.5.3, and the equivalence (2) ⇐⇒ (3) follows from

Lemma 2.2.1(1). The equivalence (4) ⇐⇒ (6) follows from the fact that the map

A
x−→ A is surjective if and only if the map A∨

x−→ A∨ is injective. The equivalence

(5)⇐⇒ (6) follows from Lemma 2.1.13, parts (3) and (5).

The module Γm(L) is artinian as µ0
R(L) <∞. Since A∨ and Γm(L)∨ are noetherian

over R̂, the equivalence (3)⇐⇒ (6) is standard; see [9, Proposition 1.2.3].

As with Theorem 2.5.9, the next result simplifies when L is noetherian. Also, see

Remark 2.5.6 for some perspective on the module Γm(L∨)∨.

Corollary 2.5.10. Let A be a non-zero artinian R-module, and let L be an R-module

such that βR0 (L) <∞. The following conditions are equivalent:

1. A⊗R L = 0;

2. AnnR̂(Γm(L∨))A = A;

3. there is an element x ∈ AnnR̂(Γm(L∨)) such that xA = A;

4. AnnR̂(Γm(L∨)) contains a non-zero-divisor for A∨; and

5. AttR̂(A) ∩ SuppR̂(Γm(L∨)∨) = ∅.
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Proof. For an artinian R-module A′, one has AttR̂(A′) = ∅ if and only if A′ = 0 by

Lemma 2.5.2. Thus, Proposition 2.5.5 explains the equivalence (1) ⇐⇒ (5); see [24,

Corollary 2.3]. Since one has A⊗RL = 0 if and only if (A⊗RL)∨ = 0, the isomorphism

(A ⊗R L)∨ ∼= HomR(A,L∨) from Remark 2.1.9 in conjunction with Theorem 2.5.9

shows that the conditions (1)–(4) are equivalent.

Depth and Vanishing

Proposition 2.5.11. Let A and L be R-modules such that A is artinian. Then

ExtiR(A,L) = 0 for all i < depthR(L).

Proof. Let J be a minimal R-injective resolution of L, and let i < depthR(L). It

follows that ExtiR(k, L) = 0, that is µiR(L) = 0, so the module E does not appear as a

summand of J i. As in the proof of Theorem 2.2.2, this implies that HomR(A, J)i = 0,

so ExtiR(A,L) = 0.

The next example shows that, in Proposition 2.5.11 one may have ExtiR(A,L) = 0

when i = depthR(L). See also equation (2.6).

Example 2.5.12. Assume that depth(R) > 1. Then mE = E by Lemma 2.1.13(3),

so Lemma 2.2.10 implies that

Ext0
R(E, k) ∼= HomR(E, k) ∼= HomR(E/mE, k) = 0

even though depthR(k) = 0.

Proposition 2.5.13. Let A and L be R-modules such that A is artinian. Then for

all i < depthR(L∨) one has TorRi (A,L) = 0.
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Proof. When i < depthR(L∨), one has TorRi (A,L)∨ ∼= ExtiR(A,L∨) = 0 by Re-

mark 2.1.9 and Proposition 2.5.11, so TorRi (A,L) = 0.

Theorem 2.5.14. Let A and A′ be artinian R-modules, and let N and N ′ be noethe-

rian R-modules. Then one has

gradeR̂(AnnR̂(A′);A∨) = inf{i > 0 | ExtiR(A,A′) 6= 0} (2.6)

gradeR(AnnR(N ′);A∨) = inf{i > 0 | ExtiR(A,N ′∨) 6= 0} (2.7)

gradeR(AnnR(N ′);N) = inf{i > 0 | ExtiR(N∨, N ′∨) 6= 0}. (2.8)

Proof. We verify equation (2.6) first. For each index i, Theorem 2.4.3 implies that

ExtiR(A,A′) ∼= Exti
R̂

(A′∨, A∨).

Since A∨ and A′∨ are noetherian over R̂, this explains the first equality below:

inf{i > 0 | ExtiR(A,A′) 6= 0} = gradeR̂(AnnR̂(A′∨);A∨) = gradeR̂(AnnR̂(A′);A∨).

The second equality is standard since A′∨ = HomR̂(A′, E) by Lemma 2.1.5(1).

Next, we verify equation (2.7). Since N ′∨ is artinian, equation (2.6) shows that

we need only verify that

gradeR̂(AnnR̂(N ′∨);A∨) = gradeR(AnnR(N ′);A∨). (2.9)

For this, we compute as follows:

R̂⊗R N ′
(1)∼= HomR̂(HomR̂(R̂⊗R N ′, E), E)

(2)∼= HomR̂(N ′∨, E).
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Step (1) follows from the fact that R̂⊗RN ′ is noetherian (hence Matlis reflexive) over

R̂, and step (2) is from Hom-tensor adjointness. This explains step (4) below:

AnnR̂(N ′∨)
(3)
= AnnR̂(HomR̂(N ′∨, E))

(4)
= AnnR̂(R̂⊗R N ′)

(5)
= AnnR(N ′)R̂.

Steps (3) and (5) are standard. This explains step (6) in the next sequence:

gradeR̂(AnnR̂(N ′∨);A∨)
(6)
= gradeR̂(AnnR(N ′)R̂;A∨)

(7)
= gradeR(AnnR(N ′);A∨).

Step (7) is explained by the following:

Exti
R̂

(R̂/AnnR(N ′)R̂, A∨)
(8)∼= Exti

R̂
(R̂⊗R (R/AnnR(N ′)), A∨)

(9)∼= ExtiR(R/AnnR(N ′), A∨).

Step (8) is standard, and step (9) is a consequence of Hom-tensor adjointness. This

establishes equation (2.9) and thus equation (2.7).

Equation (2.8) follows from (2.7) because we have

gradeR(AnnR(N ′);N∨∨) = widthR(AnnR(N ′);N∨) = gradeR(AnnR(N ′);N)

by Lemma 2.1.13(1).

Corollary 2.5.15. Let A and A′ be artinian R-modules, and let N and N ′ be noethe-
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rian R-modules. Then

gradeR̂(AnnR̂(A′);A∨) = inf{i > 0 | TorRi (A,A′∨) 6= 0} (2.10)

gradeR(AnnR(N ′);A∨) = inf{i > 0 | TorRi (A,N ′) 6= 0} (2.11)

gradeR(AnnR(N ′);N) = inf{i > 0 | TorRi (N∨, N ′) 6= 0}. (2.12)

Proof. We verify equation (2.10); the others are verified similarly.

Since ExtiR(A,A′) 6= 0 if and only if HomR̂(ExtiR(A,A′), E) 6= 0, the isomorphism

HomR̂(ExtiR(A,A′), E) ∼= TorRi (A,A′∨) from Corollary 2.4.9 shows that

inf{i > 0 | ExtiR(A,A′) 6= 0} = inf{i > 0 | TorRi (A,A′∨) 6= 0}.

Thus equation (2.10) follows from (2.6).

2.6 Examples

This section contains some explicit computations of Ext and Tor for the classes of

modules discussed in this paper. Our first example shows that ExtiR(A,A′) need not

be mini-max over R.

Example 2.6.1. Let k be a field, and set R = k[X1, . . . , Xd](X1,...,Xd). We show that

HomR(E,E) ∼= R̂ is not mini-max over R. Note that R is countably generated over

k, and R̂ ∼= k[[X1, . . . , Xd]] is not countably generated over k. So, R̂ is not countably

generated over R. Also, every artinian R-module A is a countable union of the finite

length submodules (0 :A mn), so A is countably generated. It follows that every mini-

max R-module is also countably generated. Since R̂ is not countably generated, it is

not mini-max over R.
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Our next example describes ExtiR(A,A′) for some special cases.

Example 2.6.2. Assume that depth(R) > 1, and let A be an artinian R-module. Let

x ∈ m be an R-regular element. The map E
x−→ E is surjective since E is divisible,

and the kernel (0 :E x) is artinian, being a submodule of E. Using the injective

resolution 0→ E
x−→ E → 0 for (0 :E x), one can check that

ExtiR(A, (0 :E x)) ∼=


(0 :A∨ x) if i = 0

A∨/xA∨ if i = 1

0 if i 6= 0, 1.

For instance, in the case A = (0 :E x), the isomorphism (0 :E x)∨ ∼= R̂/xR̂ implies

ExtiR((0 :E x), (0 :E x)) ∼=


R̂/xR̂ if i = 0, 1

0 if i 6= 0, 1.

On the other hand, if x, y is an R-regular sequence, then (0 :E y)∨ ∼= R̂/yR̂; it follows

that x is (0 :E y)∨-regular, so one has

ExtiR((0 :E y), (0 :E x)) ∼=


R̂/(x, y)R̂ if i = 1

0 if i 6= 1.

The next example shows that ExtiR(A,N) need not be mini-max over R.

Example 2.6.3. Assume that R is Cohen-Macaulay with d = dim(R), and let A be

an artinian R-module. Assume that R admits a dualizing (i.e., canonical) module D.

(For instance, this is so when R is Gorenstein, in which case D = R.) A minimal
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injective resolution of D has the form

J = 0→
⊕

ht(p)=0 ER(R/p)→ · · · →
⊕

ht(p)=d−1 ER(R/p)→ E → 0.

In particular, we have Γm(J) = (0→ 0→ 0→ · · · → 0→ E → 0) where the copy of

E occurs in degree d. Since HomR(A, J) ∼= HomR(A,Γm(J)), it follows that

ExtiR(A,D) ∼=


A∨ if i = d

0 if i 6= d.

Assume that d > 1, and let x ∈ m be an R-regular element. It follows that the

map D
x−→ D is injective, and the cokernel D/xD is noetherian. Consider the exact

sequence 0 → D
x−→ D → D/xD → 0. The long exact sequence associated to

ExtiR(A,−) shows that

ExtiR(A,D/xD) ∼=


(0 :A∨ x) if i = d− 1

A∨/xA∨ if i = d

0 if i 6= d− 1, d.

As in Example 2.6.2, we have (0 :E x)∨ ∼= R̂/xR̂ and

ExtiR((0 :E x), D/xD) ∼=


R̂/xR̂ if i = d− 1, d

0 if i 6= d− 1, d.
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Also, if x, y is an R-regular sequence, then (0 :E y)∨ ∼= R̂/yR̂ and

ExtiR((0 :E y), D/xD) ∼=


R̂/(x, y)R̂ if i = d

0 if i 6= d.

Next, we show that TorRi (A,A′) need not be noetherian over R or R̂.

Example 2.6.4. Assume that R is Gorenstein and complete with d = dim(R).

(Hence D = R is a dualizing R-module.) Given two artinian R-modules A and

A′, Theorem 2.3.1 implies that TorRi (A,A′) is artinian, hence Matlis reflexive for

each index i, since R is complete. This explains the first isomorphism below, and

Remark 2.1.9 provides the second isomorphism:

TorRi (A,E) ∼= TorRi (A,E)∨∨ ∼= ExtiR(A,E∨)∨ ∼= ExtiR(A,R)∨ ∼=


A if i = d

0 if i 6= d.

Example 2.6.3 explains the fourth isomorphism. Assume that d > 1, and let x ∈ m

be an R-regular element. Then (0 :E x)∨ ∼= R/xR, so Example 2.6.3 implies that

TorRi (A, (0 :E x)) ∼= ExtiR(A, (0 :E x)∨)∨ ∼=


A/xA if i = d− 1

(0 :A x) if i = d

0 if i 6= d− 1, d

TorRi ((0 :E x), (0 :E x)) ∼=


(0 :E x) if i = d− 1, d

0 if i 6= d− 1, d.
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On the other hand, if x, y is an R-regular sequence, then

TorRi ((0 :E y), (0 :E x)) ∼=


(R/(x, y)R)∨ ∼= ER/(x,y)R(k) if i = d

0 if i 6= d.

Lastly, we provide an explicit computation of E ⊗R E.

Example 2.6.5. Let k be a field and set R = k[[X, Y ]]/(XY, Y 2). This is the com-

pletion of the multi-graded ring R′ = k[X, Y ]/(XY, Y 2) with homogeneous maximal

ideal m′ = (X, Y )R′. The multi-graded structure on R′ is represented in the following

diagram:

R′ •
•

OO

//• • • • · · ·

where each integer valued point, (n,m), represents the corresponding monomial,

xnym, in R′. It follows that E ∼= ER′(k) ∼= k[X−1] ⊕ kY −1 with graded module

structure given by the formulas

X · 1 = 0 X ·X−n = X1−n X · Y −1 = 0

Y · 1 = 0 Y · Y −1 = 1 Y ·X−n = 0

for n > 1. Using this grading, one can show that mE = m′E ∼= k[X−1] and m2E =

mE. These modules are represented in the next diagrams:

· · · • • • • •oo

��
E •

· · · • • • • •oo

��
mE
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It follows that E/mE ∼= k, so Lemma 2.3.7 implies that

E ⊗R E ∼= (E/mE)⊗R (E/mE) ∼= k ⊗R k ∼= k.

A similar computation shows the following: Fix positive integers a, b, c such that

c > b, and consider the ring S = k[[X, Y ]]/(XaY b, Y c) with maximal ideal n and

ES = ES(k). Then nc−bES = nc−b+1ES and we get the following:

ES/n
c−bES ∼= S/(Xa, Y c−b)S ∼= k[X, Y ]/(Xa, Y c−b)

ES ⊗S ES ∼= (ES/n
c−bES)⊗S (ES/n

c−bES) ∼= S/(Xa, Y c−b)S.
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Chapter 3

Homology of Artinian and Matlis

Reflexive Modules Over

Commutative Rings

Introduction

The results in this chapter are joint work with B. Kubik and S. Sather-Wagstaff.

Throughout this chapter R will denote a commutative noetherian ring with iden-

tity. In this chapter we generalize many of the results from the previous chapter to

the case where R may not be local.

3.1 Background

Definition 3.1.1. Given an R-module L we let ER(L) denote the injective hull of

L. Let ER =
⊕

m∈m-Spec (R) ER(R/m) be the minimal injective cogenerator for R.

The terminology minimal injective cogenerator refers to the fact that an injective
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R-module I will cause HomR(−, I) to be a faithful functor if and only if ER is a

direct summand of I. To see this note that for any m ∈ m-Spec(R) and any injective

R-module I the module HomR(ER(R/m), I) is nonzero if and only if ER(R/m) is

a direct summand of I. Let (−)∨(R) = HomR(−, ER) be Matlis duality functor.

When is clear to which ring we are referring we will simply write (−)∨ for (−)∨(R).

Set (−)∨∨ = ((−)∨)∨. For each R-module L, let δL : L → L∨∨ denote the natural

biduality map given by δL(l)(ψ) = ψ(l), where l ∈ L and ψ ∈ HomR(L,ER). As

in the previous chapter we say tht an R-module L is Matlis reflexive if the natural

biduality map δL is an isomorphism.

Lemma 3.1.2. Fix a proper ideal a ⊂ R. For each prime ideal p ∈ V (a) we have

ER(R/p) ∼= ER̂p(R̂
p/pR̂p) ∼= ER̂a(R̂

a/pR̂a). (3.1)

Also there is an isomorphism

ER̂a
∼=
⊕

m∈m-Spec(R)∩V (a) ER(R/m). (3.2)

In particular, the module ER̂a is a-torsion.

Proof. To see this, first recall that aR̂a is contained in the Jacobson radical of R̂a, and

that R̂a/aR̂a ∼= R/a; see [21, Theorems 8.11 and 8.14]. From this, it is straightforward

to show that there are inverse bijections

m-Spec(R) ∩ V (a) oo // m-Spec(R̂a)

m � // mR̂a

n ∩R n�oo

(3.3)



55

Using the isomorphisms (̂R̂a)
pR̂a

∼= (̂R̂a)
p
∼= R̂a+p ∼= R̂p and the fact that R̂a/pR̂a ∼=

R/p for each p ∈ Spec(R)∩ V (a), we obtain the isomorphisms in (3.1). The isomor-

phism (3.2) now follows from (3.3) and (3.1).

For each m ∈ m-Spec(R) ∩ V (a), the module ER(R/m) is m-torsion; hence it is

a-torsion, since a ⊆ m. It follows that ER̂a is a-torsion.

Fact 3.1.3. Let p1, . . . pn ∈ Spec(R). Let U = R�∪ni=1pi . Let p ∈ Spec(R). If p ⊆ pi

for some i, then ER(R/p)) ∼= U−1 ER(R/p) ∼= EU−1R(U−1R/pU−1R). Otherwise

U−1 ER(R/p) = 0. If pi * pj for i 6= j, then EU−1R
∼=
⊕n

i=1 ER(R/p).

Fact 3.1.4. Let a be an ideal of R. For each p ∈ Spec(R), one has

Γa(ER(R/p)) =


ER(R/p) if a ⊆ p

0 if a 6⊆ p.

Lemma 3.1.5. Let a be an ideal of R. Then Γa(ER) = ER̂a.

Proof. Fact 3.1.4 explains the third equality in the next display

Γa(ER) = Γa(
⊕

m∈m-Spec(R) ER(R/m))

=
⊕

m∈m-Spec(R) Γa(ER(R/m))

=
⊕

m∈m-Spec(R)∩V (a) ER(R/m)

∼= ER̂a

and the isomorphism is from Lemma 3.1.2.

Lemma 3.1.6. Let a be an ideal of R. Let L and L′ be R-modules such that L is

a-torsion and anL′ = an+1L′. Then L⊗R L′ ∼= L⊗R L′/anL′.
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Proof. First we prove that L ⊗R anL′ = 0. Let x ⊗ y ∈ L ⊗R anL′. Choose m ∈ N

such that amx = 0. Since anL′ = an+1L′ it follows anL′ = an+iL′ for all i > 0.

Thus y ∈ an+mL′, and we can write y =
∑h

j=1 sjcj for some sj ∈ am and cj ∈ anL′.

Therefore

x⊗ y = x⊗
h∑
j=1

sjcj =
h∑
j=1

jsjx⊗ cj =
h∑
j=1

0⊗ cj = 0;

hence L ⊗R anL′ = 0. Applying L ⊗R (−) to 0 → anL′ → L′ → L′/anL′ → 0 we get

an exact the sequence 0→ L⊗R L′ → L⊗R L′/anL′ → 0, and the result follows.

Fact 3.1.7. Let a and b be co-maximal ideals of R and L an R̂a-module. Then

L = bL.

Choose a ∈ a and b ∈ b so that a + b = 1. Then b = 1 − a is a unit in R̂a with

inverse
∑∞

i=0(−a)i. Hence bL = bR̂aL = R̂aL = L.

Fact 3.1.8. Let U ⊆ R be a multiplicatively closed set and a an ideal of R such that

a ∩ U 6= ∅. Let L be a U−1R-module. Then L = aL.

Fact 3.1.9. For each R-module L, the natural biduality map δL : L → L∨∨ is a

monomorphism.

Fact 3.1.10. [6, Theorem 12] An R-module L is Matlis reflexive if and only if L is

mini-max and R/AnnR(L) is semi-local and complete, that is, complete with respect

to its Jacobson radical.

Lemma 3.1.11. Let A be an artinian R-module.

1. The support of A consists entirely of maximal ideals of R, that is SuppR(A) ⊆

m-Spec(R).

2. We have MinR(A) = AssR(A) = SuppR(A).
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3. The support of A is finite.

Proof. (1) Assume there exist p ∈ Supp(A)�m-Spec(R). Let a ∈ A be an element

such that its image under the natural map A → Ap is non-zero. Then Ann(a) ⊆ p.

Thus Ra surjects onto R/p. Since R/p is the homomorphic image of a submodule

of an artinian module, it is artinian. However, by our assumption R/p is a ring of

positive dimension. Thus it cannot be artinian. From this contradiction it follows

that Supp(A) consists of maximal ideals.

(2) From part (1) we conclude that each m ∈ SuppR(A) is both maximal and

minimal in SuppR(A). This explains the inclusion SuppR(A) ⊆ MinR(A), and the

inclusions MinR(A) ⊆ AssR(A) ⊆ SuppR(A) hold for all modules; see [21, Theorem

6.5 (ii) and (iii)] the proof of which only uses that the module is finite for part (i).

(3) From part (2), for each mi ∈ Supp(A) we have mi ∈ AssR(A). Hence we

can choose a submodule Ai ⊆ A such that Ai ∼= R/mi. Let A′ :=
∑

mi∈Supp(A) Ai
∼=⊕

mi∈Supp(A) R/mi. Since A is artinian, so is the submodule A′. Therefore the direct

sum must be finite.

Lemma 3.1.12. Let L be an R-module.

1. If L is artinian over R, then U−1L is an artinian U−1R-module for each mul-

tiplicatively closed subset U ⊆ R.

2. The R-module L is artinian if and only if SuppR(L) is a finite set and Lp is

artinian over Rp for each p ∈ SuppR(L).

Proof. (1) Each descending chain of U−1R-submodules of U−1L has the form U−1L ⊇

U−1L1 ⊇ U−1L2 ⊇ · · · for some descending chain L ⊇ L1 ⊇ L2 ⊇ · · · of R-

submodules. Since L is artinian, the second chain stabilizes, hence the first chain

also stabilizes.
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(2) The forward implication follows from part (1) and Lemma 3.1.11.

For the reverse implication, assume that SuppR(L) is finite, with SuppR(L) :=

{p1, . . . , ph}, and that Lpi is artinian over Rpi for i = 1, . . . , h. Let L = L0 ⊇ L1 ⊇

L2 ⊇ · · · be a descending chain of R-modules. Since Lpi = (L0)pi ⊇ (L1)pi ⊇ (L2)pi ⊇

· · · stabilizes for i = 1, . . . , h, we may choose j ∈ N so that (Lj)pi = (Lj+n)pi for

i = 1, . . . , h and for all n ∈ N. For each p ∈ Spec(R) r SuppR(L), we have Lp = 0,

so (Lj)p = (Lj+n)p for all n ∈ N. Hence we have Lj = Lj+n for all n ∈ N, and L is

artinian.

Definition 3.1.13. Let L be an R-module, p ∈ SpecR and k(p) := Rp/pRp. For

each integer i > 0, the ith Bass number of L with respect to p and the ith Betti

number of L with respect to p are as follows:

µiR(p, L) = dimk(p)(ExtiRp
(k(p), Lp)) βRi (p, L) = dimk(p)(Tor

Rp

i (k(p), Lp)).

Remark 3.1.14. Let L, L′ and N be R-modules such that N is noetherian. Let

m ∈ m-Spec(R). As ExtiR(N,L)p ∼= ExtiRp
(Np, Lp) and TorRi (L′, L)p ∼= Tor

Rp

i (L′p, Lp)

for all p ∈ Spec(R); see [27, Propositions 7.17 and 7.39] . It follows that

µiR(m, L) = λR(ExtiR(R/m, L)) and βRi (m, L) = λR(TorRi (R/m, L)).

Fact 3.1.15. Let L be an R-module. For each p ∈ Spec(R) and for each integer

i > 0, we have µiR(p, L) = µiRp
(Lp) and βiR(p, L) = βiRp

(Lp). This is immediate from

the definitions. For the local definitions see Definition 2.1.10.
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Definition 3.1.16. Let a be an ideal of R. For each R-module L, set

depthR(L) = sup{gradeR(m;L)| m ∈ m-Spec(R)}

widthR(L) = sup{widthR(m;L)| m ∈ m-Spec(R)};

see Definition 2.1.12.

Lemma 3.1.17. Let L be an R-module, and let a be an ideal of R.

1. One has λR(L∨) = λR(L); in particular, λR(L∨) <∞ if and only if λR(L) <∞.

2. For each index i > 0 and m ∈ m-Spec(R) one has βRi (m;L) = µiR(m;L∨) and

βRi (m;L∨) = µiR(m;L).

Proof. (1) It is straightforward to show that for each maximal ideal m ⊂ R, we have

(R/m)∨ ∼= R/m. An inductive argument using the additivity of length shows that if

L has finite length, then λR(L∨) = λR(L) < ∞. Using Fact 3.1.9, we conclude that

if λR(L∨) <∞, then λR(L) <∞.

Part (2) follows from Remark 2.1.9.

Remark 3.1.18. Let L be an R-module and let p ∈ SpecR.

(a) One has µ0
R(p, L) = λRp(SocRp(Lp)) and βR0 (p, L) = λRp(Lp/pLp).

(b) If I is a minimal injective resolution of L, then for each index i > 0 we have

I i ∼= ER(R/p)(µiR(p,L)) ⊕ J i where J i does not have ER(R/p) as a summand; see,

e.g., [21, Theorem 18.7].

(c) One has µiR(p, L) < ∞ for all i > 0 if and only if βRi (p, L) < ∞ for all i > 0;

see [19, Proposition 1.1] and Fact 3.1.15.
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Lemma 3.1.19. Let M be a mini-max R-module, U a multiplicatively closeed set and

p ∈ SpecR. Then U−1M is a mini-max U−1R-module, and for all i > 0 we have that

µiR(p, L) and βRi (p, L) are finite.

Proof. The result that U−1M is a mini-max U−1R-module follows from the fact that

localization is exact and localizing a noetherian (artinian) R-module with resepct

to U yields a noetherian (artinian) U−1R-module. Therefore the finiteness of the

Bass and Betti numbers follows from the local case and Lemma 2.1.18, by using the

behavior of Bass and Betti numbers under localization.

Corollary 3.1.20. Let A be an artinian R-module. Let J be a minimal injective

resolution for A. For i > 0, the module J i =
⊕

m∈Supp(A) ER(R/m)µ
i
R(m,A) is a finite

direct sum of injective hulls of residue fields.

Proof. This follows from Fact 3.1.15, Remark 3.1.18(b) and Lemmas 3.1.11 and 3.1.19.

We will use the next lemma to get some localization behavior for Ext.

Lemma 3.1.21. Let m1, . . . ,mn ∈ m-Spec(R), and set b = ∩nj=1mj.

1. There are isomorphisms R̂b ∼=
∏n

j=1 R̂mj
∼=
∏n

j=1 R̂
mj .

2. Each R̂b-module L has a unique decomposition as L ∼=
⊕n

j=1 Lj where each Lj

is an R̂mj -module, specifically, with Lj ∼= Lnj where nj = mjR̂
b.

Proof. Part (1) is contained in [21, Theorem 8.15]. Part (2) is a standard consequence

of (1), using the natural idempotents in
∏n

j=1 R̂
mj .

Lemma 3.1.22. Let A be an artinian R-module. Set a = ∩m∈SuppR(A)m. Then A is

a-torsion.
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Proof. Let x ∈ A. The submodule Rx ⊆ A is artinian because A is artinian. It is

noetherian since it is finitely generated, so it has finite length, say n = λR(Rx). Also,

we have SuppR(Rx) ⊆ SuppR(A). Let c = ∩m∈Supp(Rx)m. Since Supp(Rx) ⊆ Supp(A),

it follows that a ⊆ c. Since c kills socle elements of Rx it follows that cnx = 0 for

some n� 0. Thus anx = 0.

Lemma 3.1.23. Let a be a proper ideal of R, and let L and L′ be R-modules such

that L is a-torsion. Then L∨ ∼= L∨(R̂a).

Proof. The result a consequence of the next display:

HomR(L,ER) ∼= HomR(L,Γa(ER)) ∼= HomR(L,ER̂a) = HomR̂a(L,ER̂a).

The isomorphisms above follow from Lemma 2.1.5 (1) and (2) along with Lemma 3.1.5.

The next result is particularly useful for artinian modules; see Lemma 3.1.22.

Lemma 3.1.24. Let F be a finite set of maximal ideals and let b = ∩m∈Fm. Let L

be a b-torsion module. We have the following:

1. For each m ∈ m-Spec(R), the composition Γm(L)→ L→ Lm is an isomorphism.

2. There is an internal direct sum
∑

m∈F Γm(L) = L ∼=
⊕

m∈F Lm.

Proof. Fact 2.1.2 (c) implies that L is an R̂b-module, and we have L ∼=
⊕

m∈F Lm

by Lemma 3.1.21(2). Since bRm = mRm for all m ∈ F , it follows that Lm is m-

torsion. Choose m0 ∈ Supp(L). Let a = ∩m∈F�{m0}m. Suppose x ∈
⊕

m∈F Lm is

m0-torsion. Then x = y + z with y ∈ Lm0 and z ∈
⊕

m∈F�{m0} Lm. Since x and y

are m0-torsion so is z. However z is also a-torsion. Therefore z is (m0 + a)-torsion
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but m0 + a = R so z = 0. It follows that Γm0(L) ∼= Lm0 . Combing this with the

isomorphism L ∼=
⊕

m∈F Lm gives us the internal direct sum
∑

m∈F Γm(L) = L.

The following result is equivalent to [29, (1.4) Proposition].

Lemma 3.1.25. If A is an artinian R-module, then A ∼=
⊕

m∈SuppR(A) Am.

Proof. Let A be an artinian R-module. Lemma 3.1.11 implies that SuppR(A) is a

finite set of maximal ideals. With a = ∩m∈SuppR(A)m, Lemma 3.1.22 implies that A is

a-torsion, so the isomorphism A ∼=
⊕

m∈SuppR(A) Am is from Lemma 3.1.24(2).

Lemma 3.1.26. Let L be an R-module such that R/AnnR(L) is semi-local and com-

plete. The set m-Spec(R)∩ SuppR(L) is finite and equals m-Spec(R)∩ V (AnnR(L)).

Proof. Set R = R/AnnR(L). We may Assume L 6= 0. Let π : R→ R be the natural

surjection and π∗ : Spec(R) → Spec(R) the induced map given by π∗(p) = π−1(p).

Since Lp = 0 for all p not containing AnnR(L) we get SuppR(L) = π∗(SuppR(L)).

Therefore m-Spec(R) ∩ SuppR(L) = π∗(m-Spec(R) ∩ SuppR(L)).

The ring R is a finite product of complete local rings, say R ∼=
∏n

i=1Ri. Since

L is an R-module we have L =
∏n

i=1 Li where Li is an Ri-module. By construction

AnnR(L) = 0, so for all i we have Li 6= 0. Thus m-Spec(R) ⊆ SuppR(L). This

explains the second equality in the following display. The last equality is standard.

m-Spec(R) ∩ SuppR(L) = π∗(m-Spec(R) ∩ SuppR(L))

= π∗(m-Spec(R))

= m-Spec(R) ∩ V (AnnR(L))

As R is semi-local |m-Spec(R) ∩ SuppR(L)| = |m-Spec(R) ∩ SuppR(L)| <∞.
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Lemma 3.1.27. Let L be an R-module such that R/AnnR(L) is semi-local and com-

plete. Set b = ∩m∈m-Spec(R)∩SuppR(L)m, and let a ⊆ b.

1. L has an R̂a-module structure that is compatible with its R-module structure via

the natural map L→ R̂a ⊗R L.

2. If a is a finite intersection of maximal ideals in m-Spec(R), then there is an

isomorphism L∨ ∼= L∨(R̂a).

3. A subset Z ⊆ L is an R-submodule if and only if it is an R̂a-submodule.

4. L is a noetherian (artinian, minimax respectively) R-module if and only if it is

a noetherian (artinian, mini-max respectively) R̂a-module.

Proof. Set R = R/AnnR(L). Assume without loss of generality that L 6= 0.

(1) There is a commutative diagram of ring homomorphisms

R //

��

R̂a

��

R/AnnR(L)
∼= // R̂a/AnnR(L)R̂a.

The map in the bottom row is an isomorphism because R/AnnR(L) is semi-local and

complete with Jacobson radical b/AnnR(L); this uses Lemma 3.1.26. Since L′ has an

R/AnnR(L)-module structure that is compatible with its R-module structure via the

natural map R→ R/AnnR(L), the isomorphism in the bottom row shows that L′ has

a compatible R̂a/AnnR(L)R̂a-module structure. It follows that L′ has a compatible

R̂a-module structure.

(2) Assume in this paragraph that a is a finite intersection of maximal ideals, and

let F be a finite set of maximal ideals containing m-Spec(R) ∩ SuppR(L) such that

a = ∩m∈Fm. Note that ER̂a =
⊕

m∈F ER(R/m) is the minimal injective cogenerator
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of R̂a. Part (1) explains the first step in the following sequence.

HomR̂a(L,ER̂a) = HomR̂a(L⊗R R̂a, ER̂a)

= HomR(L,HomR̂a(R̂
a, ER̂a))

= HomR(L,ER̂a)

= HomR(L,ER)

The second step is Hom-Tensor adjointness. The third step is standard and the last

step follows from the fact that m-Spec(R) ∩ Supp(L) ⊂ F .

(3) The subset Z ⊆ L′ is an R-submodule if and only if it is an R-submodule. The

isomorphisms in the diagram from part (1) show that Z is an R-submodule if and only

if it is an R̂a/AnnR(L)R̂a-submodule, that is, if and only if it is an R̂a-submodule.

(4) From part (3) we have {R-submodules of L′} = {R̂a-submodules of L′}. Thus,

the first set satisfies the ascending chain condition (respectively the descending chain

condition) if and only if the second one does. Lastly given a submodule N of L we

have L/N is artinian as an R-module if and only if it is artinian as a R̂a-module. It

follows that L is a mini-max R-module if and only if it is a mini-max R̂a-module.

Lemma 3.1.28. Let a be a proper ideal of R and A an artinian R-module. Let

b = ∩m∈Supp(A)∩V (a)m. Then R̂a ⊗R A ∼= Γa(A) = Γb(A) ∼=
⊕

m∈Supp(A)∩V (a) Γm(A),

and these modules are artinian both as R-modules and as R̂a-modules.

Proof. Let c = ∩m∈Supp(A)�V (a)m. Then A ∼= Γb(A) ⊕ Γc(A). Since c and a are

co-maximal by Fact 3.1.7 we have R̂a = cR̂a. Therefore by Lemma 3.1.6 we have

R̂a ⊗R Γc(A) = R̂a/c0R̂a ⊗R Γc(A) = 0. Since a ⊂ b, it follows that Γb(A) is a-

torsion. Therefore by Lemma 2.1.4 (1) we have that R̂a⊗RΓb(A) ∼= Γb(A). Therefore

R̂a ⊗R A ∼= Γb(A). Since a ⊆ b the R-module Γb(A) is a-torsion. It follows from



65

Lemma 2.1.3 (2) that Γb(A) is an artinian R̂a-module.

The isomorphism Γb(A) ∼=
⊕

m∈Supp(A)∩V (a) Γm(L) follows from Lemma 3.1.24.

Since a ⊆ b it follows that Γb(A) ⊆ Γa(A). Since c + a = R we get the following:

0 = ΓR(A) = Γc+a(A) = Γc(A) ∩ Γa(A)

Since A = Γb(A) + Γc(A) is an internal direct sum, we get the reverse inclusion

Γa(A) ⊆ Γb(A), and the result follows.

Lemma 3.1.29. Let U ⊂ R be a multiplicatively closed set and A an artinian R-

module. Let F = {m ∈ Supp(A)| m ∩ U = ∅}, V = R� ∪m∈F m and b = ∩m∈Fm.

Then U−1A ∼= V −1A ∼= Γb(A) ∼=
⊕

m∈F Am, and these modules are artinian both as

R-modules and as U−1R-modules.

Proof. Let G = {m ∈ Supp(A)| m ∩ U 6= ∅}. Let m ∈ G, c ∈ m ∩ U and a ∈ Am.

Choose n ∈ N such that mna = 0. Since U is multiplicatively closed cn ∈ U . Since

cna = 0 and a ∈ Am was arbitrary it follows that U−1Am = 0.

Let n ∈ F . Since n∩U = ∅ it follows that nU−1R is a maximal ideal in U−1R. Let

W = R�n and W ′ = U−1R�nU−1R. Since SuppU−1R(U−1An) = {nU−1R}, Lemma

3.1.24 explains the first step in the following sequence U−1An
∼= (U−1An)nU−1R =

W ′−1U−1An
∼= W−1An = An. Thus the result follows from the decomposition in

Lemma 3.1.25.

Lemma 3.1.30. Let a be a proper ideal of R. If M is a mini-max R-module, then

R̂a ⊗RM is a mini-max R̂a-module.

Proof. If M is mini-max over R, then there is an exact sequence of R-module homo-

morphisms

0→ N →M → A→ 0
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where N is noetherian over R and A is artinian over R. The ring R̂a is flat over R,

so the base-changed sequence

0→ R̂a ⊗R N → R̂a ⊗RM → R̂a ⊗R A→ 0

is an exact sequence of R̂a-module homomorphisms. The R̂a-module R̂a ⊗R N is

noetherian. Lemma 3.1.28 implies that the R̂a-module R̂a⊗RA is artinian, so R̂a⊗RM

is mini-max over R̂a.

Lemma 3.1.31. Let L be an R-module, and let F be a finite subset of m-Spec(R).

Set a = ∩m∈Fm. Then the following conditions are equivalent:

1. L is artinian over R and SuppR(L) ⊆ F ;

2. L has an R̂a-module structure, compatible with its R-module structure, such that

L is an artinian R̂a-module;

3. R̂a ⊗R L is an artinian R̂a-module and SuppR(L) ⊆ F ;

4. L is a-torsion and µ0
R(m, L) <∞ for all m ∈ m-Spec(R); and

5. L is a-torsion and µ0
R(m, L) <∞ for all m ∈ F .

Proof. (1) =⇒ (2) Assume that L is artinian over R such that SuppR(L) ⊆ F .

Lemma 3.1.22 implies that L is a-torsion, so Fact 2.1.2 (c) and Lemma 2.1.3 (2)

imply (2).

(2) =⇒ (4) Assume that L has an R̂a-module structure, compatible with its R-

module structure, such that L is an artinian R̂a-module. The Jacobson radical of R̂a

is aR̂a. Since L is artinian over R̂a, we know that L is aR̂a-torsion, so it is a-torsion.

By Lemma 2.1.3 (2) it follows that L is an artinian R-module. Thus by Lemma 3.1.19

we get that µ0
R(m, L) <∞ for all m ∈ m-Spec(R).
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(4) =⇒ (5) This is evident.

(5) =⇒ (1) Assume that L is a-torsion and µ0
R(m, L) < ∞ for all m ∈ F . By

Lemma 3.1.24 (2) we have that L ∼=
⊕

m∈F Lm. Therefore the indecomposable in-

jective summand of ER(L) are all of the form ER(R/m) for some m ∈ F . Since

µ0
R(m, L) < ∞ for all m ∈ F , it follows that ER(L) is a finite co-product of artinian

modules. Therefore ER(L) is artian. Since L injects into ER(L) we have that L is

artinian.

(1) =⇒ (3) This is follows immediately from Lemma 3.1.28.

(3) =⇒ (2) Assume that R̂a ⊗R L is an artinian R̂a-module and SuppR(L) ⊆ F .

Since Lp = 0 for all p /∈ F we have µ0
R(p, L) = 0 for all p /∈ F . Since ER(R/m) is

a-torsion for all m ∈ F it follows that ER(L) =
⊕

m∈F ER(R/m)µ
0
R(m,L) is a-torsion.

Since L injects into ER(L) it is a-torsion. By Lemma 2.1.4 (1) we know that L is iso-

morphic to R̂a⊗RL. Therefore L is an artinian R̂a-module. Hence by Lemma 2.1.3 (2)

it follows that L is an artinian R-module.

Lemma 3.1.32. Let L be an R-module such that R/AnnR(L) is semi-local and com-

plete. Set b = ∩m∈m-Spec(R)∩SuppR(L)m, and let a ⊆ b. Then the following conditions

are equivalent:

1. L is mini-max as an R-module;

2. L is mini-max as an R̂a-module;

3. L is Matlis reflexive as an R-module; and

4. L is Matlis reflexive as an R̂a-module.

Proof. Assume without loss of generality that L 6= 0.

(1) ⇐⇒ (2) This is stated in Lemma 3.1.27 (4).

(1) ⇐⇒ (3) This is an immediate consequence of Fact 3.1.10.
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(2) ⇐⇒ (4) Since R/AnnR(L) ∼= R̂a/AnnR(L)R̂a ∼= R̂a/AnnR̂a(L). The equiva-

lence is a consequence of Fact 3.1.10.

Lemma 3.1.33. Let L be an R-module such that R/AnnR(L) is artinian. Then L

has finite length if and only if L is mini-max.

Proof. If L has finite length then clearly it is mini-max. Conversely assume that L

is mini-max. Then L is mini-max as an R/AnnR(L)-module. Over an artinian ring

artinian and noetherian modules have finite length; hence so do mini-max modules,

and the result follows.

Lemma 3.1.34. Given an R-module L, there is a inclusion

SuppR(L) ∩m-Spec(R) ⊆ SuppR(L∨) ∩m-Spec(R).

Proof. Let m ∈ SuppR(L) ∩ m-Spec(R). Since Lm 6= 0, there is an element x ∈ L

such that x/1 6= 0 in Lm. Thus, the submodule L′ = Rx ⊆ L is finitely generated

and L′m 6= 0. It follows that

(L′∨)m ∼= (L′m)∨(Rm) 6= 0.

The inclusion L′ ⊆ L yields an epimorphism (L∨)m � (L′∨)m 6= 0, implying that

(L∨)m 6= 0. This shows that m ∈ SuppR(L∨) ∩m-Spec(R), as desired.

The next example shows that the inclusion in Lemma 3.1.34 can be strict.

Example 3.1.35. Let R = k[X], n = RX and L =
⊕

m∈m-Spec(R)�{n}R/m. The

maximal ideal n is not in SuppR(L). We claim, however, that n ∈ SuppR(L∨). To see
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this, observe that

L∨ ∼=
∏

m∈m-Spec(R)�{n}(R/m)∨ ∼=
∏

m∈m-Spec(R)�{n}R/m.

The natural map R →
∏

m6=nR/m
∼= L∨ given by 1 7→ {1 + m} is a monomorphism

since its kernel is ∩m6=nm = 0. It follows that n ∈ SuppR(R) ⊆ SuppR(L∨).

3.2 Properties of ExtiR(M,−) and TorRi (M,−)

Theorem 3.2.1. Let A and L be R-modules such that A is artinian. Let F be a

finite subset of m-Spec(R) containing Supp(A) ∩ Supp(L). Let b = ∩m∈Fm. Given

any i > 0 such that µiR(m, L) < ∞ for all m ∈ Supp(A) ∩ Supp(L) we have that

ExtiR(A,L) is a noetherian R̂b-module.

Proof. Let J · be the minimal R-injective resolution of L. For m ∈ m-Spec(R), we

have Γb(J
i) ∼=

⊕
m∈F Γm(J i) ∼=

⊕
m∈F ER(R/m)µ

i
R(m,L). This explains the second step

in the next sequence.

HomR(A, J i) ∼=
⊕

m∈Supp(A) HomR(Am, J
i)

∼=
⊕

m∈Supp(A) HomR(Am,Γm(J i))

∼=
⊕

m∈Supp(A) HomR(Am,ER(R/m))µ
i
R(m,L)

∼=
⊕

m∈Supp(A)∩Supp(L) HomR(Am,ER(R/m))µ
i
R(m,L)

∼=
⊕

m∈Supp(A)∩Supp(L) HomR̂m(Am,ER(R/m))µ
i
R(m,L).

The second and last steps are from Lemma 2.1.5. The first step is from Lemma 3.1.24.

The fourth step follows from the fact that µiR(m, L) = 0 whenever m /∈ Supp(L).
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By Matlis duality, HomR̂m(Am,ER(R/m)) is a noetherian R̂m-module and hence

a noetherian R̂b module. Therefore HomR(A, J ·) is a complex of noetherian R̂b-

modules. (Also, the differentials in HomR(A, J ·) are R̂b-linear.) Thus, the subquotient

ExtiR(A,L) is a noetherian R̂b-module by Lemma 2.1.23 (2).

Corollary 3.2.2. Let A be an artinian R-module and M a mini-max R-module. Let

F be a finite subset of m-Spec(R) containing Supp(A) ∩ Supp(M). Let b = ∩m∈Fm.

Then ExtiR(A,M) is a noetherian R̂b-module.

Theorem 3.2.3. Let A and L be R-modules so that A is artinian. For any i > 0 with

βRi (m, L) <∞ for all m ∈ Supp(A) ∩ Supp(L), the module TorRi (A,L) is artinian.

Proof. Since A is artinian, Lemma 3.1.11 implies that SuppR(A) is finite. Thus, the

inclusion

SuppR(TorRi (A,L)) ⊆ SuppR(A) ∩ SuppR(L) (3.4)

implies that SuppR(TorRi (A,L)) is finite. For each p ∈ SuppR(TorRi (A,L)), the Rp-

module Ap is artinian. Furthermore, we have β
Rp

i (Lp) = βRi (p, L) < ∞ by Lemma

3.1.19. Hence by [17, Theorem 3.1], the Rp-module Tor
Rp

i (Ap, Lp) ∼= TorRi (A,L)p is

artinian. Thus, Lemma 3.1.12 implies that TorRi (A,L) is artinian.

Corollary 3.2.4. Let A be an artinian R-module and M a mini-max R-module. Then

for all i > 0, the R-module TorRi (A,M) is artinian.

Theorem 3.2.5. Let M and M ′ be mini-max R-modules. Then for all i > 0, the

R-module TorRi (M,M ′) is mini-max.

Proof. LetN be a noetherian submodule ofM such that the quotientM/N is artinian.

Lemma 2.1.23(3) and Corollary 3.2.4 imply that TorRi (N,M ′) and TorRi (A,M ′) are

mini-max. Thus, TorRi (M,M ′) is mini-max by Lemma 2.1.24(2).
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Proposition 3.2.6. Let A be an artinian R-module and M a mini-max R-module.

Let F be a finite subset of m-Spec(R) containing Supp(A) ∩ Supp(M). Let b =

∩m∈Fm. Then ExtiR(M,A) is a Matlis reflexive R̂b-module.

Proof. Fix a noetherian submoduleN ⊆M such thatM/N is artinian. Lemma 2.1.23(3)

implies that ExtiR(N,A) is an artinian R-module. Since N is noetherian, we have

Supp(ExtiR(N,A)) ⊆ SuppR(N) ∩ SuppR(A) ⊆ SuppR(M) ∩ SuppR(A) ⊆ F ,

so we conclude from Lemma 3.1.31 that ExtiR(N,A) is an artinian R̂b-module. Corol-

lary 3.2.2 implies that ExtiR(M/N,A) is a noetherian R̂b-module. Since F is a finite

set of maximal ideals, the ring R̂b is semi-local and complete. Hence Fact 3.1.10

implies that the R̂b-modules ExtiR(N,A) and ExtiR(M/N,A) are Matlis reflexive.

Therefore ExtiR(M,A) is a Matlis reflexive R̂b-module by Lemma 2.1.24(2).

Theorem 3.2.7. Let M and M ′ be mini-max R-modules.

1. If the quotient ring R/(AnnR (M) + AnnR(M ′)) is semi-local and complete then

TorRi (M,M ′) is a Matlis reflexive R-module.

2. If R/(AnnR (M) + AnnR(M ′)) is artinian then TorRi (M,M ′) has finite length.

Proof. (1) Since AnnR (M) + AnnR (M ′) ⊆ AnnR (TorRi (M,M ′)) we get an epimor-

phism:

R/(AnnR (M) + AnnR (M ′))� R/AnnR (TorRi (M,M ′)).

ThereforeR/AnnR (TorRi (M,M ′)) is semi-local and complete. It follows from Fact 3.1.10

and Theorem 3.2.5 that TorRi (M,M ′) is Matlis reflexive over R.

(2) Part (1) and Lemma 3.1.33 imply that TorRi (M,M ′) has finite length.
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Corollary 3.2.8. Let M be a mini-max R-module and M ′ a Matlis reflexive R-

module. Then TorRi (M,M ′) is a Matlis reflexive R-module.

Theorem 3.2.9. Let M and M ′ be mini-max R-modules.

1. If the quotient ring R/(AnnR (M)+AnnR(M ′)) is semi-local and complete, then

ExtiR(M,M ′) is a Matlis reflexive R-module.

2. If R/(AnnR (M) + AnnR(M ′)) is artinian then ExtiR(M,M ′) has finite length.

Proof. (1) Fix a noetherian submodule N ⊆ M such that M/N is artinian. The

inclusions

AnnR(M) + AnnR(M ′) ⊆ AnnR(N) + AnnR(M ′) ⊆ AnnR(ExtiR(N,M ′))

provide an epimorphism:

R/(AnnR(M) + AnnR(M ′))� R/AnnR(ExtiR(N,M ′)).

Therefore R/AnnR(ExtiR(N,M ′)) is semi-local and complete. Thus, Fact 3.1.10 and

Lemma 2.1.23 (3) imply that ExtiR(N,M ′) is Matlis reflexive over R.

Similarly, since

AnnR(M) + AnnR(M ′) ⊆ AnnR(M/N) + AnnR(M ′) ⊆ AnnR(ExtiR(M/N,M ′)),

it follows that R/AnnR(ExtiR(M/N,M ′)) is semi-local and complete. Let

b = ∩m∈Supp (ExtiR(M/N,M ′))m and a = ∩m∈Supp (M/N)∩Supp (M ′)m.
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Then a ⊆ b. Corollary 3.2.2 implies that ExtiR(M/N,M ′) is mini-max as an R̂a-

module, so it is mini-max as an R-module by Lemma 3.1.32. Using Fact 3.1.10, we

conclude that ExtiR(M/N,M ′) is Matlis reflexive over R. Thus, Lemma 2.1.24(2)

implies that ExtiR(M,M ′) is also Matlis reflexive over R.

(2) Part (1) and Lemma 3.1.33 imply that ExtiR(M,M ′) has finite length.

Corollary 3.2.10. Let M be a mini-max R-module and M ′ a Matlis reflexive R-

module. Then ExtiR(M,M ′) and ExtiR(M ′,M) are Matlis reflexive R-modules.

Proposition 3.2.11. Let M be a mini-max R-module and N ′ a noetherian R-module

such that R/(AnnR(M) + AnnR(N ′)) is semi-local and complete. Let F be a finite

subset of m-SpecR containing the finite set m-Spec(R) ∩ Supp(M) ∩ Supp(N ′). Let

b = ∩m∈Fm. Then ExtiR(M,N ′) is noetherian as an R-module and as an R̂b-module.

Proof. The set m-Spec(R) ∩ SuppR(M) ∩ SuppR(N ′) is finite, because the quotient

R/(AnnR(M) + AnnR(N ′)) is semi-local. Let N be a noetherian submodule of M

such that M/N is artinian. Lemma 2.1.23(3) implies that ExtiR(N,N ′) is a noetherian

R-module. Since m-Spec(R) ∩ SuppR(M/N) ∩ SuppR(N ′) ⊆ F , it follows by Corol-

lary 3.2.2 that ExtiR(M/N,N ′) is a noetherian R̂b-module. AsR/AnnR(ExtiR(M/N,N ′))

is semi-local and complete, Lemma 3.1.27(4) implies that ExtiR(M/N,N ′) is a noethe-

rianR-module. Therefore theR-module ExtiR(M,N ′) is also noetherian, by Lemma 2.1.24(2).

Since R/Ann(ExtiR(M,N ′)) is semi-local and complete, Lemma 3.1.27(4) implies that

ExtiR(M,N ′) is a noetherian R̂b-module.

3.3 Change of Rings Results for ExtiR(A,L)

Lemma 3.3.1. Let I be an injective R-module, and G be a finite subset of m-Spec(R).

Let b = ∩m∈Gm, V = R r ∪m∈Gm and U be a multiplicatively closed set contained in



74

V . Then the natural map Γb(I)→ Γb(U
−1I) is bijective.

Proof. It is straightforward to show that if p∩U = ∅, then U−1 ER(R/p) ∼= ER(R/p).

Also, if p ∩ U 6= ∅, then U−1 ER(R/p) = 0.

Write I =
⊕

p∈Spec(R) ER(R/p)(µp). From the previous paragraph, the localization

map ρ : I → U−1I is a split surjection with Ker(ρ) =
⊕

p∩U 6=∅ ER(R/p)(µp). Since ρ is

a split surjection, it follows that Γb(ρ) : Γb(I) → Γb(U
−1I) is a split surjection with

Ker(Γb(ρ)) =
⊕

p∩U 6=∅ Γb(ER(R/p))(µp). Thus, it remains to show that Γb(ER(R/p)) =

0 when p ∩ U 6= ∅.

Assume that p ∩ U 6= ∅. Then p ∩ V 6= ∅, so p * m for any m ∈ G. Since G is

a set of maximal ideals it follows that m * p for any m ∈ G and b = ∩m∈Gm * p.

Therefore Γb(ER(R/p)) = 0 and the result follows.

Lemma 3.3.2. Let I be an injective R-module and F be a finite subset of m-Spec(R).

Let b = ∩m∈Fm and let a be a proper ideal such that F ⊆ V (a). Then the natural

map Γb(I)→ Γb(R̂
a ⊗R I) is bijective.

Proof. By Lemma 2.1.4 (1) Γb(R̂
a⊗ER(R/m)) ∼= Γb(ER(R/m)) for all m ∈ F . Also for

all m ∈ m-Spec(R) and p ∈ Spec(R) with p 6= m we have that Γm(R̂a⊗RER(R/p)) = 0.

Therefore for all p /∈ F we have

Γb(R̂
a ⊗R ER(R/p)) =

⊕
m∈F Γm(R̂a ⊗R ER(R/p)) = 0 = Γb(ER(R/p)).

Theorem 3.3.3. Let A and L be R-modules such that A is artinian. Let F =

SuppR(A)∩SuppR(L). Let G be a finite set of maximal ideals containing F . Let a be

a proper ideal such that F ⊆ V (a). Let U ⊂ R be a multiplicatively closed set such
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that U ⊆ R� ∪m∈F m. Then

ExtiR(A,L) ∼= ExtiU−1R(U−1A,U−1L) ∼=
∏

m∈G ExtiRm
(Am, Lm)

∼= Exti
R̂a(Γa(A), R̂a ⊗R L) ∼=

∏
m∈G Exti

R̂m(Am, R̂
m ⊗R L).

Proof. Let I · be an injective resolution of L. Let b = ∩m∈Gm and let V = R� ∪m∈G

m. For all m /∈ F either Am = 0 or Γm(I ·) = 0. It follows that HomR(Am, I
·) ∼=

HomR(Am,Γm(I ·)) = 0 for all m /∈ F . Since SuppR(A) and G both contain F this

explains the third isomorphism in the next display.

HomR(A, I ·) ∼= HomR(
⊕

m∈SuppR(A) Am,Γa(I
·))

∼=
∏

m∈SuppR(A) HomR(Am, I
·)

∼=
∏

m∈G HomR(Am, I
·)

∼=
∏

m∈G HomR(Am,Γm(I ·))

∼=
∏

m∈G HomR(Am,Γm(I ·m))

∼=
∏

m∈G HomR(Am,HomRm(Rm, I
·
m))

∼=
∏

m∈G HomRm(Am ⊗R Rm, I
·
m)

∼=
∏

m∈G HomRm(Am, I
·
m)

The second, sixth and last steps are standard. The seventh step is from Hom-tensor

adjointness. The first, fourth and fifth steps come from Lemmas 3.1.25, 2.1.5(2) and

3.3.1 respectively. Taking cohomology we have ExtiR(A,L) ∼=
∏

m∈G ExtiRm
(Am, Lm).

We may assume G = {m ∈ SuppR(A)| m ∩ U = ∅}. Let b = ∩m∈Gm. Continuing
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from the third line in the previous display we get the first step in the next display.

HomR(A, I ·) ∼=
∏

m∈G HomR(Am, I
·)

∼= HomR(
⊕

m∈G Am, I
·)

∼= HomR(Γb(A), I ·)

∼= HomR(Γb(A),Γb(I
·))

∼= HomR(Γb(A),Γb(U
−1I ·))

∼= HomR(Γb(A), U−1I ·)

∼= HomR(U−1A,U−1I ·)

∼= HomR(U−1A,HomU−1R(U−1R,U−1I ·))

∼= HomU−1R(U−1A⊗R U−1R,U−1I ·)

∼= HomU−1R(U−1A,U−1I ·)

The second, eigth and last steps are standard. The ninth step is Hom-tensor ad-

jointness. Steps four and six are from Lemma 2.1.5 (2). Steps three, five and seven

are from Lemmas 3.1.24, 3.3.1 and 3.1.29 respectively. Taking cohomology we have

ExtiR(A,L) ∼= ExtiU−1R(U−1A,U−1L).

We may assume that G = V (a) ∩ Supp(A). Let b = ∩m∈Gm. Then the first four
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lines of the previous display hold so that we get the first step in the following display

HomR(A, I ·) ∼= HomR(Γb(A),Γb(I
·))

∼= HomR(Γb(A),Γb(R̂
a ⊗R I ·))

∼= HomR(Γb(A), R̂a ⊗R I ·)

∼= HomR(Γa(A), R̂a ⊗R I ·)

∼= HomR(Γa(A),HomR̂a(R̂a, R̂a ⊗R I ·))

∼= HomR̂a(Γa(A)⊗R R̂a, R̂a ⊗R I ·)

∼= HomR̂a(Γa(A), R̂a ⊗R I ·)

Step five is standard and step six is from Hom-tensor adjointness. Steps two and three

are from Lemmas 3.3.2 and 2.1.5 (2) respectively. Lastly steps steps four and seven are

from Lemma 3.1.28. Taking cohomology we have ExtiR(A,L) ∼= Exti
R̂a(ΓaA, R̂

a⊗RL).

The isomorphism ExtiRm
(Am, Lm) ∼= Exti

R̂m(Am, R̂
m⊗RmLm) is immediate from [17,

Lemma 4.2], which explains the final isomorphism in the Theorem.

Corollary 3.3.4. Let A and L be R-modules such that A is artinian. Let U ⊂ R be

a multiplicatively closed set and let a be a proper ideal of R. Then ExtiR(U−1A,L) ∼=

ExtiU−1R(U−1A,U−1L) and ExtiR(Γa(A), L) ∼= Exti
R̂a(Γa(A), R̂a ⊗R L)

Proof. This follows from Lemmas 3.1.28, 3.1.29 and Theoerem 3.3.3.

The following result shows that, when A is artinian and L is mini-max, the module

ExtiR(A,L) can be computed as an extension module over a semi-local complete ring

with a Matlis reflexive module in the first component and a noetherian module in

the second component. Alternatively, it can be computed as a finite coproduct of
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extension modules over complete local rings with Matlis reflexive modules in the first

component and noetherian modules in the second component.

Lemma 3.3.5. Let F be a finite subset of m-Spec(R). Set b = ∩m∈Fm and U =

Rr ∪m∈Fm. Then U−1ER ∼= ER̂b.

Proof. Fact 3.1.3 explains the second isomorphism in the next display:

U−1ER ∼=
⊕

m∈m-Spec(R) U
−1 ER(R/m) ∼=

⊕
m∈F ER(R/m) ∼= ER̂b .

The first isomorphism is by definition, and the third one is from Lemma 3.1.2.

Theorem 3.3.6. Let A be an artinian R-module and let M be a mini-max R-module.

Let F be a finite subset of m-Spec(R) containing SuppR(A) ∩ SuppR(M). Let b =

∩m∈Fm and let U = Rr ∪m∈Fm. Then

ExtiR(A,M) ∼= Exti
R̂b(HomR(M,U−1ER), (U−1A)∨) (3.5)

∼=
⊕

m∈F Exti
R̂m(HomR(M,ER(R/m)), (Am)∨). (3.6)

Note that HomR(M,U−1ER) ∼= (R̂b ⊗R M)∨(R̂b) is a Matlis reflexive R̂b-module and

(U−1A)∨ is a noetherian R̂b-module.

Proof. Lemma 3.1.30 implies that R̂b ⊗R M is mini-max over R̂b. Since R̂b is semi-

local and complete, Fact 3.1.10 shows that R̂b ⊗R M is Matlis reflexive over R̂b.

Theorem 3.3.3 implies that

ExtiR(A,M) ∼= Exti
R̂b(U

−1A, R̂b ⊗RM). (3.7)

Let F be a free resolution of U−1A over R̂b.
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Lemma 3.3.5 shows that U−1ER ∼= ER̂b . In particular U−1ER is injective over R̂b,

so the complex HomR̂b(F,U−1ER) is an injective resolution of HomR̂b(U−1A,U−1ER)

over R̂b. Thus, the isomorphism

Exti
R̂b(U

−1A, R̂b ⊗RM) ∼= Exti
R̂b(HomR(M,U−1ER), (U−1A)∨(R̂b)) (3.8)

follows from taking cohomology in the next sequence:

HomR̂b(F, R̂
b ⊗RM) ∼= HomR̂b(F,HomR̂b(HomR̂b(R̂

b ⊗RM,U−1ER), U−1ER))

∼= HomR̂b(HomR̂b(R̂
b ⊗RM,U−1ER),HomR̂b(F,U

−1ER))

∼= HomR̂b(HomR(M,HomR̂b(R̂
b, U−1ER)),HomR̂b(F,U

−1ER))

∼= HomR̂b(HomR(M,U−1ER),HomR̂b(F,U
−1ER)).

The first step is from the fact that R̂b ⊗RM is Matlis reflexive over R̂b. The second

and third steps follow by Hom-tensor adjointness, and the fourth step is standard.

Lemma 3.1.12(1) implies that U−1A is artinian over U−1R. It follows from

Lemma 3.1.22 that U−1A is torsion with respect to the Jacobson radical of U−1R. In

particular U−1A is b-torsion, so Lemma 3.1.23 shows that (U−1A)∨(R̂b) ∼= (U−1A)∨.

Combining this with (3.7) and (3.8), we have the isomorphism (3.5).

To verify (3.6), argue similarly, using the isomorphism

ExtiR(A,M) ∼=
⊕

m∈F Exti
R̂m(Am, R̂

m ⊗RM)

from Theorem 3.3.3.

The following result shows that extension functors applied to two artinian modules

over arbitrary noetherian rings can be computed as a finite direct sum of extension
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functors applied to pairs of noetherian modules over complete local rings.

Corollary 3.3.7. Let A and L be R-modules such that A is artinian and L is ei-

ther artinian or Matlis reflexive. Let F be a finite subset of m-Spec(R) containing

SuppR(A) ∩ SuppR(L). Setting b = ∩m∈Fm and U = Rr ∪m∈Fm, we have

ExtiR(A,L) ∼= Exti
R̂b((U

−1L)
∨
, (U−1A)

∨
) ∼=

⊕
m∈F Exti

R̂m((Lm)∨, (Am)∨).

Fact 3.3.8. Let L and L′ be R-modules, and fix an index i > 0. Then the following

diagram commutes where δL and δExtiR(L′,L) are the natural biduality maps

ExtiR(L′, L)
δ
Exti

R
(L′,L)

//

ExtiR(L′,δL)
��

ExtiR(L′, L)∨∨

(Θi
L′L)∨

��
ExtiR(L′, L∨∨)

∼= // TorRi (L′, L∨)∨.

The unlabeled isomorphism is from Remark 2.1.9, and Θi
L′L is from Definition 2.1.8.

Lemma 3.3.9. Let N and L be R-modules such that N is noetherian. Let m ∈

m-Spec(R) and fix an index i > 0. The map ExtiR(N, δL) : ExtiR(N,L)→ ExtiR(N,L∨∨)

is an injection. If µiR(m;L) <∞, then ExtiR(R/m, δL) is an isomorphism.

Proof. Remark 2.1.9 implies that

Θi
NL : TorRi (N,L∨)→ ExtiR(N,L)∨

is an isomorphism. Hence (Θi
NL)∨ is also an isomorphism. The map

δExtiR(N,L) : ExtiR(N,L)→ ExtiR(N,L)∨∨



81

is an injection. Using Fact 3.3.8 with L′ = N , we conclude that ExtiR(N, δL) is an

injection.

The assumption µiR(m, L) <∞ implies that ExtiR(R/m, L) is a finite dimensional

R/m-vector space, so it is Matlis reflexive overR; hence δExtiR(R/m,L) is an isomorphism.

Again, using Fact 3.3.8 we conclude that ExtiR(R/m, δL) is an isomorphism, as desired.

Lemma 3.3.10. Let A and L be R-modules such that A is artinian. Fix an index

i > 0 such that the Bass numbers µiR(m;L) are finite for all m ∈ SuppR(A). Then

the map

ExtiR(A, δL) : ExtiR(A,L)→ ExtiR(A,L∨∨)

is an isomorphism, and the map

Exti+1
R (A, δL) : Exti+1

R (A,L)→ Exti+1
R (A,L∨∨)

is an injection.

Proof. Since A ∼=
⊕

m∈Supp(A) Am is a finite direct sum, the maps ExtiR(A, δL) decom-

poses into a direct sum of maps
⊕

m∈Supp(A) ExtiR(Am, δL). The proof that each of

these maps are isomorphisms parallels that of the local case, Lemma 2.4.7. The same

reasoning also shows that Exti+1
R (A, δL) is an injection.

Lemma 3.3.11. Let A, I and L be R-modules such that A is artinian and I is

injective. Let a be an ideal contained in b = ∩m∈Supp(A)∩Supp(I)m. Then

A⊗R HomR(I, L) ∼= A⊗R HomR(Γa(I), L).

Proof. There is an isomorphism I ∼=
⊕

p∈SuppR(I) ER(R/p)(µp) where {µp}p∈Spec(R) is
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a sequence of sets. If p ∈ SuppR(I)� Supp(A), then ER(R/p)(µp) is an Rp-module;

hence so is HomR(ER(R/p)(µp), L′). In this case since b * p Fact 3.1.8 explains the

second step in the following display:

HomR(
⊕

p∈SuppR(I)rSuppR(A) ER(R/p)(µp), L)

=
∏

p∈SuppR(I)rSuppR(A) HomR(ER(R/p)(µp), L)

=
∏

p∈SuppR(I)rSuppR(A) bHomR(ER(R/p)(µp), L)

=b
∏

p∈SuppR(I)rSuppR(A) HomR(ER(R/p)(µp), L)

The first step above is standard and the third step follows from the fact b is finitely

generated. Let X :=
⊕

p∈SuppR(I)rSuppR(A) ER(R/m)(µm). Since A is b-torsion it follows

from Lemma 3.1.6 that A⊗R HomR(X,L) = 0. Also we have that

I ∼= (
⊕

m∈SuppR(A)∩SuppR(I) ER(R/m)(µm))⊕X ∼= Γb(I)⊕X.

Therefore

A⊗R HomR(I, L) ∼= A⊗R HomR(Γb(I)⊕X,L) ∼= A⊗R HomR(Γb(I), L).

Since Γa(I) is injective and Γb(Γa(I)) = Γb(I) a similar argument shows that A ⊗R

HomR(Γa(I), L) ∼= A⊗R HomR(Γb(I), L) and the result follows.

Lemma 3.3.12. Let A and L be R-modules such that A is artinian. Let a be an ideal

contained in ∩m∈Supp(A)∩Supp(L)m. For each index i > 0, there is an isomorphism

TorRi (A,HomR(L,ER̂a)) ∼= TorRi (A,L∨).
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Proof. Lemma 3.3.11 explains the first and fourth steps in the following display:

A⊗R HomR(I, ER) ∼= A⊗R HomR(Γa(I), ER)

∼= A⊗R HomR(Γa(I),Γa(ER))

∼= A⊗R HomR(Γa(I), ER̂a)

∼= A⊗R HomR(I, ER̂a).

The second and third isomorphism are from Lemmas 2.1.5 (2) and 3.1.5 respectively.

Since ER is injective, the complex HomR(I, ER) is a flat resolution of HomR(L,ER) =

L∨; see [12, Theorem 3.2.16]. Similarly, the complex HomR(I, ER̂a) is a flat resolution

of HomR(L,ER̂a). Therefore the result follows by taking homology.

Theorem 3.3.13. Let A and L be R-modules such that A is artinian. Let F be a

finite set of maximal ideals containing SuppR(A) ∩ SuppR(L), and set b = ∩m∈Fm.

Fix an index i > 0 such that the Bass numbers µiR(m;L) are finite for all m ∈

SuppR(A) ∩ SuppR(L). Then we have the following:

1. There is an isomorphism ExtiR(A,L)∨(R̂b) ∼= TorRi (A,L∨); and

2. If R/(AnnR(A) + AnnR(L)) is semi-local and complete, then Θi
AL provides an

isomorphism ExtiR(A,L)∨ ∼= TorRi (A,L∨).

Proof. (2) Assume that R/(AnnR(A) + AnnR(L)) is semi-local and complete. Theo-

rem 3.2.9(2) and Lemma 3.3.10 show that the maps

δExtiR(A,L) : ExtiR(A,L)→ ExtiR(A,L)∨∨

ExtiR(A, δL) : ExtiR(A,L)→ ExtiR(A,L∨∨)
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are isomorphisms. Fact 3.3.8 implies that (Θi
AL)∨ is an isomorphism, so we conclude

that Θi
AL is also an isomorphism.

(1) Set U = Rr ∪m∈Fm. We first verify that

TorR̂
b

i (U−1A, (R̂b ⊗R L)∨(R̂b)) ∼= TorRi (A, (R̂b ⊗R L)∨(R̂b)). (3.9)

For this, let P be a projective resolution of A over R. Since R̂b is flat over R,

the complex R̂b ⊗R P is a projective resolution of R̂b ⊗R A ∼= U−1A over R̂b; see

Lemmas 3.1.28 and 3.1.29. Thus, we have

(R̂b ⊗R P )⊗R̂b (R̂b ⊗R L)∨(R̂b) ∼= P ⊗R (R̂b ⊗R L)∨(R̂b)

and the isomorphism (3.9) follows by taking homology.

Theorem 3.3.3 explains the first step below:

ExtiR(A,L)∨(R̂b) ∼= Exti
R̂b(U

−1A, R̂b ⊗R L)∨(R̂b)

∼= TorR̂
b

i (U−1A, (R̂b ⊗R L)∨(R̂b))

∼= TorRi (A, (R̂b ⊗R L)∨(R̂b))

∼= TorRi (A,HomR(L,ER̂b))

∼= TorRi (A,L∨).

The second step is from part (2); this uses the fact that R̂b is semi-local and complete,

and the equality µi
R̂b

(mR̂b; R̂b ⊗R L) = µiR(m;L) < ∞ for all m ∈ SuppR(A) ∩

SuppR(L). The third step is from (3.9), and the fourth step is from Hom-tensor

adjointness. The fifth step is from Lemma 3.3.12.

Corollary 3.3.14. Let A and M be R-modules such that A is artinian and M is
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mini-max. Let F be a finite set of maximal ideals containing SuppR(A)∩SuppR(M).

Let b = ∩m∈Fm. For each index i > 0, one has ExtiR(A,M)∨(R̂b) ∼= TorRi (A,M∨).

Theorem 3.3.15. Let M and L be R-modules such that M is mini-max and the

quotient R/(AnnR(M) + AnnR(L)) is semi-local and complete. Fix an index i > 0

such that µiR(m;L) and µi+1
R (m;L) are finite for all m ∈ SuppR(M) ∩ SuppR(L) ∩

m-Spec(R). Then Θi
ML is an isomorphism, so

ExtiR(M,L)∨ ∼= TorRi (M,L∨).

Proof. Since M is mini-max over R, there is an exact sequence of R-modules homo-

morphisms 0→ N →M → A→ 0 such that N is noetherian and A is artinian. The

long exact sequences associated to TorR(−, L∨) and ExtR(−, L) fit into the following

commutative diagram:

· · · // TorRi (N,L∨) //

ΘiNL
��

TorRi (M,L∨) //

ΘiML
��

TorRi (A,L∨)

ΘiAL
��

// · · ·

· · · // ExtiR(N,L)∨ // ExtiR(M,L)∨ // ExtiR(A,L)∨ // · · · .

By Remark 2.1.9, the maps Θi
NL and Θi−1

NL are isomorphisms. Theorem 3.3.13(2)

implies that Θi
AL and Θi+1

AL are isomorphisms. Hence the map Θi
ML is an isomorphism

by the Five Lemma.

Corollary 3.3.16. Let M , M ′ and L be R-modules such that M is Matlis reflexive

and M ′ is mini-max. Then for all i > 0, Θi
M ′M is an isomorphism, so

ExtiR(M ′,M)∨ ∼= TorRi (M ′,M∨)

Fix an index i > 0 such that µiR(m;L) and µi+1
R (m;L) are finite for all m ∈ SuppR(M)∩
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SuppR(L) ∩m-Spec(R). Then Θi
ML is an isomorphism, so

ExtiR(M,L)∨ ∼= TorRi (M,L∨).

Corollary 3.3.17. Let M and M ′ be mini-max R-modules such that the quotient

R/(AnnR(M) + AnnR(M ′)) is semi-local and complete. Let F be a finite set of max-

imal ideals containing SuppR(M) ∩ SuppR(M ′) ∩ m-Spec(R), and set b = ∩m∈Fm.

Then for all i > 0 the map Θi
MM ′ is an isomorphism, so

ExtiR(M,M ′)∨(R̂b) ∼= ExtiR(M,M ′)∨ ∼= TorRi (M,M ′∨).

Proof. Theorem 3.2.9(1) implies that ExtiR(M,M ′) is Matlis reflexive over R. There-

fore by Lemma 3.1.27(2) it follows that ExtiR(M,M ′)∨ ∼= ExtiR(M,M ′)∨(R̂b). Also

it follows from Theorem 3.3.15 that Θi
MM ′ is an isomorphism for all i > 0; hence

ExtiR(M,M ′)∨ ∼= TorRi (M,M ′∨).

3.4 Length of HomR(L,L
′) and L⊗R L′

Fact 3.4.1. Let A be an artinian R-module, and let b be an ideal of R. Fix an integer

t > 0 such that btA = bt+1A. Given a b-torsion R-module L, one has

A⊗R L ∼= (A/btA)⊗R L ∼= (A/btA)⊗R (L/btL).

This is proved as in Lemma 3.1.6 or [17, Lemma 3.5].

Lemma 3.4.2. Let a be a finite intersection of maximal ideals. Let A and L be R-

modules such that A is artinian and L is a-torsion. Let F = SuppR(A) ∩ SuppR(L)

and b be an ideal contained in ∩m∈Fm. Choose t > 0 such that btA = bt+1A. For
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each m ∈ F choose αm > 0 such that either mαmA = mαm+1A or mαmL = mαm+1L.

Then there are isomorphisms

A⊗R L ∼= (A/btA)⊗R (L/btL)

∼=
⊕

m∈F(A/mαmA)⊗R (L/mαmL)

Proof. The isomorphism A⊗RL ∼=
⊕

m∈F Am⊗RLm follows from Lemma 3.1.24 along

with the fact that Am ⊗R Ln = 0 for m 6= n ∈ m-Spec(R). Since mαmA = mαm+1A

implies mαmAm = mαm+1Am and we have A/mαmA ∼= Am/m
αmAm the isomorphism

A⊗R A ∼=
⊕

m∈F(A/mαmA)⊗R (L/mαmL) follows from Fact 3.4.1.

Since btA = bt+1A we have btAm = bt+1Am. By Fact 3.4.1 we have A ⊗R L ∼=⊕
m∈F Am/b

tAm ⊗R Lm/b
tL. Since Am/b

tAm ⊗R Ln/b
tLn = 0 when either m 6= n or

m = n /∈ F we get the first step in the next display:

A⊗R L ∼=
⊕

m∈Supp(A)

⊕
n∈Supp(L) Am/b

tAm ⊗R Ln/b
tLn

∼= A/btA⊗R L/btL.

The second step above follows from Lemma 3.1.24.

Theorem 3.4.3. Let a be a finite intersection of maximal ideals. Let A and L be

R-modules such that A is artinian and L is a-torsion. Let F = SuppR(A)∩SuppR(L)

and b be an ideal contained in ∩m∈Fm. Choose t > 0 such that btA = bt+1A. For

each m ∈ F choose αm > 0 such that either mαmA = mαm+1A or mαmL = mαm+1L.
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Then there are inequalities

λR(A⊗R L) 6
∑

m∈F min
{
λR (A/mαmA) βR0 (m, L), βR0 (m, A)λR (L/mαmL)

}
6 λR

(
A/btA

)
max{βR0 (m, L)| m ∈ F}

6 λR
(
A/btA

)
λR(L/bL).

Here we use the convention 0 · ∞ = 0.

Proof. By Lemma 3.1.24 we get the first step in the next display:

A⊗R L ∼=
⊕

m∈Supp(A)

⊕
n∈Supp(L)Am ⊗R Ln

∼=
⊕

m∈F Am ⊗R Lm

The second step above follows from that fact that Am ⊗R Ln = 0 when either m 6= n

or m = n /∈ F . This explains the first step in the next display:

λR(A⊗R L) =
∑

m∈F λR(Am ⊗R Lm)

6
∑

m∈F min{λR(A/mαmA)βR0 (Lm), βR0 (Am)λR(L/mαmL)}

Since a tensor of m-torsion modules is the same whether the tensor is over R or R̂m

the second step in the last display follows from Theorem 2.3.8 and Lemma 2.1.3 (1).

Since btA = bt+1A it follows that btAm = bt+1Am for all m ∈ m-Spec(R). Notice

that btAm = bt+αmAm ⊆ mt+αmAm = mαmAm. This explains the second step in the

next display:

λR(A/btA) >
∑

m∈F λR(Am/b
tAm)

>
∑

m∈F λR(Am/m
αmAm)

=
∑

m∈F λR(A/mαmA)
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Also we have the following:

λR(L/bL) > λR(L/(∩m∈Fm)L)

=
∑

m∈F λR(L/mL)

=
∑

m∈F β
R
0 (m, L).

The first step in the last display follows from the assumption b ⊆ ∩m∈Fm. The

second step follows from the Chinese remainder Theorem. It is elementary to show

that βR0 (m, L) = λR(L/mL) and the third step follows. The inequlities in the last two

displays imply the last two inequlities in the Theorem; hence the result follows.

From Theorem 3.4.3 one easily recovers [13, Proposition 6.1]

Corollary 3.4.4. If A and A′ be artinian R-modules, then λR(A⊗R A′) <∞.

The next result provides conditions equivalent to the vanishing of A⊗R A′.

Proposition 3.4.5. Let A and A′ be artinian R-modules. Let

F = Supp(A) ∩ Supp(A′) and b = ∩m∈Fm. Then the following are equivalent:

1. A⊗R A′ = 0;

2. Supp(A/bA) ∩ Supp(A′/bA′) = ∅;

3. For all m ∈ F , either A = mA or A′ = mA′; and

4. For all m ∈ F , either gradeR(m;A∨) > 0 or grade(m;A′∨) > 0.
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Proof. The equivalence (3)⇐⇒ (4) follows from the next sequence of equivalences:

mA = A ⇐⇒ R/m⊗R A = 0

⇐⇒ HomR(R/m⊗R A,E) = 0

⇐⇒ HomR(R/m,HomR(A,E)) = 0

⇐⇒ gradeR(m; HomR(A,E)) > 0

(1) =⇒ (3): Assume that A ⊗ A′ = 0, and let m ∈ SuppR(A) ∩ SuppR(A′). The

natural map R→ R/m yields the surjection in the next sequence

A⊗R A′ � R/m⊗R (A⊗R A′) ∼= (R/m⊗R A)⊗R/m (R/m⊗R A′)

∼= (A/mA)⊗R/m (A′/mA′).

The isomorphisms are standard. Hence we have (A/mA) ⊗R/m (A′/mA′) = 0. Since

A/mA and A′/mA′ are vector spaces over R/m, it follows that either A/mA = 0 or

A′/mA′ = 0, as desired.

(3) =⇒ (1): Assume that for each m ∈ SuppR(A) ∩ SuppR(A′), either A = mA or

A′ = mA′. Then by Lemma 3.4.2

A⊗R A′ ∼=
⊕

m∈F(Am/m
0Am)⊗R (A′m/m

0A′m) = 0.

(3) =⇒ (2): Assume that for each m ∈ F , either A = mA or A′ = mA′. In general

for n 6= m ∈ m-Spec(R) we have nAm = Am. Let m ∈ F and suppose that A = mA.

Then Am = mAm =
∏

n∈F nAm = bAm. So (A/bA)m = Am/bAm = Am/mAm = 0.

Thus m 6∈ Supp(A/bA). Since Supp(A/bA) ∩ Supp(A′/bA′) ⊆ Supp(A) ∩ Supp(A′)

it follows that Supp(A/bA) ∩ Supp(A′/bA′) = ∅.
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(2) =⇒ (3): Assume that Supp(A/bA)∩Supp(A′/bA′) = ∅. Let m ∈ F . Without

loss of generality suppose m /∈ Supp(A/bA). Therefore 0 = (A/bA)m = Am/bAm =

Am/mAm; hence Am = mAm. Since A ∼=
⊕

n∈Supp(A) An and An = mAn for all maximal

ideals n 6= m it follows that A = mA.

Proposition 3.4.6. Let A and L be R-modules such that A is artinian. Let F =

{m ∈ Supp(A)| (0 :L m) 6= 0}. Let a be an ideal contained in b = ∩m∈Fm. Then

HomR(A,L) ∼= HomR(Γa(A),Γa(L)) ∼=
⊕

m∈F HomR(Am,Γm(L))

If in addition λR(0 :L b) <∞ then

HomR(A,L) ∼= HomR̂b(Γb(L)∨,Γa(A)∨) ∼=
⊕

m∈F HomR̂m(Γm(L)∨, A∨m).

Note that Γb(L)∨ and Γb(A)∨ are noetherian R̂b-modules while Γm(L)∨ and A∨m are

noetherian R̂m-modules.

Proof. The first sequence of isomorphisms above follows from We get the first step

and last step in the next display follow from Lemma 3.1.24 (2) and the second step

is from Lemma 2.1.5 (2).

HomR(A,L) ∼=
⊕

m∈Supp(A) HomR(Am, L)

∼=
⊕

m∈Supp(A) HomR(Am,Γm(L))

∼=
⊕

m∈F HomR(Am,Γm(L))

∼=
⊕

m∈F
⊕

n∈F HomR(Am,Γn(L))

∼= HomR(Γb(A),Γb(L))

The third step above follows from the fact that for all maximal ideals m /∈ F either
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Am = 0 or Γm(L) = 0. The fourth step follows from the fact that for m 6= n ∈

m-Spec(R) we have HomR(Am,Γn(L)) = HomR(Am,Γm+n(L)) = 0. Similarly since

Γb(A) = Γb(Γa(A)) and Γb(L) = Γb(Γa(L)) it follows that HomR(Γa(A),Γa(L)) ∼=

HomR(Γb(A),Γb(L)) ∼= HomR(A,L).

Assume that λR(0 :L b) < ∞. Since (0 :L b) ∼=
⊕

m∈F(0 :L m) it follows that

E(Γm(L)) is a finite direct sum of copies of E(R/m) for all m ∈ F . Hence Γb(L) is

artinian and so is Γm(L) for all m ∈ F . The isomorphisms

HomR(A,L) ∼= HomR̂b(Γb(L)∨, A∨u ) ∼=
⊕

m∈F HomR̂m(Γm(L)∨, A∨m).

follow from Corollary 3.3.7. The note about the modules being noetherian over the

rings R̂b and R̂m follows from Lemma 2.1.5 (1).

Proposition 3.4.7. Let A be an artinian R-module and let L be an R-module. Let

F = {m ∈ Supp(A)| (0 :L m) 6= 0} and b = ∩m∈Fm. Suppose there exists x > 0 such

that bxΓb(L) = 0. Choose y > 0 such that byA = by+1A. Let n = min{x, y}. For all

m ∈ F choose αm > 0 such that either mαmA = mαm+1A or mαmΓm(L) = 0. Then

HomR(A,L) ∼=
⊕

m∈F HomR(A/mαmA, (0 :L mαm)) ∼= HomR(A/bnA, (0 :L bn))
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Proof. The first step in the following display is from Proposition 3.4.6:

HomR(A,L) ∼= HomR(Γb(A),Γb(L))

∼= HomR(Γb(A)/bxΓb(A),Γb(L))

∼= HomR(A/bxA,Γb(L))

∼= HomR(A/bnA,Γb(L))

∼= HomR(A/bnA, (0 :L bn)).

The second step follows from the assumption bxΓb(L) = 0. The third step follows by

noticing that Γb(A) =
⊕

m∈F Am and bAm = Am for all m ∈ m-Spec(R)�F .

For the fourth step, we need to show that mnA = mxA. If n = x, this is clear. If

n 6= x, then n = y < x. From the assumption byA = by+1A it follows that mnA =

myA = mxA. The last step is a consequence of the fact that bn ∈ Ann(A/bnA).

Since bxΓb(L) = 0 it follows that mxΓm(L) = 0 for all m ∈ F . A similar sequence of

isomorphisms to the one above shows the first isomorphism in the Proposition and

the result follows.

Proposition 3.4.8. Let A be an artinian R-module and let L be an R-module. Let

F = {m ∈ Supp(A)| (0 :L m) 6= 0} and b = ∩m∈Fm. Suppose there exists x > 0 such

that bxΓb(L) = 0. Choose y > 0 such that byA = by+1A. Let n = min{x, y}. For all

m ∈ F choose αm > 0 such that either mαmA = mαm+1A or mαmΓm(L) = 0. Then

λR(HomR(A,L)) 6
∑

m∈F λR(A/mA)λR(0 :L mαm)

max{λR(A/mA)| m ∈ F}λR(0 :L bn)

6 λR(A/bA)λR(0 :L bn).
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Here, we follow the convention 0 · ∞ = 0.

Proof. An inductive argument on λ(A/m) and λ(0 :L mαm) shows that

λR HomR(A/mαmA, (0 :L mαm)) 6 λR(A/mA)λR(0 :L mαm)

Therefore by Proposition 3.4.7 and the additivity of length we get the first inequality

in the proposition.

By the Chinese remainder Theorem A/bA ∼=
⊕

m∈F A/mA. Similarly, Γb(L) ∼=⊕
m∈F Γm(L). From these isomorphisms we deduce that n > max{αm| m ∈ F} and

that (0 :L bn) =
⊕

m∈F(0 :L mn). From the injections (0 :L mαm) ↪→ (0 :L mn) and

the additivity of length of direct sums we conclude that

λR(A/bA) =
∑

m∈F λR(A/mA) and λR(0 :L bz) >
∑

m∈F λR(0 :L mαm).

The last two inequalities in the proposition follow.

Corollary 3.4.9. Let A and N be R-modules such that A is artinian and N is

noetherian. Then λR(HomR(A,N)) <∞.

Definition 3.4.10. Given an R-module L we say that p ∈ Spec(R) is an attached

prime of L if there exists a submodule L′ of L such that p = AnnR(L/L′). We denote

by AttR(L) the set of attached primes of L.

Proposition 3.4.11. Let A and L be R-modules such that A is artinian. Let F =

{m ∈ Supp(A)| (0 :L m) 6= 0}. Let b = ∩m∈Fm and suppose that λR(0 :L b) < ∞
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(equivalently µ0
R(m, L) <∞ for all m ∈ F). Then

AssR̂b(HomR(A,L)) = AssR̂b(Γb(A)∨) ∩ SuppR̂b(Γb(L)∨)

= AttR̂b(Γb(A)) ∩ SuppR̂b(Γb(L)∨)

Proof. By Lemma 3.4.6 HomR(A,L) ∼= HomR̂b(Γb(L)∨,Γb(A)∨). Since Γb(L)∨ is a

noetherian R̂b-module we can apply a result from Bourbaki [7, IV 1.4 Proposition

10] to get the first equality in the Proposition above. Also by [24, Proposition 2.7]

AssR̂b(Γb(A)∨) = AttR̂b(Γb(A)∨)∨(R̂b)) = AttR̂b(Γb(A)).

Proposition 3.4.12. Let A and L be R-modules such that A is artinian. Let F =

{m ∈ Supp(A)| (0 :L m) 6= 0}. Let b = ∩m∈Fm and suppose that λR(0 :L b) < ∞.

Then the following conditions are equivalent:

1. HomR(A,L) = 0;

2. HomR(Γb(A),Γb(L)) = 0;

3. HomR̂b(Γb(L)∨,Γb(A)∨) = 0;

4. AnnR̂b(Γb(L))Γb(A) = Γb(A);

5. AnnR̂b(Γb(L)) contains an Γb(A)∨-regular element;

6. AssR̂b(Γb(A)∨) ∩ SuppR̂b(Γb(L)∨) = ∅; and

7. AttR̂b(Γb(A)) ∩ SuppR̂b(Γb(L)∨) = ∅.

Proof. Lemma 3.4.6 gives the equivalence of (1)-(3). Since Γb(L)∨ and Γb(A)∨ are

noetherian R̂b-module the equivalence of (3) and (5) is standard; see [9, Proposition
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1.2.3]. Let I := AnnR̂b(Γb(L)). The isomorphism Γb(A)∨ ∼= Γb(A)∨(R̂b) along with

Lemma 2.1.13 (3) gives the equivalence of (4) and (5). The equivalence of (3), (6) and

(7) follows from Proposition 3.4.11 and the fact that the R̂b-module HomR(A,L) = 0

iff AssR̂b(HomR(A,L)) = ∅.
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Chapter 4

Asymptotic Behavior of

Dimensions of Syzygy Modules

The results in this chapter are joint work with K. Beck. Throughout this chapter let

R be a commutative (noetherian) local ring with maximal ideal m and residue field

k := R/m. Let M be a non-zero finitely generated R-module with length λ(M). The

nth Betti number of M is given by βn(M) := dimk(TorRn (k,M)). A minimal free

resolution of M then has the form

· · · δ3 // Rβ2(M) δ2 // Rβ1(M) δ1 // Rβ0(M) δ0 //M
δ−1 // 0 .

The nth syzygy module of M is Ωn(M) := Im(δn) = Ker(δn−1). In particular

Ω0(M) = M . Recall that Min(M) denotes the set of minimal elements of Supp(M).

The projective dimension of M is given by pd(M) := inf{n| βn(M) = 0}. Given an

ideal a ⊂ R the ith local cohomology functor with respect to a is denoted Hi
a(−) and

is defined by Hi
a(M) = Hi(Γa(I)), where I is an injective resolution of M , and Hi(−)

is the ith homology functor. In particular, the functor Hi
a(−) are the right derived
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functors of the functor Γa(−). For background on local cohomology see [16].

The asymptotic behavior of the depths of syzygy modules is known. If pd(M) =

∞, then depth(Ωn(M)) > depth(R) for n > max{0, depth(R)− depth(M)}, with at

most one strict inequality at either n = 0 or n = depth(M)− depth(R) + 1; see [23].

However, the asymptotic behavior of dim(Ωn(M)) is not known in general. Many of

our results are motivated by trying to answer the following open question.

Question 4.1. Is dim(Ωn(M)) constant for n� 0?

Several instances in which this question is known to have an affirmative answer

are given in [11, Remark 5.2].

We prove new instances in which Question 4.1 has an affirmative answer. All

of our results are for modules whose Betti numbers are eventually non-decreasing.

Therefore finding an affirmative answer to the following open question first asked by

L. Avramov would improve our results.

Question 4.2. [3] Are the Betti numbers of a finitely generated module over a local

ring always eventually non-decreasing?

In [3] and [10] several instances are given for which this question has an affirmative

answer.

Whenever the Betti numbers of a module are eventually strictly increasing it is

known that the the dimension of a sufficiently high syzygy will have the dimension

of the ring.

Remark 4.3. If βi(M) > βi−1(M) for some i > 0, then Supp(Ωi+1(M)) = Spec(R);

hence dim(Ωi+1(M)) = dim(R).

Proof. We prove the contrapositive. Suppose Supp(ΩR
i+1(M)) 6= Spec(R). Then,

there exist a minimal prime p such that ΩR
i+1(M)p = 0. Let n = λRp(Rp). Localizing
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the exact sequence 0 → ΩR
i+1(M) → Rβi(M) → Rβi−1(M) at p we obtain an injection

R
βi(M)
p → R

βi−1(M)
p from an module of length nβi(M) to a module of length nβi−1(M).

It follows that βi 6 βi−1.

Lemma 4.4. Let n be a positive integer. Suppose that Supp(Ω2n(M)) 6= Spec(R) and

that β0(M) 6 β1(M) 6 . . . 6 β2n−1(M). Then we have the following:

1. β2i(M) = β2i+1(M) for i = 0, . . . , n− 1;

2. Supp(Ω2n(M)) ⊆ Supp(Ω2n−2(M)) ⊆ . . . ⊆ Supp(Ω2(M)) ⊆ Supp(M); and

3. Supp(Ω2n(M)) ∩Min(R) = Supp(M) ∩Min(R).

Proof. Choose p ∈ Min(R)� Supp(Ω2n(M)). Localizing part of a minimal free reso-

lution of M at p, we get an exact sequence of finite-length Rp-modules:

0 // R
β2n−1(M)
p

φ2n−1 // R
β2n−2(M)
p

φ2n−2 // · · · φ1 // R
β0(M)
p

φ0 //Mp
// 0 .

Since φ2n−1 is an injection, λ(R
β2n−2(M)
p ) > λ(R

β2n−1(M)
p ); hence β2n−2(M) > β2n−1(M).

It follows that β2n−2(M) = β2n−1(M) and, since Rp has finite length, that φ2n−1 is

an isomorphism. Therefore φ2n−2 is the zero map. By an inductive argument it fol-

lows that β2i(M) = β2i+1(M), φ2i+1 is an isomorphism, and φ2i is the zero map for

i = 0, . . . n− 1.

Since φ0 is the zero map Mp = 0; hence p /∈ Supp(M). It follows that

Supp(M) ∩Min(R) ⊆ Supp(Ω2n(M)) ∩Min(R). (4.1)

Let q ∈ Spec(R)� Supp(Ω2i(M)) for some i with 0 6 i 6 n − 1. Localizing

the exact sequence 0 → Ω2i+2(M) → Rβ2i(M) → Rβ2i(M) → Ω2i(M) at q we ob-

tain an exact sequence 0 → Ω2i+2(M)q → R
β2i(M)
q → R

β2i(M)
q → 0. It follows that
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Ω2i+2(M)q = 0 and q /∈ Supp(Ω2i+2(M)). Thus Supp(Ω2i+2(M)) ⊆ Supp(Ω2i(M)) for

i = 0, . . . , n−1. In particular we have Supp(Ω2n(M))∩Min(R) ⊆ Supp(M)∩Min(R)

and statement (3) from the lemma follows from display (4.1).

Fact 4.5. Let B be a square n by n matrix with entries in R defining a map from Rn

to Rn. Then using invertible row and column operations one can transform B into a

matrix A = Im ⊕B′ where Im is the m by m identity matrix for some integer m and

B′ has entries in m. Indeed, the following row and column operations are invertible

and, hence each represent a change of basis for Rn:

1. swapping two rows or columns;

2. multiplying a row or column by a unit; and

3. adding a multiple of a row (column) to another row (column).

The proof of our original statement follows using standard techniques in linear algebra.

Theorem 4.6. Suppose that the sequence (βi(M))∞i=0 is eventually non-decreasing.

Then we have the following:

1. For all i� 0, Min(Ωi(M)) ⊆ Min(R);

2. The sequences (Supp(Ω2i(M)))∞i=0 and (Supp(Ω2i+1(M)))∞i=0 stabilize;

3. Either Supp(Ω2i(M)) = Spec(R) for all i � 0, or β2i(M) = β2i+1(M) for all

i� 0; and

4. Either Supp(Ω2i+1(M)) = Spec(R) for all i� 0, or β2i(M) = β2i−1(M) for all

i� 0.

Proof. We may assume that pd(M) = ∞. By replacing M by a sufficiently high

syzygy, one may assume that βi+1(M) > βi(M) for all i > 0. If Supp(Ω2i(M)) =
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Spec(R) for i � 0 then all of the statements hold for even (odd) syzygies, that is

assuming M was replaced by an even (odd) syzygy. Therefore we may suppose that

there exist infinitely many i ∈ N such that Supp(Ω2i(M)) 6= Spec(R). Since we

could have replaced M by either an odd or an even syzygy it suffices to show that

β2i(M) = β2i+1(M) for all i � 0, the sequence (Supp(Ω2i(M)))∞i=0 stabilizes, and

Min(Ω2i(M)) ⊆ Min(R) for i� 0.

Since Min(R) is a finite set we may choose p ∈ Min(R) such that there are infinitely

many i ∈ N for which p /∈ Supp(Ω2i(M)). For each positive integer c such that p /∈

Supp(Ω2c(M)) Lemma 4.4 applied to Supp(Ω2c(M)) implies that we have β2i(M) =

β2i+1(M) and Supp(Ω2i+2(M)) ⊆ Supp(Ω2i(M)) for all 0 6 i < c. Since, c can be

chosen to be arbitrarily large we have β2i(M) = β2i+1(M) and Supp(Ω2i+2(M)) ⊆

Supp(Ω2i(M)) for all i > 0. Since closed sets in the Zariski topology satisfy DCC it

follows that we may choose m � 0 such that Supp(Ω2m+2i(M)) is constant for all

i > 0.

Therefore it remains to show that Min(Ω2i(M)) ⊆ Min(R) for i � 0. Choose

q ∈ Min(Ω2m(M)). Let S := Rq, Mi := (Ω2m+2i(M))q for all i > 0 and n := qRq be

the maximal ideal of S. For all i > 0 we have an exact sequence of the form

0 //Mi+1
// Sbi

Bi // Sbi //Mi
// 0 .

If the matrix Bi defining the map Sbi → Sbi has some entries which are units, then by

Fact 4.5 we can reduce this sequence by taking away free summands; hence we may

assume that Bi has all of its entries in n. For all i > 0 let Ni = Im(Bi). Since Mi+1

has finite length, a minimal injective resolution I of Mi+1 is m-torsion. It follows

that 0 = Hj(I) = Hj(Γm(I)) = Hj
m(Mi+1) for all j > 0. From the exact sequence
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0 //Mi+1
// Sbi

φi // Ni
// 0 we get an exact sequence

0→Mi+1 → H0
n(S

bi)→ H0
n(Ni)→ 0 (4.2)

and isomorphisms Hj
n(φi) : Hj

n(S
bi) → Hj

n(Ni) for all j > 1. Similarly the exact

sequence 0 // Ni
ψi // Sbi //Mi

// 0 yields an exact sequence

0→ H0
n(Ni)→ H0

n(S
bi)→Mi → H1

n(Ni)→ H1
n(S

bi)→ 0 (4.3)

and isomorphims Hj
n(ψi) : Hj

n(Ni)→ Hj
n(S

bi) for all j > 2. By the additivity of length

we get the first and third steps in the next display from sequences (4.3) and (4.2)

respectively.

λ(Mi) = λ(H0
n(S

bi))− λ(H0
n(Ni)) + λ(Im(Mi → H1

n(Ni)))

> λ(H0
n(S

bi))− λ(H0
n(Ni))

= λ(Mi+1).

Since the sequence (λ(Mi))
∞
i=0 is positive and non-increasing it is eventually constant.

Choose t ∈ N such that λ(Mt) = λ(Mt+1). Then λ(Im(Mt → H1
n(Nt))) = 0.

Therefore the map Mt → H1
n(Nt) is the zero map. From sequence (4.3), it follows

that the map H1
n(ψt) : H1

n(Nt)→ H1
n(S

bt) is an isomorphism. Thus

Hj
n(Bt) = Hj

n(ψt) ◦ Hj
n(φt) : Hj

n(S
bt)→ Hj

n(S
bt)

is an isomorphism for all j > 1. Since Hj
n(−) is an additive functor the map Hj

n(Bt)

is just matrix multiplication by the matrix Bt applied to the components of Hj
n(S

bt).

Since Bt has entries in n it must kill socle elements of Hj
n(S

bt). Therefore Hj
n(S

bt) has
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no socle elements. Since Hj
n(S

bt) is n-torsion it follows that Hj
n(S

bt) = 0 for all j > 1.

By [16, Theorem 9.3] we get the first equality in the next display:

dim(S) = sup{n| Hj
n(S) 6= 0} = 0;

hence q ∈ Min(R). Thus Min(Ω2i(M)) ⊆ Min(R) for all i � 0, and the result

follows.

Corollary 4.7. Suppose the sequence (βi(M))∞i=0, is non-decreasing for i� 0. Then

(dim(Ω2i(M)))∞i=1 and (dim(Ω2i+1(M)))∞i=0 are constant for i � 0. If pd(M) = ∞

then one sequence stabilizes to dim(R) and the other sequence stabilizes to dim(R/p)

for some p ∈ Min(R).

Corollary 4.8. Suppose the sequence (βi(M))∞i=0, is non-decreasing for i � 0. If R

satisfies one of the following conditions then dim(Ωi(M)) is constant for i� 0:

1. R is equidimensional (i.e. dim(R/p) is constant for all p ∈ Min(R));

2. R is a domain; or

3. dim(R) 6 1.

Proof. (1) Follows from Corollary 4.7. (2) and (3) are special cases of (1).

Remark 4.9. It should be noted that [11, Remark 5.6] claims that using [11, Propo-

sition 5.5] one can show that if R is equidimensional and Question 4.2 has an affir-

mative answer, then dim(Ωn(M)) is constant for n � 0. However, [11, Proposition

5.5] requires the assumption that dim(R) > 2. Therefore although the conclusions of

[11, Remark 5.6] are correct, the justification given for these conclusions is invalid.

One should note the justification uses a localization argument, so it is invalid in every

positive dimension, not just dimension 1.
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The goal of the next two results, Lemma 4.10 and Proposition 4.12, is to show

how quickly the sequence (Supp(Ω2i(M)))∞i=0 stabilizes when the Betti numbers of M

are non-decreasing.

Lemma 4.10. Given i > 0, if βi(M) = βi+1(M), then Supp(Ωi(M)) = Supp(Ωi+2(M)).

Suppose β0(M) = β1(M). Then we have the following:

1. If Supp(M)� Supp(Ω2(M)) 6= ∅, then M is not a first syzygy of any module.

2. If p ∈ Min(M)� Supp(Ω2(M)) then height(p) = 1.

Proof. Suppose that b := β0(M) = β1(M) and Supp(M)� Supp(Ω2(M)) 6= ∅. Choose

p ∈ Min(M)� Supp(Ω2(M)). As Mp has finite length 0→ R
β1(M)
p → R

β0(M)
p → 0 has

non-zero finite length homology. By the New Intersection Theorem [25] dim(Rp) 6 1.

If we suppose that dim(Rp) = 0, then 0 6= λ(Mp) = λ(R
β1(M)
p )−λ(R

β1(M)
p ) = 0, which

is a contradiction. Thus, height(p) = dim(Rp) = 1.

Since 0 → Rb
p → Rb

p → Mp → 0 is exact, Fact 4.5 implies that there exists a

minimal Rp-free resolution of Mp of the form 0 → Rn
p → Rn

p → Mp → 0 for some

n > 0. Therefore pdRp
(Mp) = 1; hence depthRp

(Mp) = depth(Rp)− 1.

Assume that M = Ω1(L) for some R-module L we will obtain a contradiction.

Since Mp is finite length and dim(Rp) = 1 it follows that Mp has no Rp-free summands.

Therefore Mp = Ω
Rp

1 (Lp). Since

0 6 depthRp
(Mp) = depth(Rp)− 1 6 dim(Rp)− 1 = 1− 1 = 0

it follows that depth(Rp) = 1 and depth(Mp) = 0. However, since Mp is a first syzygy

depth(Mp) > min{1, depth(Rp)} = 1. This is a contradiction; hence M is not a first

syzygy of any module.
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Now suppose that βi(M) = βi+1(M) for some i > 0. Since Ωi(M) is a first syzygy

of Ωi−1(M) it follows that Supp(Ωi(M)) ⊆ Supp(Ωi+2(M)). By Lemma 4.4 we get

the opposite inclusion and the result follows.

The following is an example where β1(M) = β0(M) but Supp(M) * Supp(Ω2(M)).

Example 4.11. Let S = k[x, y, z] and m = (x, y, z). Let R = Sm/yzSm and let

M = R/xyR. The complex . . .
z // R

y // R
z // R

xy // R //M // 0 is a

minimal free resolution of M . We have Ω2(M) ∼= zR ∼= R/(y). The prime ideal

p = (x, z) of height 1 is in SuppR(M)� SuppR(Ω2(M)).

Proposition 4.12. Suppose that M is a non-zero finitely generated R-module with

non-decreasing Betti numbers. Then, either Supp(Ω2i(M)) is constant for all i > 1, or

there exists n > 0 such that Supp(Ω2i(M)) = Spec(R) for all i > n and Supp(Ω2j(M))

is constant for 1 6 j 6 n.

Proof. Suppose Supp(Ω2i(M)) 6= Spec(R) for for some n > 2. By Lemma 4.4 it

follows that β2j(M) = β2j+1(M) for all j with 0 6 j < n. From Lemma 4.10 we get

that Supp(Ω2j(M)) is constant for 1 6 j 6 n, and the result follows.

The following example is due to Hamid Rahmati and can be found in [11]

Example 4.13. Let R = k[[x, y]]/(x2, xy) and M = R/(y). Then we have a minimal

free resolution of the form

· · ·
[x y 0
0 0 x ]

// R2 [x,y] // R
x // R

y // R //M // 0 .

Then dim(M) = dim(Ω2(M)) = 0 and dim(Ωi(M)) = 1 = dim(R) for i 6= 0, 2.

The following example shows that the even syzygies can have support equal to

Spec(R) while the odd syzygies do not.
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Example 4.14. Let R = [a, b, c, d, e]/(ade− bce). Let M be the cokernel of the first

map in the following matrix factorization:

· · ·
[a b
c d ] // R2

[ de −be−ce ae ] // R2
[a b
c d ] //M // 0 .

Then Supp(Ω2i(M)) = Spec(R) and Supp(Ω2i+1(M)) = Supp(R/(e)) 6= Spec(R) for

all i > 0.

The following example is due to Craig Huneke and can be found in [11].

Example 4.15. Let S = Q[x, y, z, u, v] and let I ⊆ S be the ideal

I = 〈x2, xz, z2, xu, zv, u2, v2, zu+ xv + uv, yu, yv, yx− zu, yz − xv〉.

Consider R = S/I, which is a 1-dimensional ring of depth 0. A computation using

Macaulay2 yields that y is a parameter, (0 : y) = (u, v, z2) and (y) = (0 :R (0 :R y)).

· · · // R3 [u v z2] // R
y // R

[
u
v
z2

]
// R3 // 0

Let M be the cokernel of the rightmost map. Then the first and third syzygy modules

of M are R/(y) and (0 : y) respectively. These are both finite length since y is a

parameter, but all other syzygies have dimension 1.
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tive. Chapitre 3: Graduations, filtrations et topologies. Chapitre 4: Idéaux pre-
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