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The main goal of this dissertation is to explain a precise sense in which Knörrer pe-

riodicity in commutative algebra is a manifestation of Bott periodicity in topological

K-theory. In Chapter 2, we motivate this project with a proof of the existence of

an 8-periodic version of Knörrer periodicity for hypersurfaces defined over the real

numbers. The 2- and 8-periodic versions of Knörrer periodicity for complex and real

hypersurfaces, respectively, mirror the 2- and 8-periodic versions of Bott periodic-

ity in KU - and KO-theory. In Chapter 3, we introduce the main tool we need to

demonstrate the compatibility between Knörrer periodicity and Bott periodicity: a

homomorphism from the Grothendieck group of the homotopy category of matrix fac-

torizations associated to a complex (real) polynomial f into the topological K-theory

of its Milnor fiber (positive or negative Milnor fiber). A version of this map first ap-

peared in the setting of complex isolated hypersurface singularities in the paper “An

Index Theorem for Modules on a Hypersurface Singularity”, by Buchweitz and van

Straten. We show that, when f is non-degenerate quadratic (over the real or complex

numbers), this map recovers the Atiyah-Bott-Shapiro construction in topology. In

Chapter 4, we prove that when f is a complex simple plane curve singularity, this

homomorphism is injective.
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Chapter 1

Introduction

Matrix factorizations were introduced by Eisenbud in [Eis80] as a tool for studying

the homological behavior of modules over a hypersurface ring; that is, a quotient of a

regular ring by a principal ideal generated by a non-unit, non-zero-divisor. Recently,

matrix factorizations have begun appearing in a wide variety of contexts, for instance:

• Homological mirror symmetry (e.g. [KKP08], by Katzarkov-Kontsevich-Pantev)

• Knot theory (e.g. [KR04], by Khovanov-Rozansky)

• Singularity theory (e.g. [BVS12], by Buchweitz-van Straten)

The overall goal of this work is to continue the study of an interplay between

matrix factorizations and topological K-theory that was begun in the inspiring paper

[BVS12].

Let f ∈ C{x1, . . . , xn} be a convergent power series such that

R = C{x1, . . . , xn}/(f)
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defines an isolated hypersurface singularity. One of the key insights in [BVS12] is

that, by passing to topological information about the hypersurface, the vanishing of

the Hochster theta pairing associated to the hypersurface ring R when n is odd can be

viewed as a consequence of Bott periodicity in topological K-theory. The main goal of

this thesis is to express precisely the manner in which Bott periodicity manifests itself

in commutative algebra: it turns out that the answer is Knörrer periodicity, a behavior

of maximal Cohen-Macaulay modules over certain hypersurface rings discovered by

Knörrer ([Knö87] Theorem 3.1).

In Chapter 2, we establish various results concerning differential Z/2Z-graded

categories of matrix factorizations. Most of the results we discuss are well-known;

among the new results in this chapter is an 8-periodic version of Knörrer periodicity

for isolated hypersurface singularities over the real numbers.

Theorem 1.0.1. Let Q := R[x1, . . . , xn] and f ∈ Q. Suppose Q/(f) has an isolated

singularity at the origin (i.e. dimR
R[[x1,...,xn]]

( ∂f
∂x1

,..., ∂f
∂xn

)
< ∞). Set Q′ := R[u1, . . . , u8], q :=

u2
1+· · ·+u2

8 ∈ Q′, and Q′′ := Q⊗RQ′. Then there exists an equivalence of triangulated

categories

[MF(Q̂, f)]
∼=−→ [MF(Q̂′′, f + q)],

where (̂−) denotes completion at the homogeneous maximal ideal.

We point out that the “period” here is exactly 8; that is, for 1 6 l < 8, it can

happen that

[MF(R[[x1, . . . , xn]], f)] � [MF(R[[x1, . . . , xn, u1, . . . , ul]], f + u2
1 + · · ·+ u2

l )].

Our proof relies heavily on machinery developed by Dyckerhoff and Toën in

[Dyc11] and [Toë07]. This result draws a distinction between the maximal Cohen-
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Macaulay representation theory of hypersurface rings with ground field R and those

whose ground field is algebraically closed and has characteristic not equal to 2, since

the latter exhibit 2-periodic Knörrer periodicity. The maximal Cohen-Macaulay rep-

resentation theory of hypersurface rings with ground field R does not seem to be

well-studied, and we hope this work motivates further investigation in this direction.

The presence of 2- and 8-periodic versions of Knörrer periodicity over C and R,

respectively, suggests the possibility of a compatibility between Knörrer periodicity

and Bott periodicity. Such a compatibility statement is formulated and proved in

Chapter 3 (see Theorem 3.4.4):

Theorem 1.0.2. Let Q := C[x1, . . . , xn], and suppose f is an element of Q such that

Q/(f) has an isolated singularity at the origin (i.e. dimC
C[[x1,...,xn]]

( ∂f
∂x1

,..., ∂f
∂xn

)
< ∞) . Then

there exists a commutative diagram

K0[MF(Q, f)]

K0[MF(Q[u, v], f + u2 + v2)]

KU0(Bε, Ff )

KU0(Bε′′ , Ff+u2+v2)

KU0(Bε, Ff )⊗KU0(Bε′ , Fu2+v2)

.............................................................................................................................................................................................................................................................................................................................................
.....
.......
.....

K

......................................................................................................................................................................................................................................................................................................................................................................................................... ............
φf

.................................................................................................................................................
.....
.......
.....

β

.................................................................................................................................................
.....
.......
.....

STKU

............................................................................................................................................................................................................................................................. ............
φf+u2+v2

where Ff denotes the Milnor fiber of f , Bε is a closed ball of radius ε in Cn, K is

induced by the Knörrer functor, β is the Bott periodicity isomorphism, and STKU is

given by the product in relative K-theory followed by the inverse of the map induced

by pullback along the Sebastiani-Thom homotopy equivalence.
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The Sebastiani-Thom homotopy equivalence to which we refer in Theorem 1.0.2

is discussed in Section 3.1.2.

The key construction in this chapter gives a way of building the horizontal maps

above; specifically, given a polynomial f over the complex (real) numbers, we con-

struct a map Φf that assigns to a matrix factorization of a complex (real) polynomial

f a class in the topological K-theory of the Milnor fiber (positive or negative Milnor

fiber) of f ; this map first appeared in [BVS12] in the setting of complex isolated

hypersurface singularities. We prove that this construction induces a map φf on the

Grothendieck group of the (triangulated) homotopy category of matrix factorizations

of f , and we show that it recovers the Atiyah-Bott-Shapiro construction when f is

a non-degenerate quadratic (over R or C). The Atiyah-Bott-Shapiro construction,

introduced in Part III of [ABS64], provides the classical link between Z/2Z-graded

modules over Clifford algebras and vector bundles over spheres; the map φf we discuss

in Chapter 3 can be thought of as providing a more general link between algebra and

topology.

In Chapter 4, we apply the Atiyah-Bott-Shapiro-type construction φf from Chap-

ter 3 to matrix factorizations of the ADE singularities, or simple plane curve singu-

larities. The main result of this chapter is:

Theorem 1.0.3. If f ∈ C[x1, x2] is an ADE singularity, φf is injective.

The proof makes heavy use of key results in [BVS12] and [PV12].
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Chapter 2

Knörrer Periodicity over R

In this chapter, we recall some foundational material concerning matrix factorizations

in commutative algebra, and we exhibit an 8-periodic version of Knörrer periodicity

for matrix factorization categories associated to isolated hypersurface singularities

over the real numbers.

2.1 Differential Z/2Z-graded categories

Let k be a field. We review some facts concerning k-linear differential Z/2Z-graded

categories. In this section, all categories and functors are k-linear.

All of the results in Sections 2.1.1 and 2.1.2 are Z/2Z-graded variants of results

in the setting of differential Z-graded categories appearing in [Toë11]. We refer the

reader to Section 5.1 of [Dyc11] for a discussion of how one may reformulate Toën’s

homotopy theory of dg-categories so that it applies to the Z/2Z-graded setting.

Henceforth, when we use the term “dg category”, we mean “differential Z/2Z-

graded category”.
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2.1.1 The derived category of a differential Z/2Z-graded

category

Define CZ/2Z(k) to be the dg category of Z/2Z-graded complexes of k-modules. Fix

a dg category T .

Definition 2.1.1. The homotopy category of T , denoted by [T ], is the category given

by the following:

• Objects in [T ] are the same as the objects in T .

• Given two objects X, Y of [T ], the morphisms from X to Y are given by

the 0th cohomology vector space H0HomT (X, Y ) of the Z/2Z-graded complex

HomT (X, Y ).

Remark 2.1.2. A dg functor F : S → T determines an additive functor [F ] : [S] →

[T ].

We introduce the derived category of T :

Definition 2.1.3. A module M over T is a dg functor

M : T → CZ/2Z(k).

One may form the dg category Mod(T ) of modules over T in the evident way.

The dg category Mod(T ) may be equipped with a CZ/2Z(k)-enriched model struc-

ture such that the weak equivalences are given by morphisms

F → F ′
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having the property that the induced maps F (x)→ F ′(x) are quasi-isomorphisms of

Z/2Z-graded complexes for all objects x ∈ T . We refer the reader to Section 3.2 of

[Toë11] for details.

Definition 2.1.4. The derived category of T , denoted D(T ), is the homotopy cate-

gory Ho(Mod(T )). That is, there is a functor

LT : Mod(T )→ Ho(Mod(T ))

sending weak equivalences to isomorphisms, and the pair (LT , Ho(Mod(T ))) is uni-

versal with respect to this property.

Remark 2.1.5. Note the distinction between the homotopy category [Mod(T )] of

Mod(T ) in the dg sense and the homotopy category Ho(Mod(T )) of Mod(T ) in

the model-theoretic sense. This collision of terminology should cause no confusion in

what follows.

2.1.2 Triangulated differential Z/2Z-graded categories

Denote by T op the opposite category of T ; that is, the category with the same objects,

but with composition f ◦ g replaced with (−1)|f ||g|g ◦ f . The Yoneda functor

hT : [T ]→ D(T op)

is given, on objects, by

T 7→ LT (S 7→ (HomT (S, T )))

and by the evident map on morphisms.
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We say an object in D(T op) is quasi-representable if it is in the essential im-

age of hT . An object M ∈ D(T op) is compact if HomD(T op)(M,−) commutes with

coproducts. Quasi-representable objects are compact, but the converse is not true.

Definition 2.1.6. We say T is dg-triangulated if every compact object in D(T op) is

quasi-representable.

Remark 2.1.7. We give an example of a dg category that is not dg-triangulated in

Section 2.5.

Remark 2.1.8. Denote by D(T op)c the full subcategory of compact objects in D(T op).

If T is dg-triangulated, hT : [T ] → D(T op)c is an equivalence. Since D(T op)c is

triangulated, it follows that, when T is dg-triangulated, [T ] may be equipped with a

canonical triangulated structure.

Every dg category may be embedded in a dg-triangulated category, its triangulated

hull. To define the triangulated hull, we must introduce the homotopy category of dg

categories.

Definition 2.1.9. A dg functor F : S → T is a quasi-equivalence if [F ] : [S] → [T ]

is an equivalence of categories.

Consider the category dgZ/2Zk-cat of k-linear dg categories. There exists a CZ/2Z(k)-

enriched model structure on dgZ/2Zk-cat with weak equivalences given by quasi-

equivalences. For details, we refer the reader to Section 3.2 of [Toë11].

In particular, there is a category Ho(dgZ/2Zk-cat) and a functor

L : dgZ/2Zk-cat→ Ho(dgZ/2Zk-cat)

that maps quasi-equivalences to isomorphisms such that the pair (L,Ho(dgZ/2Zk-cat))

is universal with respect to this property.
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Denote by dgZ/2Zk-cattr the full subcategory of dgZ/2Zk-cat given by dg-triangulated

categories.

Proposition 2.1.10 ([Toë11] Prop 4.4.2). The inclusion functor

i : Ho(dgZ/2Zk-cattr)→ Ho(dgZ/2Zk-cat)

admits a left adjoint

Perf(−) : Ho(dgZ/2Zk-cat)→ Ho(dgZ/2Zk-cattr).

Definition 2.1.11. Given a dg category T , we shall call Perf(T ) the triangulated

hull of T .

It will be useful for us to have an explicit model for the triangulated hull of a dg

category. To construct it, we must introduce the notion of a perfect module over a

dg category:

Definition 2.1.12. A module M ∈ Mod(T ) is perfect if LT (M) ∈ D(T ) is a compact

object.

Remark 2.1.13. Perf(T ) coincides with the dg subcategory of Mod(T ) consisting of

perfect modules, thought of as an object in Ho(dgZ/2Zk-cat).

We may now introduce the notion of a Morita equivalence of dg categories:

Definition 2.1.14 ([Toë11] Definition 4.4.4). A morphism F : S → T inHo(dgZ/2Zk-cat)

is called a Morita equivalence if Perf(F ) is an isomorphism.

If F is a dg functor such that L(F ) is a Morita equivalence, we shall call F a

Morita equivalence as well.
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Proposition 2.1.15. A dg functor F : S → T between two dg-triangulated categories

is a Morita equivalence if and only if it is a quasi-equivalence.

Proof. It is immediate that F is a Morita equivalence when F is a quasi-equivalence.

By Proposition 2.1.10, if F is a Morita equivalence, L(F ) is an isomorphism. By

Theorem 1.2.10 in [Hov07], L(F ) is an isomorphism if and only if F is a quasi-

equivalence.

2.1.3 Hochschild homology and the Chern character

In this section, we assume char(k) = 0. A k-linear dg category is a generalization of

a dg k-algebra; in fact, a dg category with only one object is precisely a dg k-algebra.

There exists a notion of Hochschild homology for k-linear dg categories that recovers

the definition for dg k-algebras; we introduce this notion here, following Section 1.1

of [PV12].

Let S and T be dg categories.

Definition 2.1.16. The tensor product, S ⊗ T , of S and T is the dg category given

by the following:

• Objects are pairs (S, T ), where S ∈ Ob(S) and T ∈ Ob(T ).

• HomS⊗T ((S, T ), (S ′, T ′)) := HomS(S, S ′)⊗k HomT (T, T ′).

Definition 2.1.17. An S-T bimodule is a module over (S ⊗ T op)op ∼= Sop ⊗ T .

By Section 6.1 of [Kel94], an S-T bimodule X determines a functor

TX : Mod(T op)→ Mod(Sop)



11

in the following way: given an object M of Mod(T op), define a functor

Sop → CZ/2Z(k)

given by

S 7→ coker(
⊕

T,T ′∈T

M(T ′)⊗k HomT (T, T ′)⊗k X(S, T )
ν−→
⊕
T∈T

M(T )⊗k X(S, T )),

where ν(y, f, x) = (M(f))(y)⊗ x− y ⊗X(idS ⊗ f)(x).

Remark 2.1.18. Suppose S and T have exactly one object; denote the unique object

of T by YT . In this case, X is a right module over the dg algebra EndT (YT ), and the

functor TX amounts to the tensor product −⊗EndT (YT ) X.

There exists a left derived functor

LTX : D(T op)→ D(Sop)

of TX ; we refer the reader to [Kel94] for details.

Now, fix a dg category U . Let ∆ denote the U ⊗Uop-module given, on objects, by

(U, V ) 7→ HomU(V, U).

Considering k as a dg category with one object whose endomorphism complex

consists of the k-module k concentrated in degree 0, clearly ∆ is a k-(U ⊗ Uop)

bimodule. Thus, noting that (U ⊗ Uop)op ∼= Uop ⊗ U , we have that ∆ determines a

functor

LT∆ : D(Uop ⊗ U)→ D(k).
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∆ is also a Uop ⊗ U -module in an evident way; we define the Hochschild complex

of U to be the object

LT∆(∆) ∈ D(k).

The Hochschild homology of U , denoted HH∗(U), is the homology of LT∆(∆).

As a reality check, let’s suppose U has one object whose endomorphism ring A

is concentrated in degree 0. Then ∆ is the left A ⊗k Aop-module A. Thus, by

Remark 2.1.18, the Hochschild complex of U is A⊗LA⊗kAop A ∈ D(k); this agrees with

the Z/2Z-folding of the usual Hochschild complex.

We list two properties of Hochschild homology of dg categories that we will make

use of:

• Hochschild homology is Morita invariant ; that is, there is a natural isomorphism

HH∗(U)
∼=−→ HH∗(Perf(U))

([Toë11] Section 5.2).

• There is a Künneth isomorphism

HH∗(S)⊗k HH∗(T )
∼=−→ HH∗(S ⊗ T )

([PV12] Proposition 1.1.4).

Now, suppose U has the following properties:

(1) ∆ ∈ Mod(U ⊗ Uop) is perfect

(2) For every pair of objects U, V in U , HomU(U, V ) has finite-dimensional coho-

mology
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(3) D(U) admits a compact generator

By Section 1.2 of [PV12], U is Morita equivalent to a homologically smooth and

proper dg algebra. Also, when S and T are dg categories with the above properties,

a dg functor

F : Perf(S)→ Perf(T )

yields a map

F∗ : HH∗(S)→ HH∗(T ).

In particular, if U is an object in U , the functor

1U : k → U

that sends the unique object of k to U yields a map

(1U)∗ : k = HH∗(k)→ HH∗(U).

Definition 2.1.19. We define ch(U) := (1U)∗(1) ∈ HH∗(U) to be the Chern charac-

ter of U .

The functor

T∆ : Mod(Uop ⊗ U)→ Mod(k)

restricts to a functor

Perf(Uop ⊗ U)→ Perf(k).

Combining the map on Hochschild homology induced by this functor with the
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Künneth isomorphism, we have a canonical pairing

〈−,−〉U : HH∗(Uop)⊗k HH∗(U)→ k.

On the other hand, one has the Euler pairing

χ : Ob(U)×Ob(U)→ k

given by

(U, V ) 7→ dimkH
0HomU(U, V )− dimkH

1HomU(U, V ).

The following is an analogue of the Hirzebruch-Riemann-Roch formula:

Theorem 2.1.20 ([PV12] Section 1.2). Let U be a k-linear dg category, where k is

a field, and assume U has properties (1) - (3) above. If U and V are objects in U ,

χ(U, V ) = 〈ch(U), ch(V )〉U .

Remark 2.1.21. When U is a dg category with properties (1) - (3) above, the pairing

〈−,−〉U is non-degenerate. In fact, the map

HH∗(U)⊗k HH∗(Uop)⊗k HH∗(U)→ HH∗(U)

given by

h⊗ h′ ⊗ h′′ 7→ 〈h, h′〉Uop · h′′

sends h ⊗ ch(∆) to h for all h ∈ HH∗(U), where ch(∆) ∈ HH∗(Perf(Uop ⊗ U)) is
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identified with its image under the canonical isomorphisms

HH∗(Perf(Uop ⊗ U)) ∼= HH∗(Uop ⊗ U) ∼= HH∗(Uop)⊗k HH∗(U).

2.2 Matrix factorization categories

We provide some background on matrix factorization categories. Fix a commutative

algebra Q over a field k and an element f of Q. All categories and functors in this

section are assumed to be k-linear.

2.2.1 Definitions and some properties

Definition 2.2.1. The dg category MF(Q, f) of matrix factorizations of f over Q is

given by the following:

Objects in MF(Q, f) are pairs (P, d), where P is a finitely-generated projective

Z/2Z-graded Q-module, and d is an odd-degree endomorphism of P such that d2 =

f · idP . Henceforth, we will often denote an object (P, d) in MF(Q, f) by just P .

The morphism complex of a pair of matrix factorizations P, P ′, which we will

denote by HomMF(P, P ′), is the Z/2Z-graded module of Q-linear maps from P to P ′

equipped with the differential ∂ given by

∂(α) = d′ ◦ α− (−1)|α|α ◦ d

for homogeneous maps α : P → P ′.

It will often be useful to express an object P in MF(Q, f) in the following way:

P1
d1−�==�−
d0

P0
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where P1, P0 are the odd and even degree summands of P , and d1, d0 are the restric-

tions of d to P1 and P0, respectively.

We now establish several technical results concerning matrix factorization cate-

gories that we will need later on.

Define EMF(Q, f) to be the category with the same objects as MF(Q, f) and

with morphisms given by the degree 0 cycles in MF(Q, f). When Q is regular with

finite Krull dimension and f is a regular element of Q (i.e. f is a non-unit, non-zero-

divisor), EMF(Q, f) is an exact category with the evident family of exact sequences

([Orl03] Section 3.1); the “E” stands for exact.

A degree 0 morphism α in MF(Q, f) can be represented by a diagram of the

following form:

P1
d1−−−→ P0

d0−−−→ P1

α1

y α0

y yα1

P ′1
d′1−−−→ P ′0

d′0−−−→ P ′1

It is straightforward to check that α is a cycle if and only if this diagram commutes.

In fact, if f ∈ Q is a non-zero-divisor, it is easy to see that the left square commutes

if and only if the right square commutes.

Remark 2.2.2. If P1 and P0 are free and f is non-zero-divisor, P1 and P0 must have

the same rank.

It will be useful for us to have an alternative characterization for when a morphism

in EMF(Q, f) is a boundary in MF(Q, f).

Definition 2.2.3. We call a matrix factorization trivial if it is a direct sum of matrix

factorizations that are isomorphic in EMF(Q, f) to either

E
f ·idE−�====�−
idE

E
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or

E
idE−�====�−
f ·idE

E.

for some finitely generated projective Q-module E.

Proposition 2.2.4. A morphism α : P → P ′ in EMF(Q, f) is a boundary in

MF(Q, f) if and only if it factors through a trivial matrix factorization in EMF(Q, f).

Proof. Suppose α factors through a trivial matrix factorization E. It is easy to see

that idE is a boundary in MF(Q, f); it follows immediately that α is as well.

Conversely, suppose α is a boundary. Write

P = (P1
d1−�==�−
d0

P0), P ′ = (P ′1
d′1−�==�−
d′0

P ′0).

Since α is a degree 0 cycle, there exist Q-linear maps

α1 : P1 → P ′1, α0 : P0 → P ′0

such that α = α1 + α0 and the following diagram commutes:

P1
d1−−−→ P0

d0−−−→ P1

α1

y α0

y yα1

P ′1
d′1−−−→ P ′0

d′0−−−→ P ′1

Choose a Q-linear map

h : P → P ′

such that ∂(h) = α. Since α has degree 0, ∂ evaluated at the degree 0 component of

h is 0. Thus, we may as well assume h is homogeneous of degree 1; that is, there are
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Q-linear maps

h0 : P0 → P ′1

h1 : P1 → P ′0

such that h = h0 + h1.

Define

A : P1 ⊕ P ′1 → P1 ⊕ P ′1

B : P1 ⊕ P ′1 → P1 ⊕ P ′1

to be given by

A =

f · idP1 0

0 idP ′1



B =

idP1 0

0 f · idP ′1


Notice that

P1 ⊕ P ′1
A−�==�−
B

P1 ⊕ P ′1

is a trivial matrix factorization, and we have the following commutative diagram:
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P1 P0 P1

P1 ⊕ P ′1 P1 ⊕ P ′1 P1 ⊕ P ′1

P ′1 P ′0 P ′1

..................................................................................................................................................................................................................... ............
d1

..................................................................................................................................................................................................................... ............
d0

......................................................................................................................................................... ............
A

......................................................................................................................................................... ............
B

..................................................................................................................................................................................................................... ............
d′1 ..................................................................................................................................................................................................................... ............

d′0

................................................................................................................................................................................................................
.....
.......
.....

 idP1

h0 ◦ d1


................................................................................................................................................................................................................
.....
.......
.....

d0

h0


................................................................................................................................................................................................................
.....
.......
.....

 idP1

h0 ◦ d1



................................................................................................................................................................................................................
.....
.......
.....

(
d′0 ◦ h1 idP ′1

)
................................................................................................................................................................................................................
.....
.......
.....

(
h1 d′1

)
................................................................................................................................................................................................................
.....
.......
.....

(
d′0 ◦ h1 idP ′1

)

Thus, α factors through a trivial matrix factorization.

Here is another technical result that will be useful later on:

Proposition 2.2.5. Let P = (P1
d1−�==�−
d0

P0) be a matrix factorization of f over Q.

Assume f is a non-zero-divisor. Then the following are equivalent:

(1) coker(d1) is isomorphic to L/fL for some projective Q-module L.

(2) There exists a trivial matrix factorization E and a matrix factorization E ′ that

is isomorphic in EMF(Q, f) to one of the form

F
idE′−�===�−
f

F

such that P ⊕ E ′ is isomorphic to E in EMF(Q, f).

Before proving the proposition, we establish a general fact about idempotent com-

plete categories.
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Definition 2.2.6. We say an additive category C is idempotent complete, or that

C has split idempotents, if every idempotent endomorphism φ = φ2 of an object X

splits; that is, there exists a factorization

X
π−→ Y

ι−→ X

of φ with π ◦ ι = idY .

Lemma 2.2.7. Let C be an idempotent complete additive category, and let E be a

collection of objects in C that is

• closed under isomorphisms,

• closed under finite coproducts, and

• closed under taking summands; that is, whenever X is an object in C such that

idX factors through an object of E, X is an object in E.

Denote by L the quotient of C by those morphisms that factor through an object in

E. If X and Y are objects in C, their images in L are isomorphic if and only if there

exist objects EX , EY in E such that

X ⊕ EX ∼= Y ⊕ EY .

Proof. Let X and Y be objects in C. Suppose there exist objects EX , EY in E such

that

X ⊕ EX ∼= Y ⊕ EY .

The quotient functor from C to L is additive, and hence preserves finite coproducts.

Thus, it suffices to show that objects in E are mapped to 0 under the quotient functor.

This is clear, since, if E is an object in E , idE factors through an object in E .
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Conversely, suppose the images of X and Y in L are isomorphic. Choose mor-

phisms in C

α : X → Y , β : Y → X

whose images in L are mutually inverse. Choose an object EY in E and morphisms

δ : EY → X, ε : X → EY

in C such that

δ ◦ ε = β ◦ α− idX .

We have morphisms

φ :=

α
ε

 : X → Y ⊕ EY , ψ :=

(
β −δ

)
: Y ⊕ EY → X

in C. Notice that ψ ◦ φ = idX . Also, an easy computation shows that

σ := idY⊕EY
− φ ◦ ψ

is idempotent. Choose an object Z in C and morphisms

τ : Z → Y ⊕ EY , ρ : Y ⊕ EY → Z

in C such that

τ ◦ ρ = σ and ρ ◦ τ = idZ .
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Given two objects A1, A2 in C, we denote by

ιAi
: Ai → A1 ⊕ A2, πAi

: A1 ⊕ A2 → Ai

the canonical maps associated to the coproduct of A1 and A2 in C (which is also the

product of A1 and A2 in C). We have mutually inverse morphisms

X ⊕ Z


α πY ◦ τ

ε πEY
◦ τ


−−−−−−−−−−→ Y ⊕ EY

Y ⊕ EY


β −δ

ρ ◦ ιY ρ ◦ ιEY


−−−−−−−−−−−−−→ X ⊕ Z,

so it suffices to show that Z is in E . We first show that φ descends to an isomorphism

in L. Recall that ψ ◦ φ = idX in C. Write φ ◦ ψ − idY⊕EY
as the 2× 2 matrix

α ◦ β − idY −α ◦ δ

ε ◦ β −ε ◦ δ − idEY


Since each entry of this matrix factors through an object in E , φ ◦ ψ − idY⊕EY

descends to the zero map in L. This shows that the images of φ and ψ in L are

mutually inverse.

Notice that

φ =

α πY ◦ τ

ε πEY
◦ τ

 ◦ ιX
in C. Thus, ιX descends to an isomorphism in L. Since πX ◦ ιX = idX in C, it follows
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that the images of πX and ιX in L are mutually inverse. Choose an object E in E

and morphisms

f : E → X ⊕ Z, g : X ⊕ Z → E

such that

idX⊕Z − ιX ◦ πX = f ◦ g

in C. Observe that

πZ ◦ f ◦ g ◦ ιZ = idZ − πZ ◦ ιX ◦ πX ◦ ιZ = idZ .

Thus, idZ factors through an object in E .

We are now ready to prove Proposition 2.2.5:

Proof. (2)⇒ (1): Since the cokernel of d1 is isomorphic to the cokernel of

d1 ⊕ idE′ : P1 ⊕ E ′ → P0 ⊕ E ′,

we may assume P is trivial. In this case, the result is obvious.

(1)⇒ (2): We have projective resolutions

0→ P1
d1−→ P0 → coker(d1)→ 0

0→ L
f−→ L→ L/fL→ 0

Thus, there exist maps

βi : Pi → L, γi : L→ Pi
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for i = 0, 1 making the following diagrams commute:

0 −−−→ P1
d1−−−→ P0 −−−→ coker d1 −−−→ 0

β1

y β0

y y∼=
0 −−−→ L

f−−−→ L −−−→ L/fL −−−→ 0

0 −−−→ L
f−−−→ L −−−→ L/fL −−−→ 0

γ1

y γ0

y y∼=
0 −−−→ P1

d1−−−→ P0 −−−→ coker d1 −−−→ 0

Hence, we have maps

hP : P0 → P1, hL : L→ L

such that

γ1 ◦ β1 − idP1 = hP ◦ d1, γ0 ◦ β0 − idP0 = d1 ◦ hP .

β1 ◦ γ1 − idL = fhL, β0 ◦ γ0 − idL = fhL.

We have commutative diagrams

P1 P1

P1 P0

P1 P0

L L

L L

L L

...................................................................................................................................................... ............
d1

...................................................................................................................................................... ............
idP1

...................................................................................................................................................... ............
d1

...................................................................................................................................................... ............
f · idL

...................................................................................................................................................... ............
idL

...................................................................................................................................................... ............
f · idL

.................................................................................................................................................
.....
.......
.....

hP ◦ d1

.................................................................................................................................................
.....
.......
.....

idP1

.................................................................................................................................................
.....
.......
.....

hp

.................................................................................................................................................
.....
.......
.....

d1

.................................................................................................................................................
.....
.......
.....

f · hL

.................................................................................................................................................
.....
.......
.....

idL

.................................................................................................................................................
.....
.......
.....

hL

.................................................................................................................................................
.....
.......
.....

f · idL

Denote by E the collection of matrix factorizations of f over Q isomorphic in
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EMF(Q, f) to a matrix factorization of the form

E
idE−�===�−
f

E.

Notice that EMF(Q, f) is an idempotent complete additive category, and E is

closed under direct sums and direct summands in EMF(Q, f). Letting L denote the

quotient of EMF(Q, f) by those morphisms that factor through an object in E , we

have that

(P1
d1−�==�−
d0

P0) ∼= (L
f−�===�−

idL

L)

in L. The result now follows from Lemma 2.2.7.

2.2.2 Triangulated structure

Suppose Q is regular with finite Krull dimension and f is a regular element of Q.

A feature of the homotopy category [MF(Q, f)] is that it may be equipped with a

triangulated structure in the following way ([Orl03] Section 3.1):

The shift functor maps the object

P = (P1
d1−�==�−
d0

P0)

to the object

P [1] = (P0
−d0−�===�−
−d1

P1).

That is, shifting a matrix factorization flips the grading on the module and negates
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the odd-degree endomorphism. On morphisms, the shift functor maps the cycle

P1
d1−−−→ P0

d0−−−→ P1

α1

y α0

y yα1

P ′1
d′1−−−→ P ′0

d′0−−−→ P ′1

to the cycle

P0
−d0−−−→ P1

−d1−−−→ P0

α0

y α1

y yα0

P ′0
−d′0−−−→ P ′1

−d′1−−−→ P ′0

Notice that the shift functor applied twice is the identity functor.

Given a morphism α : (P1
d1−�==�−
d0

P0) → (P ′1
d′1−�==�−
d′0

P ′0) in EMF(Q, f), we define

the mapping cone of α as follows:

cone(α) = (P ′0 ⊕ P1


d′0 α1

0 −d1


−�==========�−

d′1 α0

0 −d0


P ′1 ⊕ P0)

There are canonical morphisms P ′ → cone(α) and cone(α)→ P [1] in EMF(Q, f).

Taking the distinguished triangles in [MF(Q, f)] to be the triangles isomorphic to

those of the form

P
α−→ P ′ → cone(α)→ P [1],

[MF(Q, f)] may be equipped with the structure of a triangulated category.

We define the Grothendieck group

K0[MF(Q, f)]
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to be the free abelian group generated by isomorphism classes of [MF(Q, f)] modulo

elements of the form [P1] − [P2] + [P3], where P1, P2, and P3 fit into a distinguished

triangle in the following way:

P1 → P2 → P3 → P1[1].

Remark 2.2.8. The category MF(Q, f) is not always dg-triangulated in this setting;

a counterexample is given in Section 2.5. When MF(Q, f) is dg-triangulated, the

induced triangulated structure on [MF(Q, f)] agrees with the triangulated structure

just described.

Remark 2.2.9. When Q is a regular local ring and f is a regular element of Q, one

has an equivalence of triangulated categories

[MF(Q, f)]
∼=−→ MCM(Q/(f)),

where MCM(Q/(f)) denotes the stable category of maximal Cohen-Macaulay (MCM)

modules over the ring Q/(f).

The stable category of MCM modules is obtained by taking the quotient of the

category of MCM modules over Q/(f) by those morphisms that factor through a

projective Q/(f)-module. The above equivalence is given, on objects, by

(P1
d1−�==�−
d0

P0) 7→ coker(d1).

Matrix factorizations were first defined by Eisenbud in [Eis80]; this interplay be-

tween matrix factorizations and MCM modules over hypersurface rings provided the

original motivation for the study of matrix factorization categories.
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2.2.3 The Hochster theta pairing

We begin this section with a technical definition:

Definition 2.2.10. If the pair (Q, f) satisfies

• Q is essentially of finite type over k

• Q is equidimensional of dimension n

• The module Ω1
Q/k of Kähler differentials is locally free of rank n

• The zero locus of df ∈ Ω1
Q/k is a 0-dimensional scheme supported on a unique

closed point m of Spec(Q) with residue field k and f ∈ m

we shall call Q/(f) an isolated hypersurface singularity, or IHS. We will sometimes

just say f is IHS, if the ambient ring Q is clear.

Remark 2.2.11. Our IHS condition above is precisely condition (B) in Section 3.2 of

[Dyc11]. As noted in loc. cit., if Q/(f) and Q′/(f ′) are IHS, Q⊗kQ′/(f ⊗ 1 + 1⊗ f ′)

is as well.

Now, assume char(k) = 0 and that Q is a regular local ring such that Q/(f) is

IHS. Set R := Q/(f). One may define a symmetric pairing

θ : K0[MF(Q, f)]×K0[MF(Q, f)]→ Z,

called the Hochster theta pairing, that maps a pair

([P1
d1−�==�−
d0

P0], [P ′1
d′1−�==�−
d′0

P ′0])

to

l(TorR2 (coker(d1), coker(d′1)))− l(TorR1 (coker(d1), coker(d′1))),
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where l denotes length as an R-module; our assumption that the singular locus of R

is dimension 0 guarantees that these lengths are finite. The pairing θ was introduced

in [Hoc81]; for more detailed discussions related to this pairing, we refer the reader

to [BVS12], [MPSW11], [PV12], and [Wal14b].

The Euler pairing χ from Section 2.1.3 applied to the dg category MF(Q, f) can

be thought of as a pairing on the homotopy category, since, for matrix factorizations

P, P ′ ∈ MF(Q, f),

χ(P, P ′) = dimkH
0HomMF(P, P ′)− dimkH

1HomMF(P, P ′)

= dimkH
0HomMF(P, P ′)− dimkH

0HomMF(P, P ′[1]).

It is straightforward to check that χ induces a pairing on K0[MF(Q, f)].

Write

P = (P1
d1−�==�−
d0

P0), P ′ = (P ′1
d′1−�==�−
d′0

P ′0).

By Section 3 of [Wal14a], the Euler pairing χ applied to (P, P ′) corresponds, via

the equivalence

[MF(Q, f)]
coker−−−→ MCM(Q/(f)),

to the pairing

(coker(d1), coker(d′1)) 7→ l(Ext2
R(coker(d1), coker(d′1)))−l(Ext1

R(coker(d1), coker(d′1))).

As above, these lengths must be finite because of our assumption on the singular

locus of R. By Remark 3.2 of [BVS12], it follows that

χ(P, P ′) = θ(coker(d1)∗, coker(d′1)),
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where (−)∗ denotes the R-linear dual HomR(−, R). In particular, since MCM modules

over R are reflexive,

χ(−, [P ]) : K0[MF(Q, f)]→ Z

is the zero map if and only if

θ(−, coker(d1)) : K0[MF(Q, f)]→ Z

is the zero map.

2.2.4 Stabilization

Assume now that Q is a regular local ring of Krull dimension n, and suppose f is a

regular element of Q. Denote by Db(Q/(f)) the bounded derived category of Q/(f).

We will say an object C in Db(Q/(f)) is perfect if it is isomorphic, in Db(Q/(f)),

to a complex of finitely generated projective Q/(f)-modules; set Db
perf(Q/(f)) to be

the full subcategory of Db(Q/(f)) given by perfect complexes. It turns out that

Db
perf(Q/(f)) is a thick subcategory of Db(Q/(f)); define Db(Q/(f)) to be the Verdier

quotient of Db(Q/(f)) by Db
perf(Q/(f)). In [Buc86], Buchweitz defines this quotient

to be the stabilized derived category of Q/(f).

By [Buc86], the functor

MCM(Q/(f))→ Db(Q/(f))

that sends an MCM module M to the complex with M concentrated in degree 0 is

a triangulated equivalence. Hence, composing with the equivalence in Remark 2.2.9,

one has an equivalence

[MF(Q, f)]→ Db(Q/(f))
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Following [Dyc11], given an object C in Db(Q/(f)), we denote by Cstab the isomor-

phism class in [MF(Q, f)] corresponding to C under the above equivalence (“stab”

stands for “stabilization”).

In particular, thinking of the residue field k of Q/(f) as a complex concentrated

in degree 0, we may associate to k an isomorphism class kstab in [MF(Q, f)]. We now

construct an object Ef in MF(Q, f) that represents kstab; this construction appears

in [Dyc11]. Choose a regular system of parameters x1, . . . , xn for Q, and consider the

Koszul complex

(
n⊕
i=0

∧i
Qn, s0)

as a Z/2Z-graded complex of free Q-modules with even (odd) degree piece given by

the direct sum of the even (odd) exterior powers of Qn. Here, s0 denotes the Z/2Z-

folding of the Koszul differential associated to x1, . . . , xn. Choose an expression of

f ∈ Q of the form

f = g1x1 + · · ·+ gnxn.

Fix a basis e1, . . . , en of Qn, and set s1 to be the odd-degree endomorphism of⊕n
i=0∧i

Qn given by exterior multiplication on the left by g1e1 + · · ·+ gnen. Set

Ef := (
n⊕
i=0

∧i
Qn, s0 + s1).

It is easy to check that Ef is a matrix factorization of f . By Corollary 2.7 in

[Dyc11], Ef represents kstab in [MF(Q, f)]. In particular, Ef does not depend on

the choice of regular system of parameters x1, . . . , xn or coefficients g1, . . . , gn up to

homotopy equivalence.

We will be interested in the dga EndMF(Ef ). EndMF(Ef ) may be expressed, in
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terms of generators and relations, as the Z/2Z-graded Q-algebra

Q〈λ1, . . . , λn, c1, . . . , cn〉/([λi, λj], [ci, cj], [λi, cj]− δij)

equipped with the differential ∂ determined by ∂(λi) = xi and ∂(ci) = gi. Here, the

λi and ci are non-commuting variables of odd degree, [−,−] denotes the Z/2Z-graded

commutator, and δij is the Kronecker delta. An isomorphism from this algebra to

EndMF(Ef ) is given by

λi 7→ left multiplication by ei

ci 7→ contraction by ei

where, by contraction by ei, we mean the map that sends a basis element

ei1 · · · eir

to 0 if i /∈ {i1, . . . , ir} and to (−1)r−1ei1 · · · êi · · · eir otherwise.

We set

A(Q,f) := EndMF(Ef ),

and we emphasize that A(Q,f) does not depend on the choice of regular system of

parameters x1, . . . , xn or coefficients g1, . . . , gn up to quasi-isomorphism.
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2.3 The tensor product of matrix factorizations

Suppose Q and Q′ are commutative algebras over a field k. Given objects P and P ′

in MF(Q, f), MF(Q′, f ′), one can form their tensor product over k:

P⊗MFP
′ := ((P1⊗kP ′0)⊕(P0⊗kP ′1)


d1 ⊗ idP ′0 idP0 ⊗ d′1

−idP1 ⊗ d′0 d0 ⊗ idP ′1


−�====================�−

d0 ⊗ idP ′0 −idP1 ⊗ d′1

idP0 ⊗ d′0 d1 ⊗ idP ′1


(P0⊗kP ′0)⊕(P1⊗kP ′1)).

This construction first appeared in [Yos98]; it can be thought of as a Z/2Z-graded

analogue of the tensor product of complexes. It is straightforward to check that

P ⊗MF P
′ is an object in MF(Q⊗k Q′, f ⊗ 1 + 1⊗ f ′).

In fact, setting f ⊕ f ′ := f ⊗ 1 + 1 ⊗ f ′ ∈ Q ⊗k Q′, and noting that there is a

canonical map

HomMF(P,L)⊗k HomMF(P ′, L′)→ HomMF(P ⊗MF P
′, L⊗MF L

′),

we have the following:

Proposition 2.3.1. There is a dg functor

STMF : MF(Q, f)⊗k MF(Q′, f ′)→ MF(Q⊗k Q′, f ⊕ f ′)

that sends an object (P, P ′) to P ⊗MF P
′.

Further,
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Proposition 2.3.2. STMF induces a pairing

K0[MF(Q, f)]⊗K0[MF(Q′, f ′)]→ K0[MF(Q⊗k Q′, f ⊕ f ′)].

Proof. Suppose P is a contractible matrix factorization in MF(Q, f). Choose a con-

tracting homotopy (h0, h1). Then, if P ′ is any matrix factorization in MF(Q′, f ′), the

maps

(P0 ⊗ P ′0)⊕ (P1 ⊗ P ′1)


h0 ⊗ idP ′0 0

0 h1 ⊗ idP ′1


−−−−−−−−−−−−−−−−−→ (P1 ⊗ P ′0)⊕ (P0 ⊗ P ′1)

(P1 ⊗ P ′0)⊕ (P0 ⊗ P ′1)


h1 ⊗ idP ′0 0

0 h0 ⊗ idP ′1


−−−−−−−−−−−−−−−−−→ (P0 ⊗ P ′0)⊕ (P1 ⊗ P ′1)

yield a contracting homotopy of P ⊗MF P
′.

Suppose α : L→ L′ is a morphism in EMF(Q, f). One easily checks that, if B is

a matrix factorization in MF(Q′, f ′),

cone(α)⊗MF B = cone(α⊗ idB).

Thus,

[(L⊕ cone(α))⊗MF B]− [L′⊗MF B] = [L⊗MF B] + [cone(α⊗ idB)]− [L′⊗MF B] = 0.

If α : P → P ′ is an isomorphism in [MF(Q, f)], then cone(α) is contractible.
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Thus, for all matrix factorizations B of f ′ over Q′,

[P ⊗MF B] = [P ′ ⊗MF B].

It follows that the pairing respects isomorphism in the homotopy category. Since

every distinguished triangle is isomorphic to one of the form

P
α−→ P ′ → cone(α)→ P [1],

and we have shown that the pairing preserves triangles of this form, this finishes the

proof.

Remark 2.3.3. The “ST” in the name STMF stands for “Sebastiani-Thom”, since this

tensor product operation is related to the Sebastiani-Thom homotopy equivalence

discussed in Section 3.1.2. A precise sense in which the tensor product of matrix

factorizations is related to the Sebastiani-Thom homotopy equivalence is illustrated

by the proof of Proposition 3.4.1 below; see Remark 3.4.3 for further details.

Now, suppose Q/(f) and Q′/(f ′) are IHS (see Definition 2.2.10 above). Hence-

forth, we will denote by Q̂ the m-adic completion of Qm, where m is as in the definition

of IHS.

Set Q′′ := Q⊗k Q′, and define

φ : Q̂⊗k Q̂′ → Q̂′′

to be the canonical ring homomorphism. φ induces a dg functor

MF(φ) : MF(Q̂⊗k Q̂′, f ⊕ f ′)→ MF(Q̂′′, f ⊕ f ′).
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Set ŜTMF := MF(φ) ◦ STMF.

Proposition 2.3.4. If Q/(f) and Q′/(f ′) are IHS,

ŜTMF : MF(Q̂, f)⊗k MF(Q̂′, f ′)→ MF(Q̂′′, f ⊕ f ′)

is a Morita equivalence.

Remark 2.3.5. This proposition is really just a straightforward application of several

results in [Dyc11].

Proof. Suppose Qm and Q′m′ have Krull dimensions n and m, respectively. Qm and Q′m′

are regular local rings; choose regular systems of parameters x1, . . . , xn and y1, . . . , ym

in Qm and Q′m′ , and choose expressions

f = g1x1 + · · ·+ gnxn

f ′ = h1y1 + · · ·+ hmym

of f and f ′. Use these expressions to construct the dga’s A(Qm,f) and A(Q′
m′ ,f

′).

Note that x1, . . . , xn and y1, . . . , ym form regular systems of parameters in Q̂ and

Q̂′ as well, so we may use these expressions to construct A(Q̂m,f) and A
(Q̂′

m′ ,f
′)
. Also,

x1⊗ 1, . . . , xn⊗ 1, 1⊗ y1, . . . , 1⊗ ym is a regular system of parameters in Q′′m′′ , where

m′′ := m⊗ 1 + 1⊗m′, so we may use the expression

f ⊕ f ′ = g1x1 ⊗ 1 + · · ·+ gnxn ⊗ 1 + 1⊗ h1y1 + · · ·+ 1⊗ hmym

to construct A(Q′′
m′′ ,f⊕f

′) and A
(Q̂′′,f⊕f ′).



37

By Section 6.1 of [Dyc11], we have a quasi-isomorphism

F : A(Qm,f) ⊗k A(Q′
m′ ,f

′)

∼=−→ A(Q′′
m′′ ,f⊕f

′).

We also have a canonical map

G : A(Q̂,f) ⊗k A(Q̂′,f ′) → A
(Q̂′′,f⊕f ′).

By the proof of Theorem 5.7 in [Dyc11], the inclusions

A(Qm,f) ↪→ A(Q̂,f)

A(Q′
m′ ,f

′) ↪→ A
(Q̂′,f ′)

A(Q′′
m′′ ,f⊕f

′) ↪→ A
(Q̂′′,f⊕f ′)

are all quasi-isomorphisms.

By Exercise 4.4.11 in [Toë11], it follows that the induced map

Perf(A(Qm,f) ⊗k A(Q′
m′ ,f

′))→ Perf(A(Q̂,f) ⊗k A(Q̂′,f ′))

is an isomorphism in Ho(dgZ/2Zk-cat).

It is clear that we have the following commutative square in Ho(dgZ/2Zk-cat):

Perf(A(Qm,f) ⊗k A(Q′
m′ ,f

′)) Perf(A(Q̂,f) ⊗k A(Q̂′,f ′))

Perf(A(Q′′
m′′ ,f⊕f

′)) Perf(A
(Q̂′′,f⊕f ′))

...................................................................... ............
∼=

.................................................................................................................................................
.....
.......
.....

∼=

............................................................................................................................................
.....
.......
.....

Perf(L(G))

........................................................................................................................................................................ ............
∼=
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It follows that Perf(L(G)) is an isomorphism in Ho(dgZ/2Zk-cat).

One may think of a dga as a dg category with a single object. Adopting this point

of view, we have inclusion functors

i : A(Q̂,f) ↪→ MF(Q̂, f)

j : A
(Q̂′,f ′) ↪→ MF(Q̂′, f ′)

l : A
(Q̂′′,f⊕f ′) ↪→ MF(Q̂′′, f ⊕ f ′)

Combining Theorem 5.2 and Lemma 5.6 in [Dyc11], we conclude that i, j, and l

are Morita equivalences. In particular, applying Exercise 4.4.11 in [Toë11] again, we

have that

Perf(L(i)⊗ L(j)) : Perf(A(Q̂,f) ⊗k A(Q̂′,f ′))→ Perf(MF(Q̂, f)⊗k MF(Q̂′, f ′))

is an isomorphism in Ho(dgZ/2Zk-cat).

Finally, observe the following commutative diagram in Ho(dgZ/2Zk-cat):

Perf(A(Q̂,f) ⊗k A(Q̂′,f ′)) Perf(MF(Q̂, f)⊗k MF(Q̂′, f ′))

Perf(A
(Q̂′′,f⊕f ′)) Perf(MF(Q̂′′, f ⊕ f ′))

.......................................................................................................................................................................................................................................................................................................................................................................................................................... ............
Perf(L(i)⊗ L(j))

...........................................................................................................................................................................................................
.....
.......
.....

Perf(L(G))

................................................................................................................................................................................................................
.....
.......
.....

Perf(L(T̂SMF))


Perf(L(l))

Since the left-most vertical map and both horizontal maps are isomorphisms in

Ho(dgZ/2Zk-cat), Perf(L(T̂SMF)) is as well.



39

Remark 2.3.6. Under the assumptions of Proposition 2.3.4, the functor

MF(Q, f)⊗k MF(Q′, f ′)→ MF(Q′′, f ⊕ f ′)

given by tensor product of matrix factorizations is also a Morita equivalence.

Here is a proof: by Theorem 5.2 in [Dyc11], the inclusion functors

A(Qm,f) ↪→ MF(Qm, f)

A(Q′
m′ ,f

′) ↪→ MF(Q′m′ , f
′)

are Morita equivalences.

By arguments similar to those in the proof Proposition 2.3.4, one has a commu-

tative square in Ho(dgZ/2Zk-cat):

Perf(A(Qm,f) ⊗k A(Q′
m′ ,f

′)) Perf(MF(Qm, f)⊗k MF(Q′m′ , f
′))

Perf(A(Q′′
m′′ ,f⊕f

′)) Perf(MF(Q′′m′′ , f ⊕ f ′))

................................................................................................................................................................................................. ............
∼=

.................................................................................................................................................
.....
.......
.....

∼=

.................................................................................................................................................
.....
.......
.....

...................................................................................................................................................................................................................................................................................................................... ............
∼=

It follows that the dg functor

MF(Qm, f)⊗k MF(Q′m′ , f
′)→ MF(Q′′m′′ , f ⊕ f ′)

given by tensor product of matrix factorizations is a Morita equivalence. Finally,

consider the square
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MF(Q, f)⊗k MF(Q′, f ′) MF(Q′′, f ⊕ f ′)

MF(Qm, f)⊗k MF(Q′m′ , f
′) MF(Q′′m′′ , f ⊕ f ′)

........................................................................................................................... ............

.................................................................................................................................................
.....
.......
.....

.................................................................................................................................................
.....
.......
.....

.................................................................................................. ............

where the vertical maps are induced by localization. By Theorems 4.11 and 5.2 in

[Dyc11] and an application of Exercise 4.4.11 in [Toë11], the vertical maps are Morita

equivalences; hence, the top map is a Morita equivalence.

2.4 Clifford algebras

Fix a field k such that char(k) 6= 2 and a finite-dimensional vector space V over k.

Let q : V → k be a quadratic form.

The Clifford algebra, Cliffk(q), of q over k is defined to be the quotient

T (V )/(v ⊗ v − q(v)),

where T (V ) denotes the tensor algebra of V over k.

Cliffk(q) is a Z/2Z-graded k-algebra; let modZ/2Z(Cliffk(q)) denote the category

of finitely generated Z/2Z-graded left modules over Cliffk(q). Henceforth, when we

refer to a module over a Clifford algebra, we will always mean it to be a left module.

Assume q is non-degenerate, and choose a basis {e1, . . . , en} of V with respect to

which q is diagonal ; that is,

q = a1x
2
1 + · · ·+ anx

2
n ∈ S2(V ∗)

where the xi comprise the dual basis corresponding to the ei, and the ai are nonzero
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elements of k. Denote by Q the localization of S(V ∗) at the ideal (x1, . . . , xn).

We quote the following theorem from Section 14 of [Yos90]; it is due to Buchweitz-

Eisenbud-Herzog ([BEH87]).

Theorem 2.4.1. [MF(Q̂, q)] and modZ/2Z(Cliffk(q)) are equivalent k-linear cate-

gories.

It will be useful for us to exhibit a bijection between the isomorphism classes of

objects of these two categories; this bijection is described in Section 14 of [Yos90]:

Given an isomorphism class [P ], where P is an object in [MF(Q̂, q)], we may

choose an object

P̃ = (P̃1
d1−�==�−
d0

P̃0)

in [MF(Q̂, q)] such that

(a) P̃ ∼= P in [MF(Q̂, q)], and

(b) there exist choices of bases of P̃0 and P̃1 as free modules over Q̂ so that d1 and

d0 may be expressed by matrices A and B with entries in S1(V ∗) = V ∗.

That such an object P̃ exists is a theorem due to Buchweitz-Eisenbud-Herzog in

[BEH87].

Recall that P̃0 and P̃1 have the same rank as free Q̂-modules. Set m to be this

rank. Let W be a k-vector space of dimension m equipped with a basis. Set U0 and

U1 to be copies of W .

Given x ∈ V and a matrix D with entries in V ∗, define

evx(D)

to be the matrix over k given by evaluating the entries of D at x.
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Define an action of T (V ) on U1 ⊕ U0 by

x · u1 = evx(A) · u1 ∈ U0

for x ∈ V and u1 ∈ U1, and

x · u0 = evx(B) · u0 ∈ U1

for x ∈ V and u0 ∈ U0. Notice that (v⊗v)u = q(v)u for all u ∈ U1⊕U0 and v ∈ V . It

follows that U1⊕U0 is a finitely generated Cliffk(V )-module. It turns out that U1⊕U0

does not depend on the choice of P̃ up to isomorphism of Cliffk(V )-modules, so that

we may set ∆q([P ]) to be the isomorphism class of the Cliffk(V )-module U1 ⊕ U0.

Going the other direction, let [M ] denote the isomorphism class of a finitely gen-

erated Z/2Z-graded Cliffk(q)-module M = M1⊕M0. Let v ∈ V . Multiplication by v

determines k-linear maps

φ(v) : M1 →M0

ψ(v) : M0 →M1

Since q is non-degenerate, we may choose w ∈ V such that q(w) 6= 0. It follows

that φ(w) and ψ(w) are isomorphisms; in particular, M1 and M0 have the same rank

m as k-vector spaces.

Choosing bases of M0 and M1, we may think of the maps φ(v) and ψ(v) as m×m

matrices with entries in k.

Define

φij : V → k

to be the k-linear map assigning an element v of V to the (i, j) entry of φ(v). Define
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ψij similarly.

The maps φij, ψij are elements of V ∗, so they may be written as linear combina-

tions of x1, . . . , xn ∈ S1(V ∗).

Define Θq(M) to be the isomorphism class of the matrix factorization

Q̂m φ−�==�−
ψ

Q̂m

where φ is the square matrix with entries φij, and ψ is defined similarly. It is elemen-

tary to check that the assignments ∆q and Θq are inverses on isomorphism classes.

Remark 2.4.2. Note that the inclusion

k[x1, . . . , xn] ↪→ Q̂

induces an equivalence

[MF(k[x1, . . . , xn], qn)]
∼=−→ [MF(Q̂, qn)].

To see this, we first recall that, as noted above, every matrix factorization of qn over

Q̂ is isomorphic in [MF(Q̂, qn)] to one with (linear) polynomial entries (Proposition

14.3, [Yos90]); hence, the functor is essentially surjective.

Also, one has a commutative diagram

MCM(Q/(qn))[MF(Q, qn)]

MCM(Q̂/(qn))[MF(Q̂, qn)]

................................................................................................................................................................................................................ ............
∼=

.................................................................................................................................................
.....
.......
.....

.................................................................................................................................................
.....
.......
.....

................................................................................................................................................................................................................ ............
∼=
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The morphism sets in MCM(Q/(qn)) are Artinian modules, and hence complete.

Thus, the functor on the right is fully faithful, and so the functor on the left is as

well.

It now follows easily from Corollary 4.11, Theorem 5.2, and Theorem 5.7 in [Dyc11]

that the functor

[MF(k[x1, . . . , xn], qn)]→ [MF(Q̂, qn)]

is fully faithful.

Remark 2.4.3. Suppose q′ : V ′ → k is another non-degenerate quadratic form. Choose

a basis of V ′ with respect to which q′ is diagonal, and let x1, . . . , xm denote the basis of

(V ′)∗ corresponding to this choice of basis. As above, we may think of q′ as an element

of S2((V ′)∗). Set Q′ to be the localization of S((V ′)∗) at the ideal (x1, . . . , xm).

It is well-known that the Z/2Z-graded tensor product of Cliffk(q) and Cliffk(q
′)

is canonically isomorphic to Cliffk(q + q′). Further, by Remark 1.3 in [Yos98], the

Z/2Z-graded tensor product of Clifford modules is compatible, via this canonical

isomorphism and the equivalence in Theorem 2.4.1, with the tensor product STMF in

Proposition 2.3.1. That is, one has a commutative diagram

[Ob(modZ/2Z(Cliffk(q)))]× [Ob(modZ/2Z(Cliffk(q)))] [Ob(modZ/2Z(Cliffk(q + q′)))]

[Ob([MF(Q, q)])]× [Ob([MF(Q′, q′)])] [Ob([MF(Q⊗k Q′, q + q′)])]

.................................................................................................................................................
.....
.......
.....

Θq ×Θq′

.................................................................................................................................................... ............
STMF

.................................................................................................................................................
.....
.......
.....

Θq+q′

............................................. ............

where [Ob(C)] denotes the collection of isomorphism classes of objects in a category

C.

Let C be a rank 1 free Z/2Z-graded Cliffk(q)-module. If dim(V ) = 1 and q = x2,

it is easy to see that Θq([C]) = kstab, where kstab is as defined in Section 2.2.4.
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By the discussion in Section 6.1 of [Dyc11], the tensor product of a stabilization

of the residue field of k[x]/(x2) with itself is a stabilization of the residue field of

k[x1, x2](x1,x2)/(x
2
1 + x2

2). Thus, by Remark 2.4.3, we have:

Proposition 2.4.4. If ai = 1 for 1 6 i 6 n, Θq([C]) = kstab.

Corollary 2.4.5. If k is algebraically closed, Θq(C) = kstab.

2.5 An example: f = y2 − x2(x + 1) ∈ C[x, y](x,y).

We now consider the category of matrix factorizations of f = y2− x2(x+ 1) over the

ring Q = C[x, y](x,y). Our main goal in this section is to show that [MF(Q, f)] is not

idempotent complete.

Let Q̂ denote the (x, y)-adic completion of Q. We first prove:

Proposition 2.5.1. K0[MF(Q, f)] � K0[MF(Q̂, f)].

Proof. We will show that K0[MF(Q, f)] is a torsion group, while K0[MF(Q̂, f)] is not.

Set R := Q/(f), let MCM(R) denote the category of maximal Cohen-Macaulay

modules over R, and let mod(R) denote the category of finitely generated modules

over R.

The inclusion of exact categories

MCM(R) ↪→ mod(R).

induces an isomorphism on Grothendieck groups. By the bottom of page 7 of [Dyc11],

MCM(R) is the stable category of the Frobenius exact category MCM(R); hence, by
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Section 7.4 of [Kra07], one has a well-defined map

K0(MCM(R))→ K0(MCM(R))

given by [M ] 7→ [M ].

Thus, one has a surjection

Φ : G0(R)→ K0(MCM(R)).

Since f = y2−x2(x+1) is irreducible over C[x, y], R has exactly two prime ideals:

(0) and (x, y). It follows that G0(R) is generated by [R] and [R/(x, y)].

Choose a nonzero element r ∈ R. One has an exact sequence

0→ R
·r−→ R→ R/(r)→ 0,

and R/(r) is a finite length R-module. Thus, the class [R/(x, y)] ∈ G0(R) is torsion.

Since Φ([R]) = 0, it follows that K0(MCM(R)) is torsion. Hence, by Remark 2.2.9,

K0[MF(Q, f)] is a torsion group.

x+1 ∈ Q̂ has a square root z ∈ Q̂; this follows, for instance, from Hensel’s Lemma.

Thus, there is an isomorphism

Q̂/(y2 − x2)→ Q̂/(f)

given by x 7→ zx and y 7→ y.

Finally, note that K0[MF(Q̂, y2 − x2)] is not a torsion group. One way to see this
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is that the Hochster theta pairing (see Section 2.2.3)

θ : K0[MF(Q̂, y2 − x2)]×K0[MF(Q̂, y2 − x2)]→ Z

is non-zero (Examples 1.1 in [BVS12]).

Remark 2.5.2. In fact, K0[MF(Q̂, y2 − x2)] ∼= Z. To see this, we need only show that

K0[MF(Q̂, y2 − x2)] is cyclic, since we demonstrated above that it is not torsion.

The only primes of Q̂/(y2 − x2) are (x, y), (x), and (y). Hence, G0(Q̂/(y2 − x2))

is generated by [Q̂/(x, y)], [Q̂/(x)], and [Q̂/(y)]. By the reasoning in the proof above,

one has a surjection

G0(Q̂/(y2 − x2))→ K0[MF(Q̂, y2 − x2)].

Since there is an exact sequence

0→ Q̂/(y)
·x−→ Q̂/(y)→ Q̂/(x, y)→ 0,

[Q̂/(x, y)] = 0 in G0(Q̂/(y2 − x2)). It is also easy to see that the image of [Q̂/(x)] in

K0[MF(Q̂, y2−x2)] is the negative of the image of [Q̂/(y)]. Thus, K0[MF(Q̂, y2−x2)]

is cyclic.

The following is now a straightforward consequence of Proposition 2.5 and several

results in [Dyc11]:

Proposition 2.5.3. The triangulated category [MF(Q, f)] is not idempotent com-

plete.

Proof. Q/(f) is an isolated hypersurface singularity in the sense of Definition 2.2.10;

thus, by Theorem 5.2 and Theorem 5.7 in [Dyc11], [MF(Q̂, f)] is the idempotent
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completion of [MF(Q, f)]. By Prop 2.5, this means [MF(Q, f)] cannot be idempotent

complete.

Since homotopy categories of dg-triangulated categories are idempotent complete,

we immediately obtain:

Corollary 2.5.4. MF(Q, f) is not dg-triangulated.

It is an illuminating exercise to produce an idempotent morphism in [MF(Q, f)]

that does not split; we conclude this section by doing so.

As discussed in the proof of Proposition 2.5, there is a ring isomorphism

Q̂/(x2 − y2)
∼=−→ Q̂/(f).

We construct a model for the stabilization of the residue field of Q̂/(x2 − y2), as

in Section 2.2.4.

Let F be a rank 2 free Q̂-module. Choose a basis e1, e2 of F , so that one has a

basis 1, e1, e2, e1e2 of
⊕2

i=0∧i
F .

As in Section 2.2.4, we may use the expression

x2 − y2 = x · x+ (−y) · y

to build the matrix factorization

Ex2−y2 = (∧0
F ⊕∧2

F


x −y

−y x


−�==========�−

x y

y x


∧1

F ).
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Again following Section 2.2.4, express EndMF(Ex2−y2) in terms of generators and

relations as the dg Q̂-algebra

Q̂〈λ1, λ2, c1, c2〉/([λi, λj], [ci, cj], [λi, cj]− δij)

with differential ∂ determined by ∂(λ1) = x = ∂(c1), ∂(λ2) = y, and ∂(c2) = −y.

As observed in Section 5.5 of [Dyc11], the cycles z1 = c1 − λ1 and z2 = c2 + λ2

generate H0EndMF(Ex2−y2) as a C-algebra (in fact, H0EndMF(Ex2−y2) is isomorphic

to the Clifford algebra CliffC(y2 − x2)).

Notice that the element 1+z1z2
2

of the algebra H0EndMF(Ex2−y2) is idempotent.

Since Q/(f) is IHS, the functor

[MF(Q, f)]→ [MF(Q̂, f)]

induced by the inclusion Q ↪→ Q̂ is fully faithful. Letting Ef and Ef̂ denote the

stabilizations of the residue fields of Q/(f) and Q̂/(f), we may trace through the

isomorphisms

H0EndMF(Ef )
∼=−→ H0EndMF(Ef̂ )

∼=−→ H0EndMF(Ex2−y2)

to obtain an idempotent z of [MF(Q, f)]. We now demonstrate that z does not split.

The morphism 1+z1z2
2

, thought of as an element of EndMF(Ex2−y2), may be ex-

pressed by the diagram
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∧0
F ⊕∧2

F ∧1
F

∧0
F ⊕∧2

F ∧1
F

∧0
F ⊕∧2

F

∧0
F ⊕∧2

F

....................................................................................................................................................................................................................................................................... ............

 x −y

−y x


....................................................................................................................................................................................................................................................................... ............

x y

y x



....................................................................................................................................................................................................................................................................... ............

 x −y

−y x


....................................................................................................................................................................................................................................................................... ............

x y

y x


.................................................................................................................................................
.....
.......
.....

P

.................................................................................................................................................
.....
.......
.....

P

.................................................................................................................................................
.....
.......
.....

P

where P is the matrix

 1
2
−1

2

−1
2

1
2

.

Since idempotents split in MF(Q̂, x2 − y2), the kernel and cokernel of 1+z1z2
2

de-

termine objects in MF(Q̂, x2 − y2). It is easy to see that ker(1+z1z2
2

) is isomorphic

to

Q̂
x−y−�===�−
x+y

Q̂.

As established in Remark 2.5.2, [Ef ] = 0 and [Q̂
x−y−�===�−
x+y

Q̂] 6= 0 in K0[MF(Q̂, x2−

y2)]; this implies that [coker(1+z1z2
2

)] = −[Q̂
x−y−�===�−
x+y

Q̂] 6= 0.

Now, suppose z splits. Choose an object Y of [MF(Q, f)] such that there is a

factorization

Ef
π−→ Y

ι−→ Ef

of z, where π ◦ ι = idY . Applying the composition

Θ : [MF(Q, f)]→ [MF(Q̂, f)]
∼=−→ [MF(Q̂, x2 − y2)]

yields a splitting of the idempotent 1+z1z2
2

; this means Θ(Y ) ∼= coker(1+z1z2
2

) in

[MF(Q̂, x2 − y2)].
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Since the class [coker(1+z1z2
2

)] is nonzero in K0[MF(Q̂, x2 − y2)] ∼= Z, this implies

that the map

K0[MF(Q, f)]→ K0[MF(Q̂, x2 − y2)]

induced by Θ is nonzero. But this is impossible, since K0[MF(Q, f)] is torsion. Thus,

z does not split.

2.6 Periodicity

The following phenomenon, discovered by Knörrer in [Knö87], is known as Knörrer

periodicity :

Theorem 2.6.1. Suppose k is an algebraically closed field and char(k) 6= 2. Let q =

u2 + v2 ∈ k[[u, v]]. If f ∈ (x1, . . . , xn)r {0} ⊆ k[[x1, . . . , xn]], there is a triangulated

equivalence

K : [MF(k[[x1, . . . , xn]], f)]→ [MF(k[[x1, . . . , xn, u, v]], f + q)].

Remark 2.6.2. Set X to be the matrix factorization

k[[u, v]]
u+iv−�====�−
u−iv

k[[u, v]]

of u2 + v2 over k[[u, v]]. K may be given by

P 7→ P ⊗MF X

on objects and

α 7→ α⊗ idX
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on morphisms.

A version of Knörrer periodicity for isolated hypersurface singularities may be

deduced from the following proposition:

Proposition 2.6.3. Suppose Q and Q′ are algebras over a field k. Let f ∈ Q and

f ′ ∈ Q′, and suppose Q/(f) and Q′/(f ′) are IHS. Set Q′′ := Q⊗k Q′. If there exists

an object X in MF(Q′, f ′) such that

(a) X is a compact generator of [MF(Q̂′, f ′)], and

(b) the inclusion k ↪→ End
MF(Q̂′,f ′)(X) is a quasi-isomorphism

then the dg functor

KX : MF(Q̂, f)→ MF(Q̂′′, f ⊕ f ′)

given by

P 7→ P ⊗MF X

on objects and

α 7→ α⊗ idX

on morphisms is a quasi-equivalence.

Proof. By Sections 4 and 5 of [Dyc11], the inclusion

EndMF(X) ↪→ MF(Q̂′, f ′).

is a Morita equivalence. Applying Exercise 4.4.11 in [Toë11], we have a chain of

Morita equivalences

MF(Q̂, f)⊗k k ↪→ MF(Q̂, f)⊗k EndMF(X) ↪→ MF(Q̂, f)⊗k MF(Q̂′, f ′).
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Composing with ŜTMF, Proposition 2.3.4 yields a Morita equivalence

MF(Q̂, f)→ MF(Q̂′′, f ⊕ f ′).

This composition is clearly the functor KX . Since both MF(Q̂, f) and MF(Q̂′′, f⊕

f ′) are dg-triangulated by Lemma 5.6 in [Dyc11], an application of Proposition 2.1.15

finishes the proof.

To deduce a version of Knörrer periodicity for isolated hypersurface singularities,

assume k to be an algebraically closed field such that char(k) 6= 2, set Q′ = k[u, v]

and f ′ = u2 + v2, and take X to be the matrix factorization

k[u, v]
u+iv−�====�−
u−iv

k[u, v].

This is the approach taken in Section 5.3 of [Dyc11].

We point out that k is not assumed to be algebraically closed in Proposition 2.6.3,

and no assumptions on the characteristic of k are made, either. In particular, we

may use Proposition 2.6.3 to prove an 8-periodic version of Knörrer periodicity over

R (this result implies Theorem 1.0.1 from the introduction):

Theorem 2.6.4. Suppose Q is an R-algebra. Let f ∈ Q, and suppose Q/(f) is IHS.

Set Q′ := R[u1, . . . , u8], q := u2
1 + · · · + u2

8 ∈ Q′, and Q′′ := Q ⊗R Q′. Then there

exists a matrix factorization X of q over Q′ such that the dg functor

MF(Q̂, f)→ MF(Q̂′′, f + q)

given by

P 7→ P ⊗MF X
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on objects and

α 7→ α⊗ idX

on morphisms is a quasi-equivalence.

Proof. We equip the matrix algebra Mat16(R) of 16 × 16 of matrices over R with a

Z/2Z-grading in the following way: A = (aij) is homogeneous of even degree if aij = 0

whenever i+ j is odd, and A is homogeneous of odd degree if aij = 0 whenever i+ j

is even. Then, by Proposition V.4.2 in [Lam05],

Cliffk(q) ∼= Mat16(R)

as Z/2Z-graded algebras. In particular,

[MF(Q̂′, q)] ∼= modZ/2Z(Mat16(R))

by Theorem 2.4.1.

Let M ∈ modZ/2Z(Mat16(R)) be the module of matrices with nonzero entries only

in the first column, and let X be a matrix factorization corresponding to M under

the equivalence of categories in Theorem 2.4.1. Since

EndMat16(R)(M) ∼= R

as Z/2Z-graded algebras, where R is concentrated in even degree, we have

H0(EndMF(X)) ∼= R.
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Thus, the inclusion

R ↪→ EndMF(X)

is a quasi-isomorphism. Also, by Proposition 2.4.4,

(X ⊕X[1])⊕8 ∼= Rstab

in MF(Q̂′, q); it follows from Sections 4 and 5 of [Dyc11] that X is a compact generator

of MF(Q̂′, q). Now apply Proposition 2.6.3.

Remark 2.6.5. Explicitly, one may take X to be the matrix factorization

Q̂′
⊕8 A−�==�−

B
Q̂′
⊕8
,

where

A =



u1 u2 −u3 u4 u5 −u6 −u7 −u8

−u2 u1 −u4 −u3 u6 u5 −u8 u7

u3 u4 u1 −u2 u7 u8 u5 −u6

−u4 u3 u2 u1 u8 −u7 u6 u5

u5 u6 u7 u8 u1 −u2 u3 −u4

−u6 u5 u8 −u7 u2 u1 u4 u3

−u7 −u8 u5 u6 −u3 −u4 u1 u2

−u8 u7 −u6 u5 u4 −u3 −u2 u1


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and

B =



u1 −u2 u3 −u4 u5 u6 u7 u8

u2 u1 u4 u3 −u6 u5 u8 −u7

−u3 −u4 u1 u2 −u7 −u8 u5 u6

u4 −u3 −u2 u1 −u8 u7 −u6 u5

−u5 u6 u7 u8 u1 u2 −u3 u4

−u6 −u5 u8 −u7 −u2 u1 −u4 −u3

−u7 −u8 −u5 u6 u3 u4 u1 −u2

−u8 u7 −u6 −u5 −u4 u3 u2 u1



This can be verified by computing Θu21+···+u28(M) using the formula provided in

Section 2.4.

Remark 2.6.6. Theorem 2.6.4 implies the existence of a Knörrer-type periodicity for

matrix factorizations over R of period at most 8. We point out that the period is

exactly 8, since the Brauer-Wall group of R is the cyclic group Z/8Z generated by

the class of CliffR(x2) (see [Yos90] Remark 14.9).

It is natural to ask whether one may use Proposition 2.6.3 to exhibit additional

periodic behaviors of matrix factorization categories. We conclude this section with

some remarks in this direction.

The existence of an object X as in the setup of 2.6.3 implies that the dga A(Q′,f ′) is

formal, since, by Theorem 5.1 in [Dyc11], A(Q′,f ′) is quasi-isomorphic, in this setting,

to the endomorphism dga of a Z/2Z-graded complex of k-vector spaces. On the other

hand, by Theorem 5.9 in [Dyc11], A(Q′,f ′) can only be formal when f ′ has no terms of

degree higher than 2. It follows that, when char(k) 6= 2, we may use the Buchweitz-

Eisenbud-Herzog equivalence (Theorem 2.4.1) to reduce the problem of determining
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whether MF(Q′, f ′) is Morita equivalent to k to studying the image of the group

homomorphism

WG(k)→ BW (k)

where WG(k) is the Witt-Grothendieck ring of k, thought of as an additive group,

and BW (k) is the Brauer-Wall group of k. When char(k) = 2, less is known about

the structure of matrix factorization categories over non-degenerate quadratics. We

leave for future work the problem of finding sufficient conditions for such a matrix

factorization category to be Morita equivalent to its ground field.
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Chapter 3

Matrix Factorizations and the

K-theory of the Milnor Fiber

We have demonstrated that matrix factorization categories associated to isolated

hypersurface singularities over C and R exhibit 2- and 8-periodic versions of Knörrer

periodicity, respectively. This pattern resembles Bott periodicity in topological K-

theory; the goal of this chapter is to explain this resemblance.

We give a rough sketch of our approach. The classical link between the periodicity

of Clifford algebras up to Z/2Z-graded Morita equivalence and Bott periodicity in

topological K-theory is the Atiyah-Bott-Shapiro construction, which first appeared in

Part III of [ABS64]. Loosely speaking, the Atiyah-Bott-Shapiro construction is a way

of mapping a finitely generated Z/2Z-graded module over a real or complex Clifford

algebra to a class in the K-theory of a sphere.

Composing the Buchweitz-Eisenbud-Herzog equivalence (Theorem 2.4.1) with the

Atiyah-Bott-Shapiro construction, we have a way of assigning a class in the topological

K-theory of a sphere to a matrix factorization of a non-degenerate quadratic form over
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R or C:

mf’s of real/complex quadratics K-theory of spheres
ABS ◦BEH

The idea is to lift this composition; that is, we wish to associate a space Xf to a

real or complex polynomial f and construct a map from matrix factorizations of f to

the topological K-theory of Xf so that the diagram

mf’s of real/complex quadratics K-theory of spheres

mf’s of real/complex polynomials K-theory of spaces of the form Xf

ABS ◦BEH

commutes.

It turns out that the right choice of Xf is the Milnor fiber (resp. positive or

negative Milnor fiber) associated to the complex (resp. real) polynomial.

We begin this chapter with discussions of known results concerning the Milnor

fiber and relative topological K-theory. Then, using the work of Atiyah-Bott-Shapiro

in [ABS64] as a guide, we will complete the above diagram, and we will use the bottom

arrow to explain a precise sense in which Knörrer periodicity and Bott periodicity are

compatible phenomena.

3.1 The real and complex Milnor fibers

Let f ∈ C[x0, . . . , xn], and suppose f(0) = 0. We begin this section by describing the

construction of the Milnor fiber associated to f , following the exposition in Section 1

of [BVS12]. We then discuss various properties of the Milnor fiber that we will make
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use of later on.

3.1.1 Construction of the Milnor fibration and some

properties of the Milnor fiber

For ε > 0, define Bε to be the closed ball centered at the origin of radius ε in Cn+1,

and for δ > 0, set D∗δ to be the punctured disk centered at the origin in C of radius

δ.

Choose ε > 0 so that, for 0 < ε′ 6 ε, ∂Bε′ intersects f−1(0) transversely. Upon

choosing such an ε, choose δ ∈ (0, ε) such that f−1(t) intersects ∂Bε transversely for

all t ∈ D∗δ . Then the map

ψ : Bε ∩ f−1(D∗δ)→ D∗δ

given by ψ(x) = f(x) is a locally trivial fibration.

The map ψ depends, of course, on our choices of ε and δ. However, if ε′, δ′

is another pair of positive numbers satisfying the above conditions, the fibration

associated to these choices is equivalent to the one above (see Definition 1.5 in Chapter

2 of [Dim92] for a description of what it means for two fibrations to be equivalent).

We are thus justified in calling ψ the Milnor fibration associated to f .

Remark 3.1.1. The Milnor fibration was originally introduced in [Mil68]. The above

construction is not the same as the construction of the Milnor fibration in [Mil68], but

the two constructions yield equivalent fibrations; this is a result due to Lê in [Lê76].

We will call the fiber of this fibration the Milnor fiber of f and denote it by Ff .

Ff is independent of our choices of ε and δ up to homeomorphism, so we suppress

these choices in the notation. However, these choices will be significant at various

points later on.
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Definition 3.1.2. Let k be a field. A polynomial f ∈ k[x0, . . . , xn] is called quasi-

homogeneous of degree d if there exist positive integers w0, . . . , wn such that f is

a homogeneous element of degree d in the Z-graded ring k[x0, . . . , xn], where each

variable xi has degree wi.

Remark 3.1.3. Suppose f is quasi-homogeneous, and let t > 0. Define

h : C[x0, . . . , xn]→ C[x0, . . . , xn]

to be the ring automorphism given by

xi 7→
xi
twi/d

.

Then, if the Milnor fiber of f may be taken to be a fiber of f over t, the Milnor fiber

of h(f) may be taken to be a fiber over 1; hence one may often assume without loss

that the Milnor fiber associated to a quasi-homogeneous polynomial is a fiber over 1.

If C[x0, . . . , xn](x0,...,xn)/(f) is IHS (see Definition 2.2.10), set

µ := dimC
C[x0, . . . , xn](x0,...,xn)

( ∂f
∂x0
, . . . , ∂f

∂xn
)

<∞,

the Milnor number of f .

Theorem 3.1.4 (Milnor, 1968). If C[x0, . . . , xn](x0,...,xn)/(f) is IHS, Ff is homotopy

equivalent to a wedge sum of µ copies of Sn.

Remark 3.1.5. Since ψ restricts to a fibration over a circle, Ff comes equipped with

a monodromy homeomorphism

hf : Ff
∼=−→ Ff .
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3.1.2 The Sebastiani-Thom homotopy equivalence

We recall the definition of the join of two topological spaces:

Definition 3.1.6. Let X and Y be compact Hausdorff spaces. The join of X and

Y , denoted X ∗ Y , is the quotient of X × Y × I by the relations

(x1, y, 0) ∼ (x2, y, 0)

(x, y1, 1) ∼ (x, y2, 1)

equipped with the quotient topology.

Remark 3.1.7. The cone CX over a compact Hausdorff space X can be expressed

explicitly as the quotient of

X × [0, 1]

by the relation

(x1, 0) ∼ (x2, 0)

for all x1, x2 ∈ X.

When X and Y are compact Hausdorff,

X ∗ Y ∼= (CX × Y ) ∪ (X × CY ) ⊆ CX × CY ;

here, we identify X and Y with the subsets X × {1} and Y × {1} of CX and CY ,

respectively.

By [Bro06] 5.7.4, one has an explicit homeomorphism

CX × CY → C(X ∗ Y )
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given by

(x, t, y, t′) 7→ ((x, y,
t

2t′
), t′), if t′ > t, t′ 6= 0

(x, t, y, t′) 7→ ((x, y, 1− t′

2t
), t), if t > t′, t 6= 0

(x, 0, y, 0) 7→ ((x, y, 0), 0),

and this map restricts to a homeomorphism

(CX × Y ) ∪ (X × CY )→ X ∗ Y.

Example 3.1.8. Let X be a compact Hausdorff space.

• X ∗ point ∼= CX.

• X ∗ S0 ∼= SX, the suspension of X.

Remark 3.1.9. When forming the join of spaces X and Y that are not necessarily

compact Hausdorff, the set X ∗ Y is typically equipped with the weakest topology

such that the coordinate projections from X ×Y × I to X ∗Y are continuous. When

X and Y are compact Hausdorff, this topology coincides with the quotient topology

([Ehl92] Section 3.2).

Now, suppose f ∈ C[x0, . . . , xn], f ′ ∈ C[y0, . . . , ym], and f(0) = 0 = f ′(0). Let

f⊕f ′ denote the sum of f and f ′ thought of as an element of C[x0, . . . , xn, y0, . . . , ym].

We have the following classical result relating the Milnor fibers of f , f ′, and f⊕f ′,

due to Sebastiani-Thom:

Theorem 3.1.10 ([ST71]). There is a homotopy equivalence

ST : Ff ∗ Ff ′ → Ff⊕f ′
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that is compatible with monodromy; that is, the square

Ff ∗ Ff ′
ST−−−→ Ff⊕f ′

hf∗hf ′
y hf⊕f ′

y
Ff ∗ Ff ′

ST−−−→ Ff⊕f ′

commutes up to homotopy.

We refer the reader to Section 2.7 of [AGZV12], §3 of Chapter 3 in [Dim92], and

[Oka73] for discussions related to Theorem 3.1.10.

Suppose C[x0, . . . , xn](x0,...,xn)/(f), C[y0, . . . , ym](y0,...,ym)/(f
′) are IHS (see Defini-

tion 2.2.10). We now exhibit an explicit map realizing the homotopy equivalence in

Theorem 3.1.10 in this setting, following Section 2.7 of [AGZV12].

Choose real numbers ε′′, δ′′, such that the map

Bε′′ ∩ (f ⊕ f ′)−1(D∗δ′′)→ D∗δ′′

given by x 7→ (f ⊕ f ′)(x) is a locally trivial fibration, as above.

Similarly, choose ε, δ and ε′, δ′, as well as t′′ ∈ D∗δ′′ , so that the analogous maps

Bε ∩ f−1(D∗δ)→ D∗δ

Bε′ ∩ (f ′)−1(D∗δ′)→ D∗δ′

are locally trivial fibrations, and also so that

(a) ε, ε′ are sufficiently small so that Bε ×Bε′ ⊆ Bε′′ .

(b) |t′′| < min{δ, δ′}.

Set Ff , Ff ′ , and Ff⊕f ′ to be the Milnor fibers of f , f ′, and f ⊕ f ′ over t′′.
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The goal is to construct an injective homotopy equivalence

CFf × Ff ′ ∪ Ff × CFf ′ → Ff⊕f ′ .

Applying Lemma 2.10 in [AGZV12], choose an injection

H : CFf → Bε

such that

• H(x, 1) = x ∈ Ff ⊆ Bε,

• H(−, s) : Ff → Bε maps into the Milnor fiber Bε ∩ f−1(st′′) for s ∈ (0, 1), and

• H(x, 0) = 0 for all x ∈ Ff

Example 3.1.11. If f is quasi-homogeneous of degree d with weights w0, . . . , wd,

such a map H may be given by

(x, s) 7→ (s
w0
d x0, . . . , s

wn
d xn).

Notice that our isolated singularity assumption is not necessary in this example.

Choose H ′ similarly for the Milnor fiber Ff ′ .

By the discussion on pages 54-55 of [AGZV12] and Remark 3.1.7, there is an

injective homotopy equivalence

(im(H)× Ff ′ ∪ Ff × im(H ′))→ Ff⊕f ′
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given by

(H(x, s), H ′(y, s′)) 7→ (H(x,
1 + s− s′

2
), H ′(y,

1− s+ s′

2
)).

Composing, one has an injective homotopy equivalence

g : CFf × Ff ′ ∪ Ff × CFf ′ → Ff⊕f ′ ,

as desired. The map obtained by composing g with the inverse of the homeomorphism

from CFf × Ff ′ ∪ Ff × CFf ′ to Ff ∗ Ff ′ in Remark 3.1.7 enjoys the same properties

as the map ST in Theorem 2.3.4.

Remark 3.1.12. The homotopy equivalence

(im(H)× Ff ′ ∪ Ff × im(H ′))→ Ff⊕f ′

above extends to an injection of pairs

G : (im(H)× im(H ′), im(H)× Ff ′ ∪ Ff × im(H ′))→ (Bε′′ , Ff⊕f ′)

that maps a point (H(x, s), H ′(y, s′)) to

(H(x,
s

2
), H ′(y,

2s′ − s
2

), if s 6 s′, s′ 6= 0

(H(x,
2s− s′

2
), H ′(y,

s′

2
), if s′ 6 s, s 6= 0

0, if s = 0 = s′.

The image of im(H)× im(H ′) under this injection is homeomorphic to CFf⊕f ′ in

an evident way.
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3.1.3 An analogue of the Milnor fibration for polynomials

over R

Now, suppose f ∈ R[x0, . . . , xn] and f(0) = 0. One may construct a topological

locally trivial fibration

ψ : Bε ∩ f−1((−δ, 0) ∪ (0, δ))→ (−δ, 0) ∪ (0, δ)

for some ε > 0 and δ such that 0 < δ << ε in the same way as above, where Bε is

now the closed ball of radius ε centered at the origin in Rn+1.

But now, fibers over (−δ, 0) and (0, δ) need not be homeomorphic. For instance, if

f = x2
0 + · · ·+x2

n, the positive fibers of ψ are homeomorphic to Sn, while the negative

fibers are empty.

We denote by F+
f and F−f the positive and negative Milnor fibers of f . The

topology of the real Milnor fibers is more complicated than that of the complex

Milnor fiber. However, there is a version of Theorem 3.1.10 for real Milnor fibers:

Theorem 3.1.13 ([DP92] Remark 11). Suppose

f ∈ R[x0, . . . , xn], g ∈ R[y0, . . . , ym]

are quasi-homogeneous, and f(0) = 0 = g(0).

If F+
f and F+

g are nonempty, there is a homotopy equivalence

ST : F+
f ∗ F

+
g → F+

f⊕g.

Remark 3.1.14. Since F+
−f = F−f , we have a similar result for negative Milnor fibers.
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3.2 Relative topological K-theory and the Euler

characteristic

We introduce some facts concerning relative topological K-theory that we will need

along the way. All results in this section are essentially due to Atiyah-Bott-Shapiro

in [ABS64], though we modify their exposition at various points to fit our purposes.

Let X be a compact topological space, and let Y be a closed subspace of X such

that there exists a homotopy equivalence of pairs between (X, Y ) and a finite CW

pair; that is, a pair (X ′, Y ′) where X ′ is a finite CW complex and Y ′ is a subcomplex

of X ′. We construct a category C1(X, Y ) from (X, Y ) in the following way:

• Objects of C1(X, Y ) are pairs of real vector bundles V1, V0 over X equipped with

isomorphisms

V1|Y
σ−→ V0|Y .

Denote objects of C1(X, Y ) by (V1, V0;σ).

• Morphisms in C1(X, Y ) are pairs of morphisms of vector bundles over X

α1 : V1 → V ′1 , α0 : V0 → V ′0

such that the following diagram of maps of vector bundles over Y commutes:

V1|Y
σ−−−→ V0|Y

α1|Y

y α0|Y

y
V ′1 |Y

σ′−−−→ V ′0 |Y

We write morphisms in C1(X, Y ) as ordered pairs (α1, α0).

Remark 3.2.1. The reason for the subscript in the notation C1(X, Y ) is that, for any

n > 1, one may build a category Cn(X, Y ) with objects given by ordered n+ 1-tuples
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of vector spaces on X whose restrictions to Y fit into an exact sequence (cf. [ABS64]

§8).

Remark 3.2.2. We will work with real vector bundles throughout this section; however,

there is an analogous version of every result in this section for complex vector bundles.

Proposition 3.2.3. A map g : (X1, Y1)→ (X2, Y2) of pairs of spaces as above induces

a functor

g∗ : C1(X2, Y2)→ C1(X1, Y1).

Proof. On objects,

g∗((V1, V0;σ)) = (g∗(V1), g∗(V0); (g|Y1)∗(σ)).

If α = (α1, α0) : (V1, V0;σ)→ (V ′1 , V
′

0 ;σ′) is a morphism,

g∗(α) = (g∗(α1), g∗(α0)).

The diagram

g∗(V1)|Y1
(g|Y1 )∗(σ)
−−−−−−→ g∗(V0)|Y1

g∗(α1)|Y1

y g∗(α0)|Y1

y
g∗(V ′1)|Y1

(g|Y1 )∗(σ′)
−−−−−−→ g∗(V ′0)|Y1

commutes, since pullback of vector bundles respects composition.

Given objects V = (V1, V0;σ) and V ′ = (V ′1 , V
′

0 ;σ′) in C1(X, Y ), define an object

V ⊕ V ′ := (V1 ⊕ V ′1 , V0 ⊕ V ′0 ;σ ⊕ σ′).



70

We have evident canonical morphisms

ιV := V → V ⊕ V ′

ιV ′ := V ′ → V ⊕ V ′

Proposition 3.2.4. Let V = (V1, V0;σ) and V ′ = (V ′1 , V
′

0 ;σ′) be objects in C1(X, Y ).

Then

(V ⊕ V ′, ιV , ιV ′)

is the coproduct of V and V ′ in C1(X, Y ).

Proof. This follows easily from the fact that

(V1 ⊕ V ′1 , (ιV )1, (ιV ′)1)

and

(V0 ⊕ V ′0 , (ιV )0, (ιV ′)0)

are the coproducts in the category of vector bundles over X of V1, V
′

1 and V0, V
′

0 .

Proposition 3.2.5. C1(X, Y ) is an additive category.

Proof. It is well-known that the category of vector bundles over any topological space

is additive ([Kar08] Theorem I.6.1).

Given morphisms

(α1, α0), (β1, β0) : (V1, V0;σ)→ (V ′1 , V
′

0 ;σ′),

define

α + β := (α1 + β1, α0 + β0).
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It is easy to check that HomC(X,Y )((V1, V0;σ), (V ′1 , V
′

0 ;σ′)), equipped with this op-

eration, is an abelian group and that composition in C1(X, Y ) is Z-bilinear.

Finally, apply Proposition 3.2.4 to conclude that C1(X, Y ) admits finite coprod-

ucts.

Remark 3.2.6. A morphism in (α1, α0) in C1(X, Y ) is an isomorphism (resp. monomor-

phism, epimorphism) if and only if α1 and α0 are isomorphisms (resp. monomor-

phisms, epimorphisms) of vector bundles over X.

We shall call an object of C1(X, Y ) elementary if it is isomorphic to an object

of the form (V, V ; idV |Y ). Notice that the direct sum of two elementary objects in

C1(X, Y ) is again elementary.

There is a useful alternative definition of an elementary object:

Lemma 3.2.7. Let (V1, V0;σ) be an object in C1(X, Y ). The following are equivalent:

(1) σ can be extended to an isomorphism σ̃ : V1 → V0.

(2) (V1, V0;σ) is elementary.

Proof. Suppose (V1, V0;σ) is elementary. Then we have a commutative square on Y :

V1|Y
σ−−−→ V0|Y

α1|Y

y yα0|Y

V |Y
idV |Y−−−→ V |Y

where V is a vector bundle over X, and

α1 : V1 → V , α0 : V → V0

are isomorphisms of vector bundles over X. Observe that σ lifts to α−1
0 ◦ α1.
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Conversely, suppose σ can be extended to an isomorphism σ̃ : V1 → V0. Then we

have a commutative square of maps of vector bundles on X:

V1
σ̃−−−→ V0

idV1

y yσ̃−1

V1

idV1−−−→ V1

If V and V ′ are objects in C1(X, Y ), we will say V ∼ V ′ if and only if there exist

elementary objects E,E ′ such that

V ⊕ E ∼= V ′ ⊕ E ′.

The relation ∼ is an equivalence relation. Define L1(X, Y ) to be the commutative

monoid of equivalence classes under ∼ with operation given by ⊕.

Remark 3.2.8. Let (X1, Y1), (X2, Y2) be pairs as above, and let g : (X1, Y1)→ (X2, Y2)

be a map of pairs. Then the functor

g∗ : C1(X2, Y2)→ C1(X1, Y1)

applied to an elementary object is again elementary. Hence, g∗ induces a map of

monoids

g∗ : L1(X2, Y2)→ L1(X1, Y1).

One may similarly define monoids Ln(X, Y ) involving longer sequences of bundles;

see [ABS64] Definition 7.1 for details. Denote elements of Ln(X, Y ) by

[Vn, . . . , V0;σn, . . . , σ1].
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We point out that there is an inclusion map

jn : L1(X, Y )→ Ln(X, Y )

given by

[V1, V0;σ] 7→ [0, . . . , 0, V1, V0; 0, . . . , 0, σ],

and, by Proposition 7.4 in [ABS64], jn is an isomorphism for all n.

The main reason we are interested in the monoid L1(X, Y ) is the following result

due to Atiyah-Bott-Shapiro:

Proposition 3.2.9 ([ABS64] 9.1). There exists a unique natural homomorphism

χ : L1(X, Y )→ KO0(X, Y )

which, when Y = ∅, is given by

χ(E) = [V0]− [V1].

Moreover, χ is an isomorphism.

In particular, L1(X, Y ) is an abelian group. Atiyah-Bott-Shapiro call the map χ

an Euler characteristic.

Let (X, Y ), (X ′, Y ′) be pairs as above. We conclude this section by exhibiting a

product map

L1(X, Y )⊗ L1(X ′, Y ′)→ L1(X ×X ′, X × Y ′ ∪ Y ×X ′)

that agrees, via χ, with the usual product on relative K-theory.
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Let V = (V1, V0;σ) ∈ Ob(C1(X, Y )) and V ′ = (V ′1 , V
′

0 ;σ′) ∈ Ob(C1(X ′, Y ′)). By

Proposition 10.1 in [ABS64], we may lift σ, σ′ to maps σ̃, σ̃′ of bundles over X and

X ′, respectively.

Thinking of

0→ V1
σ̃−→ V0 → 0

0→ V ′1
σ̃′−→ V ′0 → 0

as complexes of bundles with V1, V
′

1 in degree 1 and V0, V
′

0 in degree 0, we may take

their tensor product

V ⊗ V ′ = 0→ V1 ⊗ V ′1
τ2−→ (V1 ⊗ V ′0)⊕ (V0 ⊗ V ′1)

τ1−→ V0 ⊗ V ′0 → 0,

where

τ1 =

(
σ̃ ⊗ idV ′0 idV0 ⊗ σ̃′

)

τ2 =

−idV1 ⊗ σ̃′

σ̃ ⊗ idV ′1


The result is a complex of vector bundles over X×X ′ that is exact upon restriction

to X × Y ′ ∪ Y ×X ′.

Choose a splitting π of τ2|X×Y ′∪Y×X′ . Then,

[(V1 ⊗ V ′0)⊕ (V0 ⊗ V ′1), (V0 ⊗ V ′0)⊕ (V1 ⊗ V ′1);

τ1|X×Y ′∪Y×X′

π

]

is an element of L1(X ×X ′, X × Y ′ ∪ Y ×X ′).
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Now, the pairing

L1(X, Y )⊗ L1(X ′, Y ′)→ L1(X ×X ′, X × Y ′ ∪ Y ×X ′)

described in Proposition 10.4 of [ABS64] is given by sending a simple tensor

[V1, V0;σ]⊗ [V ′1 , V
′

0 ;σ′]

to

j−1
2 ([V1 ⊗ V ′1 , (V1 ⊗ V ′0)⊕ (V0 ⊗ V ′1), V0 ⊗ V ′0 ; τ2|X×Y ′∪Y×X′ , τ1|X×Y ′∪Y×X′ ]);

this follows from the proof of Proposition 10.4.

Thus, in order to show that the assignment

Ob(C1(X, Y ))×Ob(C1(X ′, Y ′))→ L1(X ×X ′, X × Y ′ ∪ Y ×X ′)

given by

(V, V ′) 7→ [(V1 ⊗ V ′0)⊕ (V0 ⊗ V ′1), (V0 ⊗ V ′0)⊕ (V1 ⊗ V ′1);

τ1|X×Y ′∪Y×X′

π

]

determines

(a) a well-defined pairing on Ob(C1(X, Y )) × Ob(C1(X ′, Y ′)) up to our choices of

liftings σ̃, σ̃′ and splitting π, and
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(b) a pairing

L1(X, Y )⊗ L1(X ′, Y ′)→ L1(X ×X ′, X × Y ′ ∪ Y ×X ′)

that coincides with the pairing in Proposition 10.4 of [ABS64],

we need only prove:

Lemma 3.2.10. Let (X, Y ) be a pair as above, and let [V2, V1, V0;σ2, σ1] ∈ L2(X, Y ).

If π is a splitting of σ2,

j2([V1, V0 ⊕ V2;

σ1

π

]) = [V2, V1, V0;σ2, σ1].

Proof. First, suppose dim(V1) > dim(V2) + dim(X). Apply Lemma 7.2 in [ABS64] to

construct a monomorphism

h : V2 → V1

that extends σ2. By the proof of Lemma 7.3 in [ABS64],

j2([coker(h), V0;σ1]) = [V2, V1, V0;σ2, σ1],

and so

j2([coker(h)⊕ V2, V0 ⊕ V2;A]) = [V2, V1, V0;σ2, σ1],

where

A =

σ1 0

0 idV2|Y

 .
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Hence, it suffices to show

[coker(h)⊕ V2, V0 ⊕ V2;A] = [V1, V0 ⊕ V2;

σ1

π

]

Choose a splitting s of h, and let

p : V1 → coker(h)

denote the canonical surjection. Then we have an isomorphism

p
s

 : V1 → coker(h)⊕ V2.

Since s|Y is a splitting of σ2, we also have an isomorphism

 σ1

s|Y

 : V1|Y → V0|Y ⊕ V2|Y .

We have a commutative square

V1|Y V0|Y ⊕ V2|Y

coker(h)|Y ⊕ V2|Y V0|Y ⊕ V2|Y

.................................................................................................................................................... ............

 σ1

s|Y


................................................................................................................................................................................................................
.....
.......
.....

p|Y
s|Y


................................................................................................................................................................................................................
.....
.......
.....

idV0|Y ⊕V2|Y

............................................................... ............
A
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Thus,

[coker(h)⊕ V2, V0 ⊕ V2;A] = [V1, V0 ⊕ V2;

 σ1

s|Y

].

Notice that we have an object

[V1 × I, (V0 ⊕ V2)× I; t

 σ1

s|Y

+ (1− t)

σ1

π

]

in C1(X×I, Y ×I) whose restrictions to X×{0} and X×{1} are [V1, V0⊕V2;

σ1

π

]

and [V1, V0⊕V2;

 σ1

s|Y

], respectively. It now follows from Proposition 9.2 in [ABS64]

that

[V1, V0 ⊕ V2;

 σ1

s|Y

] = [V1, V0 ⊕ V2;

σ1

π

].

This finishes the case where dim(V1) > dim(V2) + dim(X).

For the general case, choose a bundle E such that

dim(E) + dim(V1) > dim(V2) + dim(X).

Define

U := [V2, V1 ⊕ E, V0 ⊕ E;

σ2

0

 ,

σ1 0

0 idV1|Y

],
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U ′ := [V1 ⊕ E, V0 ⊕ E ⊕ V2;


σ1 0

0 idV1|Y

π 0

]

Notice that

[V2, V1, V0;σ2, σ1] = U,

and

[V1, V0 ⊕ V2;

σ1

π

] = U ′,

so that it suffices to show that j(U ′) = U . Since

(
π 0

)
is a splitting of

σ2

0

,

this follows from the case we have already considered.

Let [V ], [V ′] denote the classes of V, V ′ in L1(X, Y ), L1(X ′, Y ′), and define

[V ]⊗L1 [V ′] := [(V1 ⊗ V ′0)⊕ (V0 ⊗ V ′1), (V0 ⊗ V ′0)⊕ (V1 ⊗ V ′1);

τ1|X×X′,X×Y ′∪Y×X′

π

]

Remark 3.2.11. By Proposition 10.4 in [ABS64] and the above remarks,

χ([V ])⊗ χ([V ′]) = χ([V ]⊗L1 [V ′]).

3.3 A generalized Atiyah-Bott-Shapiro

construction

We now recall the classical Atiyah-Bott-Shapiro construction ([ABS64] Part III). Fol-

lowing Atiyah-Bott-Shapiro, we work with real Clifford algebras and KO-theory, and
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we point out that one may perform a similar construction involving complex Clifford

algebras and KU -theory.

Define

qn := −x2
1 − · · · − x2

n ∈ R[x1, . . . , xn]

for all n > 1, and set Cn := CliffR(qn). We also set C0 := R.

Let M(Cn) denote the free abelian group generated by isomorphism classes of

finitely-generated, indecomposable Z/2Z-graded modules over Cn. When we say a

Z/2Z-graded module is indecomposable, we mean that if the module is written as a

direct sum of two Z/2Z-graded modules, then one of the two summands must be 0.

There are evident injective maps

in : Cn → Cn+1

for all n > 0; these injections induce homomorphisms

i∗n : M(Cn+1)→M(Cn)

via restriction of scalars. Set

An := M(Cn)/i∗n(M(Cn+1)).

Define Dn to be the closed disk of radius 1 in Rn. An important special case of

the classical Atiyah-Bott-Shapiro construction is the group isomorphism

αn : An
∼=−→ L1(Dn, ∂Dn)

that appears in [ABS64] Theorem 11.5.



81

αn is defined as follows: let M = M1 ⊕M0 be a finitely generated Z/2Z-graded

Cn-module. We use the R-vector spaces M1 and M0 to construct real vector bundles

over Dn:

V1 := Dn ×M1

V0 := Dn ×M0

and we define a map

σ : V1 → V0

given by (x,m) 7→ (x, x ·m), where · denotes the action of Cn on M . Here, we are

thinking of Dn ⊆ Rn as a subset of Cn. Notice that σ restricts to an isomorphism of

bundles over ∂Dn. Thus, we have constructed an element [V1, V0;σ] ∈ L1(Dn, ∂Dn).

Define

αn([M ]) = [V1, V0;σ].

We refer the reader to [ABS64] for verification that the mapping

[M ] 7→ [V1, V0;σ]

is well-defined on the quotient An and determines an isomorphism.

Now, let f ∈ (x1, . . . , xn) ⊆ Q := R[x1, . . . , xn]. Choose real numbers ε, δ, and t

such that ε > 0, 0 < δ << ε, and t ∈ (−δ, 0) in such a way that we may construct a

negative Milnor fiber F−f associated to f as in Section 3.1.3.

Denote by Bε the closed ball of radius ε in Rn centered at the origin. We now

construct a map

Ob(MF(Q, f))→ L1(Bε, F
−
f )

that
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(a) recovers the Atiyah-Bott-Shapiro construction via the Buchweitz-Eisenbud-Herzog

equivalence (Theorem 2.4.1) when f = qn, and

(b) descends to a group homomorphism

K0[MF(Q, f)]→ L1(Bε, F
−
f ).

We emphasize that a similar construction involving complex polynomials and their

Milnor fibers may be performed mutatis mutandis. One may also perform the follow-

ing construction using the positive Milnor fiber F+
f of f .

Let

P = (P1
d1−�==�−
d0

P0)

be a matrix factorization of f over Q. Denote by C(Bε) the ring of R-valued contin-

uous functions on Bε.

Applying extension of scalars along the inclusion

Q ↪→ C(Bε),

we obtain a map

P1 ⊗Q C(Bε)
d1⊗id−−−→ P0 ⊗Q C(Bε)

of finitely generated projective C(Bε)-modules.

The category of real vector bundles over Bε is equivalent to the category of finitely

generated projective C(Bε)-modules; on objects, the equivalence sends a bundle to

its space of sections. Let

V1
d1−→ V0

be a map of real vector bundles over Bε corresponding to the above map d1⊗ id under
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this equivalence.

Notice that d1|F−f is an isomorphism; its inverse is the restriction to F−f of the

map d0 : V0 → V1 determined by

P0 ⊗Q C(Bε)
1
t
(d0⊗id)
−−−−−→ P1 ⊗Q C(Bε).

Define Φf (P1
d1−�==�−
d0

P0) = (V1, V0; d1|F−f ) ∈ Ob(C1(Bε, F
−
f )).

Remark 3.3.1. The map analogous to Φf in the setting of polynomials over C and KU -

theory appears in [BVS12]; we discuss this in detail in the proof of Proposition 4.3.2.

A morphism in EMF(Q, f) determines a morphism in C1(Bε, F
−
f ) in an obvious

way (see Section 2.2.1 for the definition of the category EMF(Q, f)). Hence, we have

shown:

Proposition 3.3.2. There is an additive functor

Φf : EMF(Q, f)→ C1(Bε, F
−
f )

given, on objects, by

(P1
d1−�==�−
d0

P0) 7→ [V1, V0; d1|F−f ].

In particular, we have a map

Ob(MF(Q, f))→ L1(Bε, F
−
f ).

Suppose f = qn. Then ε can be chosen to be 1 in the construction of the negative

Milnor fiber F−f , and the fiber can be chosen to be exactly Sn−1 ⊆ Rn.

Let [Ob([MF(Q, f)])] denote the set of isomorphism classes of objects in [MF(Q, f)].

It is easy to check that one has a commutative triangle
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[Ob([MF(Q, f)])] L1(B1, F
−
f )

[Ob(modZ/2Z(CliffR(qn)))]

............................................................................................................................................................................................................................................................................................................................................................................................... ............
Φf

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
....................

....................
..................
............

ABS

.................................................................................................................................................
.....
.......
.....

BEH

where BEH denotes the bijection induced by the Buchweitz-Eisenbud-Herzog equiv-

alence (discussed in detail in Section 2.4), and ABS denotes the Atiyah-Bott-Shapiro

construction. Hence, our construction recovers the Atiyah-Bott-Shapiro construction

via the Buchweitz-Eisenbud-Herzog equivalence when f = qn.

Our next goal is to show that Φf induces a map on K-theory:

Proposition 3.3.3. Φf induces a group homomorphism

φf : K0[MF(Q, f)]→ L1(Bε, F
−
f ).

We will adopt the following notational conventions for the purposes of this proof:

(1) A pair (ε, t) is a good pair if ε > 0, t < 0, and the map

ψ : Bε ∩ f−1((−δ, 0) ∪ (0, δ))→ (−δ, 0) ∪ (0, δ)

from Section 3.1 is a locally trivial fibration for some δ > 0 such that

0 < |t| < δ << ε.

(2) If (ε, t) is a good pair, we denote the negative Milnor fiber Bε ∩ f−1(t) by F−t .

We will need the following technical lemma:
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Lemma 3.3.4. Let (ε1, t1), (ε2, t2) be good pairs. Then there is an isomorphism

g : L1(Bε1 , F
−
t1

)
∼=−→ L1(Bε2 , F

−
t2

)

yielding a commutative triangle

L1(Bε1 , F
−
t1 ) L1(Bε2 , F

−
t2 )

Ob(MF(Q, f))

............................................................................................................................................................................................................................... ............
g

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.................

............

Φf

..............
..............
..............
..............
..............
..............

..............
..............
..............
..............
..............
..............
..............

..............
..............
..............
..............
.............
............

Φf

Proof. The case where t1 = t2 is immediate, so we may assume t1 6= t2. First, suppose

ε1 = ε2. Without loss, assume t2 < t1.

Set F−[t2,t1] := f−1([t2, t1]). Since the inclusions

F−t1 ↪→ F−[t2,t1]

F−t2 ↪→ F−[t2,t1]

are homotopy equivalences, the pullback maps

L1(Bε1 , F[t2,t1])→ L1(Bε1 , Ft1)

L1(Bε1 , F[t2,t1])→ L1(Bε1 , Ft2)

are isomorphisms.

We have commuting triangles
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L1(Bε1 , F[t2,t1]) L1(Bε1 , F
−
ti )

Ob(MF(Q, f))

................................................................................................................................................................................................................ ............
∼=

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.................

............

Φf

..............
..............
..............
..............
..............
..............
..............
..............

..............
..............
..............
..............
..............
..............
..............

..............
..............
.............
............

Φf

for i = 1, 2. It follows that the result holds when ε1 = ε2.

For the general case, assume, without loss, that |t2| < |t1|. Then (ε1, t2) is also a

good pair. By the cases we’ve already considered, the result holds for the pairs (ε1, t1)

and (ε1, t2), and also for the pairs (ε1, t2) and (ε2, t2). Hence, the result holds for the

pairs (ε1, t1), (ε2, t2).

We now prove Proposition 3.3.3:

Proof. It is not hard to see that Φf (P ⊕ P ′) = Φf (P ) ⊕ Φf (P
′); we need only show

that φf is well-defined. First, suppose P ∼= 0 in [MF(Q, f)]. Then idP is a boundary

in MF(Q, f), and so idP factors through a trivial matrix factorization, by Proposition

2.2.4.

Write

P = (P1
d1−�==�−
d0

P0).

Since P is a summand of a trivial matrix factorization, coker(d1) is a projective Q/(f)

module. Choose g ∈ Q such that g(0) 6= 0 and coker(d1)g is free over Qg/(f), and

choose ε′ ∈ (0, ε) such that Bε′ ∩ g−1(0) = ∅.

The inclusion

Q ↪→ Qg

induces a functor

MF(Q, f)→ MF(Qg, f).



87

Choose t′ such that (ε′, t′) is a good pair. Applying Lemma 3.3.4, we have a

commutative diagram

L1(Bε, F
−
t ) L1(Bε′ , F

−
t′ )

Ob(MF(Q, f)) Ob(MF(Qg, f))

......................................................................................................... ............
∼=

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.................

............

Φf

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
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Φf

By Proposition 2.2.5, the image of P in Ob(MF(Qg, f)) maps to 0 via Φf . Hence,

the map Φf : Ob(MF(Q, f))→ L1(Bε, F
−
t ) sends P to 0, as required.

We now show that, if α : P → P ′ is a morphism in EMF(Q, f), Φf (P ) ⊕

Φf (cone(α)) and Φf (P
′) represent the same class in L1(Bε, F

−
t ).

We start by showing Φf (P [1]) = −Φf (P ) in L1(Bε, F
−
t ). Write Φf (P ) = (V1, V0; d1|F−f ),

so that Φf (P [1]) = (V0, V1;−d0|F−f ). Since cone(idP ) is contractible, the class repre-

sented by

Φf (cone(idP )) = (V0 ⊕ V1, V1 ⊕ V0;

d0|F−f id

0 −d1|F−f

)

in L1(Bε, F
−
t ) is 0.

The object

(V0 ⊕ V1, V1 ⊕ V0;

d0|F−f t · id

0 −d1|F−f

)

of C1(Bε × I, F−t × I) restricts to Φf (cone(idP )) at t = 1 and Φf ((P ⊕ P [1])[1]) at

t = 0. Since (P ⊕ P [1])[1] ∼= P ⊕ P [1], we may use Proposition 9.2 in [ABS64] to

conclude that Φf (P [1]) = −Φf (P ) in L1(Bε, F
−
t ).
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Now, we have

Φf (cone(α)) = (V0 ⊕ V1, V1 ⊕ V0;

d0|F−f α1

0 −d′1|F−f

).

Using Proposition 9.2 in [ABS64] in the same manner as above, we may conclude

that Φf (cone(α)) and Φf (P
′)⊕ Φf (P [1]) represent the same class in L1(Bε, F

−
t ).

Finally, suppose α : P ∼= P ′ is an isomorphism in [MF(Q, f)]. Then cone(α)

is contractible, and so the results we just established imply that Φf (P ) = Φf (P
′).

Thus, Φf preserves isomorphisms in [MF(Q, f)]. Since every distinguished triangle in

[MF(Q, f)] is isomorphic to one of the form

P
α−→ P ′ → cone(α)→ P [1],

and we have shown that Φf preserves such triangles, we are done.

We now use our construction φf to exhibit a compatibility between Knörrer pe-

riodicity (Theorem 2.6.1) and Bott periodicity; we study the map φf more closely in

the case where f is an ADE singularity in Chapter 4.

3.4 Knörrer periodicity and Bott periodicity

In this section, we work with polynomials and vector bundles over C. The author

fully expects results analogous to those in this section to hold for polynomials and

vector bundles over R; we leave the details for future work.

Set

Q := C[x1, . . . , xn], Q′ := C[y1, . . . , ym]
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and let

f ∈ (x0, . . . , xn) ⊆ Q, f ′ ∈ (y0, . . . , ym) ⊆ Q′

be such that Q(x1,...,xn)/(f), Q′(y1,...,ym)/(f
′) are IHS.

We now construct the Milnor fibers of f and f ′. Choose real numbers ε′′, δ′′, such

that the map

Bε′′ ∩ (f ⊕ f ′)−1(D∗δ′′)→ D∗δ′′

given by x 7→ (f ⊕ f ′)(x) is a locally trivial fibration.

Similarly, choose ε, δ and ε′, δ′, as well as t′′ ∈ D∗δ′′ , so that the analogous maps

Bε ∩ f−1(D∗δ)→ D∗δ

Bε′ ∩ (f ′)−1(D∗δ′)→ D∗δ′

are locally trivial fibrations, and also so that

(a) ε, ε′ are sufficiently small so that Bε ×Bε′ ⊆ Bε′′ .

(b) |t′′| < min{δ, δ′}.

Set Ff , Ff ′ , and Ff⊕f ′ to be the Milnor fibers of f , f ′, and f ⊕ f ′ over t′′.

Recall from Proposition 2.3.2 that we have a map

K0[MF(Q, f)]⊗K0[MF(Q′, f ′)]→ K0[MF(Q⊗C Q′, f ⊕ f ′)]

given by

[P ]⊗ [P ′] 7→ [P ⊗MF P
′].

The following proposition is the key technical result in this section.
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Proposition 3.4.1. There exists a map

STL1 : L1(Bε, Ff )⊗ L1(Bε′ , Ff ′)→ L1(Bε′′ , Ff⊕f ′)

such that, given matrix factorizations P and P ′ of f and f ′, respectively,

STL1(φf ([P ])⊗ φf ′([P ′])) = φf⊕f ′([P ⊗MF P
′]).

Proof. Write

P = (P1
d1−�==�−
d0

P0), P ′ = (P ′1
d′1−�==�−
d′0

P ′0)

and

Φf (P ) = [V1, V0; d1|Ff
], Φf ′(P

′) = [V ′1 , V
′

0 ; d′1|Ff ′
].

We note that

φf⊕f ′([P ⊗MF P
′]) = [(V1 ⊗ V ′0)⊕ (V0 ⊗ V ′1), (V0 ⊗ V ′0)⊕ (V1 ⊗ V ′1);A],

where A is the restriction of the matrix d1 ⊗ id id⊗ d′1

−id⊗ d′0 d0 ⊗ id


to Ff⊕f ′ .

As in Section 3.1.2, choose an injection

H : CFf → Bε

such that
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• H(x, 1) = x ∈ Ff ⊆ Bε,

• H(−, s) : Ff → Bε maps into the Milnor fiber Bε ∩ f−1(st′′) for s ∈ (0, 1), and

• H(x, 0) = 0 for all x ∈ Ff

Choose H ′ : CFf ′ → Bε′ similarly.

Clearly im(H) is contractible, since it is homeomorphic to CFf (and of course the

same is true for im(H ′)). It follows that the inclusions of pairs

g : (im(H), Ff ) ↪→ (Bε, Ff )

g′ : (im(H ′), Ff ′) ↪→ (Bε′ , Ff ′)

induce isomorphisms on L1 upon pullback; this is immediate from the long exact

sequence in topological K-theory and the naturality of the Euler characteristic from

Section 3.2 with respect to maps of pairs.

Recall from Section 3.2 that we have a map

L1(im(H), Ff )⊗ L1(im(H ′), Ff ′)→ L1(im(H)× im(H ′), im(H)× Ff ′ ∪ Ff × im(H ′))

denoted by

[V ]⊗ [V ′] 7→ [V ]⊗L1 [V ′].

Define

STL1 : L1(Bε, Ff )⊗ L1(Bε′ , Ff ′)→ L1(Bε′′ , Ff⊕f ′)

to be given by

[V ]⊗ [V ′] 7→ (G∗)−1(g∗([V ])⊗L1 (g′)∗([V ′])),
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where G is the homotopy equivalence of pairs in Remark 3.1.12. We now compute

g∗(φf (P ))⊗L1 (g′)∗(φf (P
′)) = g∗([V1, V0; d|Ff

])⊗L1 (g′)∗([V ′1 , V
′

0 ; d′|Ff ′
])

explicitly.

There are obvious liftings of d1|Ff
and d′1|Ff ′

to maps of bundles over im(H) and

im(H ′), namely d1|im(H) and d′1|im(H′). A splitting of the restriction of

−id⊗ d′1|im(H′)

d1|im(H) ⊗ id


to im(H)× Ff ′ ∪ Ff × im(H ′) is given, on the fiber over (H(x, s), H ′(y, s′)), by

1

f(H(x, s)) + f ′(H ′(y, s′))

(
−id⊗ d′0|im(H′) d0|im(H) ⊗ id

)

(notice that f(H(x, s)) + f ′(H ′(y, s′)) = (s + s′)t′′ 6= 0 when (H(x, s), H ′(y, s′)) ∈

im(H)× Ff ′ ∪ Ff × im(H ′), since either s or s′ is equal to 1).

Thus, by the discussion at the end of Section 3.2, the product

g∗([V1, V0; d|Ff
])⊗L1 (g′)∗([V ′1 , V

′
0 ; d′|Ff ′

])

is equal to

[(V1|im(H)⊗V ′0 |im(H′))⊕(V0|im(H)⊗V ′1 |im(H′)), (V0|im(H)⊗V ′0 |im(H′))⊕(V1|im(H)⊗V ′1 |im(H′));B],

where B is given, on the fiber over (H(x, s), H ′(y, s′)) ∈ im(H)× Ff ′ ∪ Ff × im(H ′),
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by the matrix

 d1|im(H) ⊗ id id⊗ d′1|im(H′)

1
f(H(x,s))+f ′(H′(y,s′))

(−id⊗ d′0|im(H′))
1

f(H(x,s))+f ′(H′(y,s′))
(d0|im(H) ⊗ id)


restricted to im(H)× Ff ′ ∪ Ff × im(H ′).

We wish to show that, upon applying (G∗)−1 to this class, one obtains

[(V1 ⊗ V ′0)⊕ (V0 ⊗ V ′1), (V0 ⊗ V ′0)⊕ (V1 ⊗ V ′1);C],

where C is the restriction of the matrix d1 ⊗ id id⊗ d′1
1
t′′

(−id⊗ d′0) 1
t′′

(d0 ⊗ id)


to Ff⊕f ′ . This will finish the proof, since the class

[(V1 ⊗ V ′0)⊕ (V0 ⊗ V ′1), (V0 ⊗ V ′0)⊕ (V1 ⊗ V ′1);C]

is clearly equal to

[(V1 ⊗ V ′0)⊕ (V0 ⊗ V ′1), (V0 ⊗ V ′0)⊕ (V1 ⊗ V ′1);A],

where A is as above.

Observe that we have an object

[((V1 ⊗ V ′0)⊕ (V0 ⊗ V ′1))× I, ((V0 ⊗ V ′0)⊕ (V1 ⊗ V ′1))× I;D]

in C1(im(H) × im(H ′) × I, (im(H) × Ff ′ ∪ Ff × im(H ′)) × I), where D is given, on
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the fiber over

(H(x, s), H ′(y, s′), T ) ∈ (im(H)× Ff ′ ∪ Ff × im(H ′))× I,

by the matrix

 d1 ⊗ id id⊗ d′1
1

f(a(T ))+f ′(b(T ))
(−id⊗ d′0) 1

f(a(T ))+f ′(b(T ))
(d0 ⊗ id)

 .

Here, f , f ′, and the entries of d1, d
′
1, d0, d

′
0 are evaluated at the point

(a(T ), b(T )) := (H(x,
T (1− s′ − s) + 2s

2
), H ′(y,

T (1− s′ − s) + 2s′

2
)).

Notice that f(a(T )) + f ′(b(T )) 6= 0 for all

(H(x, s), H ′(y, s′), T ) ∈ (im(H)× Ff ′ ∪ Ff × im(H ′))× I,

so this matrix is indeed an isomorphism on every fiber over (im(H) × Ff ′ ∪ Ff ×

im(H ′))× I.

Restricting to T = 0, one obtains the object

((V1|im(H)⊗V ′0 |im(H′))⊕(V0|im(H)⊗V ′1 |im(H′)), (V0|im(H)⊗V ′0 |im(H′))⊕(V1|im(H)⊗V ′1 |im(H′));B).

Restricting to T = 1 and applying G∗−1, one obtains

((V1 ⊗ V ′0)⊕ (V0 ⊗ V ′1), (V0 ⊗ V ′0)⊕ (V1 ⊗ V ′1);C).

Now apply Proposition 9.2 in [ABS64].
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Remark 3.4.2. It follows easily from the naturality of the Euler characteristic χ from

Section 3.2 and Remark 3.2.11 that STL1 induces a map

STKU : KU0(Bε, Ff )⊗KU0(Bε′ , Ff ′)→ KU0(Bε′′ , Ff⊕f ′).

Remark 3.4.3. We point out that the group homomorphism STL1 in Proposition 3.4.1

is given by the composition of the tensor product in topological K-theory with a spe-

cific formulation of the the Sebastiani-Thom homotopy equivalence. Hence, Proposi-

tion 3.4.1 yields a precise sense in which the tensor product of matrix factorizations

is related to the Sebastiani-Thom homotopy equivalence (cf. Remark 2.3.3).

Let us now consider the case where Q′ = C[u, v] and f = u2 + v2. Note that

K0[MF(C[u, v], u2 + v2)] ∼= Z (Remark 2.5.2 and Remark 2.4.2); it is generated by

the class

X = [C[u, v]
u+iv−�====�−
u−iv

C[u, v]].

Also, by Theorem 3.1.4, Fu2+v2 is homotopy equivalent to S1, and so L1(Bε′ , Fu2+v2)

is isomorphic to Z. This group is generated by φu2+v2(X); a way to see this is to apply

Theorem 11.5 in [ABS64] and observe the compatibility between the Atiyah-Bott-

Shapiro construction and the map φf via the Buchweitz-Eisenbud-Herzog functor, as

discussed in the previous section. Thus, φu2+v2(X) is a Bott element in the group

L1(Bε′ , Fu2+v2) ∼= K̃U
0
(S2); we shall denote by β the map

KU0(Bε, Ff )→ KU0(Bε, Ff )⊗KU0(Bε′ , Fu2+v2)

given by (χ⊗ χ) ◦ (−⊗ φu2+v2(X)) ◦ χ−1. β is the Bott periodicity isomorphism.

Since Knörrer periodicity is induced by tensoring with the matrix factorization
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C[u, v]
u+iv−�====�−
u−iv

C[u, v], we will denote by K the map

K0[MF(Q, f)]→ K0[MF(Q[u, v], f ⊕ u2 + v2)]

given by −⊗MF X.

The following result gives a precise sense in which Bott periodicity and Knörrer

periodicity are compatible; it follows immediately from Proposition 3.4.1:

Theorem 3.4.4. Let f ∈ (x1, . . . , xn) ⊆ C[x1, . . . , xn], and suppose the hypersurface

C[x1, . . . , xn](x1,...,xn)/(f) is IHS (see Definition 2.2.10). Then the diagram

K0[MF(Q, f)]

K0[MF(Q[u, v], f ⊕ u2 + v2)]

KU0(Bε, Ff )

KU0(Bε′′ , Ff⊕u2+v2)

KU0(Bε, Ff )⊗KU0(Bε′ , Fu2+v2)

.............................................................................................................................................................................................................................................................................................................................................
.....
.......
.....

K

......................................................................................................................................................................................................................................................................................................................................................................................................... ............
χ ◦ φf

.................................................................................................................................................
.....
.......
.....

β

.................................................................................................................................................
.....
.......
.....

STKU

............................................................................................................................................................................................................................................................. ............
χ ◦ φf⊕u2+v2

commutes.
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Chapter 4

Examples: the ADE singularities

In Section 3.3, we constructed a map φf from the Grothendieck group of the homotopy

category of matrix factorizations associated to a complex (real) polynomial f into

the topological K-theory of its Milnor fiber (positive or negative Milnor fiber). We

established that, when f is a non-degenerate quadratic, this map recovers the Atiyah-

Bott-Shapiro construction.

In this chapter, we examine some properties of the map φf when f ∈ C[x1, . . . , xn]

is an ADE singularity.

4.1 Maximal Cohen-Macaulay modules over the

ADE singularities

Let f ∈ (x1, . . . , xn) ⊆ C[x1, . . . , xn], and assume the hypersurface

C[x1, . . . , xn](x1,...,xn)/(f)

is IHS (Definition 2.2.10).
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Choose ε, δ > 0 so that the map

Bε ∩ f−1(D∗δ)→ D∗δ

given by x 7→ f(x) is a locally trivial fibration, as in Section 3.1. Let Ff denote the

fiber of this fibration, the Milnor fiber of f .

Recall that Ff is homotopy equivalent to a wedge sum of µ copies of Sn−1, where

µ is the Milnor number of f (Theorem 3.1.4).

Suppose n is odd. Then

KU0(Bε, Ff ) ∼= K̃U
0
(ΣFf ) ∼=

⊕
µ

K̃U
0
(Sn) = 0

Thus, in this case, the map

φf : K0[MF(C[x1, . . . , xn], f)]→ L1(Bε, Ff )

is the zero map.

For more interesting examples, we look to the ADE singularities, or simple plane

curve singularities :

Ak = xk+1
1 + x2

2, k > 1

Dk = xk−1
1 + x1x

2
2, k > 4

E6 = x3
1 + x4

2

E7 = x3
1 + x1x

3
2

E8 = x3
1 + x5

2
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It turns out that, if f is a simple plane curve singularity and n > 2, the ring

R = C[[x1, . . . , xn]]/(f + x2
3 + · · ·+ x2

n)

has finite MCM type; that is, R has only finitely many indecomposable MCM modules

up to isomorphism (this follows from results in [Yos90] Chapters 9 and 11 along

with Knörrer periodicity). By a theorem of Buchweitz-Greuel-Schreyer in 1987, the

converse is also true:

Theorem 4.1.1 ([BGS87]). If R = C[[x1, . . . , xn]]/(f) has finite MCM type and

n > 2, R ∼= C[[x1, . . . , xn]]/(g + x2
3 + · · · + x2

n), where g ∈ C[[x1, xn]] is an ADE

singularity.

Remark 4.1.2. A more general result is stated in Theorem 9.8 of [LW12].

In particular, when f ∈ C[[x, y]] is an ADE singularity, K0[MF(C[[x, y]], f)] is a

finitely generated abelian group; this makes the ADE singularities a convenient source

of examples for studying the properties of the map

φf : K0[MF(C[x, y], f)]→ L1(Bε, Ff ).

The results we mentioned above involve ADE singularities thought of as elements

of power series rings, not polynomial rings. But, for the purposes of studying homo-

topy categories of matrix factorizations, this makes no difference:

Proposition 4.1.3. If f ∈ C[x, y] is an ADE singularity, the functor

i : [MF(C[x, y], f)]→ [MF(C[[x, y]], f)]

induced by inclusion is an equivalence.
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Proof. Every matrix factorization of f over C[[x, y]] can be expressed, up to isomor-

phism in [MF(C[[x, y]], f)], as one involving a pair of matrices with polynomial entries

([Yos90] Chapter 9). Thus, i is essentially surjective. One can argue that i is fully

faithful in the same manner as in Remark 2.4.2.

Before going further, we return to a discussion of formalities involving Hochschild

homology of dg categories, this time applied to matrix factorization categories.

4.2 Hochschild homology of matrix factorization

categories

Set Q := C[x1, . . . , xn], and let f ∈ (x1, . . . , xn) ⊆ Q so that Q(x1,...,xn)/(f) is IHS.

Assume n is even.

Let Ω1
Q/C denote the module of Kähler differentials of Q over C. We consider the

exterior algebra ∧
Ω1
Q/C,

as a Z/2Z-graded complex of Q-modules with odd (even) degree piece given by the

direct sum of the odd (even) exterior powers, equipped with differential given by left

exterior multiplication by df .

A computation due to Dyckerhoff in Section 6 of [Dyc11] yields a canonical isomor-

phism of Z/2Z-graded complexes of C-vector spaces between the above complex and

Hochschild complex of the dg category MF(Q, f), and hence a canonical isomorphism

HH∗(MF(Q, f))
∼=−→ Ωn

Q/C/(df ∧ Ωn
Q/C) ∼= Jf ⊗Q Ωn

Q/C,
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where Jf is the algebra

C[x1, . . . , xn]

( ∂f
∂x1
, . . . , ∂f

∂xn
)

thought of as a Q-module. In particular, HH∗(MF(Q, f)) is concentrated in even

degree.

Let P = (P1
A−�==�−
B

P0) be a matrix factorization of f over Q. Choose bases of

P1, P0, so that we may view A and B as matrices with entries in Q.

By Example 2.30 in [Wal14a], upon applying the above isomorphism

HH∗(MF(Q, f))
∼=−→ Ωn

Q/C/(df ∧ Ωn
Q/C),

the Chern character

ch : Ob(MF(Q, f))→ Ωn
Q/C/(df ∧ Ωn

Q/C)

is given by

(P1
A−�==�−
B

P0) 7→ 2

n!
(−1)(

n
2) tr(dAdB · · · dAdB︸ ︷︷ ︸

n
2

factors of dAdB

)dx1 ∧ · · · ∧ dxn

where dA and dB denote the matrices resulting from applying d : Q → Ω1
Q/C to the

entries of A and B.

By Corollary 5.12 in [Yu15], the Chern character map descends, in this setting,

to a map

ch : K0[MF(Q, f)]→ Ωn
Q/C/(df ∧ Ωn

Q/C).

Example 4.2.1. It will be useful for us to have a formula for the Chern character of

∆ ∈ Perf(MF(Q, f)op ⊗MF(Q, f)),
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where ∆ is as in Section 2.1.3.

Applying [PV12] (2.14) and Remark 2.3.6, we have natural isomorphisms

HH∗(Perf(MF(Q, f)op ⊗MF(Q, f))) ∼= HH∗(MF(Q,−f)⊗MF(Q, f)).

∼= HH∗(MF(Q⊗C Q,−f ⊕ f)).

For 1 6 j 6 n and g ∈ Q, set ∆j(g) ∈ C[x1, . . . , xn, y1, . . . , yn] to be the polyno-

mial

g(x1, . . . , xj−1, yj, yj+1, . . . , yn)− g(x1, . . . , xj−1, xj, yj+1, . . . , yn)

yj − xj
.

Let C denote the n× n matrix over C[x1, . . . , xn, y1, . . . , yn] with Cij = ∆j(
∂f
∂xi

).

By Proposition 4.1.1 in [PV12], ch(∆) corresponds, via the above isomorphisms,

to the class

(−1)(
n
2) · det(C) · dx1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dyn ∈ Ωn

Q/C/(df ∧ Ωn
Q/C)⊗2.

We now wish to use our formula for the Chern character map, along with Theo-

rem 2.1.20 and several results of [BVS12], to examine the map

φf : K0[MF(Q, f)]→ KU0(Bε, Ff )

when f is an ADE singularity.
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4.3 An application of the

Hirzebruch-Riemann-Roch formula for

differential Z/2Z-graded categories

Let f = x3
1 + x1x

2
2 ∈ Q = C[x1, x2], the D4 singularity. By results of Chapters 9 and

13 in [Yos90], K0[MF(Q, f)] is generated as an abelian group by the classes

[Q
x1−�=====�−

x21+x22

Q], [Q
x1(x1+ix2)−�========�−
x1−ix2

Q].

The Chern characters of these classes are

−2x2dx1dx2, (3ix1 − x2)dx1dx2 ∈ Ω2
Q/C/(df ∧ Ω2

Q/C)

These classes are linearly independent over C. This implies that

(a) K0[MF(Q, f)] is a rank 2 free abelian group generated by the two classes above,

and

(b) the Chern character map ch : K0[MF(Q, f)]→ Ω2
Q/C/(df ∧ Ω2

Q/C) is injective.

Remark 4.3.1. Using the same argument, it is straightforward to check that, if f is

any ADE singularity, K0[MF(Q, f)] is free abelian and the Chern character map

ch : K0[MF(Q, f)]→ Ω2
Q/C/(df ∧ Ω2

Q/C).

is injective.

We are now prepared to prove:
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Proposition 4.3.2. If f = x3
1 + x1x

2
2 ∈ Q = C[x1, x2], the homomorphism

φf : K0[MF(Q, f)]→ L1(Bε, Ff ) ∼= Z⊕4

is injective.

Proof. Suppose φf ([P ]) = 0. As alluded to in Remark 3.3.1, the map

Φf : Ob(MF(Q, f))→ L1(Bε, Ff )

in this setting agrees with a map discussed in [BVS12]. More specifically,

Φf (E = (E1
d1−�==�−
d0

E0)) = α(coker(d1))|Ff

for all matrix factorizations E of f , where α is as described on page 252 of [BVS12].

It follows from Proposition 4.1 and Theorem 4.2 in [BVS12], as well as the dis-

cussion in Section 2.2.3, that

χ(−, [P ]) : K0[MF(Q, f)]→ Z

is the zero map. Thus, by the Hirzebruch-Riemann-Roch formula in Theorem 2.1.20,

〈ch((−)∨), ch([P ])〉MF(Q,f) : K0[MF(Q, f)]→ C

is the zero map, where E∨ is the matrix factorization of −f corresponding to the

object E ∈ MF(Q, f)op under the equivalence in [PV12] (2.14). By the discussion on
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page 11 of [PV12], it follows that

〈ch([P ]), ch([(−)∨])〉MF(Q,−f) : K0[MF(Q, f)]→ C

is the zero map.

Clearly Ω2
Q/C/(d(−f)∧Ω2

Q/C) = Ω2
Q/C/(df ∧Ω2

Q/C). Also, the images of the Chern

character maps

ch : K0[MF(Q,−f)]→ Ω2
Q/C/(df ∧ Ω2

Q/C)

ch : K0[MF(Q, f)]→ Ω2
Q/C/(df ∧ Ω2

Q/C)

are identical, since one has an isomorphism

K0[MF(Q, f)]
∼=−→ K0[MF(Q,−f)]

given by

[P1
d1−�==�−
d0

P0] 7→ [P1
−d1−�===�−
d0

P0].

By the computations above, the C-span of the image of the Chern character map

in Ω2
Q/C/(df ∧ Ω2

Q/C) is precisely the elements of the form ldx1dx2, where l ∈ Q is a

homogeneous linear form. Thus, 〈ch([P ]), ldx1dx2〉MF(Q,−f) = 0 for all homogeneous

linear forms l ∈ Q.

Let ∆ ∈ Ob(MF(C[x1, . . . , xn, y1, . . . , yn],−f⊕f)) denote the matrix factorization

described in Example 4.2.1. An easy computation yields

ch(∆) = (−6x2
1 − 6x1y1 + 2x2y2 + 2y2

2) · dx1 ∧ dx2 ∧ dy1 ∧ dy2.
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By Remark 2.1.21, the map

Ω2
Q/C/(df ∧ Ω2

Q/C)⊗3 → Ω2
Q/C/(df ∧ Ω2

Q/C)

given by

h⊗ h′ ⊗ h′′ 7→ 〈h, h′〉MF(Q,−f) · h′′

maps ch([P ])⊗ ch(∆) to ch([P ]). That is, denoting 〈−,−〉MF(Q,−f) by just 〈−,−〉, we

have

−6〈ch([P ]), 1〉 · x2
1 − 6〈ch([P ]), y1〉 · x1 + 2〈ch([P ]), y2〉 · x2 + 2〈ch([P ]), y2

2〉 · 1

= −6〈ch([P ]), 1〉 · x2
1 + 2〈ch([P ]), y2

2〉 · 1 = ch([P ]).

Since x2
1 and 1 are not homogeneous linear forms, the only way this equality can

hold is if ch([P ]) = 0. Since

ch : K0[MF(Q, f)]→ Ω2
Q/C/(df ∧ Ω2

Q/C)

is injective, it follows that [P ] = 0.

Remark 4.3.3. The only properties of the polynomial D4 that we used in the proof

were

(1) C[x1, x2](x1,x2)/D4 is IHS.

(2) The map

K0[MF(C[x1, x2], D4)]→ K0[MF(C[[x1, x2]], D4)]
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induced by inclusion is an isomorphism, and

(3) If

〈ch([P ]), ch([(−)∨])〉MF(C[x1,x2],−D4) : K0[MF(C[x1, x2], D4)]→ C

is the zero map, then [P ] = 0.

The ADE singularities clearly have property (1), and we showed in Proposi-

tion 4.1.3 that they have property (2). An easy (but tedious) series of computations

shows that the ADE singularities satisfy property (3) as well; one can show this for

each ADE singularity using exactly the same argument that we used in the D4 ex-

ample above. Hence, if f ∈ C[x1, x2] is an ADE singularity, φf is injective (this is

Theorem 1.0.3 in the introduction). In fact, more is true:

Theorem 4.3.4. If f ∈ C[x1, x2] is an ADE singularity and n > 0 is even, φf⊕(x23+···+x2n)

is injective.

Proof. Since φf is injective, this follows immediately from Theorem 3.4.4.
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[ST71] M. Sebastiani and René Thom, Un résultat sur la monodromie, Inven-

tiones mathematicae 13 (1971), no. 1, 90–96. 63
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