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Adviser: Mikil Foss

We prove some global Morrey regularity results for almost minimizers of functionals

of the form

u 7→
∫

Ω

f(x,u,∇u)dx.

This regularity is valid up to the boundary, provided the boundary data are sufficiently

regular. The main assumption on f is that for each x and u, the function f(x,u, ·)

behaves asymptotically like the function h(|·|)α(x), where h is an N-function.

Following this, we provide a characterization of the class of Young measures that

can be generated by a sequence of functions {fj}∞j=1 uniformly bounded in the Morrey

space Lp,λ(Ω;RN) with {|fj|p}∞j=1 equiintegrable. We then treat the case that each

fj = ∇uj for some uj ∈ W 1,p(Ω;RN).

Lastly, we provide applications of and connections between these results.
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Chapter 1

Introduction

1.1 Background

The functionals usually considered in the calculus of variations have the form

J(u) :=

∫
Ω

f(x,u(x),∇u(x))dx, (1.1)

where Ω ⊂ Rn, the function f : Ω× RN × RN×n → R, and the mapping u : Ω→ RN

belongs to some admissible class A. In the classical theory, the admissible class A

was usually taken to be some subset of functions possesing continuous second-order

derivatives. This allowed one to conclude that a minimizer would be a solution to a

certain system of second order partial differential equations, namely

div

[
∂

∂F
f(x,u(x),∇u(x))

]
=

∂

∂u
f(x,u(x),∇u(x)),

which is called the Euler-Lagrange system for the functional. Here and throughout,

we are thinking of x, u and F as the generic placeholders for the first, second and

third arguments of f , respectively, so that the notation ∂
∂u

is the gradient of the map
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u 7→ f(x,u,F) (which we think of as a column vector), and ∂
∂F
f(x,u,F) is the N ×n

matrix of first-order partial derivatives for the map F 7→ f(x,u,F).

At the beginning of the 20th century, D. Hilbert created his famous list of what

he saw as the twenty-three most important problems that mathematicians should at-

tempt to resolve within the century. The 20th problem asked if every functional of the

form (1.1), where f is smooth and convex with respect to the third argument, admits a

solution, provided that certain assumptions on the boundary conditions are satisfied,

and that the notion of a solution is suitably relaxed, if necessary. This question has

an affirmative answer, but it turns out that the notion of a solution must indeed be

relaxed. Rather than consisting of a subset of twice continuously-differentiable func-

tions, the modified admissible class is made up of functions belonging to a so-called

Sobolev space, which we now introduce.

First, for each p ∈ [1,∞], we define the Lebesgue space Lp(Ω;RN) by

Lp(Ω;RN) :=

{
u :Ω→ RN :

∫
Ω

|u(x)|p dx <∞
}
, 1 ≤ p <∞

L∞(Ω;RN) :=
{
u :Ω→ RN : ess supx∈Ω |u(x)| <∞

}
.

The norm on Lp(Ω;RN) is defined as

‖u‖Lp :=


(∫

Ω
|u(x)|p dx

)1/p
, 1 ≤ p <∞,

ess supx∈Ω |u(x)| , p =∞.

For each p ∈ [1,∞], we define the Sobolev space W 1,p(Ω;RN) as follows:

W 1,p(Ω;RN) :=
{
u ∈ Lp(Ω;RN) : ∇u ∈ Lp(Ω;RN×n)

}
. (1.2)
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It is important to point out that in the above definition, by ∇u we mean the weak

gradient of u. We say that a function V ∈ L1
loc(Ω;RN×n) is a weak gradient of u if

∫
Ω

u · ∇ϕdx = −
∫

Ω

ϕ ·Vdx (1.3)

for all ϕ ∈ C∞c (Ω;RN). (Here, we are thinking of each of the above N × n matrices

as a column vector with N components; each of these components is a row vector

with n scalar components, so that both of the dot products defined above yield an

n-dimensional row vector.) Weak gradients, when they exist, are unique up to a set

of zero measure. So the definition for W 1,p given in (1.2), when unpacked, says that

W 1,p(Ω;RN) consists of all mappings in Lp(Ω;RN) for which the weak gradient exists

and belongs to Lp(Ω;RN×n). (I.e., (1.3) is satisfied for some V ∈ Lp(Ω;RN×n).) We

define the norm on W 1,p(Ω;RN) by

‖u‖W 1,p := ‖u‖Lp + ‖∇u‖Lp ,

and denote by W 1,p
0 (Ω;RN) the closure of C∞c (Ω;RN) in the norm of W 1,p(Ω;RN).

For Dirichlet problems, the relaxed admissible class for the functional J is usually

defined to be

Ã :=
{
u ∈ W 1,p(Ω;RN) : u− u0 ∈ W 1,p

0 (Ω;RN)
}
,

for some fixed u0 ∈ W 1,p(Ω;RN). If the integrand f of the functional J satisfies some

convexity and coercivity conditions, then using the direct method of the calculus of

variations, one can show that a minimizer exists in A.

Although relaxing the conditions for the admissible class facilitates obtaining the

existence of minimizers, a priori, one only knows a minimizer belongs to a Sobolev
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space; i.e the minimizer and its gradient will belong to some Lebesgue space. If p ≤ n,

then functions belonging to W 1,p(Ω;RN) may even be discontinuous. Therefore, a

natural and important question is whether we can expect any additional regularity

(smoothness) for minimizers. In fact, this is the subject of Hilbert’s 19th problem:

Provided that the integrand f of the functional (1.1) is analytic, must all minimizers

be analytic? This is an important question for several reasons. If the variational

problem arises from a physical context, the regularity of the solution will have sig-

nificant physical implications. For example, if an elastic body is deformed from its

reference configuration, regularity for the minimizer might mean that no cracks or

holes form as a result of this deformation. Further, additional regularity for the min-

imizer is often required to obtain convergence rates for numerical approximations of

the solutions (see [19, 27], for example).

In the scalar case N = 1, the 19th problem essentially was answered in the affir-

mative by E. De Giorgi [23] and independently by J. Nash [63]. Unfortunately, in the

general vectorial setting, one cannot expect similar results to hold, as demonstrated

by De Giorgi [24] (n,N > 2). However, with some additional assumptions on the

integrand, many different sorts of regularity results have been obtained. We provide

a discussion of some of these results in Section 1.3.

1.2 Definitions and Notation

In order to facilitate the discussion of the results in the present work and how they

fit into a broader context, we now introduce several definitions and notations. For

the entirety of this thesis, we fix n, N ∈ N, and we suppose that Ω ⊂ Rn is open

and bounded. We denote by R+ the interval [0,∞) and by R∗ the set R ∪ {+∞}.

For a measurable set E ⊂ Rn, we let |E| denote the Lebesgue measure of E, and use
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E to signify the closure of E in the usual Euclidean topology. If 0 < |E| < ∞ and

f ∈ L1(E;Rk), we define

(f)E ≡ −
∫
E

f(x)dx :=
1

|E|

∫
E

f(x)dx.

We will use x and y to denote points in Rn, and F to denote a point in RN×n. The

open ball of radius ρ centered at the point x is represented by B(x, ρ). For brevity,

B denotes B(0, 1). For a measurable set E ⊂ Rn not equal to B, we use E(x, ρ) to

abbreviate E ∩ B(x, ρ). (We refrain from using the previously mentioned notation

when E = B in order to avoid ambiguity.) We define H+ := {(x1, . . . , xn) ∈ Rn : xn >

0}, and given a set U ⊂ Rn, we use U+ to stand for H+ ∩ U . We define Q := (0, 1)n,

and for x ∈ Rk and ρ > 0, we use Qx,ρ to denote the open cube in Rk centered at x

with edges of length ρ parallel to the coordinate axes.

We denote by M(Rk) the set of all Radon measures supported on Rk. Given

µ ∈M(Rk) and ϕ ∈ C0(Rk), we define

〈µ, ϕ〉 :=

∫
Rk
ϕ(y)dµ(y).

Definition 1.1. We say that a mapping ν : E → M(Rk) is a Young measure if

ν(x) is a probability measure for almost every x ∈ E and the map x 7→ 〈ν(x), ϕ〉 is

measurable for every ϕ ∈ C0(Rk).

Complying with standard notation for Young measures, we will write νx instead

of ν(x), and will usually denote the map ν by {νx}x∈E.

We recall here the definition of an N-function.

Definition 1.2. A function h : R+ → R+ is said to be an N-function if h(0) = 0 and

there exists a right-continuous nondecreasing derivative h′ satisfying h′(0) = 0 and
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h′(t) > 0 for all t > 0, with limt→∞ h
′(t) =∞.

In this work, we will be working frequently with a class of N-functions satisfying

some additional hypotheses. In particular, we make the following definition.

Definition 1.3. If h is an N-function satisfying h ∈ W 2,1(0, T ) for each T > 0 and

(p− 1)h′(t) ≤ th′′(t) ≤ (q − 1)h′(t) for a.e. t > 0,

for some 1 < p ≤ q <∞, then we will say that h has (p, q)-structure.

Roughly speaking, a function h with (p, q)-structure grows between the functions

t 7→ tp and t 7→ tq. (See Lemma 2.1 for some basic consequences of Definition 1.3.)

One can verify that for any 1 < p ≤ q <∞ and β ≥ 1, each of the following functions

mapping [0,∞) into [0,∞) are examples of functions possessing (p̃, q̃)-structure for

some 1 < p̃ ≤ q̃ <∞:

h1(t) := tp;

h2(t) := tp[log(t+ e)]β;

h3(t) :=


tp if 0 ≤ t ≤ t0,

t
p+q
2

+ p−q
2

sin log log log t if t > t0.

(1.4)

For h3, we must choose t0 > 0 large enough so that h3 is strictly convex and

sin log log log(t0) = 1. (The function h3 was first given as an example in [22].)

For a given N-function h, we define the Young conjugate as follows.

Definition 1.4. If h : R+ → R+ is an N-function, then the function h∗ : R+ → R+

defined by

h∗(s) := sup
t∈R+

{st− h(t)}
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is called the Young conjugate of h.

It is easily seen that h∗ is also an N-function, and that for any s, t ∈ R+, we have

st ≤ h(s) + h∗(t),

which is known as Young’s Inequality. Furthermore, if h′ is continuous and strictly

increasing, as is the case if h has (p, q)-structure, then the function t 7→ st− h(t) has

a unique maximum at t = (h′)−1(s), and hence

h∗(s) = s(h′)−1(s)− h((h′)−1(s)). (1.5)

We now introduce notation for certain vector spaces that are well-suited for our

situation in the present paper; these spaces are special cases of Musielak-Orlicz spaces.

For a development of Musielak-Orlicz spaces, see, for example, [62]. Our notation is

similar to that used for Orlicz and Orlicz-Sobolev spaces in [6].

Definition 1.5. Suppose that E ⊂ Rn is open. Let g : E × R+ → R+ be such that

there is a constant c < ∞ so that for almost every x ∈ E, the function g(x, ·) is

convex and nondecreasing with g(x, 0) = 0, and g(x, 2t) ≤ cg(x, t) for every t ∈ R+.

We then define

Lg(E;RN) :=

{
u : E → RN : u is measurable and

∫
E

g(x, |u(x)|)dx <∞
}
,

and the corresponding Sobolev-type space

W 1Lg(E;RN) :=
{
u ∈ Lg(E;RN) : ∇u ∈ Lg(E;RN×n)

}
,

where ∇u denotes the weak gradient of the mapping u.
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Remark 1.1. If h : R+ → R+ is a function with (p, q)-structure, we will use

Lh(E;RN) and W 1Lh(E;RN) to denote the spaces Lh̃(E;RN) and W 1Lh̃(E;RN),

respectively, where we have defined h̃ : E × R+ → R+ by h̃(x, t) := h(t).

The space Lg(E;RN) can be equipped with the Luxemborg norm defined by

‖u‖Lg := inf

{
s > 0 :

∫
E

g

(
x,
|u(x)|
s

)
dx ≤ 1

}
,

and is complete under this norm. The norm on W 1Lg(E;RN) is then defined by

‖u‖W 1Lg
:= ‖u‖Lg + ‖∇u‖Lg .

We will use W 1
0Lg(E;RN) to denote the closure of C∞c (E;RN) in W 1Lg(E;RN).

We also introduce the Morrey spaces Lp,λ(Ω). We refer the reader to [47] for a

development of some of the properties of Morrey spaces.

Definition 1.6. Suppose that E ⊂ Rn is measurable and bounded, that p ∈ [1,∞),

and that λ ∈ [0, n]. We define the Morrey space

Lp,λ(E) :=

{
u ∈ Lp(E) : ‖u‖Lp,λ := sup

x0∈E
sup
ρ>0

ρ−λ
∫
E(x0,ρ)

|u|p dx <∞
}
.

Roughly speaking, larger values of λ imply less singular behavior of functions

belonging to Lp,λ. Using Hölder’s inequality, one can readily check that for q ≥ p, the

space Lq is contained in the Morrey space L1,n(1−p/q); it is also the case that Lp,n is

isomorphic to L∞. However, for any λ ∈ [0, n), the inclusion Lp,λ ⊂ Lq does not hold

for any q > p. Hence Morrey spaces provide a more precise way than the Lebesgue

spaces of characterizing how bad the singularities of functions might be.

The following defines the type of almost minimizers for which we will establish
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regularity.

Definition 1.7. Let Ω ⊂ Rn be open and A ⊂ W 1,1(Ω;RN) be given, and suppose

that f : Ω× RN × RN×n → R. Define the functional K : A → R∗ by

K(w) :=

∫
Ω

f(x,w,∇w)dx. (1.6)

Suppose that u ∈ A with K(u) < ∞, and that there are functions {νε}ε>0 ⊂ L1(Ω)

and nondecreasing functions {γε}ε>0 ⊂ C(R+) satisfying γε(0) = 0 for each ε > 0

such that for every ε > 0 and 0 < ρ < diam(Ω), we find that

K(u) ≤ K(v) + (γε(ρ) + ε)

∫
Ω(x0,ρ)

{|f(x,u,∇u)|+ |f(x,v,∇v)|+ νε(x)} dx (1.7)

for all v ∈ A such that v − u ∈ W 1,1
0 (Ω(x0, ρ);RN). Then we say that u is a

(K, {γε}, {νε})-minimizer over A.

1.3 Discussion of Results

In this section, we state the main results and discuss how they relate to the existing

literature.

1.3.1 Morrey Regularity for the Gradient of Almost

Minimizers

In 1977, K. Uhlenbeck [70] proved a seminal result that provided a new direction of

investigation for regularity in the vectorial setting, and set off a string of regularity

results over the next several decades. A consequence of her result provides Hölder con-

tinuity for the gradient of minimizers in the case of superquadratic standard growth
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with no dependence on x and u. More precisely, one can state a version of her result

as follows:

Theorem 1.1. Suppose f : RN×n → [0,∞) is of class C2 and satisfies the following

hypotheses for some β ≥ 0, µ > 0, p ≥ 2, M <∞, and f̃ : [0,∞)→ [0,∞), and for

all F,F1,F2 ∈ RN×n:

(Growth of f) M−1(µ2 + |F|2)p/2 ≤ f(F) ≤M(µ2 + |F|2)p/2; (1.8)

(Growth of
∂2

∂F2
f)

∣∣∣∣ ∂2

∂F2
f(F)

∣∣∣∣ ≤M(µ2 + |F|2)
p−2
2 ;

(Continuity of
∂2

∂F2
f)

∣∣∣∣ ∂2

∂F2
f(F1)− ∂2

∂F2
f(F2)

∣∣∣∣
≤M(µ2+|F1|2+|F2|2)

p−2
2
−β

2 |F1−F2|β

(Uniform Ellipticity)
∂2

∂F2
f(F1) · F2 ⊗ F2 ≥ (µ2 + |F1|2)

p−2
2 |F2|2

(Rotational Symmetry) f(F) = f̃(|F|).

Define the functional JUhl by

JUhl(u) :=

∫
Ω

f(∇u)dx,

and suppose that u ∈ W 1,p
loc (Ω;RN) is a minimizer for JUhl. Then ∇u is locally Hölder-

continuous in Ω. Moreover, there is some C < ∞ so that for every x0 ∈ Ω, it holds

that

sup
x∈B(x0,R/2)

|∇u|p ≤ C

Rn

∫
B(x0,R)

(µ2 + |∇u|2)p/2

whenever 0 < R < dist(x0, ∂Ω).

In 1989, E. Acerbi and N. Fusco [1] proved an analogue of K. Uhlenbeck’s result

in the case 1 < p < 2. There was also a large number of other kinds of regularity
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results established by many researchers. These results provided various types of

regularity while allowing dependence on x and u in the integrand f . In contrast with

Uhlenbeck’s result, most of the theorems in the vectorial case furnished what is known

as partial regularity - that is, local regularity on an open set Ω0 ⊂ Ω with Ω\Ω0 a null

set. For example, in [44], M. Giaquinta and G. Modica proved that if u is a minimizer

for functionals whose model is given by u 7→
∫

Ω
a(x,u) |∇u|p for p ≥ 2, then there is

a set Ω0 ⊂ Ω such that Ω \ Ω0 is a null set and ∇u is locally Hölder continuous on

Ω0. Notice that in this case, we have µ = 0, and the ellipticity degenerates when ∇u

approaches 0. Usually, partial Hölder continuity for the gradient cannot be deduced in

the vectorial setting when µ = 0; the reason Giaquinta and Modica could allow µ = 0

is because of the additional structural assumption that the integrand only depends on

∇u through |∇u|. In [48], C. Hamburger produced an extension of Giaquinta’s and

Modica’s result to minimizing differential forms, and also treated the case 1 < p < 2

with a duality argument.

In 1989, P. Marcellini [56] provided the first regularity result in the so-called (p, q)-

growth case, where the lower and upper growth exponents may differ: the assumption

in (1.8) was weakened to

M−1

n∑
j=1

|Fj|pj ≤ f(F) ≤M

(
1 +

n∑
j=1

|Fj|pj
)
, (1.9)

where 2 ≤ pj ≤ 2n/(n − 2). In this setting, working in the scalar case (N = 1), he

was able to prove that a minimizer u is Lipschitz. Marcellini and others continued to

study functionals under more general growth conditions, considering functionals with

integrands possessing (p, q)-growth

M−1 |F|p ≤ f(x,u,F) ≤ C(1 + |F|q) (1.10)
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for some 1 < p ≤ q. To obtain regularity in this setting, it is often required to assume

that the quantity q/p is not too large. How large q/p can be depends on the type

of regularity sought and the degree of smoothness possessed by the function f (see

the discussions in [32] and [61]). In the scalar case, L∞ estimates for minimizers were

proved in [14, 21], and Lipschitz regularity was demonstrated in [57]. In the vectorial

setting, partial Hölder continuity for the gradient was proved in [2, 11, 10, 12, 13].

In the series of papers [28, 30, 29, 31, 32], L. Esposito, F. Leonetti, and G. Mingione

proved various higher differentiability and higher integrability results, and provided

counterexamples that demonstrated that their results were sharp. Regularity theory

for functionals with growth conditions even more general than (1.10) has also been

studied [58, 59, 55, 60].

An intermediate growth assumption, weaker than (1.8) but stronger than (1.10),

is the hypothesis that

M−1 |F|p(x) ≤ f(x,F) ≤M(1 + |F|p(x)), (1.11)

where 1 < p ≤ p(x) ≤ q for all x ∈ Ω. Functionals possessing integrands with

variable exponents arise naturally from several problems in mathematical physics, in,

for example, models for thermistors [72] or electro-rheological fluids [5]. Thermistors

are resistors for which the resistance depends on the temperature of the resistor.

In the thermistor case, the exponent p(x) corresponds to the temperature - as the

temperature varies throughout the resistor, so does the resistance. Electro-rheological

fluids are non-Newtonian fluids whose viscosity changes dramatically in the presence

of an electric field. In this case, the variable exponent p(x) results from the variability

of the strength of the electric field throughout the fluid.

In Chapter 2, we provide Morrey regularity for the gradient of almost minimizers
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for functionals of the form (1.1), where f behaves asymptotically like a function g

with more desirable properties. Let us now describe the hypotheses for g. To do so,

we first introduce a function α : Ω→ [1,∞), which will play the role of an exponent

in the definition for g. Suppose that α satisfies

1 ≤ α(x) ≤ α+ <∞ for every x ∈ Ω. (1.12)

With ω : R+ → R+ denoting the modulus of continuity for α, suppose also that

ω(R) |log (R)| ≤M, (1.13)

for some M <∞, and moreover that

lim
R→0+

ω(R) log (R) = 0. (1.14)

With α as just defined, we assume that the function g : Ω × R+ → R+ satisfies the

following for some 1 < p ≤ q < ∞, some h : R+ → R+ with (p, q)-structure, and a

nondecreasing δ ∈ C(R+) with δ(0) = 0:

g(x, ·) has (pα(x), qα(x))-structure for each x ∈ Ω; (1.15)

h(t)α(x) ≤ g(x, t) ≤Mh(t)α(x); (1.16)

|g(x, t)− g(y, t)| ≤Mω(|x− y|) {g(x, t) + g(y, t)} log(e+ h(t)) (1.17)

+Mδ(|x− y|){1 + g(x, t) + g(y, t)}.

To explain (1.17), with the model case g(x, t) = β(x)h(t)α(x), the functions ω and δ

represent the moduli of continuity for the exponent α and the function β, respectively.

Note that only uniform continuity of β is required, whereas the stronger continuity
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assumption (1.14) is enforced for the exponent α.

To give the reader a sense of the scope of the functionals considered in Chapter 2,

we give a few examples of functions gi := hαi , i = 1, 2, 3, where hi is defined in (1.4):

g1(x,F) := |F|p(x) ,

g2(x,F) := |F|p(x) log(e+ |F|)γp(x),

g3(x,F) :=


|F|p(x) if 0 ≤ |F| ≤ t0,

|F|p(x) 1+Q
2

+p(x) 1−Q
2

sin log log log|F| if |F| ≥ t0.

Here we have put p(x) = pα(x), γ = β/p, and Q = q/p. The function f1 is a par-

ticularly important case: functionals with integrands of this form have been utilized

in image restoration (e.g. [16]), and as mentioned earlier, also arise from problems in

mathematical physics.

We are now in a position to state the main result of Chapter 2.

Theorem 1.2. Suppose that Ω ⊂ Rn is open and bounded with C1 boundary, and that

α : Ω → [1,∞) satisfies (1.12)-(1.14) and g : Ω × R+ → R+ satisfies (1.15)-(1.17).

Let f : Ω×RN ×RN×n → R satisfy the following hypotheses for some 0 ≤ λ < n and

1 < s < min {r2, 1 + pr2/n, p
∗/p}, where r2 > 1 is as in Remark 2.2.

(i) For every ε > 0, there is a function σε ∈ L1,λ(Ω) and a constant Σε <∞ such

that

|f(x,u,F)− g(x, |F|)| < εg(x, |F|)

for all (x,u,F) ∈ Ω× RN × RN×n satisfying g(x, |F|) ≥ σε(x) + Σεg(x, |u|)s;
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(ii) There is some β ∈ L1,λ(Ω) such that

|f(x,u,F)| ≤ C(β(x) + g(x, |u|)s + g(x, |F|))

for all (x,u,F) ∈ Ω× RN × RN×n.

For a fixed u ∈ W 1Lg(Ω;RN) with g(·, |∇u|) ∈ L1,λ(Ω), define the admissible class

A :=
{
u ∈ W 1Lg(Ω;RN) : u− u ∈ W 1

0Lg(Ω;RN)
}
.

Let the functional K : A → R be as defined in (1.6). If u ∈ A and there are functions

{νε}ε>0 ⊂ L1,λ(Ω) and nondecreasing functions {γε}ε>0 ⊂ C(R+) with γε(0) = 0 so

that u is a (K, {γε}, {νε})-minimizer over A, then g(·, |∇u|) ∈ L1,λ(Ω).

We now discuss how our results fit into the broader framework of regularity theory.

As was previously noted, a primary special case of the functionals we consider are

those whose integrands are given by f(x,F) := h1(|F|)α(x) = |F|p(x). As one might

expect, the continuity of the exponent plays an important role in the type of regular-

ity possessed by minimizers. Working under the assumption that (1.13) was satisfied,

V. Zhikov [72] provided a proof of higher integrability for the gradient of minimizers,

and also provided an example that showed that if the exponent p(·) is merely contin-

uous, and (1.13) is not satisfied, then the higher integrability need not hold. With

the stronger assumption (1.14), which we also suppose in this work, E. Acerbi and

G. Mingione [3], working within the scalar setting, showed that minimizers belong to

C0,α locally for every α < 1, and if p(·) is Hölder continuous, that the gradient also

possesses some Hölder continuity. Again in the scalar setting, Hölder continuity of

quasiminimizers, under more stringent assumptions on p(·), was proved in [17]. In [4],

partial Hölder continuity for the gradient is obtained in the vectorial case with qua-
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siconvex integrands. For a more extensive discussion of the case of p(x)-growth, we

refer the interested reader to Section 7 of [61], and the references contained therein.

Another special case enveloped by our results is that of functionals whose inte-

grands have growth specified by a function h with (p, q)-structure; in the notation of

the present paper, this corresponds to the case α ≡ 1. Various types of regularity

have been studied in this setting; see [25], [26], and [35], for example.

The integrands of the functionals we consider are really only asymptotically con-

vex. Functionals with asymptotically convex integrands were first considered in the

case of quadratic growth (p = q = 2 and α(x) ≡ 1) by M. Chipot and L. Evans [18].

Asymptotically convex integrands with natural growth (p = q ≥ 2 and α(x) ≡

1) were subsequently treated in [36, 52, 64, 40, 42]. The case in which the inte-

grands are asymptotically convex and possess (p, q)-growth (but still α(x) ≡ 1) was

handled in [35]. In this work, we consider asymptotically convex integrands with

(pα(x), qα(x))-growth to allow for variable exponents. The type of regularity we ob-

tain, namely global Morrey regularity for the gradient of almost minimizers, is the

same as that obtained in [35], [40], and [41]; indeed, the results in the present pa-

per generalize those previous results to allow for variable exponent growth. A key

ingredient of the proof is obtaining a local Lipschitz estimate for minimizers of func-

tionals that have integrands with (p, q)-structure. In 2006, G. Papi and P. Marcellini

established local Lipschitz regularity with the following theorem.

Theorem 1.3. Let h ∈ W 2,∞
loc ((0,∞)) be a convex function satisfying h(0) = h′(0) =

0. Suppose that there exist t0, µ > 0 and β ∈ (1/n, 2/n) so that for each α ∈ (1, n/(n−

1)] there is a M = M(α) such that

µt−2β

[(
h′(t)

t

)n−2
n

+
h′(t)

t

]
≤ h′′(t) ≤M

[
h′(t)

t
+

(
h′(t)

t

)α]
(1.18)
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for all t ≥ t0. Let u ∈ W 1,1
loc (Ω;RN) be a local minimizer of the functional defined by

u 7→
∫

Ω
h(|∇u|)dx. Then u ∈ W 1,∞

loc (Ω;RN); moreover, for each ε > 0 and 0 < ρ < R,

there is a constant C = C(ε, n, ρ, R,H,K, sup0≤t≤t0 h
′′(t)) such that

‖∇u‖2−βn
L∞(Bρ;RN×n)

≤ C

{∫
BR

(1 + h(|∇u|))dx
} 1

1−β+ε

. (1.19)

Condition (1.18) is very mild; indeed, it allows for linear growth as well as exponential

growth. Hence Theorem 1.3 establishes local Lipschitz regularity of minimizers for a

very broad class of functionals. This Lipschitz regularity can then be used to establish

even more regularity of the minimizers if some other hypotheses on h are assumed.

However, the form of the estimate (1.19) does not lend itself to our purposes in this

work. We therefore must first prove a refinement of their result assuming that h has

(p, q)-structure, which is evidently a stronger assumption than (1.18). In the proof

of this refinement, we use Moser’s iteration technique, and obtain an estimate of the

form

‖h(|∇u|)‖L∞(Bx0,ρ) ≤
C

(R− ρ)n

∫
Bx0,R

h(|∇u|)dx, (1.20)

which is crucial for our purposes. Until 2009, estimates of the form (1.20) (sometimes

called “weak Harnack inequalities”) have only been available when h satisfies natural

growth conditions; i.e. when p = q. (Such an estimate was also obtained indepen-

dently for functions with (p, q)-structure in [26].) Additionally, the proofs for these

results have been separated into two cases, namely 1 < p < 2 and p ≥ 2, and the

two cases have been proved in fairly different ways (see [1] and [70]). In contrast, the

proof given in Section 2.2 is unified. Though certain growth conditions are implied

by our definition of (p, q)-structure (see Lemma 2.1), our proof uses the structure in-

trinsic to h itself, as opposed to external growth conditions imposed on h. Therefore
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it seems that similar results could be shown for functions with more general growth

by employing techniques similar to those used here.

One feature of the previous result is that, in contrast to many other results for

functionals with (p, q)-growth, the ratio q/p can be as large as we wish. The main

reason that we can relax the assumption on the ratio q/p is that we require the

function h to be radial, so the growth is the same in all directions, which is not

assumed for the results for which the ratio q/p does come into play.

1.3.2 Morrey Regular Young Measures

In Chapter 3, we make a transition to considering Young measures, and we restrict our

focus to the case that g(x, t) = tp. As was previously noted, when the integrand for

the functional is not convex, minimizers often fail to exist. However, if the functional

is coercive, that is, if

lim
‖w‖W1,p→∞

J(w) =∞,

then a minimizer will always exist in the sense of Young measures. Before we begin

discussing our results for Young measures, we briefly recall some basic facts about

Young measures.

We say that a sequence of measurable functions {fj}∞j=1, each mapping Ω into Rd,

generates the Young measure ν = {νx}x∈Ω if

ϕ(fj(·)) ⇀∗
∫
Rd
ϕ(y)dν(·)(y) in L∞(Ω)

for every ϕ ∈ C0(Rd). It is a standard fact that if g : Ω × Rd → R is measurable

with respect to the first argument and continuous with respect to the second, then

if g(·, fj(·)) converges weakly in L1(Ω) and {fj} generates the Young measure ν, it
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follows that

g(·, fj(·)) ⇀
∫
Rd
g(·,y)dν(·)(y) in L1(Ω),

and thus the Young measure identifies the weak limit whenever the weak limit exists.

Another important fact is that a sequence that is bounded in Lp(Ω;Rd) always will

have a subsequence which generates some Young measure ν.

In [67], L. Tartar characterized Young measures generated by p-equiintegrable

sequence {fj}∞j=1 bounded in Lp(Ω;RN) as precisely those Young measures for which

the map x 7→
∫
RN |y|

p dνx(y) belongs to L1(Ω). Here, by p-equiintegrable, we mean

that the sequence {|fj|p}∞j=1 is equiintegrable. The first part of Chapter 3 is devoted

to providing an extension of this theorem. Namely, we prove that a Young measure

ν = {νx}x∈Ω can be generated by a p-equiintegrable sequence of functions bounded

in Lp,λ(Ω;RN) if and only if the map x 7→
∫
RN |y|

p dνx(y) belongs to L1,λ(Ω). The

proof for this result is entirely constructive.

In the calculus of variations, often the Young measures that are important are

those that can be generated by a sequence of (weak) gradients. In [51], P. Pedregal and

D. Kinderlehrer provided the following characterization of Young measures generated

by a p-equiintegrable sequence of gradients, where for notational convenience we define

ψν : Ω→ [0,∞] by

ψν(x) :=

∫
RN×n

|F|p dνx(F).

Theorem 1.4. Let p ∈ [1,∞). A Young measure ν = {νx}x∈Ω can be generated

by a p-equiintegrable sequence of weak gradients if and only if there is a function

u ∈ W 1,p(Ω;RN) such that

(i) ψν ∈ L1(Ω);

(ii)
∫
RN×n Fdνx(F) = ∇u(x) for almost every x ∈ Ω;



20

(iii)
∫
RN×n ϕ(F)dνx(F) ≥ ϕ(∇u(x)) for all quasiconvex ϕ : RN×n → [0,∞) with

ϕ(F)≤C(1+|F|)p.

In Chapter 3, we extend their result to characterize those Young measures gener-

ated by sequences of weak gradients that are uniformly bounded in Lp,λ. Rather than

only characterizing the integrability of the generating sequence (that is, in which Lp

spaces the sequence is bounded), this extension also characterizes how much Mor-

rey regularity that generating sequence can be expected to possess. The result is as

follows:

Theorem 1.5. Let p ∈ [1,∞). A Young measure ν = {νx}x∈Ω can be generated by

a p-equiintegrable sequence of gradients bounded in Lp,λ(Ω) if and only if there is a

function u ∈ W 1,p(Ω;RN) such that

(i) ψν ∈ L1,λ(Ω);

(ii)
∫
RN×n Fdνx(F) = ∇u(x) for almost every x ∈ Ω;

(iii)
∫
RN×n ϕ(F)dνx(F) ≥ ϕ(∇u(x)) for all quasiconvex ϕ : RN×n → [0,∞) with

ϕ(F)≤C(1+|F|)p.

While the results in [51] provide optimal integrability results for the sequence

of generating functions, our results allow one to refine the regularity properties the

generating sequence can be expected to possess. For example, if a Young measure

ν is homogeneous and can be generated by a sequence of gradients {∇uj} bounded

in Lp(Ω;RN×n), by the results obtained here, it can also be generated by a sequence

of gradients {∇vj} that is uniformly bounded in Lp,λ(Ω;RN×n) for each 0 ≤ λ < n.

So even when it may not be possible to get any higher integrability for a sequence of

gradients generating ν, it is nevertheless possible to get much more Morrey regularity

on the gradients. If the boundary of Ω is Lipschitz, the Morrey regularity on the
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gradients translates to Hölder continuity of the potential functions vj. In fact, in this

case we would have that {vj} is uniformly bounded in C0,α(Ω;RN) for each 0 ≤ α < 1.

I. Fonseca and S. Müller [38] have generalized the result of D. Kinderlehrer and

P. Pedregal [51] in a different direction than is carried out here; they characterize

Young measures generated by sequences {vj} bounded in Lp that satisfy Avj = 0

for some constant rank partial differential operator A. The gradient case vj = ∇uj

addressed in [51] corresponds to the case A = curl. This generalization, among other

things, allows one to characterize Young measures generated by sequences of higher

gradients. It may be possible to combine the ideas in [38] with those in Chapter 3 to

obtain a characterization of Young measures generated by sequences {vj} bounded

in Lp,λ that satisfy Avj = 0. The main obstacle to employing the methods used here

to obtain such a characterization is the absence of a way to approximate an A-free

function by essentially bounded A-free functions (cf. Theorem 3.2). We would like to

mention here that one can look to [8, 15, 33, 37, 50, 51, 65, 66, 69, 68, 71] for some

applications of and supplementary material regarding Young measures.

1.3.3 Some Applications of the Main Results

In Chapter 4, we present several applications of our results in Chapters 2 and 3.

Our first application characterizes the space W 1Lg,λ(Ω;RN) as all those functions

u : Ω→ RN which are almost minimizers (in an appropriate sense) for the functional

u 7→
∫

Ω

g(x,∇u)dx. (1.21)

We then give an application that provides Morrey regularity for the gradient of
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solutions of systems of partial differential equations of the form

A(x,u,∇u) = b(x,u,∇u),

where the map F 7→ A(x,u,F) behaves asymptotically like F 7→ ∂
∂F
g(x, |F|), and

b satisfies some growth conditions. The main idea is to show that solutions of the

system will be almost minimizers for the functional in (1.21).

Next, we show the existence of Morrey-regular minimizing sequences for func-

tionals using our results from Chapter 2. As a corollary of this result and the char-

acterization of Young measures generated by Morrey-regular sequences of gradients

(provided in Chapter 3), we conclude that for functionals with natural growth (when

g(x, t) = tp), there exists a Morrey-regular minimizing Young measure. Lastly, we

show that if the minimizing Young measure is Morrey regular, then there exists a

Morrey-regular minimizing sequence.
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Chapter 2

Morrey Regularity Results for the

Gradient of Almost Minimizers

In this chapter, we will prove Morrey regularity for the gradient of almost minimizers

for functionals of the form

u 7→
∫

Ω

f(x,u(x),∇u(x))dx, (2.1)

where for each x ∈ Ω and u ∈ RN , the integrand F 7→ f(x,u,F) behaves asymp-

totically like the function F 7→ h(|F|)α(x), where h is an N-function such that th′′

is comparable to h′ and α satisfies a continuity assumption. Provided that there is

a function h with (p, q)-structure such that the map F 7→ f(x,u,F) behaves like

F 7→ h(|F|)α(x) when |F| is large, and provided that u is an almost minimizer for the

functional defined in (2.1), we prove that x 7→ h(|∇u(x)|)α(x) belongs to the Morrey

space L1,λ(Ω). The regularity we obtain is global; i.e. we have ‖h(|∇u|)α‖L1,λ(Ω) <∞.

Before we move on to the proofs of the results, let us first discuss the basic strategy

we will employ. The first step is to prove a refinement of the result due to P. Marcellini
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and G. Papi, which yields an estimate of the form (1.20) (Theorems 2.8 and 2.9).

Using this estimate for the Lipschitz regularity, in combination with the techniques

employed in [3], we prove that if v is a minimizer for a functional with integrand that

looks like (x,F) 7→ h(|F|)α(x), then h(|∇v|)α ∈ L1,κ
loc (Ω) for every κ ∈ [0, n). Next,

under the assumption that u is an almost minimizer for the functional, we make a

comparison between u and v to obtain some Morrey regularity for u. It is at this stage

where we also incorporate the boundary values into the functional to show that u is in

fact globally Morrey regular. All of the aforementioned work is done in the setting of

functionals with convex integrands that only depend on x and |∇u|, and constitutes

Section 2.3. In Section 2.4, we extend the scope of these results to include functionals

that are merely asymptotically convex and possess integrands that can depend on x,

u, and ∇u. The main idea required to treat this more general case is embodied in

Lemma 2.10, where we show that an almost minimizer for the asymptotically convex

functional with dependence on u will also be an almost minimizer for an appropriate

convex functional with no dependence on u. Hence the regularity obtained for almost

minimizers of convex functionals is passed on to almost minimizers of asymptotically

convex functionals.

2.1 Preliminaries

We first collect some basic properties of functions g : Ω×R+ → R+ satisfying (1.15)

and (1.16).

Lemma 2.1. Let α : Ω → [1,∞) and g : Ω × R+ → R+ satisfy (1.12) and (1.15)-

(1.16). Then for every x ∈ Ω and every s, t ∈ R+, the following hold:

(i) pα(x)g(x, t) ≤ tgt(x, t) ≤ qα(x)g(x, t);
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(ii) cpα(x)g(x, t) ≤ g(x, ct) ≤ cqα(x)g(x, t) for every c ≥ 1;

(iii) εqα(x)g(x, t) ≤ g(x, εt) ≤ εpα(x)g(x, t) for every ε ∈ (0, 1];

(iv) εqα(x)−1gt(x, t) ≤ gt(x, εt) ≤ εpα(x)−1gt(x, t) for every ε ∈ (0, 1];

(v) g(x, s+ t) ≤ 2qα(x)−1(g(x, s) + g(x, t));

(vi) tgt(x, s) ≤ g(x, t) + (q − 1)g(x, s);

(vii) gt(x, |F1|) |F2 − F1| ≤ C
(
g(x, |F2|)− gt(x, |F1|) F1

|F1| · (F2 − F1)
)

for some C =

C(p, qα+) and all F1, F2 ∈ RN×n;

Proof. Since g(x, ·) has (pα(x), qα(x))-structure for every x ∈ Ω, we have that

g(x, 0) = 0, so that we may write

g(x, t) =

∫ t

0

gt(x, s)ds.

But gt(x, s) ≥ 1
p−1

sgtt(x, s); putting this inequality into the above integral and inte-

grating by parts yields

g(x, t) ≤ 1

p− 1
[tgt(x, t)− g(x, t)].

Solving the inequality for tgt(x, t) gives the left inequality in part (i). A similar

argument gives the other inequality, concluding our proof for the first statement of

the lemma. Part (ii) is an immediate consequence of (i) and Propositions 2.1 and 2.3

in [22]. Part (iii) follows quickly from (ii) letting c = ε−1. To prove (iv), we note that

since g(x, ·) has (pα(x), qα(x))-structure, we have

pα(x)− 1

s
≤ gtt(x, s)

gt(x, s)
≤ qα(x)− 1

s
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for almost every s > 0. Integrating the above inequality from εt to t and using

properties of logarithms gives (iv). For part (v), we define the probability measure µ

on {s, t} to be one-half the counting measure, so that we have by (ii) and Jensen’s

inequality that

g(x, s+t) = g

(
x, 2

∫
{s,t}
ydµ(y)

)
≤ 2qα(x)g

(
x,

∫
{s,t}
ydµ(y)

)
≤ 2qα(x)

∫
{s,t}
g(x, y)dµ(y)

= 2qα(x)−1 (g(x, s) + g(x, t)) ,

which is (v). To prove (vi), we let g∗(x, ·) denote the Young conjugate of g(x, ·)

(Definition 1.4). Then by (1.5) and (i), we have

tgt(x, s) ≤ g(x, s)+g∗(x, gt(x, s)) = g(x, t)+sgt(x, s)−g(x, s) ≤ g(x, t)+(q−1)g(x, s),

which proves (vi).

The proof of (vii) is more involved. We consider two cases.

Case 1: |F2| ≤ 5 |F1| .

In this case, we have by (i) that

gt(x, |F1|) |F2 − F1| ≤ 6gt(x, |F1|) |F1| ≤ 6qα+g(x, |F1|).

But by the convexity of F 7→ g(x, |F|), we have that

g(x, |F1|) ≤ g(x, |F2|)−
∂

∂F
g(x, |F1|) · [F2 − F1]

= g(x, |F2|)− gt(x, |F1|) F1

|F1| · (F2 − F1).

Combining the above inequalities gives the desired estimate, and thus concludes the

proof for Case 1.
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Case 2: |F2| > 5 |F1|.

In this case, note that we have that |F1| ≤ 1
4
|F2 − F1| , and hence for t ∈ [1/2, 3/4],

we obtain the inequality

1
4
|F2 − F1| ≤ |F1 + t[F2 − F1]| ≤ |F2 − F1| . (2.2)

Now we will show that there is a constant C such that for all x ∈ V and a.e. t ∈

[1/2, 3/4], we have

g
(
x, 1

4
|F2 − F1|

)
≤ C

d2

dt2
g (x, |F1 + t[F2 − F1]|) . (2.3)

A routine computation shows that

d2

dt2
[g(x, |F1+t[F2−F1]|)] =

gt(x, |F1 + t[F2 − F1]|)
|F1 + t[F2 − F1]|

|F2 − F1|2

+
gtt(x, |F1+t[F2−F1]|)
|F1+t[F2−F1]|2

(
[F1+t(F2−F1)] · [F2−F1]

)2

− gt(|F1 + t[F2 − F1]|
|F1 + t[F2 − F1]|3

(
[F1 + t(F2 − F1)] · [F2 − F1]

)2
.

(2.4)

To obtain (2.3), we need to consider two cases. First, we suppose that 1 < p < 2.

Using (2.2), part (i), and (2.2) again, we obtain

g
(
x, 1

4
|F2 − F1|

)
≤ g(x, |F1 + t[F2 − F1]|)

≤ 1

p

gt(x, |F1 + t[F2 − F1]|)
|F1 + t[F2 − F1]|

|F1 + t[F2 − F1]|2

≤ 1

p

gt(x, |F1 + t[F2 − F1]|)
|F1 + t[F2 − F1]|

|F2 − F1|2 .

(2.5)
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We rewrite the right side of the previous inequality as follows:

1

p

gt(x, |F1+t[F2−F1]|)
|F1+t[F2−F1]|

|F2−F1|2 =
p−2

p(p−1)

gt(x, |F1+t[F2−F1]|)
|F1+t[F2−F1]|

|F2−F1|2

+
1

p(p−1)

gt(x, |F1+t[F2−F1]|)
|F1+t[F2−F1]|

|F2−F1|2 .

Since we are assuming for the moment that 1 < p < 2, obviously p− 2 < 0; therefore,

from the equality above and the Cauchy-Schwartz inequality, we have that

1

p

gt(x, |F1 + t[F2 − F1]|)
|F1 + t[F2 − F1]|

|F2 − F1|2

≤ p− 2

p(p− 1)

gt(x, |F1 + t[F2 − F1]|)
|F1 + t[F2 − F1]|3

([F1 + t[F2 − F1]] · [F2 − F1])2

+
1

p(p− 1)

gt(x, |F1 + t[F2 − F1]|)
|F1 + t[F2 − F1]|

|F2 − F1|2 . (2.6)

Now, we note that by (i) and by the fact that g(x, ·) has (pα(x), qα(x))-structure, we

have that

p(p− 1)g(x, t) ≤ t2gtt(x, t) ≤ qα+(qα+ − 1)g(x, t) (2.7)

for almost every t ∈ (0,∞). Using this inequality along with the computation in

(2.4), we get

1

p

gt(x, |F1 + t[F2 − F1]|)
|F1 + t[F2 − F1]|

|F2 − F1|2 ≤
1

p(p− 1)

d2

dt2
g(x, |F1 + t[F2 − F1]|).

Combining this with (2.5), we see that

g
(
x, 1

4
|F2 − F1|

)
≤ 1

p(p− 1)

d2

dt2
g (x, |F1 + t[F2 − F1]|) (2.8)

for 1 < p < 2.
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Now assume p ≥ 2. Then gt(x, s)/s is increasing with respect to s; using this fact

along with (i) and (2.2), we find that

g
(
x, 1

4
|F2 − F1|

)
≤ 1

16p

gt(x,
1
4
|F2 − F1|)

1
4
|F2 − F1|

|F2 − F1|2 (2.9)

≤ 1

16p

gt(x, |F1 + t[F2 − F1]|)
|F1 + t[F2 − F1]|

|F2 − F1|2 .

Since p ≥ 2, we have

p− 2

16p

gt(x, |F1 + t[F2 − F1]|)
|F1 + t[F2 − F1]|3

([F1 + t[F2 − F1]] · [F2 − F1])2 ≥ 0,

and therefore we can add it to the right side of (2.9) and use (2.6) and (2.4) to obtain

g
(
x, 1

4
|F2 − F1|

)
≤ 1

16p

d2

dt2
g (x, |F1 + t[F2 − F1]|) (2.10)

when p ≥ 2. Combining our estimates for the case 1 < p < 2 and the case p ≥ 2, we

have established (2.3) for any p > 1 and almost every t ∈ [1/2, 3/4].

We now proceed with the original estimate. Using part (vi) and (2.3), we obtain

gt(x, |F1|) |F2−F1| = 4gt(x, |F1|)
(

1
4
|F2−F1|

)
≤ Cg(x, |F1|) + C

∫ 3/4

1/2

(1−t) d2

dt2
g(x, |F1+t[F2−F1]|)dtdx.

Recalling that d2

dt2
g(|F1 + t[F2 − F1]|) ≥ 0 for a.e. t ∈ [0, 1], since the map t 7→

g(|F1 + t[F2 − F1]|) is convex, we can expand the domain of integration in the right
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side of the previous inequality to get

gt(x,|F1|) |F2−F1| ≤ Cg(x, |F1|) + C

∫ 1

0

(1− t) d2

dt2
g(x, |F1+t[F2−F1]|)dt

= Cg(x,|F1|)+C
[
g(x, |F2|)−g(x, |F1|)−gt(x, |F1|) F1

|F1| ·[F2−F1]
]

= C
{
g(x, |F2|)−gt(x, |F1|) F1

|F1| ·[F2−F1]
]
,

which finishes the proof.

The following lemma establishes that the Euler-Lagrange system of equations

holds in the weak sense for minimizers of appropriate functionals. In our proof, we

use the same method that Evans uses to prove Theorem 4 on page 451 in [34]. The

main modification that we need to make is to use part (vi) of Lemma 2.1 instead of

the standard version of Young’s inequality.

Lemma 2.2. Suppose that α : Ω→ [1,∞) satisfies (1.12)-(1.14) and g : Ω×R+ → R+

satisfies (1.15)-(1.17). Let G0 ∈ Rn×n be an invertible matrix, and suppose that

w ∈ W 1Lg(Ω;RN) is the minimizer for the functional

u 7→
∫

Ω

g(x, |∇uG0|)dx

among all mappings u ∈ w +W 1
0Lg(Ω;RN). Then

∫
Ω

gt(x, |∇wG0|)
∇wG0

|∇wG0|
· ∇ϕG0dx = 0

for every ϕ ∈ W 1
0Lg(Ω;RN).

Proof. Let ϕ ∈ W 1
0Lg(Ω;RN) be given. For every ε > 0, since w is a minimizer, we
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have that

0 ≤ 1

ε

∫
Ω

{g(x, |[∇w + ε∇ϕ]G0|)− g(x, |∇wG0|)} dx

=
1

ε

∫
Ω

∫ 1

0

d

ds
g(x, |[∇w + sε∇ϕ]G0|)dsdx

=

∫
Ω

∫ 1

0

gt(x, |[∇w + sε∇ϕ]G0|)
[∇w + sε∇ϕ]G0

|[∇w + sε∇ϕ]G0|
· ∇ϕG0dsdx.

(2.11)

Note that for any ε ∈ (0, 1), by parts (vi), (ii), and (v) of Lemma 2.1, we have

∣∣∣∣gt(x, |[∇w + sε∇ϕ]G0|)
[∇w + sε∇ϕ]G0

|[∇w + sε∇ϕ]G0|
· ∇ϕG0

∣∣∣∣
≤ gt(x, |[∇w + sε∇ϕ]G0|) |∇ϕG0|

≤ Cg(x, |[∇w + sε∇ϕ]G0|) + g(x, |∇ϕG0|)

≤ C[g(x, |∇w|) + g(x, |∇ϕ|)].

So for ε ∈ (0, 1), the integrand for the last integral in (2.11) is uniformly bounded by

a function belonging to L1(Ω), so that we may use Lebesgue’s dominated convergence

theorem along with the continuity of gt to conclude that

0 ≤ lim
ε→0+

∫
Ω

∫ 1

0

gt(x, |[∇w + sε∇ϕ]G0|)
[∇w + sε∇ϕ]G0

|[∇w + sε∇ϕ]G0|
· ∇ϕG0dsdx

=

∫
Ω

gt(x, |∇wG0|)
∇wG0

|∇wG0|
· ∇ϕG0dx.

We can repeat the same argument with −ϕ replacing ϕ, which gives the desired

conclusion.

Lemma 2.3. Suppose that h is a function with (p, q)-structure, and let β ≥ 0. Then

there is a positive constant C = C(p, q), independent of β, such that

[∫ t

0

sβh′(s)β
√
h′′(s)ds

]2

≥ 1

C(2β + 1)2
t2β+1h′(t)2β+1.
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Proof. Using the definition of (p, q)-structure, integrating by parts, then using that

h has (p, q)-structure again, we obtain

∫ t

0

sβh′(s)β
√
h′′(s)ds

≥ 2
√
p− 1

2β + 1
tβ+ 1

2h′(t)β+ 1
2 −

√
(p− 1)(q − 1)

∫ t

0

sβh′(s)β
√
h′′(s)ds.

Solving the inequality for the integral and squaring both sides yields the result.

The following theorem gives a type of Sobolev-Poincaré inequality for functions

in W 1Lh(Ω;RN).

Theorem 2.1. Suppose h : R+ → R+ is a function with (p, q)-structure and that

Ω ⊂ Rn is open and bounded with no external cusps. If r0 ∈ (1, n/(n − 1)), then

there exists a constant C, which depends on n, N , p, q, r0, and Ω, such that if

0 < R < diam(Ω), then

−
∫

Ω(x0,R)

h

(
|u− ξ|
R

)r0
dx ≤ C

(
−
∫

Ω(x0,R)

h(|∇u|)dx

)r0

for all u ∈ W 1Lh(Ω;RN), where ξ = (u)Ω(x0,R). If u ∈ W 1
0Lh(Ω(x0, R);RN), then

the above inequality also holds with ξ = 0.

Remark 2.1. The manner in which C depends on Ω is only by the quantity

sup
x0∈Ω

sup
R∈(0,diam(Ω)]

|B(x0, R)|
|Ω(x0, R)|

.

Proof. We initially suppose that w ∈ W 1Lhr0 (Ω;RN). By Lemma 7.14 in [46] (for

ξ = 0 and w ∈ W 1
0Lhr0 (Ω;RN) ⊂ W 1,1

0 (Ω;RN)) and Lemma 1.50 in [54] (for ξ =
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(w)Ω(x0,R)), there is a constant C = C(n,N) so that

|w(x)− ξ| ≤ C

∫
Ω(x0,R)

|∇w(y)|
|x− y|n−1 dy,

for almost every x ∈ Ω(x0, R). Following the proof of Theorem 7 in [25], we obtain

−
∫

Ω(x0,R)

h

(
|w − ξ|
R

)r0
dx ≤ C

(
−
∫

Ω(x0,R)

h(|∇w|)dx

)r0
. (2.12)

So we have obtained the desired estimate under the additional hypothesis that u ∈

W 1Lhr0 (Ω;RN). To remove this extra assumption, we use an approximation scheme.

First assume that ξ = (u)Ω(x0,R). By Theorem 8.31(e) in [6], there is a sequence

{uj}∞j=1 ⊂ C∞(Ω(x0, R)) with uj converging to u in W 1Lh(Ω(x0, R);RN). Without

loss of generality, we can assume that (uj)Ω(x0,R) = ξ. We also note here that {uj} ⊂

W 1Lhr0 (Ω(x0, R);RN) Putting w = uj − uk into (2.12) gives

−
∫

Ω(x0,R)

h

(
|uj − uk|

R

)r0
dx ≤ C

(
−
∫

Ω(x0,R)

h(|∇uj −∇uk|)dx

)r0
.

We therefore see that the sequence {uj}∞j=1 is Cauchy in Lhr0 (Ω(x0, R);RN). Using

this and that uj converges to u in L1(Ω(x0, R);RN), we must have that actually uj

converges to u in Lhr0 (Ω(x0, R);RN). But by (2.12) with w = uj, we have that

−
∫

Ω(x0,R)

h

(
|uj − ξ|

R

)r0
dx ≤ C

(
−
∫

Ω(x0,R)

h(|∇uj|)dx

)r0
.

Taking limits yields the inequality which was to be shown.

To obtain the desired inequality with ξ = 0 for u ∈ W 1
0Lh(Ω(x0, R);RN), we

just note that in this case it is possible to take {uj}∞j=1 ⊂ C∞c (Ω(x0, R);RN). Hence

{uj}∞j=1 ⊂ W 1
0Lhr0 (Ω(x0, R);RN), and so the same arguments can be employed, us-
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ing (2.12) with ξ = 0.

Next we prove a version of a Sobolev-Poincaré inequality for functions belong-

ing to W 1Lg(Ω;RN); our method of proof follows that of Zhikov [72], with suitable

modifications.

Theorem 2.2. Suppose that Ω ⊂ Rn is open and bounded and has no external cusps.

Suppose also that α : Ω→ [1,∞) satisfies (1.12) and (1.13), and that g : Ω× R+ →

R+ satisfies (1.15) and (1.16). Then there is some r1 > 1 and R0 > 0, both of

which depend on p, q, α+, and ω, so that for any u ∈ W 1Lg(Ω;RN), it follows that

u ∈ Lgr1 (Ω;RN). Furthermore, if ξ := (u)B(x0,R), then

−
∫

Ω(x0,R)

g

(
x,
|u− ξ|
R

)
dx ≤ C

{
1 +

(
−
∫

Ω(x0,R)

g(x, |∇u|)
1
r1 dx

)r1}

whenever 0 < R < R0. The constant C depends on n, N , α+, M , ω, Ω, and∫
Ω

(1 + g(x, |∇u|))dx. If u ∈ W 1
0Lg(B(x0, R);RN), then the same inequality holds

with ξ = 0.

Remark 2.2. By examining the proof, we see that we also have the inequality

(
−
∫

Ω(x0,R)

g

(
x,
|u− ξ|
R

)r2
dx

) 1
r2

≤ C−
∫

Ω(x0,R)

{1 + g(x, |∇u|)} dx,

for some r2 ≥ r1 and for all R ∈ (0, R0], where again ξ = (u)B(x0,R). If u ∈

W 1
0Lg(B(x0, R);RN), the same inequality holds with ξ = 0.

Proof. Fix x0 ∈ Ω, and define

α1(R) := inf
x∈Ω(x0,R)

α(x),

α2(R) := sup
x∈Ω(x0,R)

α(x).
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For ease of notation, we will henceforth write α1 and α2 for α1(R) and α2(R), re-

spectively, keeping in mind that α1 and α2 vary as R varies. Find x1 and x2 in

Ω(x0, R) such that α(x1) = α1 and α(x2) = α2. Let r0 ∈ (1, n/(n− 1)) be such that

1 > r
−1/2
0 ≥ 1− (p− 1)/(2qα+), so that hα1/

√
r0 has ((p+ 1)/2, qα+)-structure. Then

select r1 > 1 and R0 > 0 so that for 0 < R ≤ R0, we have

1 ≤ α2r1

α1

≤
√
r0, and

r1
√
r0(α2 − α1)

α1

≤ Cω(2R) ≤ 1. (2.13)

We use (2.13), Hölder’s Inequality and Theorem 2.1 to obtain

−
∫

Ω(x0,R)

h

(
|u− ξ|
R

)α2r1

dx ≤ C

(
−
∫

Ω(x0,R)

(
h

(
|u− ξ|
R

) α1√
r0

)r0

dx

) α2r1
α1
√
r0

≤ C

(
−
∫

Ω(x0,R)

h (|∇u|)
α1√
r0 dx

)α2r1
√
r0

α1

.

After writing
α2r1

√
r0

α1
=

(α2−α1)r1
√
r0

α1
+ r1
√
r0, Hölder’s inequality and (2.13) yield

(
−
∫

Ω(x0,R)

h (|∇u|)
α1√
r0 dx

)α2r1
√
r0

α1

≤ CR−Cnω(2R)

(∫
Ω(x0,R)

h(|∇u|)α1dx

)(
−
∫

Ω(x0,R)

h(|∇u|)
α1√
r0 dx

)r1√r0
.

By (1.13), we have that R−Cnω(2R) is uniformly bounded, so by setting

C̃ := 1 + sup
R>0

CR−Cnω(2R)

∫
Ω

(1 + g(x, |∇u|))dx
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and combining our previous inequalities, then using Hölder’s inequality, we find that

−
∫

Ω(x0,R)

h

(
|u− ξ|
R

)α2r1

dx ≤ C̃

(
1 +−

∫
Ω(x0,R)

h(|∇u|)
α(x)√
r0 dx

)r1√r0
≤ C̃

(
1 +−

∫
Ω(x0,R)

h(|∇u|)
α(x)
r1 dx

)r21
.

(2.14)

Because Ω is bounded, this implies that u ∈ Lgr1 (Ω;RN). Furthermore, the estimate

in the statement of the theorem follows from (2.14), (1.16), and Hölder’s inequality.

We also have the following Caccioppoli inequality.

Theorem 2.3. Suppose that α : Ω → [1,∞) satisfies (1.12)-(1.14) and that g :

Ω × R+ → R+ satisfies (1.15) and (1.16). Let G0 ∈ Rn×n be an invertible matrix,

and suppose that w ∈ W 1Lg(Ω;RN) is a minimizer for

v 7→
∫

Ω

g(x, |∇v(x)G0|)dx

among all mappings v ∈ w+W 1
0Lg(Ω;RN). There is a constant C = C(p, qα+,

∣∣G−1
0

∣∣)
such that ∫

B(x0,
R
2

)

g(x, |∇w|)dx ≤ C

∫
B(x0,R)

g

(
x,
|w − ξ|
R

)
dx

for all ξ ∈ RN and all balls B(x0, R) ⊂ Ω.

Proof. First, we show that for every µ ∈ (0, 1], it holds that

g∗(x, µgt(x, t)) ≤ qα+µ
qα+
qα+−1 g(x, t), (2.15)

where g∗(x, τ) denotes the Young conjugate of g(x, ·) evaluated at τ . To demon-
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strate (2.15), we first note that for every τ ≥ 0, we have

g∗(x, τ) = τg−1
t (x, τ)− g(x, g−1

t (x, τ)) ≤ τg−1
t (x, τ),

where g−1
t (x, τ) denotes the inverse of gt(x, ·) evaluated at τ . Putting τ = µgt(x, t)

in the above inequality, we have that

g∗(x, µgt(x, t)) ≤ µgt(x, t)g
−1
t (x, µgt(x, t)). (2.16)

To estimate g−1
t (x, µgt(x, t)), we apply part (iv) of Lemma 2.1 with ε = µ1/(qα+−1)

and use that α(x) ≤ α+ to obtain µgt(x, t) ≤ gt(x, µ
1/(qα+−1)t). Applying g−1

t (x, ·) to

both sides of this inequality yields g−1
t (x, µgt(x, t)) ≤ µ

1
qα+−1 t. Putting this inequality

into (2.16) and using part (i) of Lemma 2.1, we obtain (2.15).

With (2.15) available, we can now prove the result. By the Euler-Lagrange equa-

tions, we have that

∫
Ω

gt(x, |∇wG0|)
∇wG0

|∇wG0|
· ∇ϕG0dx = 0, (2.17)

for any ϕ ∈ W 1
0Lg(Ω;RN). For a ball B(x0, R) ⊂ Ω, let η ∈ C∞c (B(x0, R)) be

such that χB(x0,R/2) ≤ η ≤ χB(x0,R) and |∇η| ≤ 4
R

. For a fixed ξ ∈ RN , putting

ϕ = (w − ξ)ηqα+ in (2.17), we have

∫
B(x0,R)

ηqα+gt(x, |∇wG0|) |∇wG0| dx

= −qα+

∫
B(x0,R)

ηqα+−1gt(x, |∇wG0|)
∇wG0

|∇wG0|
· (w − ξ)⊗∇ηdx.
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Using Lemma 2.1 part (i), Young’s inequality, and the bound |∇η| ≤ 4/R, we have

p

∫
B(x0,R)

ηqα+g(x, |∇wG0|)dx

≤ 4qα+ε

∫
B(x0,R)

{
g∗
(
x, ηqα+−1gt(x, |∇wG0|)

)
+ g

(
x,
|w − ξ|
Rε

)}
dx,

for any ε > 0. Now employing (2.15) with µ = ηqα+−1 yields

p

∫
B(x0,R)

ηqα+g(x, |∇wG0|)dx

≤ 4(qα+)2ε

∫
B(x0,R)

ηqα+g(x, |∇wG0|)dx + 4qα+ε

∫
B(x0,R)

g

(
x,
|w − ξ|
Rε

)
dx.

Choosing ε = (p − 1)/(4q2α2
+), subtracting the first integral on the right from both

sides of the inequality, and utilizing parts (ii) and (iii) of Lemma 2.1, we obtain the

desired result.

Combining the results of Theorems 2.2 and 2.3, we use Proposition 5.1 in [43] to

obtain the following.

Theorem 2.4. Suppose that α : Ω → [1,∞) satisfies (1.12)-(1.14) and that g :

Ω × R+ → R+ satisfies (1.15) and (1.16). Let G0 ∈ Rn×n be an invertible matrix,

and suppose that w ∈ W 1Lg(Ω;RN) is a minimizer for

v 7→
∫

Ω

g(x, |∇v(x)G0|)dx

among all mappings v ∈ w + W 1
0Lg(Ω;RN). Then there is a constant C < ∞ and

r3 > 1 such that

(
−
∫
B(x0,

R
2

)

g(x, |∇w|)r3dx

) 1
r3

≤ C

(
−
∫
B(x0,R)

{1 + g(x, |∇w|)} dx

)
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for all balls B(x0, R) ⊂ Ω. The constants C and r3 depend only on n, N , p, q, M ,

α+, ω,
∣∣G−1

0

∣∣, and
∫

Ω
(1 + g(x, |∇w|))dx.

Using the argument provided in [20], along with Theorem 2.3 and Lemma 2.1, we

have the following boundary version of the above result.

Theorem 2.5. Suppose that α : Ω → [1,∞) satisfies (1.12)-(1.14) and that g :

Ω × R+ → R+ satisfies (1.15)-(1.17). Let G0 ∈ Rn×n be an invertible matrix, and

assume B(x0, R) ⊂ Ω. Suppose that w is a minimizer for

u 7→
∫
B(x0,R/4)

g(x, |∇u(x)G0|)dx

satisfying w − v ∈ W 1
0Lg(B(x0, R/4);RN) for some function v ∈ W 1Lg(Ω;RN) with

g(·, |∇v|) ∈ Lr(B(x0, R/2), where r > 1. Then there is a constant C <∞ and r4 > 1

such that

(
−
∫
B(x0,R/4)

g(x, |∇w|)r4dx

) 1
r4

≤ C

(
−
∫
B(x0,R/2)

{1 + g(x, |∇v|)r} dx

) 1
r

.

Here, the constants C and r4 only depend on n, N , p, q, M , α+, ω,
∣∣G−1

0

∣∣, r, and∫
Ω

(1 + g(x, |∇u|))dx.

We also have the following theorem that gives Morrey regularity for the function

itself if the gradient possesses Morrey regularity. The proof of this theorem uses some

ideas from Lemma 2.2 and Proposition 2.3 in [47].

Theorem 2.6. Suppose that Ω ⊂ Rn is open and bounded, and has no external cusps.

Suppose that α : Ω → [1,∞) satisfies (1.12) and (1.13), and that g : Ω × R+ → R+

satisfies (1.15) and (1.16). Suppose also that u ∈ W 1Lg(Ω;RN) and g(·, |∇u|) ∈
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L1,λ(Ω) for some 0 ≤ λ < n. Then, if r2 is as in Remark 2.2 and 1 ≤ s < r2, we

have that g(·, |u|)s ∈ L1,κ(Ω) for every 0 ≤ κ < min{n+ s(p+ λ− n), n}.

Proof. Put µ := min{n + s(p + λ − n), n}, fix κ < µ, and let γ ∈ (κ, µ). Since

γ < µ ≤ n+ s(p+ λ− n), there is some s′ ∈ (s, r2) such that n+ s′(p+ λ− n) ≥ γ.

With R0 as in Theorem 2.2, find R1 ∈ (0, R0] so that ω(2R1) ≤ s′

s
− 1. Since Ω has

no external cusps, there is some constant A <∞ such that

1

A
|Ω(x0, a)|

(
b

a

)n
≤ |Ω(x0, b)| ≤ A |Ω(x0, a)|

(
b

a

)n
(2.18)

for any a, b ∈ (0, diam(Ω)) and x0 ∈ Ω, and hence to show that g(·, |u|) ∈ L1,κ(Ω), it

suffices to show that

sup
x0∈Ω

0<ρ<R1

|Ω(x0, ρ)|−
κ
n

∫
Ω(x0,ρ)

g(x, |u|)dx <∞.

With x0 ∈ Ω and ρ ∈ (0, R1) fixed for the remainder of the proof, we denote by

Ωr the set Ω(x0, r), by α1 and α2 the quantities infx∈ΩR1
α(x) and supx∈ΩR1

α(x),

respectively, and by ut the average (u)Ωt . We observe that our choice of R1 ensures

that α2s ≤ α1s
′, since α2/α1 ≤ ω(2R1)/α1 + 1 ≤ s′/s. In what follows, we write C

for any constant that does not depend on either x0 or ρ; in particular, we allow C to

depend on u, κ, and A. We have

|Ωρ|−
κ
n

∫
Ωρ

g(x, |u|)sdx ≤ C |Ωρ|−
κ
n

{∫
Ωρ

g(x, |u− uρ|)sdx

+

∫
Ωρ

g(x, |uR0 − uρ|)sdx +

∫
Ωρ

g(x, |uR0|)sdx

}
= C |Ωρ|−

κ
n {I1 + I2 + I3} ,

(2.19)

where I1, I2, and I3 are defined naturally. We first note that for any R < R0, by
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Theorem 2.2 and the previously noted inequality α2s ≤ α1s
′, it holds that

∫
ΩR

h(|u− uR|)α2sdx ≤ C

∫
ΩR

{
1 + h (|u− uR|)α(x)s′

}
dx

≤ C

(
|ΩR|+ |ΩR|

n+ps′
n −
∫

ΩR

{
h

(
|u− uR|

R

)α(x)s′
}

dx

)

≤ C

(
|ΩR|+ |ΩR|

n+ps′
n

(
−
∫

ΩR

{
1 + h(|∇u|)α(x)

}
dx

)s′)

≤ C

(
|ΩR|+ |ΩR|

n+ps′
n + |ΩR|

n+s′(p+λ−n)
n ‖g(·, |∇u|)‖s

′

L1,λ

)
.

But γ < n, and clearly n + ps′ ≥ n; also, by the selection of s′, we have that

n+ s′(p+ λ− n) ≥ γ, so defining the finite constant G by G := 1 + ‖g(·, |∇u|)‖s
′

L1,λ ,

the above string of inequalities yields

|ΩR|−
γ
n

∫
ΩR

h(|u− uR|)α2sdx ≤ CG, (2.20)

for 0 < R < R1. With this work, we quickly observe

I1 ≤ C

∫
Ωρ

{1 + h(|u− uρ|)α2s} dx ≤ CG |Ωρ|
γ
n .

To estimate I2, we first let 0 < a < b ≤ R1 be given, and define ϕ : R+ → R+ to be

the inverse of hα2s. Then by Jensen’s inequality and (2.20), we find

h(|ub − ua|)α2s ≤ h

(
|Ωa|−1

∫
Ωa

|u− ub| dx

)α2s

≤ |Ωa|−1

∫
Ωa

h(|u− ub|)α2sdx

≤ |Ωa|−1 |Ωb|
γ
n G.

For each i = 0, 1, . . . ,, put ri = 2−iR1. Putting a = ri and b = ri−1 in the above
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inequality and using that ϕ is the inverse of hα2s, we have

∣∣uri−1
− uri

∣∣ ≤ ϕ
(
|Ωri|

∣∣Ωri−1

∣∣ γn G) . (2.21)

Now, if a nonnegative integer k is selected so that 2−k−1R1 ≤ ρ ≤ 2−kR1, then it

follows that k ≤ 1
log(2)

log
(
R1

ρ

)
, and so, using the triangle inequality and (2.21), we

obtain

|uR0 − uρ| ≤
k∑
i=1

ϕ
(
|Ωri |

∣∣Ωri−1

∣∣ γn G)+ ϕ
(
|Ωρ|−1 |Ωrk |

γ
n G
) k+1∑
i=1

ϕ
(
|Ωri |

∣∣Ωri−1

∣∣ γn G) .
Hence, employing Lemma 2.1 and Jensen’s inequality, along with the two preceding

inequalities, we have

h(|uR0 − uρ|)α2s ≤ (k + 1)qsα+h

(
1

k + 1

k+1∑
i=1

ϕ
(
|Ωri|

∣∣Ωri−1

∣∣ γn G))α2s

≤ (k + 1)qsα+−1

k+1∑
i=1

|Ωri |
∣∣Ωri−1

∣∣ γn G
≤
(

1

log(2)
log

(
R1

ρ

)
+ 1

)qsα+−1

G
k+1∑
i=1

|Ωri |
−1
∣∣Ωri−1

∣∣ γn .
But (2.18) gives that

|Ωri |
−1
∣∣Ωri−1

∣∣ γn ≤ C
(
2(n−γ)(i−k)

) ∣∣Ωrk+1

∣∣ γ−nn ≤ C
(
2(n−γ)(i−k)

)
|Ωρ|

γ−n
n ,
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and hence

h(|uR1 − uρ|)α2s ≤
(

1

log(2)
log

(
R1

ρ

)
+ 1

)qsα+−1

G |Ωρ|
γ−n
n

k+1∑
i=1

(
2n−γ

)i−k
≤
(

1

log(2)
log

(
R1

ρ

)
+ 1

)qsα+−1

G |Ωρ|
γ−n
n

k−1∑
i=−1

(
2n−γ

)−i
≤
(

1

log(2)
log

(
R1

ρ

)
+ 1

)qsα+−1

G |Ωρ|
γ−n
n .

Using this estimate and that γ > κ, we have that

I2 ≤ C

∫
Ωρ

{1 + h(|uR1 − uρ|)α2} dx ≤ C

(
1

log(2)
log

(
R1

ρ

)
+ 1

)qsα+−1

G |Ωρ|
γ
n

≤ CG |Ωρ|
κ
n .

Turning now to I3, we have by Jensen’s inequality and the inequality α2s ≤ α1s
′ ≤

α1r2 that

I3 ≤ |Ωρ| (1 + h(|uR1|)α2s) ≤ |Ωρ|

(
1 + |ΩR1|

−1

∫
ΩR1

h(|u|)α2sdx

)

≤ |Ωρ|
(

1 + |ΩR1|
−1

∫
Ω

{g(x, |u|)r2dx

)
.

By Remark 2.2, we have that g(·, |u|)r2 ∈ L1(Ω), and so we have

I3 ≤ C (1 + ‖g(·, |u|)r2‖L1) |Ωρ| .

Putting our estimates for I1, I2, and I3 into (2.19) and using that γ > κ, we have

|Ωρ|−
κ
n

∫
Ωρ

g(x, |u|)dx ≤ C
(

1 +G+ |ΩR1|
−1 ‖g(·, |u|)r2‖L1(Ω)

)

for all 0 < ρ ≤ R1, which gives that g(·, |u|) ∈ L1,κ(Ω), as desired.



44

The next lemma and its proof are essentially taken from Lemma 1 in [39].

Lemma 2.4. Let ϕ : (0,∞) → R be nondecreasing, and suppose that there exist

A ≥ 1, B ≥ 0, R0 > 0, and α > β ≥ 0 such that for some 0 ≤ ε ≤
(

1
2A

) 2α
α−β , the

inequality

ϕ(ρ) ≤ A
[( ρ
R

)α
+ ε
]
ϕ(R) +BRβ

holds for each 0 < ρ ≤ R ≤ R0. Then there is some finite constant C = C(A,α, β)

such that

ϕ(ρ) ≤ C
( ρ
R

)β
ϕ(R) + CBρβ

for all 0 < ρ ≤ R ≤ R0.

Proof. First, we define γ = (α + β)/2 and τ = (2A)−2/(α−β). Note that γ ∈ (β, α)

and 2Aτα = τ γ, so that the assumption on ε gives

A(τα + ε) ≤ 2Aτα = τ γ. (2.22)

Using (2.22) and the assumption on ϕ, we can employ a straightforward induction

argument to show that

ϕ(τ jR) ≤ τ jγϕ(R) +B(τ j−1R)β
j−1∑
i=0

(τ γ−β)i (2.23)

for every nonnegative integer j. For fixed 0 < ρ ≤ R, we can find j such that

τ j+1R ≤ ρ ≤ τ jR. Using that ϕ is increasing and (2.23), we find

ϕ(ρ) ≤ ϕ(τ jR) ≤ τ jγϕ(R) +Bτ−2β(τ j+1R)β
j−1∑
i=0

(τ γ−β)i

≤ τ−γ
( ρ
R

)γ
ϕ(R) +

Bτ−2β

1− τ γ−β
ρβ,
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which establishes the lemma.

2.2 Lipschitz Regularity Results

We now prove a refinement of the local Lipschitz regularity result established in [60];

our strategy is similar to the one used there. We consider the functional

J(v) :=

∫
Ω

h(|∇v|)dx, (2.24)

where h has (p, q)-structure. We temporarily make the assumption that there are

positive constants µ and M such that for all F1,F2 ∈ RN×n, the following holds:

µ |F1|2 ≤
∂2

∂F2
h(|F2|) · (F1 ⊗ F1) ≤M |F1|2 . (2.25)

Here, by ∂2

∂F2h(|F2|), we mean the (N×n)×(N×n) matrix (i.e. an N×n matrix with

N×n matrices as the entries) for which the (i, j, k, l) entry is given by ∂2

∂F i,j∂Fk,l
h(|F2|),

and by F1⊗F1, we mean the (N ×n)× (N ×n) matrix for which the (i, j, k, l) entry

is F
(i,j)
1 F

(k,l)
1 . Thus, (2.25) is just shorthand for the inequalities

µ |F1|2 ≤
∑
i,j,k,l

∂2

∂F i,j∂F k,l
h(|F2|)F i,j

1 F k,l
1 ≤M |F1|2 ,

and is asserting the uniform positive-definiteness (left inequality) and boundedness

(right inequality) of the Hessian ∂2

∂F2h(|·|). A routine computation shows that

∂2

∂F i,j∂F k,l
h(|F2|) =

(
h′′(|F2|)
|F2|2

− h′(|F2|)
|F2|3

)
F i,j

2 F k,l
2 +

h′(|F2|)
|F2|

δ(i,j)(k,l),
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where we have defined δ(i,j)(k,l) to be 1 if (i, j) = (k, l) and 0 otherwise. Using this,

we see that

∂2

∂F2
h(|F2|)·(F1⊗F1)=

(
h′′(|F2|)
|F2|2

− h′(|F2|)
|F2|3

)∑
i,j,k,l

F i,j
2 F k,l

2 F i,j
1 F k,l

1

+
h′(|F2|)
|F2|

∑
i,j

(F i,j
1 )2

=

(
h′′(|F2|)
|F2|2

− h′(|F2|)
|F2|3

)(∑
i,j

F i,j
2 F i,j

1

)2

+
h′(|F2|)
|F2|

|F1|2 .

(2.26)

By the Cauchy-Schwartz inequality, we have that

(∑
i,j

F i,j
2 F i,j

1

)2

≤ |F2|2 |F1|2 ,

so that if h′′(|F2|) ≤ h′(|F2|)/ |F2|, then from (2.26), we see that

h′′(|F2|) |F1|2 ≤
∂2

∂F2
h(|F2|) · (F1 ⊗ F1) ≤ h′(|F2|)

|F2|
|F1|2 .

On the other hand, if h′′(|F2|) ≥ h′(|F2|)/ |F2|, then again using Cauchy-Schwartz

and (2.26), we have

h′(|F2|)
|F2|

|F1|2 ≤
∂2

∂F2
h(|F2|) · (F1 ⊗ F1) ≤ h′′(|F2|) |F1|2 .

In either case, we have shown that

|F1|2 min

{
h′′(|F2|),

h′(|F2|)
|F2|

}
≤ ∂2

∂F2
h(|F2|)·(F1⊗F1)≤|F1|2 max

{
h′′(|F2|),

h′(|F2|)
|F2|

}
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for all F1,F2 ∈ RN×n. Therefore (2.25) is satisfied if both h′′(t) and h′(t)/t are

bounded below by µ and above by M for t ∈ (0,∞). Assumption (2.25) gives

quadratic growth of h, which in turn forces any minimizer to be of class W 2,2
loc ∩

W 1,∞
loc (Ω;RN). This is a well-known result, and is found in, for example, Theo-

rems 8.1 and 8.2 of [47]. Theorem 8.1 from [47] gives the local square-integrability of

the second-order derivatives; the overall strategy of the proof of this part of the re-

sult is to consider difference quotients of the gradient and show that these difference

quotients are uniformly locally bounded in L2 using the Euler-Lagrange equations

with a particular test function involving difference quotients of u. The uniform lo-

cal boundedness in L2 of the difference quotients implies that the weak second-order

derivatives exist and belong to L2
loc. The local essential boundedness of ∇u is the

content of Theorem 8.2 in [47]; for the proof, one essentially iterates an estimate that

comes from an inequality contained in the proof of the existence of square-integrable

second derivatives and the Sobolev embedding theorem.

The following lemma provides an estimate of the form (1.20) for minimizers of

(2.24) under the additional assumptions that (2.25) holds and that h′′ is continuous.

The estimate we obtain is independent of the constants µ and M , which allows us to

eventually remove both the assumption in (2.25) and the continuity assumption on

h′′ using an approximation argument.

Lemma 2.5. Let Ω ⊂ Rn be open, and let h ∈ C2([0,∞)) be a function with (p, q)-

structure that satisfies (2.25). Suppose that v ∈ W 1,1(Ω;RN) is a minimizer of (2.24).

Then there is a constant C = C(n, p, q) such that

‖h(|∇v|)‖L∞(Bx0,ρ) ≤
C

(R− ρ)n

∫
Bx0,R

h(|∇v|)dx

whenever Bx0,R ⊂ Ω and 0 < ρ < R.
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Proof. First, we establish that

‖h(|∇v|)‖L∞(Bx0, r2 ) ≤
C

rn

∫
Bx0,r

h(|∇v|)dx (2.27)

for any x0 ∈ Ω and r > 0 such that Bx0,r ⊂ Ω. Using a rescaling argument, we see

that it suffices to show (2.27) when x0 = 0 and r = 1. As was just discussed above,

it can be shown that v ∈ W 2,2
loc (B;RN)∩W 1,∞

loc (BRN). We now follow the first part of

the proof for Lemma 4.1 in [60] to show that

∫
B
η2Φ(|∇v|)h′′(|∇v|) |∇(|∇v|)|2 dx

≤ C

∫
B

Φ(|∇v|) max

{
h′′(|∇v|), h

′(|∇v|)
|∇v|

}
|∇η|2 |∇v|2 dx

for every η ∈ C1
c (B) and Φ that is nondecreasing, continuous on [0,∞), and Lipschitz

continuous on [ε, T ] for all T > ε > 0. In fact, this is exactly (4.19) in [60]. Since h

has (p, q)-structure, we obtain from the above inequality that

∫
B
η2Φ(|∇v|)h′′(|∇v|) |∇(|∇v|)|2 dx ≤ C

∫
B

Φ(|∇v|)h′′(|∇v|) |∇η|2 |∇v|2 dx (2.28)

Thus, for fixed β ≥ 0, we can define Φ(t) = t2βh′(t)2β; with this definition of Φ, the

above inequality becomes

∫
B
η2 |∇v|2β h′(|∇v|)2βh′′(|∇v|) |∇(|∇v|)|2 dx

≤ C

∫
B
|∇v|2β+2 h′(|∇v|)2βh′′(|∇v|) |∇η|2 dx.
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By the definition of h having (p, q)-structure, we get

∫
B
η2 |∇v|2β h′(|∇v|)2βh′′(|∇v|) |∇(|∇v|)|2 dx

≤ C

∫
B
|∇v|2β+1 h′(|∇v|)2β+1 |∇η|2 dx. (2.29)

Now define G : [0,∞)→ [0,∞) by G(t) :=
∫ t

0
sβh′(s)β

√
h′′(s)ds. Since h′ is increas-

ing, by Hölder’s inequality we obtain

[G(t)]2 ≤ t2β+1h′(t)2β

∫ t

0

h′′(s)ds = t2β+1h′(t)2β+1.

Hence we see that

|∇(ηG(|∇v|))|2 = |(∇η)G(|∇v|) + ηG′(|∇v|)∇(|∇v|)|2

≤ 2 |∇η|2 |∇v|2β+1 h′(|∇v|)2β+1

+ 2η2 |∇v|2β h′(|∇v|)2βh′′(|∇v|) |∇(|∇v|)|2 .

Note that the assumption in (2.25) implies that ∇v is locally bounded. Integrating

the above inequality over B, using (2.29) and Sobolev’s inequality, we deduce that

there is a constant C depending only upon n such that

{∫
B
η2∗
[
G(|∇v|)2

] 2∗
2 dx

} 2
2∗

≤ C

∫
B
|∇η|2

[
|∇v|h′(|∇v|)

]2β+1
dx. (2.30)

If n = 2, we select 2∗ to be any finite number strictly larger than 2. Recalling the

definition of G and using Lemma 2.3, from (2.30) we obtain

{∫
B
η2∗
[
|∇v|h′(|∇v|)

] 2∗
2

(2β+1)
dx

} 2
2∗

≤ C(2β + 1)2

∫
B
|∇η|2

[
|∇v|h′(|∇v|)

]2β+1
dx.

(2.31)
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Now let 0 < ρ < R ≤ 1 be given, and let η be a non-negative test function that is

equal to 1 in Bρ, has support contained in BR, and is such that |∇η| ≤ C
R−ρ ; then

from (2.31), we see that

{∫
Bρ

[
|∇v|h′(|∇v|)

] 2∗
2

(2β+1)
dx
} 2

2∗ ≤ C(2β + 1)2

(R− ρ)2

∫
BR

[
|∇v|h′(|∇v|)

]2β+1
dx.

Now putting γ = 2β + 1 (note that γ ≥ 1, since β ≥ 0), we can rewrite the above

inequality as

{∫
Bρ

[
|∇v|h′(|∇v|)

] 2∗
2
β
dx

} 2
2∗

≤ Cγ2

(R− ρ)2

∫
BR

[
|∇v|h′(|∇v|)

]γ
dx. (2.32)

Define the decreasing sequence {ρi}∞i=0 by ρi = 1
2
(1 + 2−i). Then ρ0 = 1 and ρi

decreases to 1
2

as i → ∞. Also define an increasing sequence {γi}∞i=0 by γi =
(

2∗

2

)i
.

Thus we can rewrite (2.32) with R = ρi, ρ = ρi+1, and γ = γi. Upon iterating the

result and substituting in the expression for γi, we obtain

{∫
Bρi+1

[
|∇v|h′(|∇v|)

]( 2∗
2 )

i+1

dx

}( 2
2∗ )

i+1

≤
i∏

k=0

[
C (2∗)2k

]( 2
2∗ )

k∫
B1
|∇v|h′(|∇v|)dx. (2.33)

Now we verify that the product occurring in the above inequality remains bounded.

For each i, put Ai :=
∏i

k=0C
( 2
2∗ )

k

and Bi :=
∏i

k=0 (2∗)2k( 2
2∗ )

k

. We will estimate Ai

and Bi separately. If n ≥ 3, then we can bound Ai as follows:

Ai ≤
∞∏
k=0

C( 2
2∗ )

k

= C
∑∞
k=0( 2

2∗ )
k

= C
n
2 .
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Similarly, if n ≥ 3, we get that

Bi ≤ (2∗)
n(n−2)

2 =

(
2n

n− 2

)n(n−2)
2

.

If n = 2, then 2∗ is a fixed number larger than 2 and we obtain similar estimates for

Ai and Bi. Introducing the estimates for Ai and Bi into (2.33), we find that

{∫
Bρi+1

[
|∇v|h′(|∇v|)

]( 2∗
2 )

i+1

dx

}( 2
2∗ )

i+1

≤ C

∫
B1
|∇v|h′(|∇v|)dx. (2.34)

Taking the limit as i→∞ in (2.34) yields

∥∥ |∇v|h′(|∇v|)
∥∥
L∞(B 1

2
)
≤ lim

i→∞

{∫
Bρi+1

[
|∇v|h′(|∇v|)

]( 2∗
2 )

i+1

dx

}( 2
2∗ )

i+1

≤ C

∫
B
|∇v|h′(|∇v|)dx.

Using part (i) of Lemma 2.1 in both sides of the above inequality gives

‖h(|∇v|)‖L∞(B 1
2

) ≤ C

∫
B1
h(|∇v|)dx. (2.35)

As was mentioned at the beginning of the proof, using a rescaling argument and

(2.35), we obtain (2.27).

Now we use (2.27) to finish the proof. Fix 0 < ρ < R and x0 ∈ Ω satisfying

Bx0,R ⊂ Ω, and let y ∈ Bx0,ρ. Then By,R−ρ ⊂ Bx0,R, and so taking r = R− ρ in (2.27)

yields

‖h(|∇v|)‖L∞(B
y,
R−ρ
2

) ≤
C

(R− ρ)n

∫
By,R−ρ

h(|∇v|)dx ≤ C

(R− ρ)n

∫
Bx0,R

h(|∇v|)dx.
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Since the above inequality holds for all y ∈ Bx0,ρ, we conclude that

‖h(|∇v|)‖L∞(Bx0,ρ) ≤
C

(R− ρ)n

∫
Bx0,R

h(|∇v|)dx,

which was to be shown.

Now we will assume that h has (p, q)-structure, but does not necessarily satisfy

(2.25), and also is not necessarily of class C2. Our strategy is the same as that in [60].

We define a sequence of functions {hk}∞k=1 that approximate h and satisfy (2.25); we

also define a corresponding sequence of integral functionals {Jk}∞k=1. The conclusion

of Lemma 2.5 holds for minimizers of Jk; we show that we can pass to the limit to

get the result for the minimizer of the original functional.

Since we are assuming h has (p, q)-structure, h(t) > 0 for all positive t. Let {εk}∞k=1

be a sequence of positive numbers decreasing to 0, choosing ε1 < 1 sufficiently small

so that h′( 1
ε1

) ≥ 1. We define h′k : [0,+∞)→ [0,+∞) by

h′k(t) =



h′(εk)
εk

t, 0 ≤ t ≤ εk

h′(t), εk < t ≤ 1
εk

min
{
εkh

′
(

1
εk

)
t, h′(t) + εkt− 1

}
, t > 1

εk
.

(2.36)

Now we define hk as

hk(t) =

∫ t

0

h′k(s)ds, (2.37)

where h′k is defined in (2.36). Then hk ∈ W 2,∞
loc ([0,∞)) is an N-function and satisfies

(2.25) for some positive constants µk and Mk. We compute hk for t ≤ 1
εk

, and find
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that

hk(t) =


h′(εk)

2εk
t2, 0 ≤ t ≤ εk

h(t) + h′(εk)(εk)
2

− h(εk), εk ≤ t ≤ 1
εk
.

(2.38)

For the remainder of the section, h will be a function with (p, q)-structure and {hk}∞k=1

will be the approximating functions defined in (2.37).

Lemma 2.6. Fix k ∈ N, and assume that v ∈ W 1,1(Ω;RN) is a minimizer for the

functional

u 7→
∫

Ω

hk(|∇u|)dx.

Then there is a constant C = C(n, p, q) such that

‖hk(|∇v|)‖L∞(Bx0,ρ) ≤
C

(R− ρ)n

∫
Bx0,R

hk(|∇v|)dx

whenever Bx0,R ⊂ Ω and 0 < ρ < R.

Proof. Note that hk is only of class W 2,∞
loc , so we may not simply apply Lemma 2.5,

which would require hk to be C2. Our strategy is to mollify hk, apply Lemma 2.5 to the

minimizers of the functionals involving the mollifications of hk, then pass to the limit

to obtain the result for the original minimizer. Before we perform the mollification,

let us extend hk to an even function on all of R. Now, for every 0 < δ < ε2
k/4, let hδk

denote a standard mollification of hk, where the support of the mollifier is contained

in [−δ, δ]. Then (hδk)
′(0) = 0, but hδk(0) > 0. Define hδ : [0,∞)→ [0,∞) by

hδ(t) := hδk(t)− hδk(0).

Then hδ is an N-function. Recall that {εk}∞k=1 was chosen to be a decreasing sequence

with ε1 < 1 selected small enough so that h′(1/εk) ≥ 1; keeping this in mind, it
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is straightforward to show that hk has (p, q)-structure, where p := min{p, 2} and

q := max{q + 1, 3}. Using this and the fact that δ < 1/4, we can show that hδ has

(p̃, q̃)-structure, where we have put p̃ := min
{

5
3
, 1

3
+ 2p

3

}
and q̃ := max{2q + 1, 5}.

We also find that hδ satisfies (2.25) for the same µk, Mk as hk. Suppose Bx0,R ⊂ Ω,

and let vδ ∈ W 1,1(Ω;RN) be a minimizer of the functional

u 7→
∫
Bx0,R

hδ(|∇u|)dx

satisfying vδ = v on ∂Bx0,R. Using Lemma 2.5 and the minimality of vδ, we obtain

‖hδ(|∇vδ|)‖L∞(Bx0,ρ) ≤
C

(R− ρ)n

∫
Bx0,R

hδ(|∇vδ|)dx ≤ C

(R− ρ)n

∫
Bx0,R

hδ(|∇v|)dx,

(2.39)

for every 0 < ρ < R. Using the convexity of hk, it is not difficult to see that

hk(t)− hδk(0) ≤ hδ(t) ≤ hk(t+ δ) + hδk(0), (2.40)

for all t ≥ 0. Using (2.40) in (2.39), we find that

‖hk(|∇vδ|)‖L∞(Bx0,ρ) ≤
C

(R− ρ)n

∫
Bx0,R
{hk(|∇v|+δ)+hδk(0)}dx+hδk(0) ≤ c1, (2.41)

where c1 depends on n, p, q, k, ρ, and R. Hence h(|∇vδ|) is equibounded with

respect to δ in Bx0,ρ. Since h is an N-function, we deduce that
∥∥ |∇vδ|

∥∥
L∞(Bx0,ρ)

is

equibounded, and so, up to a subsequence, ∇vδ converges to some ∇w in the weak∗

topology of L∞(Bx0,ρ;RN×n) for every ρ < R. Passing to the limit in (2.41), we obtain

‖hk(|∇w|)‖L∞(Bx0,ρ)≤ lim inf
δ→0+

‖hk(|∇vδ|)‖L∞(Bx0,ρ)≤
C

(R− ρ)n

∫
Bx0,R

hk(|∇v|)dx.

(2.42)
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Using (2.40), the minimality of vδ, and the dominated convergence theorem, we

estimate that

lim sup
δ→0+

∫
Bx0,R

hk(|∇vδ|)dx ≤ lim sup
δ→0+

∫
Bx0,R

hδ(|∇vδ|)dx ≤ lim
δ→0+

∫
Bx0,R

hδ(|∇v|)dx

=

∫
Bx0,R

hk(|∇v|)dx. (2.43)

Part (i) of Lemma 2.1 gives the inequality p/t ≤ h′k(t)/hk(t); integrating this inequal-

ity from 1 to t and using properties of logarithms gives that hk(t) ≥ hk(1)tp for t ≥ 1.

Thus (2.43) implies that ‖∇vδ‖Lp(Bx0,R) is uniformly bounded, so ∇vδ converges in

the weak topology of Lp(Bx0,R;RN×n) to some function ∇w. Therefore by weak lower

semicontinuity and (2.43), we have

∫
Bx0,R

hk(|∇w|)dx ≤ lim inf
δ→0+

∫
Bx0,R

hk(|∇vδ|)dx ≤
∫
Bx0,R

hk(|∇v|)dx.

Hence w is also a minimizer for the functional u 7→
∫

Ω
hk(|∇u|)dx. Since hk(|·|) is

strictly convex on RN×n, the minimizer for the Dirichlet problem is unique, and so

w = v. Therefore we can replace w with v in (2.42) and obtain the result.

Lemma 2.7. There are decreasing sequences {βk}∞k=1 and {γk}∞k=1 converging to 0

such that hk(t) ≤ h(t) + βkt
2 + γk for all t ≥ 0 and k ∈ N.

Proof. If 0 ≤ t ≤ 1
εk

, then we can use (2.38) to get hk(t) ≤ h(t) + 1
2
εkh

′(εk). If t > 1
εk

,

then h′k(s) ≤ h′(s) + εks for all s > 1
εk

, so by (2.38) we have

hk(t) = hk

(
1
εk

)
+

∫ t

1
εk

h′k(s)ds ≤ hk

(
1
εk

)
+

∫ t

1
εk

(h′(s)+εks)ds ≤ h(t)+ 1
2
εkt

2+ 1
2
εkh

′(εk).

We see that the lemma is proved upon taking βk = 1
2
εk and γk = 1

2
εkh

′(εk).
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Equipped with these lemmas, we can prove the following theorem.

Theorem 2.7. Let Ω ⊂ Rn be open and h be a function with (p, q)-structure. Suppose

that v ∈ W 1,1(Ω;RN) is a minimizer for the functional in (2.24). Then there is a

constant C = C(n, p, q) such that

‖h(|∇v|)‖L∞(Bx0,ρ) ≤
C

(R− ρ)n

∫
Bx0,R

h(|∇v|)dx

whenever Bx0,R ⊂ Ω and 0 < ρ < R.

Proof. First assume that Bx0,2R ⊂ Ω. For each k ∈ N, define the integral functional

Jk(u) =

∫
Bx0,R

hk(|∇u|)dx,

where hk is as defined in (2.37). For each 0 < σ < min{1, R}, let vσ be a smooth

function defined from v using a standard mollifier. Then vσ ∈ W 1,2(Bx0,R;RN). Let

vk,σ be a minimizer of Jk that satisfies vk,σ = vσ on ∂Bx0,R. Then by Lemma 2.6,

there is a constant C, independent of k and σ, such that

‖hk(|∇vk,σ|)‖L∞(Bx0,ρ) ≤
C

(R− ρ)n

∫
Bx0,R

hk(|∇vk,σ|)dx. (2.44)

Since vk,σ is a minimizer for Jk, we have that

∫
Bx0,R

hk(|∇vk,σ|)dx ≤
∫
Bx0,R

hk(|∇vσ|)dx. (2.45)

By Lemma 2.7, we obtain decreasing sequences {βk}∞k=1 and {γk}∞k=1 converging to 0
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such that

∫
Bx0,R

hk(|∇vσ|)dx ≤
∫
Bx0,R

{
h(|∇vσ|) + βk |∇vσ|2 + γk

}
dx. (2.46)

By properties of mollifiers,

∫
Bx0,R

{
h(|∇vσ|) + βk |∇vσ|2 + γk

}
dx

≤
∫
Bx0,R+σ

h(|∇v|)dx +

∫
Bx0,R

{
βk |∇vσ|2 + γk

}
dx. (2.47)

Combining (2.44)-(2.47), we have

‖hk(|∇vk,σ|)‖L∞(Bx0,ρ)

≤ C

(R− ρ)n

[∫
Bx0,R+σ

h(|∇v|)dx +

∫
Bx0,R

{
βk |∇vσ|2+γk

}
dx

]
≤c1,σ, (2.48)

where, in addition to the explicit dependence on σ, c1,σ also depends on n, p, q,

R, and ρ. It follows that
∥∥ |∇vk,σ|

∥∥
L∞(Bx0,ρ)

is uniformly bounded in k by some

Mσ <∞. Hence there is a subsequence of vk,σ that converges in the weak∗ topology

of W 1,∞(Bx0,ρ;RN) to some function wσ. Also, since |∇vk,σ| ≤ Mσ in Bx0,ρ, for k

large enough so that 1
εk
≥Mσ, the computation in (2.38) gives

‖hk(|∇vk,σ|)− h(|∇vk,σ|)‖L∞(Bx0,ρ) ≤
h′(εk)εk

2
+ h(εk). (2.49)

Using (2.49) and going to the limit in (2.48), we obtain

lim inf
k→∞

‖h(|∇vk,σ|)‖L∞(Bx0,ρ) ≤ lim inf
k→∞

‖hk(|∇vk,σ|)‖L∞(Bx0,ρ)

≤ C

(R− ρ)n

∫
B1+σ

h(|∇v|)dx.
(2.50)
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By properties of weak∗ convergent sequences, we have

‖h(|∇wσ|)‖L∞(Bx0,ρ) ≤ lim inf
k→∞

‖h(|∇vk,σ|)‖L∞(Bx0,ρ) . (2.51)

Combining (2.51) and (2.50), we get

‖h(|∇wσ|)‖L∞(Bx0,ρ) ≤
C

(R− ρ)n

∫
BR+σ

h(|∇v|)dx ≤ c2, (2.52)

where c2 := C
(R−ρ)n

∫
Bx0,2R

h(|∇v|)dx. Therefore, by part (v) of Lemma 2.1, we have

that ∇wσ is uniformly bounded in L∞(Bx0,ρ;RN×n), and so we can extract a subse-

quence that converges weak∗ in L∞(Bx0,ρ;RN×n) to a function ∇w for some w. We

will show that w = v. By lower semicontinuity, we have

∫
Bx0,ρ
h(|∇wσ|)dx ≤ lim inf

k→∞

∫
Bx0,ρ
h(|∇vk,σ|)dx. (2.53)

Using (2.49), we obtain

lim inf
k→∞

∫
Bx0,ρ
h(|∇vk,σ|)dx ≤ lim inf

k→∞

∫
Bx0,ρ
hk(|∇vk,σ|)dx ≤ lim inf

k→∞

∫
Bx0,R

hk(|∇vk,σ|)dx

(2.54)

But by combining (2.45)-(2.47) and taking the limit as k →∞, we find that

lim inf
k→∞

∫
Bx0,R

hk(|∇vk,σ|)dx ≤
∫
Bx0,R+σ

h(|∇v|)dx. (2.55)

Collecting the inequalities in (2.53)-(2.55), we have

∫
Bx0,ρ
h(|∇wσ|)dx ≤

∫
Bx0,R+σ

h(|∇v|)dx.
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Since the inequality above holds for every ρ < R, we conclude that

∫
Bx0,R

h(|∇wσ|)dx ≤
∫
Bx0,R+σ

h(|∇v|)dx. (2.56)

By lower semicontinuity and (2.56), we get

∫
Bx0,R

h(|∇w|)dx ≤ lim inf
σ→0

∫
Bx0,R

h(|∇wσ|)dx ≤
∫
Bx0,R

h(|∇v|)dx. (2.57)

Since h′′(t) > 0 for all t > 0, we see that h(|·|) is strictly convex on RN×n. Thus

the minimizer to the Dirichlet problem is unique, and so we can conclude from (2.57)

that w = v. Passing to the limit in (2.52) yields

‖h(|∇v|)‖Bx0,ρ ≤ lim inf
σ→0

‖h(|∇wσ|)‖Bx0,ρ ≤
C

(R− ρ)n

∫
Bx0,R

h(|∇v|)dx.

Thus we have shown the result if Bx0,2R ⊂ Ω. Now suppose only that Bx0,R ⊂ Ω, and

0 < ρ < R. Then By,R−ρ ⊂ Ω for every y ∈ Bx0,ρ, so by the argument above, we have

that

‖h(|∇v|)‖L∞(B
y,
R−ρ
4

) ≤
C

(R− ρ)n

∫
B
y,
R−ρ
2

h(|∇v|)dx ≤ C

(R− ρ)n

∫
Bx0,R

h(|∇v|)dx.

Since the above inequality holds for every y ∈ Bx0,ρ, we see that

‖h(|∇v|)‖L∞(Bx0,ρ) ≤
C

(R− ρ)n

∫
Bx0,R

h(|∇v|)dx,

which is the desired result.

We can change variables and use Theorem 2.7 to establish the apparently more

general result that follows.
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Theorem 2.8. Let Ω ⊂ Rn be open, and let v ∈ W 1,1(Ω;RN) be a minimizer of the

functional

u 7→
∫

Ω

h(|∇uG0|)dx,

where h is a function with (p, q)-structure and G0 is an invertible n × n constant

matrix. Then there is a constant C = C(n, p, q,
∣∣G−1

0

∣∣ , |G0|) such that

‖h(|∇vG0|)‖L∞(Bx0,ρ) ≤
C

(R− ρ)n

∫
Bx0,R

h(|∇vG0|)dx

whenever Bx0,R ⊂ Ω and 0 < ρ < R.

Using a reflection argument and Theorem 2.8, we can show the following version

of the result for the half-ball.

Theorem 2.9. Let h be a function with (p, q)-structure, and suppose that G0 ∈ Rn×n

is invertible. Let v ∈ W 1,1(Ω;RN) be a minimizer of the functional

u 7→
∫
B+
h(|∇uG0|)dx,

satisfying v = 0 on B ∩ ∂H+ in the sense of trace. Then there exists a constant

C = C(n, p, q,
∣∣G−1

0

∣∣ , |G0|) such that

‖h(|∇vG0|)‖L∞(B+x0,ρ) ≤
C

(R− ρ)n

∫
B+x0,R

h(|∇vG0|)dx

for any x0 ∈ B+ and 0 < ρ < R ≤ 1− |x0|.
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2.3 Results for Convex Functionals

The proof of the following theorem uses many of the ideas from the proof for Propo-

sition 3.1 in [3].

Theorem 2.10. Suppose that α : Ω → [1,∞) satisfies (1.12)-(1.14), and that g :

Ω × R+ → R+ satisfies (1.15)-(1.17). Let G0 ∈ Rn×n be an invertible matrix, and

suppose v is a minimizer for the functional J defined by

w 7→
∫

Ω

g(x, |∇wG0|)dx,

among all mappings w ∈ v + W 1
0Lg(Ω;RN). Then for every 0 ≤ κ < n, there are

constants Cκ and Rκ, which, in addition to κ, also depend on n, N , p, q, α+, |G0|,∣∣G−1
0

∣∣, M , ω, δ, κ, and L :=
∫

Ω
(1 + g(x, |∇wG0|))dx, such that

∫
B(x0,ρ)

(1 + g(x, |∇v|)) dx ≤ Cκ

( ρ
R

)κ ∫
B(x0,R)

(1 + g(x, |∇v|)) dx

whenever B(x0, R) ⊂ Ω and 0 < ρ ≤ R ≤ Rκ.

Proof. Fix κ ∈ [0, n). Throughout the proof, C will denote a constant that may

depend only on the parameters listed in the statement of the theorem, and its value

may change from line to line. We define the functions α1, α2 : Ω × (0,∞) → [1,∞)

by

α1(x, r) := min
{
α(y) : y ∈ Ω(x, r)

}
,

α2(x, r) := max
{
α(y) : y ∈ Ω(x, r)

}
.

By Theorem 2.4 and Hölder’s inequality, we have that there are constants C > 0 and
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r3 > 1 such that

(
−
∫
B(x,r)

{1 + g(x, |∇v|)s} dx

) 1
s

≤ C−
∫
B(x,2r)

{1 + g(x, |∇v|)} dx (2.58)

whenever B(x, 2r) ⊂ Ω and s ∈ [1, r3]. Fix r′ ∈ (1,min{2, r3}), and select R0 ∈

(0, 1/2) so that ω(2R0) < r3
r′
− 1. Now we suppose that 0 < 8ρ < R ≤ R0 and x0 ∈ Ω

are such that B(x0, R) ⊂ Ω. With x0 and R fixed, we will use for convenience α1

and α2 to denote α1(x0, R) and α2(x0, R), respectively, and Br := B(x0, r) for r > 0.

Note that α2 ≤ α1 + ω(2R), and hence the choices for R0 and r′ above imply that

α2r
′ ≤ α(x)r′(1 + ω(2R)) ≤ α(x)r3 (2.59)

for all x ∈ BR.

We can select x2 ∈ BR so that α(x2) = α2. Let w ∈ W 1Lhα2 (BR/4;RN) be the

minimizer for the functional Jx2 : W 1Lhα2 (BR/4;RN)→ R defined by

Jx2(u) :=

∫
BR/4

g(x2, |∇uG0|)dx,

satisfying w = v on ∂BR/4. (Note that by Theorem 2.4 and (2.59), we have v ∈

W 1Lhα2 (BR/4;RN).) We clearly have

∫
Bρ

g(x2, |∇vG0|)dx=

∫
Bρ

g(x2, |∇wg0|)dx+

∫
Bρ

{
g(x2, |∇vG0|)−g(x2, |∇wG0|)

− gt(x2, |∇wG0|)
∇wG0

|∇wG0|
· (∇v −∇w)G0

}
dx

+

∫
Bρ

gt(x2, |∇wG0|)
∇wG0

|∇wG0|
· (∇v −∇w)G0dx

= I1 + I2 + I3,

(2.60)
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where I1, I2, and I3 are defined to be the first, second, and third integrals, respectively.

By part (vii) of Lemma 2.1, there is a constant C depending only on n, p, and qα+

such that I3 ≤ C(I1 + I2), so that it remains only to estimate I1 and I2.

For I1, we have from Theorem 2.8 and the minimality of w for Jx2 that

I1 ≤ C
( ρ
R

)n ∫
BR/4

g(x2, |∇w|)dx ≤ C
( ρ
R

)n ∫
BR/4

g(x2, |∇v|)dx.

To estimate I2, we note that the integrand is nonnegative because of the convexity

of g(x2, ·), so we can expand the domain of integration to BR/4. Then using the

Euler-Lagrange equations for w (Lemma 2.2), the minimality of v for J , and (1.17),

we have

I2 ≤ C

∫
BR/4

{g(x2, |∇vG0|)− g(x, |∇vG0|)} dx

+ C

∫
BR/4

{g(x, |∇wG0|)− g(x2 |∇wG0|)} dx

≤ C

∫
BR/4

{ω(R) (1+h(|∇v|)α2) log (e+h(|∇v|))+δ(R) (1+h(|∇v|)α2)} dx

+ C

∫
BR/4

{ω(R) (1+h(|∇w|)α2)log(e+h(|∇w|))+δ(R)(1+h(|∇w|)α2)} dx.

Now we use the minimality of w for Jx2 in the above inequality to conclude that
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I2 ≤ Cω(R)

∫
BR/4

(1 + h(|∇v|)α2) log (e+ h(|∇v|)) dx

+ Cω(R)

∫
BR/4

(1 + h(|∇w|)α2) log (e+ h(|∇w|)) dx

+ Cδ(R)

∫
BR/4

(1 + h(|∇v|)α2) dx

= I2,1 + I2,2 + I2,3.

(2.61)

Before we estimate I2,1, I2,2, and I2,3, we introduce some notation and ideas that we

will use in these estimates. As in [3], for each s ∈ [1,∞), we use the norm ‖·‖s on

Ls(BR/4) by ∥∥∥ĥ∥∥∥
s

:=

(
−
∫
BR/4

∣∣∣ĥ∣∣∣s) 1
s

.

We recall the following from [3], which follows from a result in [49]: for each s > 1,

there is a constant c(s), which does not depend on R or the mapping ĥ, such that

−
∫
BR/4

∣∣∣ĥ∣∣∣ log

e+

∣∣∣ĥ∣∣∣∥∥∥ĥ∥∥∥
1

 dx ≤ c(s)
∥∥∥ĥ∥∥∥

s
. (2.62)

Using the inequality log(e+ab) ≤ log(e+a)+log(e+b), which is valid for all a, b ≥ 0,

we have that

I2,1 ≤ Cω(R)

∫
BR/4∩{h(|∇v|)≥e}

h(|∇v|)α2 log(h(|∇v|)α2)dx + Cω(R)Rn

≤ Cω(R)Rn−
∫
BR/4

h(|∇v|)α2 log

(
e+

h(|∇v|)α2

‖h(|∇v|)α2‖1

)
dx

+ Cω(R)Rn log (e+ ‖h(|∇v|)α2‖1)−
∫
BR/4

h(|∇v|)α2dx + Cω(R)Rn.

(2.63)
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By Hölder’s inequality and (2.59), we find that

−
∫
BR/4

h(|∇v|)α2dx ≤

(
−
∫
BR/4

h(|∇v|)α2r′dx

) 1
r′

≤

(
−
∫
BR/4

{
1 + h(|∇v|)α(x)r′(1+ω(2R))

}
dx

) 1
r′

.

(2.64)

Employing (2.59) and (2.58), we have that

log (e+ ‖h(|∇v|)α2‖1) ≤ C log

(
1

R

)
. (2.65)

Putting (2.64) and (2.65) into (2.63), and using (2.62) in the first integral of the right

side of (2.63) yields

I2,1 ≤ Cω(R)Rn

(
−
∫
BR/4

{
1 + h(|∇v|)α(x)r′(1+ω(2R)

}
dx

) 1
r′

+ Cω(R) log

(
1

R

)
Rn

(
−
∫
BR/4

{
1 + h(|∇v|)α(x)r′(1+ω(2R))

}
dx

) 1
r′

+ Cω(R)Rn.

Using (2.58) in the above inequality with s = r′(1 + ω(2R)), we obtain

I2,1 ≤ Cω(R) log

(
1

R

)
Rn

(
−
∫
BR/2

{
1 + h(|∇v|)α(x)

}
dx

)1+ω(2R)

+ Cω(R)Rn

≤ Cω(R) log

(
1

R

)
R−nω(2R)

∫
BR/2

{
1 + h(|∇v|)α(x)

}
dx + Cω(R)Rn

≤ Cω(R) log

(
1

R

)∫
BR/2

(1 + g(x, |∇v|))dx.

(2.66)

We note here that we used (1.13) to conclude that R−nω(2R) ≤ C in the last line.

Now we turn to the task of providing an estimate for I2,2. In the same way that
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we obtained (2.63), we find that

I2,2 ≤ Cω(R)Rn−
∫
BR/4

h(|∇w|)α2 log

(
e+

h(|∇w|)α2

‖h(|∇w|)α2‖1

)
dx

+ Cω(R)Rn log (e+ ‖h(|∇w|)α2‖1)−
∫
BR/4

h(|∇w|)α2dx + Cω(R)Rn.

Using the minimality of w for Jx2 , we can bound log(e+ ‖h(|∇w|)α2‖1) in the same

way that we bounded the analogous term for v, so that the above inequality gives

I2,2 ≤ Cω(R)Rn−
∫
BR/4

h(|∇w|)α2 log

(
e+

h(|∇w|)α2

‖h(|∇v|)α2‖1

)
dx

+ Cω(R) log

(
1

R

)
Rn−
∫
BR/4

h(|∇w|)α2dx + Cω(R)Rn.

(2.67)

Now, by Theorem 2.5, we have that there is some r4 > 1 such that

(
−
∫
BR/4

h(|∇w|)α2r4dx

) 1
r4

≤ C

(
−
∫
BR/2

{
1+h(|∇v|)α2r′

}
dx

) 1
r′

. (2.68)

Utilizing (2.62) in the first term of (2.67) and Hölder’s inequality in the second, we

find that

I2,2 ≤ Cω(R)Rn

(
−
∫
BR/4

h(|∇w|)α2r4dx

)1
r4

+Cω(R) log

(
1

R

)
Rn

(
−
∫
BR/4

h(|∇w|)α2r4dx

)1
r4

+Cω(R)Rn (2.69)

≤ Cω(R) log

(
1

R

)
Rn

(
−
∫
BR/4

h(|∇w|)α2r4dx

) 1
r4

+ Cω(R)Rn.
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We use (2.68) and (2.59) in (2.69) to arrive at the inequality

I2,2 ≤ Cω(R) log

(
1

R

)
Rn

(
−
∫
BR/2

{
1 + h(|∇v|)α(x)r′(1+ω(2R))

}
dx

) 1
r′

+ Cω(R)Rn.

Now we employ (2.58) and conclude as in (2.66) that

I2,2 ≤ Cω(R) log

(
1

R

)
Rn

(
−
∫
BR

{
1 + h(|∇v|)α(x)

}
dx

)1+ω(2R)

+ Cω(R)Rn

≤ Cω(R) log

(
1

R

)
R−nω(2R)

∫
BR

{
1 + h(|∇v|)α(x)

}
dx + Cω(R)Rn

≤ Cω(R) log

(
1

R

)∫
BR

(1 + g(x, |∇v|)) dx.

(2.70)

The estimate for I2,3 is easier. By (2.64) and (2.58), we have

I2,3 ≤ Cδ(R)Rn−
∫
BR/4

h(|∇v|)α2dx + Cδ(R)Rn

≤ Cδ(R)Rn

(
−
∫
BR/4

{
1 + h(|∇v|)α(x)r′(1+ω(2R))

}
dx

) 1
r′

+ Cδ(R)Rn

≤ Cδ(R)Rn

(
−
∫
BR/2

{
1 + h(|∇v|)α(x)

}
dx

)1+ω(2R)

+ Cδ(R)Rn.

Similarly to (2.66), we can conclude

I2,3 ≤ Cδ(R)

∫
BR/2

(1 + g(x, |∇v|)) dx. (2.71)

Putting (2.66), (2.70), and (2.71) into (2.61) yields

I2 ≤ C

(
ω(R) log

(
1

R

)
+ δ(R)

)∫
BR/2

(1 + g(x, |∇v|)) dx. (2.72)

We have already noted that I3 ≤ C(I1 + I2), so putting our estimates for I1 and I2
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into (2.60) gives

∫
Bρ

(1+g(x, |∇v|)) dx≤C
(( ρ
R

)n
+ω(R) log

(
1

R

)
+δ(R)

)∫
BR

(1 + g(x, |∇v|)) dx

(2.73)

for all 0 < 8ρ < R ≤ R0. But by enlarging C if necessary, we clearly have that (2.73)

holds for 0 < ρ ≤ R ≤ 8ρ ≤ R0 as well, so that, in fact, the inequality in (2.73) holds

for all 0 < ρ ≤ R ≤ R0. By (1.14), for each κ ∈ [0, n), we can find Rκ ∈ (0, R0) so

that

ω(R) log

(
1

R

)
+ δ(R) ≤ ε0 :=

(
1

2C

) n
n−κ

for all 0 < R < Rκ. Then by Lemma 2.4, we conclude that

∫
Bρ

(1 + g(x, |∇v|))dx≤Cκ
( ρ
R

)κ ∫
BR

(1 + g(x, |∇v|))dx

for all 0 < ρ ≤ R ≤ Rκ, which concludes the proof.

Using a reflection argument and Theorem 2.10, we can show the following version

of the result for the half-ball.

Theorem 2.11. Suppose that α : B+ → [1,∞) satisfies (1.12)-(1.14), and that g :

B+ × R+ → R+ satisfies (1.15)-(1.17). Let G0 ∈ Rn×n be an invertible matrix, and

suppose that v is a minimizer for the functional J : W 1,1(B+;RN)→ R∗ defined by

J(w) :=

∫
B+
g(x, |∇wG0|)dx,

satisfying v = 0 on B ∩ ∂H+ in the sense of trace. Then for every 0 ≤ κ < n, there

are constants Cκ and Rκ, which, in addition to κ, also depend on n, N , p, q, α+,
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|G0|,
∣∣G−1

0

∣∣, M , ω, δ, κ, and L :=
∫
B+(1 + g(x, |∇wG0|))dx, such that

∫
B(x0,ρ)+

(1 + g(x, |∇v|))dx ≤ C
( ρ
R

)κ ∫
B(x0,R)+

(1 + g(x, |∇v|))dx

whenever B(x0, R)+ ⊂ B+ and 0 < ρ ≤ R.

Now we can prove the following lemma.

Lemma 2.8. Suppose that α : B+ × [1,∞) satisfies (1.12)-(1.14) and that g : B+ ×

R+ → R+ satisfies (1.15)-(1.17). Assume 0 ≤ λ < n. Let

A :=
{
u ∈ W 1,1(B+;RN) : u = 0 on B ∩ ∂H+in the sense of trace

}
,

and define the functional K : A → R∗ by

K(w) :=

∫
B+
g(x, |[∇w + A]G|)dx,

where g(·, |A|) ∈ L1,λ(B+) and G ∈ C(B+;Rn×n) has continuous matrix inverse G−1∈

C(B+;Rn×n). If u ∈ A and there are functions {νε}ε>0 ⊂ L1,λ(B+) and {γε}ε>0 ⊂

C(R+) satisfying γε(0) = 0 such that u is a (K, {γε}, {νε})-minimizer over A, then

g(·, |∇u|) ∈ L1,λ
loc (B ∩H+).

Proof. Fix x0 ∈ B+ and R > 0 so that B+(x0, R) ⊂ B+. For ease of notation, let

G0 = G(x0). Also, for each r > 0, define

µ(r) := sup
|x−y|≤r

|G(x)−G(y)| ,

and set B+
r := B(x0, r)

+. Fix R > 0 such that B+
R ⊂ B+ and R ≤ R(n+λ)/2, where

R(n+λ)/2 is the value of Rκ given by Theorem 2.11 for κ = (n + λ)/2 and L =
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∫
B+(1 + g(x, |∇uG0|)dx. Let v ∈ W 1Lg(B+

R ;RN) be the minimizer of the functional

J : W 1Lg(B+
R ;RN)→ R defined by

J(w) :=

∫
B+R
g(x, |∇wG0|)dx,

satisfying v = u on ∂B+
R in the sense of trace. Then for 0 < ρ < R/2, we have

∫
B+ρ

g(x, |∇uG0|)dx =

∫
B+ρ

g(x, |∇vG0|)dx+

∫
B+ρ

{
g(x, |∇uG0|)−g(x, |∇vG0|)

− gt(x, |∇vG0|)
∇vG0

|∇vG0|
· [∇u−∇v]G0

}
dx

+

∫
B+ρ

gt(x, |∇vG0|)
∇vG0

|∇vG0|
· [∇u−∇v]G0dx

= I1 + I2 + I3,

(2.74)

where I1, I2, and I3 are defined to be the respective integrals. By Theorem 2.11 and

the minimality of v, we have that

I1 ≤ C
( ρ
R

)(λ+n)/2
∫
B+R

(1 + g(x, |∇u|)) dx.

We now consider I2. By the convexity of g, the integrand in I2 is nonnegative, so we

can expand the domain of integration to B+
R and use Lemma 2.2 to arrive at

I2 ≤
∫
B+R
{g(x, |∇uG0|)− g(x, |∇vG0|)} dx.
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Since u is a (K, {γε}, {νε})-minimizer, we have

I2 ≤
∫
B+R
{g(x, |∇uG0|)−g(x, |[∇u+A]G|)}dx

+

∫
B+R
{g(x, |[∇v+A]G|)−g(x, |∇vG0|)}dx

+ (γε(R) + ε)

∫
B+R
{g(x, |∇u|) + g(x, |∇v|)}dx +

∫
B+R
|νε| dx

≤ I2,1 + I2,2 + I2,3 +Rλ ‖νε‖L1,λ .

(2.75)

First we estimate I2,1 using part (vi) of Lemma 2.1.

I2,1 =

∫
B+R

1∫
0

∂

∂F
g(x,∇uG0 + t([∇u + A]G−∇uG0)) · (∇u[G−G0] + AG)dtdx

≤ Cµ(R)

∫
B+R
gt(x, |∇u|+ |A|) |∇u| dx + Cε

∫
B+R
gt(x, |∇u|+ |A|) |A|

ε
dx

≤ C(ε+ µ(R))

∫
B+R
g(x, |∇u|) + Cε

∫
B+R
g(x, |A|)dx

≤ C(ε+ µ(R))

∫
B+R
g(x, |∇u|) + CεR

λ ‖g(·, |A|)‖L1,λ .

Because v is a minimizer for J , a similar computation yields

I2,2 ≤ C(ε+ µ(R))

∫
B+R
g(x, |∇u|)dx + CεR

λ ‖g(·, |A|)‖L1,λ .

For I2,3, we again use the fact that v is a minimizer for J to conclude that

I2,3 ≤ C(γε(R) + ε)

∫
B+(x0,R)

g(x, |∇u|)dx.
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Collecting our estimates for I2,1, I2,2, and I2,3, by (2.75) we have

I2 ≤ C(ε+ µ(R) + γε(R))

∫
B+R
g(x, |∇u|)dx + (Cε ‖g(·, |A|)‖L1,λ + ‖νε‖L1,λ)Rλ.

Using (vii) from Lemma 2.1 as we did in the proof of Theorem 2.10, we see that

I3 ≤ C(I1 + I2), and so our estimates for I1 and I2, along with (2.74), give

∫
B+(x0,ρ)

g(x, |∇u|)dx ≤ C

(( ρ
R

)n+λ
2

+ ε+ µ(R) + γε(R)

)∫
B+(x0,R)

g(x, |∇u|)dx

+ (Cε ‖g(·, |A|)‖L1,λ + ‖νε‖L1,λ + 1)Rλ

(2.76)

Let ε0 = (2C)−
2(n+λ)
n−λ /2. Find 0 < R∗ < 1 such that µ(R∗) < ε0/4 and γε0/2(R∗) <

ε0/4. Let R0 = min{R∗, 1 − |x0| , R(n+λ)/2}. Then for 0 < ρ ≤ R ≤ R0, putting

ε = ε0/2 in (2.76) we have

∫
B+ρ
g(x, |∇u|)dx ≤ C

(( ρ
R

)n+λ
2

+ε0

)∫
B+R
g(x,|∇u|)dx

+(C ε0
2
‖g(·,|A|)‖L1,λ+

∥∥∥ν ε0
2

∥∥∥
L1,λ

+1)Rλ (2.77)

By Lemma 2.4, we have that

∫
B+ρ
g(x, |∇u|)dx ≤ C

( ρ
R

)λ [∫
B+R
g(x, |∇u|)dx + 1

]

≤ C
( ρ
R

)λ [∫
B+
g(x, |∇u|)dx + 1

] (2.78)

whenever 0 < ρ ≤ R ≤ R0. Now if U ⊂⊂ B ∩ H+, letting d = dist(U ; ∂B) and
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c(U) = C/min{Rλ
0 , d

λ}, we have from (2.78) that

ρ−λ
∫
B+(x0,ρ)

g(x, |∇u|)dx ≤ c(U)

[∫
B+
g(x, |∇u|)dx + 1

]

for all ρ < min{R0, d} and x0 ∈ U , and hence g(·, |∇u|) ∈ L1,λ
loc (B+ ∩ H+;RN×n),

which completes the proof.

Using Theorem 2.10 instead of Theorem 2.11, we can demonstrate the following

lemma in the same way that we proved Lemma 2.8.

Lemma 2.9. Suppose that α : B → [1,∞) satisfies (1.12)-(1.14) and that g : B ×

R+ → R+ satisfies (1.15)-(1.17). Assume 0 ≤ λ < n. Let A := W 1,1(B;RN), and

define the functional K : A → R∗ by

K(w) :=

∫
B
g(x, |[∇w + A]G|)dx,

where g(·, |A|) ∈ L1,λ(B) and G ∈ C(B;Rn×n) has continuous matrix inverse G−1 ∈

C(B+;Rn×n). If u ∈ A and there are functions {νε}ε>0 ⊂ L1,λ(B+) and {γε}ε>0 ⊂

C(R+) satisfying γε(0) = 0 such that u is a (K, {γε}, {νε})-minimizer over A, then

g(·, |∇u|) ∈ L1,λ
loc (B).

Using Lemmas 2.8 and 2.9, we prove the following result.

Theorem 2.12. Suppose that Ω ⊂ Rn is open and bounded with C1 boundary, and that

α : Ω → [1,∞) satisfies (1.12)-(1.14) and g : Ω × R+ → R+ satisfies (1.15)-(1.17).

Let u ∈ W 1Lg(Ω;RN) with g(·, |∇u|) ∈ L1,λ(Ω) be given, and define

A :=
{
w ∈ W 1,1(Ω;RN) : w − u ∈ W 1,1

0 (Ω;RN)
}
.
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Define the functional J : A → R∗ by

J(w) :=

∫
Ω

g(x, |∇w(x)|)dx.

Let u ∈ A be given. If there are functions {νε}ε>0 ⊂ L1,λ(Ω) and nondecreasing

functions {γε}ε>0 ⊂ C(R+) with γε(0) = 0 such that u is a (J, {γε}, {νε})-minimizer

over A, then g(·, |∇u|) ∈ L1,λ(Ω).

Proof. We use a standard argument to incorporate the boundary values into the

functional and straighten out the boundary, and then use a covering argument along

with Lemmas 2.8 and 2.9 to obtain that g(·, |∇u|) ∈ L1,λ(Ω).

2.4 Results for Asymptotically Convex

Functionals

As mentioned in the introduction, this section is devoted to extending the results of

the previous section to almost minimizers of functionals of the form (1.6), where for

each x and u, the function F 7→ f(x,u,F) looks like F 7→ g(x, |F|) when |F| is large.

Define the functional J by

J(w) :=

∫
Ω

g(x, |∇w|)dx. (2.79)

The following lemma establishes that almost minimizers for K will also be almost

minimizers for J . In this lemma and in the sequel, we denote by p∗ the Sobolev-

conjugate of p; i.e., if p < n, then we put p∗ = np/(n − p), and if p ≥ n, we set

p∗ = +∞.
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Lemma 2.10. Suppose that Ω ⊂ Rn is open and bounded with C1 boundary, and

suppose also that α : Ω → [1,∞) satisfies (1.12)-(1.14) and g : Ω × R+ → R+

satisfies (1.15)-(1.17). Let f : Ω × RN × RN×n → R, and assume the following

hypotheses hold for some 0 ≤ λ < n and 1 < s < min{r2, 1 + pr2/n, p
∗/p}, where r2

is as in Remark 2.2.

(i) For every ε > 0, there is a function σε ∈ L1,λ(Ω) and a constant Σε <∞ such

that

|f(x,u,F)− g(x, |F|)| < εg(x, |F|)

for all (x,u,F) ∈ Ω× RN × RN×n satisfying g(x, |F|) ≥ σε(x) + Σεg(x, |u|)s.

(ii) There is some β ∈ L1,λ(Ω) such that

|f(x,u,F)| ≤ C(β(x) + g(x, |u|)s + g(x, |F|))

for all (x,u,F) ∈ Ω× RN × RN×n.

For a fixed u ∈ W 1Lg(Ω;RN) with g(·, |∇u|) ∈ L1,λ(Ω), define the admissible class

A :=
{
u ∈ W 1Lg(Ω;RN) : u− u ∈ W 1

0Lg(Ω;RN)
}
.

Let the functionals J and K, each mapping A into R, be defined by (2.79) and (1.6),

respectively. Let u ∈ A, and suppose that there are functions {νε}ε>0 ⊂ L1,λ(Ω) and

nondecreasing functions {γε}ε>0 ⊂ C(R+) satisfying γε(0) = 0, along with constants

{Tε}ε>0 ⊂ R+ such that

K(u) ≤ K(v) + (γε(ρ) + ε)

∫
Ω(x0,ρ)

{νε(x) + g(x, |∇u|) + g(x, |∇v|)} dx

+ Tε

∫
Ω(x0,ρ)

{g(x, |u|)s + g(x, |v|)s} dx

(2.80)
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for all v ∈ A with u − v ∈ W 1,1
0 (Ω(x0, ρ);RN). Then there are functions {ν̃ε}ε>0 ⊂

L1,λ(Ω) and nondecreasing functions {γ̃ε}ε>0 ⊂ C(R+) with γ̃ε(0) = 0, as well as

constants {T̃ε}ε>0 ⊂ R+, such that u is a (J, {γ̃ε}, {ν̃ε + T̃εg(·, |u|)s})-minimizer.

Proof. It suffices to show that

J(u) ≤ J(v) + (γ̃ε(ρ) + ε)

∫
Ω(x0,ρ)

{
ν̃ε(x) + T̃εg(x, |u|)s + g(x, |∇u|)

}
dx (2.81)

for all v ∈ A such that u − v ∈ W 1
0Lg(Ω(x0, ρ);RN). To this end, we let w ∈

W 1Lg(Ω(x0, ρ);RN) be the minimizer of the functional Jx0,ρ defined by

Jx0,ρ(v) =

∫
Ω(x0,ρ)

g(x, |∇v|)dx,

satisfying w − u ∈ W 1
0Lg(Ω(x0, ρ);RN). Then for any v ∈ A satisfying u − v ∈

W 1
0Lg(Ω(x0, ρ);RN), we have by the minimality of w that

J(u)−J(v)≤Jx0,ρ(u)−Jx0,ρ(w)

=

∫
Ω(x0,ρ)

{g(x, |∇u|)−f(x,u,∇u)} dx

+

∫
Ω(x0,ρ)

{f(x,u,∇u)−f(x,w,∇w)} dx

+

∫
Ω(x0,ρ)

{f(x,w,∇w)− g(x, |∇w|)} dx

= I1 + I2 + I3.

(2.82)

To estimate I1, we partition Ω(x0, ρ) into the set on which g(x, |∇u|) ≤ σε(x) +

Σεg(x, |u|)s (call this set S), and the set on which the opposite inequality holds (call
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this set T ). By the growth conditions on f and g, we have

∫
S
{g(x, |∇u|)− f(x,u,∇u)} dx ≤ C

∫
S
{1 + β + g(x, |u|)s + g(x, |∇u|)} dx

≤ C

∫
Ω(x0,ρ)

{1 + β + σε + (1 + Σε)g(x, |u|)s} dx.

To estimate the integral over T , we use the assumption in (i) to conclude that

∫
T
{g(x, |∇u|)− f(x,u,∇u)} dx ≤ ε

∫
Ω(x0,ρ)

g(x, |∇u|)dx.

Combining the estimates for the integrals over S and T yields

I1 ≤ C

∫
Ω(x0,ρ)

{1 + α + σε + (1 + Σε)g(x, |u|)s + εg(x, |∇u|)} dx.

We estimate I3 in a similar fashion, keeping in mind the minimality of w for Jx0,ρ, to

obtain

I3 ≤ C

∫
Ω(x0,ρ)

{1 + α + σε + (1 + Σε)g(x, |w|)s + εg(x, |∇u|)} dx. (2.83)

We have∫
Ω(x0,ρ)

g(x, |w|)sdx ≤ Cρn+ps−
∫

Ω(x0,ρ)

g

(
x,
|u−w|

ρ

)s
dx + C

∫
Ω(x0,ρ)

g(x, |u|)sdx

(2.84)

By Remark 2.2, the minimality of w for Jx0,ρ, and (2.84), there is a constant C, which
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does not depend on w, x0, or ρ, such that

∫
Ω(x0,ρ)

g(x, |w|)sdx ≤ Cρn+ps

(
−
∫

Ω(x0,ρ)

{1 + g (x, |∇u−∇w|)} dx

)s
+ C

∫
Ω(x0,ρ)

g(x, |u|)sdx

≤ Cρn+ps−ns
(∫

Ω(x0,ρ)

{1 + g (x, |∇u|)} dx

)s
+ C

∫
Ω(x0,ρ)

g(x, |u|)sdx.

(2.85)

Define ∆ : R+ → R+ by

∆(r) := rn+ps−ns sup
y∈Ω

(∫
Ω(y,r)

{1 + g(x, |∇u|)} dx

)s−1

.

Note that the exponent on r is positive, since we have assumed that 1 < s < p∗/p,

so we have that ∆ is continuous with ∆(0) = 0. With this notation in place and the

estimates in (2.83) and (2.85), we now have that

I3 ≤ C(ε+ Σε∆(ρ))

∫
Ω(x0,ρ)

{1 + g(x, |∇u|)} dx + C

∫
Ω(x0,ρ)

{1 + α + σε} dx.

Finally, to estimate I2, we use the fact that u satisfies (2.80) to get

I2 ≤ (ε+ γε(ρ))

∫
Ω(x0,ρ)

{νε + g(x, |∇u|) + g(x, |∇w|)} dx

+ Tε

∫
Ω(x0,ρ)

{g(x, |u|)s + g(x, |w|)s} dx.

Using (2.85) and the definition of ∆, along with the minimality of w for Jx0,ρ, we

have

I2 ≤ C (ε+ γε(ρ) + Tε∆(ρ))

∫
Ω(x0,ρ)

{
νε(x) + 1 + ε−1Tεg(x, |u|)s + g(x, |∇u|)

}
dx.
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Inserting our estimates for I1, I2, and I3 into (2.82), we see that (2.81) holds with ν̃ε,

γ̃ε, and T̃ε defined by

ν̃ε := C(ε/C)−1
(

1 +
ε

C
+ α + σε +

ε

C
νε/C

)
,

γ̃ε := C
{
γε/C + (Tε/C + Σε/C + 1)∆

}
,

T̃ε := C(ε/C)−1
(
1 + Σε/C + Tε/C

)
.

Note that clearly {ν̃ε}ε>0 ⊂ L1,λ(Ω), and {γ̃ε}ε>0 ⊂ C(R+) satisfies γ̃ε = 0 for each

ε > 0. Furthermore, it is manifest that {T̃ε}ε>0 ⊂ R+, so the lemma is proved.

We are now in a position to prove the main theorem.

Theorem 2.13. Suppose that Ω ⊂ Rn is open and bounded with C1 boundary, and

that α : Ω→ [1,∞) satisfies (1.12) and g : Ω× R+ → R+ satisfies (1.15)-(1.17). Let

f : Ω × RN × RN×n → R satisfy the following hypotheses for some 0 ≤ λ < n and

1 < s < min {r2, 1 + pr2/n, p
∗/p}, where r2 > 1 is as in Remark 2.2.

(i) For every ε > 0, there is a function σε ∈ L1,λ(Ω) and a constant Σε <∞ such

that

|f(x,u,F)− g(x, |F|)| < εg(x, |F|)

for all (x,u,F) ∈ Ω× RN × RN×n satisfying g(x, |F|) ≥ σε(x) + Σεg(x, |u|)s;

(ii) There is some β ∈ L1,λ(Ω) such that

|f(x,u,F)| ≤ C(β(x) + g(x, |u|)s + g(x, |F|))

for all (x,u,F) ∈ Ω× RN × RN×n.
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For a fixed u ∈ W 1Lg(Ω;RN) with g(·, |∇u|) ∈ L1,λ(Ω), define the admissible class

A :=
{
u ∈ W 1Lg(Ω;RN) : u− u ∈ W 1

0Lg(Ω;RN)
}
.

Let the functional K : A → R be as defined in (1.6). If u ∈ A and there are functions

{νε}ε>0 ⊂ L1,λ(Ω) and nondecreasing functions {γε}ε>0⊂C(R+) with γε(0) = 0 such

that u is a (K, {γε}, {νε})-minimizer over A, then g(·, |∇u|) ∈ L1,λ(Ω).

Before we prove this theorem, we make a few remarks for later convenience.

Remark 2.3. If K(v) = +∞ for any function v ∈ W 1,1(Ω;RN) with g(·, |∇v|) /∈

L1(Ω;RN×n), then clearly we can enlarge the admissible class A to

A′ :=
{
w ∈ W 1,1(Ω;RN) : w − u ∈ W 1,1

0 (Ω;RN)
}
,

and the same result holds.

Remark 2.4. Examining the proof of Theorem 2.12 and Lemma 2.10, we see that we

do not actually need the inequality in (1.7) to hold for all ε > 0, but only for ε ≥ ε0,

where ε0 > 0 depends on n, N , p, q, α, u, Ω, and f .

Remark 2.5. By analyzing the proofs of Theorem 2.12 and Lemma 2.10, we see

that the bound on the Morrey norm ‖g(·, |∇u|)‖L1,λ stays uniformly bounded if the

quantity L :=
∫

Ω
g(x, |∇u|) stays bounded. That is, if {ut}t∈Λ is a collection of

(K, {γε}, {νε})-minimizers with
∫

Ω
g(x, |∇ut|)dx ≤ L for some L <∞ and all t ∈ Λ,

then there is a finite constant L̃ such that ‖g(·, |∇ut|)‖L1,λ ≤ L̃ for all t ∈ Λ.

Proof. Since u is a (K, {γε}, {νε})-minimizer over A, by the growth conditions on f

and Lemma 2.10, we have that there are functions {ν̃ε}ε>0 ⊂ L1,λ(Ω) and nondecreas-

ing functions {γ̃ε}ε>0 ⊂ C(R+) with γ̃ε(0) = 0, as well as constants {T̃ε}ε>0 ⊂ R+,
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such that u is a (J, {γ̃ε}, {ν̃ε + T̃εg(·, |u|)s})-minimizer. In view of Theorem 2.12, it

therefore suffices to prove that µε := ν̃ε + T̃εg(·, |u|)s ∈ L1,λ(Ω). By hypothesis, we

have that u ∈ W 1Lg(Ω;RN). Therefore, g(·, |u|)s ∈ Lr2/s(Ω) by Remark 2.2, and

hence we see by Hölder’s inequality that g(·, |u|)s ∈ L1,n−ns/r2(Ω). Therefore, letting

λ1 := n (1− s/r2) , we have that µε ∈ min{λ1, λ}, and hence Theorem 2.12 implies

that g(·, |∇u|) ∈ L1,min{λ,λ1}(Ω). If λ1 ≥ λ, the proof is therefore complete.

So suppose that λ1 < λ. Since g(·, |∇u|) ∈ L1,λ1(Ω), we can use Theorem 2.6 to

conclude that g(·, |u|)s ∈ L1,κ(Ω) for every κ < min{n + s(p + λ1 − n), n}. Hence,

if n + s(p + λ1 − n) > λ, then g(·, |u|)s ∈ L1,λ(Ω), whence µε ∈ L1,λ(Ω), and the

proof is finished. If n + s(p + λ1 − n) ≤ λ, set λ2 = n + s(p + λ1 − n). Arguing as

before, we have that µε ∈ L1,κ(Ω) for every κ < λ2. Thus Theorem 2.12 implies that

g(·, |∇u|) ∈ L1,κ for every 0 ≤ κ < λ2. Recursively defining

λj+1 := n+ s(p+ λj − n)

and continuing to bootstrap as above, we have that {µε}ε>0 ⊂ L1,κ(Ω) for every

κ < λj if λj ≤ λ, and {µε}ε>0 ⊂ L1,λ(Ω) if λj > λ. We claim that λj increases

without bound. Indeed, inductively, one can easily show that

λj = n− ps

s− 1
+

(
p

s− 1
− n

r2

)
sj.

Since 1 < s < 1 + pr2/n, we have that the coefficient in front of sj is positive, and

since first two terms are constant in j, we see that indeed limj→∞ λj =∞. Hence, if

j0 ∈ N is selected so that λj0 > λ, then we can use a bootstrap argument as above

with j0 iterations to get that {µε}ε>0 ⊂ L1,λ(Ω). Applying Theorem 2.12 one last

time gives g(·, |∇u|) ∈ L1,λ(Ω), and the proof is complete.
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Chapter 3

Young Measures Generated by

Sequences Bounded in Morrey and

Sobolev-Morrey Spaces

In this chapter, we provide a characterization of Young measures that are generated

by a p-equiintegrable sequence {fj}∞j=1 bounded in the Morrey space Lp,λ(Ω;RN).

By p-equiintegrability, we mean that the sequence {|fj|p}∞j=1 is equiintegrable. After

first considering the easier case where no additional constraints are placed on the

generating sequence {fj}, we then investigate the case that {fj} is a sequence of weak

gradients.

3.1 Some Preliminary Results for Young

Measures

We first state a version of the fundamental theorem for Young measures; more general

versions of this theorem are available (see [7, 9, 37, 38], for instance), but the one
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given here suffices for our purposes. We recall that a function f : E × RN → R is

said to be Carathéodory if f is Borel measurable and f(x, ·) is continuous for almost

every x ∈ E.

Theorem 3.1 (Fundamental Theorem for Young Measures). Let E ⊂ Rn be a mea-

surable set with finite measure, and let {zj}∞j=1 be a sequence of measurable func-

tions mapping E into RN that generates the Young measure ν = {νx}x∈E. Suppose

f : E × RN → [0,∞) is Carathéodory. Then

lim inf
j→∞

∫
E

f(x, zj(x))dx ≥
∫
E

∫
RN
f(x,y)dνx(y)dx.

Furthermore, if {f(·, zj(·))} ⊂ L1(E), then {f(·, zj(·))} is equiintegrable if and only

if

lim
j→∞

∫
E

f(x, zj(x))dx =

∫
E

∫
RN
f(x,y)dνx(y)dx <∞.

In this case,

f(·, zj(·)) ⇀
∫
RN
f(·,y)dν(·)(y) in L1(E).

The following theorem, which is essentially Theorem 4 on page 203 of [45], provides

a tool for approximating functions in W 1,p by Lipschitz functions.

Theorem 3.2. Let u ∈ W 1,p(Rn;RN) with 1 ≤ p <∞. For T ≥ 0, define the closed

set AT by

AT := {x ∈ Rn : M(|∇u|)(x) ≤ T},

where M(f) denotes the maximal function of f . Then there exists a Lipschitz function

vT : Rn → RN such that

(i) vT (x) = u(x) and ∇vT (x) = ∇u(x) for almost every x ∈ AT ;

(ii) ‖∇vT‖L∞ ≤ c(N, n)T ;
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(iii) m(Rn \ AT ) ≤ c(n)T−p
∫
{|∇u|>T/2} |∇u|p dx.

The following theorem and its proof can be found in [37].

Theorem 3.3. Let E ⊂ Rn be a Lebesgue measurable set with finite measure and

let {fj}∞j=1 and {gj} be sequences of measurable functions mapping E into RN . If

{fj} generates the Young measure ν = {νx}x∈E and {gj} converges in measure to

a measurable function g : E → RN , then {fj + gj} generates the translated Young

measure ν̃ = {ν̃x}x∈E defined by 〈ν̃x, ϕ〉 := 〈νx, ϕ(· + g(x))〉 for every ϕ ∈ C0(RN).

In particular, if gj → 0 in measure, then {fj + gj} generates ν.

3.2 The General Case

In this section, we determine which Young measures can be generated by a sequence

bounded in Lp,λ(Ω;RN), for 1 ≤ p < ∞ and 0 ≤ λ < n. We first consider the

homogeneous case when νx ≡ ν for some probability measure ν supported on RN ;

using a similar strategy as is found in [51] and [65], we use the homogeneous result to

prove the more general theorem in the nonhomogenous case. We would like to point

out that the arguments in this section are entirely constructive, though it is possible

to give a shorter, nonconstructive argument using some of the same techniques that

are utilized in Section 3.3.

3.2.1 Homogeneous Measures

Let ν ∈ M(RN) be a probability measure. We construct a sequence of functions

{fj}∞j=1 mapping Q into RN that generates the homogeneous Young measure ν. Fur-

thermore, we demonstrate that this sequence of functions is uniformly bounded in
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Lp,λ(Q;RN) for every 0 ≤ λ < n if ν satisifies the condition

∫
RN
|y|p dν(y) <∞.

We will use the following lemma.

Lemma 3.1. Suppose that ν ∈M(RN) is a probability measure and that {fj}∞j=1 is a

sequence of measurable functions mapping a measurable set E ⊂ Rn into RN . If the

equality

ν(G)m(D ∩ E) = lim
j→∞

m(D ∩ E ∩ f−1
j (G)) (3.1)

holds for each Borel set G ⊂ RN and every cube D ⊂ Rn, then the sequence {fj}∞j=1

generates ν.

Proof. Recall that the sequence {fj} generates ν if and only if

lim
j→∞

∫
E

ξ(x)ϕ(fj(x))dx =

∫
E

ξ(x)dx

∫
RN
ϕ(y)dν(y) (3.2)

for every ϕ ∈ C0(RN) and ξ ∈ L1(E); it actually suffices to show that (3.2) holds

for all ϕ ∈ S and ξ ∈ T , where S and T are dense subsets of C0(RN) and L1(E),

respectively. To this end, fix ϕ ∈ C0(RN), and suppose that ξ = χD∩E for some cube

D ⊂ Rn. We will show that (3.2) holds; i.e.,

lim
j→∞

∫
D∩E

ϕ(fj(x))dx = m(D ∩ E)

∫
RN
ϕ(y)dν(y).

Since ϕ ∈ C0(RN), for any ε > 0, we can find a compact K ⊂ RN such that |ϕ(z)| < ε

for all z ∈ RN \ K and a δ > 0 so that |ϕ(x)− ϕ(y)| < ε whenever |x− y| < δ.

We select a finite number of disjoint cubes {Qk}Mk=1 that cover K and that each have
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diameter less than δ. Denote by Ak,j the sets

Ak,j := D ∩ E ∩ f−1
j (Qk).

Lastly, we choose ak ∈ Qk for each 1 ≤ k ≤ M , and introduce the simple function

gj : E → RN defined by

gj :=
M∑
k=1

ϕ(ak)χAk,j .

We begin by adding and subtracting gj inside the integral:

lim sup
j→∞

∣∣∣∣∫
D∩E

ϕ(fj(x))dx−m(D ∩ E)

∫
RN
ϕ(y)dν(y)

∣∣∣∣
≤ lim sup

j→∞

∫
D∩E
|ϕ(fj(x))− gj(x)| dx

+ lim sup
j→∞

∣∣∣∣∫
D∩E

gj(x)dx−m(D ∩ E)

∫
RN
ϕ(y)dν(y)

∣∣∣∣ .
By the way we defined gj, the integrand in the first integral is bounded by ε for each

j. Also, by (3.1), we see that

lim
j→∞

m (Ak,j) = m(D ∩ E)ν(Qk).

Using this and the definition of gj in the inequality obtained above, we see that

lim sup
j→∞

∣∣∣∣∫
D∩E

ϕ(fj(x))dx−m(D ∩ E)

∫
RN
ϕ(y)dν(y)

∣∣∣∣
≤ m(D ∩ E)ε+

∣∣∣∣∣
M∑
k=1

ϕ(ak)m(D ∩ E)ν(Qk)−m(D ∩ E)

∫
RN
ϕ(y)dν(y)

∣∣∣∣∣
≤ m(D ∩ E)

{
ε+

M∑
k=1

∫
Qk

|ϕ(ak)− ϕ(y)| dν(y) +

∫
RN\∪∞k=1Qk

|ϕ(y)| dν(y)

}

≤ 2m(D ∩ E)ε.
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Letting ε → 0+, we obtain the equality in (3.2) when ξ = χD∩E for some cube

D ⊂ Rn. Letting T be the set of all finite linear combinations of functions of the

form χD∩E, we see that (3.2) also holds for every ξ ∈ T and ϕ ∈ C0(RN). Since T is

dense in L1(E), it follows that {fj} generates ν.

Lemma 3.2. Let ν ∈M(RN) be a probability measure. There is a measurable func-

tion g : (0, 1)→ RN such that

ν(E) = m(g−1(E))

for every Borel set E ⊂ RN . Moreover, g satisfies

∫
(0,1)

|g(x)|p dx =

∫
RN
|y|p dν(y)

for every 1 ≤ p <∞.

Proof. First we construct the function g. Let {a1,j}∞j=1 be an enumeration of ZN ,

and for each j ∈ N, we define D1,j := a1,j + [0, 1)N . Note that {D1,j}∞j=1 partitions

RN . Assuming that the cubes {Dk,j}∞j=1 have been chosen for some k ∈ N, we

partition each of these cubes into 2N subcubes, each subcube having the formDk+1,j =

ak+1,j+[0, 2−k)N for some ak+1,j ∈ 2−kZN . We thus obtain a collection of dyadic cubes

{Dk+1,j}∞j=1 that partitions RN , and each cube has edges of length 2−k. Furthermore,

we stipulate that we first partition Dk,1 into subcubes, then Dk,2, and so on. That is,

we require
j2N⋃

l=(j−1)2N+1

Dk+1,l = Dk,j, (3.3)

for every k, j ∈ N.

For each k, we partition the interval [0, 1) into a family of intervals {Ik,j}∞j=1 as
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follows. Define

Ik,j :=
[
ν
(
∪j−1
l=1Dk,l

)
, ν
(
∪jl=1Dk,l

))
. (3.4)

Note that the length of Ik,j is ν(Dk,j). (Here we are using the convention that the

interval [a, a) := ∅.)

Now we define a sequence {gk}∞k=1 of functions mapping [0, 1) into RN by

gk(x) :=
∞∑
j=1

ak,jχIk,j(x). (3.5)

We will show this sequence is Cauchy in the uniform norm. To this end, fix ε > 0,

and find K ∈ N such that diam(DK,j) < ε. Now fix x ∈ (0, 1). Then there is a unique

j1 ∈ N such that

x ∈ I1,j1 =
[
ν
(
∪j1−1
l=1 D1,l

)
, ν
(
∪j1l=1D1,l

))
.

Recalling the way that g1 is defined, we see that g1(x) = a1,j1 ∈ D1,j1 . By (3.3) and

(3.4), we have that

I1,j1 =

j12N⋃
j=(j1−1)2N+1

I2,j,

whence x ∈ I2,j2 for some (j1 − 1)2N + 1 ≤ j2 ≤ j12N and g2(x) ∈ D2,j2 ⊂ D1,j1 .

Proceeding inductively, we obtain {jk}∞k=1 ⊂ N such that gk(x) ∈ Dk,jk and D1,j1 ⊃

· · · ⊃ Dk,jk ⊃ · · · . Recalling that we chose K ∈ N so that diam(DK,j) < ε, we see

that if k1 and k2 are both at least K, then gk1(x) and gk2(x) belong to the same cube

DK,j for some j ∈ N, and hence |gk1(x)− gk2(x)| < ε. Hence {gk} is Cauchy in the

uniform norm, and so there is some g : (0, 1) → RN such that gk → g uniformly as

k →∞.

We claim that the function g so constructed satisfies the conclusions of the lemma.

First note that if D = ∪Ji=1Dki,ji is a finite (disjoint) union of cubes of the form Dk,j,
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then for l ≥ max{ki}, we have by (3.5) that

g−1
l (D) =

J⋃
i=1

Iki,ji .

Since gl → g uniformly, we therefore have

g−1(D) ⊃
J⋃
i=1

Iki,ji . (3.6)

Note that, by (3.4), we have m(Iki,ji) = ν(Dki,ji), so from (3.6) we obtain

m(g−1(D)) ≥ ν(D). (3.7)

Now, for fixed k, j ∈ N, we can find a sequence of cubes {Di}∞i=1 such that for each

i ∈ N, the cube Di is a finite union of cubes of the form Ds,t with Di ⊂ Di+1 ⊂ Dk,j,

and
∞⋃
i=1

Di =
∞⋃
i=1

Di = Dk,j. (3.8)

Using (3.7) along with (3.8), we thus obtain

m(g−1(Dk,j)) = lim
i→∞

m(g−1(Di)) ≥ lim
i→∞

ν(Di) = ν(Dk,j).

Since the cubes {Dk,j}k,j∈N are a generating set for the Borel σ-algebra on RN , the

preceding inequality implies

m(g−1(E)) ≥ ν(E) (3.9)

for all Borel sets E ⊂ RN . Since ν and the image of m under g are both probability

measures on RN , the inequality in (3.9) must in fact be an equality; that is, we must
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have

m(g−1(E)) = ν(E) (3.10)

for all Borel sets E ⊂ RN , which establishes the first statement of the lemma.

If ψ : RN → R is a simple function, then (3.10) gives

∫
(0,1)

ψ(g(x))dx =

∫
RN
ψ(y)dν(y).

By taking a sequence of simple functions {ψj}∞j=1 increasing to the function y 7→ |y|p

and using the above equality and the monotone convergence theorem, we find that

∫
(0,1)

|g(x)|p dx =

∫
RN
|y|p dν(y),

which concludes the proof of the lemma.

Now we use the function g given by Lemma 3.2 to build a sequence of functions

uniformly bounded in Lp,λ(Q;RN) that generates the measure ν.

Theorem 3.4. Suppose that ν ∈M(RN) is a probability measure that satisfies

∫
RN
|y|p dν(y) <∞.

For each 0 ≤ λ < n, there is a p-equiintegrable sequence of functions {fj}∞j=1 that

generates ν, is uniformly bounded in Lp,µ(Q,RN) for every 0 ≤ µ < n, and satisfies

‖fj‖pLp,λ ≤ 2n
∫
RN
|y|p dν(y).

Proof. Let g be the function given by Lemma 3.2, and extend it by periodicity to all
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of R. Let {gj}∞j=1 be the sequence of functions mapping Q into RN defined by

gj(x) = g(jx1).

Then using a change of variables, the periodicity of g, and Lemma 3.2, we see that

‖gj‖pLp(Q;RN )
=

∫
(0,1)

|g(jx1)|p dx1 =
1

j

∫
(0,j)

|g(x1)|p dx1 =

∫
(0,1)

|g(x1)|p dx1 =

∫
RN

|y|p dν(y).

(3.11)

If D ⊂ Rn is a cube and G ⊂ RN is a Borel set, then

lim
j→∞

m(D ∩Q ∩ g−1
j (G)) = m(D ∩Q)m(g−1(G)) = m(D ∩Q)ν(G),

where we have employed Lemma 3.2 to obtain the last equality. Therefore, by

Lemma 3.1, the sequence {gj} generates the Young measure ν.

We now define a new sequence of functions {fj}∞j=1 that are truncations of the

functions gj:

fj(x) := sgn(gj(x)) min

{
log(j)

Cλ
, |gj(x)|

}
,

where for each 0 ≤ µ < n we have put

Cµ :=

(
max
j∈N

{
{log(j)}p

2njn−µ
∫
RN |y|

p dν(y)

}) 1
p

.

Then {fj} generates the measure ν by Theorem 3.3, since the measure of the set

where fj 6= gj tends to 0 as j →∞. It is easily seen that {gj}, and hence also {fj}, is

p-equiintegrable. Furthermore, {fj} is uniformly bounded in Lp,µ for every 0 ≤ µ < n.

To see this, fix 0 < ρ ≤ 1, x0 ∈ Q, and j ∈ N. We consider two cases.
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Case 1: 0 < ρ ≤ 1/j.

In this case, using the bound |fj| ≤ log(j)/Cλ, we have

ρ−µ
∫
Q∩Qx0,ρ

|fj(x)|p dx ≤ ρn−µ
{

log(j)

Cλ

}p
≤ {log(j)}p

Cp
λj

n−µ ≤ 2n
(
Cµ
Cλ

)p ∫
RN
|y|p dν(y).

Case 2: k/j < ρ ≤ (k + 1)/j for some k ∈ {1, 2, · · · , j − 1}.

Using the inequality |fj| ≤ |gj| and the periodicity of gj, we obtain

ρ−µ
∫
Q∩Qx0,ρ

|fj(x)|p dx ≤ ρ−µ
∫
Q∩Qx0,ρ

|gj(x)|p dx ≤ ρ−µ(k + 1)n
∫
Q∩Q

x0,
1
j

|gj(x)|p dx

≤ ρ−µ
(
k + 1

j

)n
‖gj‖pLp(Q;RN )

.

But ρ−µ ≤ ρ−n ≤ (j/k)n; using this and (3.11) in the above inequality, we see that

ρ−µ
∫
Q∩Qx0,ρ

|fj(x)|p dx ≤ 2n
∫
RN
|y|p dν(y).

Collecting the estimates we obtained in each case, we have shown that

‖fj‖pLp,µ ≤ 2n max

{(
Cµ
Cλ

)p
, 1

}∫
RN
|y|p dν(y),

which implies that {fj} is uniformly bounded in Lp,µ(Q;RN) for each 0 ≤ µ < n;

taking µ = λ yields

‖fj‖pLp,λ ≤ 2n
∫
RN
|y|p dν(y),

which concludes the proof.

3.2.2 Nonhomogeneous Measures

We now extend the result just proved to the nonhomogeneous case.
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Theorem 3.5. Let ν = {νx}x∈Ω be a Young measure on RN , and let 0 ≤ λ < n.

There is a p-equiintegrable sequence of functions {fj}∞j=1 that is uniformly bounded in

Lp,λ(Ω;RN) and generates the measure ν if and only if ν satisfies

sup
x0∈Ω
ρ>0

ρ−λ
∫

Ω∩Qx0,ρ

∫
RN
|y|p dνx(y)dx <∞. (3.12)

Proof. The necessity follows from Theorem 3.1. Indeed, for fixed x0 ∈ Ω and ρ > 0,

define f : Ω×RN → R by f(x,y) = ρ−λχΩ∩Qx0,ρ
(x) |y|p. The aforementioned theorem

now yields

lim inf
j→∞

ρ−λ
∫

Ω∩Qx0,ρ

|fj|p dx ≥ ρ−λ
∫

Ω∩Qx0,ρ

∫
RN
|y|p dνx(y)dx.

Since the sequence {fj} is uniformly bounded in Lp,λ(Ω;RN), it follows that ν satisfies

(3.12).

We now turn to the sufficiency. For each k ∈ N, let {ak,i}∞i=1 be an enumeration

of the set 2−kZn, and define

Dk,i = ak,i + 2−k[0, 1)n.

Note that for each k, {Dk,i}∞i=1 is a set of dyadic cubes that partition Rn and have

edges of length 2−k. For each k, there will be finitely many of these cubes that are

entirely contained in Ω. We will define Ak ⊂ N to be the collection of the indices of

such cubes:

Ak := {i ∈ N : Dk,i ⊂ Ω}.
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Since Ω is open, it is easy to see that

∞⋃
k=1

⋃
i∈Ak

Dk,i = Ω.

For each k ∈ N and i in Ak, we define the probability measure νk,i ∈ M(RN) to be

the “average” of the measures {νx}x∈Dk,i . That is, we select νk,i so that for every

ϕ ∈ C0(RN), we have

∫
RN
ϕ(y)dνk,i(y) = −

∫
Dk,i

∫
RN
ϕ(y)dνx(y)dx. (3.13)

The existence of such a measure is guaranteed by Theorem 7.1 in [65]. Note that this

measure is homogeneous, and that

∫
RN

|y|p dνk,i(y) = −
∫
Dk,i

∫
RN

|y|p dνx(y)dx = 2kn
∫
Dk,i

∫
RN

|y|p dνx(y)dx <∞. (3.14)

Using Theorem 3.4, we find a p-equiintegrable sequence {fk,ij }∞j=1 ⊂ Lp,λ(Q;RN) that

satisfies ∥∥∥fk,ij ∥∥∥p
Lp,λ
≤ 2n

∫
RN
|y|p dνk,i(y) (3.15)

and generates the measure νk,i. For a given ϕ ∈ C0(RN), we denote by ϕ and ϕk the

functions defined by

ϕ(x) :=

∫
RN
ϕ(y)dνx(y);

ϕk(x) :=
∑
i∈Ak

χDk,i(x)

∫
RN
ϕ(y)dνk,i(y).

Notice that both ϕ and ϕk are functions belonging to L∞(Ω), with essential supre-

mums at most ‖ϕ‖L∞(RN ). If x ∈ Ω, then for each k sufficiently large, there is a
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unique i(k) ∈ Ak such that x ∈ Dk,i(k). And if x is a Lebesgue point of ϕ, we use

(3.13) to compute

lim
k→∞

ϕk(x) = lim
k→∞

∫
RN
ϕ(y)dνk,i(k)(y) = lim

k→∞
−
∫
Dk,i(k)

∫
RN
ϕ(y)dνx̂(y)dx̂

= lim
k→∞
−
∫
Dk,i(k)

ϕ(x̂)dx̂ = ϕ(x).

Therefore ϕk converges to ϕ pointwise almost everywhere. We have already noted

that |ϕk| ≤ ‖ϕ‖L∞ , so we can use Lebesgue’s Dominated Convergence Theorem to

show that ϕk converges to ϕ in L1(Ω). Therefore we have that

lim
k→∞

∫
Ω

ξ(x)ϕk(x)dx =

∫
Ω

ξ(x)ϕ(x)dx (3.16)

for every ϕ ∈ C0(RN) and ξ ∈ L∞(Ω).

Let {ξk}∞k=1 ⊂ L∞(Ω) and {ϕj}∞j=1 ⊂ C0(RN) be countable dense subsets of L1(Ω)

and C0(RN), respectively. Let ϕ0 ∈ C(RN) and ξ0 ∈ L∞(Ω) be defined by ϕ0(y) := |y|p

and ξ0 ≡ 1. For each k ∈ N and i ∈ Ak, since the p-equiintegrable sequence {fk,ij }∞j=1

generates the measure νk,i, we can choose j = j(k, i) such that

∣∣∣∣∣∣
∫
Q

ξs(ak,i+2−kx)ϕt(f
k,i
j (x))dx−

∫
Q

ξs(ak,i+2−kx)dx

∫
RN

ϕt(y)dνk,i(y)

∣∣∣∣∣∣≤ 2nk−i

k

for 0 ≤ s, t ≤ k. With j chosen in this way, we define the sequence of functions

{fk}∞k=1 in the following way:

fk(x) :=


fk,ij (

x−ak,i
2−k

) if x ∈ Dk,i for some i ∈ Ak

0 if x ∈ Ω \ ∪i∈AkDk,i

. (3.17)
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Fix s, t ∈ N, and suppose that k ≥ max{s, t}. Using the definition of fk and changing

variables in the preceding inequality yields

∣∣∣∣∣
∫
Dk,i

ξs(x)ϕt(fk(x))dx−
∫
Dk,i

ξs(x)dx

∫
RN
ϕt(y)dνk,i(y)

∣∣∣∣∣ ≤ 2−i

k

whenever i ∈ Ak. Hence

∣∣∣∣∣
∫
∪i∈AkDk,i

ξs(x)ϕt(fk(x))dx−
∫

Ω

ξs(x)(ϕt)k(x)dx

∣∣∣∣∣ ≤ 1

k
. (3.18)

So for each s, t ∈ N, using (3.18) and (3.16), we have

lim
k→∞

∫
Ω

ξs(x)ϕt(fk(x))dx = lim
k→∞

∫
Ω

ξs(x)(ϕt)k(x)dx =

∫
Ω

ξs(x)ϕt(x)dx

=

∫
Ω

ξs(x)

∫
RN

ϕt(y)dνx(y)dx.

This implies that the sequence {fk}∞k=1 generates {νx}x∈Ω.

Using the same steps we used to arrive at (3.18), this time taking s = t = 0 and

recalling that fk = 0 in Ω \ ∪i∈AkDk,i, we obtain

∣∣∣∣∣
∫

Ω

|fk(x)|p dx−
∑
i∈Ak

∫
Dk,i

∫
RN
|y|p dνk,i(y)dx

∣∣∣∣∣ ≤ 1

k
. (3.19)

Using (3.14), we have

∑
i∈Ak

∫
Dk,i

∫
RN
|y|p dνk,i(y)dx =

∑
i∈Ak

∫
Dk,i

∫
RN
|y|p dνx(y)dx

=

∫
∪i∈AkDk,i

∫
RN
|y|p dνx(y)dx.

(3.20)
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By (3.19) and (3.20), we have

lim
k→∞

∫
Ω

|fk(x)|p dx =

∫
Ω

∫
RN
|y|p dνx(y)dx <∞,

and hence the p-equiintegrability of {fk} follows from Theorem 3.1. We only have yet

to show that this sequence is uniformly bounded in Lp,λ(Ω;RN).

To this end, fix x0 ∈ Ω, ρ > 0, and k ∈ N. We consider two cases.

Case 1: 0 < ρ ≤ 2−k.

Let J := {i ∈ Ak : Dk,i ∩ Qx0,ρ 6= ∅}. Note that there are at most 2n elements

in J , since ρ ≤ 2−k. By changing variables and using the fact that fk = 0 outside of

∪i∈AkDk,i, we obtain

ρ−λ
∫

Ω∩Qx0,ρ

|fk|p dx = ρ−λ
∑
i∈J

2−kn
∫
Q∩Q

2k(x0−ak,i),2
kρ

∣∣∣fk,ij ∣∣∣p dx.

By (3.15), we have

∫
Q∩Q

2k(x0−ak,i),2
kρ

∣∣∣fk,ij ∣∣∣p dx ≤ 2n(2kρ)λ
∫
RN
|y|p dνk,i(y).

Using this inequality in the one preceding it and then employing (3.14), we find that

ρ−λ
∫

Ω∩Qx0,ρ

|fk|p dx ≤ 2n
∑
i∈J

(2k)λ−n
∫
RN
|y|p dνk,i(y)

= 2n
∑
i∈J

(2−k)−λ
∫
Dk,i

∫
RN
|y|p dνx(y)dx.

But Dk,i = Qyk,i,2−k for some yk,i ∈ Ω, so the above inequality gives

ρ−λ
∫

Ω∩Qx0,ρ

|fk|p dx ≤ 2n
∑
i∈J

M,
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where

M := sup
x0∈Ω
R>0

R−λ
∫

Ω∩Qx0,R

∫
RN
|y|p dνx(y)dx <∞;

therefore, since |J | ≤ 2n,

ρ−λ
∫

Ω∩Qx0,ρ

|fk|p dx ≤ 4nM.

Case 2: ρ > 2−k.

In this case, we can find a cube Q0 containing Qx0,ρ that is comprised of cubes of

the form Dk,i, and such that the sides of Q0 have length of at most 2ρ. Letting y0

denote the center of Q0, we can break up Qx0,ρ into cubes Dk,i as we did in Case 1

and perform a similar computation to obtain

ρ−λ
∫

Ω∩Qx0,ρ

|fk|p dx ≤ ρ−λ
∫

Ω∩Qy0,2ρ

∫
RN
|y|p dνx(y)dx ≤ 2λM.

From the estimates we obtained in each case, we see that

‖fk‖pLp,λ(Ω;RN )
≤ 4nM,

which finishes the proof.

3.3 Gradient Young Measures

We now turn our attention to Young measures generated by sequences of gradients

bounded in Lp,λ. To simplify the statements of the theorems, for this section we

will assume that Ω has Lipschitz-continuous boundary. The following lemma can be

deduced from Theorem 8.16 and Lemma 8.3 in [65].
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Lemma 3.3. Suppose that ν ∈M(RN×n) is a probability measure that satisfies

(i)
∫
RN×n Fdν(F) = 0;

(ii)
∫
RN×nϕ(F)dν(F) ≥ ϕ(0) for every quasiconvex ϕ : RN×n → [0,∞) satisfying

ϕ(F) ≤ C(1 + |F|p);

(iii)
∫
RN×n |F|

p dν(F) <∞.

Then there exists a sequence of functions {uj}∞j=1 ⊂ W 1,p
0 (Q;RN) such that the se-

quence {∇uj}∞j=1 generates the measure ν and is p-equiintegrable.

To find Morrey regular sequences generating the measure, we will need the follow-

ing lemma, which allows us to generate certain Young measures by p-equiintegrable

gradients of Lipschitz functions.

Lemma 3.4. Let {uj}∞j=1 be a bounded sequence in W 1,p
0 (Q;RN) for some 1 ≤ p <∞,

and suppose that {∇uj}∞j=1 generates the measure ν = {νx}x∈Q and is p-equiintegrable.

Let {Tj}∞j=1 be a sequence of non-negative numbers such that limj→∞ Tj = +∞. Then

there is a sequence of functions {vj}∞j=1 ⊂ W 1,∞
0 (Q;RN) such that

(i) {∇vj}∞j=1 generates ν and is p-equiintegrable;

(ii) ‖∇vj‖L∞ ≤ Tj;

Proof. Since {uj}∞j=1 ⊂ W 1,p
0 (Q;RN), we can extend each uj by zero to all of Rn so

that uj ∈ W 1,p(Rn;RN). For each j, we define the set Aj by

Aj := {x ∈ Rn : M(|∇uj|)(x) ≤ Tj};

by Theorem 3.2, there is a sequence of Lipschitz functions {wj}∞j=1 and a constant

c = c(n,N, p) such that
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(i) uj = wj and ∇uj = ∇wj almost everywhere on Aj;

(ii) ‖∇wj‖L∞ ≤ Tj;

(iii) m(Rn \ Aj) ≤ cT−pj
∫
{|∇uj |>Tj/c} |∇uj|p dx.

Combining (ii) and (iii) gives

∫
Rn\Aj

|∇wj|p dx ≤ c

∫
|∇uj |>Tj/c

|∇uj|p dx.

Therefore, since ∇wj = ∇uj almost everwhere on Aj, the above inequality and the

p-equiintegability of {∇uj}∞j=1 yield the p-equiintegrability of {∇wj}∞j=1. If we simply

restrict wj to Q, we see that {∇wj} generates ν, is p-equiintegrable, and satisfies the

appropriate L∞ estimates, but we do not necessarily have that wj has zero trace on

∂Q. However, using the definitions of Aj and the maximal function, we have

Aj ⊃
{

x ∈ Rn :
L

dist(x, Q)n
≤ Tj

}

for some L < ∞; since wj = uj almost everywhere on Aj and uj = 0 outside Q,

we obtain a sequence {rj}∞j=1 ⊂ [1,∞) and a sequence of cubes {Qj}∞j=1 such that

limj→∞ rj = 1, Q ⊂ Qj, the sides of Qj have length rj, and wj ∈ W 1,∞
0 (Qj;RN).

Furthermore, we can assume that Qj has sides parallel to the axes and has center at

(1/2, 1/2, · · · , 1/2). Letting xj := ((1−rj)/2, (1−rj)/2, · · · , (1−rj)/2) (i.e. xj is the

corner of Qj in which each coordinate is minimized), we can define vj ⊂ W 1,∞
0 (Q;RN)

to be a rescaled version of wj:

vj(x) :=
1

rj
wj (xj + rjx) .

Note that ∇vj(x) = ∇wj(xj +rjx). Thus the p-equiintegrability of {∇vj}∞j=1 follows
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from the p-equiintegrability of {∇wj}∞j=1, and ‖∇vj‖L∞ ≤ Tj. Therefore the only

thing we have yet to show is that {∇vj}∞j=1 generates the Young measure ν. It

suffices to show that

lim
j→∞

∫
Q0

{ϕ(∇wj(x))− ϕ(∇vj(x))}dx = 0 (3.21)

for every cube Q0 ⊂ Q and every ϕ ∈ C0(RN×n), since from this it follows that {∇wj}

and {∇vj} generate the same Young measure. Using a change of variables and letting

Q̃j := xj + rjQ0, we obtain

∫
Q0

ϕ(∇wj(x))dx−
∫
Q0

ϕ(∇vj(x))dx =

∫
Q0

ϕ(∇wj(x))dx− r−nj
∫
Q̃j

ϕ(∇wj(x))dx.

Since rj → 1 and xj → (0, 0, · · · , 0), it is easily seen that

m((Q0 \ Q̃j) ∪ (Q̃j \Q0))→ 0.

Using this and that r−nj → 1 in the above equality yields (3.21), which finishes the

proof.

Lemma 3.5. Suppose that ν ∈M(RN×n) is a probability measure that satisfies

(i)
∫
RN×n Fdν(F) = 0;

(ii)
∫
RN×nϕ(F)dν(F) ≥ ϕ(0) for every quasiconvex ϕ : RN×n → [0,∞) satisfying

ϕ(F) ≤ C(1 + |F|p);

(iii)
∫
RN×n |F|

p dν(F) <∞.

For each 0 ≤ λ < n, there is a sequence of functions {uj}∞j=1 ⊂ W 1,p
0 (Ω;RN) uniformly

bounded in W 1,(p,µ)(Q;RN) for every 0 ≤ µ < n such that {∇uj} is p-equiintegrable,
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generates the measure ν, and satisfies

‖∇uj‖pLp,λ(Q;RN×n)
≤ 2n+1

∫
RN×n

|F|p dν(F).

Remark 3.1. Using the continuous embedding

W 1,(p,µ)(Q;RN) ↪→ C0,1−(n−µ)/p(Q;RN),

where C0,α(Q;RN) denotes the space of Hölder-continuous functions with exponent

α, we see that {uj} is uniformly bounded in C0,α(Q;RN) for each 0 ≤ α < 1.

Proof. By Lemma 3.3, there is a sequence {wj}∞j=1 ⊂ W 1,p
0 (Q;RN) such that the

sequence {∇wj} is p-equiintegrable and generates ν. For each 0 ≤ µ < n, we define

Cµ :=

(
max
j∈N

{
{log(j)}p

2n+1jn−µ
∫
RN×n |F|

p dν(F)

}) 1
p

,

and apply Lemma 3.4 with Tj := log(j)/Cλ to obtain {vj}∞j=1 ⊂ W 1,∞
0 (Q;RN) such

that the sequence {∇vj}∞j=1 generates the Young measure ν, is p-equiintegrable, and

satisfies

‖∇vj‖L∞ ≤ log(j)/Cλ.

We extend vj by periodicity so that it is defined on all of Rn and define the new

sequence {uj}∞j=1 ⊂ W 1,p
0 (Q;RN) by

uj(x) = j−1vj(jx).

Note that

‖∇uj‖Lp(Q;RN×n) = ‖∇vj‖Lp(Q;RN×n)
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and that {∇uj} is also p-equiintegrable. Furthermore, it is not too difficult to see

that, for any cube D ⊂ Q and ϕ ∈ C0(RN×n),

lim
j→∞

(∫
D

ϕ(∇uj)dx−
∫
D

ϕ(∇vj)dx

)
= 0,

from which it follows that {∇uj} generates the same Young measure as {∇vj},

namely ν. Since {∇uj} is p-equiintegrable, Theorem 3.1 gives

lim
j→∞
‖∇uj‖pLp =

∫
RN×n

|F|p dν(F);

therefore, upon taking the tail end of the sequence if necessary, we can assume without

loss of generality that

‖∇uj‖pLp ≤ 2

∫
RN×n

|F|p dν(F).

With this observation in mind, the proof that {∇uj} is uniformly bounded in Lp,µ

for every 0 ≤ µ < n and that ‖∇uj‖pLp,λ satisfies the appropriate estimate proceeds

in the same way as the proof of Theorem 3.4; it follows from Proposition 3.7 in [47]

that {uj} is uniformly bounded in W 1,(p,µ)(Ω;RN) for each 0 ≤ µ < n.

Now we consider nonhomogeneous measures.

Theorem 3.6. Suppose that Ω has Lipschitz-continuous boundary. Let 0 ≤ λ < n be

given, and suppose that ν = {νx}x∈Ω is a Young measure on RN×n that satisfies

(i)
∫
RN×n Fdνx(F) = ∇u(x) for some u ∈ W 1,p(Ω;RN);

(ii)
∫
RN×n ϕ(F)dνx(F) ≥ ϕ(∇u(x)) for almost every x ∈ Ω and every quasiconvex

ϕ : RN×n → [0,∞) satisfying ϕ(F) ≤ C(1 + |F|p);

(iii) sup
x0∈Ω
ρ>0

ρ−λ
∫

Ω∩Qx0,ρ

∫
RN×n |F|

p dνx(F)dx <∞.
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Then there is a sequence {uj}∞j=1 uniformly bounded in W 1,(p,λ)(Ω;RN) such that the

sequence of gradients {∇uj}∞j=1 generates the Young measure ν and is p-equiintegrable,

and uj − u ∈ W 1,p
0 (Ω;RN).

Remark 3.2. It is easily seen that conditions (i), (ii), and (iii) are also necessary, and

therefore these conditions characterize Young measures generated by p-equiintegrable

sequences of gradients uniformly bounded in Lp,λ(Ω;RN×n).

Remark 3.3. If Ω does not have Lipschitz-continuous boundary, then the conclusion

is weakened slightly; even though {∇uj} is still uniformly bounded in Lp,λ(Ω;RN×n),

we do not necessarily have that {uj} is uniformly bounded in W 1,(p,λ)(Ω;RN). The

rest of the conclusion remains unchanged.

Proof. First, assume that the function u appearing in (i) and (ii) is identically 0.

In this case, the proof is similar to the proof of Theorem 3.5. Using the notation

found there, we see that each νk,i satisfies (i), (ii), and (iii) of Lemma 3.5, and hence

can be generated by a sequence of gradients {∇uk,ij }∞j=1 where {uk,ij } ⊂ W 1,p
0 (Q;RN)

is uniformly bounded in W 1,(p,λ)(Q;RN). Since each uk,ij ∈ W 1,p
0 (Q;RN), rescaling

and “patching together” the gradients ∇uk,ij (cf. (3.17) in Theorem 3.5) yields a

function that is still the weak gradient of some function uk ∈ W 1,p
0 (Ω;RN). We can

also show that {∇uk} generates ν, is uniformly bounded in Lp,λ(Ω;RN×n), and is

p-equiintegrable in the exact same way as we did in the proof of Theorem 3.5. Since

Ω has Lipschitz-continuous boundary, it follows from Proposition 3.7 in [47] that {uj}

is uniformly bounded in W 1,(p,λ)(Ω;RN).

If we do not assume that u ≡ 0, but instead that u ∈ W 1,p(Ω;RN), then we first

note that we must in fact have that u ∈ W 1,(p,λ)(Ω;RN). Indeed, by (i) and Jensen’s



105

inequality, we have

sup
x0∈Ω
ρ>0

ρ−λ
∫

Ω∩Qx0,ρ

|∇u|p dx = sup
x0∈Ω
ρ>0

ρ−λ
∫

Ω∩Qx0,ρ

∣∣∣∣∫
RN×n

Fdνx(F)

∣∣∣∣p dx

≤ sup
x0∈Ω
ρ>0

ρ−λ
∫

Ω∩Qx0,ρ

∫
RN×n

|F|p dνx(F)dx,

which is finite by (iii). Hence ∇u ∈ Lp,λ(Ω;RN×n); again employing Proposition 3.7

in [47], we find that u ∈ W 1,(p,λ)(Ω;RN).

Now define the translated Young measure ν̃ = {ν̃x}x∈Ω by

〈ν̃x, ϕ〉 := 〈νx, ϕ(· − ∇u(x))〉.

It is easy to check that the function ν̃ is in the previous situation; i.e. ν̃ satisfies (i),

(ii), and (iii) with u ≡ 0, so we obtain a sequence {vj}∞j=1 ⊂ W 1,p
0 (Ω;RN) that is

uniformly bounded in W 1,(p,λ)(Ω;RN) and such that {∇vj} generates the measure ν̃

and is p-equiintegrable. Now let uj := vj + u; then {uj} is uniformly bounded in

W 1,(p,λ) and uj−u = vj ∈ W 1,p
0 (Ω;RN). The sequence {∇uj} is p-equiintegrable, and

generates the original measure ν by Theorem 3.3, which completes the proof.
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Chapter 4

Connections and Applications

In this section, we present some applications of Theorem 2.13 to various problems.

4.1 A Characterization of the Spaces

W 1Lg,λ(Ω;RN)

In this section, given a function f : Ω × RN×n → [0,∞), we define the functional

Kf : W 1,1(Ω;RN)→ R∗ by

Kf (w) :=

∫
Ω

f(x,∇w)dx.

With this notation, we have the following theorem.

Theorem 4.1. Suppose that Ω ⊂ Rn is open and bounded with C1 boundary, and that

α : Ω → [1,∞) satisfies (1.12)-(1.14) and g : Ω × R+ → R+ satisfies (1.15)-(1.17).

Fix u ∈ W 1Lg(Ω;RN), and let 0 ≤ λ < n. The following are equivalent:

(i) g(·,∇u) ∈ L1,λ(Ω;RN);
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(ii) u is a (Kg, {γε}, {νε})-minimizer for some {νε}ε>0 ⊂ L1,λ(Ω) and {γε}ε>0 ⊂

C([0,∞)) satisfying γε(0) = 0; furthermore, u− u ∈ W 1
0Lg(Ω;RN) for some u

with g(·,∇u) ∈ L1,λ(Ω);

(iii) For every f : Ω× RN×n → [0,∞) that satisfies

|f(x,F)| ≤ C(β(x) + g(x, |F|))

for some β ∈ L1,λ(Ω) and also satisfies for some σε ∈ L1,λ(Ω) the inequality

|f(x,F)− g(x, |F|)| < εg(x, |F|)

whenever g(x, |F|) > σε(x), it holds that u is a (Kf , {γε}, {νε})-minimizer for

some {νε}ε>0 ⊂ L1,λ(Ω) and {γε}ε>0 ⊂ C([0,∞)) satisfying γε(0) = 0; further-

more, u − u ∈ W
1,p(·)
0 (Ω;RN) for some u ∈ W 1Lg(Ω;RN) with g(·, |∇u|) ∈

L1,λ(Ω).

Remark 4.1. As a corollary, we have that u is either a (Kf , {γε}, {νε})-minimizer

for every f asymptotically related to g, or it is not a (Kf , {γε}, {νε})-minimizer for

any f asymptotically related to g.

Proof. That (iii) implies (ii) is trivial, and that (ii) implies (i) is follows from Theorem

2.13. We only need to show that (i) implies (iii). To this end, suppose that g(·, |∇u|) ∈

L1,λ(Ω), and that f : Ω × RN×n → R satisfies the hypotheses of (iii). We can put

u := u and νε := ε−1f(·,∇u). Note that by the growth conditions on f , we have that

νε ∈ L1,λ(Ω). If x0 ∈ Ω and ρ > 0 are fixed, and ϕ ∈ W 1
0Lg(Ω(x0, ρ);RN), then we
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have, since f is nonnegative, that

Kf (u)−Kf (u +ϕ) =

∫
Ω(x0,ρ)

{f(x,∇u)− f(x,∇u +∇ϕ)} dx ≤ ε

∫
Ω(x0,ρ)

νε(x)dx,

so that u is a (Kf , {0}, {νε})-minimizer. Thus (i) implies (iii), and the proof is

complete.

4.2 Partial Differential Equations

We now present an application of Theorem 2.13 to partial differential equations.

Theorem 4.2. Suppose that Ω ⊂ Rn is open and bounded with C1 boundary, and that

α : Ω → [1,∞) satisfies (1.12)-(1.14) and g : Ω × R+ → R+ satisfies (1.15)-(1.17).

Suppose also that u ∈ W 1Lg(Ω;RN) satisfies g(·, |∇u|) ∈ L1,λ(Ω) for some 0 ≤ λ < n.

Fix 1 < s < min{r2, 1 + pr2/n, p
∗/p}, where r2 is as in Remark 2.2, and suppose that

the mappings A : Ω×RN ×RN×n → RN×n and b : Ω×RN ×RN×n → RN satisfy the

following properties:

(i) For each ε > 0, there is a function σε ∈ Lg(Ω) with g(·, σε(·)) ∈ L1,λ(Ω) and a

constant Σε <∞ such that

∣∣∣∣A(x,u,F)− gt(x, |F|)
F

|F|

∣∣∣∣ < εgt(x, |F|)

for all (x,u,F) ∈ Ω× RN × RN×n satisfying |F| > σε(x) + Σε |u|.

(ii) There is a constant M ≥ 1 and a function β ∈ Lg(Ω) with g(·, β(·)) ∈ L1,λ(Ω)
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such that

|A(x,u,F)| ≤Mgt(x, β(x) + |u|+ |F|);

|b(x,u,F)| ≤Mgt(x, β(x) + |u|+ |F|);

for all (x,u,F) ∈ Ω× RN × RN×n.

Suppose that u ∈ W 1Lg(Ω;RN) is a weak solution to the system

div [A(x,u(x),∇u(x))] = b(x,u(x),∇u(x)) in Ω,

u(x) = u(x) on ∂Ω;

i.e. u− u ∈ W 1
0Lg(Ω;RN), and for each ϕ ∈ W 1

0Lg(Ω;RN),

∫
Ω

{A(x,u,∇u) · ∇ϕ+ b(x,u,∇u) ·ϕ} dx = 0. (4.1)

Then g(·, |∇u|) ∈ L1,λ(Ω).

Proof. The proof given here is similar to the proofs given for the analogous theorems

in [35, 41]; our overall strategy is to show that u is an almost minimizer for the

functional J : A → R defined by

J(w) :=

∫
Ω

g(x, |∇w(x)|)dx,

where

A :=
{
w ∈ W 1Lg(Ω;RN) : w − u ∈ W 1

0Lg(Ω;RN)
}
.

We will allow the constant C to depend on s, along with all the other usual parameters.

Fix x0 ∈ Ω, 0 < ρ < diam(Ω), and v ∈ A with v − u ∈ W 1,1(Ω(x0, ρ);RN). Then
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using the convexity of g(x, ·) and (4.1), we have

K(u) ≤ K(v) +

∫
Ω(x0,ρ)

gt(x,∇u)
∇u

|∇u|
· [∇u−∇v]

≤ K(v) +

∫
Ω(x0,ρ)

(
gt(x,∇u)

∇u

|∇u|
−A(x,u,∇u)

)
· [∇u−∇v]dx

−
∫

Ω(x0,ρ)

b(x,u,∇u) · (u− v)dx.

= K(v) + I1 + I2.

(4.2)

To estimate I1, for 0 < ε < 1 we split Ω(x0, ρ) into the set on which |∇u(x)| ≤

σε(x) + Σε |u(x)| (call this set S), and the set on which the reverse inequality holds

(call this set T ); using the growth conditions on f and A, followed by part (iv) of

Lemma 2.1, gives

I1 ≤ C

∫
S

gt(x, σε+β+(1+Σε) |u|) |∇u−∇v| dx + ε

∫
T

gt(x, |∇u|) |∇u−∇v| dx

≤ Cε

∫
Ω(x0,ρ)

gt
(
x, ε−1/(pα(x)−1)(σε + β + (1 + Σε) |u|)

)
|∇u−∇v| dx

+ ε

∫
Ω(x0,ρ)

gt(x, |∇u|) |∇u−∇v| dx.

Now utilizing (vi) in Lemma 2.1 yields

I1 ≤ Cε

∫
Ω(x0,ρ)

{g(x, |∇u|) + g(x, |∇v|)} dx

+ Cε

∫
Ω(x0,ρ)

{g(x, β) + g(x, σε) + (1 + Σε)g(x, |u|)} dx.

To estimate I2, we use the growth constraints on b and again employ (vi) in Lemma 2.1
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to obtain

I2 ≤ ε

∫
Ω(x0,ρ)

{g(x, β) + g(x, |u|) + g(x, |∇u|)} dx

+ Cε

∫
Ω(x0,ρ)

{g(x, |u|) + g(x, |v|)} dx.

Defining

νε(x) := Cε(ε/Cε)
−1
{
g(x, β(x)) + g(x, σε/Cε(x))

}
+ g(x, β(x))

Tε := Cε(1 + ε+ Σε),

we have shown that

I1 + I2 ≤ ε

∫
Ω(x0,ρ)

{νε + g(x, |∇u|) + g(x, |∇v|)} dx

+ Tε

∫
Ω(x0,ρ)

{g(x, |u|) + g(x, |v|)} dx.

Note that {νε}ε>0 ⊂ L1,λ(Ω) and {Tε}ε>0 ⊂ R+, so putting this estimate into (4.2)

and employing Lemma 2.10 and Theorem 2.12 then bootstrapping as we did in The-

orem 2.13 gives the desired result.

4.3 Regularity for Minimizing Sequences and

Minimizing Young Measures

To prove the existence of Morrey regular minimizing sequences, we will use the fol-

lowing version of Ekeland’s variational principle. For the proof of this result, see, for

example, [47].

Theorem 4.3. Let (V , d) be a complete metric space, and let J : V → R∗ be a lower
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semicontinuous functional that is finite at some point in V. Assume that for some

v ∈ V and some ε > 0, we have

J(v) ≤ inf
w∈V

J(w) + ε.

Then there exists a point u ∈ V such that

J(u) ≤ J(v) and J(u) ≤ J(w) + εd(u,w) for all w ∈ V.

We use Theorem 4.3 to prove the following, which supplies uniform regularity for

minimizing sequences.

Theorem 4.4. Suppose that Ω ⊂ Rn is open and bounded with C1 boundary, and

that α : Ω → [1,∞) satisfies (1.12)-(1.14) and g : Ω × R+ → R+ satisfies (1.15)-

(1.17). Suppose that f : Ω × RN × RN×n → R is a measurable function that is

lower semicontinuous with respect to the second and third arguments and satisfies the

following hypotheses for some 0 ≤ λ < n, r < 1 < s < min{r2, 1 + pr2/n, p
∗/p},

β ∈ L1(Ω), and γ ∈ L1,λ(Ω):

1

M
g(x, |F|)−Mg(x, |u|)r − β(x) ≤ f(x,u,F) ≤M(γ(x) + g(x, |u|)s + g(x, |F|).

Here, r2 is as in Remark 2.2. Suppose further that u ∈ W 1Lg(Ω;RN) with g(·, |∇u|) ∈

L1,λ(Ω) is given and define the admissible class by

A :=
{
u ∈ W 1,1(Ω;RN) : u− u ∈ W 1,1

0 (Ω;RN)
}
.

If the functional K : A → R∗ is defined by (1.6), then there is a minimizing sequence

{uk}∞k=1 ⊂ A for K such that the sequence {g(·, |∇uk|)}∞k=1 is uniformly bounded in
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L1,λ(Ω).

Proof. By the growth condition imposed on f , we have that K(u) < ∞, so that K

is finite at some point in A. Let {vk}∞k=1 ⊂ A be a minimizing sequence for K, and

let εk be defined by

εk := K(vk)− inf
w∈V

K(w).

Without loss of generality, we assume that εk ≤ ε0, where ε0 is as in Remark 2.4. By

the coercivity condition on g, we have that K is bounded from below and we have

that the sequence {g(·, |∇vk|)}∞k=1 is bounded in L1(Ω). Notice that A equipped with

the metric

d(u,v) := ‖∇u−∇v‖L1

is a complete metric space, and that by Fatou’s Lemma and the lower semicontinuity

of f with respect to the second and third arguments, K is lower semicontinuous with

respect to this metric. Therefore, by Theorem 4.3, we have that there is a sequence

{uk}∞k=1 ⊂ A such that K(uk) ≤ K(vk) and K(uk) ≤ K(w) + εk ‖∇uk −∇w‖L1

for every w ∈ A. Since K(uk) is dominated by K(vk), it is clear that {uk}∞k=1 is a

minimizing sequence for K. Also, if ϕ ∈ W 1,1
0 (Ω(x0, ρ);RN), then from the above

inequality, we have that

K(uk) ≤ K(uk +ϕ) + εk

∫
Ω(x0,ρ)

|∇ϕ| dx

≤ K(uk +ϕ) + εk

∫
Ω(x0,ρ)

C (1 + g(x, |∇ϕ|)) dx.

Recall that εk ≤ ε0, so that we have

K(uk) ≤ K(uk +ϕ) + ε

∫
Ω(x0,ρ)

C (1 + g(x, |∇ϕ|))
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for all ε ≥ ε0. Therefore, by Theorem 2.13 and Remarks 2.3 and 2.4, we have

that {g(·, |∇uk|)}∞k=1 ⊂ L1,λ(Ω). In fact, since {uk}∞k=1 is a minimizing sequence

for K, the coercivity assumption on f implies that the quantities
∫

Ω
g(x, |∇uk|)dx

are uniformly bounded, so by Remark 2.5, the Morrey norms ‖g(·, |∇uk|)‖L1,λ are

uniformly bounded also, as desired.

As a corollary to the above result, we have the existence of a minimizing Young

measure that is Morrey regular in the case of natural growth (i.e. g(x, t) ≡ tp).

Suppose that u ∈ W 1,p(Ω;RN) is given, and set

A :=
{
u ∈ W 1,p(Ω;RN) : u− u ∈ W 1,p

0 (Ω)
}
.

For a fixed function f : Ω× RN × RN×n, define the functional K : A → R by

K(w) :=

∫
Ω

f(x,w,∇w)dx.

It is well known that K need not admit a minimizer in A if g is not quasiconvex. One

way to deal with this is to expand the admissible class to include Young measures as

follows. Define YA to be all those ν ∈ Y(Ω;RN×n) that are generated by {∇uj}∞j=1

for a sequence {uj}∞j=1 ⊂ A. It can be shown that for each ν ∈ YA, there is a unique

uν ∈ A with ∇uν(x) =
∫
RN×n Fdνx(F) almost everywhere in Ω. With this notation

in place, we expand the admissible class A to the set Ã, which we define to be the

collection of all pairs (uν , ν) ∈ A× YA. Then we define K̃ : Ã → R by

K̃(uν , ν) :=

∫
Ω

∫
RN×n

g(x,uν(x),F)dνx(F)dx.

We note that for every u ∈ A, we can define δ∇u = {δ∇u(x)}x∈Ω to be the Young
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measure that maps x to the Dirac mass centered at ∇u(x). Then, for u ∈ A, we

have that the pair (u, δ∇u) ∈ Ã, and K̃(u, δ∇u) = K(u), so that we can think of

A ⊂ Ã and K̃ as simply extending K to the larger domain Ã. Furthermore, it can

be shown (see [53]) that if K is coercive, then K̃ admits a minimizer (uν , ν) and

K̃(uν , ν) = inf
u∈A

K(u).

With this notation and background, we now state the following corollary to Theo-

rem 4.4.

Corollary 4.1. Suppose that all the hypotheses of Theorem 4.4 hold with g(x, t) ≡ tp

for some p > 1. Let the functionals K and its extension K̃, as well as the admissible

class A and Ã, be defined as above. Then there is a minimizer (uν , ν) ∈ Ã for K̃

such that the function

x 7→
∫
RN×n

|F|p dνx(F)

belongs to L1,λ(Ω).

Proof. By Theorem 4.4, there is a minimizing sequence {uk}∞k=1 ⊂ A for K such that

{∇uk}∞k=1 is uniformly bounded in Lp,λ(Ω;RN×n. Let ν be the Young measure gener-

ated by (possibly a subsequence of) {∇uk}∞k=1. Then ν will be a minimizing Young

measure, and furthermore, for any x0 ∈ Ω and ρ > 0, we have, by the fundamental

theorem for Young measures (Theorem 3.1), that

ρ−λ
∫

Ω(x0,ρ)

∫
RN×n

|F|p dνx(F)dx ≤ lim inf
k→∞

ρ−λ
∫

Ω(x0,ρ)

|∇uk|p dx

≤ sup
k∈N
‖|∇uk|p‖L1,λ <∞,

which immediately yields the desired result.
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We also have the following, which is a sort of converse to the above Corollary.

Theorem 4.5. Suppose that Ω has Lipschitz-continuous boundary, and let f : Ω ×

RN ×RN×n → R be a measurable function such that f(x, ·, ·) is continuous for almost

every x ∈ Ω. Also assume that f satisfies

1

c
|F|p − c |y|q − α(x) ≤ f(x,y,F) ≤ c |F|p + c |y|r + α(x)

for some 1 < p < ∞, 0 ≤ q < p, 0 ≤ r < p∗, c > 0, and α ∈ L1(Ω). Let

u0 ∈ W 1,p(Ω;RN) be given, and suppose that {uj}∞j=1 ⊂ A := u0 + W 1,p
0 (Ω;RN) is a

minimizing sequence for the functional J : A → R defined by

J(v) :=

∫
Ω

f(x,v(x),∇v(x))dx.

Let ν = {νx}x∈Ω be the Young measure generated by {∇uj}∞j=1 (or possibly a subse-

quence). If ν satisfies

sup
x0∈Ω
ρ>0

ρ−λ
∫

Ω∩Qx0,ρ

∫
RN×n

|F|p dνx(F)dx <∞ (4.3)

for some 0 ≤ λ < n, then there is a minimizing sequence {vj}∞j=1 ⊂ A such that

{vj}∞j=1 is uniformly bounded in W 1,(p,λ)(Ω;RN) and {∇vj}∞j=1 is p-equiintegrable. In

particular, if p+λ > n, then {vj}∞j=1 is uniformly bounded in C0,1−(n−λ)/p(Ω;RN), the

space of Hölder-continuous functions with exponent 1− (n− λ)/p.

Remark 4.2. The conclusion of the theorem also holds in the case p = 1 if we

additionally assume that {∇uj}∞j=1 is equiintegrable.

Proof. Because of the coercivity condition on f , any minimizing sequence will be

bounded in W 1,p(Ω;RN). Therefore, taking a subsequence if necessary, we may as-
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sume that uj ⇀ u in W 1,p(Ω;RN) and that {∇uj}∞j=1 generates the Young measure

ν. Since {∇uj} is equiintegrable, it follows from Theorem 3.1 that

∇uj ⇀

∫
RN×n

Fdν(·)(F) in L1(Ω;RN),

and hence

∇u(x) =

∫
RN×n

Fdνx(F)

for almost every x ∈ Ω. Thus condition (i) in Theorem 3.6 is satisfied. As ν is

the Young measure generated by a sequence of gradients bounded in Lp(Ω;RN×n), it

follows that (ii) in the same theorem is also fulfilled. Seeing that (4.3) is precisely (iii),

Theorem 3.6 implies that there exists a sequence {vj}∞j=1 ⊂ A uniformly bounded

in W 1,(p,λ)(Ω;RN) such that the sequence of gradients {∇vj} is p-equiintegrable and

generates ν.

To see that {vj} is a minimizing sequence for the functional J , we define the

Young measure µ = {µx}x∈Ω ⊂M(RN × RN×n) by

µx := δu(x) × νx,

where δu(x) denotes the Dirac mass centered at u(x). Define the sequences of functions

{wj} and {zj}, with wj, zj : Ω→ RN × RN×n, by

wj(x) := (uj(x),∇uj(x));

zj(x) := (vj(x),∇vj(x)).

Both {uj} and {vj} converge weakly to u in W 1,p(Ω;RN), and hence also converge

strongly to u in Lp(Ω;RN). Because of this strong convergence and because the
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sequences {∇uj} and {∇vj} generate ν, we have that each of the sequences {wj}

and {zj} generate the measure µ. Furthermore, using the growth conditions on f , we

see that the sequence {f(·, zj(·))} is equiintegrable, so using Theorem 1, we obtain

lim
j→∞

J(vj) = lim
j→∞

∫
Ω

f(x, zj(x))dx =

∫
Ω

∫
RN×n

f(x,u(x),F)dνx(F)

≤ lim inf
j→∞

∫
Ω

∫
Ω

f(x,wj(x))dx = lim inf
j→∞

J(uj).

Since {uj} is a minimizing sequence for J , it follows that {vj} is also a minimizing

sequence. This concludes the proof.



119

Bibliography

[1] E. Acerbi and N. Fusco. Regularity for minimizers of nonquadratic functionals:

the case 1 < p < 2. J. Math. Anal. Appl., 140(1):115–135, 1989.

[2] Emilio Acerbi and Nicola Fusco. Partial regularity under anisotropic (p, q) growth

conditions. J. Differential Equations, 107(1):46–67, 1994.

[3] Emilio Acerbi and Giuseppe Mingione. Regularity results for a class of functionals

with non-standard growth. Arch. Ration. Mech. Anal., 156(2):121–140, 2001.

[4] Emilio Acerbi and Giuseppe Mingione. Regularity results for a class of quasi-

convex functionals with nonstandard growth. Ann. Scuola Norm. Sup. Pisa Cl.

Sci. (4), 30(2):311–339, 2001.

[5] Emilio Acerbi and Giuseppe Mingione. Regularity results for stationary electro-

rheological fluids. Arch. Ration. Mech. Anal., 164(3):213–259, 2002.

[6] Robert A. Adams and John J. F. Fournier. Sobolev spaces, volume 140 of Pure

and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam,

second edition, 2003.

[7] E. J. Balder. A general approach to lower semicontinuity and lower closure in

optimal control theory. SIAM J. Control Optim., 22(4):570–598, 1984.



120

[8] Erik J. Balder. Lectures on Young measure theory and its applications in eco-

nomics. Rend. Istit. Mat. Univ. Trieste, 31(suppl. 1):1–69, 2000. Workshop on

Measure Theory and Real Analysis (Italian) (Grado, 1997).

[9] J. M. Ball. A version of the fundamental theorem for Young measures. In PDEs

and continuum models of phase transitions (Nice, 1988), volume 344 of Lecture

Notes in Phys., pages 207–215. Springer, Berlin, 1989.

[10] M. Bildhauer and M. Fuchs. Partial regularity for a class of anisotropic vari-

ational integrals with convex hull property. Asymptot. Anal., 32(3-4):293–315,

2002.

[11] Michael Bildhauer and Martin Fuchs. Partial regularity for variational integrals

with (s, µ, q)-growth. Calc. Var. Partial Differential Equations, 13(4):537–560,

2001.

[12] Michael Bildhauer and Martin Fuchs. Elliptic variational problems with nonstan-

dard growth. In Nonlinear problems in mathematical physics and related topics,

I, volume 1 of Int. Math. Ser. (N. Y.), pages 53–66. Kluwer/Plenum, New York,

2002.

[13] Michael Bildhauer and Martin Fuchs. C1,α-solutions to non-autonomous

anisotropic variational problems. Calc. Var. Partial Differential Equations,

24(3):309–340, 2005.

[14] Lucio Boccardo, Paolo Marcellini, and Carlo Sbordone. L∞-regularity for varia-

tional problems with sharp nonstandard growth conditions. Boll. Un. Mat. Ital.

A (7), 4(2):219–225, 1990.



121

[15] Charles Castaing, Paul Raynaud de Fitte, and Michel Valadier. Young measures

on topological spaces, volume 571 of Mathematics and its Applications. Kluwer

Academic Publishers, Dordrecht, 2004. With applications in control theory and

probability theory.

[16] Yunmei Chen, Stacey Levine, and Murali Rao. Variable exponent, linear growth

functionals in image restoration. SIAM J. Appl. Math., 66(4):1383–1406 (elec-

tronic), 2006.
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