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In this thesis, we present a number of results, mostly concerning set systems that are

antichains and/or have bounded diameter. Chapter 1 gives a more detailed outline of

the thesis. In Chapter 2, we give a new short proof of Kleitman’s theorem concerning

the maximal size of a set system with bounded diameter. In Chapter 3, we turn our

attention to antichains with bounded diameter. Šileikis conjectured that an antichain

of diameter D has size at most
(

n
bD/2c

)
. We present several partial results towards the

conjecture.

In 2014, Leader and Long gave asymptotic bounds on the size of a set system

where |A \ B| 6= 1 and more generally, when |A \ B| 6= k. In Chapter 4, we present

streamlined versions of their proofs, with slightly better bounds.

The final chapter presents a proof for the following poset analog of an elementary

graph theory problem: every poset with |R| relations contains a height two subposet

with at least |R|/2 relations.
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Chapter 1

Introduction

Let X be a set. A set system F (often referred to as a family when the context is

clear) is just a subset of 2X . Oftentimes, X is taken to be finite and, perhaps most

often, X = [n] = {1, 2, . . . , n}. Set systems have been studied extensively since the

early 1900’s.

One of the first and most well-known results is due to Sperner. A Sperner system

is a set system where no element is contained in another. In the language of posets,

this is called an antichain. We will use A to denote this special type of set system.

In 1928 (see [16]), Sperner bounded the size of such families:

Theorem 1.1. Let A be a Sperner system on X = [n]. Then

|A| ≤
(
n

bn
2
c

)

A chain, as one might expect, is the opposite of an antichain. It is a sequence

A1, A2, . . . , Ak ⊆ F such that A1 ⊆ A2 ⊆ · · · ⊆ Ak. One of the proofs of Sperner’s

theorem involves counting maximal chains. Because of its importance in Chapter 4,

we present this proof below.

Proof of Theorem 1.1. We double count pairs of the form (A, C) where a A ∈ A and

C is a maximal chain in 2[n] containing A. On the one hand, each member A can be
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extended to a maximal chain in one of |A|! · (n− |A|)! ways. So the number of pairs

is exactly ∑
A∈A

|A|! · (n− |A|)!

On the other hand, each maximal chain contains at most 1 member of A, lest the

antichain condition be violated. So the number of pairs is at most

∑
maximal C

1 = n!

Dividing, we conclude ∑
A∈A

(
n

|A|

)−1

≤ 1 (1.1)

Finally, since
(
n
|A|

)
is maximized when |A| = bn

2
c, we have that

|A| ·
(
n

bn
2
c

)−1

=
∑
A∈A

(
n

bn
2
c

)−1

≤ 1

Multiplying appropriately yields the result.

Technically, we have just derived the famous LYM inequality (1.1), and used it to

prove Sperner’s Theorem. This stronger inequality is due to Lubell, Yamamoto, and

Meshalkin (see [11], [17], and [13], respectively).

Since Sperner’s theorem, a plethora of other families have been studied. Some of

the most notable are intersecting families and, more generally, t-intersecting families.

A family F ⊆ 2[n] is called intersecting (respectively, t-intersecting) if for all A,B ∈

F , |A∩B| ≥ 1 (respectively, |A∩B| ≥ t). Additionally, a family is called k-uniform

if |A| = k for all A ∈ F . In 1961 (see [5]), Erdős, Ko, and Rado bounded the size of

k-uniform intersecting families.
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Theorem 1.2. Let n ≥ 2k and F ⊆
(

[n]
k

)
be a k-uniform intersecting family. Then

|F| ≤
(
n− 1

k − 1

)

Their original proof was one of the first to use standard left-compression, a tech-

nique we will discuss in greater detail in Chapters 2 and 3.

Erdős, Ko, and Rado also made progress on the t-intersecting case, but it wasn’t

until 1997 that Ahlswede and Khachatrian completely classified all k-uniform t-

intersecting families with their Complete Intersection Theorem (see [2]). The proof

of their result also uses standard left-compression.

In 1964, Katona bounded the size of a non-uniform t-intersecting family (see [8],

Theorem 4). He found that when n+ t = 2k is even, the largest such a family could

be is
∑n

i=k

(
n
i

)
, with the unique optimal family being all sets of size at least k. In the

case when n+ t = 2k − 1 is odd, he found the optimal size to increase by
(
n−1
k−1

)
, and

the optimal family, now unique only up to isomorphism, also included all sets of size

k − 1 avoiding a fixed point.

In the even case, Katona’s extremal family can be simply described as the collec-

tion of all sets at distance at most n−k away from [n]. Given any two sets A,B ⊆ [n],

the (Hamming) distance is dist(A,B) = |A∆B| where ∆ is the symmetric difference

symbol. Given a set system F ⊆ 2[n], the diameter of F is

diam(F) = max
A,B∈F

dist(A,B)

In 1966, Kleitman proved that families of diameter n − t had the same maximal

size as Katona’s extremal t-intersecting families (see [9]). Furthermore, Kleitman’s

proof yields a structure similar to Katona’s extremal families. When n− t = 2d, take

all sets of size at most d, that is, the ball of radius d about ∅. In the n− t = 2d + 1
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case, we need only add all sets of size d+ 1 that contain a fixed point, g for the
(
n−1
d

)
term. It’s worth noting that this structure is only unique up to isomorphism, as taking

the symmetric difference with any set A ⊆ [n] yields a family of the same diameter.

Kleitman’s original proof uses standard left-compression and deletion (another form

of compression). In Chapter 2, we present a new proof of Kleitman’s theorem using

generalized compressions.

In 1968, Milner took Katona’s setup and added an antichain condition. He found

that the largest layer of the cube in Katona’s extremal example,
(

[n]
k

)
where k =⌈

n+t
2

⌉
, is a maximal t-intersecting antichain (regardless of the parity of n + t). It

was conjectured in [12] that adding an antichain condition to Kleitman’s bounded

diameter theorem would allow one to make the analogous conclusion to Milner’s t-

intersecting theorem, but in the bounded diameter case.

Conjecture 1.3. Let A ⊆ 2[n] be an antichain with diam(A) ≤ D and let d =
⌊
D
2

⌋
.

Then

|A| ≤
(
n

d

)
While we were not able to prove the conjecture in full generality, in Chapter 3,

we present some partial results in that direction.

Next, we turn our attention to a related property. Consider the following alternate

definition of Sperner family : a set system A ⊆ 2[n] is called a Sperner family if for all

A,B ∈ A, |A \ B| 6= 0. This condition can be generalized by instead insisting for all

A,B ∈ A, |A \B| 6= k for some k ∈ N. Leader and Long gave asymptotic bounds on

the size of such a family, focusing first on the case k = 1. In Chapter 4, we present

streamlined versions of their proofs that are easier to follow and that slightly sharpen

their results.

Finally, in Chapter 5, we present some work done in the area of poset partitions.
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An elementary induction argument shows that every graph G = (V,E) with |E|

edges has a bipartite subgraph with at least |E|/2 edges. We prove an analogous

result for general posets: every poset P = (V,R) with |R| relations has a height two

subposet with with at least |R|/2 relations. While we later discovered that this result

was already proven by Patel [15] for general height subposets, our main height two

theorem is stronger.
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Chapter 2

A Short Proof of Kleitman’s Theorem

In 1966, Kleitman proved the following isodiametric theorem originally conjectured

by Erdős in [5]:

Theorem 2.1 (Kleitman, 1966 [9]). Let F ⊆ 2[n] have diam (F) ≤ D. Then

|F| ≤


∑d

j=0

(
n
j

)
if D = 2d(

n−1
d

)
+
∑d

j=0

(
n
j

)
if D = 2d+ 1

.

Furthermore, equality is attained by the family
(

[n]
≤d

)
in the first case and

(
[n]
≤d

)
∪((

[n−1]
d

)
∨
{
{n}

})
in the second.

The notation used in the last line is non-standard, so we define it below. For two

set systems, F ,G ⊆ 2[n], we define the ∨ and ∧ operators:

F ∨ G = {A ∪B : A ∈ F , B ∈ G}

F ∧ G = {A ∩B : A ∈ F , B ∈ G}

Finally, if two sets A,B ⊆ [n] are disjoint, we shall write A ·∪B instead of A ∪B.

It is important to recognize that the diameter condition does not guarantee unique-

ness, even up to reordering of [n]. Let C ⊆ [n] and consider the following function
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fC : 2[n] → 2[n] defined by fC(A) = C∆A. First of all, we claim fC is one-to-one.

That is, if fC(A) = C∆A = C∆B = fC(B), necessarily A = B.

Let x ∈ A = (A\C) ·∪ (C ∩ A). If x ∈ A\C ⊆ C∆A = C∆B, then since x /∈ C,

x ∈ B\C ⊆ B. If, on the other hand, x ∈ C ∩ A, then x /∈ C∆A = C∆B. But since

x ∈ C, we must have x ∈ C ∩ B ⊆ B. Therefore, A ⊆ B and a symmetric argument

shows A = B.

If we define fC(A) = {fC(A) : A ∈ A}, then by the argument above, we may

conclude |A| = |fC(A)| for all A ⊆ [n]. Next, we claim fC is distance-preserving and

therefore diameter-preserving. Another elementary set-theoretic argument shows that

for all A,B,C ⊆ [n], A∆B = (C∆A)∆(C∆B) and hence

dist(fC(A), fC(B)) = dist(C∆A,C∆B) = |(C∆A)∆(C∆B)|

=|A∆B| = dist(A,B).

We’ve just shown that we can “move” the extremal family described by Kleitman’s

theorem to the corresponding ball centered at the point C ⊆ [n] by applying fC to

the family.

Kleitman’s original proof is rather long and involved. In 1991, Bollobás and

Leader used generalized compressions to present a short proof of the Kruskal-Katona

Theorem (see [4]). Here we use similar techniques to prove Kleitman’s Theorem.

Definition 2.2. Let X, Y ⊆ [n] be disjoint and A ⊆ [n]. The generalized Y → X

compression of A is

AY→X =


(A\Y ) ∪X if Y ⊆ A,X ∩ A = ∅

A otherwise

.
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We also define the generalized Y → X compression of F as

FY→X = {AY→X : A ∈ F} ∪ {A : A,AY→X ∈ F}.

We say that F is Y → X compressed if FY→X = F .

It is important to note that the definition of FY→X guarantees |FY→X | = |F|.

In fact, we often think of compression as a bijection from F to FY→X ; the image of

A ∈ F , typically denoted A′, is defined to be AY→X unless AY→X ∈ F , in which case

A′ = A.

Definition 2.3. Let F ⊆ 2[n] and A ∈ F . We say that A moves if AY→X 6= A and

AY→X /∈ F (i.e., A′ 6= A). Otherwise, we say A is fixed (i.e., A′ = A).

Compression-style proofs all have the same general formula. There is some prop-

erty of the family (e.g. the diameter or the size of the shadow) that we wish to show

is monotone increasing or decreasing under the “right” conditions. The following

example demonstrates that even applying Y → X compressions where X < Y in the

colexicographic order can increase the diameter.

Example 2.4. Consider A = {12, 13, 14, 15}, a family of diameter 2. Applying the

compression {14} → {23} yields A{14}→{23} = {12, 13, 23, 15}, a family of diameter 4.

The crux of the matter is determining when a given compression does not increase

the diameter of the family. We start with a very simple lemma.

Lemma 2.5. Given F ⊆ 2[n], A,B ∈ F , and disjoint X, Y ⊆ [n], if A and B are

either both moved or both fixed by the Y → X compression, then the distance between

them is preserved.
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For convenience, we let [n]0 = [n] \ (X ·∪ Y ), A0 = A ∩ [n]0, B0 = B ∩ [n]0, and

∆0 = |A0∆B0|.

Proof. If both sets are moved by the compression, then Y ⊆ A,B and X∩(A ∪B) = ∅

and the images of A,B are A′ = AY→X and B′ = BY→X , respectively. Then

dist(A′, B′) = dist(AY→X , BY→X) = dist(A0 ·∪X,B0 ·∪X)

= dist(A0, B0) = dist(A0 ·∪ Y,B0 ·∪ Y ) = dist(A,B)

Obviously, if both sets are fixed by the compression, then so is the distance between

them.

The previous lemma establishes that we can only have diam(FY→X) > diam(F) if

there exists a pair of sets, A,B ∈ F , one of which is moved by the Y → X compression

while the other is fixed. Without loss of generality, we will assume A moves while B

is fixed. We set out to show dist(A′, B′) = dist(AY→X , B) ≤ D. Next, we present two

lemmas containing sufficient conditions on X and Y for diam(FY→X) ≤ diam(F).

Lemma 2.6. Let Y ⊆ [n] and let F ⊆ 2[n]. Suppose for all y ∈ Y , F is (Y \y) → ∅

compressed. Then diam (FY→∅) ≤ diam (F).

Proof. We assume diam(FY→∅) > diam(F) so that by the discussion above, there

exists a pair of sets A,B ∈ F with A moved and B fixed by Y → X compression.

This implies that A = A0 ·∪ Y and AY→∅ = A0 /∈ F . Let B = B0 ·∪ YB where

YB = B ∩ Y . Since B is fixed under the compression, then either

1. B was eligible to move (i.e. YB = Y ), but BY→∅ = B0 ∈ F or

2. B was ineligible to move (i.e. YB ( Y ).
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In the first case,

dist(AY→∅, B) = dist(A0, B0 ·∪ Y ) = ∆0 + |Y |

= dist(A0 ·∪ Y,B0) = dist(A,B0) ≤ D,

since B0 ∈ F , as desired.

In this diagram and the diagrams to follow, undecorated lines represent intersec-

tions between two sets, the weights of which represent the size of the intersection

with the “+∆0” term suppressed. Single arrows indicate the act of compression while

a double arrow from one set to another represents the existence of one guaranteeing

the existence of another.

A0 ·∪ Y

Y→∅

��

|Y |
B0KS

Y→∅

A0 |Y |
B0 ·∪ Y

Figure 2.1: The YB = Y case.

In the second case, since YB ( Y , select any y0 ∈ Y \YB. Then by assumption, F

is (Y \y0)→ ∅ compressed; i.e. A(Y \y0)→∅ = A ·∪ {y0} ∈ F . Then, since y0 /∈ YB,

dist(AY→∅, B) = dist(A0, B0 ·∪ YB) = ∆0 + |YB| < ∆0 + |YB|+ 1

= dist(A0 ·∪ {y0}, B0 ·∪ YB) = dist(A0 ·∪ {y0}, B) ≤ D,

since A0 ·∪ {y0} ∈ F , as desired.
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A0 ·∪ Y

Y→∅

��

Y \y0→∅ +3 A0 ·∪ y0

|YB |+1

A0 |YB |
B0 ·∪ YB

Figure 2.2: The YB ( Y Case.

Lemma 2.7. Let X, Y ⊆ [n] be disjoint and nonempty with |X| ≤ |Y | and let F ⊆

2[n]. Suppose

(i) For all y ∈ Y there exists x ∈ X s.t. F is (Y \y)→ (X\x) compressed and

(ii) For all X ′ ( X, F is Y → X ′ compressed.

Then diam (FY→X) ≤ diam (F).

Proof. As in the previous lemma, we assume diam(FY→X) > diam(F) so that there

exists A,B ∈ F with A moved and B fixed by Y → X compression. This implies

that A = A0 ·∪Y and AY→X = A0 ·∪X /∈ F . Let B = B0 ·∪XB ·∪YB where XB = B∩X

and YB = B ∩ Y . If B is fixed by the compression, then either

1. B was eligible to move (i.e., XB = ∅, YB = Y , and B = B0 ·∪ Y ), but BY→X =

B0 ∪X ∈ F already or

2. B was ineligible to move (i.e. XB 6= ∅ or YB ( Y ).

In the first case,

dist (AY→X , B) = dist (A0 ·∪X,B0 ·∪ Y ) = ∆0 + |X|+ |Y |

= dist (A0 ·∪ Y,B0 ·∪X) = dist (A,BY→X) ≤ D
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since A,B′ ∈ F , as desired.

A0 ·∪ Y

Y→X

��

|X|+|Y |
B0 ·∪XKS

A0 ·∪X |X|+|Y |
B0 ·∪ Y

Figure 2.3: The XB = ∅, YB = Y, and B = B0 ·∪ Y case.

As for the second case, let’s first assume YB ( Y . Select any y0 ∈ Y \YB. By (i),

there exists x0 ∈ X such that F is (Y \y0)→ (X\x0) compressed, i.e. AY \y0→X\x0 =

A0 ·∪ (X\x0) ·∪ y0 ∈ F .

Since y0 /∈ YB, but possibly x0 ∈ XB

dist(AY→X , B) = dist(A0 ·∪X,B0 ·∪XB ·∪ YB) = ∆0 + |X| − |XB|+ |YB|

= ∆0 + (|X| − |XB| − 1) + (|YB|+ 1)

≤ dist (A0 ·∪ (X\x0) ·∪ y0, B0 ·∪XB ·∪ YB) = dist(AY \y0→X\x0 , B) ≤ D,

as desired.

A0 ·∪ Y

Y→X

��

Y \y0→X\x0 +3 A0 ·∪ (X\x0) ·∪ y0

≥(|X|−|XB |−1)+(|YB |+1)

A0 ·∪X |X|−|XB |+|YB |
B0 ·∪XB ·∪ YB

Figure 2.4: The YB ( Y case.
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We may now assume YB = Y , but XB 6= ∅. Setting X ′ = X\XB 6= X, by (ii) we

know that F is Y → X ′ compressed, i.e. BY→X′ = B0 ·∪X ∈ F . Therefore

dist(AY→X , B) = dist(A0 ·∪X,B0 ·∪XB ·∪ Y ) = ∆0 + (|X| − |XB|) + |Y |

< ∆0 + |X|+ |Y | = dist(A0 ·∪ Y,B0 ·∪X)

= dist(A,BY→X′) ≤ D,

as desired.

A0 ·∪ Y

Y→X

��

|X|+|Y |
B0 ·∪XKS

Y→(X\XB)

A0 ·∪X |X|−|XB |+|Y |
B0 ·∪XB ·∪ Y

Figure 2.5: The YB = Y and XB 6= ∅ case.

The theorem we are about to prove states that among all families with m members,

the family consisting of the first m elements of the weight lexicographic order achieves

the minimum possible diameter.

Definition 2.8. The weight lexicographic order on 2[n] is defined by A <wl B ⇐⇒

|A| < |B| or if |A| = |B| and A <lex B.

Let Iwl (m) denote the first m elements in the weight lexicographic order on 2[n].

Lemma 2.9. Let Γ =
{

(X, Y ) ∈ 2[n] × 2[n] : X ∩ Y = ∅, X <wl Y
}

. A family F ⊆

2[n] is an initial segment of the weight lexicographic order if and only if it is Y → X

compressed for all pairs (X, Y ) ∈ Γ.
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Proof. (⇐) Let A ∈ F and select any B <wl A. We claim B ∈ F as well. Clearly,

(B\A,A\B) ∈ Γ and so by assumption, F is A\B → B\A compressed. That is,

AA\B→B\A = B ∈ F , as desired.

(⇒) Now suppose F is an initial segment of the weight lexicographic order, but

some compression is effective. That is, AY→X = B /∈ F . This implies A >wl B,

contradicting the fact that B /∈ F .

Definition 2.10. Given a family F ⊆ 2[n] and disjoint X, Y ⊆ [n], the family FY→X

is called a legal compression if it satisfies the hypothesis of Lemmas 2.6 or 2.7.

Definition 2.11. Let R(F) be the set of families, G, reachable from F via a finite

sequence of legal compressions. That is, there exists (Fi, Xi, Yi) for i = 0 to N such

that F0 = F , FN = G, Xi, Yi ⊂ [n] are disjoint and Fi+1 = (Fi)Yi+1→Xi+1
is a legal

compression.

For our proof of Kleitman’s Theorem, we introduce a non-standard notion of

“weight.”

Definition 2.12. For F ⊆ 2[n], let I(F) denote the set of corresponding indices of

the members of F in the weight lexicographic order. The weight of F is defined to

be

wt(F) =
∑
i∈I(F)

i

We are now in position to prove the following theorem:

Theorem 2.13. Let F ⊆ 2[n]. Then

diam (F) ≥ diam (Iwl (|F|)) .
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Proof. Let F̃ ∈ R (F) have wt
(
F̃
)

minimal and let m = |F| = |F̃ |. We claim

F̃ = Iwl(m). If not, F̃ is missing one of the firstmmembers of the weight lexicographic

order. Let Λ be the collection of pairs (A,B) such that A 6∈ F̃ , B ∈ F̃ , A <wl B

and |A\B| minimal. Select (A0, B0) ∈ Λ with |B0\A0| minimal as well. We claim

(B0\A0)→ (A0\B0) is a legal compression. Let Y = B0\A0 and X = A0\B0.

If A0 ⊆ B0, then X = ∅. We claim for all y0 ∈ Y , that F̃ is
(
Y \{y0}

)
→ ∅

compressed. If not, then there exists B1 ∈ F̃ and A1 6∈ F̃ such that (B1)Y \y0→∅ = A1.

However, A1 ⊆ B1, so A1 <wl B1, |A1\B1| = 0 = |A0\B0| and |B1\A1| = |B0\A0|−1,

a contradiction.

If on the other hand, X 6= ∅, we claim (i) for all y ∈ Y , there exists x ∈ X, such

that F̃ is
(
(Y \y) → (X\x)

)
-compressed and (ii) for all X ′ ( X, F̃ is

(
Y → X ′

)
-

compressed.

If (i) is false, then there exists y0 ∈ Y such that F̃ is not
(
(Y \y0) → (X\x)

)
-

compressed for all x ∈ X. If x0 = max(X), then this implies there exists A2 6∈ F̃

and B2 ∈ F̃ such that (B2)Y \y0→X\x0 = A2. We claim (A2, B2) ∈ Λ. If |B0\A0| >

|A0\B0|, then |B2\A2| > |A2\B2| and clearly A2 <wl B2. If, on the other hand,

|B0\A0| = |A0\B0|, then |B2\A2| = |A2\B2|. Here the choice of x0 is very important;

it guarantees that

min
(
Y \y0

)
≥ min(Y )) > min(X) > min

(
X\x0

)
and hence A2 <wl B2. In either case we have |A2\B2| = |A0\B0| − 1 and yet (A2, B2)

is otherwise eligible to be in Λ, a contradiction. So (i) must hold.

If (ii) is false, then there exists X ′ ( X such that F̃ is not
(
Y → X ′

)
-compressed.

That is, there exists A3 6∈ F̃ and B3 ∈ F̃ such that (B3)Y→X′ = A3. We claim

(A3, B3) ∈ Λ. This follows easily from the fact that |Y | ≥ |X| and hence |B3\A3| =
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|Y | > |X ′| = |A3\B3| and so |B3| > |A3 and hence A3 <wl B3. As before, this implies

that (A3, B3) should have been included in Λ, but |A3\B3| < |A0\B0|, a contradiction.

In both cases, Y → X is a legal compression, so F̃Y→X ∈ R(F). However,

wt
(
F̃Y→X

)
< wt

(
F̃
)
, a contradiction. We conclude that F̃ = Iwl(m).

Finally, we derive Kleitman’s Theorem as a corollary to our theorem.

Corollary 2.14. Let F ⊆ 2[n] have diam (F) ≤ D. Then

|F| ≤


∑d

j=0

(
n
j

)
if D = 2d(

n−1
d

)
+
∑d

j=0

(
n
j

)
if D = 2d+ 1

.

Furthermore, equality is attained by the family
(

[n]
≤d

)
in the first case and

(
[n]
≤d

)
∪({

{1}
}
∨
(

[2,n]
d

))
in the second.

Proof. Let F be a family of diameter D. By the previous theorem, we may assume

F is an initial segment of the weight lexicographic order. First suppose D = 2d is

even, but |F| >
∑d

j=0

(
n
j

)
. Here we are guaranteed A = [1, d+ 1] ∈ F as well as every

set of size d. In particular, the set B = [d + 2, 2d + 1] ∈ F (recall, n > D = 2d).

However, dist(A,B) = 2d+ 1 > D, a contradiction.

If, on the other hand, D = 2d + 1 and |F| >
(
n−1
d

)
+
∑d

j=0

(
n
j

)
, then we are

guaranteed A = [2, d + 2] ∈ F . We are also guaranteed every set of size d + 1 that

contains 1. In particular, the set B = {1, d + 2, d + 3, . . . , 2d + 2} ∈ F (recall,

n > D = 2d+ 1). However, dist(A,B) = 2d+ 2 > D, another contradiction.
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Chapter 3

Bounded Diameter Antichains

3.1 Background

Definition 3.1. A family of sets F ⊆ 2[n] is called t-intersecting if for all A,B ∈ F ,

|A ∩B| ≥ t.

Observe,

|A ∩B| = |A|+ |B| − |A ∪B| ≥ |A|+ |B| − n

So if we want F to be t-intersecting, requiring |A|+ |B| ≥ n+ t is certainly sufficient.

To establish a lower bound on the maximum size of such a family, simply insist that

|A| ≥ n+t
2

for all A ∈ F .

In 1964, Katona proved that this is essentially the best possible.

Theorem 3.2 (Katona (1964) [8]). If F ⊆ 2[n] is t-intersecting,

|F| ≤


∑n

j=k

(
n
j

)
if t+ n = 2k(

n−1
k−1

)
+
∑n

j=k

(
n
j

)
if t+ n = 2k − 1

with equality attained by
(

[n]
≥k

)
and

(
[n]
≥k

)
∪
(

[n−1]
k−1

)
, respectively.

For i, j ∈ [n], i 6= j, and A ⊆ [n] we define the standard (j → i)-compression of



18

A, Aj→i as

Aj→i =


(A\ {j}) ∪ {i} if j ∈ A, i /∈ A

A otherwise

Note, this is just a special case of the more general Y → X compression we defined in

Chapter 2. Observe, {Aj→i : A ∈ F} need not have the same size as F . If A is eligible

to move, i.e., if j ∈ A, but i 6∈ A, but A\{j}∪{i} ∈ F , then Aj→i = (A\{j}∪{i})j→i.

For this reason, we define

Fj→i = {Aj→i : A ∈ F} ∪ {A : A,Aj→i ∈ F}

ensuring |Fj→i| = |F|. Put simply, Fj→i is the family obtained from F by replacing

j with i whenever possible. We say that F is left-compressed if F = Fj→i for all

1 ≤ i < j ≤ n.

In [5], Erdős, Ko, and Rado showed that if F is t-intersecting, then so is Fj→i.

This incredibly useful fact allows one to assume that F is left-compressed.

Proposition 3.3 (Erdős, Ko, Rado (1961) [5]). If F is a t-intersecting family, then

there is a left-compressed t-intersecting family, F ′, so that |F| = |F ′|.

We now present a proof of Katona’s Theorem due to its relevance to our work:

Proof of Theorem 3.2. We perform induction on t and n. For the case t = 1, the

maximum size of such a family is clearly 2n−1, obtained by taking all sets containing

a fixed point (only one of {A,Ac} may be contained in F). So assume t > 1. When

n ≤ t, the result is trivial, so assume n > t. By the previous proposition, we may also

assume F is left-compressed. Let

F0 = {A ∈ F : 1 /∈ A} and F1 = {A ∈ F : 1 ∈ A} .
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Furthermore, let F ′1 = {A\ {1} : A ∈ F1} and observe F ′1 is a (t− 1)-intersecting

family on n − 1 elements. If we assume n + t is even (the odd case is similar) by

induction

|F ′1| ≤
n−1∑

j= t+n−2
2

(
n− 1

j

)
.

Claim: Since F is left-compressed, F0 is a (t+ 1)-intersecting family on n − 1

elements.

Proof of Claim: Let A,B ∈ F0 and select j ∈ A ∩B. Since F is left-compressed,

Aj→1 ∈ F . Since neither A nor B contains 1, replacing j with 1 in A strictly decreases

the size of the intersection. But since F is t-intersecting,

|A ∩B| > |Aj→1 ∩B| ≥ t.

That is, |A ∩B| ≥ t+ 1, as desired.

Now again, by induction,

|F0| ≤
n−1∑
j= t+n

2

(
n− 1

j

)
.

Then, using Pascal’s Identity,

|F| = |F0|+ |F ′1| ≤
n−1∑
j= t+n

2

(
n− 1

j

)
+

n−1∑
j= t+n

2
−1

(
n− 1

j

)

=
n∑

j= t+n
2

(
n− 1

j

)
+

n∑
j= t+n

2

(
n− 1

j − 1

)

=
n∑

j= t+n
2

(
n

j

)
,

as desired.
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Observe that F is t-intersecting if and only if F c = {Ac : A ∈ F} has |Ac ∪Bc| ≤

n− t for all Ac, Bc ∈ F c:

|Ac ∪Bc| = |(A ∩B)c| = n− |A ∩B| ≤ n− t.

if and only if |A ∩B| ≥ t for all A,B ∈ F . This yields the following corollary:

Corollary 3.4. If F ⊆ 2[n], |A ∪B| ≤ n− t for all A,B ∈ F , then

|F| ≤


∑k

j=0

(
n
j

)
, if n− t = 2k∑k

j=0

(
n
j

)
+
(
n−1
k

)
, if n− t = 2k + 1

with equality attained by
(

[n]
≤k

)
=
( [n]

≤n−t
2

)
and

(
[n]
≤k

)
∪
[(

[n−1]
k

)
∨ {n}

]
=
( [n]

≤n−t−1
2

)
∪[( [n−1]

n−t−1
2

)
∨ {n}

]
.

Definition 3.5. Given a family F ⊆ 2[n], the diameter of F is

diam(F) = max{|A∆B| : A,B ∈ F}.

Kleitman was able to arrive at the same conclusion as Katona after replacing the

“t-intersecting” condition with the condition “F has diameter at most n− t.”

Theorem 3.6 (Kleitman (1966) [9]). If F ⊆ 2[n] has diam (F) ≤ n− t, then

|F| ≤


∑k

j=0

(
n
j

)
, if n− t = 2k(

n−1
k

)
+
∑k

j=0

(
n
j

)
, if n− t = 2k + 1

with equality attained by
(

[n]
≤k

)
=
( [n]

≤n−t
2

)
and

(
[n]
≤k

)
∪
[(

[n−1]
k

)
∨ {n}

]
=
( [n]

≤n−t−1
2

)
∪[( [n−1]

n−t−1
2

)
∨ {n}

]
.
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Kleitman’s original proof used standard (j → i) compressions and (j → ∅) com-

pressions (otherwise known as deletions). For A ∈ F ,

Aj→∅ =


A \ {j} if j ∈ A

A otherwise

As with standard (j → i) compression, we define the analogous (j → ∅) compres-

sion of F ,

Fj→∅ = {Aj→∅ : A ∈ F} ∪ {A : A,Aj→∅ ∈ F}

which ensures |Fj→∅| = |F|. We say F is down-compressed if Fj→∅ = F for all j ∈ [n].

Bollobás was able to combine elements of Kleitman’s original proof and (the corol-

lary to) Katona’s Theorem to give another nice proof of Kleitman’s Theorem. He

makes use of the following lemma, which is a special case of our Theorem 2.13

Lemma 3.7 (Kleitman). If diam (F) ≤ D, then there is a down-compressed family

F ′ such that diam (F) ≤ D and |F ′| = |F|.

Now we present Bollobás’ proof of Kleitman’s Theorem.

Proof of Theorem 3.6. Let F be a family with diam(F) ≤ D. By Lemma 3.7, we

may assume F is down-compressed, that is Fj→∅ = F for all 1 ≤ j ≤ n. Hence, F is

a down-set.

Next, we’ll bound |A ∪B| in F0. Set A′ = A\B ⊆ A. Then A′ ∈ F0 and

|A ∪B| = |A′∆B| ≤ D.

Applying Corollary 3.4, we obtain the desired result.
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3.2 The Main Conjecture

We now return to the main problem of this chapter: describing bounded diameter

antichains. First, we discuss the inspiration for Šileikis’ conjecture.

We can turn the extremal t-intersecting families that Katona found into t-intersecting

antichains by simply keeping only the largest level sets. As it happens, this is best

possible:

Theorem 3.8 (Milner (1968) [14]). If A ⊆ 2[n] is a t-intersecting antichain, then

|A| ≤
(
n

k

)

where k =
⌈
n+t

2

⌉
and equality attained only by

(
[n]
k

)
or (in the odd case only)

[(
[n]

k

)
\
((

[n− t]
k − t

)
∨ [n− t+ 1, n]

)]
∪
((

[n− t]
k − t− 1

)
∨ [n− t+ 1, n]

)
.

We present an outline of Milner’s proof, as we will apply a similar strategy later

on. If |A| = k for all A ∈ A, then there is nothing to prove. As it happens, this is

the only instance where the bound is tight. If |A| ≤ k for all A ∈ A and at least

one A′ ∈ A has |A′| < k, then Milner used up-compression and Katona’s theorem

on shadows of intersecting families (see below). Finally, if |A| > k for some A ∈ A,

Milner used down-compression on sets of size greater than k to reduce to the second

case.

Before we state the conjecture, we define upper and lower shadows, and state

Katona’s theorem on shadows of intersecting families; both of which we use many

times over.

Definition 3.9. Let l < k < m. For a k-uniform family A ⊆
(

[n]
k

)
, upper m-shadow
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and lower l-shadow are defined, respectively, as follows:

∂m(A) =

{
B ∈

(
[n]

m

)
: ∃A ∈ A s.t. B ⊃ A

}
∂l(A) =

{
B ∈

(
[n]

l

)
: ∃A ∈ A s.t. B ⊂ A

}

As a word of warning, equivalent definitions exist in the literature where the

super- and subscripts denote the number of levels above or below level k, rather than

specifying the actual level numbers as we have.

Theorem 3.10 (Katona [8]). Let 1 ≤ l, t ≤ k ≤ l + t and let A be a k-uniform,

t-intersecting family. Then

|∂l(A)| ≥
(

2k−t
l

)(
2k−t
k

) |A| = (k)(k−l)

(2k − t− l)(k−l)
|A|

In 2015, Markström published a collection of open problems and conjectures,

including this one due to Šileikis:

Conjecture 3.11 (Šileikis [12]). Let A ⊆ 2[n] be an antichain with diam (A) = D < n

and set d =
⌊
D
2

⌋
. Then

|A| ≤
(
n

d

)
Note, if D ≥ n, then Sperner’s Theorem (1.1) applies and

|A| ≤
(

n

bn/2c

)

The problem is that the standard compression operations preserve neither prop-

erty we care about. Standard down compression, for instance, fails to preserve the

antichain condition. Consider {ij} and {jk}. If we were to apply Ci→∅ to the two
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sets, we would be left with {j} and {jk}, which is clearly not an antichain.

Naturally, one might try a modified down compression operation which only

compresses when the antichain condition does not break. This, too, fails. Take

A = {A,B,C} where A = {123}, B = {145}, and C = {245}. Then dist(A,B) = 4,

dist(A,C) = 4, and dist(A,C) = 2. However, if we apply the modified version of

C1→∅, the resulting family is A′ = {23, 145, 245} and dist(A′, B′) = 5, violating the

diameter condition. As another example, let A = {123, 124, 134, 234}, a family of di-

ameter 2. Ideally, we should be able to compress this family to a set of singletons, but

every i → ∅ compressions violates the antichain condition. Similarly, every ij → k

compression increases the diameter. Perhaps there is a less natural order to apply

these modified compressions that would allow this approach to go through, but it is

not clear what that order might be.

It’s worth noting that in Bollobás’ proof of Kleitman’s theorem (see [3]), the

last step hinges on the compressed family being a downset. It allowed him to use

the union-version of Katona’s theorem to bound dist(A,B). However antichains can

never be downsets, rendering this approach fruitless.

3.3 General Techniques

First, we make a simple observation about structure of a bounded diameter antichain.

Proposition 3.12. An antichain A ⊆ 2[n] of diameter D must be contained in D−1

adjacent levels of the cube.

Proof. First, recall

|A∆B| = |A\B|+ |B\A| .
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Second, since A is an antichain, |A\B| > 0 and |B\A| > 0. Thus

|B\A| < |A\B|+ |B\A| ≤ D

and similarly, |A\B| < D. So the list of possible maximal pairs of (|A\B| , |B\A|) is

(1, D − 1) , (2, D − 2) , . . . , (D − 1, 1) .

If we interpret these pairs as instructions on how to get from A to B on the cube,

they read “go down |A\B| levels and then back up by |B\A| levels, for a net move-

ment of ||A\B| − |B\A|| levels.” So the list of possible “net level movements” is

{0, 1, 2, . . . , D − 2}. That is, the elements of A occupy a maximum of D − 1 lev-

els.

In a later section, we will impose a condition on the maximum number of levels

that a bounded diameter antichain is allowed to occupy. Our first partial result takes

care of the case that the family lies on the first d+ 1 levels of the cube.

Proposition 3.13. Let A be an antichain of diameter D and let d = bD/2c. If

A ⊆
(

[n]
≤d

)
, then |A| ≤

(
n
d

)
.

Here there is no diameter condition, and we may simply use upper shadows to push

the family up, one level at a time. To guarantee that this process does not decrease

the size of the family, we will appeal to the well-known Local LYM inequality (see

[3]).

Theorem 3.14 (Local LYM). Let 1 ≤ k ≤ n and let A ∈
(

[n]
k

)
. Then

|A|(
n
k

) ≤ ∣∣∂k+1(A)
∣∣(

n
k+1

)
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Proof. Each k-set has n− k possible extensions. Each k+ 1 set is the extension of at

most k + 1 members of A. So

|A| (n− k) ≤
∣∣∂k+1 (A)

∣∣ (k + 1)

|A| ≤
∣∣∂k+1 (A)

∣∣
n−k
k+1

(3.1)

|A|(
n
k

) ≤ ∣∣∂k+1 (A)
∣∣

n−k
k+1

(
n
k

) =

∣∣∂k+1 (A)
∣∣(

n
k+1

) .

Before we prove Proposition 3.13, we need a bit of notation that will be used

throughout the remainder of the thesis. Let A(k) denote the portion of A contained

on the k-th level. That is,

A(k) = A ∩
(

[n]

k

)
.

Proof of Proposition 3.13. Recursively replace the lowest level of the family with its

upper shadow. The antichain condition guarantees there are no collisions with existing

elements and since n ≥ k + (k + j) ≥ 2k + 1, (3.1) guarantees that

|A| =
∣∣A(k)

∣∣+
∣∣A(k+1)

∣∣+ · · ·+
∣∣A(k+j)

∣∣
≤
∣∣∂k+1

(
A(k)

)∣∣+
∣∣A(k+1)

∣∣+ · · ·+
∣∣A(k+j)

∣∣ .
Add ∂k+1

(
A(k)

)
to A(k+1) to form a new family, A′ occupying one fewer level. Repeat

j times until the resulting family lies on a single level k + j ≤ d. Then

|A| ≤ · · · ≤
(

n

k + j

)
≤
(
n

d

)
,

as desired.
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We can improve that slightly by employing Katona’s theorem concerning shadows

of intersecting families (Theorem 3.10).

Proposition 3.15. Let A be an antichain of diameter D and let d = bD/2c. If

A ⊆
(

[n]
≤d+1

)
, then |A| ≤

(
n
d

)
.

Proof. Applying Theorem 3.10 to A(d+1) with t = k − d and l = d, we have

∣∣∂d (A(d+1)
)∣∣ ≥ ∣∣A(d+1)

∣∣ · (d+ 1)1

(d+ 1)1

=
∣∣A(d+1)

∣∣ .
So we replace A(d+1) with its lower shadow. Again, the antichain condition prevents

any collision with members of A(≤d). Applying Proposition 3.13, we have

|A| =
∣∣A(≤d)

∣∣+
∣∣A(d+1)

∣∣ ≤ ∣∣A(≤d)
∣∣+
∣∣∂d(A(d+1)

)∣∣ ≤ (n
d

)

as desired.

3.4 The Single Layer Case

One of the main approaches we tried was imposing strong conditions on the number

of levels that a bounded diameter antichain was allowed to occupy. If we restrict the

antichain to a single level, k, then we can appeal to the Ahlswede and Khachatrian’s

Complete Intersection Theorem (see [2]) to achieve the desired bound. For fixed

t ≤ k ≤ n, and 0 ≤ i ≤ n−t
2

they define

Fi =

{
F ∈

(
[n]

k

)
: |F ∩ [t+ 2i]| ≥ t+ i

}

Clearly, this class of families is always t-intersecting. They proved that these are the

optimal k-uniform t-intersecting families.
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Theorem 3.16 (The Complete Intersection Theorem [2]). Let 1 ≤ t ≤ k ≤ n and

A ⊆
(
n
k

)
be t-intersecting.

1. With (k − t+ 1)
(
2 + t−1

r+1

)
< n < (k − t+ 1)

(
2 + t−1

r

)
, for some r ∈ N0, we

have

max |A| = |Fr|

and Fr is – up to permutations – the unique optimum. By convention, t−1
r

=∞

for r = 0.

2. With (k − t+ 1)
(
2 + t−1

r+1

)
= n for r ∈ N0, we have

max |A| = |Fr| = |Fr+1|

and an optimal system equals – up to permutations – either Fr or Fr+1.

We are less concerned with the structure of these extremal families and more

with their size. We show that bounded diameter antichains (on a single level), when

considered as t-intersecting families for the appropriate value of t, do not exceed the

conjectured bound.

Theorem 3.17. Let A ⊆
(

[n]
k

)
be an antichain with diam (A) = D < n and let

d = bD/2c. Then

|A| ≤
(
n

d

)
.

Proof. Since D < N , d ≤ bn/2c and by Proposition 3.15, k ≥ d + 2. For A,B ∈ A,

since dist(A,B) ≤ D, we have

D ≥ |A|+ |B| − 2 |A ∩B| = 2k − 2 |A ∩B|
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and hence

|A ∩B| ≥ k − D

2
≥ k − d.

That is, A is a k-uniform (k−d)-intersecting family and we may employ the Complete

Intersection Theorem (CIT). Set t = k − d so that d = k − t.

We make use of the following basic identity:

(
n

k

)
=

min{l,k}∑
j=0

(
l

j

)(
n− l
k − j

)
(3.2)

Given r as in the statement of the CIT, we know

|A| ≤
min{t+2r,k}∑
j1=t+r

(
t+ 2r

j1

)(
n− t− 2r

k − j1

)

Replacing k with d and letting l = t+ 2r , equation (3.2) says

(
n

d

)
=

min{t+2r,d}∑
j2=0

(
t+ 2r

j2

)(
n− t− 2r

d− j2

)
.

We claim every time k − j1 = d− j2, (i.e. j2 = j1 + d− k = j1 − t)

(
t+ 2r

j1

)
≤
(
t+ 2r

j2

)
=

(
t+ 2r

j1 − t

)
.

Since j1 ≥ t+ r,

2t+ 2r − j1 ≤ t+ r ≤ j1
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and hence

(2t+ 2r − j1)(t) ≤ (j1)(t)

(2t+ 2r − j1)!

(t+ 2r − j1)!
≤ (j1)!

(j1 − t)!

(t+ 2r)!

(t+ 2r − j1)! (j1)!
=

(
t+ 2r

j1

)
≤
(
t+ 2r

j1 − t

)
=

(t+ 2r)!

(2t+ 2r − j1)! (j1 − t)!
.

We’ve just shown

|A| ≤
min{t+2r,}∑
j1=t+r

(
t+ 2r

j1

)(
n− t− 2r

k − j1

)
=

min{2r,d}∑
j2=r

(
t+ 2r

j2

)(
n− t− 2r

d− j2

)
.

In particular, if r = 0, we have

|A| ≤
(
n− k + d

d

)
<

(
n

d

)

since k > d and for r ≥ 1,

|A| ≤
(
n

d

)
−

r−1∑
j2=0

(
t+ 2r

j2

)(
n− t− 2r

d− j2

)
≤
(
n

d

)
−
(
n− t− 2r

d

)
.

3.5 The Two Level Case

For this section, we assume A ⊆
(

[n]
k,k+1

)
is an antichain of diameter D. Assuming

both levels are nonempty implies D ≥ 3. We’ve already dealt with the case that

k+ 1 ≤ d+ 1, so we may assume k ≥ d+ 1. As before, n ≥ 2k+ 1. First, we present

a very specific result that requires n to be odd and A to occupy the two middle levels
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of the cube.

Proposition 3.18. Let D be given, d = bD
2
c, k = d+ 1, n = 2k+ 1 = 2d+ 3 and let

A ⊆
(

[n]
k,k+1

)
be an antichain with diam(A) = D. Then

|A| ≤
(
n

d

)

Proof. Here, we must assume that A is maximal: every member in
(

[n]
k,k+1

)
\A cannot

be added to A without breaking the antichain or diameter condition. We double-

count pairs of the form (A,B) where A ∈ A and B ∈
(

[n]
k,k+1

)
\A. If A is a k-set, then

Ac is a forbidden k+1 set, as are all k+1 sets that contain A. Furthermore, all
(
k+1
k

)
k-sets contained in Ac are disjoint from A, so A forbids exactly 2k+ 3 = n+ 2 sets in(

[n]
k,k+1

)
. Similarly, if A is a (k + 1)-set, all

(
k+1
k

)
k-sets contained in A are forbidden,

as is Ac any (k + 1)-set containing Ac, as diameter between such a set and A is D+2.

So again, A forbids exactly n + 2 sets in
(

[n]
k,k+1

)
and hence the number of such pairs

is exactly:

(n+ 2) |A| .

Now since n = 2k + 1,
(
n
k

)
=
(
n
k+1

)
and so the number of forbidden sets is exactly

2
(
n
k

)
−|A|. Given a set B ∈

(
[n]

k,k+1

)
\A, let f (B) be the number of sets in A forbidding

B. Note, if Bc ∈ A, f (B) = 1, since the sets forbidding B are exactly the sets

forbidden by Bc, and hence must not be in A. If Bc 6∈ A, we claim at most half

of the remaining n + 1 forbidding B are contained in A. If |B| = k, we pair them

up in the following way: (B + {x} , Bc − x) and if |B| = k + 1, we pair them up as

(B − {x} , Bc + {x}). Either way, the pairs are disjoint and in this case f (B) ≤ n+1
2

.
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Thus the total number of pairs is

∑
B∈( [n]

k,k+1)

f (B) ≤ |A| · 1 +
n+ 1

2

(
2

(
n

k

)
− 2 |A|

)
= (n+ 1)

(
n

k

)
− n |A|

and hence

(2n+ 2) |A| ≤ (n+ 1)

(
n

k

)
|A| ≤ 1

2

(
n

k

)
.

Now, recalling that k = d+ 1 and since d ≥ 2, we have

n− d = d+ 3 < 2 (d+ 1)

and hence

1

2

(
n

k

)
=

1

2

n!

(d+ 1)! (n− d− 1)!
=

n− d
2 (d+ 1)

(
n

d

)
<

(
n

d

)
.

This completes the case k = d+ 1 and n = 2k + 1.

We now relax the conditions on n and k, but specify values for D.

3.5.1 The Two Level Case when D = 3

Proposition 3.19. If A is an antichain of diameter D = 3, then

|A| ≤
(

n

b3/2c

)
= n

Note the condition that A is contained on two adjacent levels is actually implied
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by the diameter in this case (see Proposition 3.12). First, we need a pair of comple-

mentary definitions.

Definition 3.20. A sunflower F with core S is a set system on [n] where every

pairwise intersection is S. That is,

F = S ∨ {P1, P2, . . . , Pm}

for some m where the Pi are pairwise disjoint, and all are disjoint from S. The Pi are

referred to as the petals of F .

By taking the complements of the petals on [n] \ S, we can form co-petals, {Pi =

([n] \ S) \ Pi : Pi a pedal of F}. Together with the core, this forms a co-sunflower,

F = S ∨ {P1, P2, . . . , Pm}

Note that it is easy to determine if a given set system is a sunflower; simply take

the intersection of every member to form the candidate for S, then check if the would-

be leaves are, in fact, disjoint. Co-sunflower’s, on the other hand, require one to take

complements of the would-be co-petals to see if the corresponding petals are disjoint.

Sunflowers have been studied quite extensively; see, for example, Chapter 6 of [7].

The proof of Proposition 3.19 will rely heavily on the following structural lemma,

which states that every k-uniform, (k− 1)-intersecting family is either a sunflower or

a co-sunflower.

Lemma 3.21. Let A ⊆
(

[n]
k

)
be (k − 1)-intersecting with |A| = m ≥ 2. Then A is

isomorphic to one of the following:

1. A sunflower with a core S of size (k − 1) and petals isomorphic to
(

[m]
1

)
.
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2. A co-sunflower with a core S of size (k + 1 − m) and co-petals isomorphic to(
[m]
m−1

)
.

Note, this doesn’t require A to be maximal (in which case, we could appeal to the

Complete Intersection Theorem). Both objects have a common intersection, or core,

S. We’ll use knowledge of the core’s size to determine the exact shape of A:

1. If |S| = 0, then either k = 1, an easily understood case, or |A| = k + 1 and

A ∼=
(

[k+1]
k

)
.

2. If |S| = k− 1, then we’re either in cases (1) or |A| = 2 and in this second case,

(1) and (2) actually coincide.

3. If |S| = k, then obviously |A| = 1.

We can also use knowledge of |A| to deduce the size of the core and hence the shape

of A: If |A| > k + 1, then k + 1− |A| < 0 and hence A must be a sunflower.

Proof of Lemma 3.21. Induction on m = |A|. If m = 2, then, up to isomorphism,

there is only one possible option for A: [1, k − 1] ∨ {k, k + 1}. In this case, both (1)

and (2) describe A.

For m = 3, we’ll think of building A one set at time. Given {A1, A2} , we can

manipulate A2 into A3 by deleting an element and adding an element. Suppose

S = [k − 1], A1 = S ∪ {x}, and A2 = S ∪ {y}.

• If we delete y, everything is still (k − 1)-intersecting, so we must introduce a

new element, say z. In this case, A1 = S∪{x}, A2 = S∪{y}, and A3 = S∪{z}.

That is {A1, A2, A3} is a sunflower with three pedals of size 1.

• If we delete an element in S, say i, then we have to add x in order to properly

intersect A1. This reduces the common intersection by one: S ′ = [k − 1] \i. Now
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A1 = S ′∪{i, x}, A2 = S ′∪{i, y}, and A3 = S ′∪{x, y}. That is, {A1, A2, A2} ∼=(
[3]
2

)
∨ S ′.

Once the first choice has been made, there is no turning back: we must continue

as we did in the first step. Assume the lemma holds for 3 < m < |A|. Delete some

member of A. By induction, the remaining family, A′ is in one of the two cases.

Case 1: A′ = S ∨ {{x1}, {x2}, . . . , {xm}} where S is a (k − 1)-set and the xi are

distinct.

In this case, we can obtain the missing member by deleting some element of

S ∪ {xm} and adding something different. If we delete something in S, then we have

to add back x1, x2, . . . , xm−1 in order to remain (k − 1)-intersecting with the other

members of A. But since m − 1 > 2, this is impossible. Hence, we must delete xm

and add a new element, xm+1 and A = A′ ∪ {S ∪ {xm+1}}, as desired.

Case 2: A′ = S ∨ {{T1}, {T2}, . . . , {Tm}} where the Ti = [m] \ {i} are members

of
(

[m]
m−1

)
and |S| = k + 1−m.

In this case, the Ti are (m − 2)-intersecting. Again, we can obtain the missing

member of A by deleting an element from S ∪ Tm and adding something different.

If we delete something in Tm, say element i < m then we need to add something to

intersect Tj for j 6= i,m in m − 2 places. But there’s nothing we could add (except

i or m) that would make this happen. Hence, we must delete an element, x, from

S. Note, S ∪ Tm\ {x} is (k − 2)-intersecting with everything but S ∪ Tm, and every

other set contains m, so we must add {m} to form the new set. Thus S ′ = S\ {x},

T ′i = Ti ∪ {x} for 1 ≤ i ≤ m and T ′m+1 = [m]. That is,

A ∼= S ′ ∨ {T ′1, T ′2, . . . , T ′m, T ′m+1}

where the Ti = [m+ 1] \i.
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It’s worth noting that, in the second case, each set we added reduced the core size

by one, while in the second case, the core remained fixed. We are now ready to prove

the proposition.

Proof of Proposition 3.19. By Proposition 3.12, A must be contained in 2 adjacent

levels of the cube, i and i+ 1.

Claim: We may assume 2 ≤ i ≤ n− 2.

Proof of Claim: If i = 0, then A ⊆
(

[n]
1

)
and hence |A| ≤ n. If i = n − 1,

then either Ai+1 = An = [n] and hence |Ai| = 0, |Ai+1| = 1, or |Ai+1| = 0 and so

|Ai| = |A| ≤ n. If i = 1, then the key lemma implies A2 is either a sunflower with a

singleton core, or
(

[3]
2

)
. The antichain condition implies that the points in A1 must

be disjoint from A2. In the first case, the sunflower occupies |A2|+ 1 points, leaving

n− |A2| − 1 for A1. Thus |A| ≤ |A2|+ (n− |A| − 1) = n− 1. In the second case, A2

occupies 3 points, leaving n− 3 for A1. Thus |A| ≤ 3 + (n− 3) = n.

From here, we proceed with induction on n. The cases when n = 1, 2 or 3 are trivial

and handled by the claim. So assume n > 3 and let S be the common intersection

of everything in A. If |S| > 0, then deleting this common intersection preserves the

antichain and diameter conditions. By induction, |A| = |A′| ≤ n−|S| < n, as desired.

So assume |S| = 0 and instead consider |Si| and |Si+1|, the common intersections

of Ai and Ai+1 , respectively.

Case 1: If |Si| = 0, then by the lemma, Ai ∼=
(

[i+1]
i

)
. Since i ≥ 2, |Ai| ≥ 3. Let

A1 = [i+ 1] \ {1}, A2 = [i+ 1] \ {2}, and let B ∈ Ai+1. Since B must intersect every

set in i−1 places, it follows that B = [i+ 1] \ {1, a}∪{x, y} for some a, x, y. In order

for B to properly intersect A2, we must have x = 1. But then B = [i+ 1] \ {a}∪{y}.

and in particular, B ⊃ Aa = [i+ 1] \ {a}, a contradiction. So no such B ∈ Ai+1
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exists and we conclude |A| = |Ai| = i+ 1 ≤ n− 1.

Case 2: If |Si+1| 6= 0 and |Si| 6= 0, yet |S| = 0. We have Si+1 ∩ Si = ∅. Take

A ∈ Ai and B ∈ Ai+1 so that A = Si∪̇Ti and B = Si+1∪̇Ti+1. Then

i− 1 = |A ∩B| = |Ti ∩ Ti+1| ⊆ Ti, Ti+1.

That is, both |Ti|, |Ti+1| ≥ i − 1 and hence |Si| ≤ 1 and |Si+1| ≤ 2. By the lemma,

Ai ∼=
(

[i]
i−1

)
∨ {x} and Ai+1

∼=
(

[i+1]
i

)
∨ {x} or

(
[i]
i−1

)
∨ {x, y}. Take an element B from

Ai+1. If B contains {x}, then we need to show B\{x} intersects
(

[i]
i−1

)
in i− 2 places.

But by an identical argument as above, this is impossible. So B must not contain {x}

but must instead intersect every set in
(

[i]
i−1

)
in i−1 places. To intersect A1 = [i]\{1},

B must contain Aa = [i]\{a} for some a, a contradiction. So no such B exists and in

this final case, |Ai+1| = 0. But this implies S = Si 6= 0, so this case is impossible.

Case 3: If |Si+1| = 0, then by the lemma, Ai+1
∼=
(

[i+2]
i+1

)
. Since i ≥ 2, |Ai+1| ≥ 4

(although we only need ≥ 3). Let A1 = [i+ 2]\{1}, A2 = [i+ 2]\{2} and let B ∈ Ai.

Since B must intersect every set in i−1 places, it follows that B = [i+2]\{1, a, b}∪{x}

for same a, b, x. In order for B to properly intersect A2, we must have x = 1. Thus

B = [i+2]\{a, b}. However, this implies B ⊂ Aa = [i+2]\{a}. Hence, so such B ∈ Ai

exists and we conclude |A| = |Ai+1| = i+ 2 ≤ n.

3.5.2 The Two Level Case with D = 4

Proposition 3.22. If A ⊆
(

[n]
k,k+1

)
is an antichain of diameter D = 4, then

|A| ≤
(

n

b4/2c

)
=

(
n

2

)

Proof. Here we use induction on k. The cases k ∈ {1, 2} have already been dealt
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with. So we may assume k ≥ 3. If there is a point in common to every member of A,

simply delete the point from every set to obtain A′ ⊆
(

[n−1]
k−1,k

)
. For A,B ∈ A, removing

a point in A ∩ B does not change dist(A,B), so diam(A′) = 4 as well. Applying the

inductive hypothesis, we conclude |A| ≤
(
n−1

2

)
.

If, on the other hand, there exists a point common to every member of A(k+1),

simply delete the point from every set in A(k+1) to obtain B(k) and a new family

A′ = A(k) ∪ B(k) ⊆
(

[n]
k

)
. The sets in B(k) will now be (k − 2)-intersecting, and since

they originally cross-(k−1)-intersected the sets in A(k), they will now be cross-(k−2)-

intersect them. Furthermore, the antichain condition guarantees that A(k)∩B(k) = ∅.

Therefore, |A′| = |A|, A′ is (k − 2)-intersecting and hence diam(A′) = 4, so we may

apply Theorem 3.17 to achieve the desired bound.

Similarly, if there exists j ∈ [n] that is missing from all of the k-sets, we may

add it and reduce to the single-level case. Finally, if there exists a point common

to every member of A(k), say x, then since some member A ∈ A(k+1) avoids x, we

may uniquely specify each of A(k) by the pair of elements in A it avoids. That is,∣∣A(k)
∣∣ ≤ (k+1

2

)
. Now we apply the single-level-case to A(k+1).

Case 1: If n ≥ 3 (2 + (k − 2)) = 3k, then

∣∣A(k+1)
∣∣ ≤ (n− k + 1

2

)
=

(n− (k − 1)) (n− k)

2
=
n2 − (2k − 1)n+ k (k − 1)

2

and hence

|A| ≤ n2 − (2k − 1)n+ 2k2

2
=

(
n

2

)
− (2k − 2)n− 2k2

2

=

(
n

2

)
− (k − 1)n+ k2.

Put another way,
(

[n]
2

)
can be counted in the following way: take all pairs in [1, k+ 1],
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all pairs in [k, n], but then subtract the pair {k, k + 1} which was counted twice and

add pairs containing one element each from [1, k − 1] and [k + 2, n]. That is,

(
n

2

)
=

(
k + 1

2

)
+

(
n− k + 1

2

)
− 1 + (k − 1) (n− k − 1)

and hence

|A| ≤
(
n

2

)
+ 1− (k − 1)(n− k − 1),

the quantity from above.

Case 2: If 3k ≥ n ≥ 3
(
2 + k−2

2

)
, then

∣∣A(k+1)
∣∣ ≤ (k + 1) (n− k − 1) + 1 = kn− k2 − 2k + n.

So

|A| ≤ 2kn− k2 − 3k + 2n

2
≤ (n− 1)n− k2 − 3k + 6k

2

=

(
n

2

)
+

3k − k2

2
≤
(
n

2

)

since k ≥ 3

Case 3: If k + 4 ≤ n ≤ 3
(
2 + k−2

2

)
, then

∣∣A(k+1)
∣∣ ≤ (k+3

2

)
. Therefore

|A| ≤
(
k + 1

2

)
+

(
k + 3

2

)
=

2k2 + 6k + 6

2
= k2 + 3k + 3

≤ 2k2 + k =

(
2k + 1

2

)
≤
(
n

2

)

since k ≥ 3. We may now assume that
⋂
A(k) =

⋂
A(k+1) = ∅ and

⋃
A(k) = [n].

Claim: We must have that A(k) is actually (k− 1)-intersecting instead and hence,

by the Complete Non-Trivial Intersection Theorem ([1]), (with n > (t+ 1) (k − t+ 1) =
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2k and k = k < 2t+ 1 = 2k − 1)

∣∣A(k)
∣∣ ≤ |F1| =

(
[k + 1]

k

)
= k + 1.

Since k + 1 <
(
k+1

2

)
for k ≥ 3, by the work done above, we are done.

Proof of Claim: Rather than referring to elements in the intersection of two mem-

bers of A, we’ll refer to which elements a given member omits from another (as well as

the elements that it adds). We assume that A(k) is (k−2)-intersecting, but not (k−1)-

intersecting. That is, there exists two sets, A,B ∈ A(k) such that |A ∩ B| = k − 2.

Without loss of generality, A = [1, k] and B = [3, k + 2] so A ∩ B = [3, k]. By hy-

pothesis, there exists some C ∈ A(k+1) that avoids some point in [3, k], without loss

of generality, {3}. Since a (k + 1)-set may only omit a single point in an k-set, we

must have C = [1, k + 2]\{3}. Note that A ∩B ∩C = [4, k].1 The rest of the picture

looks like:

Now, also by hypothesis, there exists a k-set D avoiding {3}. Since A∩B = [3, k],

D may avoid at most one other point from [3, k]. However, it must also avoid two

points in C (of which we have omitted only one so far), so it must also omit one of

1When k = 3, we have A ∩B ∩ C = ∅.
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{1, 2, k + 1, k + 2}, all of which are in A or B. So C can only omit {3} from [3, k]. It

must also omit two from {1, 2, k+ 1, k+ 2}. If it omits {1, 2}, then |A∆D| ≥ 5 and if

it omits {k+1, k+2}, then |B∆D| ≥ 5. So it must omit exactly one each from {1, 2}

and {k + 1, k + 2}. Let D′ = D\[4, k] so without loss of generality D′ ⊃ {1, k + 2}.

Next, D must add an unused point, without loss of generality k+ 3 in order to be an

k-set. We still have A ∩B ∩ C ∩D = [4, k] and the rest of the picture looks like:

Now since 3 ≤ k, k + 4 ≤ 2k + 1 ≤ n, so there exists E ∈ A(k) containing the

element k + 4. If E omits two points within [4, k], then must contain {1, 2, 3, k +

1, k + 2, k + 3} and hence |E| = 1 + (k − 5) + 6 = k + 2, which is impossible.

Similarly, if E omits a single point from [4, k], then E must omit a single point from

{1, 2, k + 1, k + 2} and at most one from {1, 2, 3}, {3, k + 1, k + 2}, {1, k + 2, k + 3}.

No matter what is chosen to omit from the triple, we will need at least four elements

of {1, 2, 3, k + 1, k + 2, k + 3}. Thus |E| ≥ 1 + (k − 4) + 4 = k + 1, a contradiction.

Hence E ⊃ [4, k] ∪ {k + 4} and, setting E ′ = E\[4, k] we know E ′ must contain one

element each from {1, 2} and {k + 1, k + 2}.

Case 1: If E ′ = {2, k + 1, k + 4}, then |D∆E| = 6, a contradiction.
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Case 2: If E ′ = {1, k + 2, k + 4}, we consider adding another F ∈ A(k+1). It

must omit at least one point from C. If that point is in [4, k], it must contain

{1, 2, 3, k+1, k+2, k+3, k+4} since it may not omit any other points from A,B,D,E.

Hence |F | ≥ (k−2)+7 = k+5, a contradiction. So F ⊃ [4, k] and we set F ′ = F\[4, k]

(note, |F ′| = 4). F ′ must contain exactly two points from each of {1, 2, 3}, {3, k +

1, k+ 2}, {1, k+ 2, k+ 3}, {1, k+ 2, k+ 4} and at least two from {1, 2, k+ 1, k+ 2}. If

we choose to must omit {1}, then F ′ ⊃ {2, 3, k+2, k+3, k+4}, contradicting the size

of F ′. If we choose to omit {3}, then F ′ = {1, 2, k+ 1, k+ 2} = C ′. Thus F ′ ⊃ {1, 3}.

If we chose to omit {k + 2}, then F ′ ⊃ {1, 3, k + 1, k + 3, k + 4}, again contradicting

the size of F ′. Thus F ′ ⊃ {1, 3, k+ 2}. From here, the fourth and final member of F ′

makes no difference, as we’ve just shown every member of A(k+1) contains {1, k+ 2},

a contradiction.

Case 3: If E ′ = {2, k+ 2, k+ 4}, we again consider adding another F ∈ A(k+1). If
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it omits a point from [4, k], then |F | ≥ k+ 5 as above. So F ⊃ [4, k] and we set F ′ =

F\[4, k]. Similarly, F ′ must contain exactly two points from each of {1, 2, 3}, {3, k +

1, k+ 2}, {1, k+ 2, k+ 3}, {2, k+ 2, k+ 4} and at least two from {1, 2, k+ 1, k+ 2}. If

we choose to omit {1}, then F ′ = {2, 3, k + 2, k + 3}. If we choose to omit {2}, then

F ′ = {1, 3, k+ 2, k+ 4}. If we choose to omit {3}, then F ′ = {1, 2, k+ 1, k+ 2} = C ′.

Since these are the only possible 4-sets we could form, it’s now clear every member

of A(k+1) contains {k + 2}, another contradiction.

Case 4: If E = [4, k]∪{1, k+ 1, k+ 4}, we use the symmetry of the picture at the

end of the previous step and Case 3 to arrive at the same conclusion.

We would, of course, like to weaken the diameter condition and obtain a result

for all antichains contained on two adjacent levels of the cube. One approach might

involve proving a “multi-level” analogue of the Complete Intersection Theorem. An-

other that we considered involved “rigging” the family so that the antichain condition

was negligible. Consider an antichain A ⊆
(

[n]
k,k+1

)
where every member of A(k) con-

tains a fixed point, say n, which every member of A(k+1) avoids. Deleting this point

from every member A(k) yields a new family, A′ ⊆
(

[n−1]
k−1,k+1

)
, that need not be an

antichain and whose maximum distance between layers has decreased. It would be

interesting to know if these families achieve the desired bound and whether or not all
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optimal two-layer families are of this form.
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Chapter 4

An Improvement Upon a Theorem of Leader and Long

In this chapter, we discuss two existing results regarding families with a forbidden

(non-symmetric) set difference. For this entire chapter, we fix k ∈ N and let F ⊆ 2[n]

have |A \ B| 6= k for all A,B ∈ F . When k = 0, this is equivalent to the antichain

condition, so the next natural step is to consider the case k = 1. First we present a

simple lemma which we will use later.

Lemma 4.1. If F ⊆
(

[n]
k

)
has |A\B| 6= 1 for all A,B ∈ F , then

|F| ≤ 1

k

(
n

k − 1

)
=

1

n− k + 1

(
n

k

)
.

Proof. Let P = {(A, S) : A ∈ F , S ∈ ∂k−1(A)} and count |P| in two ways. For a fixed

A ∈ F , there is precisely k elements in ∂k−1(A), so

|P| = k · |F| .

On the other hand, for a fixed S ∈
(
n
k−1

)
, we claim at most one A ∈ F contains S. If

not, say A 6= B both contain S, then |A\B| = 1, a contradiction. So

|P| ≤ 1 ·
(

n

k − 1

)
,
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proving the result.

In the non-uniform k = 1 case, Leader and Long proved the following asymptotic

bound.

Theorem 4.2 (Leader-Long [10]). Suppose F ⊆ 2[n] has |A\B| 6= 1 for A,B ∈ F .

Then

|F| ≤ 2 + o (1)

n

(
n

bn/2c

)
.

A disclaimer on the proof that follows. This is not a“new” proof of their theorem,

so much as it is a streamlining of their original proof. Many of the elements are the

same or similar, but we feel it conveys the result more clearly.

Proof of Theorem 4.2. Remove, from F , all sets of size < n
2
−nα and > n

2
+nα where

1
2
< α < 1. Let A ∈ 2[n] be chosen uniformly at random. By Chernoff’s Inequality,

P
(
A ∈

(
[n]

< n
2
− nα

))
< exp

(
−(nα)2

2
(
n
2

)) = exp
(
−n2α−1

)
.

Assuming nα < n
2
, we need α < 1 − logn 2 < 1 and in order for the right hand side

to vanish, we need 2α− 1 > 0. Thus we only require 1
2
< α < 1 (the original authors

take α = 2
3

for convenience).

At the asymptotic level, the parity of n does not matter. So for the remainder of

the proof of this theorem and the theorem that follows, we shall assume omit floor

and ceiling functions.

Noting

(
n

n/2

)
∼
√

2πn ·
(
n
e

)n
2π · n

2

(
n
2e

)n
2
·2

=

√
2√
πn

2n
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we have

1

n

(
n

n/2

)
∼
√

2

π
n−3/2 · 2n.

Thus, provided 1 > α > 1
2
, we’ve deleted at most

2n · 2 exp
(
−n2α−1

)
= 2no

(√
2

π
n−3/2

)

= o

(
1

n

(
n

n/2

))

elements.

Let B be the leftover sets. We need only show

|B| ≤ (2 + o (1))

n

(
n

n/2

)
.

Next, we consider all truncated maximal chains running from level n
2
−nα to level

n
2

+nα. We group these chains into “classes” in the following way: C ∼ C ′ if and only

if Ci+1\Ci = C ′i+1\C ′i for all i. That is, the sequences of elements added to the base

elements of C and C ′, respectively, are identical. Note, there are
(
n

2nα

)
· (2nα)! = n(2nα)

such sequences and consequently n(2nα) equivalence classes. First, we choose 2nα

elements to be in the sequence and order them in one of (2nα)! ways. Since every

chain in a given class is uniquely determined by its base element, we see that there

are
(
n−2nα
n
2
−nα
)

chains in a class.

Choose a chain C uniformly at random from among all maximal truncated chains

and let Γ denote its chain class. We say C hits B if B∩C 6= ∅. Let XΓ be the number

of chains in Γ that hit B. Since all the chain classes have the same size, each chain
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in Γ had an equal chance of being selected. Therefore

XΓ =

(
n− 2nα

n
2
− nα

)
P (C hits B|C ∈ Γ)

and consequently

EXΓ =

(
n− 2nα

n
2
− nα

)
P (C hits B) .

However,

XC = 1 (C hits B)

=
∑
i

1 (C hits B at level i and not before)

yielding

EXC = P (C hits B)

=
∑
i

1 (C hits B at level i and not before) .

Therefore,

EXΓ =

(
n− 2nα

n
2
− nα

)∑
i

1 (C hits B at level i and not before)

On the other hand, suppose C and C ′ hit B with C ∼ C ′. Thus there exists Ci ∈ C

and C ′j ∈ C ′ with Ci, C
′
j ∈ B. Without loss of generality, i < j, so

1 6=
∣∣Ci\C ′j∣∣ =

∣∣∣Cn
2
−nα\C ′n

2
−nα

∣∣∣ .
Thus, we can bound the number of chains in a class that hit B by bounding the
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number of elements A,B in layer n
2
− nα with |A\B| 6= 1. By the Lemma above,

EXΓ ≤
1

n
2
− nα

(
n− 2nα

n
2
− nα − 1

)
=

1
n
2
− nα + 1

(
n− 2nα

n
2
− nα

)
.

Thus far, we have shown

(
n− 2nα

n
2
− nα

)∑
i

P (C0 hits at level i and not before) = EXΓ ≤
1

n
2
− nα + 1

(
n− 2nα

n
2
− nα

)

and hence ∑
i

P (C hits at level i and not before) ≤ 1
n
2
− nα + 1

.

Let Ci = C ∩
(

[n]
i

)
, i.e. the member of the chain on level i. Since the events P(Ci = B)

are mutually exclusive for all B ∈ B, and zero for all B with |B| 6= i, we have

∑
i

P (C hits at level i and not before) =
∑
i

P (Ci ∈ B, Ci′ /∈ B for i′ < i)

=
∑
i

∑
B∈B(i)

P (Ci = B,Ci′ /∈ B for i′ < i) .

Thus we’ve shown

∑
i

∑
B∈B(i)

P (Ci = B,Ci′ /∈ B for i′ < i) ≤ 1
n
2
− nα + 1

.

Major Claim:

P (Ci = B,Ci′ /∈ B for i′ < i) = (1− o(1))P(Ci = B).



50

For then

1
n
2
− nα + 1

≥
∑
i

∑
B∈B(i)

P (Ci = B,Ci′ /∈ B for i′ < i)

= (1− o (1))
∑
i

∑
B∈B(i)

P (Ci = B)

= (1− o (1))
∑
i

∑
B∈B(i)

(
n

i

)−1

= (1− o (1))
∑
i

∣∣B(i)
∣∣ (n

i

)−1

≥ (1− o (1))
∑
i

∣∣B(i)
∣∣ ( n

n/2

)−1

= (1− o (1)) |B|
(
n

n/2

)−1

and hence

|B| ≤ (1 + o (1))
n
2
− nα + 1

(
n

n/2

)
=

(1 + o (1))
n
2

(
n

n/2

)
=

(2 + o (1))

n

(
n

n/2

)
.

Proof of Claim: First note, by successive conditioning:

P (Ci = B, Ci′ /∈ B for i′ < i) = P (Ci = B)P (Ci−1 /∈ B | Ci = B)

· · ·P (C1 /∈ B | C2, . . . Ci−1 /∈ B, Ci = B) .
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By the Law of Total Probability, however,

P (Ci′ /∈ B | Ci′+1 /∈ B, . . . , Ci−1 /∈ B, Ci = B) =
∑
F

P (Ci′ /∈ B | F) · P (F)

where F = {Ci′+1 = Fi′+1, . . . , Ci−1 = Fi−1, Ci = B}, each Fj /∈ B, and the sum ranges

over all possible F. In particular,
∑

F P (F) = 1. Now since the event Ci′ /∈ B only

depends on the Ci′+1, we are dealing with a Markov process, hence

P (Ci′ /∈ B | F) = P (C ′i /∈ B | Ci′+1 = Fi′+1) .

For i′ + 1 > n
2
− nα, Ci′ is equally likely to be any of Ci′+1’s i′-subsets. But since at

most one Ci′+1\{d} ∈ B, we have

P (Ci′ ∈ B | Ci′+1 = Fi′+1) =
1

i′ + 1

and hence for i′ + 1 > n
2
− nα

P (Ci′ /∈ B | Ci′+1 = Fi′+1) = 1− 1

i′ + 1
> 1− 1

n
2
− nα

.

Therefore, for i′ + 1 > n
2
− nα

P (Ci′ /∈ B | Ci′+1 /∈ B, . . . , Ci−1 /∈ B, Ci = B)

≥
∑
F

(
1− 1

n
2
− nα

)
· P (F) =

(
1− 1

n
2
− nα

)
.
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Now for i′+1 ≤ n
2
−nα, P (Ci′ /∈ B | Ci′+1 /∈ B, . . . , Ci−1 /∈ B, Ci = B) = 1. Therefore,

P (Ci = B, Ci′ /∈ B for i′ < i) ≥
(

1− 1
n
2
− nα

)(i−1)−(n/2−nα−1)

· 1
n
2
−nα−1 · P (Ci = B)

≥
(

1− 1
n
2
− nα

)2nα

P (Ci = B)

= (1− o (1))P (Ci = B)

as desired.

Leader and Long also proved an asymptotic bound for the general k case.

Theorem 4.3 (Leader-Long [10]). Let k ∈ N. Suppose F ⊆ 2[n] has |A\B| 6= k for

A,B ∈ F . Then

|F| ≤ Ck
nk

(
n

n/2

)
where Ck is a constant depending only on k.

Their proof makes use of a theorem due to Frankl and Füredi which we will use

as well.

Theorem 4.4 (Frankl-Füredi [6]). Let 0 ≤ k < r and suppose A ⊆
(

[n]
r

)
with |A∩B| 6=

k for all A,B ∈ A. Then |A| ≤ drn
max(k,r−k−1) where dr is a constant depending only

on r.

Note, the upper bound technique will not work exactly as before: given a family

F ⊆
(
n
m

)
with |A\B| 6= k, we can count pairs

{
(A, S) : A ∈ F , S ∈

(
A

m−k

)}
to get

|F| ·
(

m

m− k

)

on one hand. However, for a fixed set S, there could be many sets A containing S.

Equivalently, there could be many U such that S ∪U ∈ F . However the collection of
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such U form an intersecting family: if not |(S ∪ U1) \ (S ∪ U2)| = |U1\U2| = k. So by

Erdős-Ko-Rado, there are at most
(
n−m+k−1

k−1

)
such U . Hence

|F| ≤
(
n−m+k−1

k−1

)
·
(

n
m−k

)(
m

m−k

) =
k

n−m+ k

(
n

m

)
· ≤ k

n−m+ k

(
n

n/2

)
,

which isn’t good enough.

Furthermore, in the k = 1 case, we considered skipless chains. We were able to do

this since, given any chain element at level i, we were equally likely to be any subset

on level i− 1. However, the |A\B| 6= 1 condition only allowed for at most one subset

to be in B.

For k 6= 1, deleting 1 element doesn’t guarantee anything; every subset on level

i− 1 could potentially be in B. So we instead consider chains that skip k levels at a

time.

The disclaimer from the previous theorem applies here as well.

Proof of Theorem 4.3. Remove the same sets as before. By Chernoff, we’ve removed

at most o
(

1
nk

(
n
n/2

))
. We now partition B into k classes: for each l ∈ [0, . . . , k − 1],

let Bl = {B ∈ B : |B| ≡ l mod k}. We’ll show for each l,

|Bl| ≤
Ck
nk

(
n

n/2

)
.

where Ck is a constant depending only on k. It suffices to prove the result for B0 and

assume that n
2
−nα is multiple of k. Our partial chains will start at level n

2
−nα, and

subsequently add k elements at a time until it reaches (close to) layer n
2

+nα. In fact,

they will add somewhere between 2nα − k + 1 and 2nα. Pick such a partial chain C

uniformly at random. Since the number elements not in the chain depends on n, we

let J be the n− 2nα ≤ |J | ≤ n− 2nα + k − 1 things not added at some point in the
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chain. Let

D =

{
S ∈

(
J

n
2
− nα

)
: CS ∩ B0 6= ∅

}
,

i.e., the set of bases of chains hitting B0 in the same class as C.

Instead of going k layers below the first layer in B0, we go down 2k. For any

T ∈
(

J
n
2
−nα−2k

)
, let DT =

{
U ∈

(
J\T
2k

)
: U ∪ T ∈ D

}
. We now count pairs (S, T ). For

each S ∈ D, there is exactly
(n

2
−nα
2k

)
subsets U of size 2k we could delete and obtain

a T . On the other hand, for a fixed T ∈
(

J
n
2
−nα−2k

)
, there is exactly |DT | U we could

add and obtain a member of D. So

∑
T∈( J

n
2−n

α−2k)

|DT | = |D| ·
(
n
2
− nα

2k

)
.

So by the averaging principle, there exists a T ′ with

|DT ′ | ≥
|D| ·

(n
2
−nα
2k

)(|J |
|T |

) .

On the other hand, for any T , there exists U1, U2 ∈ DT ⊆
(
J\T
2k

)
such that |U1 ∩ U2| =

k, then U1 ∪ T, U2 ∪ T ∈ D. So there exists i1 ≤ i2 s.t.

|CU1∪T,i1\CU2∪T,i2| = |(U1 ∪ T ) \ (U2 ∪ T )| = |U1\U2|

= |U1| − |U1 ∩ U2| = 2k − k = k,

a contradiction. Hence, for all U1, U2 ∈ DT , |U1 ∩ U2| 6= k for every T . By Theorem

4.4, there exists some constant d2k, relying only on k, s.t.

|DT | ≤ d2k (|J\T |)max(k,k−1) .
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So
|D| ·

(n
2
−nα
2k

)( |J |
|T ′|

) ≤ |DT ′ | ≤ d2k (|J\T |)k

and hence

|D| ≤ d2k (|J\T |)k · |J |!
|T |! |J\T |!

·
(2k)!

(
n
2
− nα − 2k

)
!(

n
2
− nα

)
!

≤ d2k (|J\T |)k · |J |!
|J\T |!

· (2k)!(
n
2
− nα

)
!
·
(
|J | − n

2
+ nα

)
!(

|J | − n
2

+ nα
)
!

= d2k (|J\T |)k ·
(
|J |

n
2
− nα

)
·

(2k)! ·
(
|J | − n

2
+ nα

)
!

|J\T |!

= d2k (|J\T |)k ·
(
|J |

n
2
− nα

)
·
(
|J\T |

2k

)−1

≤ d2k (|J\T |)k ·
(
|J |

n
2
− nα

)
· (2k)2k

(|J\T |)2k

≤ d2k · (2k)2k(
n
2
− nα + 2k

)k · ( |J |
n
2
− nα

)

As before

(
|J |

n
2
− nα

)∑
i

P (C ′ hits first at i) = EX = E |D| ≤ d2k · (2k)2k(
n
2
− nα + 2k

)k · ( |J |
n
2
− nα

)

and so ∑
i

P (C ′ hits first at i) ≤ d2k · (2k)2k(
n
2
− nα + 2k

)k .
Again,

∑
i

P (C hits first at i) =
∑
i

∑
B∈B(ik)0

P (Ci = B,Ci′ /∈ B0 for i′ < i)
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and we claim

P (Ci = B,Ci′ /∈ B0 for i′ < i) = (1− o (1))P (Ci = B)

so that

d2k · (2k)2k(
n
2
− nα + 2k

)k ≥ (1− o (1))
∑
i

∑
B∈B(ik)0

P (Ci = B)

≥ (1− o (1)) |B0|
(
n

n/2

)−1

and hence

|B0| ≤
d2k · (2k)2k (1 + o (1))(

n
2
− nα + 2k

)k (
n

n/2

)
.

Multiplying by k, we have

|B| ≤ k · d2k · (2k)2k (1 + o (1))(
n
2
− nα + 2k

)k (
n

n/2

)
.

Proof of Claim: For our chain C, we write Ci for the member of C on level ik. By

successive conditioning

P (Ci = B0, Ci′ /∈ B0 for i′ < i) = P (Ci = B)P (Ci−1 /∈ B0 | Ci = B)

· · ·P (C1 /∈ B0 | C2, . . . Ci−1 /∈ B0, Ci = B)
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and by the Law of Total Probability

P (Ci′ /∈ B0 | Ci′+1 /∈ B0, . . . , Ci−1 /∈ B0, Ci = B)

=
∑
F

P (Ci′ /∈ B0 | F) · P (F)

=
∑
F

P (C ′i /∈ B0 | Ci′+1 = Fi′+1) · P (F)

where F = {Ci′+1 = Fi′+1, . . . , Ci−1 = Fi−1, Ci = B}, each Fj /∈ B0, and the sum

ranges over all possible F.

Fixing Ci′+1, Ci′ is equally likely to be any of Ci′+1’s i′k subsets. Equivalently, the

k elements we remove from Ci′+1 to get to Ci′ are chosen uniformly at random from

Ci′+1. Hence, there are
(
k(i′+1)

k

)
possible choices for Ci′ . How many of them can be in

B0? If E1, E2 are two subsets of Ci′+1 of size k and E1 ∩ E2 = ∅, then

|(Ci′+1\E1) \ (Ci′+1\E2)| = |E1\E2| = k.

Thus the set of possible E s.t. Ci′+1\E hit B0 form an intersecting family. By Erdős-

Ko-Rado, there are at most

(
k (i′ + 1)− 1

k − 1

)
=

k

k (i′ + 1)

(
k (i′ + 1)

k

)
.

Hence,

P (Ci′ ∈ B0 | Ci′+1 = Fi′+1) ≤
k

k(i′+1)

(
k(i′+1)

k

)(
k(i′+1)

k

) =
1

i′ + 1
.
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So

P (Ci′ /∈ B0 | Ci′+1 /∈ B0, . . . , Ci−1 /∈ B0, Ci = B)

≥
∑
F

(
1− 1

i′ + 1

)
P (F) =

(
1− 1

i′ + 1

)
.

Here, for (i′ + 1) k > n
2
− nα,

P (Ci′ /∈ B0 | Ci′+1 /∈ B0, . . . , Ci−1 /∈ B0, Ci = B) > 1− k
n
2
− nα

and for (i′ + 1) k ≤ n
2
− nα

P (Ci′ /∈ B0 | Ci′+1 /∈ B0, . . . , Ci−1 /∈ B0, Ci = B) = 1.

Thus

P (Ci = B0, Ci′ /∈ B0 for i′ < i) ≥
(

1− k
n
2
− nα

)2nα

P (Ci = B)

= (1− o (1))P (Ci = B) ,

as desired.
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Chapter 5

Subposets of a Specific Height

Recall, the classic result from graph theory:

Proposition 5.1. Every graph G = (V,E) contains a bipartite subgraph with ≥ |E|
2

edges.

We present the proof as a basis for our results:

Proof of Proposition 5.1. Pick a bipartite subgraph that preserves a maximal number

of relations, |EB|. If every vertex x has at least half its original degree, i.e. dB(x) ≥

d(x)/2, then

2|EB| =
∑
x

dB(x) ≥
∑
x

d(x)/2 = |E|

and |EB| ≥ |E|/2. So assume that some x has dB(x) < d(x)
2

. This implies that x has

more edges within its partition than across. Simply moving x to the other partition

will cause the number of preserved edges to increase by at least one, contradicting

maximality. Thus no such x exists and |EB| ≥ |E|/2.

Partially ordered sets can be thought of as directed graphs whose edges have the

transitive property: if (A,B) ∈ E and (B,C) ∈ E, then (A,C) ∈ E as well. To avoid

confusion, we will write a poset P as an ordered pair (V,R) where V is the set of
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elements in the poset and R is the set of relations. Recall, the height of a poset is

length of the longest chain. The analogous result for posets is as follows:

Theorem 5.2. Every poset P = (V,R) contains a height two subposet with ≥ R
2

relations.

Here’s where things get complicated: one cannot simply partition the elements

of a poset at random. Consider putting every other element of a chain in the upper

and lower partitions. The relations that are “preserved” force relations within the

partitions via transitivity. This contradicts the height two requirement.

If the poset is already height two, for instance, it makes no matter how it is par-

titioned. In this case, we could have relations going both ways across the partitions.

In cases where the height is at least three, this will almost surely induce relations

via transitivity. It is therefore sufficient to partition the poset into an upset and a

downset (which we will refer to as U and D), which ensures that all relations across

are going the same direction. We call such a partition a (U,D)-partition.

Given any element x in a poset P , define the down and up degrees of x:

d(x) = |{y ∈ P | x > y}|

u(x) = |{y ∈ P | x < y}| .

Given a (U,D)-partition of P , we define also the across and within degrees of x. For

x ∈ U

a(x) = |{y ∈ D | x > y}|

w(x) = |{y ∈ U | x > y or x < y}|
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and for y ∈ D,

a(y) = |{x ∈ U : y < x}|

w(y) = |{x ∈ D : y < x or y > x}| .

Additionally, once the poset has been partitioned, we partition the set of relations,

R = A ·∪ W where A is the collection of relations that occur between elements of

different partitions of the ground set and W is the collection of relations between

elements of the same partition of the ground set. We car further partition W based

on which partition the relation occurs: W = WD ·∪WU .

Obviously, for any (U,D)-decomposition, the total number of relations across the

partition is

|A| =
∑
x∈U

a(x) =
∑
y∈D

a(y)

and by counting the within degrees on each partition, we get twice the number of

relations within. That is,

2|W | =
∑
x∈U

w(x) +
∑
y∈D

w(y)

= 2|WU |+ 2|WD|.

Additionally,

|W | =
∑
x∈U

u(x) +
∑
y∈D

d(x)
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so

|WU | =
1

2

∑
x∈U

w(x) =
∑
x∈U

u(x)

|WD| =
1

2

∑
y∈D

w(y) =
∑
y∈U

d(y)

We now introduce a method for generating a good (U,D)-partition.

Algorithm 5.3 (Down-Up). Define

P = {x ∈ P | d(x)− u(x) > 0}

N = {x ∈ P | d(x)− u(x) < 0}

Z = {x ∈ P | d(x) = u(x)}

Let U = P and D = Z ∪N.

Remark 5.4. The choice to place every member of Z in D was arbitrary, as moving

any z ∈ Z across the partition preserves the number of relations across.

To show that this is, in fact, a (U,D)-partition, we need a lemma.

Lemma 5.5. If x > y, then

u(y) ≥ u(x) + 1

d(x) ≥ d(y) + 1

and hence

d(x)− u(x) ≥ d(y)− u(y) + 2.
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Proof. Let x > y. For every z > x, z > y by transitivity. Taking into account x

itself yields the first inequality. Similarly, for every z < y, z < x again by transitivity.

Taking into account y itself yields the second inequality. Subtraction yields the final

inequality.

Now to show that Down-Up yields an (U,D)-partition. Let y ∈ U = P , i.e.

d(y) − u(y) > 0. If x > y, then by the lemma d(x) − u(x) ≥ d(y) − u(y) + 2 > 2.

Hence, x ∈ U as well. Showing D is a downset is similar. Note, we can move any

member of Z to U and not affect the number of relations across, so we only put Z in

D by convention.

It turns out that this particular (U,D)-partition is the best possible:

Proposition 5.6. Down-Up yields a height two subposet with the maximal number

of relations.

Proof. Note, for any (U,D)-partition, the number of relations within the partitions

(i.e., the number of relations deleted) is always

|W | =
∑
x∈U

u(x) +
∑
x∈D

d(x).

The number of total relations is also

|R| =
∑
x

u(x) =
∑
x

d(x)
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Thus, the number of relations across (i.e, the number of relations preserved) is always

|A| = |R| − |W | =
∑
x∈U

d(x) +
∑
x∈D

d(x)−
∑
x∈U

u(x)−
∑
x∈D

d(x)

=
∑
x∈U

d(x)− u(x).

This last sum is maximized when every x with d(x) − u(x) > 0 is in U and every x

with d(x) − u(x) < 0 is in D, i.e., when we have partitioned the poset according to

Down-Up.

We now present an easy lower bound:

Proposition 5.7. Down-Up yields a height two subposet with more than 1
3

of the

original relations.

Proof. We make the following claim: for every x ∈ P , a(x) ≥ u(x) + 1 and for every

y ∈ N ∪ Z, a(y) ≥ d(y). This implies

|A| =
∑
x∈P

a(x) ≥
∑
x∈P

(u(x) + 1)

and

|A| =
∑

y∈D=N∪Z

a(y) ≥
∑

y∈N∪Z

d(y).

Hence

2|A| ≥
∑
x∈P

u(x) +
∑

y∈N∪Z

d(y) + |P |

= |W |+ |P |

= |R| − |A|+ |P |
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So

3|A| ≥ |R|+ |P |

|A| ≥ |R|
3

+
|P |
3

≥ |R|+ 1

3
>
|R|
3
.

To prove the claim, let x ∈ P be minimal. This implies d(x) = a(x), but since

d(x) ≥ u(x) + 1 in order for x to be in U , a(x) ≥ u(x) + 1. Now consider x ∈ P that

is not minimal. Simply select a minimal y ∈ P with x > y. Then

u(y) ≥ u(x) + 1

a(x) ≥ a(y) = d(y)

and thus

a(x) ≥ a(y) = d(y) ≥ u(y) + 1 ≥ u(x) + 2.

Hence, for non-minimal elements x ∈ P , a(x) ≥ u(x) + 2. For y ∈ N ∪ Z, the

argument is similar with the following caveat: maximal elements y have a(y) ≥ d(y),

not d(y) + 1 (since y could be in Z).

An algebraic proof improving the constant to 1
2

has eluded us. However, there is

a straightforward pairing algorithm that easily yields the result and leads to a few

stronger results.

Pairing Process: Fix a linear extension of P that preserves the order of P,Z,

and N (i.e., find linear extensions of all three, and glue them together). Order the

elements of P according to the extension, but don’t actually add the missing relations.

We have already established that every x ∈ P has a(x) ≥ u(x)+1 and every y ∈ N∪Z
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Figure 5.1: A pairing of a (1, 4, 1, 1, 1)-chain. Unpaired relations are colored in red.
By taking P0 = P to be the entire upset, we see that 5 = a ≥ c = 3. Notice every
element of P has one unpaired relation and a− c+ 1 = 5− 3 + 1 = 3 elements in P
have two unpaired relations.

has a(y) ≥ d(y). So for each element x ∈ P , pair the u(x) relations up with the last

u(x) relations across. Similarly, for y ∈ N ∪Z, pair the d(y) relations down with the

first d(y) relations across. See Figure 5.1.

Claim: This process is well-defined.

Clearly, each relation within gets paired exactly once. It is less clear, however,

that each relation across gets paired at most once. Suppose there is some x > y

where x ∈ P and y ∈ N ∪ Z that is paired to two different relations within (one

of x’s up relations and one of y’s down relations). This implies that y is in the last

u(x) down neighbors of x across. By transitivity, each of y’s down-neighbors (which

occur to the right of y) must also be in first u(x) down neighbors of x across. Thus

d(y) + 1 ≤ u(x). On the other hand, x must be in the first d(y) up neighbors of y.

By transitivity, each of x’s up-neighbors (which occur to the left of x) must also be
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in the first d(y) up neighbors of y across. Thus, u(x) + 1 ≤ d(y) and hence

u(x) + 1 ≤ d(y) ≤ u(x)− 1,

a contradiction. Thus this operation is well-defined; every relation within is paired

to a unique relation across. In fact, it leaves behind |A| − |W | ≥ 0 unpaired relations

across and we obtain the original conjecture as an immediate consequence:

Corollary 5.8. Down-Up yields a (U,D)-partition with |A| ≥ |W |. Equivalently,

Down-Up yields a height two subposet with at least 1
2

of the original relations.

Proof. To see the equivalence, observe |A| ≥ |W | = |R| − |A| and so 2|A| ≥ |R| and

|A| ≥ |R|/2.

With a little more work, we see that Down-Up does even better:

Proposition 5.9. Down-Up yields a (U,D)-partition with |A|−|W | ≥ max{|P |, |N |}.

Proof. For each x ∈ P , let kx = a(x)− u(x) and let yx be the kx-th neighbor across

for x. Such a neighbor exists since for every x ∈ P , a(x) ≥ u(x) + 1, and so kx ≥ 1.

Note the relation x > yx is not paired to an up relation of x. It’s possible, however,

that it is paired with a down relation of some y ∈ N ∪ Z.

Claim: For every element x ∈ P , the relation to yx is always unpaired.

Proof of Claim: If x > yx is the kx-th relation across, it is not paired to one of

the u(x) up-relations of x. We need to show it’s not paired with one of the d(y)

down-relations of y. First, d(y) ≤ u(x), otherwise y is not the kx-th relation (by

transitivity). But since y pairs its down-relations with its first d(y) ≤ u(x) up-

relations, it will never pair with the relation to x itself (as all of x’s up-neighbors

occur to the left of x). Thus, every x ∈ P ′ always has the its kx-th relation unpaired.
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Hence, after we pair the |W | relations within with |W | relations across, of the |A|−

|W | relations across left over, there’s at least one for every element in P . Therefore,

|A| − |W | ≥ |P |.

If we invert the poset (i.e., reverse the direction of every relation), we get a (U,D)-

partition of (N,Z ∪ P ). Reapplying the pairing process and the same argument as

above, we see that |A| − |W | ≥ |N | and hence |A| − |W | ≥ max{|P |, |N |}.

It turns out that containing a downset with certain properties guarantees even

more unpaired relations.

Theorem 5.10. Let P be a poset and P0 a downset in P with

P0 = {x ∈ P0 | d(x)− u(x) ≥ 2}

N0 = {x ∈ P0 | d(x)− u(x) ≤ 0} .

If a = |P0| and c = |N0|, then applying Down-Up to P yields a (U,D)-partition

(P,N ∪ Z) with

|A| − |W | ≥ max {|P |, |P |+ a− c+ 1} .

Proof. If a ≤ c − 1, then we are done by the previous result. So assume a ≥ c (as

in Figure 5.1). Let x ∈ P0 ⊆ P . If x is minimal in P , then x has all a(x) = d(x) ≥

u(x) + 2 relations across. If x is not minimal, then select x′ that is minimal in P

with x′ < x.1 Then a(x) ≥ a(x′) ≥ u(x′) + 1 ≥ u(x) + 2. Thus every x ∈ P0 has

a(x) ≥ u(x) + 2 and hence kx − 1 ≥ 1. Let y′x be the (kx − 1)-st neighbor across for

x. Note also, the relation x > y′x is not paired to an up relation of x. So when we are

1Such an element might have d(x′)− u(x′) = 1, and therefore may not be in P0.
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pairing x’s up relations with relations across, there is always 2 relations unpaired for

each x ∈ P0 ⊆ P ′ thus far. We already established in the previous result, the kx-th

relation is always unpaired. We now show that enough of (kx − 1)st relations remain

unpaired as well.

Claim: There exists ≥ a− c+ 1 elements x ∈ P0 ⊆ P that also have the relation

to y′x unpaired.

Proof of Claim: Let x1, x2, . . . , xm be the elements of P0 that have their relation

to y′xi paired. We will show that m ≤ c− 1 so that the number of elements in P0 that

have their (kx − 1)-st relation unpaired is at least a − c + 1.2 First note that it is

impossible for last element of N0 (in the ordering) to be the (kx − 1) down-neighbor

of any x ∈ P0. Thus, the number of possible yx is therefore ≤ |N0| − 1 = c− 1. Next,

we show the map

P0 → N0

x 7→ y′x

is injective when restricted to x1, . . . , xm. Suppose, to the contrary, that xi 7→ y′ and

xj 7→ y′. If d(y′) ≤ u(xi) or d(y′) ≤ u(xj), then y′ doesn’t pair a down-relation with

its relation to xi or xj. So we must have d(y′) = u(xi) + 1 = u(xj) + 1. But since

d(y′) = u(xi) + 1, xi is the last up neighbor that y′ pairs an edge with. Similarly, xj

is the last up-neighbor that y′ pairs an edge with so xi = xj. Thus each x1, . . . , xm

map to a unique y′xi , of which there are c − 1 available. The remaining ≥ a − c + 1

members of P0 have an unpaired relation to their corresponding y′x. That is, they each

have ≥ 2 unpaired relations.

In summary, we started out with a poset that has |A| relations across. We then

2Recall, P0 is part of a down set; all of its across relations go to N0.
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paired |W | relations across with the |W | relations within, leaving behind |A| − |W |

unpaired relations across. Once that was done, everything in P still had at least one

more relation across and at least a−c+1 of the things in P0 had ≥ 2 relations across.

Thus

|A| − |W | ≥ |P |+ a− c+ 1,

as desired.

Example 5.11. The bound |A| − |W | ≥ max {|P |, |N |} is tight.

• Even chains have |A| = n
2
· n

2
relations across out of |R| = n(n−1)

2
. Then

|A| − |W | = 2|A| − |R| = n2

2
− n2 − n

2
=
n

2
= |P | = |N |.

• Odd chains have |A| = n−1
2
· n+1

2
= n2−1

4
relations across out of |R| = n(n−1)

2
.

Then

|A| − |W | = 2|A| − |R| = n2 − 1

2
− n2 − n

2
=
n− 1

2
= |P | = |N |

(since |Z| = 1).

• (1, n− 2, 1)-chains have |A| = n− 1 relations across out of |R| = 2n− 3. Then

|A| − |W | = 2|A| − |R| = (2n− 2)− (2n− 3) = 1 = |P | = |N |

(since |Z| = n− 2).
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